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Abstract. Learning-based scene representations such as neural radi-
ance fields or light field networks, that rely on fitting a scene model
to image observations, commonly encounter challenges in the presence
of inconsistencies within the images caused by occlusions, inaccurately
estimated camera parameters or effects like lens flare. To address this
challenge, we introduce RANdom RAy Consensus (RANRAC), an effi-
cient approach to eliminate the effect of inconsistent data, thereby taking
inspiration from classical RANSAC based outlier detection for model fit-
ting. In contrast to the down-weighting of the effect of outliers based
on robust loss formulations, our approach reliably detects and excludes
inconsistent perspectives, resulting in clean images without floating arti-
facts. For this purpose, we formulate a fuzzy adaption of the RANSAC
paradigm, enabling its application to large scale models. We interpret
the minimal number of samples to determine the model parameters as a
tunable hyperparameter, investigate the generation of hypotheses with
data-driven models, and analyse the validation of hypotheses in noisy
environments. We demonstrate the compatibility and potential of our
solution for both photo-realistic robust multi-view reconstruction from
real-world images based on neural radiance fields and for single-shot
reconstruction based on light-field networks. In particular, the results
indicate significant improvements compared to state-of-the-art robust
methods for novel-view synthesis on both synthetic and captured scenes
with various inconsistencies including occlusions, noisy camera pose esti-
mates, and unfocused perspectives. The results further indicate signifi-
cant improvements for single-shot reconstruction from occluded images.

Keywords: Neural scene representations · neural rendering ·
RANSAC · robust estimation · neural radiance fields · light-field
networks
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1 Introduction

3D reconstruction is a classical task in computer vision and computer graph-
ics, which has attracted research for decades. It offers numerous applications,
including autonomous systems, entertainment, design, advertisement, cultural
heritage, VR/AR experiences or medical scenarios. In recent years, neural scene
representations and rendering techniques [44,51], including light field networks
(LFN) [40] and neural radiance fields (NeRF) [29] have demonstrated great per-
formance in single-view and multi-view reconstruction tasks. The key to the suc-
cess of such techniques is the coupling of differentiable rendering methods with
custom neural field parametrizations of scene properties. However, a common
limitation of neural scene reconstruction methods is their sensitivity to incon-
sistencies among input images induced by occlusions, inaccurately estimated
camera parameters or effects like lens flares. Despite the use of view-dependent
radiance representations to address view-dependent appearance changes, these
inconsistencies severely impact local density estimation, resulting in a poor gen-
eralization to novel views.

Fig. 1. We propose a robust algorithm for 3D reconstruction from occluded input per-
spectives that is based on the random sampling of hypotheses. Our algorithm is general
and we demonstrate the use for single-shot reconstruction using light field networks or
multi-view reconstruction using NeRF. In these cases, it successfully removes the arti-
facts that normally occur due to occluded input perspectives.

To increase the robustness to potential distractors within the training data,
Sabour et al. [38] recently introduced the use of robust losses in the context
of training unconditioned NeRF, where distractors in the training data were
modeled as outliers of an optimization problem. However, the adaptation of
this approach to conditioned neural fields (e.g., pixelNeRF [52]) is not obvi-
ous, as no optimization takes place during inference, and the input data is con-
strained to only a few views. Achieving robustness to data inconsistencies is
a well-analyzed problem in computer vision, covered not only by the aforemen-
tioned robust loss functions [1], but also other strategies, like the random sample
consensus (RANSAC) paradigm [15]. The latter is widely employed for fitting
models to outlier-heavy data. The underlying idea is to randomly select sub-
sets of the data to form potential models, evaluating these models against the
entire dataset, and identifying the subset that best fits the majority of the data,
while disregarding outliers. Despite being the state-of-the-art solution to many
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challenges, RANSAC-based schemes are particularly favoured for the fitting of
analytical models with a relatively small amount of tuneable parameters. In this
paper, we direct our attention to achieving robustness against inconsistencies
and occlusions in the observations by using a novel combination of neural scene
representation and rendering techniques with dedicated outlier removal tech-
niques such as RANSAC [15]. While downweighting the influence of distractors
based on robust losses [1,38] can affect clean samples, representing details, we
aim at improving robustness to distractors by only removing the influence of
outliers. To this extent, we integrate a RANSAC-based scheme to distinguish
inliers and outliers in the data and the inlier-based optimization of the neural
fields (Fig. 1); a stochastic scenario characterized by a large-scale, data-driven
model that exceeds RANSAC’s classical convergence expectations. Instead of
guaranteeing convergence to a clean sample set based on a minimal number of
samples, we aim for a feasible (cleaner) sample set using a tuneable amount of
samples. The proposed algorithm exhibits robustness and versatility, accommo-
dating a wide range of neural fields-based reconstruction methods.

Our method inherits the strengths of RANSAC, such as the ability to handle
various classes of outliers without relying on semantics. Yet, it also inherits the
need for sufficiently clean samples and the reliance on an iterative scheme. In
practice, the first condition is often fulfilled because typically only some of the
perspectives are affected by inconsistencies. We validate our approach using syn-
thetic data, focusing on the task of multi-class single-shot reconstruction with
LFNs [40], and observe significant quality improvements over the baseline in the
presence of occlusions. Furthermore, we showcase robust photo-realistic recon-
structions of 3D objects using unconditioned NeRFs from sequences of real-world
images in the presence of distractors. In comparison to RobustNeRF [38], we use
all available clean data, hence improving the reconstruction quality for single-
object scenes. Code and data are available under »https://bennobuschmann.
com/ranrac«. Our key contributions are:

– a general, robust RANSAC-based reconstruction method applicable to a vari-
ety of neural-fields and handling diverse inconsistencies

– an analysis of the implication to RANSAC’s hyperparameters and theoretical
convergence expectations, and the experimental study of their effect

– a method for robust photo-realistic object reconstruction using NeRF and for
robust single-shot multi-class reconstruction using LFNs

– a qualitative/quantitative evaluation of our method on both synthetic and
real-world data with different inconsistencies (occlusions, invalid calibrations,
...) indicating the state-of-the-art performance of our approach

2 Related Work

Among the vast literature on neural fields, the seminal work of Mildenhall et
al. [29] opened many avenues in the computer vision community. It contributed
to state-of-the-art solutions for novel view synthesis and 3D reconstruction that

https://bennobuschmann.com/ranrac
https://bennobuschmann.com/ranrac
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have been covered in respective surveys [44,51]. Noteworthy is the more recent
contribution of instant neural graphics primitives (iNGP) [31], which uses a
hash table of trainable feature vectors alongside a small network for representing
the scene. iNGP achieved major run-time improvements, thereby enhancing the
feasibility of practical applications for neural fields.

Baseline models are highly sensitive to imperfections in the input data, which
led to many works on robustness enhancements of neural fields; addressing a
reduced amount of input views [17,21,32,52], errors in camera parameters [4,19,
25,53], variations in illumination conditions across observations [28,42], multi-
scale image data [2,3,50], and the targeted removal of floating artifacts [33,47,
48].

Fewer works solve the reconstruction task in the presence of inconsistencies
between observations. Bayes’ Rays [16] provides a framework to quantify uncer-
tainty of a pretrained NeRF by approximating a spatial uncertainty field. It han-
dles missing information due to self-occlusion or missing perspectives well, but
cannot deal with inconsistencies caused by noise or distractors. Similarly, Neu-
Ray [27] only supports missing, but not inconsistent information. Naive occlu-
sion handling via semantic segmentation requires the occluding object types
to be known in advance [28,36,37,43,46]. Solutions to learn semantic priors on
transience exist [23] but separating occlusions via semantic segmentation without
manual guidance is ill posed. Occ-NeRF [54] considers any foreground element as
occlusion and removes them via depth reasoning, but their removal leaves behind
blurry artifacts. Alternatively, some methods do not remove dynamic distractors,
but reconstruct them together with the rest of the scene using time-conditioned
representations [9,26,34,49]. Closely related to our work, RobustNeRF [38] con-
siders input-image distractors as outliers of the model optimization task. The
authors employ robust losses improved via patching to preserve high-frequency
details. RobustNeRF does not rely on prior assumptions about the nature of dis-
tractors, nor does it require preprocessing of the input data or postprocessing of
the trained model. Nevertheless, their method comes at the cost of loosing view-
dependent details and a reduced reconstruction quality in undistracted scenes.
Furthermore, their method is limited to unconditioned models that overfit to a
single scene. A generalization to conditioned NeRFs, such as pixelNeRF [52], is
not obvious, as no further optimization takes place during inference.

Conditioned neural fields offer a distinct advantage in their ability to general-
ize to novel scenes by leveraging knowledge acquired from diverse scenes during
learning. This results in a more robust model that requires as few as one input
view for inference, showcasing the efficiency and adaptability of the approach.
Contrary to PixelNeRF [52], which relies on a volumetric parametrization of
the scene, demanding multiple network evaluations along the ray, Light Field
Networks (LFNs) [40], which succeed Scene Representation Networks [41], take
a different approach. LFNs represent the scene as a 4D light field, enabling a
more efficient single evaluation per ray for inference. The network takes as input
a ray represented in Plücker coordinates and maps it to an observed radiance,
all within an autoencoder framework used for conditioning.
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None of the mentioned methods can deal with occlusions in single-shot recon-
struction and no prior work exists on robust LFNs or robustness of other con-
ditioned neural fields for single-shot reconstruction, which we address via the
RANSAC paradigm [15]. Since its introduction in 1981, RANSAC has gained
attention for fitting analytical models with a small number of parameters, such
as homography estimation in panorama stitching [7]. Among the few direct appli-
cations of classical RANSAC to larger models is robust morphable face recon-
struction [13,14]. Other common expansions and applications include differen-
tiable RANSAC [5] for camera parameter estimation in a deep learning pipeline,
locally optimized RANSAC [11] to account for the requirement of a descriptive
sample set, and adaptive real-time RANSAC [35].

Fig. 2. The RANRAC algorithm for LFNs samples random hypotheses by selecting a
set of random samples from the given perspective (a), and inferring the latent repre-
sentation of these rays using the autodecoder of a pretrained LFN (b). The obtained
light field is then used to predict an image from the input perspective (c). Based on this
prediction, confidence in the random hypothesis is evaluated via the Euclidean distance
between the predicted ray colors and the remaining color samples of the input image.
The amount of samples which are explained by each hypothesis up to some margin
are used to determine the best hypothesis (d). All samples explained by the selected
hypothesis are used for a final inference with the LFN to obtain the final model and
latent representation (e).

3 Method

In this section, we present our approach to increase the robustness of neural scene
representations to inconsistencies in the input data. First, we recap RANSAC,
its theoretical convergence and hyperparameters, and the required adaptions for
its application to high-dimensional data-driven models. We then introduce a
general scheme for the random sampling and validation of neural fields. Based
hereon, we formulate a robust algorithm using LFNs for 3D reconstruction from
a single image with occlusions. Finally, using NeRF, we formulate an algorithm
for robust photo-realistic reconstruction from multiple views in the presence of
common sources of inconsistencies.
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3.1 RANSAC Convergence on Complex Models

Classical RANSAC [10,12,15] follows an iterative process. Initially, a minimal
set of samples is randomly selected to determine the model parameters, known as
the hypothesis generation phase. Then, the hypothesis is evaluated by assessing
the number of observations it explains, within a specified margin. These steps
are repeated until the best hypothesis is chosen to constitute the consensus set,
which comprises all of its inliers.

This paradigm cannot be directly applied to complex models such as neural
fields, as a significant amount of samples is required to obtain decent initial
model parameters and additional clean samples improve the quality further.
This imposes a challenge regarding the expected amount of clean initial sample
sets, Sclean:

E[#Sclean] = N ∗
M∏

m=1

simg − socc
img − m

simg − m
, (1)

where simg denotes the total amount of samples (e.g., image pixels), socc
img repre-

sents the occluded samples, and N/M are the number of iterations/samples. The
expected amount exponentially decreases with the initial number of samples.

The samples and respective requirements for analytic and data-driven models
vary a lot. The effect of individual samples is less traceable in data-driven mod-
els and the information entropy varies more significantly across samples. When
using a model that projects onto a latent space, some very atypical outliers do
not show an effect at all if the latent space is not expressive enough to explain
them in an overall loss-reducing way, yet, outliers close to the object or its color,
or larger chunks of outliers, will usually be distracting. At the same time, sam-
ples of small-scale high-frequency details are important for the reconstruction
and contain a lot of information, whereas multiple samples of larger-scale lower-
frequency details contribute much less. The amount of initial samples for the
hypothesis generation becomes a tunable hyperparameter trading initial recon-
struction quality for likelihood of finding desired sample sets. This invalidates
the classical convergence idea [10,12] where the RANSAC iterations N with

N ≥ log(1 − p)
log(1 − tM )

(2)

are chosen such that at least one clean sample set is found with a probability
p, given the expected ratio of clean samples t and the amount of initial samples
M . There is not only the need to find a clean sample set, but one that captures
all important details. At the same time, a completely clean sample set is not
required at all, as long as the contained outliers are not represented by the local
minimum of the latent space or the model itself, depending on the concrete scene
representation.

3.2 Random Sampling Neural Fields

We propose a general strategy for RANSAC-like, iterative, robust reconstruction
with neural fields, before formulating respective algorithms for LFNs and NeRF.
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Sampling Hypotheses. Based on the application a feasible sampling domain
is chosen e.g . pixels/rays, or observations. Depending on the requirements of the
neural field an appropriate sample size is determined. The initial sample size is
chosen as small as possible to allow for a reasonable convergence expectation to
cleaner sets, while being large enough for a coarse fit of the model expressive
enough to enable the discrimination of outliers.

Determine Model Parameters. The determination of the model parameters
in a classical RANSAC application corresponds to the inference of the sample
sets with a neural field: In case of unconditioned neural fields (such as NeRF) this
corresponds to (over-)fitting the model to the scene, in case of conditioned fields
this corresponds to obtaining a latent representation. Full convergence is not
required, the reconstruction is only used to evaluate the outlier contamination.

Validation of Hypotheses. For the validation, the rays/perspectives not used
for the inference are rendered using the obtained model and compared to the
input. The quality of each hypothesis is evaluated based on the amount of other
samples explained by it up to some margin. Depending on the sampling/inference
strategy, different similarity metrics can be used to distinguish outliers from
other sources of noise such as the coarse inference. The initial sample set of the
best hypothesis together with all its inliers is used for a final complete model fit.

As will be demonstrated in our evaluation in Sect. 5, the major benefit of
our RANSAC-like neural field approach over formulations based on robust loss
functions [1] is the possibility to reliably filter outliers and inconsistencies in the
input data in comparison to the down-weighting of their influence.

3.3 Robust Light Field Networks

In the following, we propose a novel fast and robust single-shot multi-class recon-
struction algorithm based on LFNs [40]. LFNs are globally conditioned, meaning
that the supported subset of 3D consistent scenes is represented by a single global
latent vector. Therefore, when the latent space is not expressive enough to rep-
resent object and distractor correctly, large inconsistencies cause global damage
instead of local artifacts. LFNs intrinsically support parallel inference, allowing
to jointly process all hypotheses rather than following an iterative scheme. Our
algorithm consists of the following steps (Fig. 2):

1. Hypothesis Consensus Set: Given the input image I as a set of pixel
color values ci, and the intrinsic and extrinsic camera parameters, the set
of rays R – one ray r i for every pixel – represented by Plücker coordinates,
is generated. In the first step, N initial consensus sets Sn are drawn using a
uniform distribution, where each consensus set consists of M random samples:

(cm
n , rm

n ) ∈R {(ci, r i) | ci ∈ I, r i ∈ R} (3)

where n ∈ {1, . . . , N}, m ∈ {1, . . . , M}, and ∈R denotes a sample randomly
drawn from the set without replacement according to a uniform distribution.
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2. Hypothesis Inference: The autodecoder of an LFN Φ with hypernetwork
Ψ and pretrained hypernetwork weights ψ, is used to infer the latent codes
zn for each of the initial sample sets in parallel.

{zn} = argmin
{zn}

∑

n

∑

m

‖Φ(rm
n | Ψψ(zn)) − cm

n ‖22 + λlat‖zn‖22 (4)

λlat determines the strength of the Gaussian prior on the latent space [40].
An exponential learning rate schedule speeds up the inference. The inferred
latent codes form the hypotheses.

3. Hypothesis Prediction: Each of the hypotheses is used to render an entire
image Ipred

n from the perspective of the input image, each consisting of the
pixel color values cpred

n,i = Φ(r i | Ψψ(zn)) , using again the set of rays R =
{r i} obtained from the camera parameters. The rendered pixels resemble the
predictions for the remaining observations under each hypothesis.

4. Hypothesis Validation: The obtained predictions are compared to the
input image to validate the hypothesis. For each pixel in each predicted image,
we calculate the Euclidean distance in color space: en,i = ‖cpred

n,i − ci‖2. For
each image, using these distances, we collect, up to some margin ε, the obser-
vations explained by the model (inliers): Sinlier

n = {(ci, r i) | en,i < ε}
5. Model Selection: We select the best hypothesis sample set Sbest based on

the number of inliers #Sinlier
n . The model is inferred once more, similar to

the second step, to obtain the final latent code zcons. The inference is based
on the final consensus set Scons = Sbest ∪ Sinlier

best , the initial sample set of
the strongest hypothesis Sbest together with all its inliers Sinlier

best . The final
output consists of both the latent code zcons and the final consensus set Scons

of the selected model, and can be used to render arbitrary new perspectives.

3.4 Robust Neural Radiance Fields

In the following, we propose a novel robust multi-view reconstruction approach
based on NeRFs. NeRFs are fit to a single scene based on a set of observations. As
they support view-dependent radiance, one might expect inconsistencies in the
input observations to only have an effect on specific perspectives. However, the
density is only spatially parametrized, hence, inconsistencies lead to significant
ghosting and smearing artifacts in more than just the inconsistent perspective.
This can be leveraged in the hypothesis validation. The following steps are per-
formed for N iterations:

1. Hypothesis Consensus Set: A NeRF fit requires a large set of rays, making
a sampling in ray space infeasible, as even obtaining significantly cleaner sets
becomes unlikely. In order to obtain a sampling domain with reasonably sized
initial consensus sets Sn, we sample M observations from the given sets of
images I and corresponding camera poses C in every iteration:

(Im
n , Em

n ) ∈R {(Ii, Ei) | Ii ∈ I, Ei ∈ C} (5)

where n ∈ {1, . . . , N}, m ∈ {1, . . . , M}, and ∈R denotes a sample randomly
drawn from the set without replacement according to a uniform distribution.
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2. Hypothesis Inference: The sampled observations are used to fit a hypoth-
esis neural radiance field Fn.

3. Hypothesis Prediction: The obtained NeRF Fn is used to render predic-
tions Ipred

n,i with pixel colors ppred
n,i,x under the hypothesis for all unseen input

perspectives Ei.
4. Hypothesis Validation: The chosen sample space requires a careful evalu-

ation of the hypotheses. We propose a two-step evaluation, where, first, the
pixels inliers Pn,i up to some margin εpix are determined for every observation
based on the Euclidean distance in color space to the pixels pi,x of the input
images Ii: Pn,i = {ppred

n,i,x | ‖ppred
n,i,x − pi,x‖2 < εpix} and, second, the obser-

vations themselves are labeled as inliers or outliers based on the amount of
pixel inliers, again up to some margin εimg, to obtain the consensus set Sinlier

n

under the hypothesis: Sinlier
n = {(Ii, Ei) | #Pn,i > εimg}. The binary metric

for pixels ensures that smaller mispredictions (due to, e.g., view-dependent
lighting effects) do not introduce noise into the evaluation.

5. Model Selection: The strongest hypothesis, with its initial sample set Sbest,
is selected based on the number of inliers #Sinlier

n to obtain the final consensus
set Scons = Sbest ∪ Sinlier

best . The final model is obtained with one more NeRF
fit of the consensus set.

3.5 Hyperparameters

For LFNs, the amount of initial samples and random hypotheses to evaluate
(iterations), are determined experimentally. Without fine-tuning per class, the
experimentally determined parameters are 90 initial samples and 2000 iterations,
which supersedes the theoretical value for a convergence because the latent space
introduces an intrinsic robustness. The inlier margin balances the amount of
slight high-frequency variations that are being captured and the capability of
separating outliers that are similar to the object. A margin of 0.25 in terms of
the Euclidean distance of the predicted colors to the input samples in an RGB
color space normalized to the range (−1, 1) has been found to be optimal. Please
refer to the supplementary material for further experimental results.

For NeRFs, the parameters behave more natural and the amount of per-
spectives required for a meaningful, not completely artifact-free fit of the model
lies around 25 observations [29, Table 2]. With fewer samples, more artifacts are
introduced that get harder to separate from the ones caused by inconsistencies,
and the samples get more dependent on being evenly spaced. For real-world cap-
tures with 10% inconsistent perspectives, as few as 50 iterations are sufficient.
With the color space normalized to (0, 1), a pixel margin between around 0.15
in terms of Euclidean distance worked well for the determination of actual arti-
facts. We consider an observation an inlier based on a margin of 90% - 98% pixel
inliers, which proved to be a good choice to separate minor artifacts (due to the
sparse sampling) from artifacts caused by actual inconsistencies. For different
datasets or inconsistencies, these values can be adapted.
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4 Implementation and Preprocessing

For LFNs, we build on top of the original implementation [40], with a slight
adaptation to enable a parallel sub-sampled inference. We furthermore use the
provided pretrained multi-class model. The camera parameters are known. For
efficiency reasons, the steps of the algorithm are not performed iteratively, but
multiple hypotheses are validated in parallel. To further speed up the inference,
an exponential learning rate schedule is used for the auto-decoding, leading to a
total runtime of about a minute on a single GPU.

For the robust reconstruction of objects from lazily captured real-world data,
one has to estimate the camera parameters and extract foreground masks before
applying the algorithm. For the estimation of the camera parameters, we used the
COLMAP structure-from-motion package [39]. We extracted foreground masks
using Segment Anything [22]. However, only foreground masks, containing the
objects and the occlusions, are extracted. Segment Anything is not capable of
removing arbitrary occlusions in an automatized way. After these preprocessing
steps, the robust reconstruction algorithm can be applied as described. Erroneous
estimates of the camera parameters or foreground masks are excluded by our
algorithm, thus making the entire reconstruction pipeline robust.

Our algorithm is not limited to a specific NeRF implementation. The chosen
sampling domain eases integration into arbitrary existing NeRF implementa-
tions, which commonly expect images instead of unstructured ray sets. However,
using a fast NeRF variant is advantageous when applying an iterative scheme.
We used the instant NGP implementation [31] of the instant NSR repository
[18], which includes some accelerations [24,30]. Other, (specifically fast) variants
are likely good choices as well. Antialiased and unbounded, but slow variants,
such as MipNeRF360 [3], are not feasible. For further implementation details
please refer to the supplementary.

5 Experiments

5.1 Inconsistencies, Baselines and Datasets

Multi-View Reconstruction (NeRF). We provide a comprehensive quanti-
tative and qualitative analysis of RANRAC’s multi-view reconstructions com-
pared to NeRF without any method of robustness (baseline) and RobustNeRF
[38] (state of the art). We conduct experiments for various common sources of
inconsistencies such as occluded perspectives, noisy camera parameter estimates,
and blurred perspectives. RobustNeRF [38] targets unbounded scenes with mul-
tiple objects and small amounts of distractors in every perspective. In compari-
son, our RANSAC-based approach deals well with single-object reconstruction,
even with heavy occlusions, as long as enough clean perspectives are available.
As their dataset reflects the algorithm’s properties, we cannot provide a fair com-
parison. Instead, we demonstrate the applicability using a custom dataset of a
single object with a controlled amount of deliberately occluded perspectives. For
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the other inconsistencies we use of-the-shelf datasets and add noise to the cam-
era parameters and blur to the images. Furthermore, we implement the robust
losses [38] on the same NeRF variant as RANRAC to provide a fair comparison
of the method’s robustness, independent of the NeRF variant. For further details
on the implementation, please refer to the supplementary material.

Single-Shot Reconstruction (LFN). We benchmark against the original
LFN implementation of Sitzmann et al. [40] as baseline, as there are no other
robust methods for LFNs or conditioned neural fields, nor are there methods
for robust single-shot multi-class reconstruction in general. Furthermore, we use
the same pretrained LFN for the baseline and for the application of our method.
The LFN is pretrained on the thirteen largest ShapeNet classes [8].

We provide a detailed qualitative and quantitative performance comparison
under different amounts of occlusion for three representative classes (plane, car,
and chair), while just stating reconstruction performance in a fixed environment
without additional tuning of the hyperparameters for the others. The plane class
is mostly challenging due to the low-frequency shape, while the car class contains
a lot of high-frequency color details. The chair class represents shapes that are
generally problematic for vanilla LFNs, even without occlusions. We provide a
complementing analysis of the hyperparameters in the supplementary material.
If not stated otherwise, we evaluate using 50 randomly selected images of the
corresponding class. All comparisons use the same images.

The occlusions are created synthetically. They consist of randomly generated
patches while controlling two metrics of occlusion: Image occlusion and object
occlusion. The former is the naive ratio of occluded over total pixels. The latter
are the occluded pixels on the object compared to the total pixels covered by
the object. We use both metrics to take the vastly different information entropy
of samples across the image into account. For further details on the generation
of the synthetic occlusions, please refer to the supplemental.

5.2 Evaluation

For LFNs, our approach leads to a significant improvement in occluded scenar-
ios of up to 8dB in PSNR and a similarly strong improvement for the SSIM.
The improvement is most significant in heavily distracted scenarios (Fig. 3). In
clean scenarios a slight performance penalty can be observed, but even with
small amounts of object occlusion (information loss), our algorithm outperforms
the baseline, leading to numerically better results up to 50% information loss
(Fig. 3). The effect is not only measurable, but also well visible (Fig. 4). Increas-
ing amounts of occlusion slowly introduce local artifacts into our reconstruction
while preserving a reasonable shape estimate even for larger amounts of occlu-
sion. In contrast, the reconstruction of LFNs breaks rather early in a global
fashion. Still, our consensus set (Fig. 4), reveals that some high-frequency details
were wrongfully excluded, explaining the slight performance decrease on clean
images. In general, the benefit of RANRAC is best observable for classes that



RANRAC 137

Table 1. RANRAC obtains a significant quantitative improvement in PSNR and SSIM
(higher is better) compared to the baseline. We compare RANRAC to vanilla LFNs for
the 13 largest ShapeNet classes (find plane, car, and chair with more detail in Fig. 3).
The results are based on a moderate amount of occlusion of approximately 25% object
occlusion and about 5% image occlusion. The reported results are conservative, as
higher amounts of image occlusion result in a more significant performance increase
(Fig. 3). No hyperparameter tuning has been performed for these classes; the same
configuration obtained from the analysis of the other three classes is used.

Metric Model Bench Boat Cabin. Displ. Lamp Phone Rifle Sofa Speak. Table

PSNR↑ RANRAC 19.21 22.92 21.92 17.65 19.99 18.45 21.35 21.61 20.7 20.44
LFN 17.89 19.2 20.5 18.85 19.09 17.81 18.46 20.12 19.99 20.29

SSIM↑ RANRAC 0.767 0.858 0.801 0.699 0.764 0.75 0.853 0.805 0.761 0.784
LFN 0.724 0.791 0.767 0.73 0.748 0.726 0.795 0.775 0.743 0.777

can be well described by LFNs, as evidenced by the lower improvements the
chair class exhibits, compared to the plane and car class. The same effect is
visible in the quantitative evaluation on the other classes without additional
tuning (Table 1). The only outlier is the display class, on which LFNs struggle
the most on [40], even in unoccluded scenarios. It is not consistently represented
in the latent space and robust reconstruction amplifies this effect by reducing
the samples to a consistent set.

The application to NeRF shows the significantly improved reconstructions of
RANRAC (Table 2) for different types of inconsistencies such as occlusions and
blur, as well as noisy camera parameters on captured and synthetic datasets.
RANRAC consistently outperforms RobustNeRF [38] for object reconstruction
from inconsistent inputs. RobustNeRF specifically struggles in capturing view-
dependent appearance and at concavities while RANRAC seamlessly recon-
structs them. The effects are not only measurable but also well-visible (Fig. 5).

6 Limitations and Future Work

For the application to NeRF, the iterations imply the use of a fast inferable vari-
ant, ruling out MipNeRF360 [3] and other high-quality variants for unbounded
scenes. Foreground separation is a must, limiting this application of RANRAC to
object-centric scenes. Novel fast, unbounded methods might resolve this [20].

By following a RANSAC-like approach, we inherit the requirement of suffi-
cient clean perspectives, which could be lifted via NeRF variants that require
fewer perspectives [32,45] or by using different sampling domains. In return,
our method is not limited to specific kinds of inconsistencies, and is robust to
arbitrarily heavy distractions or inconsistencies in the impure perspectives.
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Fig. 3. RANRAC (solid lines) leads to a quantitative improvement in PSNR and SSIM
(higher is better) for occluded inputs compared to vanilla LFNs (dashed lines). The
same hyperparameter configuration and LFN is used for all classes. On the left and in
the middle, the amount of image occlusion is increased, while the object occlusion is
constant at 25%. On the right, the amount of object occlusion is increased while the
image occlusion is kept low. For the car class, a large improvement is observed over
the entire occlusion spectrum. For the plane class the improvement is similarly signifi-
cant, but absolute performance degenerates a bit sooner. This stems from the smaller
object size and the related faster occlusion-to-object increase when increasing image
occlusions. For the chair class, the improvement is less significant but the structural
similarity is preserved for much longer. For the plane and car class the reconstruc-
tion quality is resilient to information loss (right) up to ∼50%, where the decrease
gains momentum. With the low amounts of image occlusion, the improvement is not
significant for the chair class (consistent with left and middle).

Fig. 4. On the left, we show the qualitative effect of increasing occlusion on the same
observation for the reconstruction of a novel view. Reconstructions of LFNs break early
globally whereas RANRAC still provides a very decent reconstruction, only slowly
introducing minor local (and natural/comprehensible) artifacts for completely hidden
object parts. We further show the obtained consensus set, used for the final reconstruc-
tion (green inliers, red outliers). On the right, we show more qualitative results for novel
view synthesis on different classes and the corresponding consensus sets. (Color figure
online)
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Table 2. RANRAC outperforms the state of the art RobustNeRF [38] and the baseline
NeRF (without a method of robustness) for scenes contaminated with occlusions, blur
and noisy camera parameters. We report PSNR↑ averaged across perspectives and the
5th percentile (Avg.|P5) as artifacts introduced by inconsistencies only contaminate
some views. We compare on the captured watering pot dataset with milder (10%) and
heavier (17.5%) amounts of occluded perspectives and off-the-shelf datasets [29] with
blurred perspectives and additive Gaussian noise N (5◦, 1◦) on the camera parameters of
10% of the perspectives. All three variants are built on top of instant-nsr for an isolated
fair comparison of the robustness method. Note that both robust approaches struggle
separating the strong view-dependent effects of the ship scene from blur, leading to
the exclusion of some perspectives (lower P5 PSNR), while RANRAC still improves
the overall reconstruction. For all other scenes and inconsistencies, RANRAC reliably
separates inconsistent observations from clean ones.

Inconsistency Mild Occ. Strong Occ. Blurred Perspectives
Dataset Watering Pot Lego Ship Chair Ficus Mic

RANRAC 27.11|25.99 26.12|24.94 34.79|29.91 29.76|16.14 35.25|31.26 31.36|28.54 35.78|32.99
RobustNeRF 26.83|25.58 25.93|24.79 29.14|23.69 23.31|20.19 31.11|27.12 24.57|23.35 30.21|26.85
NeRF 26.65|22.61 25.36|18.47 31.15|19.00 28.48|20.35 33.21|22.10 29.04|20.12 31.91|18.94

Inconsistency Noisy Camera Parameters
Dataset Lego Drums Mic Ship Ficus Hotdog Materials

RANRAC 34.95|31.22 25.88|22.77 35.85|33.55 30.77|22.05 31.41|28.82 37.16|30.53 28.93|25.39
RobustNeRF 29.83|26.82 23.91|22.10 29.36|27.55 24.21|19.98 23.17|21.85 32.65|25.16 24.90|22.30
NeRF 24.67|15.95 23.22|17.96 28.82|22.15 23.68|14.80 28.12|22.77 28.16|18.37 24.73|19.89

Whereas our robust LFN approach led to significant improvements for single-
shot reconstruction, our concept might also be applied to other conditioned
neural fields, based on a smart choice of the sampling domain, targeting photo-
realism. One could also use importance sampling based on a prior, instead of
a uniform sampling, leveraging the unevenly distributed information entropy.
Neural sampling priors [6], semantic segmentation and more advanced schemes
(e.g. LO-RANSAC [11], DSAC [5]) might prove useful here.
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Fig. 5. The occlusions lead to well-visible artifacts in the reconstructions of NeRF,
these artifacts are completely removed by RANRAC. While RobustNeRF struggles
with view-dependent and high-frequency details, RANRAC reliably reconstructs them.

7 Conclusion

We introduced a novel approach to increase the robustness of neural fields,
inspired by the RANSAC paradigm. Following this concept, we introduced a
novel robust approach for single-shot reconstruction from occluded views based
on LFNs which achieves a significant improvement in reconstruction quality
for distracted and occluded scenarios, even for extreme cases. Furthermore, we
introduced a respective RANRAC-based NeRF variant that allows robust photo-
realistic reconstruction from multiple views with typical inconsistencies such as
occlusions, noisy camera parameters, or blurred images – resulting in signifi-
cant improvements compared to state-of-the-art methods – without relying on
assumptions about the distractions.
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