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Abstract

Estimating the number of people in a given area and knowing their posi-
tions open up numerous possibilities for a variety of smart data driven ap-
plications. Most of the existing systems either require active participation
from people in the crowd or are too expensive to be deployed. The expo-
nentially increasing adoption of smartphones by people and the ubiquitous
Wi-Fi infrastructure motivated us to tackle this problem in a non-intrusive
manner.

This thesis focuses on designing a system to infer the crowd distribution
in large indoor spaces. As we choose to be non-intrusive in approach, we
incorporate low cost Wi-Fi sniffers into smart bulbs that are part of the
lighting grids in buildings. The Wi-Fi data gathered from these smart bulbs
is analyzed to obtain people count and the people’s position within a given
area. Our aim is to estimate people’s location within 4x4 m? grids with
minimal number of Wi-Fi frames.

A number of filtering and post processing mechanisms are proposed in
order to eliminate false positives and to accurately identify the number of
people within a given area. Extensive experiments are conducted in a real-
world testbed with controlled settings as well as in test setups with no control
(auditorium and a coffee corner). The improvised counting algorithm comes
close to 75% of the ground truth.

We adopt range free localization algorithms to estimate the position of
people and evaluate these algorithms extensively. We propose enhancements
on these algorithms to refine the position estimation accuracy and reduce
the execution time. Range free localization algorithms were able to estimate
the position 40% of the time within 2m when sniffers are placed 6m apart
in a grid topology in a highly multipath testbed environment. Simulations
indicate this number can increase up to 76% when sniffers are placed 4m for
the same topology.

Since the bulbs with sniffers cost more we minimize the overall deployment
cost of the system by reducing the number of sniffers while maintaining an
accuracy within a 4x4 m? grid majority of the time. Extensive simulations
are run with different topologies and sniffer densities in order to find this
sweet spot.
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“The hardest thing of all is to find a black cat in a dark room, especially if
there is no cat” —Confucius
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Chapter 1

Introduction

Crowd density (or distribution) estimation is an important parameter for
various smart applications in the connected world. Crowd distribution es-
timation involves finding the number of people and their approximate loca-
tion within a given area. This information opens up possibilities for various
location based services. It has use cases in many areas including business
intelligence, surveillance, crowd management, intelligent environments and
smart cities of the future. In retail environment we can utilize this inform-
ation to improve shopping experience, increase the sales, or to evaluate the
performance of products vis--vis their sales. In crowd management, crowd
behaviour can be monitored to avoid unpleasant incidents such as the 2010
Love Parade disaster in Germany, where 21 people died and more than 500
were injured. In smart city applications, crowd distribution information can
be used to optimize resource usage, e.g., scheduling of the transportation
system depending on the density of the crowd. Furthermore, information
about the crowd and people movement in indoors can be utilized to improve
energy efficiency of the building by optimizing heating and lighting, or to
develop emergency evacuation strategies.

A comprehensive survey by Teixeira et al. [30] indicates that future human
sensing systems are more likely to be consisting of either a large number of
low-cost sensors, mobile phone sensors and a less number of cameras that are
placed in key locations. The problem of estimating crowd distribution has
been previously tackled using either sophisticated image processing based
approaches which are expensive to deploy when the area is large or require
participation from people in the crowd.

The ever-increasing ubiquitous Wi-Fi infrastructure and the increasing ad-
option of smartphones by people motivated us to design a non-intrusive sys-
tem that can infer crowd distribution by tracking smartphones that people
carry with them. The main assumption is that most of the people carry
smartphones with them and have their Wi-Fi switched ON irrespective of
being connected to a network. By finding the number of users connected to



the WiFi access point could indirectly reveal the number of people present.
However, smartphones are not always connected and WiFi in some mobiles
may be OFF. Not all in the crowd may carry a smartphone too. Now with
those mobiles switched ON if we can sniff WiFi signals an estimation could
be made as to how many persons are in a given area. However, there are
many challenges to realize this. In the sequel below we briefly discuss our
approach and formulate the problem tackled in this thesis.

Further, majority of the previous works involving passive Wi-Fi sniffing
do not provide fine grained position estimates. The granularity is either
campus wide deployments or within the sensing range of a single sniffer. This
introduces ambiguity into the system as a person can be present anywhere
within hundreds of meters. The ambiguity in position makes it difficult to
develop smart applications.

In the meantime, there is much development in the indoor lighting domain.
The advent of LED bulbs has bridged the ICT domain with the lighting
systems. Many sensors could be housed into the LED bulbs because of
the advancements in microelectronics. Thus our approach is to incorporate
Wi-Fi sniffers into smart light bulbs as part of the smart lighting grid of
a building such as an arena concourse or auditorium in order to estimate
the crowd distribution within a bounded area. Each light bulb sniffs for
Wi-Fi signals in its vicinity. The data from a number of such sniffer bulbs
is combined to estimate the overall crowd distribution of the area.

Figure 1.1: Concept of Smart bulbs with built in sniffing ability.

1.1 Problem Statement

Majority of the work related to estimating the crowd distribution either re-
quires expensive hardware or participation from people in the crowd to ob-
tain accurate results. The Approaches involving Non-intrusive Wi-Fi sniffing
have mainly focused on providing rough estimates of people count without
any form of filtering. The granularity of position estimation has also been



quite large ranging from city wide to campus wide deployments.

In our approach we are specifically interested in knowing the distribution
of people in the crowd within a bounded indoor space based on the Wi-Fi
sniffing data obtained from smart light bulbs. This involves design of a
system that can infer people count as well as their position within the given
area. As the Wi-Fi sniffers will be part of lighting grids of the indoor space,
several constraints are imposed on the system. They are listed below:

e Due to passive nature of Wi-Fi sniffing the number of packets received
and the frequency at which packets arrive may not be consistent over
time and with respect to number of devices sniffed.

e As we wish to be non-intrusive we do not attempt to increase packet
generation rate from smartphones by injecting packets into the net-
work.

e Due to increase in the number of devices with Wi-Fi interface con-
siderable errors will be introduced if we use the sniffed data directly
without any form of filtering.

e Position estimation can be a challenging due several unknowns in the
system such as unknown TX power, orientation and antenna charac-
teristics, which are not in our control.

Given these constraints imposed on the system, we address the following
problems to realize accurate density estimation.

e How to estimate the number of people in a given area solely based on
Wi-Fi sniffing data obtained from smart bulbs?

e How to efficiently filter unwanted devices encountered during sniffing
to refine the count?

e How to estimate the position of a user with an accuracy of a 4mx4m
grid with minimal number of samples?

e How to minimize the deployment cost of by reducing the number of
sniffers while maintaining an acceptable localization accuracy?

The answers to these important questions helps in realizing our goal. we
address them in the further chapters.

1.2 Contributions

The thesis proposes a system to infer crowd distribution for a given area.
The main contributions are summarized as follows :



e We provide a thorough analysis of Wi-F1i signals from a smartphone in
order to understand various parameters such as assortment of Wi-Fi
packet types, inter packet interval under different smartphone config-
urations.

e we propose an improved people counting algorithm with efficient fil-
tering mechanisms to estimate people count within a given area.

e We undertake an extensive evaluation of localization algorithms to
estimate and improve the position estimation.

e We also look into different sniffer deployment topologies and densities
in order to minimize the deployment cost while maintaining a reason-
able localization accuracy.

e We propose a mechanism to assess the reliability of position estimation
using confidence scores.

1.3 Thesis Organization

Chapter [2] gives a brief description of the related work and classification
of different approaches used to deduce crowd density. Chapter [3| gives in-
formation regarding the system architecture and the general challenges that
need to be addressed. It also provides an overview of 802.11 packet sniffing
and an analysis of time interval between packets under different smartphone
configurations. Chapter [4] addresses the problem of people counting. It
describes filtering and post processing mechanisms to efficiently count the
number of people within a given area. It showcases the results obtained from
experiments and the limitations of the approach. Chapter [b| describes local-
ization algorithms used to estimate the position of smartphones. It provides
a comparison of localization algorithms with respect to various parameters
and proposes methods to refine position estimation accuracy. Chapter [f
provides insights into optimal grid configuration. Chapter [7] summarizes the
conclusion from the studies and suggests some points for future work.



Chapter 2

Related Work

This chapter summarizes prior work in the area of crowd distribution ana-
lysis. Section provides an overview of participatory techniques involving
use of wearables and smartphone applications. Section describes differ-
ent techniques which do not require any participation from people in the
crowd.

2.1 Participatory Techniques

These techniques require co-operation from people in the crowd in order to
estimate the number of people in a given area. The participation can be
in the form of wearing devices or installing a third-party application that
allows them to be tracked.

2.1.1 Wearables

These techniques involve use of the wearable sensors to track people in
the crowd. The sensors collect movement data using various sensors to be
analyzed later. Acer et al. [3] use battery powered wearable Wi-Fi badges
and a set of Wi-Fi gateways deployed at various points across the location
to capture signals from the badges. Note that the badges are distributed to
a select set of the participants. Having a programmable Wi-Fi badge allows
efficient detection as packets are sent at a constant rate. However, this work
only shows peaks and approximate number of people present, and does not
show either the right density or the location of people.

Several studies of crowd dynamics at large religious gatherings have been
carried out by Yamin et al. [46] [45] and Jamil et al. [25]. Yamin et al. [45]
use bracelets equipped with RFID tags. Several RFID readers are installed
at different sections in the area to analyze movement patterns of the crowd.
Jamil et al. [25] use Bluetooth Low Energy tags and smartphones at the
Hajj gathering. The authors of [45] and [46] do not demonstrate any quan-



tifiable results to showcase the count of people but only showcase the crowd
movement patterns.

Cattani et al. [I1] uses bracelets that emit RF beacons to estimate crowd
dynamics at the Nemo Science museum in Amsterdam. Compared to pre-
vious works in this section an innovative approach is taken by the authors
where neighbourhood estimation is used to calculate the crowd density in an
energy-efficient manner. These methods prove to be much better in analyz-
ing the crowd behavior in the museum. The main drawback of this method
is that it requires participation from people to be effective. Providing wear-
ables to a large crowd can significantly impact the infrastructure cost.

2.1.2 Smartphone Application

A second participatory technique is to use smartphone applications or mod-
ified network stacks on smartphones that enable tracking of the users.

The authors of [41] make use of GPS equipped smartphones to infer crowd
density information. In this system, pedestrians in the crowd share their
location information voluntarily. Since only a fraction of the people in the
crowd may share their location information, the crowd density is analyzed
based on the walking speed of the pedestrians. It is assumed that the move-
ment speed of pedestrians is proportional to the crowd buildup in a given
area. This approach is suitable for large open spaces where GPS is available.
If the gathering of people is relatively small such as an Auditorium where
crowds might hardly move or a museum that may have multiple floors, this
solution does not perform well.

The authors of [39] use smartphones with Bluetooth interface to infer the
crowd density information. The approach involves performing Bluetooth
scan to discover nearby devices. It also takes into account the average
signal strength and the RSSI variance to avoid static devices in the area.
It has been shown in [2] that number of people who have their Bluetooth
switched ON is significantly less compared to Wi-Fi. In older Android and
i0OS stacks, Bluetooth was by default in discoverable mode but in the latest
software stacks, this feature has been removed. Thus smartphones are not
discoverable by default. This can be considered as the main drawback of
any Bluetooth based approach involving a smartphone including [39) 29].

Herrera et al. [20] use sound to estimate the location of an arbitrary num-
ber of co-located devices in a 3D space. The method is demonstrated to be
very effective and provides sub meter level positioning. The estimation tech-
nique suffers in noisy environments and requires people to install a specific
application on their smartphone.



2.2 Non-Participatory Techniques

These techniques do not require any form of co-operation from people in the
crowd. Data is collected in a non-intrusive manner. This section provides
a brief overview of the different technologies that have been developed to
infer the crowd density using non-participatory approaches.

2.2.1 Visual Techniques

These techniques make use of various image processing and computer vision
algorithms to count people in still images or live video streams. One of the
most common types of approaches used is to first identify an individual in a
crowded scene and then feed this data to various classifiers to get the people
count. Some of the popular works with this approach is by Zhao et al. [51],
Rittscher et al. [33], Cipolla et al. [9] and Tao et al. [35]. Vision based
techniques perform well as long as the features can be detected effectively.
People counting can also be implemented using stereo cameras that can
perceive depth information as shown by Zhang et al. [50] and Dan et al. [14].
These make use of ceiling mounted depth cameras such as Kinect sensors
that can detect head and shoulders for people counting.

Image processing based algorithms have several drawbacks. They suffer
under severe occlusion in the crowd and poor lighting conditions. These
make it difficult to detect the individual features. Furthermore, these al-
gorithms can be used in only a line-of-sight environment. The use of cam-
eras also raise privacy concerns. Vision based systems are known to increase
the deployment costs and computational complexity of the system.

2.2.2 Wi-Fi CSI

Channel State Information (CSI) represents a fine-grained value derived
from the 802.11 physical layer. CSI describes how a transmitted signal gets
attenuated in the wireless channel before reaching the receiver. CSI exposes
a set of channel measurements providing the amplitudes and phases of the
signals. One of the most fascinating works with this approach is done by
Katabi et al. [4] titled “See through walls with Wi-Fi!”. It can count the
number of people in a closed room and estimate their relative locations
using the CSI information. This work forms the basis for crowd counting by
leveraging the CSI information.

Xi et al. [42] have used CSI based approach to estimate the people count
in a given area. They propose that CSI is highly sensitive to the envir-
onmental variations that might occur due to the presence of people in an
area. A relationship is established between the number of moving people in
an area and the CSI variations. Domenico et al. [16] also use a CSI based
crowd counting system that analyzes Doppler spectrum obtained through



the gathered CSI data.

Wi-Fi CSI based techniques are device free and does not require the users
to even carry smartphones with them. However, the CSI information is not
easily exposed on all the Wi-Fi chipsets. Currently, only a select few variants
of Atheros and Intel 5300 chips can expose the CSI information. These chips
require modification of the underlying software stack [I§]. Hence CSI based
systems cannot be deployed on off the shelf Wi-Fi chips. This can be seen
as one of the main drawbacks of such an approach.

2.2.3 Passive Wi-Fi Sniffing

These techniques make use of passive Wi-Fi scanning to infer the occupancy
estimatation at a given location. This typically involves deploying Wi-Fi
scanners in the area of interest to capture signals from smartphones that
people might be carrying with them. Scanning is done in a non-intrusive
manner without the need to modify any software or install any application
on the smartphone. Bonne et al. [7] present a method for tracking people at
mass events without the need for their cooperation. Hande et al. [I9] pro-
posed a system to estimate number of passengers in a public transportation
system. Wang et al. [38] use similar approach to study queue time meas-
urement using a single-point Wi-Fi monitor. Bayesian networks are used to
infer service time within a 10 second resolution. Musa et al. [28] reported
pedestrian tracking method using Wi-Fi monitor to collect Wi-Fi packets
from smartphone. Viterbi algorithm was applied for estimating pedestrian
trajectory.

Wi-Fi sniffing can also provide some additional data about the crowd
along with the location analytics information. Barbara et al. [5] conducted 3
month long experiments and collected data from over 160K different devices.
It has been shown how we can learn about important sociological aspects
such as language, vendor adoption, and so on. Cunche et al. [I3] showed
that SSIDs obtained by scanning Wi-Fi packets can be used to infer social
links between people in the crowd. Cheng et al. [12] extended this approach
by including physical proximity and spatio-temporal behaviour.

2.2.4 Device free passive

RF based Device free passive (Dfp) techniques have the ability to local-
ize individuals and does not require them to carry any radio devices with
them. These techniques take into account how people disturb the pattern
of radio waves in the area of interest and derives their location. Device free
passive techniques can be further classified into Fingerprinting based and
Link quality based techniques. Fingerprinting based methods involve con-
struction of a Radio map of the environment based on training data. This
method was investigated in [44] [49] [43]. Youssef et al. [49] was one of the



first who attempted to create a Radio map of the environment by placing
an individual in a set of predetermined locations. The individual is then
mapped to one of the locations in a probabilistic way based on the observed
signal strengths. Xu et al. [44] have proposed a cell based calibration with
random walk technique to improve the accuracy and reduce the calibration
overhead. Fingerprinting based techniques can deal with the multipath ef-
fect of signals as it measures the ground truth at various positions. The
disadvantage of this technique is the tedious training time that is required
in a multi person environment.

Link-based DfP schemes attempt to capture the relationship between the
radio signal strength (RSS) of a link and whether the subject is on the
Line-of-Sight (LoS) of the radio link and consequently determine the sub-
ject’s location. This technique was used by Wilson et al. [40] who proposed
a Radio Tomographic Imaging (RTI) which aims at localizing multiple in-
dividuals relative to radio links LoS. Depatla et al. [I5] try to count the
number of people solely by measuring signal strength variation between a
pair of stationary transmitter/ receiver antennas. They propose that people
walking affect the transmitted signal either blocking the line of sight (LOS)
path or scattering the signal. They establish a mathematical relationship to
to express this as function of number of people in the area. Similar approach
has been used by Doong et al [I7] which uses not only RSSI variation but
Fourier spectral features and machine learning algorithms to predict people
count. Link quality based approaches require a TX-RX pair to be placed in
LOS in the counting area such as corners of the room. The solution might
be difficult to deploy if the counting area is quite large. The performance
may reduce at larger crowd densities or if multiple targets are located very
close to each other.

2.3 Summary

CROWD
ANALYTICS

Participatory Non-Participatory

Wearables I ISmanphoneAppI | visual | I Wi-Fi Sniffing I | Device free |

|
¥ 1

I RGB Camera I I Depth Camera I I Wi-Fi CSI I I RF Based I

| RF Link Quality | IRF Fingerprintingl

Figure 2.1: Tree diagram showing different approaches for crowd density
estimation



Figure shows a bird’s eye view of various possible approaches to infer
crowd density information. When using a participatory sensing approach its
difficult to expect complete cooperation from everyone in the crowd either
by installing applications or using wearables. Although participatory ap-
proaches can provide more accurate results we rule out adopting them as
they are limited by the amount of participation from the people in the crowd.
It might also be difficult to presume complete cooperation as the crowd size
increases. We would like to incorporate crowd data analytics as part of
smart lighting grids hence one of the main requirements is for the solution
to be a part of light bulbs in the grid. This restricts the possibility of adopt-
ing device free approaches such as Radio Tomographic Imaging (RTI) with
multiple sensors [40] or link based approach [15] as these require a Line of
Sight between a TX-RX pair and the subjects to be tracked. This would
not be possible if the sensors are mounted on the ceiling as part of a light
bulb. WiFi CSI based approach requires modification to existing software
stacks hence cannot be implemented on off the shelf hardware. Thus we
select passive Wi-Fi sniffing as a suitable mode for gathering data as it can
be easily implemented on most of the commercially available Wi-Fi hard-
ware and does not require any active participation from the users. Due to
growing adoption of smartphones among people we can expect most of the
people to possess a smartphone with them all the time. The sniffers can be
incorporated in the light bulbs and mounted on the ceiling.

10



Chapter 3

System Model

This chapter provides a detailed description of our system architecture. Sec-
tion [3.1] describes the basic building blocks of the crowd distribution system.
The basics of 802.11 packet sniffing is described in Section Section
provides an analysis of the packet diversity and inter-packet interval for dif-
ferent smartphone configurations. Section system challenges and their
implications.

3.1 System Overview

Our approach to infer the crowd distribution in a given area is to count the
number of smartphones with a Wi-Fi interface in the area of interest. As
mentioned in Chapter [I, we assume that most people carry smartphones
with them and have Wi-Fi switched ON. For this purpose, we deploy a
network of Wi-Fi sniffers mounted on the ceiling as a part of the lighting grid.
Each sniffer in the area passively listens to Wi-Fi packets in its vicinity. The
sniffers are placed such that the Wi-Fi packets sent from a user’s smartphone
are captured by multiple Wi-Fi sniffers. All the sniffers in the area are time-
synchronized with respect to a central node. The Wi-Fi packets are decoded
to extract vital information such as MAC address of the device, time at
which the signal was captured and the received signal strength (RSSI). These
values from all the sniffers that received the signal are recorded in a database.
The data thus collected is subjected to a number of post processing steps to
infer people count in the target zone. Furthermore, the data is also used to
estimate the position of a specific device.

Figure provides an overview of the steps taken to perform crowd dis-
tribution analysis. Consider an area where four Wi-Fi sniffers A, B, C and
D have been deployed at known locations. The Wi-Fi packets sent from the
smartphone are captured by all the sniffers. In order to count the number of
people, the data collected is subject to multiple filtering and post processing
steps. To estimate the location of a user, the signal strength perceived by

11
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Figure 3.1: Architectural overview of the System

each sniffer is used for the localization algorithms. This enables us to under-
stand both people count and spatial distribution of people. The information
can be used to derive time based heatmaps and other crowd data analyt-
ics such as peak hours estimation, location of most crowded areas of the
building.

3.2 802.11 Packet Sniffing

We make use of passive Wi-Fi scanners to capture the Wi-Fi packets. In
order to achieve this, a wireless network interface is initialized in ‘mon-
itor’ mode, in which all the on-going traffic in the wireless network can
be captured while being non-intrusive and without associating itself to any
network.

Figure 3.2 shows a simplified version of the IEEE 802.11 frame format [IJ.
The fields Type and Subtype denote the type of received frame.

The IEEE 802.11 standard mainly uses three types of frames for commu-
nication between an access point and an end-user device.

e Data frame: These frames carry data from the higher layers within
their frame body.

e Control frame: These frames assist in the delivery of data frames
between stations. These frames do not possess a frame body. The
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Figure 3.2: 802.11 frame format

frames are used to send acknowledgement (ACK, Block ACK), and
coordinate access control among stations (RTS and CTS).

e Management frame: These frames enable stations to initiate and
maintain communication among themselves. Actions such as authen-
tication, de-authentication, re-association with access point are among
the common types of 802.11 management frames.

There are several sub-types of each frame type with very specific func-
tions [I]. We discuss few important frame types that are of interest in
our problem context.

e Probe request/response: These are a type of 802.11 management
frame that are used to detect access points and also used to connect
to an access point. As a part of the active network scanning process,
stations send a probe request frame on all the channels asking about
the networks available on those channels. A probe request can contain
the name of the network (SSID) a station it is trying to associate
with, along with other metadata. Smartphones usually contain a list
of previously remembered SSIDs which they try to probe along with
other information such as its supported data rates. Probe requests are
transmitted more aggressively when a smartphone is not associated
with an access point. The frequency is reduced when its connected. A
detailed analysis is given in later sections. An access point responds
with a Probe response acknowledging the probe request packet and the
data rate in which it wants to initiate communication.

e Beacon frames: Beacon frames are management frames that are
periodically broadcast by the access points to advertise their presence.
Beacon frames are sent only by the access points.

e Null Data frames: Null Data frames are a special type of frames
in 802.11 WLANSs. They are data frames which carry no specific data
payload. Null Data frames are interesting for several reasons. They are
only transmitted by end-user devices. They are used in a wide variety
of applications such as power management, channel scanning, and to

13
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Figure 3.3: Inter-packet interval for probe request when disconnected from
an access point

kepp the association alive. When used for keeping the association alive,
mobile stations transmit Null Data frames to inform AP its presence
during idle periods. This behaviour enables us to track smartphones
even when they are associated with a network.

3.3 Smartphone Sniffing Behaviour

Each smartphone might behave differently depending on its configuration.
This results in different Wi-Fi packet types and inter-packet intervals. We
designed a series of experiments to understand the kind of packets sent by a
smartphone under different configurations such as associated to a network,
disconnected from a network, and without any Wi-Fi activity. The data
was collected for at least 10 hours for each configuration. This information
is required to understand the bounds of the system including the best case,
the average case and the worst case scenarios.

3.3.1 Inter-packet interval and Packet Type

We wish understand the rate at which smartphones send packets under dif-
ferent configurations. The results from the three main types of configuration
are discussed in this section.

Configuration : Disconnected from a Network

In this configuration, a smartphone’s Wi-Fi is switched ON but not con-
nected to any access point. When a smartphone is disconnected from the
network, it frequently transmits probe requests on all the available channels
for a specific frequency band (2.4Ghz/5Ghz). It can be a broadcast packet

14
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Figure 3.4: Diversity of packets and inter-packet interval when streaming
applications are used

without any specific SSID or trying to connect to one of the previously re-
membered SSIDs. It was also observed that probe requests are triggered by
the phone each time its unlocked by the user.

Figure [3.3] shows the interval between probe request packets from two
different models of phone. It can be observed that any two intervals are
vastly different. However, on an average we can expect a probe request
every 30 - 60 seconds.

Configuration : Connected to a Network with Wi-Fi Activity

In this configuration, a smartphone is connected to an access point and ap-
plications are run such that there is a constant Wi-Fi traffic. This simulates
situations where people might be listening to music on a streaming service
or watching a video. In such conditions, smartphones generate a variety of
Wi-Fi packets such as Block ACKs, Data, and ACK in very short intervals.
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It can be noticed that probe requests are still triggered even after associating
with an access point.

Figure[3.4shows the diversity of packets while streaming applications such
as Youtube or Spotify are used. Data and Block ACKs dominate the sniffed
packets. This can be regarded as the best case scenario as the packets arrive
almost every second.

Configuration : Connected to Network and No Wi-Fi Activity

This is similar to the previous configuration, except no applications are run
either in background or foreground. This can simulate a situation where
someone is keeping their phone idle while being associated to a network.
During such scenarios, Null Data and probe request packets are more dom-
inantly seen with a few data packets every now and then perhaps due to the
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reception of messages/email etc. Null Data packets are sent by smartphones
to inform their presence under idle conditions.

Figure shows the different packet types and interval between those
packets when the phone is idle without any activity or human intervention
for close to 15 hours. The Null Data packets dominate in this configuration
with the majority of packets arriving within 30-60 seconds. This enables us
to sniff reliably devices even when they are connected to an access point.

A generic Scenario

In order to understand better, a generic scenario without limiting to any spe-
cific configuration was considered. Here, the interval between probe requests
was analyzed from a probe request data set. The data set was collected from
Crawdad repository [26]. The data from several real world scenarios such as
a political meeting in Rome, St. Peter’s Square in Vatican city, train station
at Roma Termini central station etc were analyzed.

Figure |3.6| shows the interval between probe request packets that was

obtained from the Crawdad dataset for close to 3000 devices. It can be seen
that more than 50% devices have inter-packet interval within 30 seconds.

3.4 System Challenges

We want to use Wi-Fi sniffers as a part of the lighting grid in the target
area. This imposes a set of challenges and constraints on the system. In this
section, we go through these challenges and take design decisions because of
the imposed constraints.
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3.4.1 Un-cooperative nature of smartphones

We would like to understand the crowd distribution at a given location in
a non-intrusive manner. Thus we do not posses any control over the smart-
phones. As a result, we have no control when a specific smartphone might
send a packet or how many packets might be sent. A series of experiments
were conducted to understand the types of packets and variation of the in-
terval between packets for several phones in order to understand the best,
average and the worst case scenarios. The results from the section [3.3|indic-
ate that a minimum sampling interval between 30 — 60 seconds is desirable
for the system as most of the phones would have transmitted by this interval.
A lower resolution bears the risk of losing data.

3.4.2 Limited information

Due to the non-intrusive nature of sniffing, many characteristics of a trans-
mitting smartphone such as transmission power, antenna directionality, an-
tenna height and orientation are unknown for any given smartphone. We
summarize some of these characteristics.

e Antenna characteristics : A majority of smartphone vendors place
the Wi-Fi antenna at one of the corners of the phone body. This results
in an uneven RSSI distribution around the device leading to the RSSI
values being significantly higher in certain directions as compared to
the others.

An experiment was conducted to verify the extent of such variations
by placing a smartphone at different orientations with respect to the
sniffer and collecting RSSI values. Figure [3.7] shows the distribution
of RSSI values at different orientations. It can be seen that difference
is quite high in certain orientations as compared to the others. Such
random variations can significantly impact the location estimation al-
gorithms.

e Transmission power: The permissible limit for the maximum trans-
mission power of a Wi-Fi device is governed by the FCC regula-
tions [21I]. The maximum permissible limit depends on several factors
including antenna gain, and the frequency band used among other
things. The maximum transmission (TX) power with an antenna gain
of 6dBi is capped at 30dBm (1000mW) as shown in Table How-
ever, since the TX power has a direct impact on the battery consump-
tion, the smartphone vendors do not keep the TX power at maximum
all times. For instance, the TX power will be considerably reduced
in ‘low battery’ mode as compared to a ‘performance’ mode. These
variations in the TX power may not be uniform across all the vendors.
Thus, range based estimation methods will be prone to errors due to
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Figure 3.7: Variation in RSSI values at different orientations between sniffer
and smartphone.
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variations in the TX power. Radio fingerprinting based estimation
methods may also suffer as fingerprint database built with one device
cannot be used for other devices.

Transmit Power (dBm) | Antenna Gain (dBi) | EIRP (dBm)
30 6 36
29 9 38
28 12 40
27 15 42
26 18 44
25 21 46
24 24 48
23 27 50
22 30 52

Table 3.1: FCC guidelines for TX power for 2.4GHz band

e Passive sniffers: The sniffers are meant to be passive which means
they only listen to the Wi-Fi packets in the area. The sniffers will
not engage in any communication with the smartphones to increase
the packet generation rate. Due to this, we might miss close to 10-
12% of the devices while counting the number of devices if as they
send data at lower intervals as seen in Section B.3l Since there is no
direct communication between sniffers and the smartphones hop based
localization algorithms cannot be considered.

3.4.3 COTS sniffing hardware

We intend to build a system that uses commercially available off-the-shelf
hardware. Our system does not use any sophisticated directional antennas
and is designed to work with any standard Wi-Fi chipset available in the
market. As a result, we can only rely on the collected (timestamped) RSSI
values which is commonly exposed by every off the shelf Wi-Fi chipset. This
limits us to use only RSSI based localization algorithms.
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Chapter 4

People Counting

This chapter describes our proposed methods to infer the people count using
Wi-Fi sniffing. Section [.1]describes the architecture and the approach used.
Section describes various challenges faced when Wi-Fi sniffing is used for
crowd density estimation. Section [4.3|describes various filtering mechanisms
to arrive at an approximate people count. Section describes the results
obtained from the testbed and the live experiments. Finally Section
describes some of the limitations of the approach used for people counting.

4.1 Introduction

Our approach for counting people is to count the number of smartphones
with a Wi-Fi interface in the area of interest. For this purpose, we deploy a
network of Wi-Fi sniffers in the area that passively listens for Wi-Fi packets
in its vicinity and uploads the data to a central node. The data thus collected
is subjected to a number of filtering and post-processing steps to infer the
people count in the target zone. Figure represents the building blocks
for people counting by means of Wi-Fi sniffing.

4.2 Challenges

The following section describes various challenges encountered when we try
to deduce people count by sniffing Wi-Fi packets in the vicinity.

4.2.1 Increasing number of Wi-Fi devices

The number of devices with a Wi-Fi interface has increased significantly
over the years and this number is predicted to increase further. When we
try to sniff for Wi-Fi packets in such a scenario, we see a large number of
devices that get discovered in our vicinity. Generally the number of Wi-Fi
devices is much more than the number of people in a given area. This is due
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Figure 4.1: Building blocks of people counting system using Wi-Fi Sniffers

to the presence of many devices other than smartphones including laptops,
tablet computers, routers, Wi-Fi repeaters, and other smart devices with
Wi-Fi capabilities.

We performed a sniffing experiment in an event where there were approx-
imately 68 people present. Figure depicts the number of unique Wi-Fi
devices detected every 5 minutes. As can be seen in the figure, the number
of detected devices is much more than the average number of people in the
area.

4.2.2 Devices outside Target zone

Since Wi-Fi sniffers have a large range (around 100m), the sniffers will be
able to detect even devices which are outside the target zone. These may
include people who are just passing by around the target area.

Consider a situation shown in Figure It is important to ignore the
passer by devices as it may impact the count severely depending on how
many devices are outside the area of interest.

4.3 Filtering mechanisms and Post Processing

This section describes the different filtering mechanisms and post processing
steps we propose to use in order to avoid counting unwanted devices in and
around the area of interest.

4.3.1 Filtering based on Wi-Fi Packet type

Consider the pie chart shown in Figure depicting the different types of
Wi-Fi packets encountered during a typical sniffing session that collected
close to 2 million packets.
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Figure 4.3: Stray devices outside the area of interest

As it can be seen from Figure [£:4] a majority of the packets are data
packets constituting around 32% followed by Beacon frames and Probe
Response packets which constitute roughly 18% and 12% respectively. The
Beacon frames and Probe Response packets are typically transmitted by Wi-
Fi routers hence can be ignored. Removing these would reduce the size of
data set by 31%.
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Figure 4.4: Types of Wi-Fi packets encountered during sniffing

4.3.2 Filtering based on Proximity and Manufacturer Iden-
tities

To avoid detection of the devices that are far away from the target zone, we
propose to set an RSSI threshold for each sniffer. The threshold is chosen
such that we avoid detection of very weak signals which probably might
originate either from a far away device or a device which might be on the
other side of a thick wall. The attenuation of signals from a wall can be
between 10-15dB [32].

The area of interest is surveyed and measurements are taken both inside
and outside the target zone in order to select an optimal threshold. This
can be done during the lighting grid installation phase. It can be tweaked
based on the area and required sensitivity. In our experiments, the test
setup was in a room 10m in width and 14m in length. In order to avoid
detection detection of far away devices we can put up a threshold of -75dB.
All signals that are below this threshold are ignored.

The first three octets of a detected MAC address represents a unique
identifier called as Organizationally Unique Identifier (OUI) number. It is a
24-bit number that uniquely identifies the manufacturer, or other organiz-
ation responsible for the Wi-Fi chip. IEEE maintains a database mapping
OUI numbers to their manufacturer identities [24]. For instance 3CD92B
belongs to HP, 0050BA belongs to D-Link corporation and so on.

Many static devices within the target zone such as routers, smart tele-
vision, printers can be blacklisted based on such manufacturer identities.
To further reduce the dataset and remove static devices we use time based
blacklisting approach. Each day a blacklist file is built up containing newly
detected OUlIs. A time is chosen such that no activity from people is seen,
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for instance every night between 2AM to 4AM would be a probable time
where Wi-Fi activity will be mostly because of static devices in the area and
not from people in the vicinity. All these devices are put in a blacklist so
that they can be ignored when they are detected next time.

Figure shows the most frequently seen OUI everyday between 00:00
AM - 04:00 AM. Tt can be seen that a set of OUIs keep appearing regularly
every night such as 003A7D, 004268 etc. These consequently belong to
Cisco Systems which is a popular vendor of wireless routers. Thus we can
remove a large percentage of static devices in the vicinity by using time
based blacklisting approach.

18 May 00:00 - 04:00 19 May 00:00 - 04:00 20 May 00:00 - 04:00 21 May 00:00 - 04:00
003A7D T 003ATD 74 DO3ATD ™ 003A7T0
4268 20 4268 20 4268 20
023A7D 1" 023ATD 10 0Z3ATD 13 023A7TD

_ _ ‘ _

2 002268 2 24268 3 002268
TBCE3E 2 BOE327 2 48F8B3 2 204848

T6C638 2 60E327 2 BOE32T
BOE327 1 TECE3B 2 TECEIB

740538 1 CBAB23 1

Figure 4.5: Frequently seen OUls every night between May 18 and May 21

Combining all the above filtering mechanisms we can reduce the data set
by more than 60% as seen in Figure 4.6

4.3.3 Avoiding Stray Devices

After various levels of filtering as discussed in the previous sections, there
might still be false positives due to passers by and devices just outside the
target area as discussed in Section In order to reduce the number
of false positives we try to estimate the dwell time of each device. Devices
which just passed by will be detected for a very short interval resulting in
lower values of dwell time.

To further reduce the number of false positives, we only take into account
devices which were detected by multiple sniffers after applying an RSSI
threshold. Consider the configuration shown in Figure the detection
range of each sniffer after application of an RSSI threshold is represented
by circles around the sniffer. When a device is within the target zone, it is
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detected by multiple sniffers. When a device is very far away it is unlikely
that it will be detected by any sniffer after an RSSI threshold. Similarly if
the device is detected by only one or two sniffers, it can be assumed that it is
outside our target zone. In Figure smart phone A will be seen by three
sniffers where as smart phone B will be seen by only one sniffer. Thus we
can categorize smart phone A to be within the target area and ignore smart
phone B to be outside and thus not take it into account while counting.

The algorithm for counting is presented in Algorithm [I] Let start_time
and end_time denote the time intervals within which we want to count the
number of smartphones with a sampling interval given by sample_interval.
Database contains Wi-Fi data sniffed from smartphones.

4.4 Experiment Setup

In order to verify the counting algorithms, data was gathered both in con-
trolled and real environments. A set of experiments were conducted at the
Wi-Fi testbed at the University of Ghent. Another set of experiments were
conducted at a live testbed that was set up at a coffee corner and an audit-
orium at Philips Lighting research building in Eindhoven.

4.4.1 We-ilab Testbed Configuration

The w-iLab.t (short name: wilab) is an experimental, generic, heterogeneous
wireless testbed deployed in the iMinds building in Ghent, Belgium [g].
It provides a permanent testbed for development and testing of wireless
applications via an intuitive web-based interface. There are 44 testbed nodes
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which are mounted to the ceiling of the data center of the iGent building
(in Ghent): a 30m by 10m room in a grid configuration with horizontal
separation of 2.5m and vertical separation of 2meter.

The nodes are generic wireless nodes which can be configured to behave
as either as a Wi-Fi device or as a sniffer. For our experiments, we indicate
a zone of interest and place a number of sniffers within the zone. A set of
nodes are programmed to send Wi-Fi packets which are captured by the
sniffers. All the data is gathered at a central node to be used later for
analysis.

The test configuration shown in Figure [A.8 has five nodes that act as
Wi-Fi sniffers, an access point and a set of 28 nodes that are configured
as devices. Among these nodes 17 are present within the target area and
11 nodes outside the zone of interest which we call as the stray zone. The
Wi-Fi devices are programmed to send Wi-fi packets at different intervals
such every 1s, 30s, 60s etc. The detailed configuration of the nodes can be
seen in Table {11

4.4.2 Testbed Results

The data collected using the configuration shown in Figure is subjected
to several post processing steps as mentioned in the previous sections. The
resulting graph containing count is shown in Figure The number of
devices within the target area is 17. The time window is chosen to be 5
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Algorithm 1: Get Device count between a given duration

Require: start_time,end_time, Database
while ¢t ==sample_interval do
device_count = 0
Extract data between start_time and end_time from database
unique_devices = get_unique_devices(start_time,end_time)
for device in unique_devices do
dwell_time= (time_last_detection - time_first_detection)
sniffer_count =
get_detected sniffer_count(interval start,interval end)
if dwell_time > dwell_time_threshold and num_sniffers >
sniffer_threshold then
device_count = device_count + 1
end if
end for
end while
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Figure 4.8: Configuration of nodes at W-ilab testbed
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minutes as all the devices would have transmitted a packet at least once
during this time interval resulting in a stable count. The data was collected
for a duration of 1 hour, dividing this into five minute intervals a device
should be detected at least 12 times.

The secondary axis shown to the right depicts the number of unique
devices seen in five minute intervals without any post processing. This
number is quite large as it contains all types of devices including routers,
printers and many random smart devices with Wi-Fi. Each node in the
testbed has multiple Wi-Fi interfaces and also virtual interfaces hence the
large number. The primary axis to the left shows filtered count obtained
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Testbed Configuration

Number of Sniffers 5

Number of devices with target zone 17

Number of devices outside target zone | 11

Channel Frequency 2.412GHz

Device configuration - Target zone

Interval Number of Devices
10 4

30 4

60 5

300 4

Total 17

Device Configuration - Stray zone

Interval Number of Devices
30 11

Table 4.1: Device configuration and packet interval for devices at w-ilab
testbed

after post processing along with the ground truth. This can be attributed to
RSSI fluctuations due to which devices get ignored during certain intervals
as shown in Figure 4.10

Selecting a threshold for RSSI and the number of detected sniffers is a
crucial step. Figure [4.10|shows the effect of RSSI threshold and the number
of detected sniffers on counting algorithms. The ground truth here is 17
devices, the blue bars indicate the value given by counting algorithms and
red bars indicate the number of false positives detected. Selecting a lower
threshold for detected sniffer count increases the number of false positives
within the zone of interest. For instance, when the RSSI threshold is <-50dB
and seen by at least 3 sniffers, we are able to detect all 17 devices within the
target zone but we also bring 11 stray devices into the system. Therefore a
sweet spot has to be found which can give us as less stray devices as possible
with an acceptable accuracy. In the graph we can see that having a sniffer
count of 4 with an RSSI threshold of <-50dB can give optimal count value
while keeping the false positive count low.

4.5 Results from the Live Experiment

In order to evaluate the algorithm in real word scenarios, we deployed Wi-Fi
sniffers at an event involving people at an auditorium and a coffee corner in
an office building.
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4.5.1 The DoVo Room

The DoVo is the weekly Philips internal seminar series from Philips Re-
search, and takes place every Thursday. The name DoVo is an abbreviation
for the Dutch word Donderdagochtend-Voordracht (Thursday Morning
Lecture). This gathering takes place in an auditorium which is 10m x 14m
with a capacity of approximately 120 people. We deployed 3 sniffers in the
room and gathered Wi-Fi sniffing data during the event. The people count
obtained after post processing is shown in Figure The ground truth
was collected by manual counting during the event.

In Figure[£.12] it can be seen that the algorithm closely follows the ground
truth estimation. However during peak times, it can seen seen that the
estimated people count is much less than the actual count. Upon surveying
people, two reasons were found. A number of people who attended the event
never brought their smartphones with them (especially most of the ladies
reported that they left their phones on the desk). An announcement was
made about the ongoing experiment and Wi-Fi sniffing to have a consent
from people. Several people switched their Wi-Fi off as they were paranoid
about privacy reasons.

4.5.2 Coffee Corner

Wi-Fi sniffers were deployed in the coffee corner area shown in Figure
where people generally gather throughout the day. The area is relatively
small with dimensions 6.5m x 9m, five sniffers were deployed in this location.
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Figure 4.10: Effect of RSSI threshold and sniffer count on counting al-
gorithms

The ground truth was collected using Xovis people counting cameras, these
are depth sensing cameras used for people counting.

The Wi-Fi data was collected for 6 hours from 8:00 AM till 14:00 PM.
The graph obtained after applying the counting algorithms is shown in Fig-
ure The count values are superimposed against values obtained from
the camera. From the graphs, it can be seen that the output from the
counting algorithms match the trends seen by the camera throughout the
day. The values seen from the camera and the counting algorithms might
differ because of the following reasons.

e Dwell Time : The counting algorithms take into account the dwell
time estimates of a device as explained in Section The devices
are ignored if the dwell time is less than the established threshold. Here
the threshold was chosen to be 60 seconds. Any device with dwell time
less than 60 seconds would not be counted. However camera would
still count irrespective of the dwell time of a person. If somebody grabs
a coffee quickly and goes away from the coffee corner this would be
counted by the camera but may not be recorded by the sniffers.

e Camera coverage area : The coverage area of the cameras is much
lesser than the Wi-Fi sniffers. The cameras typically cover only 25% of
the entire coffee corner area. Thus people present in such areas might
be counted by sniffers and not by cameras.
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Figure 4.13: Wi-Fi sniffers and cameras deployed in the coffee corner area

4.6 Limitations and Corner cases

Various experiments were conducted both in controlled environment such as
We-ilab testbed and real world situations such as DoVo room and the coffee
corner. From the results, it can be inferred that the counting algorithms
provide a fair estimate of number of people in a given area. However, these
algorithms have several limitations and certain corner cases which need to
be considered.

e The counting algorithms work on an underlying assumption that most
of the people carry their smart phones with them and have their Wi-
Fi switched on most of the time. From our live experiments, it was
found this may not be true in many cases. In coffee corner case it
was observed that several people who came to grab a coffee never had
their smart phones with them. This ratio might differ depending on
the type of event and the location as well. The count values may
be radically inaccurate in an event comprising of mainly children or
elderly who generally don’t have smartphones. However the counting
algorithms may perform much better an event such as a music concert
or a football game in an arena where majority of the people have their
smartphone with them and there is lot of activity on the Wi-Fi activity
in the area.

e Time based blacklisting is used to remove a lot of static devices. It has
been noticed that several new static devices that are not smartphones
keep appearing regularly. Therefore it is important to constantly up-
date the blacklist file with new devices frequently. A stale blacklist file
may impact the accuracy of counting.

e Selecting a threshold for RSSI and dwell time estimates can be very
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tricky. Since RSSI is subject to fluctuations as explained in Section
4.4.2| several devices may not be detected in certain intervals of time
due to low RSSI values. At the same time relaxing RSSI threshold will
increase the number of false positives as more area is covered by the
sniffers. Similarly selecting a threshold for dwell time can also lead
to inaccuracies in counting. Due to diverse nature of smart phones
the packet interval might differ for each smart phone as established in
previous experiments. If the dwell time threshold is chosen to be too
low then certain devices may be ignored because of their low packet
transmission rate although they are inside the target area.

Several vendors follow procedures such as MAC address randomization
to avoid tracking of smart phones. These might introduce some level
of inaccuracy to the counting algorithms. However it has been found
that such procedures is employed bu only certain vendors in only few
models.
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Chapter 5

Inferring Crowd Distribution

This chapter describes algorithms to infer the spatial distribution of people
in a given area. Section provides an overview of the challenges in po-
sition estimation. In Section the localization algorithms used and the
obtained results are described. A comparison of the localization algorithms
are provided in Section Section describes methods to generate con-
fidence scores to assess the reliability of position estimation.

5.1 Introduction

Crowd distribution refers to the approximate locations where people might
be present in a given area. The counting algorithms discussed in Chapter
give us information only about the number of people in a given space.
However, knowing the spatial distribution along with the people count can
give us sufficient data to make many crucial decisions. For instance, counting
algorithms combined with spatial data can help us in understanding where
the most busy areas of a given space are. It can help us allocate the resources
intelligently based on the crowd distribution. We can perceive how the crowd
distribution might change over a period of time. This information is derived
based on localization of smartphones that users carry with them.

5.2 Localization Challenges

Localization has been a highly active area of research since many decades
and there exists a plethora of approaches to localize a device/person. How-
ever, the constraints imposed on the system has direct implications on the
selection/design of the localization algorithms and their accuracy. In this
section, we briefly summarize the effect of these constraints and their rela-
tion with localization.
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5.2.1 RSSI Approach

Since we choose Wi-Fi sniffing as our preferred approach to gather data, the
only information that is available about an unknown node is the timestamped
RSSI values from multiple sniffers. Fine grained information about the node
such as Time Difference Of Arrival (TDOA), Angle Of Arrival (AOA) are
unknown. Thus, we cannot use TDOA/AOA based localization algorithms
like Katabi et al. [37], Rong et al. [31]. Due to these constraints, we are
restricted to use only RSSI based localization approaches. RSSI is known to
be prone to large and small scale variations due to multipath and reflection
of signals. It may also vary depending on the orientation and position of
the smartphone. This may lead to inaccuracies in location estimation.

5.2.2 Time resolution and Frequency of Packets

As our approach is non-intrusive in nature, we do not possess any control
over how many packets might be sent from a smartphone at any given time.
From our previous experiments in Section of Chapter [3] we conclude
that the majority of the smartphones send a packet every 30 - 60 seconds.
However, there will always be a certain percentage of smartphones that send
packets at a reduced rate.

The number of packets received heavily depends on the configuration a
smartphone is in: a large number of packets can be expected during data
transfer where as fewer packets during idle or low battery mode. Hav-
ing more number of packets gives us the ability to mitigate the effects of
RSSI variation by applying appropriate filtering and smoothing mechan-
isms. However, a large number of packets cannot be assumed to generated
from each smartphone all the time. Due to these factors, the accuracy of
localization might be non-uniform among the discovered smartphones.

5.3 Experimental Setup

In order to efficiently analyze localization algorithms, a relatively large space
is required in which we have sufficient freedom to measure dependency of
algorithms with respect to various factors such as topology of sniffer place-
ment, number of sniffers in the area etc. In order to achieve this we decided
to make use of a Wi-Fi testbed where we can perform effective emulation.
We found Wilab2 testbed [§] to be the most appropriate for this purpose. It
is a generic, heterogeneous wireless testbed similar to the one used in 4l It
can be found in an unmanned utility room (size: 61m x 22m) and consists
of over 120 fixed Wi-Fi nodes mounted close to the ceiling and 16 mobile
robots that can be remotely controlled.

Figure provides an overview of maximum number of sniffers that can
be deployed in the area. In full scale deployment, the minimum separation
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Figure 5.1: Wilab2 Testbed and Robots with Wi-Fi interface on them

between the horizontal sniffers is 6m and vertical sniffers is 3.5m.

This setup closely mimics spaces such as an arena concourse or an audit-
orium. Since the robots also have Wi-Fi nodes mounted on them they can
be used to mimic the people moving or emulate crowd buildup at differ-
ent locations. The data collected form the experiments are analyzed using
different localization algorithms.

Figure 5.2: Overview of deployment of Wi-Fi sniffers at the testbed

5.4 Localization Algorithms

In this section, we describe the localization algorithms which were used to
deduce the location of an unknown node. We propose enhancements to
improve localization accuracy and its dependency on various factors.
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5.4.1 Centroid Based Localization

Weighted Centroid Localization (WCL) has been used to determine the loc-
ation of unknown nodes in many Wireless Sensor Networks (WSN) [6]. The
algorithm has low execution time and computational complexity. WCL was
proposed as an improvement over Centroid localization [10]. It determines
the position of an unknown node by averaging the locations of known refer-
ence points also known as anchor nodes. In WCL, the weights are adjusted
such that the anchor nodes closest to an unknown node gets more weight
compared to the nodes that are farther away from the unknown node. This
increases the location estimation accuracy.

Let L;(x;,y;) denote the location of i*" sniffer. Let d; denote the distance
between the unknown node and the sniffer S; and g denote the degree which
determine the contribution of each sniffer. The distance is raised to a power
g so that weight of farther distances are marginally lower. Simulation run
in [6] indicate an ideal value to be g =1. The weight w; given to each
sniffer S; depends on its distance from the unknown node and the degree of

contribution :
w; =d; 7 (5.1)

The location P(z,y) of the unknown node can be estimated using combined
weights of all N sniffers as:

P(z,y) = M (5.2)

From Equation [5.1} it can be seen that WCL requires distance d; to be
calculated. This generally involves use of path loss models which can be
prone to errors. If weights can be allocated solely based on RSSI values
seen at each sniffer then we don’t have to calculate actual distances based
on path loss models.

The detected signal strength Pryx at a distance d can be calculated as :

32
Prx = Prx -Grx -Grx - | — | , (5.3)
4rmd

where Pryx is the transmitted power. X is the wavelength of the radio
signal. Grx and Grx refers to the antenna gains of transmitter and receiver
respectively. Thus distance d can be estimated as :

_ A [Prx-Grx -Grx
4 PRX
The RSSI value can be expressed as a ratio received signal strength Pry
and reference power P, s as:

d (5.4)

RSSI = 10 - log LRX (5.5)
Pref
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RSSI

PRX = Pref -10710 . (56)

Substituting Equation [5.6] in Equation [5.4] the new weight can be calcu-
lated as :

1 1

7
</\ PTX'GTX'GRX)
ir RSSI;

Pey-107T0

(5.7)

W

After normalization, the new weight W; is:

Wi = o = (1 - )g (5.8)

Zﬂzle Rss1; \ 9
7 w0

To further improve the estimation accuracy, the anchors whose RSSI values
are lower are given even higher weights by modifying the above equation.
Improved weights W;’ can be expressed as:

Wy = w; - N*Wi (5.9)

Here W; - N?Wi is chosen to be the enhanced weight as W; - N Wi s W
Final estimated position with improved weights can be expressed as :

n
P(z,y) =Y (W/-S)) (5.10)
i=1
Figure shows the scatter plot and CDF of localization error obtained
when a sniffer was placed every 6 m with total of 52 sniffers in the area. The
sampling interval was chosen to be 30 s. From the CDF, it can be seen that
more than 60% of the time estimation error is below 3m.

Traditionally WCL algorithms are typically used in large scale WSN de-
ployments; it takes into account only the anchor points in range of an un-
known node to estimate the position. In our scenario, all the deployed
sniffers are located close enough combined with long range of Wi-Fi. There-
fore, a majority of them are always within the range at any given time.
Errors will be introduced in position estimation if we take into account all
the sniffers in the area. Hence, we take S sniffers out of the total N that
receive the strongest RSSI. This number has to be chosen carefully.

Figure [5.4] shows the error in position estimation for different values of
chosen S. The total number sniffers used in the experiment was 52. As S
approaches the total number of sniffers in the area the estimation accuracy
reduces. An ideal number would be 3 or 4 depending on the deployment
topology. The topology used in our experiments is grid based deployment.
Hence we can expect S = 4 to be an acceptable value. Thus the location
is calculated according to Equation [5.10| only after sorting the RSSI values
from the sniffers and taking values only from the N strongest sniffers.
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Figure 5.3: Scatter plot of Localization and CDF of error
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5.4.2 Constraint Matching

Ecolocation algorithm proposed by Kiran et al. [48] is a range free localiz-
ation algorithm. The algorithm was chosen due to it low complexity and a
reasonable accuracy. The localization area is partitioned based on distance
constraints. These constraints form a unique signature for different regions
in the localization area. The location which has maximum number of satis-
fied constraints is then determined to be the best estimate of the unknown
node’s location.

Consider the situation in Figure [5.5| where A ,B,C,D and E represent an-
chor nodes whose location is known and L represents the location the node
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Figure 5.5: RSSI constraints for Node L and anchor points A,B,C,D and E

whose position is to be determined. The signal from L is captured by all
the anchor points with different signal strengths. A constraint table is then
created based on the received signal from the beacons. Let Ry« represent
the RSSI constraint table from n beacons. Each element can be determined
as follows :
1, If RSSI; > RSSI]'
Rnxn(i,j) =40, If RSSI; = RSSI; (5.11)
-1, If RSSI; < RSSI;.
Another table termed as distance constraint Dpyyn is constructed for

each point P in the localization space by calculating the distance between
the point P and the n beacon nodes.

Figure 5.6: Distance constraints constraints for P and anchor points
A.B,C,D and E

Figure [5.6] shows the distance constraints for a grid point P and beacon
nodes A,BC,D and E. Due to the relationship between RSSI and distance
if the reference nodes are ranked in the decreasing order of RSSI then this
should ideally represent the increasing order of distance to the unknown
node. If R; and d; are RSS and distance then:

R, > Rj =d; < dj Vi < g (5.12)

Thus distance constraints table Dy n is determined as

1, Ifd; < dj
Dnxn(i,5) =40, Ifd; = dj (5.13)
-1, Ifd; > d;
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The tables Ry« n and Dy« have the same structure and dimension. The
localization algorithm compares these two tables and determines the number
of constraints that are satisfied and selects the location that maximizes the
number of satisfied constraints.

In most cases the assumption in Equation holds. However due mul-
tipath, reflection and absorption of signals, there might be flips in the se-
quence i.e R; < R; although d; > d;. However the location can still be
estimated if most of the constraints are satisfied. Hence the localization
accuracy depends on the amount of noise in the environment.
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Figure 5.7: Scatter plot of Localization and CDF of error

Proposal to Improve Position Estimation and Execution Time

The ECL algorithm estimates the position by doing an exhaustive search on
all possible points in the localization area. This can be highly time consum-
ing if the area is large with high number of anchor points. In our experiments
as testbed is 60m x 20m with more than 50 sniffers acting as anchor points.
The algorithm takes large time to give out each position estimate. In order
to reduce the computation time we need to perform constraint matching
only in selective regions instead of doing it for the complete space.

We propose two methods that were investigated to reduce the execution
time:

e Doing a primary constraint matching with lower resolution of points
say every 5-10m and find the points with highest scores in order to
know the approximate area where the unknown node is located. Do
a secondary constraint matching in a more exhaustive manner within
the approximated zone.
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e Find the approximate zone based on signals from the first S strongest
sniffers. Form a bounded polygon based on lowest and highest di-
mensions of the strongest sniffers. Apply constraint matching within
the bounded polygon. Choosing appropriate value of S determines
the area of the resulting polygon area. If (S = N) then complete
localization space is considered.

The second method is better as it requires performing constraint match-
ing calculations only once. The highlighted part in Figure [5.8] shows the
locations where constraint matching is applied. Figure a) depicts the
naive algorithm which employs exhaustive search irrespective of the posi-
tion of the unknown node. A lot of time can be saved if we apply constraint
matching only within the bounded polygon formed by four strongest sniffers,
this is depicted in Figure [5.8(b). Table shows the improvement in ex-
ecution time. Having an approximate pre-localization stage before actual
localization can reduce the execution time by almost 8 times.

Figure 5.8: Bounded polygon method to improve position estimation in
constraint matching

Algorithm | Execution time (ms)
Naive ECL 1200
Modified ECL 168

Table 5.1: Execution times for naive and modified approach

As the number of sniffers reduce, the number of locations with similar
constraints increase within the localization space this reduces the localiza-
tion accuracy. By limiting the area before performing location estimation
we can minimize the errors to an extent. Figure [5.9|shows the variation of
localization accuracy after significantly reducing the number of sniffers from
every 6 m to every 18 m at the testbed. Figure [5.9(a) shows the CDF of
errors for the naive algorithm that considers every possible location in the
localization space. Figure (b) shows CDF of errors based on bounded
polygon approach.
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Figure 5.9: Improvement in position estimation using bounded polygon.

5.4.3 Lateration

Lateration is one of the most widely adopted localization algorithms. It is a
simple range based technique based on basic geometric principles. It is based
on the idea that if the exact distance to an unknown node can be calculated
from at least three known anchor points then the position of the node can be
determined by the intersection point of these circles. The method is called
trilateration if three anchor points are used or multilateration in case more
than three anchor points are used for position estimation.

Lateration involves calculating distances form the anchor points based
on received signal strength. Mathematical models are used to correlate an
RSSI value to a distance estimate. As RSSI values are prone to error due to
multiple factors there will always be noise associated with the measurements
hence the circles will not intersect at exactly one point. Thus we make use
of several techniques to arrive at the closest possible solution.

Let P(x,y) be the position of the unknown node. Let d; be the distance
estimated from anchor node P; whose location (z;,y;) is known in advance.
The distance d; between these points can be expressed with distance formula
as:

di = /(z — )% + (y — y:)? (5.14)

Taking square on both sides:
d; = (x —2:)* + (y — i)’ (5.15)
:a:2—23:a:i+$?~l—y2—2yyi+yi2 '

In order to eliminate the non-linear terms z? and y? we subtract d?\, from

d? resulting in N — 1 equations.
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(5.16)
Equation after reordering can be expressed in matrix form as :
b=Alzy" (5.17)
where:
B =t =g — B+ + i
N B
S N S S
T —IN Y1 — YN
A=_9 3327-33N y?f.yN
IN-1—2IN TN-1—TN
Equation [5.17| can be solved using linear least squares approach:
P(x,y)=(ATA)"'A"b (5.18)

In some cases the inverse of matrix cannot be calculated due to which the
lateration might fail. In order to avoid this, we also explore non-linear least
sqaures approximation method. The multilateration problem can be seen
as an optimization problem where we try to minimize the sum of squares of
the errors on the distance. If (fl, represents the exact distance between the
unknown node and the i*" anchor point and d; represents the approximate
estimated distance. Then d; can be represented as:

(x -2+ (y—yi)® = di” (5.19)
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In order to find the closest position we must try to minimize the function:

Flay) =S, - d)? =S, (Ve v G- wP —d) (5.20)

Many mathematical algorithms are available to minimize the sum of squares.
In our approach we chose Levenberg—Marquardt algorithm [27] to solve the
non-linear least squares problem.
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Figure 5.11: Scatter plot for localization along and CDF of error

Figure shows the scatter plot and CDF of error for both Linear and
Non-Linear least squares approximation. It was observed that Linear Least
Squares method failed multiple times as suspected. The performance of
Non-Linear Least Squares approximation methods was found to be much
better with 80% of the predicted values within 5 m. However the main
drawback of both these methods is that they require efficient estimation of
path loss exponent () and received power at a reference distance in order
to calculate distance. If these parameters are not estimated properly errors
are introduced in distance estimation which leads to inaccurate position
estimation.

5.5 Comparison

In this section we provide a comparative analysis of the localization al-
gorithms explained previously with respect to various parameters in order
to understand their performance.

5.5.1 Number of samples

Due to the nature of smartphones, getting a high number of samples is not
always guaranteed. Therefore the localization algorithm should be able to
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Figure 5.12: Comparison of standard deviation of error for different number
of samples

provide a decent accuracy even with less samples.

From Figure [5.12] it can be seen that multilateration performs signific-
antly worse under lower sample sizes compared to the other two algorithms.
This can be attributed to that fact that multilateration is a range based
algorithm and position estimation errors occur due to errors in distance
estimation as a consequence of high RSSI variance.

5.5.2 Sniffer Density and Topology

This parameter refers to the performance of localization algorithms with
respect to number sniffers deployed in the area and topology of deployment.
Sniffer density refers to the distance between adjacent sniffers for a given
topology. Simulations were run with different sniffer densities for two basic
types of topologies namely square and diamond. The detailed description of
simulations is in chapter [6] The detailed Figure shows the maximum
error noticed in simulations under different sniffer densities.

Diamond topology of deployment performs better as every point within
the localization space will be covered by at least 3 sniffers. More on cov-
erage is explained in Chapter [6] Section [6.2] Although the maximum error
observed decreases with the number of beacon nodes, Weighted Centroid
and Constraint matching clearly perform better than Multilateration even
at lower sniffer densities irrespective of the topology of deployment.

5.5.3 Execution Time

The time required to calculate a single position estimate is calculated for all
the localization algorithms. The time is calculated for a set of 30 samples
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As seen in Figure constraint matching algorithm takes more time
compared to all the algorithms. This is because constraint matching com-
pares the sequences for a number of points within the localization space in
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order to make the position estimation. Multilateration consumes the least
time as it is computationally less intensive compared to the other methods.

5.6 Confidence Scores

The problem of localizing an individual based on sparse signals from the
smartphone with all the given constraints is a difficult task. It was aptly
described by one of the supervisors as synonymous to “Finding a black
cat in a dark room”. Hence we try to associate confidence scores with
each localization prediction. Confidence scores give us an idea about the
reliability of a specific prediction. To generate a score we take into account
the following metrics.

e RSSI Variance: Multipath, reflection and absorption of radio signals
can introduce a lot of noise into the signals which increases the variance
in RSSI samples. Higher RSSI variance leads to unstable prediction
of location.

e Number of Samples (n): We can combat the effect of RSSI variance
by applying appropriate filtering and smoothing techniques. However
we need sufficiently higher number of samples to perform effective
filtering and smoothing. Thus higher number of samples can lead to
good prediction. This may not always be guaranteed and depends on
the configuration of the smartphone.

e Polygon area: This factor is dependent on the topology of sniffers in
the localization space. It refers to the area of polygon formed by the
S strongest sniffers. For instance if the deployment is in the form of
a diamond grid. Any point falls within one of the triangles. If n = 3
then three strongest sniffers should ideally form a triangle as shown in
the figure. However due to several factors such as one of the sniffers
loosing a packet or due to RSSI variance the four strongest sniffers
might deviate from the ideal location which can be an indication of
poor localization prediction.

Figure 5.15: Polygon area for predicting localization accuracy
In Figure [5.15] ideally he three strongest sniffers should be 1,4 and

6. In case sniffer 4 fails to capture the signal, the three strongest
sniffers will be either A126 or A127 whose area is much larger than
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Motric Scoring Rubrics
Poor Moderate Good Best
Number Value | Score | Value Score | Value Score | Value Score
of <5 | 01 | [5,15] |035 | [15,30] |0.75 >=30 i
ggg}g(l)%s (N) | <1255
or 0.2 [50,75] | 0.35 | [24.5,50] | 0.75 | [12.524.5] | 1
Area(A)
>75
Variance (V) | >1 | 02 |[0.75.1] ] 05 | [0.25, 0.5] | 0.75 | <=0.25 1

Table 5.2: Detailed rubrics for confidence score generation

Sl.No | Score ]Tg:;(rza:;?;l Variance P;lifgn Samples
1 70.5 3.10 0.47 43 7

2 52.5 3.761 0.58 43 2

3 89.5 2 0.68 21 47

4 95.5 0.94 0.48 21 56

Table 5.3: Confidence scores based on RSSI Variance, Number of Samples
and Polygon area

A146. In our experiments at the testbed minimum horizontal and
vertical distance between sniffers is 7m and 3.5m respectively. Thus an
elemental square block would be 24.5m? if farther way sniffers are used
for localization this area increases which also has impact on localization
accuracy.

The number of samples (1), RSSI Variance (V') and the polygon area
(A) are categorized into various bins and score is associated depending on
their deviation from the ideal values. The total score out of hundred can be
calculated as

Score = (0.4A 4 0.3n + 0.3V) 100 (5.21)

It should be noted that the scores only provide an indication of how reli-
able a specific estimation can be, a high score can indicate good localization
accuracy whereas an estimate with low error may end up having a bad score.
The detailed scoring rules are shown in Table The values for choosing a
specific category (Good,poor,moderate, best) are based on experimental res-
ults from the testbed. From Equation [5.21] it can be seen that more weight
(40%) is given to polygon area and the rest is divided between RSSI variance
and the number of samples as polygon area is better indicator of accuracy.
Table indicates scores generated for some localization estimates.

The results of the localization experiments at the testbed and simulations
indicate that range free localization algorithms such as WCL and CM per-
form better than Multilateration. Confidence scores give us a metric to filter
out estimates that may be unreliable.
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Chapter 6

Optimal Grid Configuration

This chapter provides an overview of a favourable sniffer deployment strategies.
Section describes the problem of area coverage in detail and describes
algorithms that can be used to verify the coverage within a given area.
Section explains optimal deployment of sniffers, an ILP is formulated
to describe deployment of sniffers such that every point in the localization
space is covered by a certain number of sniffers. Simulations are used to
minimize the number while maintaining a required accuracy.

6.1 Introduction

Since Wi-Fi sniffers are placed as part of the lighting infrastructure, it is
important to understand how localization schemes might perform under dif-
ferent lighting grid topologies and sniffer densities. Although it is trivial
that the localization accuracy increases with increase in density of anchors
points, we need to find a sweet spot where we can expect a decent localiz-
ation accuracy with a reasonable density of sniffers. This parameter has a
direct impact on the deployment cost of the system as bulbs with sniffers
cost more than the regular ones.

6.2 Sensor Area Coverage

Sensor area coverage is one of the most important performance parameters
we need to keep in mind as it reflects how well a target area is covered by the
deployed sniffers. Achieving sufficient coverage in the region of interest while
minimizing the number of sniffers can be a challenging task. Coverage can
have direct impact on localization algorithms as many algorithms require
minimum 3-4 sniffers in the area for a good localization accuracy. The
coverage problem is very popular in many research fields. The Art Gallery
problem [30)] is a popular area coverage problem which tries to minimize the
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number of observers required to monitor a polygon area. For our application
the k coverage problem can be split into two subsections.

e Verification : Check if all the points within the localization space are
within the coverage area of at least k sniffers.

e Selection : Minimize the number of sniffers while ensuring k-coverage
in the area. This is done by selecting a subset of sniffers under the
assumption that a sniffer is present uniformly every n meters.

Problem Definition : Let S = {si,s2,....sn} denote the set of all
the sniffers and P = {p1,p2,....par} denote the set of all locations in the
deployment area. The sensing range of each sniffer s; € S can be represented
by a circle of radius r;. A point p; is said to be within the sniffing range of
s; if the distance d; between center of circle s; and point p; is less than the
radius r;. We need to determine if all the points in the deployment area P
are within the sensing range of at least k sniffers where k > 3.

The coverage problem has been previously addressed by many researchers.
So et al. [34] proposed the use of Voronoi diagrams to identify the worst case
and best case coverage areas in a given space. The algorithm tries to to find
paths between an initial and final location so as to include regions which are
not covered by k sensors. In order to address the area coverage we adopt
the work from Huang et al. [23] as its more aligned with our application.

The k coverage is verified by checking if the perimeter of each sniffer
is k-covered. It has been proven that entire region is k-covered if all the
points on the perimeter are k-covered. The distance between the centers are
calculated to first verify if they intersect. Sniffers s; and s; intersect each
other if the distance between their centers d is less than 2r.

dij = \J (i = )% + (s — )2 < 2 (6.1)

For each sniffer s; amount of overlap with its neighbouring sniffer s; is
determined by calculating the perimeter of s; in s;. From Figure we
can see that the angle o can be obtained using trigonometric properties as

a=cos™! [%
-

The perimeter of s; falling within the range [7—c«, 7+ ¢] inside s; is said to
be perimeter covered by s;. The start and end of such segments are denoted
as [a;r, or]. Such points are calculated for all the neighbouring sniffers of
s; and placed on a line segment [0, 27]. The points are then sorted in an
ascending order into a list L. The perimeter coverage of s; is then determined
by traversing the line segment from left to right while visiting each element.
This is illustrated in Figure The cost of the algorithm is O(ndlog d)
where d is the maximum number of neighboring sniffers for a given sniffer.
Thus given a configuration of sniffers we can determine if each point in the
area is covered by at least 3-4 sniffers.
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Figure 6.1: Perimeter coverage of S; by traversing the line [0, 27] as men-
tioned in [22]

Figure [6.2] shows the difference in coverage between square and diamond
deployment. Square topology shows coverage holes where as every point
diamond deployment is covered.

6.3 Optimal Sniffer Deployment

This k-coverage problem has been proved to be NP-complete by reduction to
the minimum dominating set problem by Patterson et al. [47]. The problem
of minimizing the number of sniffers while maintaining k-coverage can also
be approximated using an ILP formulation. The localization space can be
considered as bounded region with n discrete points arranged as a grid. As
mentioned previously each sniffer has an effective sensing range of r. For
simplicity its assumed that all the sniffers have uniform range. Each point
in the localization space can be occupied by at most one sniffer. We need
to minimize the number of sniffers such that each point is within range of
at least k sniffers (k > 1). This problem can be formulated as an Integer
Linear Program (ILP).

ILP Formulation

Let d;; denote the Eucledian distance between two points i and j. Let E,
denote set of points such that distance between them d;; is within the sensing
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Figure 6.2: Coverage shown by overlapping circles for square and diamond
deployments

range 7 of sniffers.
Ey ={(i,7)10 < dij <7}
E[i] = {jl(i,j) € BEv},i=1,2,3,...,n

Let C be the deployment cost of the sniffer. Let z; be a variable to denote
if a sensor is already placed at point i.

1, If sensor is placed at point i
€Tr;, =
' 0, otherwise

We need to minimize the cost of sniffers :
n
Min ) C- (6.2)
i=1

such that :
> a=kVi (6.3)
JEE]i]
Constraint ensures that the points are covered by at least £ sniffers.

As k-coverage is an NP-complete problem, solving the ILP formulation
given by Equation [6.2] involves checking constraints for every possible com-
bination of sniffer locations within the given dimensions. However as sniffers
are part of a lighting grid some of the constraints become relaxed.

e Fixed Sniffer topology i.e, locations that a sniffer can be installed is
predefined.
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e Minimum separation between sniffers need to be maintained depending
on the sniffer density.

o As wireless signals degrade with increasing distance we can establish a
maximum bound between sniffers beyond which localization accuracy
drops significantly

Therefore we do not use any heuristics to solve the formulated ILP. Instead
we perform simulations for different topologies and distribution of nodes
under varying levels of sniffer densities.

Simulations provide us more freedom to vary parameters such as location
of sniffers and distribution of nodes. As the testbed is quite large and there
are limited number of robots its difficult to understand how the accuracy of
localization varies for different regions in the localization space.

In simulations we can spread the unknown nodes either randomly in the
localization space or uniformly at each point. This can give us an idea
about the maximum error that can be expected. Mainly two topologies are
considered due to their popularity and usage. The topologies along with
possible choices for node distribution are as shown in Figure [6.3] Figure
6.3[(a) shows square pattern of sniffers with randomly distributed nodes in
the area where as Figure (b) shows diamond pattern with uniformly dis-
tributed nodes, other variants of topology can be derived using these basic

types.
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Figure 6.3: Square topology with randomly distributed nodes and Diamond
topology with uniform node distribution

Simulations are performed on a 30m x 30m grid where the sniffer density

is varied from 4m to 15m. In random configuration 100 nodes are placed on
random locations within the grid. In uniform configuration a node is placed
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every 2 meters in both horizontal and vertical dimensions. Log normal
shadowing model is used to generate RSSI values with path loss exponent
v= 1.3. Noise is introduced into the simulations by adding random error
with zero mean and a standard deviation of 1 is to the RSSI values. In order

1.0
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0.6f

CDF

0.4t

0.2t

— Testbed&ata
— Simulated data
o 1 2 3 4 5 6 1 8 9
Localization error(m)

0.0

Figure 6.4: Comparison of CDF of error for simulation and testbed data

to validate simulations we recreated the topology from the testbed and the
output from simulations were compared with the data from testbed. Figure
shows the similarity between simulation data and the data taken from
the tesbed.

Figure and show the results of the simulations for diamond and
square topology of deployment with different sniffer densities. Simulations
indicate that range free localization algorithms with diamond deployment
perform better.

Sniffer Density | Accuracy <2m | Accuracy <2.5m
3 80% 95%
4 74% 82%
) 52% 70%
6 55% 55%

Table 6.1: Sniffer densities and associated localization accuracy

Figure[6.5|a) and (b) shows the result of simulations for a topology similar
to the testbed (61m x 21m) using CM and WCL respectively. The results
are summarized in table Although 3m can be considered as the most
optimum one where 80% of values are within 2m, we can save lot of bulbs if
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Figure 6.5: Simulation results for testbed topology

we deploy a sniffer every 4m which provides estimates close to 70% of time
< 2m and 2.5m >80% of time.

Figure shows CDF of errors for diamond topology with different loc-
alization algorithms for 30mx30m grids. Figure shows CDF of errors
for square topology for same scenario. It can be range free localization
algorithms provide better results even when the sniffer density is low.
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Figure 6.6: CDF of errors for different localization algorithms and sniffer

densities for diamond topology
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Chapter 7

Conclusions and Future

Work

7.1 Conclusions

In this thesis the feasibility of using Wi-Fi sniffing to infer the crowd dis-
tribution in a given area was studied. The idea was to incorporate Wi-Fi
sniffing into smart light bulbs as part of the lighting grids in order to meas-
ure number of people in a given area and approximate spatial distribution by
sniffing for smartphones that people might carry with them. It is assumed
that most of the people carry smartphones with them and have their Wi-Fi
turned on. As Wi-Fi sniffing is non-intrusive we do not possess any control
over how a specific smartphone sends packets. Thus, the problem on hand
was interesting as well as extremely challenging.

First, sniffing experiments were conducted in order to analyze the time
resolution and diversity of packets under different smartphone configura-
tions. The data from CRAWDAD repository containing traces from over
3000 smartphones was also analyzed. Experiments indicate that although
the time interval between packets radically differs depending on the config-
uration. On the average, packets can be seen within 60 seconds from most
of the phones. When Wi-Fi data is used, a packet can be seen almost every
second which can be considered as the best case scenario with worst case
interval being 3-5 minutes. This indicates that a system can be designed
with a minimum sampling interval of 30-60 seconds. Any value lower than
this will increase the false positives in the system.

The data from multiple sniffers deployed in an area is aggregated to count
the number of people. Several filtering and post processing mechanisms were
proposed in order to eliminate noise and false positives due to unwanted
devices encountered during sniffing. Experiments to count the number of
people were conducted under controlled conditions with a Wi-Fi testbed and
also in a live test setup (auditorium,coffee corner). Each of these scenarios

61



represents a different type of crowd setting. The DoVo room represents a
scenario where people hardly move during the course of the event. Whereas
coffee corner represents a more dynamic environment where people can en-
gage in conversations and spend lot of time or quickly grab coffee and move.
The counting algorithm was evaluated against the ground truth either by
manual counting or by the use of cameras. Results indicate that counting
algorithms came close to 75% of the ground truth for the DoVo room.

Due to the imposed constraints on the system RSSI based localization
schemes were used to infer spatial distribution of devices in the given area.
Experiments were conducted at a testbed to evaluate different localiza-
tion algorithms. Mobile robots with Wi-Fi interface were used to mimic
movement of people. Three different localization schemes namely Weighted
Centroid (WC), Multilateration (ML) and Constraint Matching (CM) were
evaluated to analyze their feasibility of usage. Localization results indicate
that range free localization schemes such as WC and CM perform much
better compared to ML. ML suffers as it requires estimation of the distance
based on path loss models, even Small errors in distance estimation intro-
duces errors in position estimates. Simulations indicate that although 3m
can be considered as ideal deployment which gives results within 2m > 80%
of the time. A deployment 4m can be considered more ideal as we still get
an accuracy of < 2m 76% of the time.

As localization can be unreliable due to several uncontrollable parameters
a confidence score was proposed to assess the reliability of a specific position
estimate. It is a weighted score that takes into account several factors such
as variance of RSSI values, number of samples used for prediction and the
polygon area formed by sniffers having the highest RSSI values. The scor-
ing mechanism is not a measure of localization accuracy but a measure of
conditions in which a specific prediction happened. Having this information
can help us in filtering out predictions that might be unreliable.

7.2 Future Work

Some of the directions for future research are summarized as follows

e The accuracy of people counting by Wi-Fi sniffing can be influenced
by several factors such as the demography of the crowd as explained in
section [£.61 A future research direction should take into account cer-
tain heuristics and statistics of smartphone usage among different age
groups in order to further refine the count based on these properties.

e Due to the growing adoption of the 5GHz band most of the devices
can easily switch between 2.4GHz and 5GHz bands. Hence the hard-
ware should also be capable of sniffing on both the bands. The current
hardware used for sniffing does not support this. Sniffing data simul-
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taneously on both bands and aggregating the this data should further
improve the counting performance.

Analyzing social interactions among the people in the crowd is another
interesting area of research. The remembered SSID information in the
sniffed probe request frames can be used an input to analyze social
interactions.

The current solutions for crowd distribution analysis uses commercially
available off the shelf hardware. A more sophisticated hardware can
reveal information that can be used to refine position estimation.
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