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Abstract—Complex traffic scenes greatly challenge the road 

safety of automated vehicles (AVs). Recent work only 

provides an independent perspective from the fundamental 

modules. This paper integrates the decision-making and 

path-planning modules to ensure the autonomous driving 

performance in the high-speed cruising scenario. First, to 

guarantee deep exploration of the reinforcement learning 

method, a Bootstrapped deep-Q-Network (BDQN) is 

proposed to address the adaptive decision-making of AVs. 

Then, quantifying the multi-performance requirements of 

AVs under high-speed cruising can be complex. We employ 

an inverse reinforcement learning (IRL) approach to learn 

path-planning ability from skilled drivers, generating a 

reference path for executing lane changes. The simulation 

results demonstrate the proposed framework can ensure the 

autonomous cruising performance with safety guarantees. 

Keywords-Autonomous vehicle, Deep reinforcement 

earning, Inverse reinforcement learning, high-speed cruising. 

I.  INTRODUCTION 

Autonomous vehicles (AVs) are increasingly becoming 

a mainstream technique aimed at enhancing traffic flow, 

reducing congestion, and optimizing energy usage within 

the intelligent transportation system [1]-[2]. AVs can 

perceive the environment and navigate paths 

independently. This plays a critical role in high-speed 

cruising scenarios characterized by frequent acceleration 

and lane-change maneuvers. The conventional method 

decomposes the high-speed cruising task into the vehicle-

following and lane-change control, respectively [3]-[4]. 

From the perspective of the microscopic traffic 

simulation context, vehicle-following models are always 

designed based on driving tactics of the real traffic 

phenomenon [5]. Classical vehicle-following models 

typically consider factors such as the relative speed, 

headway, and acceleration/deceleration rates, which 

include the Gipps model [6], the Intelligent Driver Model 

(IDM) [7], and the Krauss model [8]. Recently, data-driven 

based vehicle-following models are attracted much 

attention from the world, including the supervised learning 

method [9], time-series prediction method [10], and the 

deep reinforcement learning method [11]. These data-

driven models offer advantages in capturing complex and 

diverse driving behaviors. 

Concerning the lane-change maneuver, researchers 

concentrate on designing robust decision-making 

algorithms [12]-[14]. The end-to-end architecture also 

enhances the system robustness and real-time performance 

compared with traditional optimal control methods [15]. 

Recently, some DRL algorithms such as DQN [16], Deep 

Deterministic Policy Gradient (DDPG) [17], and Proximal 

Policy Optimization (PPO) [18] are widely used to model 

the lane-change behavior. 

However, recent research reveals the coupling between 

vehicle-following and lane-changing behaviors [19]-[20]. 

Hence, we propose a framework to realize the integrated 

longitudinal and lateral motion control. The main 

contributions are as follows. 

1. Deep reinforcement learning is introduced into the 

autonomous decision-making process of AVs. BDQN 

combines deep exploration with deep neural networks, 

enabling exponential learning speed instead of relying on 

any dithering policies [21]. Specifically, the acceleration/ 

deceleration behavior during lane-keeping driving, as well 

as lane-change decision, are provided by the output of 

BDQN for the high-speed cruising scenario. 

2. Considering AV's safety during lane-change 

maneuvers, we initially incorporate a polynomial trajectory 

generation method. To quantify the multi-objective 

requirements of AVs under high-speed cruising scenarios, 

including vehicle safety, and driving comfort, an inverse 

reinforcement learning (IRL) framework is employed to 

learn path-planning ability from experienced drivers and 

determine the optimal path. 

The reminder is summarized as follows. The 

systematic framework is given in section Ⅱ. The decision-

making module developed by the BDQN is presented in 

section III. Section IV proposes the path-planning module. 

The test results are shown in Section V. Finally, Section 

VI concludes the paper. 
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Fig. 1. The proposed holistic framework. 

 
 

II. PROBLEM FORMULATION AND 

SYSTEMATIC FRAMEWORK  

The conventional autonomous high-speed cruising task 
encompasses several crucial modules, including decision- 
making, path-planning, and motion-control, which are 
effectively addressed through a well-structured holistic 
framework (see Fig. 1). 

In the decision-making process (Section III), an AV 
faces critical choices between executing lane-keeping or 
lane-change maneuvers during high-speed cruising 
scenario. Considering surrounding traffic conditions, a 
deep reinforcement learning (DRL)-based method is 
introduced to determine the appropriate actions to be 
executed. For lane-keeping maneuvers, the RL algorithm 
generates an acceleration control, ensuring the AV 
maintains a high cruising speed while avoiding potential 
collisions. On the other hand, for lane-change maneuvers, 
the path-planning process is required. 

The path-planning stage is designed to achieve multi- 
objectives of the intelligent transportation system, notably 
emphasizing vehicle safety and driving comfort. To 
achieve this, an imitation learning algorithm is employed 
to learn the lane-change behavior from experienced 
drivers. In this scenario, surrounding vehicles are treated as 
human-driven vehicles (HDVs). To accurately depict 
HDVs’ behavior, the Intelligent Driver Model (IDM) and 
Minimizing Overall Braking Induced by Lane Change 
Model (MOBIL) have been adopted within the framework 
[22]. 

III. BDQN-BASED DECISION-MAKING FOR THE 

AUTONOMOUS VEHICLE 

The decision-making module holds significance in 
governing the vehicle's motion, which relys on a precise 
and high-fidelity vehicle model. In this section, we 
introduce a widely adopted bicycle model [23]-[24] to 
capture the dynamic characteristics of the vehicle. 
Subsequently, we provide a detailed explanation of the 
DRL decision-making process for potential lane-keeping 
and lane-change maneuvers in high- speed cruising 
scenarios. 

A. Vehicle System Mode 

Referring to Fig. 2, we adopt a bicycle model to 
describe the vehicle dynamics characteristics. The model 
parameters are obtained from a C-level car in the software 
Carsim. The longitudinal, lateral, and yaw motions can be 
represented as follows [25]-[26]. 

A Bχ χ υ= +% %&                              (1) 

where = ,  ,  ,  ,  ,  
T

x yV V X Yχ φ γ   , ,  
T

x faυ δ =   . 
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 − −=  
  

% . 

where fc  and rc  are the cornering stiffness of front 

and rear tires, respectively. φ  and γ  are the vehicle yaw 

angle and yaw rate, respectively. The lateral and 

longitudinal velocities are denoted by 
y

V  and 
x

V , 

respectively. Y  and X  represent the vehicle lateral and 

longitudinal global positions, respectively. fL  and 
r

L  are 

the distances from the center of gravity (CG) to the front 

and rear axles, respectively. m and 
z

I  are the vehicle mass 

and inertia moment of yaw motion. xa  and fδ  are the 

vehicle longitudinal acceleration and front-wheel steering 
input, respectively. 

B. RL Methodology Introduction 

The RL algorithm aims to make a decision for an AV 
in a high-speed cruising scenario, choosing between lane-
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keeping and lane-change maneuvers. To enhance the AV's 
deep exploration ability, we introduce the BDQN, which 
provides exponential learning speed without relying on 
dithering policies. The training process can be described as 
a Markov Decision Process (MDP), and further details can 
be found in references [33]-[34]. Through extensive 
interactions with the environment, the AV agent can learn 
a set of optimal parameters   that enable the evaluation of 

long-term rewards ( ), ,
i i

Q s a θ . 

1) State Space 

An AV would guide the path at an unknown 
environment by gathering the traffic information. In this 
study, the simulation environment is a structured highway. 
Consequently, the state space is composed of surrounding 
vehicle states, determined by their relative positions to the 
ego AV. 

1 1 1

                  

,  ,  ,

,  ,  

,  ,  

i

ev ev ev

i

ev l ev l ev l

ev n ev n ev n

Y Y X X V V

s
Y Y X X V V

Y Y X X V V

ϑ 
 

− − − 
 

=  
− − − 

 
 

− − −  

M

M

                  (2) 

where [ ],  ,  
i ev ev ev

Y X Vϑ =  denotes the state information of 

the ego AV at the decision-making time i . 
ev

Y , 
ev

X , and 

ev
V  are the longitudinal position, lateral position and 

velocity, respectively. 
l

Y , 
l

X , and 
l

V  refer to the 

corresponding state information of the surrounding HDV 

( )1,2,...,l l n= . Eq. (2) serves as the state space for the 

BDQN. 

2) Action Space 

The RL agent is responsible for computing the global 
reward based on potential maneuvers of lane-keeping and 
lane-change in a high-speed cruising scenario. As shown in 
Eq. (1), a standard vehicle model incorporates acceleration 
and steering control inputs. Therefore, in this study, the 
decision-making module produces 
acceleration/deceleration behaviors for lane-keeping 
maneuvers and determines the ego AV's lane-change 
decision. To account for vehicle dynamics performance 
and road adhesion limitations, the acceleration behavior is 
defined by a value of 2m/s². 

C. Reward Construction 

The construction of rewards holds a critical role in 
shaping the agent's preferences and guiding its decision-
making process. A well-designed reward system can 
expedite the training and lead to effective decision-making. 
In high-speed cruising scenarios, the ego AV is 
encouraged to maintain a faster speed while staying within 
safety limitations. This speed control intention can be 
represented as follows. 

, ,mi

1

,ma ,mi

ego i x

x x

V V
r

V V

−
=

−
                           (3) 

where ,mixV  and ,maxV  indicate the minimum and 

maximum velocities, respectively. ,ego iV  is the velocity of 

ego AV at decision time i . 

Furthermore, to endow the collision-avoidance ability 
of the agent in a high-speed cruising scenario, an artificial 
potential function (APF) is introduced in the reward 
construction. The agent employs the APF to proactively 
perceive the surrounding traffic conditions. The specific 
definition of the APF reward is as follows. 

( ) ( )
2 2

2 1 2

1

exp
n

ev m ev m

m

r Y Y X Xκ κ
=

 = − + −
        (4) 

Finally, the reward for the RL agent is constructed as: 

1 1 2 2r r rω ω= +                          (5) 

The weight factors 1κ  and 2κ  play a crucial role in 

determining the potential collision risk for the ego AV. 
During the training process, the weight factors are tuned to 

minimize collision. After tests, 1κ  and 2κ  are set by -1.5, 

and -0.5 respectively. 1ω  and 2ω  are set by 15, and -2 

respectively. 

1) Training Process 

DQN has demonstrated its effectiveness in various 
domains, including robotics and traffic signal control. It is 
particularly suitable for problems with discrete actions, 
like the Markov Decision Process problem presented in 
this work. where the action set is obviously discrete. 

 
Fig. 2. The network structure of the BDQN. 

The network structure of the BDQN is illustrated in Fig. 

2, consisting of a shared core network and w (w=1,2,…,W) 

independent heads branches. Each head can be seen as a 

Q-value network combined with the core network. The 

essence of the BDQN lies in its utilization of the 

bootstrapped mask, denoted as m. When the vehicle takes 

an action from the action space, a vector m would be 

generated to acquire the bootstrapped subsamples 

corresponding to W independent heads branches. The 

augmented tuple of MDP defined by ( )1
, , , ,

i i i
s a r s m+  is 

introduced to replace the conventional tuple ( )1, , ,i is a r s + , 

and then store in the experience buffer at time i. m is a 

binary vector with a length of W, indicating which 

network should learn from the data. To achieve this 

masking process, we employ the masking distribution M 
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to generate each m. The gradient of the w-th Q-value 

network is given as follows. 

( )( ) ( ), , , ; , ;wQ

w i w i i w i i i w i i iG m y Q s a Q s aθθ θ= − ∇     (6) 

( )1max ,  ;wQ

i i w i
a

y r Q s aλ θ −
+= +                (7) 

where ,w im  represents the mask of w-th network, which 

can modulate the gradient and guide the bootstrapped 

behavior. 

During the training process, gradient normalization is 

employed in this work to enhance training effectiveness at 

a lower cost to the training speed in the early stages. 

, ,

nor

w i w iG G W=                           (8) 

When an RL agent initiates exploration of potential 
rewards within the environment, the training process 
follows the fundamental DQN approach. A Q-value 
network is randomly selected at the start of each episode. 
Upon completion of training, the optimal policy can 
generate a series of actions. Given the variety inherent in 
the Q-value network within the BDQN architecture, a 
voting mechanism is introduced for the W networks to 
determine the optimal action. The principle dictates that 
the action with the highest number among the W different 
Q-value networks will be executed. Algorithm 1 presents 
the pseudo-code for the BDQN. 

 

Algorithm 1: BDQN 

Input: Q-value network Qw and masking distribution D. 

Initialize: Network parameter θ . 

1. For each episode T=1,2, …, N, do 

2.   Get the state is  through the environmental interaction. 

3.   Utilize a Q-value network Qw to perform the action using w~ 

uniform{1,2, …, W}. 

4.   For each time step i=1,2…, do 

5.   Execute the action based on ( )arg max ,w

i i
a

a Q s a∈ . 

6.   The lane-change decision would be regarded as the reference to 
transmit to the lower layer of the path-planning module. 

7.   Obtain the state 1is +  and the reward ir  from the environment. 

8.   Sample the mask mi ~ M. 

9.   Store the tuple ( )1 1, , , ,i i i i is a r s m+ +  to the experience buffer E. 

End for 

10.  If the experience buffer E is full. 

11.   Then update θ  

End if 

End for 

where N is the number of episodes during the training 
process. The path-planningmoiton module would describe 
in section Ⅳ. 

IV. PATH-PLANNING MODULE 

To quantify the multi-objective requirements of AVs 
under high-speed cruising scenarios, we propose an 
inverse reinforcement learning method, which can learn 
steering behavior from experienced drivers during lane-
change maneuvers. 

A. Path-planning with IRL Method 

In this study, an AV travels on the structured road of a 

highway. A polynomial representation is used to construct 

candidate paths. The IRL method then selects the optimal 

reference from these candidate paths. 
2 3 4 5

0 1 2 3 4 5ref
Y X X X X Xσ σ σ σ σ σ= + + + + +       (9) 

where 
ref

Y  is the reference lateral position. 
0

σ , 
1

σ , 
2

σ , 

3
σ , 

4
σ , and 

5
σ  are the coefficients of the polynomial. 

Assuming the initial position of the AV is ( )0 0
,X Y , the 

lane- change process involves lateral and longitudinal 

distances represented as L  and C , respectively. If 

0
0X = , and 

0
0Y = , the terminal position ( ),

t t
X Y  can be 

determined as ( ),L C . Both the lateral velocity and lateral 

acceleration at initial and terminal positions are assumed 

to be zero. The reference path can be further written as 

follows. 

3 4 5

3 4 5

10 15 6
ref

L L L
Y X X X

C C C
= − +              (10) 

where L  also indicates the width of the lane. 、The lane-

change time is denoted as 
lac

t . In real applications, it 

serves as an optimization variable to be determined by the 

IRL method. The longitudinal distance of the lane-change 

maneuver can be further expressed as 
x lac

C V t= . The 

candidate paths are generated by configuring the time 

interval of 0.1s for the lane-change time 
lac

t . 

Subsequently, the IRL method is employed to evaluate 

the overall performance of different settings in the 

intelligent transportation system. The performance indices 

encompass vehicle safety and driving comfort. Vehicle 

safety is quantified by considering the vehicle stability 

state and the potential collision risk, in which the sideslip 

angle β  is used to describe the vehicle stability state and 

is calculated by y xV V . Referring to eq. (4), the potential 

collision risk is constricted. Driving comfort is indicated 

by the change rate of steering input. To feature the 

performance indices, a vector is constructed as follows. 

( ) ( ) ( )1 2 3, ,k k kF F s F s F s′ ′ ′=                   (11) 

where 
k

s′  is the AV’s state in the IRL structure and used 

to calculate the feature vector. 

( ) ( )

( ) ( ) ( )

2 2

1 3 ,

1 1

2 2

2 1 2

1 1

, ,

exp

k k k f k

k k

n

k ev m ev m

k m

F s F s

F s Y Y X X

β δ

κ κ

∂ ∂

= =

∂

= =


′ ′= =



  ′ = − + −

 

 



&

  (12) 

where ∂  denotes the total number of samples taken at 

each candidate path. 
,f k

δ&  represents the change rate of the 

front- wheel steering angle input at the sampling point k. 

The total sampling number for each candidate path varies 

due to different values of 
lac

t . To facilitate further 

representation, we introduce a new feature vector with the 

normalized process as follows. 
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( ) ( ) ( )1 2 3
, ,

k k k
F s F s F s

F
′ ′ ′ 

=  
∂ ∂ ∂ 

                 (13) 

The reward function of IRL is constructed by a linear 

combination of the feature vector. 
Tr Fε=

)
                                 (14) 

where [ ]1 2 3
, ,ε ε ε ε= . Considering that the AV traveling 

on a structured road, the driving style is relatively smooth. 

Hence, the weight coefficients 
1

ε , 
2

ε , and 
3

ε  are set as 

constant in this work. 

The steering behavior of experienced drivers during 

lane-change maneuvers is used as expert experience to 

optimize the weight coefficient σ , enabling the AV to 

exhibit similar behavior to that of a skilled driver. To 

construct the reward function in equation (14), we conduct 

driving simulator tests to collect data. It's worth noting 

that a maximum entropy method [38] is introduced for 

training the IRL model. 

( )max log P
ε

ι

ι ε
∈Ξ

                          (15) 

( )

1

T

T

j

F

S
F

j

e
P

e

τ

τ

ε

ε
ι σ

=

=

 %

                        (16) 

The objective is to maximize the likelihood of the 

driver's trajectory ( ), 1,2, ,
i

i Lι ∈ Ξ = K . 
j

ι%  is the path 

candidate generated by the quantic polynomial. S  is the 

number of path candidates. To guarantee the effectiveness 

of the training data, the initial state when generating the 

trajectory 
j

ι%  is the same as that of ι  in the simulation 

environment. L  indicates the total driver's trajectories 

collected in the tests. Fι  is the feature vector of the driver 

trajectory. Hence, the optimization function is represented 

by: 

( )
1

log
T

j

S
FT

j

F e
ιε

ι
ι

ε ε
∈Ξ =

 
Ω = − 

 
  %

              (17) 

In the IRL framework, the learning rate η  and 

episodes ξ  can impact the training effectiveness. By 

comparing the human-like driving results with different 

settings, 0.1η =  and 100ξ =  are selected. After the IRL 

method generates the reference path, a PID controller is 

designed to govern the AV’s motion and track this path 

V. SIMULATION TESTS 

In this section, the simulation tests are conducted to 

verify the effectiveness of the proposed method using 

Simulink/ Python joint platform. The motion-control 

module is established in Simulink. To reduce 

communication load and improve test efficiency, a 

communication trigger mechanism is established between 

software. When performing the lane- change maneuver, 

communication experiences interruption within the lane-

change time 
lac

t . 

A. Verification of the Path-planning Module 

For real applications, the AV’s path-planning ability is 

initially trained. In the path-planning module, we 

introduce the IRL method to learn experience from skilled 

drivers during lane-change maneuvers. The driving 

simulator as shown in Fig. 3 is employed to collect the 

steering behavior. Here, we develop the steering assembly 

to provide a real driving feeling in the simulation 

environment. 

 In the experiments, we curate a dataset comprising 40 

driver trajectories recorded under different test conditions. 

This dataset is utilized to facilitate the updating of the IRL 

weight vector ε . After finishing the training, we employ 

a set of 10 driver trajectories to evaluate the learning 

effectiveness. Moreover, a comparative test with another 

trajectory selection method, denoted by the technique for 

order preference by similarity to the ideal situation 

(TOPSIS) [27], is conducted. The optimal path of the 

proposed method (PM) is determined by the IRL weight 

vector ε . We first assess the human-like path-planning 

ability by analyzing the path- tracking outcomes as 

follows. 

2

, ,

1

1
con i hum i

i

Y Y
∂

=

−
∂
                       (18) 

where ,con iY  and ,hum iY  are trajectories of the control 

strategy and human driver at sampling point i , 

respectively. From Fig. 4, it is clear the AV's trajectory 

closely tracks the driver's path with the proposed method. 

Notably, the maximum tracking error can be reduced by 

89.62% compared to the TOPSIS approach. This indicates 

AV’s path-planning ability using the proposed method can 

better emulate a skilled driver. 

 
Fig. 3. Driving simulator platform 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
0

0.2

0.4

0.6

0.8

1

1.2
TOPSIS

PM

 
Fig. 4. Path-tracking performance in tests. 
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Furthermore, the feature vector F  in eq. (13) is 

computed to provide a comprehensive evaluation of AV's 

performance under different control methods. The results 

are presented in Table Ⅰ. Although some performance 

indices of the TOPSIS method perform well in tests, the 

AV's overall performance using the proposed method is 

superior due to its proficiency in acquiring driving skills 

that effectively balance various control objectives. The 

average enhancements for different objectives in eq. (13) 

across ten tests are 30.15%, 5.15%, and 17.27%, 

respectively, in comparison to the TOPSIS method. The 

test results demonstrate the effectiveness of the proposed 

in achieving a path-planning process of high quality. 

TABLE Ⅰ 
TEST RESULTS 

Performance 

index 1
F  

2
F  

3
F  

Test 
case1 

PM 0.00058 406 47 

TOPSIS 0.00094 374 58 

Test 

case2 

PM 0.00049 319 40 

TOPSIS 0.00022 394 51 

Test 
case3 

PM 0.00051 280 47 

TOPSIS 0.00102 346 43 

Test 

case4 

PM 0.00047 395 46 

TOPSIS      0.00082 401 57 

Test 
case5 

PM 0.00067 327 40 

TOPSIS 0.00054 301 49 

Test 

case6 

PM 0.00052 349 56 

TOPSIS 0.00147 401 69 

Test 
case7 

PM 0.00063 302 54 

TOPSIS 0.00098 345 51 

Test 

case8 

PM 0.00059 357 56 

TOPSIS 0.00057 319 48 

Test 
case9 

PM 0.00069 328 47 

TOPSIS 0.00154 290 57 

Test 

case10 

PM 0.00064 329 53 

TOPSIS 0.00058 395 50 

B. Verification of the decision-making module 

 
Fig. 5. Average reward with different strategies. 
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Fig. 6. Average collision rate with different strategies. 

To validate the effectiveness of the decision-making 

module in this work, some other widely used DRL 

strategies DQN and double DQN are also conducted. Figs. 

5 and 6 illustrate the average reward and collision rate 

with different strategies, respectively. From Fig. 5, as the 

number of training episodes increases, the average reward 

demonstrates a propensity to reach a state of convergence. 

Significantly, it becomes evident that the performance of 

the BDQN surpasses that of other strategies. This 

indicates the proposed decision-making module can better 

enhance the overall performance of autonomous driving. 

Furthermore, Fig. 6 demonstrates the bootstrapped 

mechanism can significantly enhance the AV’s 

exploration capacity to find a collision-free path. 

 
Fig. 7. Average reward with and without the incorporation of the 

artificial potential field. 

 
Fig. 8. Average collision rate with and without the incorporation of the 

artificial potential field. 

Subsequently, we compare the performance of the 
BDQN under two conditions: with and without the 
incorporation of the artificial potential field. As depicted in 
Figs. 7 and 8, it is obvious the incorporation of the 
artificial potential field can improve the average reward 
while reducing the average collision rate. Notably, the 
average collision rate can be reduced by approximately 
68.7% when reaching a stable state during the training 
progress. This demonstrates the effectiveness of the 
proposed decision-making module in guiding a collision-
free path and ensuring the safety of the autonomous 
vehicle. 

VI. CONCLUSION 

In this work, we propose a standard development 
approach for integrating decision-making and path-
planning modules of autonomous vehicles in high-speed 
cruising scenarios. To achieve this, we initially introduce a 
BDQN combined with an artificial potential field to enable 
adaptive decision-making in AVs. This approach generates 
reference actions for potential lane-keeping and lane-
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change maneuvers. Then, to quantify the multi-
performance requirements for an AV under high-speed 
cruising scenarios, we employ the IRL method to learn the 
path-planning skills of an experienced driver. This enables 
us to evaluate the overall performance of candidate paths 
and determine an optimal reference trajectory.  

The test results indicate the proposed method 
effectively guides AVs to ensure high-speed cruising 
performance while taking safe actions to avoid collision. 
Our future work will consider the game between 
autonomous vehicles in the Vehicle-Road-Cloud 
Integration environment. 
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