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1 Introduction




Chapter 1: Introduction

Cross-sectional medical imaging techniques have become indispensable in
assessing abnormalities in the anatomy and physiology of the abdomen[1].
Ultrasonography (US), Computerized Tomography (CT) and Magnetic
Resonance Imaging (MRI), Single Photon Emission Computerized Tomography
(SPECT) and Positron Emission tomography (PET), are minimal invasive and
able to image any part of the abdomen in 3D[2]. Nuclear imaging modalities
SPECT and PET are mainly used to examine the pathophysiology, but needs to
be combined with CT for high-resolution imaging of the anatomy. Instead, US is
often the most cost-effective technique, most portable and has the highest
temporal resolution of all the mentioned techniques, but is unable to produce a 3D
volume of the full abdomen without complicated reconstruction algorithms. In
addition to this, sound waves are unable to pass air (such as air-filled bowel),
hence US is unable to image beyond pockets containing air and its performance
highly depends on the operator.

Alternatively, MRI and CT are relatively costly with respect to US, but they
provide 3D high-resolution image volumes. Furthermore, MRI offers excellent
soft-tissue contrast by a suite of scan sequences. Therefore, it is highly
appropriated for abdominal imaging, such as of the bowel in patients suffering
from Crohn’s disease[3]. Whereas MRI offers superior soft-tissue contrast and a
much larger versatility, CT has an excellent acquisition speed, a slightly higher
spatial resolution. A disadvantage of CT is that it comes at the cost of using
ionizing radiation. The latter prohibits its application to clinical conditions that
require frequent imaging[4], such as Crohn’s disease. Recently, an increasing
amount of evidence was given that the exposure can be reduced while maintaining
the same diagnostic accuracy[5, 6]. For each diagnostic task, one would be
interested to know the minimum amount of radiation exposure before the accuracy
deteriorates due to noise and artefacts. Unfortunately, this minimum required
radiation dose can only be determined by either scanning a patient multiple times
or by simulations of a low-dose scan based on high-dose retrospective data.

This thesis addresses two specific and unrelated challenges concerning cross-
sectional abdominal imaging. The first part of the thesis investigates the
application of MRI and image processing techniques to assess Crohn’s disease
activity. The second part presents a realistic low-dose CT-image simulator to
facilitate in-silico dose optimization based on available “high-dose” data sets.

1.1. Assessment of Crohn’s disease severity by MRI
2



Chapter 1: Introduction

Crohn’s disease is a chronic inflammatory disease of the gastrointestinal tract with
a relatively high incidence in the Western world, affecting 700 thousand
individuals in Europe alone[7]. Familial and epidemiological studies have
stressed the involvement of genetic factors and have also shown the critical role
of environmental factors in the development of IBD. It is now believed that
intestinal microbes may invoke a disrupted inflammatory response in a genetically
susceptible host. This inflammatory response can cause abdominal pain, fever,
diarrhea and/or clinical signs of bowel obstruction to the patients. The disease is
characterized by a chronic relapsing and remitting course, i.e. periods of
exacerbations are alternated by episodes of diminished disease activity.
Accordingly, the mere presence of the symptoms that might be related to the
disease (other diseases might cause similar symptoms) or sequels of the disease
(e.g. strictures) must be distinguished from active disease, which can occur at
varying levels of severity and specifying the level of disease activity is necessary
for choosing an appropriate treatment strategy[8]. Moreover, determining disease
activity is important for monitoring treatment response and following the course
of the disease activity over time as well, because the score objectively quantifies
any changes over time. Consequentially, the efficacy of treatments can be
assessed and compared objectively with each other. Currently, several disease
activity scoring systems are available that can be used by gastroenterologists.

Ideally, any activity score should be objective, reproducible, quantifiable, non-
invasive and comprehensive. Currently, the disease activity is assessed by
imperfect scores such as Crohn’s Disease Activity Index (CDAI)[9], Crohn’s
Disease Endoscopic Index of Severity (CDEIS)[10] and D’Haens index[11].
CDAI incorporates the patient’s perception of the disease and therefore is not
objective for determining the activity of the disease (patients’ well-being might
be influenced by many factors). CDEIS requires ileocolonoscopy, which
necessitates extensive bowel purgation, is invasive, and only permits inspection
of the bowel’s lumen-surface. D’Haens index scores histological abnormalities in
biopsy specimens, thereby focusing solely on microscopic aspects of Crohn’s
disease. Table 1.1 summarizes the limitations for the described disease indices.
The complex nature of Crohn’s disease and the poor correlation between the
disease activity and the symptoms hinder the development of an improved
index[3, 12]. Magnetic resonance imaging (MRI) has the potential to overcome
these limitations[1, 13]. First, the technique is non-invasive. Second, it produces
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3D image volumes in which the entire abdomen and particularly the full bowel
wall is visualized.

Recently, several MRI disease activity scores incorporating a variety of these
features have subsequently been developed and externally validated[14-17], and
are slowly disseminating in clinical practice. The Magnetic Resonance Index of
Activity (MaRIA) for example has been developed using the CDEIS as reference
and incorporates quantitative measurement of relative bowel wall contrast
enhancement along with subjective evaluation of the presence of mural ulceration
and abnormal T2 signal[14]. Other indices, such as the London score also rely on
qualitative grading of various features by reporting radiologists[16, 17]. Before
widespread adoption for evaluating disease activity and therapeutic monitoring,
MRI activity scores must be demonstrably accurate across the spectrum of disease
severity, and reproducible between radiologists. The current literature, however,
reports variable interobserver agreement for many features used in MRI activity
scores[17, 18]. Moreover, although MRI shows high accuracy for severe disease
activity (91% accuracy), diagnostic performance drops for mild disease or disease
in remission (62% accuracy)[19]. Accordingly, the Virtual Gastrointestinal Tract
(VIGOR++) project aims to overcome these drawbacks by proposing a better
score for assessing Crohn’s disease activity at MRI.

Index\requiremen | Objectiv  Reproducibl  Quantifiabl Noninvasiv Comprehensiv
t e e e e e

CDAI - +/- - + -
CDEIS +/- + - - -
D’Haens +/- + - - -
VIGOR++ + + + + +

Table 1.1 Synopsis of Crohn’s disease indices. A qualitative comparison between the different
scores show that VIGOR++ is the most promising score to assess the severity of Crohn’s
disease. Notice that CDAI, CDEIS and D’Haens are existing scores. The VIGOR++ score is
the aim of the project (Table from www.vigorpp.eu/facts.php). - is bad, +/- is okay and + is
good.
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Figure 1.1 [20] A patient with severe Crohn’s disease on MRI and colonoscopy. a) A coronal
contrast enhanced fat saturated T1-weighted volume interpolated breath hold imaging (VIBE)
sequence shows a diseased small bowel segment. The bowel wall is thickened and a layered
enhancement pattern is clearly visible. Note that especially the mucosa is enhanced after
administration of contrast agent. b) Colonoscopy of the same bowel segment as in a). The
bowel surface shows large ulcerations. ¢) A coronal Balanced Steady State Free Precession
sequence (true-FISP, a combination of T1 and T2 contrast) depicting a diseased bowel
segment. Note that figure (c) shows the same region as figure (a). d) The diseased bowel
segment that was removed by surgery. In contrast to colonoscopy the transmural properties,
such as fibrosis, are clearly visible.

1.1.1. Magnetic resonance imaging

Magnetic resonance imaging is a medical imaging technique that is widely used
in radiology to investigate abnormalities in the anatomy and physiology of
patients[21]. MRI images a volume by exciting the Hydrogen nuclei in the body
by a carefully timed sequence of radiofrequency pulses while applying magnetic
gradients. The contrast highly depends on the selected sequence and the local
environment of the hydrogen nuclei. Accordingly, MRI sustains the acquisition
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of a number of sequences with different contrasts by adjusting the sequence
parameters (see e.g. Figure 1.2).

The patients included in the VIGOR++ study were examined by a multi-sequence
protocol. This gives the radiologists the ability to determine a large number of
different features that are used to determine Crohn’s disease activity. The image
processing and image analysis techniques presented in this thesis solely focus on
the T1-weighted Gradient echo sequences as it is the only sequence with both a
high isotropic resolution and a strong soft-tissue contrast after intravenous
administration of Gadolinium.

il

Figure 1.2: Axial slices of the abdomen acquired of the same patient using different MRI
sequences. Note that the contrast can be drastically changed by simply modifying the scan
sequence. a) A diffusion-weighted image. b) T2-weighted Single-Shot Fast Spin-Echo with
fat suppression. c) T1-weighted Spoiled Gradient Echo sequence after intravenous contrast
medium. d) T2-weighted Single-Shot Fast Spin-Echo.

1.1.2. MRI-based features to assess Crohn’s disease

Currently, radiologists use a wide variety of MRI features to grade the disease
severity. For instance, Ziech et al reported a total of 18 different features that were
used in grading[22]. Some of these features are extra-mural such as lymph-node

6
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enhancement, comb sign and creeping fat, but the largest part of the features are
derived directly from the bowel wall itself. A further classification can be made
between features describing the geometry of the bowel (e.g. wall thickness) and
those quantifying the signal intensity of the wall (e.g. T1-enhancement and T2-
signal intensity). Today, these features are more and more frequently weighted
into severity scores consisting of two to up to five grades.

Recently, multiple studies used multivariate analyses to correlate manually
determined parameters that were extracted from MRI data to other modalities, for
instance the Crohn’s Disease Endoscopic Index of Severity (CDEIS) [14]and
endoscopic biopsy acute inflammatory score (eAIS)[16]. Rimola et al. found that
parameters wall thickening, wall signal intensity, and relative contrast
enhancement provided a good correlation with the endoscopic CDEIS (r =
0.82)[14]. Steward et al. reported a correlation of 0.72 between their MRI index
and the eAIS at histopathology[16]. However, MRI showed to be accurate for
severe disease cases (91% accuracy), but mediocre for mild disease and remission
(62% accuracy)[19]. Furthermore, a recent study by Ziech et al. reported a weak
to moderate inter-observer agreement for most of the manually acquired MRI-
based features[18]. Another study by Tielbeek et al. confirmed that the inter-
observer agreement was weak to moderate for most features|17]. They also found
that certain features (e.g. wall thickness) and the actual score itself showed a
higher correlation among experienced radiologists than among other groups.

The reproducibility of the features is essential for reliable disease monitoring and
treatment planning[3]. Unfortunately, measuring features of the bowel wall is far
from trivial. Many features are measured locally at a few handpicked
representative points, while the bowel is examined at a segment level (e.g.
terminal ileum). Features such as thickness and T1-enhancement vary widely
within a diseased bowel segment. Increasing the number of points or averaging
over the entire annotated volume is more time-consuming. Nonetheless,
techniques that base their measurement on a larger volume are preferred over ones
based on a handful of points. An automated method to delineate diseased bowel
wall segments could provide a first step for such a feature measurement scheme.
Subsequently, an array of features might be computed from the delineated
structure. Particularly, features describing the geometry of the bowel such as
thickness and length can be derived directly after accurate delineation. The
geometrical features such as bowel wall thickness and stratification are commonly

7
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used in grading Crohn’s disease [22] and are explicitly used in the methods found
by[14, 16, 17].

1.1.3. Segmentation of the bowel wall

The goal of image segmentation is to partition an image into a disjoint set of
informative sub domains. In medical imaging analysis, segmentation generally
aims to yield the delineation of anatomical structures the user is interested in.
Unfortunately, the segmentation problem is often ill-posed, as a typical scene or
data volume contains many different potentially relevant ways to partition the
image. The task at hand, the properties of the dataset and prior information (shape,
intensity, manual interaction) can make the problem tractable.

Generally, segmentation algorithms assign a certain cost/energy to each possible
partitioning. The mapping captured by the energy-function is chosen in such a
manner that its (preferably global-) minimum corresponds to the desired
segmentation (partitioning). Thus, the energy-function must explicitly model
prior knowledge of the segmentation problem like the regional statistics of the
different image regions and the shape characteristics. Next to defining an energy
function, a segmentation algorithm consists of an optimization scheme. Many of
these schemes have been developed and some of the most popular are:
classification based, graph-based, atlas-based, active shape model ASM and
active contours. Each of these methods has its advantages and disadvantages and
the application is decisive regarding what optimization scheme should be used.

In this thesis, the active contours approach was chosen as it offers the following
advantages: 1. The geometry and topology of the bowel wall is easily preserved
(during evolution), which is necessary for robustly measuring geometrical
features of Crohn’s disease activity such as thickness and length. 2. No
extensively labelled training set is required to learn the shape of the bowel, while
it can have many degrees of freedom. 3. The background does not need to be
defined a-priori.

1.2. Patient specific simulation of low-dose CT

Computed tomography (CT) has established itself as one of the most important
medical imaging modalities[4].In fact, the number of CT examinations is still
increasing[23]. A CT-scanner acquires X-ray images under many angles and
reconstructs from these images a 3D volume. A particular disadvantage of CT,
however, is the exposure to ionizing radiation that is inherent to the technique.

8
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Accordingly, it is a necessity to keep the radiation dose as low as reasonable
achievable (ALARA). Unfortunately, lowering the dose yields a lower signal-to-
noise ratio and thus a poorer image quality, which may hamper subsequent
diagnosis. Optimization of the dose/quality trade-off is a far from trivial problem
as one cannot simply expose subjects to a range of radiation doses for ethical
reasons. Therefore, a lower-dose CT image is usually simulated by adding noise
to the underlying projection data, i.e. the sinogram[24-26]. Subsequently, the
lower-dose image is reconstructed from these noisy projections using the
scanner's software. However, this approach is often not achievable in practice as
the projection data are not routinely saved. Consequently a method to simulate
low-dose CT images from the reconstructed high-dose images would be highly
valuable since it is more generally applicable. Additionally, retrospective studies
and cross-institutional scanner studies would become possible.

1.3. Objectives

The objective of this thesis was to develop tools for abdominal radiology and it
consists of two separate parts. In the first part, the development of novel image
analysis tools is described for grading Crohn’s disease activity using MRI. This
was one of the goals in the VIGOR++ project. Here, the focus is on obtaining
image-based descriptors based on MRI data that are accurate, robust and
reproducible. In the second part, a method is presented to realistically simulate
low-dose CT-images from reconstructed high-dose images.

1.3.1. Bowel lumen

Segmentation of the bowel’s lumen surface is an important step to automatically
assess Crohn’s disease activity based on magnetic resonance (MR) images.
Segmenting the lumen is challenging due to: (1) the large variation in bowel shape
and diameter, e.g. the lumen diameter varies from 0 mm in stenosis to more than
75mm for widened segments, (2) partial volume effects, i.e. the bowel wall
thickness is on the order of the voxel size, (3) spatially varying signal intensities
due to magnetic field heterogeneities, (4) a highly irregular, variable and complex
exterior, and (5) a heterogeneous lumen-content. The proposed method is based
on an active contour initialized by a manually annotated centerline through the
lumen of a diseased segment. The method employs a multi-resolution strategy.
This multi-scale approach is necessary to overcome the challenging aspects (1),
(2) and (3). Furthermore, we model the intensity inside a neighborhood by a
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spatially-variant function instead of a single value to accommodate various
material compositions. This offers the flexibility to solve challenges (4) and (5).

1.3.2. Bowel wall segmentation and thickness measurements

An important goal is to evaluate a semi-automatic method to measure the bowel
wall thickness in order to enhance the reproducibility of this feature. We have
implemented an active contour approach to semi-automatically segment both the
bowel wall’s inner and outer surface, taking into account the heterogeneous bowel
content. Our algorithm uses as input a (small piece of) centerline through the
gastrointestinal tract that completely passes by the diseased part of interest.
Subsequently, we derive the bowel wall thickness from the acquired segmentation
and validated these measurements with respect to manual measurements.

1.3.3. Quantifying Crohn’s disease activity

The goal is was to develop and validate a predictive MRI model for enteric
Crohn’s disease activity incorporating novel software assisted semi-automatic
measurement of MRI features using an ileocolonoscopic standard of reference,
and to compare performance with existing MRI activity scores. Introducing these
semi-automatic measurement to scoring indices raises novel questions: For
instance, does a scoring system consisting of automatic features outperforms one
consisting of manual measurements? Or does a hybrid model combining
automated and manual features provide the best outcome? Hence, the aim is to
develop and validate a model based on manual and automated MRI features for
grading active Crohn's disease in the small bowel and colon using
ileocolonoscopy as reference standard. Here, the automated features are derived
from bowel wall segmentations and include geometry-based features such as
thickness, length, excess volume and enhancement based features (e.g. A1[27]).

1.3.4. A low dose CT simulator

Simulating low-dose Computed Tomography (CT) facilitates in-silico studies into
the required dose for a diagnostic task. Conventionally, low-dose CT images are
created by adding noise to the recorded projection data. However, this is not
always achievable in practice as the raw data are simply not available. This thesis
aims to present a new method for simulating patient-specific, low-dose CT images
without the need of the original projection data. The methods assume fan beam
imaging and image reconstruction by parallel-beam filtered-backprojection
merely to proof the principles of our method and to show that representative noise
distributions are obtained.

10
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The low-dose CT simulation method included the following steps: (1)
computation of a virtual sinogram from a high-dose CT image by means of the
radon transform; (2) simulation of an 'reduced'-dose sinogram with appropriate
amounts of noise; (3) subtraction of the high-dose virtual sinogram from the
reduced-dose sinogram; (4) reconstruction of a noise volume via filtered back-
projection; (5) addition of the noise image to the original high-dose image. The
required scanner-specific parameters were retrieved from calibration images of a
water cylinder. The apodization window was estimated from the noise power
spectrum (NPS) in a small region of interest in the center of those images.
Furthermore, the bowtie filter attenuation characteristics were derived from the
pixel variance. Finally, the X-ray tube output parameter (reflecting the photon
flux) and the detector read-out noise were computed from the pixel variance at
various exposure levels.

We believe that unifying the calibration- and simulation-procedure in a single
framework, strengthens our approach. The technique enables scientists, clinicians
and engineers to simulate low-dose CT-image without the need of the raw
projection data. Therefore, it will become easier and less cumbersome to conduct
multi-center and cross-scanner retrospective studies on CT radiation dose

1.4. Outline of the thesis

The content of this thesis contains two parts, namely quantification of Crohn’s
disease activity using MR-enterography (chapters 2, 3 and 4) and the simulation
of realistic low-dose CT images (Chapter 5).

In Chapter 2, a novel region-based active contour model was introduced to
segment the bowel lumen in contrast-enhanced MRI given a centerline as an input.
The method incorporates prior knowledge of the content of the bowel lumen and
the structures of the background.

In Chapter 3, the active contour algorithm presented in Chapter 2 was extended
to segment the bowel wall. The outer surface was not as well defined as the inner-
surface as the background consists of structures with a similar intensity as the
bowel wall. Furthermore, the bowel wall thickness was derived from these wall
segmentations and compared to the manual measurements of three radiologists.

In Chapter 4, image-based descriptors of the bowel wall are derived from the
segmentations like wall thickness, disease length, surface and volume. These

11



Chapter 1: Introduction

features were incorporated together with manual features into a multi-variate
model to predict CDEIS. An extensive search was conducted to select the optimal
model and a comparison was made whether adding automated features would
improve performance. This linear model was one of the end-points of the
VIGOR++ project.

In Chapter 5, a novel method was introduced and extensively validated to
realistically simulate low-dose CT-images based on an existing high-dose image.
Additionally, procedures were developed to measure scanner-specific parameters
from the set of calibration images of a water-cylinder phantom.

Finally in Chapter 6, the merits and limitations of this thesis are discussed.

12



2 An active contour algorithm for
segmenting the bowel lumen from
T1-weighted MR images

Abstract

Segmentation of the bowel’s lumen surface is an important step to automatically
assess Crohn’s disease activity based on magnetic resonance (MR) images. This is
challenging due to MR signal variations, heterogeneous lumen content, the
presence of stenosis, and the diversity of the surrounding tissues. We present a
region-based active contour algorithm that can handle these challenges by
incorporating prior knowledge about properties of the lumen content (e.g. the
stratified appearance) and knowledge of the adjacent anatomy in a space-variant
regional mixture model. This information was added to the model by estimating
material fractions inside each voxel. A level set representation employing a
gradient-descent scheme was used to obtain the actual segmentation. Our method
was tested on 61 regions from 59 patients presenting Crohn’s disease activity. Two
expert radiologists delineated these regions. The average distance between our
segmentation and each of the two annotators was 1.43£0.55mm and 1.48+0.68mm,
which was similar to the inter-observer variability 1.52+0.70mm. Furthermore, a
Wilcoxon-signed rank test showed no significant difference (p>0.7) between our
segmentation and the manually obtained ones. Finally, a different initialization
yielded a mean distance between the segmentations of 0.39+0.31 mm. The
segmentations obtained by our method will ease the measurement of features such
as the bowel wall thickness.
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2.1 Introduction

Crohn’s disease is a chronic inflammatory disease of the gastrointestinal tract with
a relatively high incidence in the Western world[7]. Grading Crohn's disease
activity is important for monitoring and treatment planning[8]. Traditionally, the
disease activity is assessed by ileocolonoscopy, which requires extensive bowel
purgation, is invasive, and only permits inspection of the bowel’s lumen-surface.
Magnetic resonance imaging (MRI) has the potential to overcome these
limitations[ 1, 13]. Rimola et al. used multivariate analyses to correlate manually
determined parameters that were extracted from MRI data to the Crohn’s Disease
Endoscopic Index of Severity (CDEIS)[14]. They found that parameters such as
wall thickening, wall signal intensity, and relative contrast enhancement provided
a good correlation with CDEIS (r = 0.82). However, two recent studies by Ziech
et al. and Tielbeek et al. reported a weak to moderate inter-observer agreement
for most of the manually acquired MRI-based features|[18],[28]. Furthermore,
MRI showed to be accurate for severe disease cases (91% accuracy), but mediocre
for mild disease or remission (62% accuracy)[19].

To overcome the aforementioned limitations, a (preferably automatic)
computer-aided system is needed that sustains accurate and reproducible grading
of Crohn’s disease severity over the entire range of disease activity[29, 30]. To
do so, automatic segmentation of abnormal bowel wall is an important first step.
Segmentation is a challenging task, because it is hampered by inhomogeneous
lumen intensities, space-varying wall thickness, local signal enhancement, and a
wide variety of surrounding tissues.

Previously, bowel lumen segmentation algorithms have been integrated in
computer-aided detection systems for finding polyps in computed tomography
colonography (CTC). The solutions can be differentiated in methods for patients
with extensive [31] [32] and limited [33-36] bowel preparation. To the best of our
knowledge, such algorithms have not been developed to segment the lumen in
magnetic resonance colonography (MRC). Presumably, this is because MRC has
a poorer spatial resolution, a weaker contrast-to-noise ratio, suffers from signal
fluctuations (e.g. the bias field) and other imaging artifacts[37]. For similar
reasons, the CTC algorithms are not applicable to segment the bowel lumen in
MR images of patients with Crohn’s disease.

14



Chapter 2: An active contour algorithm for segmenting the bowel lumen from
T1-weighted MR images

Recently, a method was described to automatically segment the small bowel
from CT-images with the purpose of detecting carcinoma’s[38]. The patient
preparation consisted of administration of an oral and an intravenous contrast
agent to facilitate segmentation of the small intestine based on the mesenteric
vasculature’s anatomy. A full distention of the bowel lumen was not required,
which is necessary though for assessment of Crohn’s disease severity.
Alternatively, a method was developed to automatically detect and segment
diseased pieces of bowel wall from MRI volumes through a machine learning
approach[39, 40]. Although this approach aids in the detection of the disease,
clinicians still need to manually measure relevant features, such as the wall
thickness and the length of the diseased segment, for severity assessment.
Essentially, a lumen segmentation algorithm that accurately captures the full
geometry of the bowel is required to obtain such geometric information.

Active contours enable to segment objects while implicitly adapting the
topology. They were initially introduced by Kass et al.[41], after which Osher et
al. proposed an embedding in level sets[42]. Active contours have evolved into a
powerful segmentation technique in medical image analysis[43]. Applications of
level sets can be partitioned into approaches relying on edge detection [44-47] and
methods employing differences in regional statistics[48-51]. Statistical
approaches to the application of level sets were described in[52-56]. Initially, [49]
proposed to segment an object from the background based on its mean intensity.
Such an approach is insufficient, however, when the image intensity is distorted
by slowly varying intensity fluctuations (e.g. BO-field inhomogeneities in MRI).

Mumford and Shah proposed a framework to partition an image into piecewise,
smoothly varying regions[57]. Although such a model can handle smooth
intensity fluctuations, finding an efficient implementation proved to be
cumbersome[50]. Alternatively, several recent methods measured the mean
intensity locally, inside a neighborhood[50, 58-60]. In such a way slowly varying
intensity fluctuations can be handled as long as the intensity is locally constant.
Particularly, Brox et al [50] showed that such an approach is a first order, smooth
approximation to the Mumford-Shah model. This local means method was
extended by adding the variance as a descriptor[50, 61]. Particularly, the mean
and the variance were empirically determined in[50], while this method was
shown to be equivalent to locally fitting a Gaussian distribution[61].
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Obviously, a single Gaussian distribution cannot model large intensity
discontinuities associated with multiple anatomical structures, either in the
foreground or background. This problem may be dealt with using multiple smaller
regions to yield a piecewise constant model. For instance, Vese and Chan [48]
presented a method to segment N regions using multiple level sets and indicator
functions, i.e. one for each region. A far from trivial challenge that remains,
however, is to merge the different regions to obtain the object of interest. In our
case, we are interested in segmenting the bowel’s inner surface. The lumen
consists of a mixture of air, water and fecal remains. Unfortunately, many
anatomical structures surrounding the bowel have a similar intensity distribution
as the materials found inside the lumen, which complicates a merging procedure.
Additionally, the number of regions that is necessary to model the background is
a-priori unknown.

Strong discontinuities can also be modeled by directly estimating the posterior
probability density function of the underlying data. Both parametric (e.g. mixture
of Gaussians model) [62, 63]and non-parametric methods (e.g. histogram) [64-
66]have been suggested. Unfortunately, each material that is modeled by this
probability density function influences the discriminatory power of the other
materials, as the integral of the density function needs to be one. This may become
problematic whenever two materials with slightly overlapping intensity need to
be segmented, while one of the two has a low prevalence in a mixture of materials.

The most intuitive technique for bowel lumen segmentation perhaps is to take a
multi-region segmentation approach ([67]contains an elaborate overview of such
methods). However, it is not possible to directly use these techniques due to the
large inhomogeneities in signal intensity. Essentially, we propose a solution to
this problem.

2.1.1 Objective and approach

This chapter presents a novel method to segment the bowel lumen from TI1-
weighted images of patients with Crohn's disease. The method is based on an
active contour initialized by manually annotated centerlines through the lumen of
a diseased segment. Segmenting the lumen is challenging due to: (1) the large
variation in bowel shape and diameter, e.g. the lumen diameter varies from 0 mm
in stenosis to 75mm for widened pieces, (2) partial volume effects, i.e. the bowel
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wall thickness is on the order of the voxel size, (3) spatially varying signal
intensities due to magnetic field inhomogeneities, (4) a highly irregular, variable
and complex exterior, and (5) a heterogeneous lumen-content. The proposed
method employs a multi-resolution strategy. This multi-scale approach is
necessary to overcome the challenging aspects (1), (2) and (3) (see Figure 2.1a).
Furthermore, we model the intensity inside a neighborhood by a spatially-variant
function instead of a single value to accommodate various material compositions.
This offers the flexibility to solve challenges (4) and (5) (see Figure 2.1b).

a

Figure 2.1. Two regions of interest focusing on diseased pieces of bowel and showing the
segmentation of the bowel lumen by our method. Notice that the shape of the lumen differs
dramatically between these regions.

2.2 Preliminaries

Previously, several active contour approaches were presented to cope with smooth
signal inhomogeneities[59, 60]. Let Q c RP denote the D-dimensional image
domain, I(x): Q - R the image itself and Q; a partitioning of Q into N regions
with O =UyQ; and QN Q; = @. Most techniques essentially model the
intensity in each region {); by a smooth function[50, 68]. The Local Binary Fitting
(LBF) model[58] searches for the partitioning that minimizes the following
energy function

ELo = J’i JK, (x=y)(1(y)- (X)) M, (y)dydsx, 2.1)

i=1
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where x is an image coordinate, x — ¥y aneighborhood coordinate and K, (x — )
a weight function (e.g. a Gaussian) imposing locality around voxel x. The
summation is over a presumed partitioning of (N) image regions; 4 is a weight

related to the importance of the region denoted by label i, and M; an indicator
function which is one if y € {); and zero otherwise. The weighted average
intensity u; (x) in a neighborhood of size p is defined by

K G=IeIM (y)dy
[K,x=yM,(y)dy

4(x) (2.2)

Notice that the intensity /(y) in a neighborhood p N (); around x is modeled by a
constant y;(x) in (2.1), hence implicitly assuming that the intensity inside this
neighborhood is constant. The initial LBF model ignores the variance, which was
later added by Wang et al[61]. Assuming N = 2 and A; = 1 we get

EWang: J.Qéj.ﬂ Kp(x—y)x

2
(1(3)- ) 23
5 +log o, (x) M i (¢(y))dydsx,
i (x)

20

where ¢ (y) represents a level set function that is defined to be negative for all y
inside the lumen and positive elsewhere, and ¢/ (x) is the weighted variance
defined by

[ K, =) (1) = 2(x))" M, (y ) dly
[ K, (x=y)M,(y)dy

o’ (x)= (2.4)

2.3 Methods

Figure 2.2 presents a flow diagram of the proposed method, which is initialized
by a manually annotated centerline through a diseased section of the
gastrointestinal tract.
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Centerline + ROI

Resample centerline

| Initialize functions |

Level set propagation

|Data driven term k* Shape term |

update level set

Bowel lumen

Figure 2.2.The flow diagram of the proposed method comprises two loops. The inner-loop
implements the level set evolution, the outer-loop iterates over scales from coarse to fine

The method consists of a coarse to fine implementation of an active contour
model. The energy is first optimized at the coarsest scale p, before progressing to
the finer scales. The coarse to fine approach allows the algorithm to sense the
lumen exterior over a large distance at a large scale whenever the lumen diameter
is very large, while still being able to segment structures such as Haustral folds at

the finest scale.

P focal £ [ ‘Y

Figure 2.3. (a) A bowel segment containing air, water, and fecal residue. (b) A neighborhood
p around x is conventionally partitioned into two regions Q; (green/blue) in which the
intensity is assumed constant. (¢) The proposed method models each region by neighborhood
varying functions (reflected in the color tone), instead of a constant.

2.3.1 Data driven term

The data driven part of the energy function is a modified version of (2.3).
Importantly, the intensity /(y) in a neighborhood p around x is modelled by a
locally varying function &;(x, y):
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e [, 2] K )
((I (y)-4(xy)’

252 (%)

2.5)

+log ni(X)J M; (4(y))dydx

where &;(x,y) denotes the modelled value at image coordinate y in the
neighborhood around x and 1?(x) the squared residual w.r.t. the model (i.e. the
local variance). Notice that &;(x, y) is now a function of image coordinates x and
y. This is different compared to previous work[59-61], in which a slowly varying
constant is used, i.e. &;(x,¥) = y;(x) and n;(x) = g;(x).

Essentially, &;(x,y) splits the inhomogeneity in signal intensity into two parts,
which are modeled independently. The slowly varying inhomogeneities are
modeled (as before) by a locally varying constant y;(x), while the abrupt
transitions are modelled by a space-variant material fraction C; ,,, (y), predicting
the fraction of a specific material {m} in that particular voxel. The signal intensity
& (x,y) of a voxel y in the neighborhood around X is represented by a volume-
weighted sum of material specific contributions:

é:i (X’ y) = Zci,m (y)lulm (X)’ (26)

where p; ,(x) is the mean intensity of material {m} at location X, and L the
number of materials in compartment €);. Note that y; ,,, (x) is similar to the mean
intensity defined in (2.2). Additionally, the material fractions per volume add up
to one. Figure 2.3 (middle) illustrates the difference between the mixture model
for L=3 and the single material per compartment approach as used before[59]. The
neighborhood p around a voxel x, depicted by the dashed circle, is split into two
regions Q4 N p and Q, N p, corresponding to the region inside, respectively
outside the level set boundary. Previously, both regions would have been modeled
by a single mean intensity y;(x) and variance 6/ (x), which are indicated in the
middle drawing by the uniform colors. In the new approach, the signal is modeled
by a mixture model &;(x, ¥) and a space-variant variance n?(x). This is indicated
by the different tones of green and blue.
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The next paragraphs explicitly describe how the intensity distribution of the bowel
exterior and the bowel lumen are modeled using (2.6). Section 2.3.3 describes
how the material fractions C; ,,, (), the intensity distribution y; ,,, (x) of a material
{m} and the residual n; (x) are determined in an iterative way.

2.3.1.1 Modeling the intensity distribution of the bowel exterior

The bowel exterior consists of many different tissues of which the intensities show
large variations. We assume that the exterior can be locally partitioned into three
materials (tissues) corresponding to dark (e.g. fat, air), medium (muscles, healthy
bowel wall, thin arteries) and bright signal intensities (part of the liver, kidney,
inflamed wall and large arteries). Accordingly, the intensity &.,:(x,y) of a
neighborhood voxel y around voxel x is modeled by

Ee (X, ¥) =D Con V) oy n(X) 2.7)

where Cextm(y) is the fraction of material m € {dark, medium, bright} in a
voxel and eyt m (%) the mean intensity of material m outside the lumen.

2.3.1.2 Modeling the intensity distribution of the bowel lumen

Much in the same way, ymen(X,y) is modeled by a volume-weighted sum of
the constituting material intensities. We assume that the lumen consists of air,
water, and fecal remains and that the intensity ratio between the different materials
is locally constant. This implies that the lumen intensity can be written as the
product of a weight and the reference intensity. By taking water as the reference
material, the lumen intensity becomes

§Iumen(xﬁy) = W(y)/uwater (X)’ (28)
with

:ufecal

W(y) = ﬂcair (y) + Cwater (Y) +

water water

aaircair (y) + Cwater (Y) + afecalcfecal (Y)

C fecal (y) (29)

We dropped the subscript lumen from these equations just for the compactness of
the notation. Again, Cy (y) denotes the fraction of material k and @, represents the
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ratio between the local intensity of material k € {air,water, fecal} and
Uwater(X). Notice that w(y) enables us to vary & men (X, ¥). Simultancously,
Uwater(X) 1s allowed to fluctuate slowly, so that in turn the mean material
intensities may vary due to field inhomogeneities and space-variant pick-up coil
sensitivities.

We assert that a,;,- is 0 as air voxels contain a negligible amount of protons.
Furthermore, a,,4:0-=1 by definition. Essentially, the material fractions Ci(y),
the ratio’s a; and the local intensity of water p,,4ter(X) determine how well
Erumen (X, ¥) approximates [(y). The values for these parameters are also
iteratively found (see 2.3.3). Particularly, the ratio between intensities of water
and fecal residue is locally estimated from the data. As such, the assumption that
this ratio is locally constant is not compromised by inherent differences in signal
intensity (e.g. from patient to patient).

2.3.2 Initialization

To initialize the level set function, only a small track is drawn manually along a
region supposedly affected by Crohn’s disease (see Figure 2.4d). The user needs
to label those points that pass through stenotic parts. This was efficiently
implemented by using different mouse buttons. The algorithm removes the
stenotic part from the initial centerline and reinserts it at the finest scale. The
remaining centerline segments are dilated by a small structuring element of 3x3x3
voxels, after which the boundary serves to initialize the level set’s signed distance
transform: a negative distance to the contour denotes the inside and a positive
distance the outside of the lumen.

Several parameters need to be initialized upon entering the scheme depicted in
Figure 2.2. The parameters not set at this stage are defined during the update step
(see below).

Initialization of the model parameters is visualized in Figure 2.4. A mixture of
five Gaussians was fitted to the histogram of the entire image. The first peak of
the histogram (u,) did not differ significantly from zero and indeed represented
the signal intensity of air. Furthermore, the second (u;) and third (u3;) peak
roughly corresponded to fat and water, while the fourth (u,) one corresponded to
fecal matter, respectively. The fifth peak usually resulted from the kidneys,
arteries and the bladder.
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The extra-luminal material fractions C,,,(y) are fixated at

1 1 <

Coanc = ) ) (2.10)

0 otherwise

L 1(y)> s

= 2.11
bright {0 otherwise’ ( )
and

Cmedium (y) =1- Cdark (y) - Chright(y)7 (212)

which is simply a nearest mean classifier. We do not update these material
fraction, but stick to the initializations. We have found that these initial estimates
are very robust since they are derived from the entire volume. Subsequently, we
initialize the luminal material intensities: Ugir = 0, Uyater = U3 and Ufecqr = Hao
after which we set Qfecqi = Ufecal/Hwater and we initialize the luminal material
fractions by:

( I (y) = O Hygarer (y))2
Ck(Y): <rgikn(l(y)—alywater(y))z. (2.13)

0 otherwise

Please notice the “hat” (") above the variable Cy (¥) indicating the initial value for
the material fractions. The width of the first and largest peak of the histogram (i)
was also used to estimate the overall noise level 17,5 - This parameter will be
used in a later stage of the algorithm (see Table 2.3, (2.27)). Finally, a low-pass
filter resembling the Point Spread Function (PSF) of the MRI system blurs the
material fractions. We approximate the MRI system by a Gaussian kernel instead
of the sinc-function, in order to avoid negative material fractions and to still be
able to approximate the first lobe of the true PSF. Figure 2.4 illustrates the
initialization procedure.
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Number of voxels

0 25 50 75 100 125
Voxel intensity

dark  medium bright

Figure 2.4. Illustration of the procedure to initialize the material fractions of the bowel’s
exterior. (a) A coronal T1-weighted MR enterography showing Crohn’s disease in a manually
annotated region-of-interest (ROI). (b) The intensity histogram of the full MR volume; black
points denote the raw data, the red line the sum of five Gaussians fitted to the data, and the
dashed blue lines each of the five Gaussians. The green shading indicates the segmentation
thresholds. (¢) Result of segmenting the slice into three areas based on the thresholds
indicated in subfigure (b); bright voxels are masked with magenta, dark voxels with cyan and
medium voxels are not masked. (d) The ROI from subfigure (a) containing the projected
centerline in green and the final segmentation in (transparent) red. (e) Result of segmenting
the ROI into three areas based on the fit of five Gaussians as in c.

2.3.3 Updating the model parameters
2.3.3.1 Updating the model parameters for the bowel exterior

The mean material intensities fey, ., (X) and the variance n3,.(x) are the only
model parameters of the exterior that are updated. First, poy ¢ (X) is updated by
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computing the derivative of Eyg¢, With respect to fox; m (X) and setting it to zero
gives

[ K, (x=y)CaMIWH, (o(y))dy =

[ K.(x-y)C, (y)i:C. V)t (X)H, ((y))dly e
in which H, () represents the regularized Heaviside function, defined by
1, 1>¢
H,.(X)=40, 71<—¢ (2.15)

l[1+£+lsin[7r—zj} |Z|Sg
2 & &

and where (2.14) can be simplified by using the following vector notation:
Im(X) = wm(x)pext (X)’ (216)

where I,,,(x) is defined by the left hand side of (2.14), w,,,(x) is a 1x3 vector with
element [ equal to

W, (0= K, (x=¥)C,CWH (o(y))dy, 2.17)

and U, (x) is a 3x1 vector containing the material intensities (dark, medium and
bright). Now, stacking the equations of the materials results in a linear system of
three equations with three variables defined by

L () = W(0)m,, (%), (2.18)

in which Iex(x) and W(x) are 3x1 and 3x3 matrices. Solving this system yields
the updated pigxr m, (X). Subsequently, the exterior’s variance is updated via
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) 1
next(x) = N, (%) IQKP(X_Y)X

2
{ ()~ 2o (x)j HEOE. (510

in which N, (x) normalizes over the integration volume of'y
Nea (30 = [ K, (x=y)H(@(y))dy (2.20)
Note that (2.19) is similar to (2.4) with the addition of the material fraction C,, (y).

Figure 2.5 illustrates the estimation of the mean material intensities of the bowel
exterior.

Figure 2.5. Modelling the materials of the bowel exterior; the segmented boundary is
superimposed in red. a) An ROI depicting a piece of diseased bowel. (b) The results of a
voxel-wise classification into three materials, computed using (2.10)-(2.12); the three colours
indicate dark (cyan), medium (none), bright (magenta). (c-e) The mean intensity fey¢ m (x) of
the dark structures (c), the medium intensity structures (d), and the bright structures (e)
computed by solving (2.18). (f) The modelled intensity ... (X, ¥) around xq (cyan circle),
i.e. outside the lumen, but inside the neighbourhood, indicated by three shades of grey.
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2.3.3.2 Updating the model parameters for the bowel lumen

One may observe that if w(y) is known, p,,4¢er-(X) can be updated by substituting
(2.8) into (2.5) and solving for u,, 4t (X) by setting the derivative with respect to
Uwater (X) to zero. This yields

jQ K, (x=ywy) I (y)(1-H, (4(y)))dy
| K=y (1=H, (4(y)))dy

Hyager (X) = , (2.21)

Note the similarity between (2.2) and (2.21); they are identical if w(y) = 1.

Accordingly, the variance is modelled by a function n2,,,., (x), which is similar
to (2.4)

2 1
X)=—| K (x-y)x
Tiren ) N yen (X) IQ AXY) : (2.22)
(1) = Eunen(7)) (1= H,(#(y)))dy
in which Ny pmen (x) normalizes over the integration volume of y
Niren (0= [ K (x=y)(1=H,(4(y)) )l . (2.23)
Next, ®fecq s updated by
|
O ¢ H, (400)dx
o = uaer (X) (2.24)

J.QC fecal (X) H & (_¢(X))dX

Basically, (2.24) computes the average Qfecq inside the volume defined by

Qlumen-

The update of fractions Cj (y) consists of two steps: First, a threshold initially
classifies the voxels into air, water or fecal residue (just as before) by (2.13).
Second, we assume that the ordering of materials is fixed: air always resides on
top of water or fecal residue and water generally resides on top of fecal residue
or bowel wall. Importantly, we define criteria for transitions through which the
level set should not propagate. This is prevented by updating the material fractions
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as described in the Appendix. Figure 2.6 illustrates the estimation of the bowel
lumen’s material intensities.

water

fecal

Figure 2.6. Modelling the materials inside the bowel lumen; the segmented boundary is
superimposed in red. (a) An ROI depicting a piece of bowel with a heterogeneous lumen
content containing fecal residue, water and air. (b) The results of a voxel-wise classification
into three materials, computed using (2.13), (2.39), (2.43) and (2.44); the three colours
indicate air (cyan), water (none), fecal (magenta). (¢) The modelled lumen intensities
Eumen (XoY) inside a neighbourhood (cyan circle) around xy computed using (2.8).

2.3.4 Shape driven term and energy function

In this chapter, the shape driven term consists of the commonly used weighted
minimal length term [44] defined by

Eurs = | 9O0[VA(0|5, ($(x))x, (2.25)

where 6. () represents a regularized Dirac function[49]:

L(l + cos(—”—xn |X| <¢
0.(X)=12¢ g s (2.26)

0 else

in which € specifies the width of the narrowband. The weight function, which was
based on[44, 46, 47], is defined as

(VI(%),Vo(x))
X)=exp| - ——————|. 2.27
9(x) p[ Vo) (2.27)

Essentially, this is an edge detector that compares the gradient of the image to the
normal of the level set function. Here, we assume that the transition from lumen
to bowel wall is from dark to bright.
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The total energy function consists of combining (2.5) and (2.25) into

E +JE (2.28)

total — Edata shape >

where A is a parameter that weights the contribution of both terms. Minimizing
(2.28) involves iteratively updating all the model parameters, alternated by
adjusting ¢. E;,tq; 1S minimized with respect to ¢ (y) after restructuring (2.5) by
means of an Euler-Lagrange equation. The minimization is implemented using a
gradient descent approach[50]. The resulting level set equation becomes

dg
= 8(000) o (x) e (x)+

Vo (2.29)

<Vg(x),v—¢|>+g(x)x(x)),

where k represents the mean isophote curvature of ¢(x). The terms €j,men (X)
and e, (x) denote the data-driven parts of the differential equation defined by

eIumen (X) = J.Q Ko- (X - Y) x

ULRFFCH) d (2.30)
[ Mio¥) O (Tmen (¥)) |0l
for the lumen and
Coxt (X) = JQ Ka (X — y) x
(2.31)

{(I(x)—fext(x,y»z

1 dy,
277EXt2(y) + Og(next(y))J y

for the exterior.
2.4 Materials
2.4.1 Patient preparation and MRI acquisition

The data employed in this chapter were taken from two separate studies on
Crohn’s disease. The data from the first study will be called the retrospective data
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[69] and the data from the second study will be called the prospective data. The
local Medical Ethics Committee approved both studies. All patients had given
informed consent to usage of their data for future investigations.

The retrospective data was from 30 consecutively included patients with luminal
Crohn’s disease[69]. Patients drank 1600ml of a hyperosmolar fluid (Mannitol,
2.5%, Baxter, Utrecht, The Netherlands) 1 hour before acquiring the MRI scans
for optimal distention of the terminal ileum. MR imaging was performed on a
3.0T MRI scanner (Intera, Philips Healthcare, Best, The Netherlands). A contrast
agent (Gadovist 1.0 mmol/ml, Bayer Schering Pharma, Berlin, Germany) was
injected (0.1 ml/kg bodyweight) prior to acquisition of an image volume by means
of'a 3D T1-weighted spoiled gradient echo sequence with fat saturation. The size
of these images was 400 x 400 x 100 voxels with a resolution of 1 x 1 x 2 mm?.
It was acquired in a breath-hold.

The prospective data was from 29 patients included in an ongoing, prospective
study into luminal Crohn’s disease. The data was acquired with almost the same
imaging protocol as the retrospective data. The only relevant difference with the
retrospective data concerned patient preparation, which involved an additional
ingestion of 800 ml Mannitol (2.5%) three to six hours prior to the examination
to optimize the distension of the colon.

2.4.2 Data annotation

Two abdominal radiologists independently annotated all regions suspected to
present Crohn’s disease activity. This was done by successively drawing 2D
polygons in all slices intersecting a diseased area. In total 103 such 3D regions
were extracted from the patient data. A technician randomly selected 12 regions
that did not overlap between the experts for parameter tuning: six from the
prospective and another six from the retrospective data (6+6). The 91 remaining
regions were exclusively used for testing. 30 regions had a large overlap between
the experts, so that there were 61 ‘unique’ regions. The non-overlapping
annotations generally concerned only mildly diseased areas. The technician,
supervised by the radiologists, drew a centerline through the lumen for each
annotated ROI. For 15 cases the same technician drew a second centerline
approximately three months later (to avoid memory bias), which was used to
assess the robustness to initialization. Hence 61+12+15=88 segmentations were
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made in total. The technician also coarsely drew large 3D bounding boxes around
the concerned piece of bowel, which were used as the input for our segmentation
algorithm. The latter step was only done to limit the computation time.

2.5 Experiments and Results

This section describes the experiments, which were done to tune the parameters
of the algorithm and to validate the method. First, the consistency of the intensity
ratio of water and fecal residue was empirically evaluated. Second, the model
parameters were tuned using the training set. Third, the algorithm was validated
quantitatively using the test set. Fourth, the dependence of the method on the
initialization was tested by varying both the size of the ROI and by starting from
a different manually annotated centerline.

The computation time of the method dataset was less than 10 minutes on a
personal computer equipped with an Intel® Core™2 Quad Processor Q8400
clocked at 2.66 GHz and 4GB RAM memory. Figure 2.7 shows segmentations
obtained using the LBF model[58], the model proposed by Whang et al. [61]and
our approach. Notice the similarity of the outcome in the presence of
homogeneous bowel content and how the previous methods grossly fail with
inhomogeneous content.

Figure 2.7. Segmentations obtained using the LBF model [58] (a,d), the model proposed by
Whang et al.[61] (b,e) and our approach (c,f). The top images focus on a region with
homogeneous bowel content (a,b,c) and the bottom images on areas with heterogeneous
content (d,e,f).
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2.5.1 Validating the consistency of the ratio between the intensities of
fecal residue and water

The method must be applied to a region where a radiologist has spotted disease
activity. One of the model assumptions is that inside such a region (ROI), the ratio
between the intensities of water and fecal residue is constant. To validate this we
selected ten regions containing fecal residue from the whole patient study that did
not overlap with any ROI from the test set. Inside each ROI, 10 small spheres
were drawn with a diameter of 10 mm: five such spheres only contained water,
and the other five only contained fecal residue (see Figure 2.8). Every water filled
sphere was assigned to the closest unassigned fecal residue sphere, so that smooth
signal fluctuations, e.g. BO-field inhomogeneities, hardly influenced the
measurement. Finally, df.cq was computed five times by dividing the mean
intensity of the sphere containing fecal residue by the average intensity of the
corresponding sphere containing water. Figure 2.8 illustrates how the spheres
were selected. Table 2.1 shows the mean ratios and corresponding standard
deviation per ROI. The table demonstrates that @¢..q; Was approximately constant
within a ROI as the standard deviation was approximately 10% of the average.
Notice that the variation across ROIs is larger. This is not problematic, because
our algorithm works on a per lesion basis.

Figure 2.8. Sagittal slices from regions of interest with fecal residue. The magenta circles
depict spheres containing fecal residue, the yellow ones spheres with water. The labels depict
the correspondence between spheres for computing the intensity ratio between fecal residue
and water. Per ROI five pairs of spheres were drawn; pairs not shown are in different image
planes.

ROI afecal ROI (xfeml

I 2.31+0.26 | VI 1.67 +0.05
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II

I

v

v

2.06+0.22 | VII 1.74 £0.08
2.02+0.22 | VIII 2.09+£0.28
2.08£0.18 | IX 1.36 +£0.03
2.88+0.37 | X 1.62 +0.02

Table 2.1: Mean Ratio of the signal itnensity of water and fecal residue and the corresponding

standard deviation

2.5.2 Parameter calibration

Table 2.2 and Table 2.3 list the model parameters and their values as used in the
validation experiments. Table 2.2 contains the parameters that are considered not

critical and whose values were manually chosen based on reasoning.

parameters in Table 2.3 were tuned using the training set.

Parameter Value

Description

p 64,32,8,
4.2 mm
Aair 0
Omax 30°
pt 2mm
€ 0.25
Tthin 0.5

Size of kernel K,,, specifying the neighborhood size
around voxel x (see (2.5)).

The ratio of the intensities of air and water.

Maximum angle of an image gradient compared to the z-
direction (see (2.38) and (2.40)).

Kernel size for the detection of thin structures (see (2.41).

It is chosen slightly larger than the thickness of healthy
bowel wall (2-3mm).

Minimum required gradient magnitude of edges in the
material fraction images (see (2.38) and (2.40)).

Threshold for selection of thin pieces of bowel wall
(2.41).

Table 2.2: List of a priori set parameters

Parameter Value

Description

33

The



Chapter 2: An active contour algorithm for segmenting the bowel lumen from
T1-weighted MR images

A 2 Weight factor for balancing the data and shape
terms (see (2.28)).

y Nnoise Scale parameter for comparing the gradient of the
image to the normal of the level set function (see
(2.27))

At 2 The step size of the discretized gradient descent
(see (2.29))

Table 2.3 List of tuned parameters

Figure 2.9 shows a segmentation obtained after visually tuning the algorithm’s
parameters. It depicts a diseased piece of bowel consisting of several stenotic
parts. In some parts the bowel lumen is fully occluded in which the centerline
serves as the final segmentation. However, the bowel lumen is visible in other
parts, in which case the centerline is the starting point for the segmentation. Here,
the intensity of the stenotic lumen is increased compared to voxels in well-
distended parts due to the adjacency of the bowel wall and partial volume effects.
This underlines the usefulness of a coarse to fine approach, as the lumen intensity
can still be assumed to be locally constant. Consequently, (2.21) still returns an
accurate estimate of the local intensity at fine scales.

Manually tuning some of the parameters based on visual interpretation, enabled
to produce these visually accurate segmentations. The parameter values thus
determined can be found in Table III.
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Figure 2.9. Cross-sections of a volume from the training set showing the diseased terminal
ileum: (a) coronal (no outline), (b) sagittal (pink outline) and axial (c¢) (blue outline). The
green arrows indicate a stenotic part and the yellow arrow points at a region in which the
lumen is still partially visible. The segmentation outcome that was obtained after visual tuning
is overlaid in red.

2.5.3 Performance testing

The performance of our algorithm was evaluated in two steps. First, the 30
corresponding annotations were used to determine the inter-observer variability
of the annotations. Second, our segmentations were compared to the annotations
of the experts. Clearly, the highest accuracy of our level set segmentation is
needed in regions harboring Crohn’s disease. Observe that our level set segments
the bowel’s inner surface, whereas the annotations consist of polygons
encapsulating the whole bowel wall. Hence, the inner surface had to be extracted
from the annotations. This inner surface S,,, was obtained from an annotated
ROI A,y in two steps: First, the boundary of 4,,, was obtained by,

Sb = Aano - (Aano © B)’ (232)

where S, is a binary image depicting the boundary voxels and © represents the
mathematical erosion operator applying a structuring element B consisting of a
18-connented neighborhood. Second, the angle between the gradient vectors from
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the annotation and the level set segmentation was used to distinguish the inner
from the outer surface by computing the inner product of the two:

|
S, = L (V4 VAm) 7, (2.33)

0, else

where S, is a binary image containing the voxels at which the two gradient
vectors from the level set and the annotation point in the same direction. Finally,
the inner surface S,,,, of an annotation was extracted by taking the intersection of
S, and S,

Sio =5,MNS,. (2.34)
Figure 2.10 demonstrates this step.

Unfortunately, the inner contours from corresponding annotations of the two
experts, i.e. Sgno1> Sanoz, typically overlapped only partially. Particularly, there
was variation at the border of mildly diseased regions. Therefore, we discarded
the non-overlapping parts in order to determine an unbiased inter-observer
variability in the truly overlapping areas. S,,,,1 Was truncated by removing points
that had a larger distance than €,,,, = 1cm to S, and vice versa as indicated
by

éanol = {X € Sanol : d(X, Sanoz) < gmax} >
~ (2.35)
Sanoz = {X € San02 :d (x, Sanol) = gmax} >

where d is the smallest Euclidean distance between a point X to the other surface.
The truncated surfaces are denoted by a hat (*). The distance between two
contours, s, and s, was measured by
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Figure 2.10. An illustration of the procedure to determine the inner-surface from an
annotation. (a) A region with the level set surface in red, the annotation in green, and
overlapping voxels in blue. (b) The inner and outer surface of the annotation in green. (c)
Voxels in which the annotation’s surface normal points in the same direction as the gradient
of our level set function. (d) The annotated bowel wall’s inner surface in green and our
segmentation in red, with the overlap in blue.

1 N(S)) )
Dasym(SpSz)=\/(N(S) Z d(x,.S,) (2.36)

where N(s,) is the number of voxels ins,. The inter-observer variation (D,, ) of

the annotations was measured by

Dsym (§ anol , §an02) =

-~ A JUA (2.37)
(S anol » San02 ), Dasym(S ano2, Sanol)) ’

min( Dasym

Similarly, the distance between the level set segmentation Sgq = {x € Q: p(x) =
0} and the truncated surfaces Sg,,0 1, Sqno 2 Was measured by Dgsym(Sseg» Sano1)

and Dasym(Sseg,fanoz) respectively. Observe that these distances are
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asymmetric, because the level set segmentation always encapsulates a larger piece
of bowel than the annotation. Wilcoxon’s signed rank test was used to statistically
assess differences between distances: a p-value smaller than 0.05 was considered
to indicate a significant difference.

2.5.3.1 Qualitative outcomes on the test set

Figure 2.11 shows how our algorithm coped with the challenges listen in the
introduction (section 2.1). In Figure 2.11 heterogeneous bowel content, variation
in the lumen diameter and large contrast variations between the lumen and the
bowel wall can be clearly observed.

Figure 2.12 demonstrates the only example in which the level set segmentation
clearly failed. In this case, the lumen contained merely fecal residue, which had a
similar intensity as the bowel wall. Therefore, the algorithm confused bowel wall
for lumen (it did not fail because of the constant luminal intensity!).

2.5.3.2 Quantitative outcomes on the test set

Initially, we focused on the corresponding annotations, i.e. diseased regions
identified and annotated by both experts. The mean distance (Dsypm,) and
corresponding standard deviation between the annotations of the experts was 1.52
+ 0.70mm. The mean distances and standard deviations of the level set
segmentation to the experts (Dgsym) were 1.44+£0.55mm (annotatorl) and
1.48+0.68mm (annotator 2) respectively. Notice that all these distances are
smaller than the largest voxel dimension, which was 2mm (out-of-plane) both for
the retrospective and the prospective data.
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Figure 2.11. Cross-sections ((a) coronal, (b) sagittal, (c) axial) of a volume from the test set
showing a diseased neo-terminal ileum. The red and green contours represent the level set
segmentation and the inner-surface of the annotation made by expert 2. Overlapping parts are
indicated in blue. Observe that there is a stenotic part (yellow arrow) and inhomogeneous
bowel content. The distance between segmentation and annotation is 1,43mm.

Figure 2.12. Cross-sections of a volume from the test set in which the level set algorithm (red)
failed. The bowel lumen is filled with fecal residue only, having a similar intensity as the
bowel wall. The distance between segmentation (red) and annotation (green) is 3.2mm.
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Figure 2.13 (a) contains a Bland-Altman plot showing Dgsym (Sseg, Sino1) VErsus
Dasym(fanol, Sainoz) for the corresponding annotations. In words, it depicts the
distance between the level set and the annotation of the first expert against the
distance between second expert’s annotation and first’s. Similarly, Figure 2.13 (b)
shows Dasym(Sseg,fanoz) versus Dasym(fanol,fanoz) and Figure 2.14 shows

Dasym (Sseg' Sanol) versus Dasym (Ssegr Sanoz)'

Figure 2.14 illustrates that our algorithm approximates each of the annotators
equally well. This can be seen as the points are rather randomly distributed around
the origin of the y-axiS (Dusym(Sseq Sano1) = Dasym(SseqrSamoz) = 0). In other words, the
algorithm is unbiased with respect to the annotators. What is more, as indicated
in Table 2.4, none of the aforementioned distances are significant.

Mean distances to be compared p-value
ey (Sario 1 Sano 2) Versus o (Sau 1, Seeg) 071
Dayn (Sano 1 Sano 2) versus D, (Sano 2: Sseg) 0.90
Deoyn (Sano 1) Sseg) Versus Dy (Sano 25 Sseg) 0.95

Table 2.4: Statistical comparison of distances

Finally, we assessed the performance of the level set segmentation against all
annotations of both experts. Observe that the annotations matched only partly
between the experts. Accordingly, we compared the level set to the full inner
surfaces extracted from all the annotations (i.€. S..::Sa: )
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Figure 2.13. Bland-Altman plots of the inter-observer variability compared to the variability
between the segmentation and the annotations made by experts. The blue and red data points
denote respectively the annotations from the retrospective and prospective studies. (a) Our
level set segmentation versus annotator 1. (b) Our level set segmentation versus annotator 2

€ 2

1S O  Retrospective
c 15 :
= O Prospective
g 1 5

S 05 o ©

2
Dm 0 g@oﬁg 0] o)
1 -05 o ©
N

2 -1

©

$-15 o
o’ -

0 05 1 15 2 25 3 35 4

112 (Dseg,ano2 + Dseg,ano1) in mm

Figure 2.14. Bland-Altman plots of the distance between the level set and the annotation of
the first expert against the distance between level set and the annotation by the second expert.
The blue and red data points denote respectively the retrospective and prospective studies.
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The mean distance and corresponding standard deviation from the level set
segmentation to the first expert’s annotation D, (S.,.S.m.) Was 1.44+0.55 mm. The

mean distance and standard deviation from the level set to the second expert’s
annotation D, (S,,.S..,) Was 1.55+0.68 mm. Figure 2.15 shows the histograms of

the measured distances.

20 : : :
I Expert 2

151 I Expert 1| |

10}

5,

0 05 1 15 2 25 3 35 4
Distance between our segmentation
and each annotator in mm

Figure 2.15. Histogram of distances between the level set segmentation and the first expert (in
red) and the second expert (in blue).

2.5.4 Robustness towards initialization

The variation in segmentation outcome due to differences in initialization was
assessed for 15 randomly selected annotations. Initially, a centerline was drawn
as described in Section IV.B and this procedure was repeated three months later
for the 15 selected annotations. The technician performing the centerline tracking
was blinded to the initial centerline. If the proposed method would be run on these
centerlines the ensuing segmentations would overlap only partially due the
differences in the starting- and endpoints. For a fair comparison, the end-points of
the centerline were truncated so that the remaining points encompassed the same
part of the bowel lumen. Next, the segmentations were computed from the
modified centerlines. The distance between the two resulting segmentations and
centerlines were both computed using (2.37) (see Table 2.5). The mean distance
between the centerlines was 1.83+0.9 mm and the mean distance between
segmentations was 0.39+0.31 mm. The measured distances between the
centerlines are relatively small, because often a part of the lumen is partially
occluded, which reduces the error. Observe that the differences in segmented
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bowel lumen were much smaller than the initial difference between the
centerlines. For the majority of surface points, the differences between the two
segmentation results were below the voxel dimensions. To our opinion this
signifies the robustness of our approach against realistic variations of the
centerline.

ROI 1 2 3 4 5 6 7 8

Centerlines | 1.08 1.64 125 183 1.23 191 091 1.87

Surfaces 0.51 037 0.17 0.18 0.59 0.25 0.09 0.19

ROI 9 10 11 12 13 14 15

Centerlines | 2.15 4.63 146 1.82 1.60 0.69 248

Surfaces 026 024 029 082 0.05 056 0.50

Table 2.5 The average distance between the two centerlines and the distance between the
corresponding surfaces (in mm)

2.6 Discussion

We presented a new method to segment the bowel lumen from T1-weighted MR
images using a level set approach. The technique worked for a heterogeneous
content of the bowel lumen composed of three materials: fecal residue, water, and
air as well as a diverse lumen exterior composed of three tissues with respectively
dark, medium and bright intensities. Hence, it provided a natural extension to
existing region-based active contour models. Particularly, it avoids splitting or
merging multiple level set segmentations in a post-processing step.

Our algorithm was able to successfully segment the lumen in 60 out of 61
ROlIs, spanning a wide variety of bowel geometries and material mixtures. The
only case on which the method failed, concerned a bowel segment containing
solely fecal residue where the contrast between wall and lumen was very low. The
mean distance between our level set segmentation and the surface extracted from
annotations by two experts was respectively 1.43+0.55mm and 1.48+0.68mm.
This was comparable to the inter-observer variability between the experts’
annotations: 1.52+0.70mm. This inter-observer variability acts as a lower bound
on the measured performance. Note that the voxel size was on average Imm in-
plane and 2mm out-of-plane, which implies that the inter-observer variability was
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as accurate as one could reasonably expect. The experts independently annotated
the diseased areas, which caused a discrepancy in the number of regions that were
annotated. Therefore, the number of ROIs that was available for inter-observer
comparison was lower than then the total number of ‘unique’ ROIs. Furthermore,
we needed to truncate some of the annotations for a fair inter-observer
comparison. Although only the truncated annotations were used for the Bland-
Altman plots, the truncation did not have any influence on the presented
conclusions as the average distance between annotation and segmentation hardly
changed in the comparison with all annotations.

In our work, we modeled slowly varying intensity fluctuations and abrupt
intensity transitions in two separate terms: the smooth fluctuations in a term
representing the mean local intensity and the abrupt ones in a term consisting of
a weighted sum of mean material intensities. Alternatively, a combination of more
sophisticated basis functions could be used (instead of the mean material
intensities). Our future work could be to experiment with commonly used bases,
such as a local polynomial basis [70] and Gabor wavelets.

This chapter showed how prior knowledge, such as the stratification pattern
caused by the air-water-fecal layers inside the lumen and the distinction between
bright (kidney, bladder and arteries), middle (muscle, the water in lumen) and
dark (suppressed fat and air) anatomy in the bowel exterior, can be modeled by a
neighborhood-variant data term. What is more, we asserted that the ratio between
water and fecal residue was constant over a local ROI, which proved the case in
our study. Still, we did observe that this ratio varied globally, over a patient.
Overcoming this limitation might be another topic of future work, so that the
method could be applied to the entire bowel.

However, our highest priority will now be to use the lumen segmentations to
derive features related to Crohn’s disease activity. For instance, it eases the
measurement of features such as bowel wall thickness. Future work will also
definitely focus on automatic centerline extraction, which would further reduce
the necessary interaction time.

Appendix

The Appendix defines special conditions for transitions through which the level
set should not propagate. The first transition through which the level set should
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not propagate is the transition between air and bowel wall. Due to partial volume
effects, the bowel wall voxels above air can have signal intensities in the range of
water. In that case the level set tends to propagate through the wall. Initially,
voxels above an air cavity are identified by

<VCair (y),n, >
1, \Véair(y)\
A VC e

0, elsewhere

>—cosf, ..

T, (y)= (2.38)

where Ty, (y) is a binary image depicting the invalid air to bowel wall transitions,
< > indicates the inner-product, V() the gradient operator, 6,,,, specifies the
maximum angle of the gradient compared to n,, which is a unit vector oriented in
the posterior direction for our coronal images, and € is a threshold to select the
boundary voxels.

The first term of the condition in the top part of (2.38) constrains the
direction of the gradient vector: an upward pointing normal likely corresponds to
an air-bowel wall interface; if it deviates more than 6,,,,, it most probably
concerns a different transition. The second term constrains the influence of
T,w (¥) to voxels located at transitions. Ty, (¥) is used to stop the propagation of
the active contour by setting Cygrer (¥) and Crecqi (¥) to zero and Cy;r () to one,
when T, (y) is 1.

A

Car (¥)=Cae (%) + T (V) Coter (V) + Coa (). (239)

By doing so, w(y) is equal to 0 and in turn &;(x,y) is zero. This makes that
1(y)-¢(xy) deviates from zero, adding positive energy to (2.5). Therefore, the

level set is encouraged to halt at the interface. Figure 2.16 (b) illustrates which
voxels are selected through (2.38) in a typical situation.

The second transition through which the level set should not propagate is an
apparent fecal residue to water transition. Due to partial volume effects, the
intensity of healthy bowel wall may approach the intensity of fecal residue. Then,
whenever the tissues surrounding the bowel have the same intensity as water, the

algorithm would keep on propagating. In order to cope with this issue we adapted
45



Chapter 2: An active contour algorithm for segmenting the bowel lumen from
T1-weighted MR images

the material fractions in a similar way as for the air to water transitions albeit
involving slightly differing criteria. First, the gradient of the interface between
water and fecal residue downwards, so that any such interface with a larger angle
than 6,,,, cannot be a true fecal residue to water transition. Accordingly, we
define

<Vé fecal (X)5 1, >
T (X) =y ‘Véfecal (X)‘

0, elsewhere

<cosb,,, N ‘Véfecal (x)‘ >e (2.40)

where Tf, 1(x) is a binary image depicting the invalid fecal residue to water
transitions. Additionally, healthy bowel wall may be confused for fecal residue
by our material fractions. Since healthy bowel is thin, these voxels can be detected
by burring Crecqi(x) with a Gaussian kernel of size equal to the thickness of
healthy bowel followed by a threshold. If the wall thickness is on the same order
as the kernel size, the sides of the bowel wall move outwards (the full width at
half maximum increases), the contrast drops and finally the whole structure
disappears. For a thicker bowel wall, the location remains the same and therefore
the dimensions of the structure remain unaffected. Therefore, thin bowel
structures can be detected by

1 K. *C,__ <z
T X) = pt fecal thin , 241
" ( ) { 0 elsewhere ( )

where Tf,, , (x) is a binary image that identifies the invalid fecal residue voxels,
* depicts the convolution operator and K,;(x) is a Gaussian kernel of size pt and

Tinin 18 a threshold for classifying thin structures.
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Figure 2.16. An illustration of the use of prior knowledge on the ordering of lumen materials.
(a) An ROI from an axial slice depicting part of the transverse colon with the segmented
bowel surface in red. (b) The voxels labelled as air have a magenta colour. The cyan color
depicts voxels that were initially labelled as water or fecal residue. According to (2.38), these
voxels were positioned at an invalid air-water interface, were therefore relabelled to air
voxels. (¢) An ROI from an axial slice depicting part of the ascending colon with the
segmented bowel surface superimposed in red. (d) The regions labelled as fecal residue are
shown in magenta. The cyan voxels were eliminated as invalid fecal residue to water
transitions based on the criteria of (2.40) (e.g. those in the dashed green circle) and (2.41)
(e.g. those in the dashed yellow circle).

Subsequently, (2.40) and (2.41) are combined into a single binary image
Tfy, (x) containing all voxels that were presumably erroneously classified as fecal

residue
Taw(X) =T, (X)U Ty, (x). (2.42)

Finally, the corrected material fractions of water Cy,q¢er(x) and fecal residue
Crecar(x) are computed based on (2.38) and (2.42) resulting in

C ecar (X) = C et (¥) (1- T, (), (2.43)
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and

Cwater (X) = CEwater ( X)(l _Taw) + éfecal (X)wa ( X)' (244)

Figure 2.16 illustrates how the aforementioned knowledge on the ordering of
materials (transitions from air to bowel wall and from fecal residue to water) is
used to correct estimates of the volume fractions and thereby avoid propagation
of the level set from the lumen into the exterior.

Finally, a Gaussian kernel blurs the material fractions in order to represent
the blurring effects caused by the PSF of the MRI scanner.
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3 Semi-automatic bowel wall
thickness measurement on MR
enterography in patients with
Crohn’s disease

Abstract

Purpose. To evaluate a semi-automatic method for the delineation of the bowel
wall and the measurement of the wall thickness in patients with Crohn's disease.

Methods. Fifty-three patients with suspected or diagnosed Crohn’s disease were
selected. Two radiologists independently supervised the delineation of regions with
active Crohn’s disease on MRI, yielding manual annotations (Anol, Ano2). Three
observers manually measured the maximal bowel wall thickness of each annotated
segment. An active contour segmentation approach semi-automatically delineated
the bowel wall. For each active region, two segmentations (Segl, Seg2) were
obtained by independent observers, in which the maximum wall thickness was
automatically determined. The overlap between (Segl, Seg2) was compared with
the overlap of (Anol, Ano2) using Wilcoxon’s signed rank test. The corresponding
variances were compared using the Brown—Forsythe test. The Intraclass Correlation
Coefficient (ICC) of semi-automatic thickness measurements was compared to the
ICC of manual measurements through a likelihood-ratio test.

Results. Patient demographics: median age: 30, IQR: [25,38]; 33 female.
The median overlap of the semi-automatic segmentations (Segl vs Seg2: 0.89) was
significantly larger than the median overlap of the manual annotations (Anol vs
Ano2:0.72): p=1.4 107, The variance in overlap of semi-automatic segmentations
was significantly smaller than the variance in overlap of manual annotations (p =
1.1 10°).The ICC of semi-automatic measurement (0.88) was significantly higher
than the ICC of manual measurement (0.45): p = 0.005.

Conclusions. The semi-automatic technique facilitates reproducible delineation of
regions with active Crohn’s disease. The semi-automatic thickness measurement
sustains significantly improved interobserver agreement.
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3.1 Introduction

Magnetic resonance imaging (MRI) facilitates evaluation of patients with Crohn’s
disease[71-73]. In particular, multiple MRI features are useful for assessment of
Crohn's disease activity[14, 16, 28, 74]. Several disease-grading systems using
these features have been validated against endoscopy and/or histopathology,
notably the MaRIA, Clermont, London and CDMI scores,[14, 16, 75-77]. An
important feature that is included in all the aforementioned disease activity scores
is the maximal thickness of the bowel wall of a diseased segment.

Clinically, the bowel wall thickness in active Crohn’s disease is manually
measured using electronic calipers in the most thickened part of a segment.
Generally, a manual measurement makes a method inherently subjective and
limits the reproducibility of a feature. Accordingly, varying Intraclass Correlation
Coefficients (ICC’s) have been reported, reflecting this subjectivity[28, 78]. A
method that (semi-) automatically performs the thickness measurement, might
improve reproducibility. In turn, the reproducibility of the Crohn’s disease scores
could be enhanced.

A standard image processing approach to such a problem is to first (semi-
Jautomatically delineate the region of interest (‘segmentation’). Subsequently, a
feature like the bowel wall thickness is derived from the segmented region. An
image processing method that is frequently used for segmentation is the so-called
active contour technique[41, 57, 58, 61]. Here, a very coarse outline of an object
is initially created, which is then virtually deformed to yield the actual outline of
the object of interest.

We have implemented an active contour approach to semi-automatically segment
both the bowel wall’s inner and outer surface taking into account the
inhomogeneous bowel content, see appendix II. Subsequently, the single largest
distance between the two surfaces is determined to yield the thickness measure.
The method was integrated in the 3DNetSuite image postprocessing environment
(Biotronics3D inc, London, United Kingdom).

The aim of the current study is to evaluate this semi-automatic method to segment
the bowel wall and subsequently measure wall thickness. We hypothesize that our
semi-automatic method significantly improves interobserver agreement compared
to manual measurement.
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3.2 Methods
3.2.1 Data

The data employed in this chapter were taken from two studies on Crohn’s
disease: (1) data from a prior, single center study referred to as retrospective
data[69]; (2) data from a recently concluded multi-center study called the
prospective data (publication in preparation).

Inclusion criteria for the retrospective study were: patients with histologically
proven Crohn’s disease, >18 years of age, undergoing MRI and ileocolonoscopy
(within two weeks) as part of their clinical follow-up in a single tertiary center
(the Academic Medical Center (AMC), Amsterdam, the Netherlands).

Inclusion criteria for the prospective study were: patients with suspected or
proven Crohn’s disease (based on clinical data, endoscopy or histopathology),
>18 years of age, undergoing MRI and ileocolonoscopy within two weeks as part
of their clinical follow-up in one of two tertiary centers (1. the Academic Medical
Center, Amsterdam, the Netherlands or 2. The University College London
Hospitals (UCLH), London, United Kingdom).

Exclusion criteria for both studies were: general contraindications for MRI
(claustrophobia, pregnancy, renal insufficiency, pacemaker), an incomplete scan
protocol or incomplete colonoscopy e.g. due to impassable strictures.

The local Medical Ethics Committee approved both studies. All patients gave
written informed consent to usage of their data for future investigations.

The retrospective data was from all 27 patients consecutively included in the prior
study at AMC between February 2009 and November 2010. Patients drank
1600ml of a hyperosmolar fluid (Mannitol, 2.5%, Baxter, Utrecht, The
Netherlands) 1 hour before acquiring the MRI scans for optimal distension of the
terminal ileum. MR imaging was performed on a 3.0T MRI scanner (Intera,
Philips Healthcare, Best, The Netherlands). Imaging included amongst others a
breath-hold contrast-enhanced T1-weighted spoiled gradient echo series with fat
saturation. This was the sequence that was used for semi-automatic thickness
measurement (see below).
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The prospective data was from 26 patients randomly selected from the prospective
study data acquired at UCLH. This was done to have an approximately equal
number of patients from two different medical centers. Patients were
consecutively included in the prospective study from December 2011 until August
2014. The UCLH data was acquired with almost the same imaging protocol as the
retrospective data. The most relevant difference concerned the patient preparation,
which involved an additional ingestion of 800 ml Mannitol (2.5%) three to six
hours prior to the examination to optimize the distension of the colon. MR
imaging was also performed on a 3.0T MRI scanner (Ingenia, Philips Healthcare,
Best, The Netherlands).

Detailed scan protocols are listed in Appendix I.
3.2.2 Annotations

Two experienced abdominal radiologists (JS (>800 enterographies, 21 years), ST
(>1600 enterographies, 13 years)) independently identified all regions they
considered to represent active Crohn’s disease. The presence of active Crohn’s
disease was based on all available MRI sequences. Two research fellows (JT
respectively AM) independently annotated the data on behalf of the radiologists.
Henceforth, these annotations are referred to as Anol and Ano2 respectively.
Specifically each annotation was performed by successively drawing (2D)
polygons in all slices including the diseased segment on the coronal contrast-
enhanced T1 image. The stacks of 2D polygons constituted 3D volumes of active
disease segments and served as references for the semi-automatic segmentations
(see below). Annotations were considered to correspond (i.e. Anol and Ano2
detailing the same diseased segment) if they had at least 10% overlap.

The same two radiologists (JS, ST) and one research fellow (CP (>100
enterographies)) manually measured the maximal bowel wall thickness of each
segment with disease activity, i.e. with an annotation Anol or Ano2 including
segments with overlap between Anol and Ano2. The three observers were
instructed to measure the bowel wall thickness of each segment, but no further
guidance or instruction was given. In particular, observers were blinded to the
measurements of each other. Henceforth these measurements will be referred to
as Obl, Ob2, Ob3.

3.2.3 Semi-automatic thickness measurement
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50 100 150 200 250
Medial axis position (mm)

Figure 3.1: (a): initialization by placing a few points on the bowel’s centerline. (b): example
segmentation of the bowel wall indicated by a red line. (c): the average thickness determined
over small patches along the circumference of the bowel; separate colors indicate such
patches. (d): average patch thickness as a function of the position on the centerline. The
maximum value represented the wall’s maximal thickness, i.e. 8.2 mm in the example.

The method to measure the bowel wall thickness comprises four main steps:

1. Initialization

2. Identification of the bowel wall’s inner surface
3. Identification of the bowel wall’s outer surface
4. Thickness measurement

The method is initialized by manually placing a few points to indicate the bowel’s
centerline across a diseased section of the gastrointestinal tract (Figure 3.1 (a)).
Subsequently, a small, virtual tube was constructed around this centerline that
served as an initial model for the bowel wall’s inner surface.

53



Chapter 3: Semi-automatic bowel wall thickness measurements on MR
enterography in patients with Crohn’s disease

Next, the initial model was mathematically deformed, such that it delineated the
transition from the bowel lumen to bowel wall as inferred from the MRI data.
Therefore, we applied a well-described technique in image processing, referred to
as active contour segmentation[44, 58, 61]. The technique takes into account the
inhomogeneous content of the bowel lumen, see appendix II.

Subsequently, we fixed the delineated bowel wall’s inner surface and applied a
similar active contour segmentation to identify the wall’s outer surface. This
second segmentation was initialized by outwardly dilating the inner surface
segmentation by 4 mm: approximately the average thickness of the healthy bowel
wall[79]. This initial model was also mathematically deformed, such that it
delineated the transition from the bowel wall to the adjacent tissues. The method
was very similar to the one identifying the bowel wall’s inner surface except for
considering structures with varying signal intensity outside the bowel wall.

Figure 3.1(b) contains an example of the resulting segmentation of the bowel wall.

Finally, the distance was measured from each point on the segmented inner
surface to the closest point on the segmented outer surface. These distances were
averaged over small patches of 4 mm in length along the circumference of the
bowel. The maximum average value was taken as the wall’s maximal local
thickness. Figure 3.1(c)(d) illustrates this procedure.

The mathematical details of the method are described in appendix II.

For the current study, in order to initiate the algorithm, two research fellows (RN,
CP) independently indicated a centerline through the diseased segments
delineated by annotations Anol and Ano2. This was done to allow subsequent
comparison between the manual annotations and the semi-automatic
segmentations.

Centerlines were drawn in the bowel lumen to completely cross the full extent of
the annotated disease segments. Subsequently, the described algorithm yielded
segmentations (Segl for research fellow 1, Seg2 for research fellow 2), and
respective measures of the maximum bowel wall thickness (M1, M2).

Using this methodology, annotated regions Ano1 corresponded to semi-automatic
segmentations Segl and the annotated regions Ano2 to the semi-automatic
segmentations Seg2. Furthermore, in segments with overlapping Anol and Ano2
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annotations, the manual measurements Obl, Ob2, Ob3 corresponded to
measurements (M1, M2). In annotated segments without overlap, Obl, Ob2, Ob3
corresponded with only one measurement (either M1 or M2).

3.2.4 Evaluation measures

The performance of the semi-automatic segmentation procedure and the
subsequent thickness measurement were separately evaluated by:

e Quantifying the overlap (correspondence) between the semi-automatic
segmentations and manual annotations.

e Assessing the distance (i.e. the mismatch of the contours) between the
semi-automatic segmentations and manual annotations

e Visually grading the overlap (correspondence) between the semi-automatic
segmentations and manual annotations.

e Correlating the semi-automatic thickness measurements to the manual
measurements.

A coefficient was determined reflecting the overlap or correspondence between
the manual annotations and the semi-automatic segmentations (Figure 3.2(a)). In
all cases, a semi-automatic segmentation covered a larger part of the bowel wall
than the corresponding manual annotation. This was because the centerlines
drawn by the research fellows extended beyond the manual annotations for some
distance. The overlap coefficient was calculated as the percentage of volume of
the manual annotations that did not overlap with the semi-automatic
segmentation. This overlap measure is referred to as the semi-Dice coefficient, as
it is essentially an asymmetric version of the Dice coefficient that is often applied
in image processing research to measure overlap[80].

Furthermore, the mean shortest distance was determined from points on the
manual delineations Anol and Ano2 to the semi-automatic segmentations Segl
and Seg? (Figure 3.2 (b)).
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b

Figure 3.2: (a): the semi-Dice coefficient is defined as the volume of the annotation (A) not
covered by the segmentation (S), i.e. the ratio of the striped volume to the dotted plus striped
volume of the annotation. (b): the mean shortest distance between annotation (A) and
Segmentation (S) is calculated by sampling points on A and averaging the distance of each
such point to the closest position on S.

The research fellows who drew the paths also visually graded the accuracy of the
semi-automatic segmentation on a four point Likert scale. The Likert scale
reflected the percentage of overlap with the perceived lesion: 0 (<,50%] no
overlap; 1: (50%,70%] poor overlap; 2: (70%,90%] moderate overlap; 3:
(90%,<],complete overlap.

Finally, the intraclass correlation coefficient (ICC) between the manual thickness
measurements Ob1l, Ob2 and Ob3 and the thickness measurements derived from
the semi-automatic segmentations was derived. [CC values were interpreted using
the following criteria: <0.20, poor; >0.20<0.40, fair; >0.40<0.60, moderate;
>0.60<0.80, good; >0.80<1.00, very good[81].

3.2.5 Statistical analysis

The overlap of the semi-automatic segmentations was statistically compared to
the overlap of the manual annotations (Anol, Ano2) using the Wilcoxon’s signed
rank test. The associated variances were statistically assessed by the Brown—
Forsythe test. The same statistical tests were used to compare the mean shortest
distances of the segmentations to the annotations.

The ICC’s of (two) manual thickness measurements were statistically compared
to the (two) semi-automatic measurements by means of a generalized Bland-
Altman procedure. The overall ICC of the (three) manual measurements was
statistically compared to the ICC of the (two) semi-automatic measurements
through a likelihood-ratio test using a standard mixed model analysis.
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A value of p<0.05 was considered statistically significant. All statistical analyses
were performed with IBM SPSS Statistics version 22.0 for Microsoft Windows
computers (SPSS, Chicago, III, USA).

3.3 Results

The patient demographics were: median age: 30, IQR: [25,38]; 33/53 female. In
the complete dataset 52/53 patients were identified with active Crohn’s disease
on MRI by either one of the radiologists or by both. In these patients there were
47 Anol annotations and 42 Ano2 annotations. Across both radiologists, there
were 59 unique segments identified as active (i.e. annotated either as Anol or
Ano2 alone, or by both), of which 30 corresponded, i.e. by having an overlap of
more than 10%. The median overlap of these corresponding regions was 72%.

3.3.1 Evaluation of the semi-automatic segmentations

In Figure 3.3 the manual annotations (Anol, Ano2) in the corresponding segments
(n=30) are compared with the semi-automatic segmentations Segl and Seg2.
Figure 3.3(a) shows distributions of the semi-Dice coefficient (i.e. the overlap
measure) and Figure 3.3(b) distributions of the mean shortest distances. The
median semi-Dice coefficients were: Anol vs Segl = 0.87; Ano2 vs Seg2 = (.76;
Anol vs Ano2 = 0.72; Segl vs Seg2 = 0.89. The overlap of the semi-automatic
segmentations (Segl vs Seg2) was significantly greater than the overlap of the
two manual annotations (Anol vs Ano2): p = 1.4 107, Also, the variation in the
overlap of the semi-automatic segmentations was significantly smaller than the
variation in the overlap of the manual annotations (p = 1.1 10~). The median of
the mean shortest distances were: Anol vs Segl = 1.31; Ano2 vs Seg2 = 1.28;
Anol vs Ano2 = 1.07; Segl vs Seg2 = 0.64. The median of the distances between
the semi-automatic segmentations (Segl vs Seg2) was significantly smaller than
the median of mean shortest distance between the two manual annotations (Anol
vs Ano2): p=6.0 10, Also, the variation in the mean shortest distance of the semi-
automatic segmentations was significantly smaller than the variation in the mean
shortest distance of the manual annotations (p=1.510").
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Figure 3.3. Comparison of the manual annotations Anol and Ano2 with the semi-automatic
segmentations Segl and Seg2. Only corresponding regions are included, i.e. in which there
was at least 10% overlap between the annotations Anol and Ano2 (n= 30). Each box plot
shows the distribution of semi-Dice coefficients (a), respectively mean shortest distances (b)
for a particular comparison (horizontally). The boxes display the median and 25th,
respectively 75th percentiles of the data distribution; whiskers extend to 1.5 times the
interquartile range; values outside these ranges are indicated as individual points.

Figure 3.4 is a bar chart summarizing the visual assessment of the semi-automatic
segmentations, for all annotated regions. The distribution over the grades (0 to 3)
for Segl was: 2, 1, 10 and 34, respectively (n=47). The distribution for Seg2 over
the grades was: 1, 1, 4 and 36, respectively (n=42). The segmentations with grade
0 and grade 1 related to images with imaging artifacts (n=1) and extensive fecal
residue obscuring the bowel wall (n=2), respectively.
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Figure 3.4. Bar chart collating the visual assessment of Segl and Seg2 by the research fellows
initiating the segmentations. Horizontally are the Likert gradings: ‘0’ no overlap; ‘1°: 33%
overlap; ‘2°: 66% overlap; ‘3’: complete overlap. Vertical are the fraction of segmentations in

58



Chapter 3: Semi-automatic bowel wall thickness measurements on MR
enterography in patients with Crohn’s disease

a grading category (summing to 1 for both fellows). All annotations are included (n=47 for
Segl; n=42 for Seg2).

Figure 3.5 relates box plots of the semi-Dice coefficients of the segmentations to
the grades given for all segmentations: Segl (a) respectively Seg2 (b).
Additionally, Table 3.1 shows the medians of the semi-Dice coefficients, mean
shortest distances and visual grades for all segmentations.
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Figure 3.5. Box plots of semi-Dice coefficients as a function of the visual grades. (a): Segl
(n=3 for Grade 0&1; n = 10 for Grade 2; n=34 for Grade 3); (b): Seg2 (n=2 for Grade 0&1; n
= 4 for Grade 2; n=36 for Grade 3).

Anol-Segl Ano2-Seg?2

(n=47) (n=42)

Median semi-Dice (a.u.) | 0.90[0.82; 0.94] 0.84 [0.74; 0.90]
Median Distance (mm) | 1.45;[1.29;1.63]  1.61[1.36;2.0]

Median Grade (a.u.) 3[3:3] 3[3;3]

Table 3.1: Median values and interquartile range of the semi-Dice Coefficient, mean shortest
distance and visual grade comparing all annotated regions Anol and Ano2 to the
segmentations Segl and Seg2.

3.3.2 Evaluation of the semi-automatic thickness measurement

Table 3.2 details the paired ICC coefficients of wall thickness measurements on
the corresponding regions: Obs1, Obs2, Obs3, M1 and M2. Similarly, Table 3.3

59



Chapter 3: Semi-automatic bowel wall thickness measurements on MR
enterography in patients with Crohn’s disease

and Table 3.4 shows the ICC’s of the wall thickness measurements from all
regions, i.e. depicting the ICC’s for M1, respectively M2 separately. There is one
semi-automatic measurement in the latter tables because there is no corresponding
semi-automatic measurement for some regions.

The ICC’s of the paired manual measurements on the overlapping segments
varied from fair (lowest ICC: 0.34 (Obs1 vs Obs2)) to good (highest ICC: 0.60
(Obs2 vs Obs3)). The overall ICC of the manual measurement was moderate:
0.451. The ICC of the semi-automatic measurements on these segments was
considered very good (0.88).

The ICC of the semi-automatic measurements was significantly higher than each
ICC of the manual measurements. Particularly, p = 7.7*%10"-5 for the comparison
of the ICC of Obs2 vs Obs3 (0.60) to the ICC of M1 vs M2. Moreover, the overall
ICC of the semi-automatic measurements was found to be significantly lower than
the overall ICC of the manual measurement (p = 0.0054).

Obsl Obs 2 Obs 3 M1 M2
Obs 1 1 0.342 0.516 0.542 0.453
Obs 2 0.342 1 0.603 0.617 0.529
Obs 3 0.516 0.603 1 0.737 0.738
M1 0.542 0.617 0.737 1 0.897
M2 0.453 0.529 0.738 0.897 1

Table 3.2: Intraclass correlation coefficients of manual thickness measurements Obs1, Obs2,
and Obs3 and semi-automatic measurements M 1,M2 for the corresponding regions (n=30).

Obs 1 Obs2 Obs 3 Ml
Obs 1 1 0.475 0.473 0.541
Obs 2 0.475 1 0.451 0.593
Obs 3 0.473 0.451 1 0.722
Ml 0.541 0.593 0.722 1
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Table 3.3: Intraclass correlation coefficients of manual thickness measurements Obs1, Obs2,
and Obs3 and semi-automatic measurements M1 (n=47) for all segments with an annotation
Anol.

Obs 1 Obs2 Obs 3 M2
Obs 1 1 0.325 0.584 0.485
Obs 2 0.325 1 0.658 0.545
Obs 3 0.584 0.658 1 0.702
M2 0.485 5.45 0.702 1

Table 3.4: Intraclass Correlation coefficients of manual thickness measurements Obs1, Obs2,
and Obs3 and semi-automatic measurements M2 (n=42) for all segments with an annotation
Ano?2.

3.4 Discussion

This chapter evaluated a semi-automatic method to measure bowel wall thickness.
The method consisted of four steps: (1) initialization by manually drawing a
centerline, (2) segmentation of the bowel wall’s inner surface, (3) segmentation
of the wall’s outer surface, and (4) measurement of the bowel wall thickness.

The eventual thickness measurement was fully dependent on the preceding
segmentation step. In future research, the segmentation might also be at the basis
to derive other features, e.g. the volume of the disease region. For these reasons,
the method was separately evaluated regarding its performance (1) regarding the
segmentation of a diseased part of the bowel wall and (2) to measure a bowel
segment’s wall thickness.

The overlap and distance between semi-automatic segmentations and the manual
annotations were first determined on the corresponding segments (i.e. where the
two independent manual annotations were made in the same segment of bowel).
This allowed a direct comparison of the performance measures. The median
overlap of the segmentations with these annotations was large: 0.87 (Segl vs
Anol) and 0.76 (Seg2 vs Ano2). Additionally, the median distance between
segmentation and manual annotations was small: 1.31 mm (Segl vs Anol) and
1.28 mm (Seg2 vs Ano2). What is more, the two semi-automatic segmentations
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had significantly larger overlap and shorter distance to each other than the manual
annotations. There was also a significantly smaller spread in overlap and distance
between the segmentations than between the annotations. This signifies the good
reproducibility of the semi-automatic segmentations.

The corresponding segments might be relatively ‘easy’ to segment because there
was agreement between the annotators regarding the presence of active disease.
However, the large majority of visual gradings indicated complete overlap of
segmentation and annotation considering all regions (i.e. not only the
corresponding ones). Only a few segmentations had poor (33%) to no overlap
with the annotations: 3/47 for Segl and 2/42 for Seg2. The median semi-Dice,
mean shortest distance and overlap grading (c.f. Table 3.1) further confirm the high
accuracy of the segmentations on all regions. Figure 3.5 aimed to corroborate the
relation between the visual gradings and the overlap measures. We refrained from
statistically assessing the relation, because there are hardly any gradings in
categories ‘0’ & ‘1’ and relatively few in category ‘2’.

Most importantly, the ICC of the semi-automatic thickness measurements was
found to be significantly lower than the ICC of the manual measurement (p =
0.0054). This demonstrates the limitation of performing manual thickness
measurements and the benefit of semi-automatic measurement.

Previous studies have reported varying agreement in manual measurements of the
bowel wall thickness[28, 78]. Part of our data is also included in[28]. In that
study, the ICC was reported to be very good (0.87) for (two) experienced
observers, while it was reported to be good (0.69) for a mixed pool of (four
observers)[28]. On the other hand, a moderate ICC of 0.51 was reported in another
study of 33 patients[78]. To our knowledge all the previous studies evaluated the
thickness measurement on all bowel segments of patients in a study population.
As such, these measurements probably included a large number of healthy
segments, which could skew the ICC to higher values. Our thickness
measurements were made on segments that were perceived as active by two
experienced radiologists. In our opinion, the lower overall ICC than previously
reported for our data (0.45 vs 0.69) shows the difficulty of objectively measuring
the thickness of bowel segments with active disease on MRI.
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Semi-automatic methods for segmentation have been widely employed for many
other challenging problems in medical imaging such as lymph node detection[82],
segmentation of skin lesions[83], tumor identification[84], and organ localization
and segmentation[85]. These data illustrate the wide availability of techniques for
(semi-) automatically segmenting abnormal regions. However, there is very
limited work on (semi-) automatic segmentation of the bowel wall, particularly in
relation to Crohn’s disease. In our opinion this highlights the difficulty of the task.
Related in part, Bhushan et al. [86]developed a motion correction and
pharmacokinetic parameter estimation technique for identifying colorectal cancer
using dynamic contrast enhanced MRI data. Furthermore, Schunk et al [87]
analyzed MR images for their suitability in analyzing inflammatory bowel
diseases, including Crohn's disease. However, they did not explore computational
tasks, but instead focused on the clinical aspects. Recently, our group has
developed a supervised learning framework for automatic detection and
segmentation of Crohn’s disease from abdominal MR images[40]. However, this
method does not deliver a comprehensive segmentation of the colon wall, but
identifies only small regions sized a several mm?® affected by Crohn’s disease.

Our work has several limitations. First, we focused on segments with active
Crohns’ disease on MRI only. We took this approach arguing that these segments
are most relevant both for diagnosis and assessment of disease severity. Also, this
approach concurs with clinical practice in which the MRI is often evaluated
without knowledge of endoscopic results. As a consequence, there were segments
presenting active disease on endoscopy that are not included in the measurements.
Simultaneously, several of the segments (with active disease) in which the
thickness measurement was done did have a normal appearance on the T1 images
(scored for the prospective study). All these segments were graded with a ‘3’ by
our annotators (i.e. complete overlap of segmentation and annotation). We expect
that including normal segments will only positively skew the ICC’s.

Second, we did not correlate the thickness measurements to colonoscopic
outcome measures. Conventionally, the thickness measurement is combined with
other features in disease-grading systems, which are validated against the
colonoscopic assessment [14, 16] [75, 76][77]. We consider such a validation
outside the scope of our current chapter, but it is an important aspect in a
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comprehensive analysis of the prospective data that is in progress (publication in
preparation)

In conclusion, our data shows that a semi-automatic measurement technique
facilitates a highly reproducible delineation of a region with active Crohn’s
disease. Furthermore, the semi-automatic thickness measurement achieves a
significantly higher intraclass correlation than manual observers in active
segments on MRI. As such, it may reduce the inter-observer variability of MRI
grading systems for Crohn’s disease.

Appendix I: scan protocol

Plane  Matrix Slice thickness FOV (mm~2) TR TE Flip
(mm) (ms) (ms) angle
Balanced GE Coronal 400x400 5 380x380 2,5 1,25 60
BTFE dynamic fat sat Coronal 192x 192 10 380x380 2.0 1 45
T2-SSFSE Coronal 400x400 4 380x380 6660 60 90
T2-SSFSE Axial ~ 528x528 4 400x400 759 119 90
T2-w SSFSE fat sat Axial  320x320 7 380x302 1314 50 90
DCE sequence Coronal 192x224x30 NA 380x439 2,9 1,8 15
3D T1-w SPGE fat sat Coronal 200x240x90 NA 380x459 2.2 1.0 10
3D T1-w SPGE fat sat  Axial 384x384x90 NA 380x380 2.1 1.0 10

GE: gradient echo; BTFE: balanced turbo field-echo; SSFSE: single-shot fast spin echo; DCE: dynamic contrast enhanced; SPGE:
spoiled gradient-echo; FOV: field of view; TR: repetition time; TE: echo time.

Table 3.5. Scan protocol applied to acquire the prospective data.

Plane Matrix Slice thickness FOV TR TE Flip

(mm) (ms) (ms) angle
T2-SSFSE Coronal 256x256 4 400x400 516-758 65-118 90
T2-SSFSE Axial  256x256 4 400x400 516-758 65-118 90
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T2-w SSFSE fat sat Axial ~ 288x288 7 375x300 1370-1450 70 90
DCE sequence Coronal 144x144x14 NA 400x400x35 2,9 1,8 6

3D T1-w SPGE fat sat Coronal 192x192x100 NA 400x400x200 1.87-2.19 1.0 10
3D T1-w SPGE fat sat Axial ~ 208x208x70 NA 400x400x140 1.87-2.19 1.0 10

SSFSE: single-shot fast spin echo; DCE: dynamic contrast enhanced; SPGE: spoiled gradient-echo; FOV: field of view; TR: repetition
time; TE: echo time.

Table 3.6. Scan protocol applied to acquire the retrospective data.

Appendix II: technical description of the segmentation
algorithm

The bowel wall’s inner surface was segmented using an active contours
algorithm, which extends the well-known Local Binary fitting approach[58]. This
algorithm was initialized by computing the signed distance transform to the
boundary obtained by dilating a manually drawn centerline using a small
structuring element of 3x3x3 voxels. A negative distance to the contour denoted
the inside and a positive distance the outside of the lumen. This level set function
evolved to optimize an energy function E;,;;, which balanced a data term Ej444;
and a shape term Egpqper;

Eru = Equar + Enape (3.1)

totl datal

The data term took into account that the lumen as well as the exterior could
contain materials with varying intensity. Therefore, the intensity I(y) in a
neighborhood around x was modelled by a locally varying function &;(x, y):

Edatalz_[Q z .[Q K,(x-y)x

i={lumen,background }

[(' (v)-&xy)’

277 (x)

; (3.2)

+log m(X)J M; (44 (v ))dydx

In this equation the outer integral sums over the entire image domain Q ¢ R3, so
that x represents an image coordinate. The summation is over the lumen and the
background separately, while an indicator function (M;(z)) is applied that is one
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if z € (); and zero otherwise. As such the inner integral represents a convolution
sum that only takes into account terms from the region indexed by the indicator
function. Furthermore, x —y is a neighbourhood coordinate and K,(x —y) a

weight function (e.g. a Gaussian) imposing locality around voxel x. Finally, n?(x)
is the residual w.r.t. the model (i.e. the local variance).

Essentially, &;(x,y) can take on an intensity that depends on the material
encountered in y. This can correspond to water, air or faeccal material for the
lumen. Similarly, dark, intermediate and bright intensities are assumed to occur
in the background. As such, we were able to cope with the varying constituency
on either side of the level set function.

The shape term served for regularization and consisted of the commonly used
weighted minimal length term[44]:

Eogr = [ 9056V H0|5, (4 (x))dx, (3:3)
where 6. () represents a regularized Dirac function and g(x) is a weight function
that is low whenever the gradient of the level set function is directed to the normal
of the image gradient.

The total energy function was optimized iteratively by a two-step process: (1)
& (x,¥) and n;(x) were updated by minimizing (3.2) for a fixed ¢,4; (2) ¢P4(x)
was adjusted using a gradient descent approach.

This optimization resulted in a segmentation of the inner surface of the bowel
wall, which was fixated. Subsequently, a similar active contour approach was
taken to coarsely segment the outer surface of the bowel wall with a second level
set function. This second level set function was initialized by outwardly dilating
the final segmentation of the inner surface by 4 mm: approximately the average
thickness of the healthy bowel wall[79]. The ensuing boundary again served to
generate a level set function ¢ (x) in which a positive distance to the contour
denoted the inside (wall) and a negative distance background. The level set again

evolved to optimize an energy function: E,__ = E +E

toto dataO shapeO *

The data term of the second energy function was very similar to the one
segmenting the bowel lumen except for that the bowel wall was assumed to
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contain only one component: &4, (X, ¥) = Uyau(x). Therefore, the indicator
function M,,4;;(z)) was adjusted such that it only took into account terms
corresponding to the wall (and discard terms if z were in the lumen).

The shape term E consisted of three terms;

shapeO

E AE + 2, E o + HE (3.4)

shape0= 1 —regularO 3 =crossO

The first term in (3.4) was the same minimal length term as applied to the inner
surface segmentation (Eregularo = EShapel (¢B ) ). The second term targeted to keep

the outer surface close to the average wall thickness:
EthickO = IQ (¢A (X) 5{ (¢B (X) - /uaverage )2 dX, (3 5)

which returns the squared deviation from the average bowel wall thickness
integrated along the outer surface.

The third term of (3.4) merely prevented the inner and the outer surface
representations from crossing each other:

Eross (¢A’ ¢B) = I H (¢A(X)) H (¢B (X))dx . (3.6)

in which H represents a heavy side function. Essentially, equation (3.6) returns a
(positive) number if the outer surface crosses the inner surface and is zero
otherwise. Setting /, to a very large value precludes such a crossing.

The energy function for the bowel wall’s outer surface segmentation was
optimized following the same strategy for the inner surface segmentation. The
two resulting level sets together yielded an accurate delineation of the bowel wall.
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4 Semi-automatic assessment of the
small bowel and colon in Crohn’s
disease patients using MRI (the
VIGOR++ project)

Abstract

Background: MRI disease activity scores show promise for evaluation of Crohn's
disease (CD), although varying degrees of reproducibility have been reported.
Potentially, these can be improved by use of software assisted semi-automated
measurements. The aim of this study was to develop and validate a predictive MRI
activity score for ileocolonic CD activity based on software assisted semi-automatic
measurement of MRI features.

Methods: 120 patients (66 female, median age 35) patients with suspected or
known CD were prospectively recruited from two centers to undergo consecutive
MRI and ileocolonoscopy. An MRI based disease activity score (the "VIGOR"
score) was developed based on subjective radiologist observations and semi-
automatic measurements of bowel wall thickness, excess volume and contrast
enhancement (A1) using a retrospective cohort of 27 patients with known CD and
the Crohn's Disease Endoscopic Index of Severity (CDEIS) as reference standard.
A second score was developed based on only the subjective radiologist
observations. For validation, both scores were applied to the prospective dataset,
along with two existing MRI activity scores (MaRIA and the London score).
Interobserver agreement was evaluated using the intraclass correlation coefficient
Ico.

Results: The VIGOR score (20.5*A1 + 0.2*Excess volume + 2*mural T2) and the
subjective model had comparable correlation to CDEIS as the MaRIA and London
score (Obl/2, r=0.57/0.60, 0.42/0.56, 0.40/0.48 and 0.39/0.50, respectively). The
VIGOR score had a significantly higher ICC compared to the other activity scores
(0.81 vs. 0.43-0.55, p<0.001).

Conclusions: The VIGOR score achieves comparable accuracy to conventional
MRI activity scores, but with significantly improved reproducibility, favouring use
for therapy evaluation and monitoring of disease activity
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4.1 Introduction

Crohn's disease is an inflammatory bowel disease, which most commonly occurs
in the small bowel and colon, but can manifest itself throughout the
gastrointestinal tract. Magnetic resonance imaging (MRI) is increasingly used for
diagnosis and phenotyping of Crohn's disease, because it is safe, non-invasive and
has high accuracy for evaluation of enteric disease and extramural
complications[1]. Furthermore, multiple MRI features such as wall thickness and
bowel wall signal have been validated as biomarkers of Crohn's disease activity,
demonstrating good correlation with endoscopic and histopathologic
inflammation grading[ 14, 16].

Several MRI disease activity scores were subsequently developed to address the
relative usefulness of the MRI features. Such activity scores incorporate a variety
of features and have also been externally validated[14, 16, 28, 75]. Currently,
these are slowly disseminating in clinical practice. The Magnetic Resonance
Index of Activity (MaRIA) for example has been developed using the CDEIS and
incorporates quantitative measurement of relative bowel wall contrast
enhancement along with qualitative evaluation of the presence of mural ulceration
and abnormal T2 signal [2]. Other indices, such as the London score also rely on
qualitative grading of various features by reporting radiologists [3,5]. Before
widespread adoption for evaluating disease activity and therapeutic monitoring,
MRI activity scores must be proven accurate across the spectrum of disease
severity, and reproducible between radiologists. The current literature, however,
reports variable interobserver agreement for many features used in MRI activity
scores[18, 28]. Moreover, although MRI shows high accuracy for severe disease
activity (91% accuracy), diagnostic performance drops considerably for mild
disease or disease in remission (62% accuracy)[19].

One potential solution to the current limitations of MRI is to reduce the observer
variability of activity scores by incorporating novel software solutions, which can
automatically extract relevant features from the MRI data, reducing the risk of
observer bias. For example, a recent study by Naziroglu et al described an image
processing method that was able to semi-automatically delineate regions of active
disease on MRI based on automatic segmentation and is able to provide
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measurements of bowel wall thickness (Chapter 3). The algorithm requires
minimal user input and semi-automatic measurements showed high correlation
with radiologist measurement, while improving interobserver agreement (Chapter
3). In another study by Li et al, motion correction in free-breathing dynamic
contrast enhanced (DCE)-MRI was used to increase the reliability of dynamic
enhancement features[88], another important component of disease activity
scores. These features were developed under the VIGOR++ project, which
received funding from the European Union's Seventh Framework Programme
(FP7).

We hypothesise that a scoring system combining semi-automatic computer-aided
measurements with conventional radiologist scoring of MRI features could
potentially improve accuracy and reproducibility in comparison to existing MRI
scores.

The aim of this study was to develop and validate a predictive MRI model for
ileocolonic CD activity incorporating novel computer-aided semi-automatic
measurement of MRI features using an ileocolonoscopic standard of reference,
and to compare performance with existing MRI activity scores

4.2 Methods

4.2.1 Retrospective cohort

For development of the scoring system, an independent cohort was used,
consisting of 27 patients with known Crohn's disease undergoing MR
enterography (MRE) and ileocolonscopy within four weeks. Prior to MRE, a
standardized small bowel preparation was used consisting of 4 hours fasting and
1600 mL 2.5% Mannitol solution ingested over 1 hour before the scan. This cohort
has previously been reported[28]. Three patients were excluded from the original
cohort, because no informed consent could be obtained for future research.

4.2.2 Prospective cohort

Between October 2011 and September 2014, consecutive patients > 18 years with
suspected or known Crohn's disease and scheduled for ileocolonoscopy were
recruited from two European tertiary referral centers for inflammatory bowel
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disease (1. Academic Medical Center (AMC), Amsterdam, the Netherlands, and
2. University College London Hospital (UCLH), London, United Kingdom). All
included patients underwent MRE and ileocolonoscopy within two weeks, while
clinical disease activity was assessed using the Harvey-Bradshaw Index (HBI) at

the time of MRI[89].

Patient exclusion criteria were contraindications to MRI (e.g. pacemakers,
claustrophobia), failure to comply with the oral contrast protocol (see below), a
gap of more than two weeks between MRI and ileocolonoscopy and incomplete
or insufficient bowel cleansing precluding accurate mucosal assessment. Ethical
permission was obtained from both institutions’ medical ethics committee and
written informed consent was obtained from all patients.

4.2.3 MRI protocol

In the prospective cohort, patients fasted for at least 4 hours before the
examination and were instructed to drink a total of 2400 mL 2.5% Mannitol
solution (Baxter, Utrecht, the Netherlands) split in two doses: 800 mL (3 hours
prior to MRI) and 1600 mL (1 hour prior to MRI), to achieve distension of both
colonic and small bowel segments. MRI examinations were performed ona 3.0 T
MRI unit (Ingenia/Achieva; Philips Healthcare, Best, the Netherlands) in the
supine position using a phased-array body coil. The MRI protocol used in both
centers is outlined in Table 4.1. The dynamic contrast enhanced (DCE) sequence
consisted of 300 consecutive volumetric acquisitions at a temporal resolution of
1.2 seconds/volume. Intravenous gadolinium contrast was administered 60
seconds after the start of the dynamic sequence using the standard contrast agent
in the participating centers (Gadovist 1.0 mmol/L, Bayer Schering Pharma,
Berlin, Germany; Dotarem 0.5 mmol/L, Guerbet, Paris, France). Coronal and
axial contrast-enhanced 3D T1-weighted spoiled gradient-echo (SPGE) images
were then acquired in the delayed phase (approximately 7 minutes after contrast
injection). To reduce bowel peristalsis, three separate doses of 10 mg intravenous
butylscopolamine bromide (Buscopan, Boehringer Ingelheim) were given during
the examination. DCE sequences were registered using the method described Li
et al.[88].
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Plane Slice FOV TR TE Flip

thickness (ms) (ms) angle

(mm)
Balanced GE Coronal 5 380x380 2.5 1.25 60
BTFE dynamic Coronal 10 380x380 2-2.1 1 45
T2-SSFSE Coronal 4 380x380 628-660 60 90
T2-SSFSE Axial 4 400x400 759 119 90
T2-w SSFSE fat saturation Axial 7 380x380 967-1314 50 90
DCE sequence Coronal 2.5 380x380-439 2.9 1.8 15
3D T1-w SPGE fat saturation Coronal 2 380x380-459 2.2-2.4 1.0-1.1 10
3D T1-w SPGE fat saturation Axial 2 380x380 2.1-2.3 1.0-1.1 10

BTFE, balanced turbo field-echo; DCE, dynamic contrast enhanced; FOV, field of view; GE, gradient echo;
SPGE, spoiled gradient-echo; SSFSE, single-shot fast spin echo; TE, echo time; TR, repetition time.

Table 4.1. Protocol for MRI acquisition
4.2.4 Image analysis

Scans from the retrospective cohort were individually evaluated by four observers
(C.Y.N,, D.P, J.S., J.M.) resulting in four evaluations per dataset[28]. MRI
examinations from the prospective cohort were evaluated using online viewer
software (3Dnet Suite, Biotronics3D, London, UK) by two pairs of observers
(Obl: C.Y.N, J.S.; Ob2. D.P, S.T.), with extensive experience in MRE (>1100,
>800, >500 and >1500 examinations, respectively). The first pair of observers
was from AMC, the second pair from UCLH. Each MRI dataset was
independently evaluated by one observer from both pairs, resulting in two
evaluations per dataset. Observers were blinded to each other’s findings, general
patient information and clinical data.

Grading categories

MRI Features 0 1 2 3

72



disease patients using MRI (the VIGOR++ project)

Chapter 4: Semi-automatic assessment of the small bowel and colon in Crohn’s

Mural T2 signal

Perimural T2 signal

T1 enhancement

Normal bowel wall

Normal mesentery

Normal bowel wall

Minor increase in T2
signal (dark gray)

Increase in
mesenteric  signal;
no fluid

Minor enhancement;
significantly less
than nearby vessels

Moderate increase in
T2 signal (light gray)

Small fluid rim (s 2
mm)

Moderate
enhancement;
somewhat less than
nearby vessels

Marked increase in T2
signal (areas of white)

Larger fluid rim (> 2
mm)

Marked enhancement;
approaches intensity
of nearby vessels

T1 pattern Not applicable Homogeneous Mucosal Layered
Length of disease 0cm >0-5cm >5-15cm >15cm
Wall thickness 1-3 mm >3-5mm >5-7 mm >7 mm
Wall thickness in mm?

RCE

Comb sign Absent Present

Edema Absent Present

Ulcers Absent Present

Abscess Absent Present

Fistulas Absent Present

Pseudopolyps Absent Present

2 Measured using electronic calipers

MRI=magnetic resonance imaging, RCE=relative contrast enhancement

Table 4.2. MRI features and grading categories

Overall scan quality was graded on a scale from 0 (non-diagnostic images) to 3
(diagnostic images without artefacts). Subsequently, the bowel was divided in five
segments to be evaluated separately: the terminal ileum (most distal 20 cm of the
small bowel), ascending colon, transverse colon, descending/sigmoid colon and
rectum. Segment distension, defined as the percentage of adequately distended
bowel for diagnostic evaluation, was graded from 0 to 4 (< 20%, 20—40%, 40—
60%, 60—-80%, > 80%). All segments were evaluated using the MRI features in
table 2. Segmental MaRIA and London score were also calculated for all
segments[ 14, 16], as detailed in Appendix 1. The relative contrast enhancement
(RCE) of the bowel wall (incorporated in MaRIA) was calculated for each
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segment using the method described by Rimola et al.[14], while omitting the
noise correction term (see Appendix 1). Active segments were defined for each

reader as having >0 grade on at least one manual disease feature on MRI (Table
4.2).

Figure 4.1 (A) Placement of centerline points in the lumen of an affected transverse colon
segment. A few centerline points are placed in the middle of the lumen in one or more slices.
(B) The delineation of the inner and outer bowel wall surfaces is visualized by a red line.
Presently this is shown on a coronal slice, but it can be visualized in a similar way in
reconstructed sagittal or transversal planes.

4.2.5 Semi-automatic measurements

The bowel’s centerline was indicated for all MRI active segments by manually
placing a number of widely spaced points within the lumen of the bowel through
the diseased region on the post-contrast coronal T1-weighted SPGE sequence
(Figure 4.1A). Subsequently, the inner and outer bowel wall surfaces of the
affected bowel wall were automatically delineated using the method described in
Chapter 3 (Figure 4.1B. From this delineation the following automatic bowel wall
thickness (ABWT) features were obtained: maximum bowel wall thickness (mm),
mean bowel wall thickness (mm) and excess bowel wall volume (mm?). The
excess bowel wall volume was defined as the volume of the delineated region
exceeding normal thickness. This normal thickness was determined by semi-
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automatic measurement of the mean bowel wall thickness in 25 randomly selected
healthy segments (0 CDEIS and no disease on MRI) from the retrospective cohort.

Each delineation of the diseased region was also used as a 3D region of interest
on DCE images to extract the Al feature, describing the initial slope of increase
of the enhancement curve[88].

4.2.6 Reference standard

For the prospective cohort, ileocolonoscopy was performed within two weeks of
MRI using a standard endoscope (model CF-160L, Olympus) by either a
gastroenterologist or a senior resident in gastroenterology under direct
supervision of a gastroenterologist. The endoscopist used the Crohn's Disease
Endoscopic Index of Severity (CDEIS) to evaluate endoscopic disease[10].
CDEIS scores were calculated for each segment and stenosis scores were added
to the corresponding segmental scores. The endoscopist was blinded to findings
on MRI, except for cases where a balloon-dilatation procedure was indicated. In
these cases, the length of stenosis on MRI was used to determine the feasibility of
balloon-dilatation.

4.2.7 Model development

The model development was limited to the manual and semi-automatic features
that were measured in at least 10% of active segments, as inclusion of low incident
features can introduce unwanted biases, especially for features only associated
with very severe disease. Furthermore, features with high intercorrelation to
another feature (r>0.95) were excluded, in which case the feature with the highest
correlation to CDEIS was retained.

Active segments (as identified by at least one of the four observers) from the
retrospective cohort were included for model development, performed using a
previously described exhaustive search method for biomarker discovery[90]. In
summary, this method evaluates all possible combinations of MRI features (Table
4.2) as candidate models for predicting CDEIS. The rank correlation to CDEIS of
each such model in the retrospective data was then determined using a 50-fold
bootstrap cross-validation[91]. Eventually, this procedure delivers a best
performing model, which has the highest correlation to CDEIS. However, the
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method generates a whole ensemble of models with correlation coefficients that
do not differ significantly from this best performing model (based on paired
Student’s t-tests with Bonferroni correction for multiple testing[92]). As such, a
pragmatic choice needs to be made for selecting the optimal model from the
ensemble. To that end, we selected the features occurring in more than 50% of
models in the ensemble. From this selection, a generalized linear regression model
was formed, after which features with non-significant regression coefficients were
removed from the model.

The procedure was repeated twice, with and without the semi-automatic features
included as candidate features. The chosen model including semi-automatic
features was termed the “VIGOR score”. The alternate model without semi-
automatic features and including only radiologist evaluations was used as a
comparative reference for the VIGOR score and termed the “radiologist score”.

4.2.8 Validation

The developed VIGOR score and radiologist score were tested by correlating
derived segmental MRI scores to CDEIS on the independent, prospective dataset.
This was done separately for both observers. In the same way, the segmental
MaRIA and London scores were correlated to CDEIS. Segments with missing
model features were excluded, to provide a fair comparison between different
models. Interobserver agreement was calculated for all overlapping segments (i.e.
deemed active by both observers).

4.2.9 Statistical analysis

Active endoscopic disease was defined as a CDEIS equal to or higher than 3[93].
Correlation of activity scores to CDEIS was done using Spearman rank
correlation. Interpretation of Spearman’s correlation coefficient was done as
follows: 0-0.20, very weak; >0.20-0.40, weak; >0.40-0.60, moderately; >0.60—
0.80, strong; >0.80-1.00, very strong. Interobserver agreement was evaluated
using weighted kappa values for ordinal data and intraclass correlation
coefficients (ICC) for continuous data, using the following criteria for
interpretation: 0-0.20, poor; 0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80,
good; 0.81-1.00, very good[81]. Spearman correlation coefficients were
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compared using the Steiger Z-test for overlapping dependent correlations[94].
ICC's were compared by calculating the variance through bootstrapping, after
which paired Student's t-tests were performed.

We considered a P-value of < 0.05 to indicate a statistically significant difference.
Linear regression modeling and validation was implemented with R Statistical
language (v3.1.2, Austria, Vienna). Descriptive statistics were analysed using
SPSS 22 for Mac (SPSS, Chicago, IlI).

4.3 Results

4.3.1 Retrospective cohort

In the retrospective cohort, 27 known Crohn's disease patients were evaluated.
Seven segments were excluded, due to hemicolectomy (n=2) and poor visibility
of the rectum (n=5). Furthermore, 3 segments were excluded because of poor
colonic distension: one ascending colon and two rectal segments. Of the
remaining 125 segments, 49 were described as active by at least one observer (18
terminal ileum, 16 ascending colon, 4 transverse colon, 7 descending/sigmoid
colon and 4 rectum segments). The following automatic features were not
available in a number of active segments: Al due to failed registration (n=5), Al
due to the segment being outside the DCE field-of-view (n=14; 1 terminal ileum,
13 colon/rectum) and ABWT due to no/failed segmentation (n=3). Eventually 27
segments were used for development of the VIGOR score; all 49 active segments
were used for development of the radiologist score.

4.3.2 Prospective cohort

A total of 171 patients were prospectively recruited (96 AMC, 75 UCLH). Of
these, 51 patients were excluded for the following reasons: > 14 days between
MRI and colonoscopy (n=7), failure to comply with the oral contrast protocol
(n=6), examination performed on a 1.5-T scanner (n=13), cancelled or aborted
ileocolonoscopy (n=5), incomplete MRI protocol (n=12; e.g. missing sequences
and incomplete DCE), failed DCE registration (n=6), insufficient bowel cleansing
(n=1) and severe language barrier (n=1). The final prospective study cohort
consisted of 120 patients (74 AMC, 46 UCLH), for which demographics and
clinical characteristics are provided in table 3. Eighteen patients with suspected
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CD eventually received a different final diagnosis: irritable bowel syndrome
(n=8), ulcerative colitis (n=2), diverticulosis (n=2), undefined IBD (n=1),
intestinal malrotation (n=1), previous infection (n=1), unclear disease (n=1) and
no disease (n=2). These patients were included in the study cohort as they fulfilled
the study inclusion criteria, although they did not show signs of active disease on
MRI. As such, the activity scores were not evaluated in these patients.

Total no. of patients 120
Female, n (%) 66 (55)
Age at MRI (years), median (IQR) 35 (24-44)
Previous surgery, n (%) 43 (36)

Concomitant treatments

Anti-TNF antibodies, n (%) 31 (26)
Steroids, n. (%) of patients 22 (18)
Thiopurines, no. (%) 19 (16)
5-ASA, no. (%) of patients 23 (19)
Methotrexate, no. (%) 8(7)
CRP (mg/L), median (IQR) 3.8 (1-11)
HBI, median (IQR) 5(2-8)

Montreal classification (n=103)
Age at diagnosis (years), median (IQR) 22 (16-27)

Disease location

L1 ileal, n (%) 41 (40)
L2 colonic, n (%) 14 (14)
L3 ileocolonic, n (%) 48 (47)
L4 upper Gl tract involvement, n (%) 4 (4)

Disease behaviour

B1 inflammatory 53 (52)
B2 stricturing 35 (34)
B3 penetrating 15 (15)
Perianal involvement, n (%) 23 (22)
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5-ASA, 5-acetylsalicylic acid; CDEIS, Crohn's disease Endoscopic
Index of Severity; CRP, C-reactive protein; Gl, gastrointestinal; HBI,
Harvey-Bradshaw Index; IQR, interquartile range; MRE, magnetic
resonance enterography; TNF, tumour necrosis factor.

Table 4.3 clinical characteristics of the prospective cohort

A total of 600 bowel segments were evaluated by two observers (Obl, Ob2).
Mean scan image quality (0-3) was 2.2 (SD: 0.6). Mean distension values for
terminal ileum and colon were both 3.4 (SD: 0.7). Obl and Ob2 identified 96 and
103 active segments on MRI, respectively. After exclusions, a respective total of
69 and 68 active segments were included in the analysis (Figure 4.2).

All segments

ob1 ob2

600 | 600 Total evaluated
96 103 active

476 | 463 normal

22 22 resected

6 12 not evaluable

!

Active segments

*Segmentation was not available in the following
cases for ob1/2: failed segmentation (1/1), severe
fecal contamination (3/5), no visible lumen/infiltrate

ob1 | ob2 (5/5), too many artefacts (0/2), out of field-of-view in
96 103 Active segments coronal T1-weighted image (0/2).

** These segments were located outside the field-of-
23 35 Exclusions view in the dynamic contrast enhanced (DCE)
13 13 no intubation TI sequence
6 15 no segmentation® *** A large infiltrate was seen at the proximal end of
3 6 outside DCE** the terminal ileum on MRI, but this was not reached
1 1 location mismatch*** during ileocolonoscopy.
69 68 Included segments
52 46 terminal ileum
9 9 ascending colon
3 3 transverse colon
5 9 desc/sigmoid colon
0 1 rectum

Figure 4.2. Flow diagram detailing selection of segments for inclusion in model development

Thirty-five segments with endoscopic disease (median CDEIS: 11, IQR: 8-15; 4
terminal ileum, 31 colon/rectum) were not identified as active by any observer on
MRI. Compared to MRI true-positive segments (median CDEIS: 17, IQR: 11—
23), CDEIS in these false-negative segments was significantly lower compared to
true-positive segments (median CDEIS: 11, IQR: 8-15; p<0.001). Of the false-
negative segments, 4/35 and 2/35 cases had a MaRIA>7 for Obl and Ob2,
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respectively. These cases did not overlap and were not identified as active as none
had a grade >0 on any individual, manual disease feature.

4.3.3 Model development

The following features were included in the model development: mural T2 signal,
perimural T2 signal, T1 enhancement, enhancement pattern, bowel wall thickness
in millimetres, comb sign, length, RCE, ABWT max, ABWT excess volume and
Al. The following features — fistula, abscess, pseudopolyps and ulcers — were
excluded because of low incidence in the retrospective dataset (<10% of
segments). ABWT mean was excluded as it was highly intercorrelated with
ABWT max (r=0.98-1.00), while the latter produced a higher correlation to
CDEIS.

The search produced 697 models with no significant difference to the best
performing model. The feature distribution for these models is shown in Figure
4.3. The top four features above the pre-specified 50% model prevalence cut-off
were selected for the VIGOR score — A1, ABWT excess volume, mural T2 signal,
perimural T2 signal and comb sign, of which A1, ABWT excess volume and
mural T2 remained significant in a generalized linear regression model. On the
retrospective dataset this produced the following parameterized model:

VIGOR score =20.5 x Al+0.2 x ABWT excess volume+2 x mural T2
(4.1)

Restricting the search to the manual features produced 20 models with no
significant difference to the best performing model, of which the following six
features were above the pre-specified 50% model prevalence cut-off — length,
RCE, mural T2 signal, enhancement T1, pattern and comb sign. Of these, length,
RCE, mural T2 signal and comb sign remained significant in a generalized linear
regression model. The optimal model based on these features was:

Radiologist score = 5.3 x length +0.06 x RCE

+2.5x mural T2+6.3 x comb sign (42)
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Figure 4.3. Feature distribution in the top 697 models based on manual and semi-automatic
features with 50% model prevalence cut-off

4.3.4 Model validation and comparison

Correlations to CDEIS for each observer and interobserver agreement are
presented in Figure 4.4. The VIGOR score showed moderate-to-strong
correlations to CDEIS (Ob1/2: r=0.57/0.60). Weak-to-moderate correlations to
CDEIS were seen for MaRIA (r=0.40/0.48), while the London score (r=0.39/0.50)
and the radiologist score (1=0.42/0.56) showed moderate correlations to CDEIS.
There were no significant differences between the VIGOR score and the other
activity scores in the correlation to CDEIS (p=0.09-0.68). The VIGOR score
showed a very good ICC (0.81), while other activity scores showed moderate
ICC's (MaRIA, 0.43, London, 0.46; radiologist score, 0.55). Comparison of ICC's
indicated significant differences between the VIGOR score and the MaRIA,
London score as well as the radiologist score (p<0.001). Correlation to CDEIS
and interobserver agreement for individual MRI features can be found in
Appendix 2.
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Figure 4.4 Bar plot showing activity scores Spearman correlation to CDEIS per observer and
intraclass correlation coefficients (ICC's) in overlapping segments.

4.3.5 Analysis on all evaluated segments

When all evaluated segments of patients diagnosed with CD (n=102) were
included in the analysis, i.e. also including those which were normal on MRI
(n=468), the median correlation of manual features increased from 0.23 to 0.47
for Obl and from 0.34 to 0.49 for Ob2, while interobserver agreement
(ICC/kappa) increased from 0.33 to 0.59. For the MaRIA, London and manual
activity scores, a slight increase in correlation to CDEIS was seen (0.09 for both
observers), while the median of ICC's increased from 0.46 to 0.75.

4.4 Discussion

In this large development and validation study, evidence was provided for a new
MRI CD activity scoring system incorporating both manual observations and
computer-aided semi-automatic features. Significantly improved reproducibility
was demonstrated in comparison to existing manual activity scores, such as the
MaRIA, London score and our derived radiologist score. The VIGOR score
showed the highest accuracy against the endoscopic standard of reference,
although the difference with other activity scores was not significant.
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Compared to other studies, we found relatively lower correlations with CDEIS,
while interobserver agreement for individual features and activity scores were
also below that currently reported in the literature[28, 75, 95]. However an
important difference in our methodology to previous studies comparing MRI and
clinical activity scores is that we only included segments identified as active on
MRI. This was deliberate as large numbers of normal segments tend to skew
correlations and can result in over-optimistic conclusions. Furthermore, this is
how MRI is used in clinical practice as standalone test. Indeed, when we repeated
our analysis with normal segments included, we observed improvements in the
correlation of radiologist scores to CDEIS and better interobserver agreement.

The large number of false-negative segments in our study (n=35) were in most
cases below the MaRIA cut-off for active disease (>7), and thus unlikely to be
caused by perceptual error. Furthermore, these segments represented less severe
endoscopic disease compared to true-positive segments.

In clinical trials, the need for objective measures of disease activity to evaluate
response to therapy has led to the use of validated endoscopic scores, such as the
CDEIS or SES-CD[10, 96]. Currently, MRI activity scores are being investigated
for use as outcome measures in clinical trials, to provide a less invasive alternative
to endoscopy with the additional benefit of extraluminal evaluation[12]. For this,
we found suitable characteristics for the newly developed semi-automatic model,
such as promising correlation to CDEIS and crucially high interobserver
agreement. However, properties for therapeutic monitoring should be investigated
using longitudinal studies, as was done by Ordas et al for evaluation of
MaRIA[95]. Clearly, for MRI scores to be used in multicenter studies, a high level
of reproducibility between radiologists is imperative. Furthermore, cut-off values
should be determined based on commonly used outcomes, such as mucosal
healing[97].

The diagnostic capabilities of semi-automatic MRI features should be further
investigated. Of particular interest is the Al feature, which does not rely on
visually perceptive characteristics, and might bring additional value to detect
disease activity. Concurrent steps will have to be made in automation of the
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current segmentation technique, to provide full gastrointestinal tract evaluation
without the need for guidance by the radiologist.

In our study we tested linear regression models, since these models are easy to
apply, interpretable and understandable, and take advantage of the fact that most
MRI features have positive linear relationship to Crohn's disease severity. Since
it was computationally feasible, we were able to perform an exhaustive search
over all potential models in order to develop the VIGOR score. This provides an
advantage over heuristic approaches, which can produce suboptimal models. Such
an exhaustive search has already shown promising potential in various fields of
biomarker discovery[98, 99]. Furthermore, the VIGOR score was developed on a
combination of manual and semi-automatic features to fully employ the
capabilities of MRI for disease evaluation.

In the development and validation studies by Rimola et al., a rectal enema was
used to provide distension of the colon[14, 75]. In our study, we have shown that
similar results can be achieved using an oral preparation with an additional 800
mL of Mannitol solution 3 hours prior to the exam. Indeed reader grading
suggested colonic distension was generally good. Bowel preparation for the
retrospective cohort did not include specific colon preparation. A few segments
with poor colonic and rectal distension were removed from the retrospective
group (n=3) as these might have introduced bias to the developed model.

Our study has several limitations. Firstly, our analysis was performed only on
segments identified as active on MRI, albeit using a low threshold for active
disease (one manual disease feature graded >0). As such, we did not test whether
use of semi-automatic MRI features could improve sensitivity for active
endoscopic disease, which is “occult” based on conventional manual MRI
features. It is interesting that the best performing metric was based on the slope
of enhancement (A1) after intravenous gadolinium, something that is difficult to
appreciate using the human eye. It could be that such enhancement parameters are
also abnormal in diseased segments otherwise missed by conventional MRI.
Clearly, considering the difficulty in unassisted detection of mild disease
activity[19], evaluation of diagnostic capabilities should be a priority of future
studies.
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The DCE sequence used in our retrospective cohort used a smaller field of view
compared to the sequence used in the prospective cohort, which limited the
number of Al data for model development. Because the field was positioned on
the terminal ileum, the excluded segments were mainly colonic and rectum
segments (16 out of 17 cases). Furthermore, in the prospective cohort, six patients
were excluded due to failed DCE registration and respectively 9 and 21 segments
were excluded due to missing semi-automatic features. These segments often
showed relatively poor distension or fecal residue (figure 2), revealing the current
limitations of semi-automatic features in segments with sub-optimal preparation.

Currently, steps are being taken to optimise the time-efficiency of semi-automatic
MRI measurements and to provide full integration in viewer software. Clearly,
these aspects are essential for clinical applicability, which requires easy to use
techniques.

In conclusion, the use of semi-automatic features for assessment of patients with
CD provides improved reproducibility over conventional activity scores,
favouring its use for therapy evaluation and monitoring of disease activity.
Accurate and reproducible MRI scores could improve the physician's trust in these
scores to make consistent and effective treatment decisions.
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Appendix 1

Calculation of the London score, the Magnetic Resonance Index of Activity
(MaRIA) and the relative contrast enhancement (RCE) using bowel wall signal
intensity (SI) measured in a region of interest:

London score
= 1.79 + 1.34 x Wall thickness + 0.94 X mural T2 signal

MaRIA = 1.5 X Wall thickness (mm) + 0.02 X RCE + 5 X edema
+ 10 X ulceration

SI postcontrast — SI precontrast
RCE =

SI precontrast

* RCE calculation did not include a noise correction term, as was used by Rimola
et al [2], since inconsistent noise measurements were observed in our data,
yielding arbitrary RCE values.

Appendix 2: Prospective cohort: individual MRI features

Correlations with CDEIS and interobserver agreement for individual subjective
and semi-automatic MRI features can be found in table 4. For Obl, weak to
moderate correlations were seen for mural T2, T1 enhancement, bowel wall
thickness, RCE and all semi-automatic features, with Al and excess volume
showing the highest correlation to CDEIS (1=0.51, p<0.001). For Ob2, weak to
moderate correlations were seen for all subjective and semi-automatic features,
with A1 again showing the highest correlation to CDEIS (r=0.55, p<0.001). Very
good interobserver agreement was seen for ABWT mean, ABWT excess volume
and the A1 feature, while good agreement was seen for RCE and ABWT features
and moderate agreement was seen for enhancement pattern and length. Perimural
T2, T1 enhancement, bowel wall thickness, comb sign and ulcers showed fair
agreement, while mural T2 and edema showed poor agreement. The low
agreement for mural T2 can be partially explained by a large number of one grade
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differences (25/53), while only a low number of two or three grade differences
were seen (11/53).

Observer 1 Observer 2 Interobserver agreement*
n=69 n=68 n=53
p
MRI features r Value r p Value Coefficient (95% CI)
Mural T2 signal 0.29 0.03 0.44 <0.001 0.05 (0.00-0.18)
Perimural T2 signal 0.17 0.15 0.36 <0.01 0.34 (0.10-0.58)
T1 Enhancement 0.15 0.22 0.42 <0.001 0.31(0.11-0.52)
Enhancement pattern 0.25 0.04 0.39 0.001 0.48 (0.26-0.69)
Wall thickness (mm) 0.42 <0.001 0.44 <0.001 0.30 (0.01-0.54)
Length 0.23 0.06 0.28 0.02 0.52 (0.34-0.71)
RCE 0.28 0.02 0.32 <0.01 0.64 (0.44-0.77)
Comb sign 0.23 0.06 0.26 0.03 0.35 (0.10-0.61)
Edema 0.17 0.16 0.30 0.01 0.14 (0.00-0.40)
Ulcers 0.13 0.30 0.26 0.03 0.25 (0.02-0.48)
Automated features
Maximum wall thickness  0.30  0.01 0.36 <0.01 0.76 (0.61-0.85)
Mean wall thickness 0.26 0.03 0.34 <0.01 0.87 (0.78-0.92)
Excess volume 0.51 <0.001 0.37 <0.01 0.81 (0.68-0.88)
A1 0.51 <0.001 0.55 <0.001 0.82 (0.70-0.90)

* Inter-rater reliability values are intraclass correlation coefficients for continuous variables, linear weighted kappa
values for ordinal and binary variables

DWI, diffusion weighted imaging; MRI, magnetic resonance imaging; r, spearman correlation coefficient; RCE,
relative contrast enhancement.

Table 4.4 Correlations between individual MRI features and CDEIS in the terminal ileum and
interobserver agreement of individual MRI features

87






S Simulation of scanner- and patient-
specific low-dose CT imaging from
existing CT images

Abstract

Purpose: Simulating low-dose Computed Tomography (CT) facilitates in-silico
studies into the required dose for a diagnostic task. Conventionally, low-dose CT
images are created by adding noise to the recorded projection data. However, this
is not always achievable in practice as the raw data are simply not available. This
chapter aims to present a new method for simulating patient-specific, low-dose CT
images without the need of the original projection data. The methods assume fan
beam imaging and image reconstruction by parallel-beam filtered-backprojection
merely to proof the principles of our method and to show that representative noise
distributions are obtained.

Methods: The low-dose CT simulation method included the following steps: (1)
computation of a virtual sinogram from a high dose CT image by means of the
radon transform; (2) simulation of an 'reduced'-dose sinogram with appropriate
amounts of noise; (3) subtraction of the high-dose virtual sinogram from the
reduced-dose sinogram; (4) reconstruction of a noise volume via filtered back-
projection; (5) addition of the noise image to the original high-dose image. The
required scanner-specific parameters were retrieved from calibration images of a
water cylinder. The apodization window was obtained from the noise power
spectrum (NPS) in a small region of interest in the center of those images.
Furthermore, the bowtie filter attenuation characteristics were derived from the
pixel variance. Finally, the X-ray tube output parameter (reflecting the photon flux)
and the detector read-out noise were computed from the pixel variance at various
exposure levels. The low-dose simulation method was evaluated by comparing the
noise characteristics in simulated images with experimentally acquired data.

Results: We found that the models used to recover the scanner specific parameters
fitted accurately to the calibration data. What is more, the retrieved apodization
window of the reconstruction filter, the bowtie filter, the X-ray tube output
parameter and the detector read-out noise were comparable to values reported in
literature. Finally, the simulated low-dose images accurately reproduced the noise
characteristics in experimentally acquired low-dose-volumes.
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Conclusion: The developed methods truthfully simulate low-dose CT imaging,
without requiring projection data. The scanner-specific parameters can be estimated
from experimentally acquired calibration data. The new methodology could aid in
further optimizing CT protocols by facilitating in-silico studies on dose dependency
of low contrast object detectability.
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5.1 Introduction

Since the early experiments by Sir Godfrey Hounsfield and Allan McLeod
Cormack in the 1950's and 1960's, computed tomography (CT) has established
itself as one of the most important medical imaging modalities[4]. In fact, the
number of CT examinations is still increasing[23]. An important disadvantage of
CT, however, is the exposure to ionizing radiation that is inherent to the technique.
Accordingly, it is common practice to keep the radiation dose as low as reasonable
achievable (ALARA). Unfortunately, lowering the dose yields a lower signal-to-
noise ratio and thus a poorer image quality which may hamper subsequent
diagnosis. Optimization of the dose/quality trade-off is a far from trivial problem
as one cannot simply expose subjects to a range of radiation doses for ethical
reasons. Therefore, a lower-dose CT image is usually simulated by adding noise
to the underlying projection data, i.e. the sinogram[24-26, 100-103].
Subsequently, the lower-dose image is reconstructed from these noisy projections
using the scanner's software. However, this approach is not always achievable in
practice as the projection data are often simply not available. This chapter studies
a method to generate low-dose CT images based on existing image data.
Therefore, we introduce new methodology to determine key system parameters
such as the reconstruction kernel, bowtie filter, the X-ray tube output and the read-
out noise by a simple calibration procedure. These system parameters determine
the noise properties of the simulated low dose CT-images. Furthermore,
retrospective investigation of the influence of low-dose imaging might be
permitted if one could generate such data directly from existing images.
Obviously, this requires that the simulation process complies with the physics of
image formation to produce reliable lower-dose CT volumes.

5.1.1 Related Work

Mayo et al[25] and Frush et al. [102]were among the first to simulate low-dose
CT images. They added Gaussian noise to the projection data, after which the
images were generated by means of the scanner's reconstruction software. Any
such approach assumes that the number of photons hitting the detector is large.
However, when only a low number of photons is detected, the properties of the
noise in the sinograms become much more complex. Then, the readout noise
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becomes significant and the measured signal is best described by compound
Poisson statistics[104-106]. Still, many low-dose CT-simulators have merely
added Gaussian noise to the raw projection data[26, 101, 107, 108]. Zabic et al
[109] extended the noise model to correctly reflect the noise (co)variances under
photon-starvation conditions and appropriately simulate detector noise artifacts.
Furthermore, Wang et al. combined the raw data acquired at two tube-voltages,
which allowed also simulating adjustments in the tube-voltage[110]. Similarly,
Wangetal [111] present a method for generating simulated low-dose cone-beam
CT (CBCT) preview images. Essentially, correlated noise is injected into the
original projections after which images are reconstructed using both conventional
filtered backprojection (FBP) and an iterative, model-based image reconstruction
method (MBIR).

Simultaneously, the need for meaningful characterization of image noise beyond
that offered by pixel standard deviation became increasingly important[26, 101,
102, 112]. Boedeker et al. [113] and Faulkner et al. [114] proposed to use the NPS
and the noise equivalent quanta (NEQ) to describe the noise properties in CT
images, whereas Joemai et al. [101] used the NPS and variance to validate their
low-dose CT model.

The work that was done to describe the NPS of CT images also yielded techniques
to estimate the reconstruction kernel. This proved very valuable, since
manufacturers are often reluctant to disclose the kernels. Other scanner-specific
parameters, such as the bowtie filter and the readout noise, were derived from the
projection data [26] [106][104]. To the best of our knowledge the bow tie filter
was never derived from actual image data.

Initially, Wang et al. [110] and Kim and Kim [115] presented preliminary work
on simulating low-dose CT scans from the reconstructed images. Wang et al
aimed to develop a simulation technique based on image data such that it produced
similar results as a method using projection data. Kim and Kim [116] presented a
comprehensive, image-based framework for reduced-dose CT simulation. The
key characteristics of the CT system are estimated in this work based on several
measurements of a tapered, cylindrical phantom: the reconstruction filter, noise
parameters and the photon flux of the X-ray tube. Subsequently, reduced dose CT
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noise images are generated by means of a synthesized sinogram. The noise
equivalent quanta (NEQ) is a key parameter that is used to determine the system
parameters. Essentially, it reflects the (squared) SNR in a CT image, measured in
the noise image of a uniformous object. Kim and Kim adopt a linear relation
between NEQ per detector element and the NEQ per image to specify the amount
of noise that has to be added. This relation was derived (amongst others) by
Wagner [117] and Hanson [118] assuming that the attenuation at the projection
angles is uniformous.

5.1.2 Objective

This chapter presents a new framework to simulate lower-dose CT imaging from
existing CT images without the original projection data. We take a different
approach to image-based low dose CT simulation compared to the chapter by Kim
et al[116]. Particularly, our method to estimate the system parameters relies on
the variance in signal intensity reflecting the noise level. While doing so we do
not need to assume that the noise properties of the projections are uniformous. A
further novelty of our work is the estimation of the bowtie filter.

Our simulation method first creates a virtual sinogram from a high-dose CT
image, which is processed to yield one corresponding to a lower dose.
Subsequently, the high-dose virtual sinogram is subtracted from the lower-dose
sinogram. The resulting noise sinogram is used to reconstruct a noise volume via
filtered back-projection. Addition of the noise volume to the original high-dose
image results in the lower-dose image.

By forward modeling the entire acquisition process, a spatially varying noise
distribution is generated. The noise characteristics depend on the actual object that
is being imaged as well as the aforementioned acquisition parameters. The entire
approach is validated by means of the NPS derived from separate CT images of a
water barrel and an anthropomorphic, pelvic phantom.

The methods assumes that a virtual X-ray source produces monochromatic
photons with energy equal to the effective energy of the original, polychromatic
X-ray tube (as in Refs.[115, 119]). Furthermore, in-plane, fan beam imaging and
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image reconstruction by filtered-backprojection is assumed to proof the principles
of our method. We consider the extension of our methods to cone beam imaging
and reconstruction still an obvious next step of our work.

The chapter is organized as follows. Section 5.2 describes the low-dose simulation
method. Subsequently, Section 5.3 goes into how several system parameters can
be estimated from CT images. Section 5.4 lists the experiments that are done in
order to measure the parameters 5.4.2 and to validate the model 5.4.3. The
outcome is discussed in Section 5.5.

5.2 Lower-dose CT simulator

The lower-dose CT simulator consists of nine steps (see Figure 5.1):

1.
2.

An attenuation image unigh 1s constructed from a high-dose CT image Jnign;
A virtual sinogram Ruign is generated from unigh by means of the Radon
transform[2, 120]. Note that computing the radon transform requires
interpolation, hence this virtual sinogram is slightly more blurred than the
true sinogram ;

. A virtual, noiseless measurement of the number of detected photons

Ndet, high 1 generated from Ruigh;

. A virtual, noisy measurement N4 at reduced dosed is created with

appropriate amounts of Poisson and Gaussian noise — reflecting the
quantum and readout noise components [4] as well as the noise already
present in the original high-dose image;

. A virtual, ’reduced’-dose sinogram Rreq is computed from Neq. This

ensures that all smoothing effects that are inherent to the discrete radon
transform (step 2) and the discrete inverse radon transform (step 7) do not
impose additional blurring to the object being imaged;

. A noise sinogram Ryoise 1S obtained by subtracting the virtual sinogram

Rhigh from the reduced-dose sinogram Ryeg;

. A noise attenuation image finoise 1S reconstructed by means of the inverse

Radon transform ---via filtered back-projection (FBP)--- from the noise
sinogram Rnpoise;

. A noise image Jnoise 1 constructed from snoise;
. A low-dose attenuation image Jiow is formed by adding Joise ---which

contains noise only--- to the original high-dose CT image Jhigh ;
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In the next subsections, we will detail steps 1--9.

H'g.h doss virtual sinogram, lower dose zero-mean zero-mean
Clinuge; R_high virtual sinogram, noise sinogram, noise image,
J Jigh g R_red R_noise J_noise
INPUT I 1

Compute Ste
; ps 3-5
low dose
Steps 1-2 CT image,
J_low

Figure 5.1: Schematic overview of the low-dose CT simulator

5.2.1 The virtual sinogram (Steps 1-2)

The attenuation of X-ray radiation on a path from source to detector is described
in a discretized form of Lambert-Beer’s law by:

Gend
—Z H1(QAS)AS
Ny = Nee ™ , (5.1)

in which Nge: denotes the number of photons that hit the detector, No the number
of photons that would hit the detector in case no object is present, As the step size,
g the position on the path, (endAS the end-position of the path and u(gqAS)
represents the (position dependent) attenuation coefficient, also called attenuation
image. Henceforth, the summation in the exponent of this equation will be called
an attenuation projection, p.

The attenuation image unigh is calculated from the input, high-dose image Jnign in
step 1 via:

/uwater‘]high
L, =4 , 52
/uhlgh 1000 luwater ( )

in which we use for gwaer the attenuation coefficient of water at the effective
energy of an X-ray tube of 80 keV[119, 121].

The aggregate of such attenuation projections in a parallel-beam scanner
geometry can be approximated from the high-dose attenuation image using the
Radon transform:
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N, N
Pian (D =" 4., (0, M)S(Ncos(kAO) + msin(kAG) —IADAXAY,  (5.3)

n=l m=1

where d(+) is the delta function, KA@ the gantry angle, IAt the position of a point
on a straight line intersecting the isocenter, (n, m) the pixel coordinates, and AX
and Ay the pixel sizes.

For a fan-beam geometry, however, Eq.(5.3) is not valid. Therefore, the
projections Prign(K, 1) need to be reordered in such a way that they correspond to
the projections in fan-beam geometry. In the latter geometry, let i4y represent the
angular position on the detector ring (fan angle) and j4p the offset angle from the
line through the source and isocenter (gantry angle). The relation between a
parallel projection Phign(K, ) and a fan-beam projection Ruign(i, j) can be derived
to be[120]:

Riign 1 kA6 - arcsin [IEJ ,Larcsin [IEJ =B (K1), (5.4)
Aﬁ Dsi A7/ DSi

where Ds is the (X-ray) source to isocenter distance. Ruign(i, ) should be
considered an approximate, virtual sinogram, particularly since the noise is
strongly reduced due to all the interpolations and averaging involved in its
calculation. Eqgs. (5.3) and (5.4) together form step 2. The associated, virtual
transmission Thign(i, j) is calculated by:

Ty (i, ) =700, (5.5)

5.2.2 Adding noise to the virtual sinogram

5.2.2.1 Theory (Step 3)
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high dose noise low dose

Figure 5.2. A low-dose CT image J,., (right) is simulated by adding a patient-specific (zero-

mean) noise image J,... (middle) to the original high-dose image J,,, (left).

Above, we introduced the idea to create a low-dose attenuation image by adding
a space-variant object-dependent noise image to the high-dose attenuation image
(see Figure 5.2). As such, the pixel variance of the low-dose image var[giow(n, m)]
is given by

var[u,,, (n,m)] = Var[,uhigh (n,m)]+ var[u, ;. (n,m)], (56)

where var[unign(n, M)] and var|inoise(N, M)] are the pixel variances of the high-dose
image and the noise image, respectively.

As aresult of filtered back-projection, any attenuation image x«(n, m) is a weighted
sum of attenuation projections R(i, j):

p(n,m) = (ﬂAthZCtot(n m.i, DR, j), (5.7)

j=l i=—N

in which Ciwi(n, m, i, j) represents the coefficients of the reconstruction filter
(including all the interpolation steps), 2N the number of detector elements and M
the number of gantry angles composing a full revolution.

Since the noise in the projections is assumed to be independent, the pixel variance
equals

N-1

var[ z(n,m)] = (”Mji ¢, (n,m,i, j)>var[R(, j)]. (5.8)

j=li=—N
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According to Eq. (5.8), the correct noise characteristics are created when each
attenuation projection contains an appropriate amount of noise. Thus, the
following condition should be satisfied:

var[Ry,, (i, )] = var[Ry,, (i, D1+ var[R,,,. (i, D], (5.9)

in which var[Ruien(i, j)] is the variance in the high-dose sinogram, var[Riow(l, j)]
the variance in a sinogram acquired at the specified dose and var[Rnoise(i, J)] the
variance in the noise sinogram.

In general, the variance of an attenuation projection var[R(i,j)] can be
approximated by a first order Taylor series approximation [106, 122, 123] as:

02

1
e (5.10)
Ndet(la.l) NdZet(I:J)

var[R(i, )] ~

Eq. (5.10) consists of two terms. The first reflects the quantum (photon) noise,
which obeys a Poisson distribution. The second term represents the readout noise,
which is modeled by zero-mean Gaussian noise G(0, o¢?) with variance o.2. The
number of detected photons Nget(i, ) is given by

Ndet(i’j):No(i)T(iaj)a (511)

where T(i, J) is the transmission at fan angle iAy and gantry angle JAS. No(i) is a
function of the fan angle iAy due to the bowtie filter. The bowtie filter is
incorporated by means of its transmission coefficients as a function of fan angle.
Furthermore, No can be defined as a function of protocol- and scanner-dependent
variables:

N =l ), (5.12)

in which w is the collimation (width of the fan beam), drn the detector size in the
fan angle direction at the isocenter, 7 the rotation time, | the tube current, Tg(i)
the transmission of the bowtie filter at fan angle iAy, and K a constant reflecting
the X-ray tube output in photons/(mAs.mm?2). The parameters K and Tg(i) are
scanner-specific and need to be estimated using calibration scans (if not known a-
priori), for which a procedure is detailed in Section 5.4.2. The other parameters in
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Eq. (5.12) can be typically retrieved from the literature [4, 124] or are included in
the DICOM-header. Note that the radiation dose is steered via the exposure Iz.
Essentially, step 3 consists of calculating Nget using Eqgs. (5.5), (5.11) and (5.12).

5.2.2.2 Model Implementation (Steps 4-6)

This section describes how Rred(l, j) is created in such a way that Eq. (5.9) is
fulfilled. Note that the noise sinogram Ruoise(i, j) is obtained via Rpoise(i, J) =
Rred(1, J) - Ruign(i, ). Here, Ruign(i, J) is the virtual sinogram (obtained via Eq. (5.4)
) and not the real sinogram associated with zign(i, j). Due to the interpolations and
averaging in the calculation of the discrete radon transform, the noise of Ruign(i, J)
is assumed to be negligible, so that var[Rneise(i, j)]=var[Rred(i, j)].

Eq. (5.10) indicates that the quantum noise and the readout noise can be added to
yield the total noise. Accordingly, Rre(i, j) is calculated in two steps.

First, only the quantum noise inherent to the detected number of photons is
simulated. Essentially, this is implemented by drawing samples from a Poisson
distributions with expectation value Nred,q(I,J). Nred,q(i, ) is calculated from
Eq. (5.11). Substituting Egs. (5.10), (5.11) and (5.12) into Eq. (5.9) yields an
explicit relation between liow, chosen a-priori, Inigh, given by the high-dose image,
and |4, which is the tube current that yields the correct amount of noise to be
used for creating the sinogram:

_ Ihighllow (5.13)

red

Ihigh - I]ow
in which Inign and liow are the tube currents of the high-dose and the low-dose
image to be simulated. Note that this equation essentially compensates for
quantum noise already present in the high-dose image.

Second, readout noise is simulated by repeatedly drawing samples Nreq, (i, j) from
a Gaussian distribution with mean zero and variance or.q®>. Given that Nyeq r is
calculated as described previously, ored® is computed by:

2 2 2
Grcd — O-e _ O-e (5 1 4)
NZ.. N2 N e '
red,q det,low det,high
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This equation is simplified by substituting Egs. (5.11), (5.12) and (5.13) into
Eq. (5.14) and dropping all redundant terms to yield:
[

2 _ 2 high low
o), = ol hE T ow (5.15)
(Ihigh - IIow)

As before, this equation compensates for Gaussian noise already present in the
high-dose data. The virtual noisy measurement (step 4) is found by adding the
read-out noise to the Poisson process

N, (0, ))=N_, (G, )+ N (@ ]). (5.16)

We adjust Nreq and set it to one, whenever the equation delivers a number that is
smaller than one (photon starvation), which corresponds to a very small
Nred(i, j)/No(i, J) as No> > 1. Hence, the virtual 'reduced’ dose sinogram (step
5) becomes

Rred(i,j):—ln(de(i,j)/No(i,j)), (5.17)
which yields the noise sinogram (step 6)
Rioise (15 1) = Rig (i, ) = Ry, (1, ). (5.18)
5.2.3 Reconstructing the image from the noisy sinogram (Steps 7-9)

In step 7, we opt to reconstruct u(i, j) in a parallel-beam geometry , because it is
computationally much less expensive and because our scanner uses such a
reconstruction approach[120]. Therefore, the fan-beam projections Rpoise(i, J)
need to be reordered into parallel-beam projections Proise(K, 1) by inverting
Eq.(5.4):

Pmise(Aig( iAB+ iAy),Ait D, sin(iAy)) = R..._ (i, ) (5.19)

Just as before, uniformly sampled parallel projections P(K, |) are obtained by
linear interpolation of R(i, J). Subsequently, filtered back-projection is used to
construct a noise image via:
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M

Hyoise[N,M] = (”Atj Z P . (K, 1) - c(nAXcos(kA @) + mAy sin(KA Q) — IAt),

k=1 I==N,

(5.20)

in which c are the reconstruction filter coefficients, and Mpar and Npar the number
of gantry angles and detector elements in the parallel beam geometry. Note that C
only contains the coefficients of the apodized ramp filter while Ci(i, J, N, M) also
incorporates the necessary interpolation steps. Clearly, the reconstruction filter
coefficients are scanner- and protocol-specific. A calibration procedure for
obtaining the filter coefficients is described below. Next, gnoise(N, M) was scaled
to Hounsfield units in step 8 by:

(n m)_looo(:unoisc(n’ m)_:uwatch. (521)
Hyater

nmse

Finally, the low-dose image can be obtained in step 9 as:

I (M) =3, (M) +J . (n,m). (5.22)

5.3 Parameter estimation

This section describes how the required scanner- and scan-specific parameters
may be computed from calibration scans:

The reconstruction filter coefficients in c(l) as well as Cii(N, M, 1, j)
The bowtie filter transmission Tg(i)

The X-ray tube output parameter K

The readout noise variance o>

bl N

5.3.1 The reconstruction filter coefficients

Eq. (5.7) can be rewritten in matrix notation in which a system matrix Cio
contains the filter coefficients Cii(N, M, i, J):

n=C,R, (5.23)
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where 1 is a Npix vector (the reconstructed image), Ciot 1S Npix X M2N matrix, and
R is a M2N vector holding the attenuation projections. Npix is the number of pixels
in the image to be reconstructed.

In our implementation Ciot actually consists of a series of matrix multiplications,
each representing a different processing step:

C =-C,_.C.C (5.24)

tot back ™~ filt " fan2par
Here, Cranzpar i @ Mpar2Npar x M2N matrix that implements the fan-beam to
parallel-beam transformation; Cric is @ Mpar2Npar X Mpar2Npar Toeplitz matrix
performing the high-pass filtering and Crack is @ Npix X Mpar2Npar matrix that
incorporates the back-projection step. Observe that Cranzpar and Cpack can be
derived from the beam geometry of the simulation. The matrix Cri has the filter
coefficients c(l) in its rows. Essentially, c(l) is the Mpar2Npar ’core’
backprojection filter that needs to be estimated in order to compute Cioi(N, M, 1, j).

Conventionally, the reconstruction filter Cwi(N, M, i, ) is derived from the NPS in
a region of interest (ROI)[113, 114, 116, 125]. If all fan-beam projections R(i, j)
used to reconstruct the ROI contain white noise (and aliasing is negligible), the
NPS becomes radially symetric[125].This is approximately the case in the center
of a water cylinder that is placed in the center of the scanner. The pixels inside
such a ROI are reconstructed by the projections located at the center of the
detector array. The expected number of detected photons is constant, since the
water cylinder is locally approximately flat, hence the noise level in each of these
projections is the same. Therefore, the noise is approximately white as the amount
of cross-talk is negligible[4].

Here, the NPS, which is the Fourier transform of the autocorrelation function, is
radially symmetric and given by:

NPS(,) = H (@,)S(@,) (5.25)
where w, = \/wf + w§, ox and wy are the frequencies in Cartesian coordinates,
Hiot(wr) the modulation transfer function of the scanner (see below), and S(wr)

the NPS of the projections. The assumption that R(i, j) contains white noise makes
that the NPS becomes [113, 125]
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S(w)~—L, (5.26)
[0}

r

Eq. (5.26) is valid when the sampling of the gantry angles of R(i, j) is uniform
and sufficiently dense.

H:ot is modeled to consist of three elements, namely one apodized ramp filter and
two interpolation filters. The apodized ramp filter Hyier ensures a mathematically
correct reconstruction up to the cut-off frequency of the apodization filter.
Furthermore, one interpolation filter Hfan2par represents the transformation of the
fan-beam rays to uniformly sampled parallel-beam rays, and the other one Hpack
reflects the interpolation along the path during the back-projection. Consequently,
when aliasing is ignored, Hio is given by:

Htot (a)r) = Hﬁlter(a)r)Hback (a)r ) Hfaanar (wr)’ (527)

where Hyiter is the Fourier transform of ¢(1), the *core’ backprojection filter, which
can be further decomposed into

Hﬁlter(a)r):erapo(a)r)a (528)

with Hapo a cut-off window designed to avoid ringing artifacts near large tissue
transitions and to suppress noise in the image. The goal is to determine the shape

of Hapo, which we approximate by:
a+bcos| 7
f par

a+b

H,po (@) = ) (5.29)

where a and b are two filter parameters. For some values of @ and b, Hapo(wr) is
equal to cut-off windows found in literature[126].The NPS is estimated in a ROI
using the periodogram, which is an estimate of the NPS and is defined by,

NPS(wX,wy)ZZ’f{‘Jnoisle\l(xﬁ y)}| (530)
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in which N is the number of images used to estimate the NPS, Jnoisc 1S @ zero-mean
noise image (e.g. obtained by subtracting repeated images of the same slice) and
F{} symbolizes the Fourier transform. We assume that only linear interpolation
is used and therefore Eq. (5.25) becomes (after filling in the previous equations):

i)
a+bcos[ r

2
f ar J . w . ,
2 sinc*| —— |sinc*| — (5.31)
ffan fpar

in which fgn is the Nyquist frequency of the detector array with detectors of size
drn at the isocenter and fp.r is the Nyquist frequency of the rebinned detectors of
size Upar.

NPS(w,) = o,
a+b

Essentially, the parameters a and b are estimated by fitting the model described
in Eq. (5.31) to the NPS measured in a ROI in the center of a water cylinder placed
in the center of the scanner. For that we use the Levenberg-Maquardt optimization
algorithm. Thereafter, c(I) = F~'{Hapo(r)} and Cw(n, M, i, j) is obtained via
Eq. (5.24).

5.3.2 The bowtie filter

We will now demonstrate how the bowtie filter transmission can be estimated in
a least-squares sense from the pixel variance measurements in a phantom. This is
an additional novelty of our work, which is required if projection data cannot be
obtained.

Assuming that phantom images are acquired at a dose that is high enough to ignore
the electronic noise, then the pixel variance var[u(n, m)] can be rewritten by
substituting Eqgs. (5.10), (5.11) and (5.12) into Eq. (5.8):

M2z’ At C (N, m,i, )
var[ u(n,m)] = [I - KJ;Z& = (|)T(| J) (5.32)

fan
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Apart from K and Tg(i), the other parameters in this equation are known (Ci¢ may
be estimated following the procedure from the previous section and T is obtained
via Eq. (5.5)). Writing this equation in matrix notation yields:

1

Var[u] = ACtzot ﬁ, (533)
B

where var[p] is an Npix vector (with Npix again the number of pixels); A =

M2m2At2 . . .
—“T°7% s a scalar; (+)? reflects element-wise square (of the N; x M2N matrix
IwdganKt

Ciot, s€e above); &) corresponds to an element-wise division; ()-() corresponds to

an element-wise multiplication; Ts is an M2N vector representing the bowtie filter
transmission, and T is an M2N vector containing the transmission values.

Eq. (5.33) can be rewritten by putting the elements of T into a M2N x M2N
diagonal matrix Dt and by using the property that Ts does not depend on the
gantry angle into:

2 A

var[p]=C, , ———
[p’] tot DTDM TB

(5.34)

in which Dwv is a M2N x 2N matrix that replicates the bowtie filter for all gantry
angles and Tg is now a 2N vector representing the transmission of the bowtie
filter. In fact Dm consists of M ’stacked’ (2N x 2N) unit matrices.

Clearly, Eq. (5.34) is a linear equation that might be solved analytically.
Unfortunately, the system matrix and the number of parameters are very large,
and therefore such a purely analytic approach is computationally very expensive.
Therefore, we opt to model the bowtie filter’s transmission by:

T()=0,, +(1—010W)[iaqcos(%qijJ . (5.35)
g=0

The summation in the equation represents a truncated fourth order Fourier series.

Only cosines are used as the bowtie filter is a symmetric function and the sum is

squared to ensure that the transmission is not negative. Furthermore, we assume

that the transmission in the center of the bowtie filter is one (Tg(0) = 1), which is
105



Simulation of scanner- and patient-specific low-dose CT imaging from existing
CT images

imposed by constraining ao=1—Yq4-1*aq. Thereby, we assume that the
transmission also has a lower limit (as the bowtie filter itself has a finite
thickness). To that end 0jow is a constant representing the minimal transmission.
Furthermore, the weighted-sum construction ensures that the transmission can
indeed converge to 1.

We assert that Tg is a monotonically decreasing function to both sides of the filter.
Therefore, we devised the following simple penalty term:

P(a)= aTBa(i"a)u(aTB;i"a)j, (5.36)

with u(-) the Heavyside function and a the 4 parameter vector of the model
(c.f. Eq. (5.35)). Essentially, Eq. (5.36) sums all positive derivative values over
half the filter (which is symmetric by definition).

Finally, the filter parameters are estimated by solving:

Npix
a,A =argmin, , {Z 2@ AK)+ ,BP(a)}, (5.37)
k=1
with
2
Zk (a’ A’ k) = (Var[luk ]experimental - Var[/uk >4, A]model ) 2 (53 8)

where A is the scaling constant from Eq. (5.33) which is essentially a gain factor
that needs to be simultaneously estimated and f the weight of the penalty term

The required pixel variances to solve this equation will be obtained from a central
region in images of a water cylinder that is repeatedly scanned (see below).

5.3.3 The X-ray tube output parameter and the readout noise level

Finally, we will demonstrate how the X-ray tube output parameter K and the
variance of the readout noise ge’ can be estimated from the pixel variance
var[u(n, m)] measured at different tube currents. Therefore, Eq. (5.8) will be
simplified in such a way that K and o.* can be derived from a linear fit.
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First, substituting Eq. (5.10) into Eq. (5.8) yields:

2 M N-I

varl g(n,m)] = [”Mj ZZcmt(nm (N l(i T ‘:I e ] (5.39)

Subsequently, substituting Egs. (5.11) and (5.12) into (5.39) and reshuffling the
variables yields

AT 1308 G (M )" 7AL Y R G (i, )
var[u(n,m)] = [IM Kr],z.zh T,()T G, j) (IKMWTJ ;.; Te ()T (0, )"

(5.40)

Consequently, the next relation emerges when the exposure Iz, the X-ray tube
output K, and the variance of the readout noise e are separated from all other
variables of Eq. (5.40):

Cy(n.m) ¢, (nm)

var[ g(n,m)] = e K212, o,, (5.41)
in which Cp(n, m) and Ce(n, m) are given by
AL | C, (N,M, i,
C,(n,m)= (” j;fﬁ T((I)T(I J‘)) (5.42)
and
C , — 72- At j tOt(n m J) 5'43
Anm ( ZZT NORIOD R G4

Cp(n, m)and Ce(n, M) can be calculated using the reconstruction filter weights Ciot
(from Section_5.3.1), the bowtie filter (from Section_5.3.2), and the transmission
(calculated via Eq. (5.5)). Eq.(5.41) is ill-posed whenever the variance is
measured at a single exposure. Therefore, acquisitions are obtained at multiple
exposures. Next, the model is fitted in a least-squares sense using the following
non-linear model,
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Npix N,
{K,aj}:argmjnKﬁe2 {ZZMJ(K’O}Z)}’ (5.44)
k=1 i=l
with
2
Zk,i (K ’Gez) = (Var[l[’lk,i ]measured - Var|:/’lk,i ‘ K’Gez:lmodel) s (5‘45)

in which the model is expressed by Eq. (5.41), Npix and N; define the number of
pixels and exposures respectively. The initial parameters are obtained by first
solving a simpler problem that emerges when Eq. (5.41) is approximated by two
linear equations. If the tube current is very high, the contribution of the read-out
noise to the pixel variance is often neglected. In this case, the second term in the
right hand side of Eq. (5.41) is ignored, hence K can be approximated from :

C,(n,m)

|TK (5.46)

varl u(n,m)] ~

With K known, ge® can be estimated using new images that are acquired at a lower
dose level. Reshuffling Eq. (5.41) gives:

. K22

O, —W (547)

[Var[u(n,.m)]—wj.

Klz

These estimates for K and oe” are the initial parameters for minimizing Eq. (5.44)

5.4 Results
5.4.1 Measurement data

CT images of a water cylinder 34 cm in diameter and an anthropomorphic pelvic
phantom were acquired on a Philips Brilliance 64 CT scanner at the Academic
Medical Center in Amsterdam, The Netherlands. A modified CT colon protocol
was used, since the intended application is CT colonography. The modifications
only concerned the tube current, which was adjusted to control the dose level and
the acquisition mode, which was sequential for the water cylinder (i.e. imaging
the exact same plane) and the pelvic phantom. Table 5.1 and Table 5.2 list the

108



Simulation of scanner- and patient-specific low-dose CT imaging from existing

CT images

parameter settings. Note that the scan protocol parameters are controlled by the

user whereas the geometry parameters are scanner dependent.

Phantom type
Acquisition mode
Kernel

X-ray tube Voltage (kV)
Slice Thickness: W (mm)
Collimation

Matrix

Diameter field of measurement:

Set type

Field of view
Pixel sizes: dpix(mm)

Exposure: 17 (mAs)

Number of rotations
Copies per rotations

Number of slices

water cylinder
sequential

B

120

0.68

40 x 0.625
512X 512
500

Calibration/
Training

350

0.68

250, 120, 60,
30

25 (except for
40

1000 (except

Test

350
0.68

210, 170,
120, 85, 60,
30,20, 15
13

40

520

pelvic phantom
sequential

B

120

0.68

64 x 0.625
512X 512

500

Test

350
0.68

80, 40,15

128

128

Table 5.1 Scan protocol parameters.

Number of detector rings

Source to isocenter distance, Dsi (mm)

Source to detector distance, Dsda (mm)

109
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Field of measurement:Drom (mm) 500
Number of detectors, Ndet 672
Detector size, ddet (mm) 1.41
Detector size at iso-center, dfan (mm) ~0.77
Sampling after rebinning, dpar (mm) danl2]
Number of gantry angles per revolution, M | 1160

Table 5.2 Scanner’s geometry parameters.

CT images of the water cylinder were used to estimate the unknown, scanner-
specific parameters: Hapo, Ta(i), K and oe¢’. Here, the settings listed under
’Calibration/Training’ (Table 5.1) were used. Subsequently, separate images of
the water cylinder and images of the pelvic phantom were used to validate the
low-dose simulation model (settings listed under *Test”). Therefore, simulated
and measured noise characteristics were compared by means of the pixel
variances and the NPS.

5.4.2 Parameter estimation

5.4.2.1 The reconstruction filter coefficients

The volumes emanating from successive X-ray tube rotations at 250mAs were
pairwise subtracted to yield 2000 zero-mean noise images (i.e. corresponding
slices from successive rotations). As such the attenuation profile of water cylinder
is implicitly corrected. The NPS was computed in a small rectangular ROI
consisting of 64x64 pixels in the center of the images. Figure 5.3 shows the result.
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frequency @ (lines/cm)

-6 -4 =2 0 2 4 6
frequency o (lines/cm)

Figure 5.3. The NPS calculated from a 64x64 ROI in the center of a 34cm water cylinder. The
NPS was normalized such that it ranged from 0 to 1

Subsequently, the parameters of the apodization window Hap, were estimated by
fitting our model (Eq. (5.31)) to the NPS. The left plot of Figure 5.4 demonstrates
how well the model fits the data, while the right plot shows in blue the apodization
window which is used in the remainder of the chapter (Eq. (5.29)). In the same
plot, the algorithmic transfer function, Hag, which 1is defined by
Haig(®) = (Hapo(@r)Hvack(@r)Hfanzpar(@r))? and represents the total apodization, is
depicted in pink.
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Figure 5.4. Left: the (angular averaged) radial NPS calculated from the images of a water
cylinder (pink) and the fitted model, i.e. Eq. (5.31) (blue). Right: the ensuing apodization
window Hapo (blue, Eq. (5.29)) and the algorithmic transfer function, Halg.

5.4.2.2 The bowtie filter

The 2000 zero-mean noise images from the previous step were used to calculate
pixel variances (see Figure 5.5). Subsequently, only those variances were retained
up to 154 mm from the center, i.e. inside the water cylinder. As such, artifacts at
the boundary of the cylinder and problems due to signal clipping outside the
cylinder are avoided. Furthermore, samples up to 10 pixels (7mm) from the center
were discarded, since the variance of the central pixels cannot be estimated with
sufficient precision. Samples were collected from within the remaining region
along 80 evenly distributed radial lines drawn outward from the center (see Figure
5.5). The bowtie filter parameters a were estimated for each of the 80 radial
segments separately (via Eq. (5.37)), after which the associated bowtie filter
transmissions were averaged. We took this approach for computational reasons
since the matrices in Eq. (5.33) are extremely large. The initial parameter setting
for every estimation was ainit = 0.5, 0, 0, 0, which corresponds to a single cosine
(see below). 01w was set to 0.15, which is comparable to the minimum found in
other scanners[26, 104].
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Figure 5.5. Variance image and all of the radial segments. The bowtie filter was calculated for
each such segment, i.e. for each separate line on either side of the center.

Figure 5.6 shows the estimated bowtie transmission. The left plot gives the profile
of the mean bowtie transmission, its 95% confidence interval (all in blue) as well
as the initialization (pink). Notice that the bowtie transmission was estimated
more precisely for the central detectors than for the ones at the periphery (reflected
in the smaller confidence interval). Particularly, the variance is large for the range
of |DetectorID| > 200, which corresponds to the edges of the water cylinder.
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Figure 5.6. left: The mean estimated bowtie filter (blue solid), the 95% confidence
intervals(blue dashed) and the bowtie used as initialization (pink). right: the values of the
pixels measured (blue) on the diagonal of the variance image depicted in Figure 5.5, the
analytically computed variance with (pink) and without (green) bowtie filter. The variance
was scaled by dividing the original by the mean.

The right plot displays the variance measured (blue) along one of the radial
segments depicted in Figure 5.5. Additionally, the variance as a function of
position was computed by means of Eq. (5.34) with (pink) and without the bowtie
filter (green). This shows that adding the bowtie filter to the model, enabled it to
describe the measured variance more accurately.

The shape of the transmission profile was similar to previously estimated bowtie
filters of CT-scanners[26, 104].

5.4.2.3 The X-ray tube output parameter and the readout noise level

The variance per pixel was estimated from the water cylinder images for each
exposure level in the training set. As specified in Section 5.4.2.2, the analysis was
restricted to pixels positioned within the 7mm (10 pixels) --154 mm distance
interval from the center.

Figure 5.7 shows the ratio (p ) of measured variances at 250 and 120 mAs as a
function of the distance to the image center. Neglecting the read-out noise, it
follows from Eq. (5.46) that

r I,
_ varp(r)], _ i 2505 0

= Var[/u(r)]lmgh ... 120
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Figure 5.7 essentially shows that this assumption was only approximatand weely
valid at these dose levels as a paired t-test showed that the pink line varied
significantly from the blue one (p <0.05). Nonetheless, the difference was only
2%.
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Figure 5.7. The ratio p between pixel variances at 120 mAs and 250 mAs as a function of
distance to the center of the image. Measurements are depicted in blue, the expected ratio
250/120 =2.08 is indicated in pink.

Next, Figure 5.8 (left) depicts estimates of K obtained at different exposure levels.
K was estimated using Eq. (5.46) by fitting a line through all data points, after
which the slope of the line corresponds to 1/(1zK). Clearly, the estimation of K
stabilizes at higher exposure levels and increasingly deviates from stability as the
exposure level decreases. We attribute this to the increasing importance of the
read-out noise due to which Eq. (5.46) is not valid anymore. Henceforth, the
estimated value for K at 250 mAs is used as an initialization to compute the initial
value of ge2.
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Figure 5.8. left: K as a function of the exposure. right:c.* as a function of the exposure. The

error-bars indicate 2.5-97.5 percentile of the estimation K and the £1 times the standard

deviation of the estimationoe>.

Figure 5.8 (right) displays the read-out noise and uncertainty as a function of
exposure in the training data. Table 5.3 lists the estimated values of K and o¢® at
each exposure level. The weighted average of estimates of ge? over all exposure
levels is used to initialize the minimization procedure described by Eq. (5.44).
Here, the weights were inversely proportional to the variances in the estimations
of ¢,

The read-out noise o.> was computed using Eq. (5.47), again based on the 7 mm
(10 pixels)--154 mm distance interval from the center. Figure 5.9 shows
histograms of estimated e’ values at 120 mAs and 30 mAs. Clearly, the
distribution is wider at 120 mAs (reflecting less precise estimation), because the
total noise is dominated by the Poisson component. Note that the variance can
take on negative values due to the subtraction involved in Eq. (5.47).
Simultaneously, observe that the mean is larger than zero in each case.
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Figure 5.9. Histograms of 6> estimated in the pixels of the water cylinder at 120 mAs (left)
and 30 mAs (right).

Exposure (mAs) | 250 120 60 30
K( x 10 208 2.03 198 184

oe’ -0.6 109 11.8 149

Table 5.3 Estimates for K and o.” at each exposure level. 6% is computed using K estimated
at 250 mAs. K is expressed in the number of photons/(mm?. mAs.revolution).

Finally, Figure 5.10 displays a contourplot depicting the density distribution as a
function of the pixel-variances and Cp within the 7 mm (10 pixels) --154 mm ROI
of the 250 mAs images. Notice how the pink line (solid), described by Eq. (5.46)
, 1s nicely in the center and its 95% confidence interval (dashed) delineates the
point cloud. The density of points is much higher in the lower left than the upper
right of the figure because more measurement points originate from the periphery
of the water cylinder, which have a lower variance. The final values of K and o>
were estimated using Eq. (5.44) Eq. (5.45) and the weighted mean of the values
in Table 5.3 as an initialization. They were found to be 2.17*10°
photons/(mm?. mAs) and 23.3(average of the values at the lowest two
exposures), respectively. Note that K and 62 are higher as all data were combined
than for each tube current separately. These final values will be used in the
remaining experiments.
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Figure 5.10. A contour plot depicting the density distribution as a function of the pixel
variance and Cp, with superimposed a line fit to all data points (continuously drawn) as well
as the 95% confidence interval of the fitted line. The slope of the line is equal to 1/(250K).

5.4.3 Validation of the low-dose CT model

The noise characteristics from simulated low-dose CT images were compared
with those produced by experimental low-dose CT-scans to validate our method.
The scan parameters to do so are collated in Table 5.1 (The *Test” column under
"water cylinder’ and under ’pelvic phantom’). The highest exposure level given
in the table served as input to simulate low-dose images. The noise characteristics
of all generated low-dose CT images were assessed by means of the pixel variance
describing the noise ’strength’, and the NPS quantifying the noise structure. Both
were computed in a number of ROIs. Finally, our model was quantitatively
compared to several raw projection based methods through a mathematical
phantom study similar to the one presented by[109].

5.4.3.1 34cm water cylinder

Figure 5.11 shows a CT image indicating the positions of the ROIs that were used
to compute the NPS. Each ROI had a size of 64x64 pixels.
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Figure 5.11: Image depicting four ROIs that were used to validate the low-dose CT

simulation.

Furthermore, Figure 5.12 shows the standard deviation as a function of the
distance to the center at different exposure levels: 60 mAs (lower three) and
15 mAs (upper three), respectively. The simulations at 60mAs (bottom three
curves) were obtained using images scanned at 250mAs (bottom), 120mAs
(middle) and 85mAs (top), while the simulations at 15mAs (top three curves) used
images obtained at 250mAs (bottom), 60mAs (middle) and 21mAs (top). The pink
and blue lines correspond to the angular averaged experimental and the simulated
data.

The figure shows that the differences between simulations and experiments are
small. Only in the center of the 15 mAs simulations small differences of
maximally 5% are noticeable. Therefore, the noise in the virtual sinogram can be
neglected at the studied dose levels. Notice that the deviation becomes larger in
simulations from increasingly higher doses. This is because increasingly more
noise needs to be added. We attribute the (almost) absence of noise to the
averaging that occurs in generating the virtual sinogram (i.e. the radon transform).
This is different from methods based on raw projection data: such methods
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generate noise based on data that already contains noise, whereas the noise in our
data is severely suppressed.

Additionally, Table 5.4 gives the relative root-mean-squared difference ¢,
between the simulated and experimental noise levels as a function of the exposure:

€ = ii(asimu(na m) _O-exp(n’m)) ’ (548)

1
NM =0 Gfimu(n, m)

in which ggimu(N, M) and Gexp(N, M) are the simulated and experimentally acquired
standard deviations at pixels (n, m) and N and M indicate the number of pixels on
both axes.

Figure 5.12 and Table 5.4 demonstrate that the simulated noise level closely
approximates the experimental noise level in the water cylinder.

Exposure (mAs) | 210 170 120 85 60 42 30 21 15
€(1072%) 19 14 15 15 14 21 23 23 25

Table 5.4: Relative RMS difference €s between simulated and experimentally acquired noise
levels as a function of the exposure.
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Figure 5.12: The standard deviation of the noise in a 34cm water cylinder as a function of the
distance to the center of the water cylinder for simulations of 15mAs data (top three lines)
from images obtained at (from top to bottom) 21, 60 and 250 mAs and for simulations of
60mAs data from images obtained at (from top to bottom) 85, 120 and 250 mAs. An offset of
-+20HU was added to separate the three curves for display purposes. The pink lines resulted
from experiments, the blue lines from our simulations.

Figure 5.13 shows contour plots of the NPS calculated from ROIs depicted in
Figure 5.11. The blue and pink lines correspond to the experimental and the
simulated NPS, respectively. Table 5.5 gives the relative root-mean-squared
difference enps between the experimental (NPSexp) and simulated NPS (NPSsimu)
for each ROI, i.e.:

M
> D UNPS,,, (@, 0,) - NPS, (@,.@,))’
n=l m=l . (5.49)

Enps = M

ZZNPSW ,@,)

n=l m

M
m=

Figure 5.13 and Table 5.5 signify that the shape of the 2D noise power spectra
from the simulations closely approximates those encountered experimentally.

ROI number | 1 2 3 4
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cNPS

0.16 0.16 0.12 0.14

Table 5.5 Relative RMS difference enes between measured and simulated NPS for the ROIs
depicted in Figure 5.11
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Figure 5.13: Contour plots of the experimental (blue) and the simulated (pink) NPS at

15 mAs. The iso-contours depict the same value for the pink and blue curves. Each line
corresponds to an increase of factor 2 while moving inwards; the actual values for the
outermost iso-contours are: 74 Hu?cm? (topleft, ROI1), 35 Hu?cm? (top right, ROI 2), 35
Hu?cm? (left, ROI 3) and 32 Hu?cm? (right, ROI 4) These ROI’s were indicated in Figure

5.11.
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5.4.3.2 Pelvic phantom

Figure 5.14: Three slices of the pelvic phantom imaged at 80 mAs in which ROIs were
selected for the assessment of the low-dose simulation method.

Fifteen ROIs were selected in which the noise properties were analyzed, see
Figure 5.14. Each ROI was composed of 41 x 41 pixels. The standard deviation
in each ROI was determined for both the experimental scans and the simulated
scans at 80, 40 and 15 mAs. For the simulations at 40 and 15 mAs, the scans at
80 mAs were used as the high-dose image. A validation at 80 mAs was possible
by computing the noise properties directly from the zero-mean noise image gnoise
that was simulated assuming the original image was acquired at infinite dose. For
each slice and exposure level, 64 simulations were created to take variations in
noise realizations into account. On average, the standard deviation of the
simulated images deviated 5.3%, 2.4% and 4.3% from the standard deviation of
the experimental images for the experimental acquired scans at 80, 40 and 15
mAs, which was within the 95% confidence interval of the estimated standard
deviation.
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Figure 5.15: Standard deviations obtained from the simulated images as a function of the ones
obtained from the experimentally acquired data at 80 mAs (top left), 40 mAs (top right) and
15 mAs (bottom). Each point indicates the average standard deviation in one of the ROIs
depicted in Figure 5.14. The bars depict the 95% confidence interval of the estimation. The
pink line represents the linear fit, the parameters of the fit are listed in Table 5.6.

Exposure (mAs) slope offset correlation

80 0.995 1.71  0.994
40 1.006 0.94  0.998
15 1.018 1.75  0.994

Table 5.6 The parameters and the correlation of the linear fit illustrated in Figure 5.15

Figure 5.15 and Table 5.6 show that the simulated scans closely approximated the
noise strength in the experimental scans. Nonetheless, the difference between the
simulations and experimental scans was larger for the measurements based on the
pelvic phantom than the ones based on the water cylinder. We attributed this to
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the presence of bone-like structures, that cause beam hardening ,which was not
taken into account in our method. Furthermore, the NPS was computed in four
arbitrarily selected ROIs from experimental and simulated scans at 15mAs, see
Figure 5.16. Once more, the figures show how well the simulation technique
approximates the experimentally acquired low-dose images.
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Figure 5.16: Contour plots of the experimental (blue) and the simulated (pink) NPS from
ROIs 3, 7, 12, 14 of the pelvic phantom (depicted in Figure 5.14) at 15 mAs. The iso-contours
depict the same value for the pink and blue curves. Each line corresponds to an increase of

factor 2 while moving inwards; the actual values for the outermost iso-contours are: 14
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Hu?cm? (top left, ROI 3), 8 Hu?cm? (top right, ROI 7), 18 Hu’cm? (left, ROI 12) and 7
Hu?cm? (right, ROI 14,)

5.5 Discussion

We presented a novel method to simulate patient-specific, low-dose CT images
from existing high-dose images assuming reconstruction by parallel beam filtered
backprojection. Scanner-specific parameters i.e. the apodization window of the
reconstruction filter, the bowtie filter, the X-ray tube output parameter and the
read-out noise were estimated using calibration images of a water cylinder.
Therefore, new estimators were developed that used reconstructed images and did
not require projection data. The low-dose simulation was evaluated by comparing
the noise characteristics of simulated low-dose images with experimentally
acquired low-dose images.

One of the main strengths of our chapter is that it allows scientists to simulate
low-dose CT in a well-documented and reproducible manner while not being
dependent on the availability of raw projections as well as scanner- and scanning-
parameters. Note that it is not our purpose to improve on the simulation methods
that are based on the raw-projection data. Instead, the aim is to simulate low dose
CT image from the higher dose images, which is useful whenever the raw
projection data is not shared by vendors. Additionally, it is relevant for
retrospective CT-studies in which the raw data is usually not stored. Moreover, it
is important for the developers of image processing algorithms: it gives them a
realistic tool to study the robustness of their techniques under noisy
circumstances.

We demonstrated that the models used to recover the scanner-specific parameters
accurately described the calibration data. The estimated reconstruction filter
corresponded well to smooth reconstruction kernels found earlier[113, 115, 116].
We recognize, however, that a more general model such as an higher order cosine
series may be necessary to describe the very sharp kernels. The shape of the
bowtie filter estimated by us closely resembles the bowtie filter used in a Siemens
scanner[26, 104, 127]. Furthermore, we estimated the X-ray tube output
parameter at K = 2.17*10° photons/mm?. mAs and the read-out noise variance at
0e?=23.2. These estimated values were of the same order of magnitude as
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reported  previously:  Massoumzadeh  etal. [26]  estimated  2.7*10°
photons/mm?mAs for K and values from 40 through 200 for ge’; Faulkner
etal. [114] estimated 4.15%10° and 6.46*10° photons/mm?.mAs for K. Ma
etal. [106] found 10 for oe’. Finally, we showed that the simulated low-dose
images accurately reproduced the noise in experimental low-dose volumes.

A limitation of our approach is in the assumption that monochromatic photons are
produced by a virtual X-ray source. As such, our method does not take beam
hardening effects into account, which likely cause the encountered deviations in
the noise characteristics between simulated and experimental scans of the pelvic
phantom. At the same time, the differences between the simulated and
experimental data were relatively small even in the presence of bony structures
and at relatively low exposures of 15 mAs. Essentially, a polychromatic approach
would require a spectral dependency in our framework, particularly concerning
the x-ray tube output No and the calculation of attenuation projections. We
consider this an important topic for further research.

Additionally, a limitation is that our method does not take tube current modulation
into account. The tube current modulation essentially adjusts the tube current to
the part of the body being imaged and the size of the patient. A variation per slice
can be simply incorporated in our method by adjusting No to the actually used
tube current Inigh which may be stored in the DICOM-header. However, it might
not be easy to recover complexer variations of No, e.g. as a function of the gantry
angle.

Our method requires a full field of view which is the case for many protocols.
Clearly, one could always prospectively reconstruct full field images to satisfy
this requirement. In our model, the detector noise was approximated by zero-mean
Gaussian noise, which is commonly used in literature[26, 106, 110, 115, 128], but
strictly speaking is not entirely correct[109].

The techniques to extract the system parameters assumed in-plane, fan beam

imaging and filtered backprojection for tomographic reconstruction. This should

be considered a calibration step. The simulation method also focused on in-plane

fan-beam imaging and image reconstruction by filtered backprojection,

particularly to demonstrate the feasibility of simulating low dose CT scanning

from higher dose images. As such, the effects of interslice noise correlations
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associated with helical scanning were not considered. We hypothesize that these
correlations are small, but might not be negligible. An obvious next step will be
to simulate cone-beam imaging and backprojection and fully integrate helical
scanning in the model. This would require a fairly straightforward adaptation of
the methods to generate the virtual sinogram and the technique to perform filtered
backprojection. Our methods are not applicable to iterative reconstruction
methods as such methods violate crucial model assumptions. This is perhaps the
largest limitation of our work.

In summary, the developed methods truthfully simulated low-dose CT imaging
without requiring projection data. This new technology might facilitate large-
scale studies into the diagnostic accuracy for lower CT dose. In turn, it could aid
in further reducing the radiation risks of CT-examinations.
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The first part of this thesis focussed on the VIGOR-++ project, whose purpose was
to develop a novel tool to grade Crohn’s disease severity based on MRI.
Specifically, three essential problems were solved: 1. (semi-)automated
delineation of the bowel wall; 2. precise extraction of features from this
delineation; 3. development of a reproducible disease scoring system through a
comprehensive feature search and validation of this system by comparing it to
state-of-the-art systems based on manually measured features. The second part of
the thesis focused on developing a realistic low-dose CT-image simulator from
reconstructed high-dose CT images.

6.1 Conclusions

In chapter 2, a new method was presented to segment the bowel lumen from T1-
weighted MR images using a level set approach. The technique can cope with a
heterogeneous content of the bowel lumen composed of three materials: fecal
residue, water, and air as well as a diverse lumen exterior composed of three
tissues with respectively dark, medium and bright intensities. Hence, it provides
a natural extension to existing region-based active contour models. Particularly,
it avoids splitting or merging multiple level set segmentations in a post-processing
step. Our algorithm was able to successfully segment the lumen in 60 out of 61
ROIs, spanning a wide variety of bowel geometries and material mixtures. The
mean distance between our level set segmentation and the surface extracted from
annotations by two experts was 1.43+0.55mm and 1.48+0.68mm, respectively.
This was comparable to the inter-observer variability between the experts’
annotations: 1.52+0.70mm. The lumen segmentation was used to derive features
related to Crohn’s disease activity in chapter 3.

In chapter 3, a semi-automatic method to measure the bowel wall thickness was
evaluated. The method consists of four steps: (1) initialization by manually
drawing a centerline; (2) segmentation of the bowel wall’s inner surface; (3)
segmentation of the wall’s outer surface; (4) measurement of the bowel wall
thickness. The method was validated using the examinations of 56 consecutive
patients with suspected or known Crohn’s disease undergoing 3T MR
enterography. In each of these images two annotators independently annotated all
regions with active Crohn’s disease (Anol, Ano2). Furthermore, three observers
(Ob1, Ob2, Ob3) manually measured the maximal bowel wall thickness of each
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segment annotated by Anol or Ano2. The method was separately evaluated
regarding its ability (1) to segment a diseased part of the bowel wall and (2) to
measure a segment’s thickness. The median overlap of the semi-automatic
segmentations (Segl vs Seg2: 89%) was significantly larger than the median
overlap of the manual annotations (Anol vs Ano2: 72%): p = 1.4 10 . The
variance in overlap of the semi-automatic segmentations was significantly smaller
than the variance in the overlap of the manual annotations (p = 1.1 10 ). The
intraclass correlation coefficient (ICC) of the semi-automatic measurement (0.88)
was significantly higher than the ICC of the manual measurement (0.32-0.65): p
= 0.005. Therefore, our data showed that a semi-automated measurement
technique facilitated a highly reproducible delineation of a region with active
Crohn’s disease. Furthermore, the semi-automatic thickness measurement
sustained a significantly higher ICC than manual observers in active segments on
MRI. As such, it may reduce the inter-observer variability of an MRI grading
systems for Crohn’s disease.

In chapter 4, a method was developed for scoring disease activity based on
manually and automatically determined MRI features using ileocolonoscopy as
the reference standard. Patient data (both MRI and colonoscopy) from a
retrospective study (27 patients) was used to develop a scoring system, the
VIGOR model, based on semi-automatically determined features. Similarly, a
system was developed incorporating only manually determined features: the
manual model. A total of 120 patients (66 females, median age 35) were
prospectively included for validation. The validation of the VIGOR model
showed comparable grading accuracy to conventional scoring systems, such as
the MaRIA, London score and the manual model. Simultaneously, a significantly
higher ICC was seen for the VIGOR model (0.81 vs 0.43-0.55). Contrary to other
studies, we found relatively low grading accuracy and interobserver agreement
for individual features and scoring systems, which was partially explained by the
inclusion of only active segments. In conclusion, the use of semi-automatic
features for assessment of patients with CD provides improved reproducibility
over conventional scoring systems, favoring its use for therapy evaluation and
monitoring of disease activity. Accurate and reproducible MRI scores could
improve the physician's trust in these scores to make consistent and effective
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treatment decisions. Additional benefits in diagnostic capabilities remain to be
investigated in future studies.

In Chapter 5, a novel method was presented to simulate patient-specific, low-dose
CT images from existing high-dose images assuming reconstruction by filtered
backprojection. Scanner-specific parameters such as the apodization window of
the reconstruction filter, the bowtie filter, the X-ray tube output parameter and the
read-out noise were estimated using calibration images of a water cylinder.
Therefore, new estimators were developed that used reconstructed images and did
not require projection data. The low-dose simulation was evaluated by comparing
the noise characteristics of simulated low-dose images with experimentally
acquired low-dose images. The method might facilitate large-scale in-silico
studies into the diagnostic accuracy for lower CT dose. In turn, it could aid in
further reducing the radiation risks of CT-examinations.

6.2 Future work on MRI-based assessment of Crohn’s disease
severity

An outlook of future work on the assessment of Crohn’s disease severity can be
divided into two parts: advances in methodology and progress towards clinical
application of newly developed techniques.

The methods presented in this thesis could be extended in several ways so that
they become more robust or able to measure more salient features (and thus
become more sensitive). For instance, the bowel wall segmentation algorithm
models slowly varying intensity fluctuations and abrupt intensity transitions in
two separate terms: the smooth fluctuations in a term representing the mean local
intensity and the abrupt ones in a term consisting of a weighted sum of mean
material intensities. Alternatively, a combination of more sophisticated basis
functions could be used (instead of the mean material intensities). Future work
could be to experiment with commonly used bases, such as a local polynomial
basis [70] and Gabor wavelets. A local polynomial basis could be used to cope
with strong BO-field inhomogeneity while retaining a large integration scale.
Alternatively, introducing Gabor wavelets might enable the modeling of ridge like
structures such as thin pieces of bowel wall. Finally, a modified nearest mean
classifier estimated the material fractions. More sophisticated, hybrid methods

such as estimating the material fractions through an Expectation Maximization
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(EM) approach could also increase the robustness of the presented method.
Clearly, this framework might be extended to other problems besides the
segmentation of the bowel wall.

Incorporating additional anatomical knowledge may increase the robustness of
the segmentation algorithm even further. Currently, shape information is
modelled by either the minimum length term (or a weighted one steered by image
information[44]) or by learning a complex shape distribution from training shapes
(and/or use a Parzen density estimation to fill the gaps between the training
shapes)[129-131]. The first option incorporates a very limited amount of prior
knowledge while the second option requires an extensive training set to grasp all
degrees of shape variation, which in the case of the bowel is unavailable (or at
least very costly to obtain). A novel approach would be to model the bowel by
simple lower dimensional shapes such as an irregular tube or locally penalize
certain curvatures. Lately, work has been published in which complex shapes
were represented by wavelet decomposition[132]. The coefficients learned as
such acted to regularize the segmentation process.

Feature driven segmentation would also be of interest, in which case segmentation
and feature extraction is done simultaneously. For instance, in chapter 3, the outer-
wall segmentation step might be regularized by a thickness constraint. The
stratification of the bowel wall (or presence of edema) might also be modelled
implicitly into the segmentation algorithm, so that the actual measurement of the
stratification pattern improves the segmentation and vice-versa.

Another aspect is to further minimize the interaction, which is on the order of
seconds for well-distended and short pieces of diseased bowel up to a few minutes
for collapsed and highly folded ones. The interaction could be reduced by
automatically extracting the centerline. Automatically drawing a centerline is very
challenging as the lumen shape is very complex and is sometimes not identifiable
due to strictures. Automatically detecting whether disease activity is present and
its approximate location would make the analysis more efficient in daily practice.

The MRI features showed a large variation among observers, and understanding
the origin of these variations may help improving the automated measurements in
scoring disease activity. For instance, how should the thickness be measured (both
as a stand-alone feature and as a variable in a scoring system)? Should a single
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feature, multiple features or even a thickness distribution describe the bowel wall
thickness? Such studies require segmentations, which are now available due to
the work in Chapter 2 and 3. Chapter 4 has shown that the volume is an important
feature and investigating more descriptors of volume could lead to even stronger
scoring systems. We hypothesize that volumetric and surface-based features more
closely correlate to colonoscopic features than point based ones, as for instance
the CDEIS scores the inflammation based on the size the affected surface.

Although improvements can be made by enhancing existing and developing novel
features it is unlikely MRI can perfectly predict CDEIS. This is because MRI and
colonoscopy visualize different aspects of the disease (severity). Furthermore,
recent work showed that different degrees of inflammation frequently occur in a
single surgical specimen with both inflammation and fibrosis present in a single
voxel[133].

Additionally, the VIGOR++ score or the automated features may also be validated
against a histopathological score in the future. Histopathology assesses
transmural disease activity, straightforwardly and locally. Semi-automated
features such as the bowel wall thickness and the Al-feature can be measured
locally as well, although finding exact correspondence might be a challenging
issue. A validation using the histologic scale may enhance the understanding of
how disease activity should be expressed at a segment scale.

6.3 Future work on simulation of low-dose CT

Chapter 5 has demonstrated that realistic, low-dose CT-images can be produced
from high-dose images. Such a realistic low-dose model for state-of-the-art
clinical CT scanners needs to be further developed. The necessary extensions
should include: a cone-beam helical acquisition geometry, a poly-energetic X-ray
spectrum, object dependent attenuation, and state-of-the-art iterative
reconstruction algorithms. Nonetheless, for most scanners that are in use today,
the approximation that are done in our simulation method are still valid.
Therefore, this new technology might facilitate large-scale studies into the
diagnostic accuracy with lower CT dose. In effect, it could aid in further reducing
the radiation risks of CT-examinations.
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Summary

Cross-sectional medical imaging techniques have become indispensable in
assessing abnormalities in the anatomy and physiology of the abdomen in clinical
practice. This thesis addresses two specific challenges. The first part of the thesis
investigates the application of MRI and image processing techniques to assess
Crohn’s disease activity. The second part presents a realistic low-dose CT-image
simulator to facilitate in-silico dose optimization based on available “high-dose”
data sets.

Grading Crohn's disease activity is important for monitoring disease activity and
treatment planning. Crohn’s disease is a chronic inflammatory disease of the
gastrointestinal tract with a relatively high incidence in the Western world,
affecting 700 thousand individuals in Europe alone. The disease is characterized
by a chronic relapsing and remitting course, i.e. periods of exacerbations are
alternated by episodes of diminished disease activity. Accordingly, the mere
presence of the disease must be distinguished from active disease, which can
occur at varying levels of severity and each level requiring a different treatment.
Ideally, a disease activity score should be objective, reproducible, quantifiable,
non-invasive and comprehensive. Currently, imperfect clinical, endoscopic and
histopathology scores such as CDAI, CDEIS and D’Haens index are used to
assess the disease activity. The aim of the VIGOR++ project was to develop a
novel grading scheme based on multi-sequential MRI volumes.

Segmentation of the bowel’s lumen surface is a crucial step to automatically
assess Crohn’s disease activity based on magnetic resonance (MR) images. This
is challenging due to MR signal variations, heterogeneous lumen content, the
presence of stenosis, and the diversity of the surrounding tissues. We presented a
region-based active contour algorithm that can handle these challenges by
incorporating prior knowledge about properties of the lumen content (e.g. the
stratified appearance) and knowledge of the adjacent anatomy in a space-variant
regional mixture model. This information was added to the model by estimating
material fractions inside each voxel. A level set representation employing a
gradient-descent scheme was used to obtain the actual segmentation. The method
was tested on 61 regions from 59 patients presenting Crohn’s disease activity. It
was shown that the difference between the automated segmentations and manual

142



annotations is comparable to the difference between the manual annotations
themselves.

The lumen surface acted as a starting point for bowel wall segmentation and
subsequent thickness measurements. The method consisted of four steps: (1)
initialization by manually drawing a centerline; (2) segmentation of the bowel
wall’s inner surface; (3) segmentation of the wall’s outer surface; (4)
measurement of the bowel wall thickness. The algorithm was run twice starting
from two centerlines. This yielded two segmentation results of the bowel wall and
two measures of its thickness. The method was separately evaluated regarding its
ability (1) to segment a diseased part of the bowel wall and (2) to measure a
segment’s thickness. The overlap of the semi-automatic segmentations was
significantly larger than the overlap of the manual annotations. The intraclass
correlation coefficient (ICC) of semi-automatic measurements was significantly
higher than the ICC of manual measurements. As such, the semi-automated
measurement technique facilitates a highly reproducible delineation of regions
with active Crohn’s disease. Furthermore, the semi-automatic thickness
measurement sustains a significantly higher intraclass correlation than manual
observers.

In VIGOR++, a method was developed for scoring disease activity based on
manual and automated MRI features using ileocolonoscopy as the reference
standard. Patient data (both MRI and colonoscopy) from a retrospective study was
used to conduct an exhaustive search to select the best scoring system. Next, this
system was validated based on an independent test set. The so-called VIGOR++
system was compared with other state-of-the-art scoring systems such as the
MaRIA-score and the London score. The VIGOR++ score was shown to have a
considerably higher inter-observer agreement than both the MaRIA and the
London score.

The second part of the thesis is dedicated to abdominal CT. A low-dose Computed
Tomography (CT) simulator was presented, which facilitated in-silico studies into
the required dose for a diagnostic task. Conventionally, low-dose CT images are
simulated by adding noise to the recorded projection data. However, this is not
always achievable in practice as the raw projection data are simply not available.
I aimed to present a new method for simulating patient-specific, low-dose CT
images without the need of the original projection data. The required scanner-
specific parameters such as the apodization window, the bow-tie attenuation
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coefficients, the X-ray tube output parameter (reflecting the photon flux) and the
detector read-out noise are retrieved from calibration images of a water cylinder.
The low-dose simulation method was evaluated by comparing the noise
characteristics in simulated images with experimentally acquired data. It was
demonstrated that the simulated low-dose images accurately reproduced the noise
characteristics of experimentally acquired low-dose-volumes. Hence, the new
methodology could aid in further optimizing CT protocols by facilitating in-silico
studies on dose dependency of low-contrast object detectability.
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Samenvatting

Cross-sectionale medische beeldbewerkingstechnieken zijn onmisbaar geworden
in de klinische praktijk voor de beoordeling van abnormaliteiten in de anatomie
en fysiologie van het abdomen. Dit proefschrift behandelt twee specificke
problemen in dit domein. Het eerste deel van het proefschrift onderzoekt de
toepassing van MRI en beeldbewerkingstechnieken om de ziekte van Crohn
activiteit te beoordelen. Het tweede deel presenteert een realistische lage dosis
CT-beeld simulator die ons in staat stelt dosis optimalisatie experimenten uit te
voeren op oude hoge dosis beelden.

Het graderen van de ziekte van Crohn activiteit is belangrijk voor het monitoren
van de ziekte voortgang en het bepalen van de behandelstrategie. De ziekte van
Crohn is een chronische ontstekingsziekte in het maag-darmkanaal met een
relatief hoge incidentie in de Westerse wereld. In Europa alleen al lijden zo’n 700
duizend individuen aan deze ziekte. De ziekte kenmerkt zich door onregelmatige
afwisselingen tussen actieve en minder actieve fasen. Hierom is het belangrijk om
naast het bestaan van de ziekte ook de activiteit te bepalen. Deze kan worden
opgedeeld in verschillende score niveaus en elk score niveau heeft een ander
behandelplan. Idealiter is zo’n ziekte activiteit score objectief, reproduceerbaar,
kwantitatief, niet-invasief en allesomvattend. Op dit moment worden er helaas
imperfecte score systemen gebruikt, zoals CDAI, CDEIS en D’Haens, die zijn
gebaseerd op o.a. endoscopie en histopathologie. Het doel van het VIGOR++
project was het ontwikkelen van een scoring systeem uit multi-sequentiéle MRI-
volumes.

De segmentatie van het darm binnen-oppervlak was een cruciale stap in het
automatisch bepalen van de ziekte van Crohn activiteit uit MRI beelden. Dit was
een complex probleem door willekeurige variaties in het MRI signaal,
heterogeniteit van het darmlumen, de aanwezigheid van stenose en de
verscheidenheid van de omringende weefsels. In dit proefschrift werd een nieuw
“region based active contours” algoritme gepresenteerd dat met dergelijke
complexiteit kon omgaan door gebruik te maken van voorkennis van de inhoud
van het darmlumen (bijv. de gelaagdheid van de inhoud) en de omliggende
anatomie, door dit te modelleren in een plaats-athankelijk regionaal mixture
model. Hierin werd voor elke potentiele lumen voxel bij voorbaat een schatting

gemaakt van de materiaal fractie. Het algoritme maakte gebruik van een “level
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set” representatie van het darmoppervlak, daarnaast werd de gradiént afdaling
methode gebruikt om de uiteindelijke oplossing te vinden. De methode was getest
op 61 darmsegmenten van 59 patiénten met de diagnose ziekte van Crohn. Hierin
werd aangetoond dat het verschil tussen de verkregen segmentaties en de
handmatige annotaties vergelijkbaar was met het verschil tussen de annotaties
onderling.

De segmentatie van het lumen oppervlak diende als startpunt voor het verkrijgen
van de darmwand segmentatie en de daar uitvolgende diktemetingen. De methode
bestond uit vier stappen: (1) Initialisatie door een handmatig getekende pad; (2)
Segmentatie van het darm binnen oppervlak; (3) Segmentatie van het darm buiten
oppervlak; (4) De meting van de dikte van de darmwand. Twee
onderzoeksassistenten tekenden (elk begeleid door een andere radioloog)
onafhankelijk van elkaar paden en vervolgens werd voor elk pad het algoritme
uitgevoerd. Hierdoor werden voor veel segmenten twee segmentaties verkregen
en dus ook twee diktemetingen. De methode werd vervolgens apart gevalideerd
aan de hand van de kwaliteit van de segmentaties en de kwaliteit van de
diktemetingen. De gevonden overlap tussen de segmentaties was significant
hoger dan de overlap tussen de handmatige annotaties. Tevens was de intraclass
correlatiecoéfficiént (ICC) van de semiautomatische diktemetingen significant
groter dan de ICC van de handmatige metingen. Als zodanig stelde deze
semiautomatische methode de onderzoekers in staat zeer reproduceerbare
omlijningen en diktemetingen te verkrijgen van zieke stukken darmwand.

In VIGOR++ werd een methode ontwikkeld om de ziekte activiteit te scoren aan
de hand van handmatig en automatisch verkregen MRI features en
gebruikmakend van ileocolonoscopie als referentie standaard. Patiént data (zowel
MRI als colonoscopie) van een retrospectieve cohort werd gebruikt om de beste
features te selecteren voor het model. Vervolgens werd het model getest op een
onathankelijke test-set. Het zogenaamde VIGOR++ systeem werd vergeleken met
andere zeer recentelijk ontwikkelde scoringssystemen zoals de MaRIA-score en
de London score. Hieruit volgde dat de VIGOR++ score een veel hogere
interobserver overeenkomst had dan zowel de MaRIA als de London score.

Het tweede deel van het proefschrift was gewijd aan abdominale CT. Hierin werd

een lage dosis CT simulator gepresenteerd, die het mogelijk maakte om studies

uit te voeren waarin de minimale stralingsdosis bepaald zou kunnen worden voor

een specifieke diagnostische taak. Het was gebruikelijk om lage dosis CT-beelden
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te simuleren door ruis toe te voegen aan de ruwe projectie data. Echter was dit
niet altijd mogelijk in de praktijk omdat de ruwe projectie data simpelweg niet
beschikbaar was. In dit proefschrift werd een nieuwe methode geintroduceerd om
patiént specifieke lage dosis CT beelden te simuleren zonder daarvoor de ruwe
projectiedata te gebruiken. De vereiste scanner-specifieke parameters zoals het
afkapvenster van het reconstructiefilter, het bowtie filter, de fotonen flux
afkomstig van de rontgenbron en de detector ruis werden verkregen uit kalibratie
beelden van een watercilinder. De lage dosis CT simulator was gevalideerd door
de ruiseigenschappen in de gesimuleerde beelden te vergelijken met die in
experimenteel verkregen data. Hierin werd gedemonstreerd dat de gesimuleerde
lage dosis beelden accuraat de ruiseigenschappen nabootsten van de
experimenteel verkregen beelden. Hierdoor zou de stralingsdosis van bestaande
CT protocollen verder verlaagd kunnen worden en mogelijk geoptimaliseerd.
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