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ABSTRACT

Many systems are dynamic and time-varying in the real world. Discovering the vital nodes in temporal networks is more challenging than
that in static networks. In this study, we proposed a temporal information gathering (TIG) process for temporal networks. The TIG-process,
as a node’s importance metric, can be used to do the node ranking. As a framework, the TIG-process can be applied to explore the impact of
temporal information on the signi�cance of the nodes. The key point of the TIG-process is that nodes’ importance relies on the importance
of its neighborhood. There are four variables: temporal information gathering depth n, temporal distance matrix D, initial information c, and
weighting function f . We observed that the TIG-process can degenerate to classic metrics by a proper combination of these four variables. Fur-
thermore, the fastest arrival distance based TIG-process ( fad-tig) is performed optimally in quantifying nodes’ e�ciency and nodes’ spreading
in�uence. Moreover, for the fad-tig process, we can �nd an optimal gathering depth n that makes the TIG-process perform optimally when n
is small.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086059

Vital node identi�cation is crucial for understanding the topol-

ogy of network structures as well as controlling the spreading

process in complex systems. Even thoughmany node rankingmet-

rics have been designed for static networks, there is a lack of

research in temporal systems. Also, how the temporal informa-

tion in�uences node ranking is still unknown. In this study, we

proposed a temporal information gathering (TIG) process. On the

one hand, the TIG-process can be used to design a node ranking

measurement.On the other hand, as a framework, theTIG-process

can be applied to explore the impact of temporal information on

nodes’ importance. Many basic metrics can be derived from the

TIG-process. Furthermore, we found that there exists an optimal

gathering depth that makes the TIG-process perform optimally.

Also, the fastest arrival distance based TIG-process works better

than the other kinds of distance, which capture less temporal

information.

I. INTRODUCTION

Vital node identi�cation has attracted increasing attention lately
due to its great signi�cance as well as valuable applications.1–4 As
a matter of fact, a small number of in�uential nodes can a�ect
mechanisms like cascading, spreading, and synchronizing in com-
plex systems.5 In the view of the application, �nding vital nodes can
help one to promote products in viral marketing,6 to control the
spread of rumors,7 to prevent a catastrophic outage in power grids
or the Internet,8 etc.

Researchers have de�ned a series of important node identi�ca-
tion metrics in static networks recently, such as neighborhood-based
centrality metrics, path-based centrality metrics, etc.9–11 One of the
most representative neighborhood-based centrality metrics is degree
centrality, which is e�cient. However, the degree centrality considers
only the direct contacts of each node.12 Path-based centrality metrics
show high accuracy as they consider the global information of the
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network but usually with high computational complexity, such as
Katz centrality,13which is di�cult to be used in large-scale networks.5

Despite the achievement in de�ning the node’s important metrics
for static networks, there is still a large gap in identifying important
nodes in temporal networks. Most complex systems in the real world
are changing over time and their corresponding networks are called
temporal networks or time-varying networks.14–19

The study of identifying vital nodes in temporal networks can
be more challenging than that in static networks, as the network is
always changing with time. In temporal networks, a node has di�er-
ent roles in the di�erent time step, which means that the importance
of nodes also varies with time. There are some pioneering research
studies concentrated on ranking nodes in temporal networks.20–22

For example, some researchers �rst cut the temporal networks into
a series of static snapshots and then estimate a node’s topological
importance using the average value of its centrality over all static
snapshots.20,21 The node ranking metrics obtained by this way are the
generalization of the static ones; for instance, the temporal degree,
temporal closeness, and temporal betweenness20 belong to this class
of methods. Even though these methods may gain some improve-
ment in �nding vital nodes compared in static metrics in temporal
networks, cutting the temporal networks into slides and taking the
average value of all the slides may result in a loss of some temporal
information, such as the order of slices will be ignored in this pro-
cess. Therefore, it is necessary to de�ne node ranking metrics that
can describe the evolution of the nodes’ in�uence or capture more
temporal information.

Node rankingmetrics using local information of the nodes (e.g.,
degree and H-index) have shown good performance in identify-
ing important nodes.9,23 Meanwhile, some researchers claim that the
global structure or the position of the nodes in the network should
be considered in node ranking methodologies. Therefore, metrics
like betweenness,24 closeness,25 and k-core centrality26 are designed
to capture global information.

In this study, we propose a temporal information gathering
based process in the context that each node is attributed a piece of
initial information, since, for example, when a person �rst joined a
new group, she/he has its own attribute. After communicating with
othermembers, her/his importance is changing and can be estimated
by her/his colleagues (neighborhood). To simplify, we denote the
neighborhood of node vi as N≤l(i), which indicates the nodes with
a temporal distance less than or equal to l. Throughout the paper, we
use the TIG-process to denote the Temporal Information Gathering
process and tig-score represents node importance obtained from
the TIG-process. The TIG-process is controlled by four vari-
ables, i.e., (n, f ,D, c), where n illustrates the temporal gathering
depth, f is the weighting function, D is the temporal distance
matrix, and c describes the initial information. In Sec. V, we take
some basic centrality metrics as initial information to conduct the
experiments.

We �nd that the fastest arrival distance based TIG-process per-
forms much better than the one based on the temporal shortest
distance. Also, for the former, we can get an optimal gathering depth
n, regardless of the initial information,22 including static degree, static
closeness, static strength, static betweenness, Eigenvector centrality,
and PageRank centrality.20As the depth n increases, the performance
will be degraded. In addition, many basic metrics can be derived

from the TIG-process by proper combinations of the four parameters
mentioned above.

The rest of the paper is organized as follows. In Sec. II, we give
the de�nition of the TIG-process. We describe the benchmark met-
rics and two evaluation methods in Sec. III. The datasets used in this
paper are given in Sec. IV, and the results are shown in Sec. V. We
discuss and conclude in Sec. VI.

II. TEMPORAL INFORMATION GATHERING PROCESS

In this section, we give a detailed illustration of theTIG-process.

A. Basic notations and definitions

Firstly, we give some basic notations and de�nitions used in this
paper.

Let GT = (V ,ET) be a temporal network observed on [1,T],
where V is the node set, ET is the event set, and [1,T] is the obser-
vation time window. An event eT ∈ ET is de�ned by a quadruple
(u, v, t0, λ), where u, v ∈ V , t0 is the start time of the event, λ is the
lasting time, and t0 + λ is the ending time. In this paper, we assume
λ = 0, which means we only consider instant events. At each time
t ∈ [1,T], the adjacent matrix is denoted as At , where At(i, j) = 1
if there is a contact between node vi and vj at time t. In addi-
tion, the unweighted integrated static network of GT is expressed as
G = (V ,E), where E is the static edge set. The adjacent matrix of G
is denoted as A and the distance matrix is M. The entry M(i, j)
indicates the distance between the two corresponding nodes vi
and vj.

• Temporal path: A temporal path in the temporal network GT is
a sequence of nodes P = 〈v1, v2, . . . , vk, vk+1〉, where (vi, vi+1, ti) ∈

ET is the i-th event on P for 1 ≤ i ≤ k. Then, the start time of P
is tstart(P) = t1 and the end time of P is tend(P) = tk. We de�ne the
temporal length of P as l(P) = tend(P) − tstart(P) + 1. Given a time
period [tα , tω], let P(u, v, [tα , tω]) = {P : P is a temporal path from
u to v such that tstart(P) > tα and tend(P) < tω}.

In static networks, the distance between two nodes is de�ned
by the length of the shortest path between them. However, in tem-
poral networks, we havemany ways to de�ne the distance between
nodes with regard to the physical distance as well as the duration
time.27

In this paper, we introduce two distance de�nitions for tem-
poral networks, i.e., the fastest arrival distance and the temporal
shortest distance.

• Fastest arrival path: The fastest arrival path between node u and
v is the path that goes from u to v taking the minimum elapsed
time counted from t = 1. In other words, the fastest arrival path
is the �rst arrival path from the starting node u to the destination
node v. That is to say, P ∈ P(u, v, [1,T]) is the fastest arrival path
if tend(P) = min{tend(P

′) : P′ ∈ P(u, v, [1,T}).
Also, the fastest arrival distance between node u and node v

is measured by the length of the fastest arrival path between them,
denoted as φ(u, v).

An example of the fastest arrival path is shown in Fig. 1(a)
from the toy temporal network given in Fig. 1(b). The fastest
arrival distance between node v1 and node v4 is 3.
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• Temporal shortest path: The temporal shortest path from u to
v is a path for which the overall traversal time needed is short-
est. Therefore, P ∈ P(u, v, [tα , tω]) is a temporal shortest path if
l(P) = min{l(P′) : P′ ∈ P(u, v, [tα , tω])}. The temporal shortest
distance between node u and node v is the length of the temporal
shortest path between them, denoted as θ(u, v). Figure 1(c) shows
the temporal shortest path between v1 and v4, and θ(v1, v4) = 2.

• Temporal distance matrix: The temporal distance matrix of
GT is given by D|V|×|V|, where D = {D(i, j) = d(vi, vj), vi, vj ∈ V}.
According to the temporal distance de�ned above, we have two
distance matrices, i.e., the fastest arrival distance matrix8 and the
temporal shortest distance matrix 2.

• Distance indexmatrix:We de�ne a distance indexmatrixD|V|×|V|
s

as a 0-1 matrix, where

Ds(i, j) =

{

1, d(vi, vj) = s,

0 otherwise.
(1)

Obviously, D =
∑+∞

s=0 (s · Ds). It should be noted that due to
the time dependency of the temporal paths, the distance matrix D
and the index matrix Ds are both asymmetric.

• Coe�cient of variation: The coe�cient of variation is used to
measure the extent of variability in relation to the mean value of
a dataset, which is also known as the relative standard deviation.
The coe�cient of variation is de�ned as the ratio of the standard
deviation to the mean: C = (standard deviation)/(mean value).

• Kendall correlation coe�cient:28 The Kendall correlation coe�-
cient τ is de�ned as follows. Let (x1, y1), (x2, y2), . . . , (xn, yn) be the
observations of two joint randomvariablesX andY . Then, Kendall
ranking correlation coe�cient τ ∈ [−1, 1] is de�ned as

τ =
1

n(n − 1)

∑

i 6=j

sgn(xi − xj)sgn(yi − yj). (2)

If τ takes the value of +1, then the agreement of the two rankings
is perfect. If τ is −1, then one list is the reverse of the other. If τ is
close to zero, then the two rankings are independent.

B. The TIG-process

Recall that the temporal information gathering process is
denoted by the TIG-process for simpli�cation. The ranking score
of node vi obtained from the TIG-process is de�ned as a tig-score,
denoted as gi. Assume that each node vi has an initial score ci,
which is also viewed as the 0-order tig-score g0i . Therefore, g

(0) =

( g(0)
1 , g(0)

2 , . . . , g(0)
|V|) = (c1, c2, . . . , c|V|). TheTIG-process is conducted

based on these initial scores. Therefore, the 1st-order TIG-process
for each node is calculated by gathering the information from its
neighbors, i.e., g(1) = D1g

(0). Similarly, the nth-orderTIG-process for
node vi is gathering the information of its neighborhood with a dis-
tance equal to or less than n from vi, i.e.,N≤n(i). Thus, the nth-order
TIG-process is written as

g(n) =

n
∑

j=0

f ( j) · Dj · g
(0), (3)

where f is a function of j, which weighs the signi�cance of jth-order
neighbors and Dj is the distance index matrix, that is, Dj(u, v) = 1 if

FIG. 1. (a) A schematic representation of a temporal network with nodes
{v1, v2, . . . , v6} and events {e1, e2, . . . , e6}. There are two paths between node
v1 and v4. (b) The fastest arrival path between nodes v1 and v4. (c) The temporal
shortest path between nodes v1 and v4.

d(u, v) = j. The nth-order tig-score is denoted by g(n). We use g(n)
i to

indicate the ranking score of node vi. Obviously, a larger value of g(n)
i

implies node vi is more important in the network.
From Eq. (3), we know that the TIG-process can be denoted as

a quadruple (n, f ,D, c) and these four variables are independent of
each other. The variable n controls the information gathering depth,
which varies from 1 to T. The weighting function f is a function of j,
which weighs the distance e�ect on the nodes’ importance, and it can
take di�erent formations, such as fj = 1/j, fj = 1, and so forth. The
distance matrix, as we mentioned above, can be de�ned di�erently,
such as the fastest arrival distance and temporal shortest distance
matrix, and so forth. For the initial information c, in the real world, it
can be estimated according to the actual situation. However, in the
experiments of this paper, we treat some basic metrics as the ini-
tial information, such as random values, the degree, the closeness,
etc. Many existing metrics can be derived by di�erent combinations
of these four variables. We show in Fig. 2 and Table I the relation-
ship between the TIG-process and some classic metrics, which will
be described in Sec. III.

III. METHODS

Aiming at illustrating the performance of the TIG-process, we
start by introducing the benchmark metrics used in this study. Also,
two performance evaluation metrics, i.e., the network e�ciency and
the SIR spreading in�uence, will be given at last.

A. Benchmark metrics

• Static degree centrality (SD) of node vi is de�ned as the degree in
the unweighted integrated network G, i.e.,

SD(i) =
∑

j

A(i, j). (4)

Chaos 29, 033116 (2019); doi: 10.1063/1.5086059 29, 033116-3
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FIG. 2. The relationship between the TIG-process and some classic node ranking metrics. The combination of the parameters used in the TIG-process is given in Table I.

• Static strength centrality (SS) of node vi counts the number of
occurrences of each node that appeared in the temporal network,

SS(i) =

T
∑

t=1

∑

j

At(i, j). (5)

TABLE I. The detailed combination of the four parameters in TIG-process in order to

get the classic metrics.

Benchmark metric n f D c

SD 1 1 M 1

SS T 1 Aj 1

SC max(M) 1
j(|V|−1) M 1

SEC ∞ 1 A g = g j−1

c = any
FAC max(8) 1

j(|V|−1) 8 1

STC max(2) 1
j(|V|−1) 2 1

Iterative TIG process ∞ 1 8 or 2 g = g j−1

c = 1

• Static betweenness (SB) of node vi is the proportion of shortest
paths passing through it, de�ned as

SB(i) =
∑

h6=i 6=j

σhj(i)

σhj

, (6)

where σhj is the total number of shortest paths from vh to vj and
σhj(i) is the number of paths passing through vi in static networks.

• Static closeness (SC) of node vi is given by the reciprocal of the sum
of its distances from all the other nodes, namely,

SC(i) =
|V| − 1

∑

vj∈V\vi
M(i, j)

, (7)

where M(i, j) is the distance between nodes vi and vj in G and
V\vi indicates the node set except vi.

• Temporal closeness (TC)29 at time t of node vi is the sum of inverse
temporal distances to all other nodes inV\vi in [t,T]. Thus, in this
paper, the fastest arrival closeness (FAC) of node vi is de�ned as

FAC(i) =
|V| − 1

∑

vj∈V\vi
8(i, j)

, (8)
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where 8(i, j) is the fastest arrival distance between vi and vj in
the time interval [1,T]. Similarly, the temporal shortest closeness
(STC) is de�ned by

STC(i) =
|V| − 1

∑

vj∈V\vi
2(i, j)

, (9)

where 2(i, j) indicates the temporal shortest distance between
node vi and vj.

• Static eigenvector centrality (SEC).30 Given the adjacent matrix A
of static network G, SEC(vi) is equal to the vi-th component of the
eigenvector corresponding to the greatest eigenvalue.

• Static PageRank centrality (SPR)31 is an algorithm used by Google
Search to rank web pages. A page gets a higher SPR if there are
more links from other pages where the number of links on those
other pages and the SPR of those other pages are also important.

B. Network efficiency

The network e�ciency32 is de�ned based on the assumption
that the information in a network passes only through shortest paths.
Therefore, we use it to measure how well nodes exchange informa-
tion. The e�ciency E(G) of the static network G is de�ned as

E(G) =
1

|V|(|V| − 1)

∑

vi 6=vj∈G

1

M(vi, vj)
, (10)

where M is the distance matrix in static networks. In addition,
removing a node or a set of nodes may decrease the e�ciency of the
network, as it can make the network disconnected. Therefore, the
reduction of the e�ciency after nodes’ removal is used to measure
the importance of the nodes in static networks.

When it comes to the temporal network, the e�ciency can be
de�ned similarly by replacingMwith some temporal distancematri-
ces. We use the fastest arrival distance matrix 8 or the temporal
shortest distancematrix2 instead ofM in Eq. (10) to de�ne the e�-
ciency Efad or Estd, respectively. Consequently, the node(s) e�ciency,
denoted as NE, i.e., the importance of the node(s) V ′ in terms of
the network e�ciency, is given by NE(V ′) = E(G) − E(G\V ′). For
each node vi in a network, we de�ne the node e�ciency as NE(i) =

E(G) − E(G\vi). Similarly, NEfad and NEstd indicate the FAD and
STD based node e�ciency, respectively.

We use the node e�ciency as a performance evaluation method
to test whether the TIG-process can well predict the node ranking
in temporal networks. The evaluation is measured by computing the
Kendall ranking correlation coe�cient between the node e�ciency
and the TIG-score with di�erent initial information.

Therefore, the higher τ indicates the better node ranking met-
ric that is used to predict important nodes in terms of the network
e�ciency.

What is more, since the removal of nodes can reduce the net-
work e�ciency, we further explore the changing of the network
e�ciency as the removing of the top-ranked nodes. Obviously, the
better the metric performs, the faster the network e�ciency reduces.

C. Spreading influence

Another performance evaluation method for node ranking is
based on the spreading process.33–36 In this paper, we use the SIR

spreading model to evaluate the spreading in�uence of each node in
temporal networks. There are three states in an SIR spreading pro-
cess, i.e., susceptible (S), infected (I), and recovered (R). The infected
nodes can infect their susceptible neighbors with the infection prob-
ability β , and each infected node can recover from the disease with
probability µ. In static networks, the spreading in�uence of node vi
is usually de�ned as the spread range Ri, calculated by the number
of infected nodes and recovered nodes at the steady states of the SIR
process.

However, it is quite di�erent for temporal networks, since
each node occurs many times and the occurrence time for each
node is di�erent as well. Thus, we do the SIR spreading simula-
tion as follows. We simulate the SIR spreading by following the
time order of the interactions. Also, for each node, we do real-
izations starting from each of its occurrence time, respectively.
Finally, for each node at one occurrence time, the result is based on
the average of 1000 independent realizations. Therefore, for exam-
ple, for node vi, the results can be recorded as R(vi) = {(t

j
vi ,R

j
vi) |

t
j
vi is the occurrence time of node vi}, where R

j
vi represents the spread-

ing range of node vi, which occurs at time t
j
vi . Here, we introduce

three di�erent de�nitions on nodes’ spreading in�uence. The maxi-
mal spreading in�uence of vi is de�ned as the largest spreading range
over all the occurrence time, denoted as Rmax(i). Themean spreading
in�uence is calculated by the mean value of the spreading range over
all the occurrence time, written as Rmean(i). The normalized spread-
ing in�uence is denoted as Rnorm(i), which is given by the mean value

of
R
j
vi

T−t
j
vi

over all the occurrence time.

Similarly, we apply the Kendall ranking correlation coe�cient
between the tig-score and the three kinds of spreading in�uence
mentioned above to measure the ranking performance regarding the
spreading in�uence.

IV. DATASETS

Eight real-world networks are studied in this study, including
�ve face-to-face contact networks and three email communication
networks, which are given as follows. For the face-to-face contact
networks, the time bin is one day. For the email communication net-
works, the time window is one week. The basic structural statistics
are listed in Table II.

• High school 2011 (2012) dynamic contact network.37 The dataset
records the contacts between students in a high school in Mar-
seilles, France.

• Primary school temporal network.38 The dataset contains the tem-
poral network of contacts between the children and teachers in a
primary school.

• Hospital ward dynamic contact network.39 The dataset contains
the temporal network of contacts between patients, patients and
health-care workers (HCWs), and among HCWs in a hospital
ward in Lyon, France.

• Contact network in aworkplace.40The dataset contains the tempo-
ral network of contacts between individuals in an o�ce building.

• Email-Eu-core temporal network.41 The network is generated
using email data from a large European research institution.
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TABLE II. Basic features of the real-world networks. The number of nodes (|V|), the

length of the observation time window (T), the total number of contacts (|E|), and Cfad

denotes the coefficient of variation of the average fastest arrival distance from each

node to the others. Cstd indicates the coefficient of variation of the temporal shortest

distance from each node to the others.

Network |V| T |E| Cfad Cstd

High school 2011 126 42 28 561 0.579 8 0.340 5
High school 2012 180 87 45 047 0.619 6 0.366 4
Primary school 242 20 125 773 0.528 8 0.118 8
Workplace 92 108 9827 0.619 1 0.410 2
Hospital contact 75 90 32 424 0.841 1 0.795 6
Eu core 771 68 38 328 1.291 3 0.652 2
Manu factory 167 268 82 927 0.908 1 0.662 9
OC communication 1898 188 61 726 2.457 9 1.064 5

• Manufacturing emails.42 This network is the internal email com-
munication network between employees of a mid-size manufac-
turing company.

• CollegeMsg temporal network.43This network is comprised of pri-
vate messages sent on an online social network at the University of
California, Irvine.

V. RESULTS

For the experiments in this study, we take the weighting func-
tion f as 1, which means for each node vi, we treat all the nodes in

N≤n(i) equally. The fastest arrival distance matrix (8) and temporal
shortest distance matrix (2) are considered as the temporal distance
matrix D, respectively. Also, we call these two kinds of TIG-process
as FAD-based tig-process and STD-based tig-process, denoted as
fad-tig and std-tig, to simplify. For the initial information, some
basic node ranking metrics are taken into account, including static
degree (SD), static betweenness (SB), static closeness (SC), static
strength (SS), Eigenvector centrality (SEC), and Pagerank centrality
(SPR).

A. Quantifying node efficiency

Recall that in Sec. III, we introduced the de�nition of the node
e�ciency. Here, we denote the FAD-based and STD-based node e�-
ciency asNEfad andNEstd, respectively. Similarly, the Kendall ranking
correlation coe�cients between NEfad and fad-tig, NEfad and std-tig,
NEstd and fad-tig, andNEstd and std-tig are denoted as τf f , τfs, τsf , and
τss, respectively.

Figure 3 shows the changing of τf f as the gathering depth n
increases. The τf f can get a maximal value when n is small, especially
for the three email communication networks. Furthermore, since the
concept of the node e�ciency is based on the shortest paths, the tig-
score with the initial information of static closeness centrality gets
the best performance.

The case of using fad-tig to estimate NEstd is similar to the one
using fad-tig to estimateNEfad. However, in Fig. 4, we can see that the
τfs is increasing as n increases in general. Dissimilar with Fig. 4, the
τf f decreases or keeps steady when n is large enough. In other words,

FIG. 3. The evolution of the Kendall ranking correlation coefficient τf f between fad-tig-score and NEfad with the information gathering depth n increasing.
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FIG. 4. The evolution of the Kendall ranking correlation coefficient τfs between fad-tig-score and NEstd with the information gathering depth n increasing.

the performance of fad-tig will be degraded if n is too large regarding
NEfad.

Now, we will check the performance of std-tig. From Figs. 5
and 6, we can see that the τsf and τss decrease to a steady state quickly.
Moreover, the optimal value of τsf is smaller than τf f and τss is smaller
than τfs. The phenomena might be due to the following two reasons.

In Appendix A, we plot the histogram of FAD and STD. Firstly,
from Fig. 12, we know that most of the temporal distances are rel-
atively small, and the coe�cient of variation Cstd (see in Table II) is
small. When doing the TIG-process, the majority of nodes will be
taken into account in the �rst few steps. This explanation can be con-
�rmed by Fig. 6, the τss shows a better performance in Eu-core and
Oc commu networks, and the Cstd of these two datasets is relatively
higher than the others.

Another reason might be because of the di�erence in the
amount of temporal information contained in the two types of tem-
poral distance. Since the face-to-face contact networks are much
denser than email communication networks, the 2 is quite similar
to the adjacent matrix A of the static abstraction of the temporal
networks, which means less temporal information contained in 2

compared with 8.

B. Quantifying network efficiency

In this section, we will see the evolution of the network e�-
ciency as the removing of top-ranked nodes. It is well known that the

problem of in�uential maximization isNP-hard. Here, we treatNEfad

and NEstd as the best metrics in terms of Efad and Estd, respectively.
Figure 7 shows the changing of Efad as the removal of top-ranked

nodes. For each network, we remove at most 50% nodes. For each
basic metric as the initial information, we choose the optimal gath-
ering depth n, which is listed in Table III. Obviously, NEfad gets the
best performance and Efad decreases most slowly when the nodes
are randomly removed. What is more, for most tig-scores with di�er-
ent basic metrics as the initial information, the NEstd performs even
worse. Simultaneously, Fig. 8 shows that the decreasing trend of Estd
is similar for NEstd and NEfad. Both NEstd and NEfad work well, which
further con�rms our observation in Sec. VA. The FADmatrix, which
is of muchmore temporal information, performs better in predicting
important nodes in terms of the network e�ciency.

C. Quantifying nodes’ spreading influence

In this section, wewill check the validation of our proposed pro-
cess to quantify the SIR spreading in�uence. For SIR simulation, we
set the infection rate β as 0.1 and recovery rate µ as 0.01.

As is mentioned in Sec. III, we have three di�erent ways to
measure the spreading in�uence for each node. The three ways
are de�ned in terms of di�erent situations. We cannot say which
one is better to measure the spreading in�uence for temporal net-
works. In Table IV, we list the Pearson correlation coe�cients of
these three spreadingmeasurements.We still use theKendall ranking
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FIG. 5. The evolution of the Kendall ranking correlation coefficient τsf between std-tig-score and NEfad with information gathering depth n increasing.

FIG. 6. The evolution of the Kendall ranking correlation coefficient τss between std-tig-score and NEstd with information gathering depth n increasing.
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FIG. 7. The evolution of Efad as the top-ranked nodes’ removal.

correlation coe�cient to evaluate the performance. The tig-score per-
forms similarly in evaluating the three types of spreading in�uence.
Thus, we show the result for Rnorm here, and the others are listed in
Appendix C.

The Kendall ranking correlation coe�cient between fad-tig
score and Rnorm is denoted as τfNorm. For the std-tig process, the
notations are de�ned in the same way. τsNorm denotes the Kendall
coe�cient between std-tig score and Rnorm.

Note that the tig-score is not highly related to the spread-
ing in�uence as that with the node e�ciency, which means
the TIG-process can predict the importance more e�ectively

regarding the network e�ciency. However, the overall trend is
similar.

From Fig. 9, we �nd that the fad-tig score with the initial infor-
mation of static strength performs the best compared with the other
kinds of initial information and the one with static eigenvector cen-
trality as initial information takes the second place. This might be
because the static strength centrality is equivalent to temporal aver-
age degree centrality. In other words, the static strength centrality
captures more temporal information than the others. At the same
time, the SIR process is simulated step by step, time by time, which
captures the most amount of temporal information as well.

TABLE III. The optimal gathering depth n for each TIG-process with different basic metric as initial information.

Network SB SC SD SEC SPR SS

High school 2011 15 32 34 42 34 23
High school 2012 44 43 43 43 43 61
Primary school 20 19 20 20 20 18
Workplace 92 48 48 51 51 90
Hospital contact 88 80 88 69 88 87
Eu core 68 54 32 68 32 65
Manu factory 34 31 31 31 31 39
OC communication 83 44 52 52 52 78
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FIG. 8. The evolution of Estd as the top-ranked nodes’ removal.

Finally, as we can see in Figs. 10–16, the std-tig process performs
worse than fad-tig, regardless of the way to measure the spreading
in�uence. As we discussed in Sec. V A, the STDmatrix contains less
temporal information than the FAD matrix. The FAD is de�ned by
considering both the time proximity and path length between nodes.
The assumption of the information gathering process is based on
the fact that the importance of the nodes is related to their tempo-
ral neighbors, not only immediate neighbors but also higher-order
neighbors. Therefore, when n is small, we are gathering information
from neighboring nodes that are close to the current node both in
time and the number of hop count. When n is large, neighboring
nodes that are far away are also included. Therefore, the decrease of
the performancewhenn is large implies that the neighbors that are far
away from the current node have a small in�uence on its importance
ranking.

VI. DISCUSSIONS

Even though many works have been done for the node rank-
ing problem in static networks, there is still a lack of deep study
for that in temporal networks. The evolution of the topology makes
it impossible to use the static node ranking metrics in temporal
networks.

In this study, we take the idea that node importance relies on
the importance of its neighborhood, which has been veri�ed by

researchers.9 We proposed a temporal information gathering (TIG)
process to identify vital nodes in temporal networks. In the TIG-
process, there are four parameters (n, f ,D, c), in which n represents
the information gathering depth, f is the weighting function that
controls the in�uence of neighbors with di�erent distances from the
target node, D is a distance matrix, and c is the initial score. We
show that by di�erent combinations of these four variables, the TIG-
process can degenerate to classic node ranking metrics, such as static
degree, static closeness, temporal degree, and temporal closeness
(Fig. 2).

We verify the performance of the TIG-process by using the
performance evaluation methods, that is, the network e�ciency
based one and the SIR spreading based one, on real-world tem-
poral networks. We observe that the fastest arrival distance based
TIG process performs much better than the one based on the tem-
poral shortest distance. In addition, there is an optimal gathering
depth n, which makes the FAD based TIG-process perform opti-
mally.

Actually, the main contribution of this paper is not to propose
an exact metric to do the node ranking. In other words, as a node’s
importance metric, TIG-process can be used to rank the nodes for
temporal networks. At the same time, as a framework, it can be used
to explore the impact of temporal information on the signi�cance of
the nodes.

Through this framework, we observe that the FAD-based
tig-process is more functional in predicting the signi�cant nodes
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FIG. 9. The evolution of τfNorm between fad-tig-score and Rnorm as the gathering depth n increases.

FIG. 10. The evolution of τsNorm between std-tig-score and Rnorm as the gathering depth n increases.
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compared with the STD-based one. Firstly, the FADmatrix captures
more temporal information, which means it �ts temporal networks
better. Furthermore, from the de�nitions of these two kinds of dis-
tances, the former can be calculated from any time of the observa-
tion time window and the latter is more like a temporal metric but
based on the �nal state of networks. There is no doubt that there
might exist more suitable distance matrices that can be used in the
TIG-process.

This work opens new challenging questions like, if we con-
sider the distance in static networks as a physical or spatial dis-
tance and the distance in temporal networks as a temporal dis-
tance, then which one is more signi�cant in measuring nodes’
in�uence? In addition, in Fig. 2 and Table I, an Iterative TIG pro-
cess was introduced, which means we gather the updated tig-score

instead of the initial information at each step in theTIG-process. This
metric will be discussed in future works. Moreover, for the datasets
used in this work, we cannot get the true initial information. With
the rapid increase in the amount of data, our proposed TIG-process
can be further explored.
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APPENDIX A: THE DISTRIBUTION OF FAD AND STD

In this section, we give the histograms of the fastest arrival distance and the temporal shortest arrival distance.

FIG. 11. Distribution of FAD.
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APPENDIX B: THE RELATIONSHIP BETWEEN DIFFERENT SPREADING MEASUREMENTS

Note that for some datasets, the three measurements are highly correlated. However, for some datasets, they are quite di�erent from each
other.

FIG. 12. Distribution of STD.

TABLE IV. The Pearson correlation coefficient between different spreading measurements.

Network Rmean vs Rmax Rmax vs Rnorm Rnorm vs Rmean

High school 2011 0.853 2 0.698 8 0.732 2
High school 2012 0.692 8 0.624 2 0.775 0
Primary school 0.536 9 0.177 2 0.612 4
Workplace 0.800 9 0.770 1 0.845 0
Hospital contact 0.866 0 −0.471 3 −0.525 3
Eu core 0.954 3 0.933 9 0.990 7
Manu factory 0.955 4 0.806 9 0.864 2
OC communication 0.910 5 0.921 3 0.994 9

APPENDIX C: THE RESULTS FOR Rmax AND Rmean

τfMax and τfMean indicate the Kendall coe�cient between fad-tig score and Rmax and Rmean, respectively. τsMax and τsMean denote the Kendall
coe�cient between std-tig score and Rmax and Rmean, respectively.

Chaos 29, 033116 (2019); doi: 10.1063/1.5086059 29, 033116-13

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 13. The evolution of τfMax between fad-tig-score and Rmax as the gathering depth n increases.

FIG. 14. The evolution of τfMean between fad-tig-score and Rmean as the gathering depth n increases.
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FIG. 15. The evolution of τsMax between std-tig-score and Rmax as the gathering depth n increases.

FIG. 16. The evolution of τsMean between std-tig-score and Rmean as the gathering depth n increases.
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