
Automatic Unit Test Generation

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Menno den Hollander

born in the Hague, the Netherlands

Software Engineering Research Group

Department of Software Technology

Faculty EEMCS, Delft University of Technology

Delft, the Netherlands

www.ewi.tudelft.nl

Logica

George Hintzenweg 89

3068 AX Rotterdam

www.logica.com

c© 2010 Menno den Hollander. All rights reserved.

Automatic Unit Test Generation

Author: Menno den Hollander

Student id: 12174969

Email: menno.den.hollander@gmail.com

Abstract

While test generators have the potential to significantly reduce the costs of soft-

ware testing and have the ability to increase the quality of the software tests (and thus,

the software itself), they unfortunately have only limited support for testing object-

oriented software and their underlying test generation techniques fail to scale up to

software of industrial size and complexity. In this context, we developed JTestCraft,

a state-of-the-art test generator for the Java programming that deals effectively with

all object-oriented programming concepts, such as object array types, inheritance and

polymorfism. Furthermore, JTestCraft can locate all relevant test cases due to the use

of the novel Candidate Sequence Search algorithm. Other novel concepts introduced

in this thesis include the Constraint Tree data-structure to improve scalability and the

Heap Simulation Representation to simplify the implementation of the test generator.

We evaluated JTestCraft by looking at its ability to generate tests that obtain high code

coverage and compare the results to human crafted tests. In addition, the performance

of JTestCraft is compared against similar tools. Finally, we give pointers for further

research to improve the performance and usability of future test generators.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft

University supervisor: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft

Dr. C.J. Boogerd, Faculty EEMCS, TU Delft

Company supervisor: Drs. B. Vranken, Logica

Ir. E.C. Essenius, Logica

Committee member: Dr. E. Visser, Faculty EEMCS, TU Delft

Dr. Ir. W.-P. Brinkman, Faculty EEMCS, TU Delft

Preface

This thesis discusses the work I have done for my master project at the Delft University of

Technology. The idea for my master’s project was born when I took the Software Quality

and Testing course given by Arie van Deursen. During this course I learned that software

testing is an essential, yet very time consuming activity. I considered writing unit tests

especially as a very mundane task and, even though it is theoretically one of the hardest

problems to solve, I figured that most of it could be automated. As part of this work, I have

developed a unit test generator that incorporates novel techniques to generate unit tests for

object-oriented software. I am really pleased with the results and hope that in the future this

work will save software developers considerable time, effort and frustration to write unit

tests.

Most of this work was conducted at Logica as part of the Working Tomorrow pro-

gramme. I wish to thank the people and my fellow students at Logica for providing a warm

and constructive working environment. My daily supervisors at Logica were Edwin Es-

senius and Bram Vranken. I want to thank them for providing valuable input, support and

also for sharing their insights in the software industry. My university supervisors were Andy

Zaidman and Cathal Boogerd, who I have to thank for significantly increasing the quality

and readability of my writings. I am grateful to all my supervisors for their time and effort

spent on listening to my ideas, carefully reading my work and providing useful feedback.

Finally, I would like to thank my parents, Gabriël and Wendy for encouraging me to do

what I wanted to do and for their support throughout my university years.

Menno den Hollander

Leiden, the Netherlands

July 1, 2010

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Program versus Specification-based Test Generation 2

1.2 Automatic Unit Test Generation . 3

1.3 Problem Complexity . 4

1.4 Testing Object-oriented Software . 5

1.5 Research Objective . 5

1.6 Contents . 6

2 Related Work 7

2.1 Search-based Testing . 8

2.2 Symbolic Testing . 8

2.2.1 Concolic Testing . 9

2.2.2 Object-oriented Software . 9

2.3 Comparison of Test Generation Approaches 10

2.4 Conclusion . 10

3 Concolic Testing 11

3.1 Concolic Testing . 12

3.2 Symbolic Heap Representation . 14

3.3 Constraint Tree . 16

3.3.1 Method Invocations . 17

3.4 Conclusion . 17

v

CONTENTS

4 Candidate Sequence Search 19

4.1 Current Approaches and Their Limitations 20

4.1.1 Type-based Approaches . 20

4.1.2 Combining Execution Paths . 21

4.2 Algorithm Overview . 23

4.3 Sequence Generation . 23

4.3.1 Criteria . 24

4.3.2 Algorithm . 25

4.3.3 Data-flow Check . 28

4.3.4 Partial Order Reduction . 28

4.4 Sequence Exploration . 29

4.4.1 Criteria . 29

4.4.2 Algorithm . 31

4.4.3 Sequence Grouping . 32

4.5 Conclusion . 32

5 JTestCraft 33

5.1 Architecture Design Overview . 34

5.2 Sequence Generator . 35

5.3 Instrumentation Class Loader . 36

5.3.1 Execution Monitoring Techniques 36

5.3.2 Byte-code Instrumentation . 36

5.4 Symbolic Virtual Machine . 39

5.4.1 Stack Instructions . 39

5.4.2 Constant Instructions . 40

5.4.3 Arithmetic Instructions . 40

5.4.4 Branch Constraints . 41

5.4.5 Load and Store Instructions . 41

5.4.6 Method Invocations . 43

5.4.7 Exception Handling . 43

5.5 Constraint Simplification . 44

5.6 Constraint Solver . 45

5.7 Floating Point Arithmetic . 46

5.8 Test Code Generator . 46

5.9 Correctness . 46

5.10 Conclusion . 47

6 Empirical Evaluation 49

6.1 Test Generation Performance . 50

6.1.1 JPacman . 50

6.1.2 Experimental Setup . 51

6.1.3 Results . 52

6.1.4 Threats to Validity . 52

6.1.5 Discussion . 52

vi

6.2 Performance Measurements Using Profiling 52

6.2.1 Experimental Setup . 53

6.2.2 Results . 53

6.2.3 Threats to Validity . 53

6.2.4 Discussion . 53

6.3 Performance Comparisons Using a Standard Set of Algorithms 54

6.3.1 Rostra & Symstra . 54

6.3.2 Experimental Setup . 55

6.3.3 Results . 56

6.3.4 Threats to Validity . 57

6.3.5 Discussion . 58

6.4 Summary . 58

7 Conclusions and Future Work 59

7.1 Contributions . 60

7.2 Conclusions . 61

7.3 Discussion . 63

7.4 Future Work . 63

Bibliography 67

vii

List of Figures

3.1 Path constraints represented in a tree structure. 16

3.2 Constraint Trees for the recursive method that implements Euclid’s algorithm. . 18

4.1 Candidate Sequence Generation for the TemperatureMonitor example 27

5.1 JTestCraft Architecture . 35

5.2 Tree constraints for the buffer initialization example 45

6.1 JPacman line coverage . 51

ix

Chapter 1

Introduction

1

1. INTRODUCTION

Software testing is an integral component of the software development process. It is

the main software verification technique applied today to determine whether software ad-

heres to its specification. Software testing constitutes a major part in software development

expenses. It is estimated that the cost of software testing is typically half that of the total

cost of software development and maintenance [3]. Without any kind of software quality

verification, software is unlikely to function correctly. The National Institute of Standards

and Technology estimates that inadequate software testing costs the United States economy

$59.5 billion annually [26]. Moreover, empirical results show that when software testing

is postponed to a later development phase, the cost of repairing software defects increases

several times [3]. In this thesis we aim to reduce costs of software testing, which should

translate into a significant decrease in software development expenses. This cost reduction

is achieved by using a test generator that automatically generates tests. Another advantage

of this approach is that a test generator constructs test cases systematically, which improves

the quality of the constructed software test suite and reduces the room for human error in

software testing.

This thesis investigates techniques that automatically generate software tests from pro-

gram code and focuses on techniques that target object-oriented software. This approach

and its alternative are discussed in section 1.1. Section 1.2 discusses the type of tests that

these test generation techniques target. The two following sections discuss the most impor-

tant problems that limit the applicability of automatic test generation to industrial software.

These are the limited scalability of test generation techniques and the current level of sup-

port for object-oriented language features. In section 1.5 we formulate the goal of this

thesis, which is to address both problems. Finally, the last section provides an overview of

the contents of this thesis.

1.1 Program versus Specification-based Test Generation

Software testing serves multiple purposes, such as assessing the performance, reliability or

security of a software system. In this thesis software testing is used to assert the correctness

of software. In this case, some type of oracle is needed to differentiate between right and

wrong software behavior. There exist two ways to provide this oracle to a test generator.1

Both options are currently evaluated for usage at Logica, a global IT and management

consultancy company.

Specification-based techniques provide a test generator with formal specifications to

generate the software tests from. Unfortunately, this requires that the software specifications

are available in a (sufficiently detailed) machine-readable form. In practice, this is almost

never the case. Moreover, for developers to incorporate this in their software development

process, they have to learn a new specification language.

Alternatively, program-based techniques only depend on the system under test to gener-

ate test cases. After the test set has been generated it is left to the developer to extend these

test cases with an expected behavior specification. Since the generated test cases are written

1In the software testing literature program-based testing is often referred to as white-box testing, whereas

specification-based testing is often referred to as black-box testing.

2

Automatic Unit Test Generation

public static int weightCategory(double mass, double length) {
assert mass > 0.0;

assert length > 0.0;

double bmi = mass / (length ∗ length);

if (bmi < 18.5)

return BMICategory.UNDERWEIGHT;

else if (bmi < 25.0)

return BMICategory.NORMAL;

else

return BMICategory.OVERWEIGHT;

}

Listing 1.1: Body Mass Index example

in the same language as the system under test, a developer is only required to learn a new

tool. Another advantage of program-based techniques is that they obtain structural coverage

more easily than specification-based techniques, since concrete source code provides more

information to guide the test generators than abstract specifications [30]. It is possible to

extend program-based techniques, such that they take (partial) formal specifications into

account, such as requiring the absence of segmentation faults or requiring no violations of

design by contract rules [23].

Due to these advantages, we decided to research program-based test generation tech-

niques. We are particularly interested in techniques that generate unit tests, since their

construction requires considerable time and resources. The automatic generation of unit

tests is discussed in the next section.

1.2 Automatic Unit Test Generation

A software unit is the smallest testable part of an application and a unit test is a piece of

code that checks whether a software unit behaves as intended. In object-oriented software

a unit is anything that ranges from a method to a small cluster of related classes. Unit tests

allow developers to locate software defects early in the development cycle. This reduces the

associated repair costs significantly [14]. Unit tests also reveal defects that other software

quality insurance methods are unlikely to find [10]. Unfortunately, constructing unit tests

requires considerable time and resources. The construction of a unit test can be split into two

activities. First, the tester determines a specific case that is likely to reveal a software defect,

e.g. a case that increases statement coverage. Then the tester checks whether in this specific

case the software behaves according to its specifications. The first activity can be completely

automated and we estimate, based on our experience writing unit tests, that this activity is

responsible for up to 70% of the total costs of unit testing. The second activity cannot be

automated completely, since the expected behavior specification to identify software defects

must be provided by a tester.

For example, the program shown in listing 3.1 calculates the body mass index of an adult

and uses this information to determine the person’s weight category [15]. The listing in table

3

1. INTRODUCTION

public void testWeightCategory0 () {
int ret0 = BMI.weightCategory(34.0, 7.5);

}

public void testWeightCategory1 () {
int ret0 = BMI.weightCategory(414.7, 0.7);

}

public void testWeightCategory2 () {
int ret0 = BMI.weightCategory(498.6, 4.7);

}

public void testWeightCategory0 () {
int ret0 = BMI.weightCategory(34.0, 7.5);

assert ret0 == BMI.UNDERWEIGHT;

}

public void testWeightCategory1 () {
int ret0 = BMI.weightCategory(414.7, 0.7);

assert ret0 == BMI.OVERWEIGHT;

}

public void testWeightCategory2 () {
int ret0 = BMI.weightCategory(498.6, 4.7);

assert ret0 == BMI.NORMAL;

}

(a) (b)

Table 1.1: Tests for the BMI example. Listing (a) shows the test generator’s output and list-

ing (b) shows the tests after a tester has extended the tests with their behavior specification.

1.1(a) shows a test set that could be generated such that full statement coverage is obtained.

The listing in table 1.1(b) shows these tests after a tester has added an expected behavior

specification for each test. These specifications are encoded as assert statements and

when the test set is run the tester is immediately informed when a test has succeeded or

failed.

The two most important problems that limit the applicability of automatic test genera-

tion to industrial software are the scalability of current test generation techniques and the

current level of support for object-oriented language features [2]. In the following two

sections both issues are addressed.

1.3 Problem Complexity

The problem of generating tests that satisfy a certain coverage criterion, e.g. that every

program statement must be executed by the test set, is undecidable [13]. This means that is

impossible to construct an algorithm that always achieves maximum coverage. In practice

it is often possible to generate test sets that achieve high coverage for programs of lim-

ited size and complexity. However, test generation algorithms fail to scale to larger and

more complex software, because the number of invocation sequences that these algorithms

need to consider grows exponentially with the sequence length. Moreover, each invocation

sequence can have many execution paths. This is caused by the path explosion problem,

which states that the number of paths through a program grows exponentially with the size

of this program. When there are loops present in the program, then there are often a near

infinite number of execution paths. Finally, determining the inputs that cause the execution

4

Testing Object-oriented Software

of a path is a NP-Complete problem.2 Clearly, only a limited number of sequences and

paths can be explored by a test generator. When developing new test generation techniques

this should be taken into consideration, since this limits the scalability of test generators.

1.4 Testing Object-oriented Software

Even though most software developed today is constructed using object-oriented languages,

little research has focused on test techniques that target object-oriented software [2]. From a

tester’s perspective, testing object-oriented software is more difficult than testing procedural

software. This is due to object-oriented language features such as encapsulation, inheritance

and polymorfism. For example, encapsulation in Java is enforced by private, default and

protected access modifiers. These access modifiers prevent a tester to directly modify non-

public member variables. Instead, the tester must invoke a sequence of methods that modify

these member variables before the method under test is invoked. Access modifiers also

prove to be difficult when the access to methods is restricted. In this case, a method can

only be tested indirectly by invoking a method that in turn calls the method under test. Other

language features lead to similar increases in complexity. This thesis introduces novel test

generation techniques that deal effectively with object-oriented language features.

1.5 Research Objective

Recent advances in automatic test generation have made it possible to construct test suites

for real software [7]. As previously discussed, there are two important problems that limit

the applicability of automatic test generation to industrial software. First, program-based

test generation techniques are still limited to program units of limited size and complexity

due to scalability problems. The second problem is the current limited level of support for

object-oriented language features [2]. The objective of this master thesis is to address both

problems simultaneously. More specifically, we will introduce novel techniques that enable

the generation of high quality tests for object-oriented software. These techniques add full

support for object-oriented language features, such as encapsulation, inheritance and poly-

morfism. In order to address the scalability problem, these techniques are constructed such

that they only need to explore the minimal number of invocation sequences and program

paths. As part of this research, we develop a state-of-the-art test generator for the Java

programming language to evaluate the effectiveness of these techniques.

Based on these objectives, we formulated the main research question as follows:

“How do we add support for object-oriented software to program-based test

generation techniques, such that their scalability to large and complex software

is maximized?”

In the remainder of this thesis we introduce new algorithms and techniques to answer

this question. The most promising algorithms and techniques are implemented in a proto-

2NP-complete problems are considered hard to solve, because no algorithm is known that can solve these

problems in less than exponential time [28].

5

1. INTRODUCTION

type test generator. In order to assess the performance of the prototype test generator and to

answer the main research question we investigate the following sub-questions:

1. “How does the quality of the generated test cases compare to test cases written by

software developers?”

2. “What are the main areas of improvement for the prototype test generator?”

3. “How does the performance of the prototype test generator compare to other test

generators discussed in the literature?”

1.6 Contents

The second chapter provides a literature overview and a promising program-based testing

approach is chosen to investigate further. In chapter 3 this program-based testing approach,

Concolic Testing, is discussed in more detail. This chapter also introduces two new tech-

niques that improve the scalability of automated test generation. Chapter 4 introduces new

algorithms to generate invocation sequences. Invocation sequences put the system under

test in the right state in order to test state depended program components. The most promis-

ing techniques and enhancements are implemented in a prototype test generator, which is

discussed in the following chapter. In chapter 6 the performance of proposed techniques and

enhancements is evaluated. Finally, the last chapter discusses the most important findings

of this thesis and proposes several new directions for further research.

6

Chapter 2

Related Work

7

2. RELATED WORK

This chapter provides an overview of the test generation approaches that are subject

of active research. These approaches are search-based testing, symbolic testing and con-

colic testing. Search-based testing techniques formulate the test data generation problem

as a search problem and solve this problem using random or directed search techniques.

Another approach, symbolic testing, derives a set of symbolic constraints that describes the

conditions necessary for the execution of a certain path. This constraint set is then solved

to generate the concrete test data input that executes the associated path. In this chapter

we also consider a variant of symbolic testing, called concolic testing. This variant uses

concrete execution to collect the symbolic constraints.

The first section briefly describes Search-based Testing techniques. This is followed

by a discussion of Symbolic Testing. This includes the Concolic Testing variant on which

the developed prototype test generator is based. In section 2.3 a comparison is given of

the approaches discussed in this chapter. Finally, we identify the most important areas of

improvement for existing test generation techniques.

2.1 Search-based Testing

Search-based Testing methods formulate the generation of test data as a search-problem

and solve this problem using random or directed search techniques, such as local search

(Hill Climbing, Simulated Annealing) and Evolutionary Algorithms (Genetic Algorithms,

Evolution Strategies, Genetic Programming). The search algorithm repeatedly invokes the

system under test with candidate test inputs and uses code instrumentation to observe the

result and adjusts the input accordingly. This process repeats until the intended element is

covered or the number of attempts exceeds a pre-defined threshold.

An overview of these techniques can be found in the survey by McMinn [22]. Orig-

inally, Search-based Testing techniques only supported procedural code. Recent work,

which is not covered in McMinn‘s survey, has added support for heap data [19] and object-

oriented software [31].

2.2 Symbolic Testing

Symbolic Testing uses symbolic execution to generate test data [7]. Originally proposed by

King [16, 17], symbolic execution assigns symbolic expressions instead of concrete values

to program variables as a path is followed through the code structure. The technique is

used to derive a set of constraints that describes the conditions necessary for the execution

of a certain path. The solution of these constraints is given in terms of the input variables

and, in object-oriented software, the program state in which the program must reside before

executing the input values. In Symbolic Testing, the path constraints are collected for the

system under test, and solved using a constraint solver. The solutions represent the concrete

test data that executes these paths.

For example, consider the following function that clamps a value to the specified mini-

mum and maximum range:

int clamp(int x, int min, int max) {

8

Symbolic Testing

if (x < min)

return min;

else if (x > max)

return max;

else

return x;

}

This function has 3 possible paths. The first path clamps the value of x to the specified

minimum. The constraint associated with this path is: (x < min), and any input that

satisfies this constraint will lead to execution of the first path, e.g. when (x = 3,min = 5).
The second path clamps the value of x to the specified maximum and its constraint is:

¬(x < min) ∧ (x > max). Finally, the constraint associated with the last path that does

not clamp this value is: ¬(x < min) ∧ ¬(x > max). For example, the concrete input

(x = 3,min = 0,max = 5) causes the execution of this path.

Unfortunately, each path constraint passed to the constraint solver is (at least) a NP-

Complete problem. This class of problems are known to be hard to solve [28]. Due to this

complexity, the constraint solver is one of the most critical components that determine the

performance of the test generator.

2.2.1 Concolic Testing

Concolic Testing is a variant of symbolic test generation that combines the concrete execu-

tion of a program with symbolic execution [12, 27]. Test generators based on this approach

collect the path constraint during concrete (normal) execution of the system under test. Af-

ter the execution finishes, the collected path constraint is modified. The solution of this

modified constraint is then used to execute another path. This process repeats until a stop-

ping criterion is met, for example when the number of iterations exceeds a threshold or

when sufficient code coverage has been obtained.

The first advantage of this approach is that each constraint formula passed to the con-

straint solver results in the exploration of a whole path, whereas in normal Symbolic Testing

the constraint solver needs to be invoked for the exploration of each branch in a path. This

not only reduces the load on the constraint solver considerably, but also allows it to reason

about complex code, such as cryptographic hash functions. Another advantage of this ap-

proach is that a test generator can observe the concrete values, which allows it to reason

about native library calls. Unfortunately, Concolic Testing suffers from the same complex-

ity problem as Symbolic Testing, since both approaches use a constraint solver to locate

inputs to execute another path.

2.2.2 Object-oriented Software

Symbolic Testing and its variants have been extended in various ways to support object-

oriented software. Most approaches require formal specifications to work, which requires

that software developers have to put effort in creating them. For instance, JPF [30] and

KUnit [9] generate heap configurations that need an invariant function to identify invalid

heap configurations. These heap configurations are then used to generate test data for the

9

2. RELATED WORK

methods in the system under test. This approach requires that the heap configuration can be

initialized directly, i.e. without calling any methods. Unfortunately, this is often impossible

due to encapsulation, which is enforced by (private) access modifiers.

Another approach is to generate method invocation sequences [6, 33]. This avoids both

problems, since it does not require any formal specifications and such a method invocation

sequence can be transformed directly to a test case. A drawback of this approach is that the

test generator loses the ability to directly set the field values in objects and needs to deter-

mine invocation sequences that do this instead. This makes it significantly more complex to

locate test data. Another drawback is that the generated test cases may use the system under

test differently than it was intended. In this case, it is left to the user of the test generator to

remove these redundant test cases.

2.3 Comparison of Test Generation Approaches

In this chapter we have discussed Search-based Testing, Symbolic Testing and Concolic

Testing. In the previous section we already explained that Concolic Testing should out-

perform Symbolic Testing, because it needs fewer constraint solver invocations to obtain

similar code coverage. Since the most recent performance comparison between Search-

based Testing and Concolic Testing, many optimizations have been developed that im-

prove the performance of Symbolic Testing and Concolic Testing approaches consider-

ably [4, 7, 11, 20]. Moreover, the performance of state-of-the-art constraint solvers have also

increased significantly. Due to the lack of similar performance improvements in Search-

based Testing, we expect Symbolic and Concolic Testing to outperform Search-based Test-

ing by a wide margin.

2.4 Conclusion

This chapter discussed three approaches that generate test input data. The Concolic Testing

approach seems the most promising of these approaches. As all test data generation tech-

niques, it suffers from the path explosion problem. Another problem is that the employed

constraint solver has to solve computationally hard problems, which may take consider-

able time. In the next chapter we discuss Concolic Testing in more detail and propose new

techniques to alleviate the path explosion problem and reduce the load on the constraint

solver.

10

Chapter 3

Concolic Testing

11

3. CONCOLIC TESTING

This chapter discusses the theoretical foundations of test data input generation using

Concolic Testing. In this chapter we introduce two new techniques to simplify and improve

the scalability of automatic test generation for object-oriented software. The first technique,

Simulated Heap Representation, simplifies the implementation of a test generator when

the system under test contains array, field, reference and typing instructions. The second

technique, the Constraint Tree data structure, improves the performance of automatic test

generation when testing methods that have a small number of possible execution paths.

Although these techniques are aimed at testing object-oriented software, they can also be

used for procedural software.

The first section of this chapter introduces Concolic Testing. The following section

discusses symbolic representations for the heap and focuses in particular on array types,

which can significantly increase the problem complexity of test generation. In section 3.3

we propose the Constraint Tree data structure that avoids exploring the same execution paths

twice. Finally, we summarize the main conclusions of this chapter.

3.1 Concolic Testing

In the previous chapter Concolic Testing was selected to generate test cases, because it

performs well, and can handle complex code and native library calls. Concolic Testing

generates test cases by first executing the system under test with random argument values.

During execution both the concrete values and symbolic constraints are collected for the

executed path [12, 27]. The next execution of the system under test is then forced to take

a different path. Most concolic test generators achieve this by first negating one of the

collected symbolic constraints that determine the execution path (i.e. those constraints that

are associated with a branch predicate) and then by solving the resulting set of constraints.

This process repeats until a stopping criterion is met, for example when the number of

iterations exceeds a threshold or when sufficient code coverage has been obtained.

For example, consider again the body mass index example discussed in the first chapter.

This example program calculates the body mass index of an adult and uses this information

to determine the person’s weight category. For the readers’ convenience the BMI program

is shown again in listing 3.1. Concolic Testing starts by executing the method with random

arguments. Assume that in this case, the method argument mass is set to 22.0 and the

method argument length is set to -5.0. During execution of the method with these input

values both the concrete values and symbolic constraints are collected for the executed path.

For an input to execute the same path, it is necessary that each expression associated with

a branch evaluates to the same value. The first branch instruction is encountered when

executing the first assert statement. In this case, the branch predicate evaluates to true,

because the variable mass is set to 22.0. For an input to take the same branch, it is

necessary that the following constraint, called the branch constraint, holds:

(mass > 0.0)

The next branching node is encountered when executing the second assert statement.

Now the branch predicate evaluates to false, because the variable length is set to a nega-

12

Concolic Testing

public static int weightCategory(double mass, double length) {
assert mass > 0.0; // Node 1

assert length > 0.0; // Node 2

double bmi = mass / (length ∗ length); // Node 3

if (bmi < 18.5)

return BMICategory.UNDERWEIGHT; // Node 4

else if (bmi < 25.0) // Node 5

return BMICategory.NORMAL; // Node 6

else

return BMICategory.OVERWEIGHT; // Node 7

}

Listing 3.1: Body Mass Index Calculation

tive value. The branch constraint associated with this branch evaluation is:

¬(length > 0.0)

This branch constraint is combined with the previous branch constraint to form new

path constraint:

(mass > 0.0) ∧ ¬(length > 0.0)

After executing the second assert statement, the method terminates with an

AssertionException. Hence, the resulting path constraint describes the constraints

on the input variables such that the method fails on the second assertion check. After the

path constraint is obtained, it is altered by negating one of the branch constraints. When the

last branch constraint is negated, the altered path constraint becomes:

(mass > 0.0) ∧ (length > 0.0)

This new path constraint is then passed to a constraint solver to determine if there exists

an input that executes the new path. One of the many solutions the constraint solver might

return is a test data input where length = 1.0 and mass = 50.0. In the next iteration

the method is executed with this input and the path constraint is again collected. This input

causes the method to be executed without throwing an exception and returns the overweight

category. This execution path has the following constraint:

(mass > 0.0) ∧ (length > 0.0) ∧ ¬(bmi < 18.5) ∧ ¬(bmi < 25.0)

where
(

bmi = mass
length×length

)

This process of modifying path constraints, solving them, executing the resulting test

inputs, and collecting the path constraint repeats until a stopping criterion is met. This could

be when the number of iterations exceeds a threshold or when sufficient code coverage has

been obtained.

13

3. CONCOLIC TESTING

If the constraint solver is unable to compute a test input that satisfies the altered path

constraint, then another altered path constraint is passed to the constraint solver to solve.

This happens when either the path constraint is infeasible, i.e. when no input exists that

satisfies the constraint, or when the constraint solver fails to compute a solution within the

given amount of time.

3.2 Symbolic Heap Representation

The heap is the memory area where object and arrays are typically stored. In this section

we discuss two ways to represent a heap in a test generator. The difference between these

two representations is how they deal with arrays. Arrays increase the complexity of the

path constraints, since an array load operation can result in loading different primitives

or references. Which primitive or reference is loaded depends on the used array index.

When a value loaded from an array is used in a branch constraint, it could influence the

outcome of the branch evaluation. Hence, in the presence of array types, the control flow

does not necessarily depend only on the traversed execution path, but also on the primitives

and references that are loaded from arrays. The problem becomes even more complex when

objects are stored in an array, since the result of any operation that depends on these objects,

i.e. field load and store operations, reference checks and type checks, depends on the used

array index. Due to these reasons many test generators have limited or even no support for

array types [6, 27, 33].

For example, consider the following code fragment. Whether the target statement is

reached depends on whether the index i is within the array bounds and which boolean value

is loaded from the array.

boolean[] array = { false , true , true , false , true};

public int x(int i) {
if (array [i]) {

... // target statement

}
}

The first way to represent the heap symbolically is the Heap Simulation Representation.

This novel technique that we propose reasons only about one element in an array at a time.

This is achieved by considering each array load and store as a branch constraint on the array

index, which sets the array index to a constant value. As a result, an array load can result

in loading only one primitive or reference, and therefore the control flow only depends on

the path constraint. In this case, the symbolic heap only has to simulate the workings of the

concrete heap during concolic execution.

For example, a generator that implements this solution would first execute the method

of the last example with a random input. Assume it executes the method with i = 10. When

the test generator encounters the array load operation during execution, it adds boundary

constraints to the path constraint. Since, the concrete value of i does not fall within the

boundaries of the array, the path constraint becomes:

14

Symbolic Heap Representation

¬((0 ≤ i) ∧ (i < 5))

Then the (concrete) array load operation is executed and an

ArrayIndexOutOfBoundsException is thrown. To locate an input that executes

another path, the collected boundary constraint is negated and solved. A possible solution

is when i = 4. The test generator invokes the method with this input. When the array load

operation is encountered, both the boundary constraints and the used array index are added

to the path constraint, which becomes:

((0 ≤ i) ∧ (i < 5)) ∧ (i = 4)

Then the execution continues and a symbolic expression is loaded from the symbolic heap.

In this case, the expression stored in the symbolic array represents the boolean true con-

stant. The test generator then encounters the if instruction and adds the branch constraint,

which is the loaded expression, to the path constraint:

((0 ≤ i) ∧ (i < 5)) ∧ (i = 4) ∧ true

Finally, the Concolic Testing process continues until a stopping criterion is met.

The array example illustrates that simulating the heap is a simple way to add support for

arrays. Another advantage of his solution is that the constraints can be kept relatively simple

to solve, since the constraint solver does not need to reason about heap operations (load and

store operations for object fields and arrays), references (reference equality, null checks)

and types (type casts, type checks). The reason why the constraint solver does not need to

reason about these instructions is that the outcomes of these instructions are deterministic.

If array store and load operations target fixed indices, then only one particular object or

primitive is loaded. This means that objects will always have the same reference value and

type in the same execution path. Therefore, it is impossible to change the evaluation of

reference and type constraints. The only drawback of this solution is that it explores many

execution paths more than once in the presence of arrays. For example, in the code fragment

there are only two execution paths, but since there are five array indices, it explores these

paths five times.

The other solution, called Heap Reasoning Representation, lets the constraint solver

reason about the complete heap, including the contents of each array. For the array example,

this would mean that the constraint solver can determine which index to select to negate the

branch constraint and avoid exploring the same execution path twice. Unfortunately, this

solution increases the load on the constraint solver considerably, since it must reason about

references, types and all the heap operations that were executed. Another drawback of this

solution is that when native code makes changes to the heap, the changes must be observable

by the test generator, since otherwise the state of the symbolic heap becomes invalid. This

solution requires also significantly more effort to implement.

Both solutions have their advantages and disadvantages. The Heap Simulation Repre-

sentation can be implemented with relatively little effort and produces less complex path

constraints than the Heap Reasoning Representation. However, the Heap Simulation Rep-

resentation can only reason about one array element at a time. Hence, this solution is only

15

3. CONCOLIC TESTING

1

2

3

5

T

4

67
T

T

TT

(mass > 0.0)¬(mass > 0.0)

(length > 0.0)¬(length > 0.0)

(bmi < 18.5)¬(bmi < 18.5)

(bmi < 25.0)¬(bmi < 25.0)

1

2

U

U

T

(mass > 0.0)¬(mass > 0.0)

(length > 0.0)¬(length > 0.0)

1

2

3

5

U

U

U7

T

T

(mass > 0.0)¬(mass > 0.0)

(length > 0.0)¬(length > 0.0)

(bmi < 18.5)¬(bmi < 18.5)

(bmi < 25.0)¬(bmi < 25.0)

(a) (b) (c)

Figure 3.1: Path constraints represented in a tree structure. Figure 3.1(a) shows the tree

representation after the first execution of the BMI example, figure 3.1(b) shows the tree

after the second execution, and figure 3.1(c) shows the fully explored tree structure for the

BMI method. All numbered nodes are computation nodes that correspond to part of the

code of the BMI example. Nodes labeled T are terminal nodes, and nodes labeled U are

unexplored nodes.

appropriate for testing software that makes little use of arrays. Otherwise, it is best to use

the Heap Reasoning Representation. Note that it is also possible to combine both solutions,

for instance, by only letting the constraint solver reason about the contents of primitive

arrays. The techniques discussed in the remainder of this thesis are compatible with both

solutions.

3.3 Constraint Tree

A problem with Concolic Testing as it is presented in the previous section is that the same

execution paths are often explored multiple times, since the algorithm only remembers

which path has been taken in the last execution. We propose to represent the collected

path constraints of a method in a tree structure such that each execution path is explored

only once. In addition, the generated test data can be stored in the Constraint Tree. After

having generated a large volume of test data, the tree structure facilitates easy extraction

of a small test set of high quality, e.g. a small test set that achieves high code coverage.

Finally, the Constraint Tree provides a (partial) summary of a method.

The idea of this tree structure is that each path through the tree starting at the root node

and ending at a leaf node represents an execution path. Figure 3.1 shows the path tree at

different stages for the body mass index example. Each branch of the tree represents a

branch constraint, and all the branch constraints along a path represent the path constraint.

All nodes except for the leaf nodes are computation nodes. These nodes represent the

computations that happen between branch constraints. In the case of the body mass index

16

Conclusion

calculation program, node 3, where the BMI is calculated, is such a node. At the other

nodes no computations happen, but these are still considered computation nodes. Any path

starting at the root node leading to a computation node is per definition feasible. There

exist multiple kinds of leaf nodes: unexplored nodes, terminal nodes, infeasible nodes and

time-out nodes. Unexplored nodes are nodes for which the path constraint has not yet been

tried to be solved and such a node could either be feasible or infeasible. Terminal nodes

are feasible nodes, where the execution path ends, i.e. when a function returns or when

a thrown exception fails to be caught. Paths leading to an infeasible node are infeasible

and hence no input exists that executes that path. Time-out nodes are nodes where the path

leading up to it, is unknown to be feasible or infeasible, because the constraint solver is

unable to compute an answer in the given amount of time. It is important to note that it is

often impossible to explore all execution paths of a method, because there can exist almost

an infinite number of paths. Hence, it is not uncommon that a Constraint Tree is not fully

explored.

3.3.1 Method Invocations

It often happens that a method calls another method. In a Constraint Tree this call can

be represented by referencing the Constraint Tree path of the method called. Since many

methods call the same method path, this approach reduces memory consumption consid-

erably over an approach that represents the called method path in the original Constraint

Tree. Similar to branch constraints, in the Constraint Tree a method invocation branches to

different nodes depending on the method and path executed.1

For example, consider the following recursive method that implements Euclid’s algo-

rithm, which is an efficient algorithm for computing the greatest common divisor.

int gcd(int a, int b) {
if (b == 0)

return a;

else

return gcd(b, a % b);

}

The Constraint Tree associated with this method is shown in figure 3.2. Figure 3.2(a) shows

the trivial approach. Figure 3.2(b) illustrates the effectiveness of referencing the called

method path, since for each possible execution path only one additional tree node is re-

quired.

3.4 Conclusion

This chapter introduced the concepts of Concolic Testing. We introduced a new technique

to represent the heap symbolically. This technique, called Simulated Heap Representation,

1Recall, that when a polymorfic method invocation is made on an object, the method that is actually exe-

cuted is determined by the object’s type. Since this approach considers the method that was actually executed,

it also supports polymorfic method calls.

17

3. CONCOLIC TESTING

gcd

p2

p1

p4

¬(b = 0)(b = 0)

p3

return a return gcd(b, a % b)

a, bgcd

p2

p1

¬(b1 = 0)(b1 = 0)

return a1 a2 = b1 and b2 = a1 % b1

a1, b1

gcd

p3 gcd

p4

¬(b2 = 0)(b2 = 0)

¬(b3 = 0)(b3 = 0)

(b4 = 0)

return a2

return a3

return a4

a3 = b2 and b3 = a2 % b2

a4 = b3 and b4 = a3 % b3

(a) (b)

Figure 3.2: Constraint Trees for the recursive method that implements Euclid’s algorithm.

These trees represent the same four possible execution paths, labeled p1 to p4, through the

recursive method. The dashed gcd node is a method call node. In this case, gcd calls itself

recursively. Path p2, p3 and p4 represent the path where gcd calls itself one time, two times

and three times respectively. The trivial approach shown in 3.2(a) also stores the path taken

through the called methods, whereas the approach of figure 3.2(b) represents the method

path called by referencing its leaf node.

can be implemented with relatively little effort and produces less complex path constraints

than the Heap Reasoning Representation. However, the Heap Simulation Representation

can only reason about one array element at a time. Hence, this representation is best used

for testing software that makes little use of arrays. We also proposed the Constraint Tree

data structure that can be used to avoid exploring the same paths twice, which improves the

scalability of Concolic Testing. The Constraint Tree data structure provides two additional

benefits. First, the Constraint Tree represents a (partial) summary of a method, which can

be used to significantly improve performance when exploring method invocation sequences.

Second, it provides a place to store the generated test cases in.

In the following chapters we will discuss the design, implementation and evaluation of

a Concolic Testing tool that uses all of the techniques introduced in this chapter. However,

the next chapter addresses invocation sequence generation algorithms, since the success

of testing object-oriented software depends primarily on the ability to set the unit under

test in the right state. As such, we expect that an efficient invocation sequence generation

algorithm will provide the largest scalability improvement, especially when it is combined

with the Constraint Tree data structure.

18

Chapter 4

Candidate Sequence Search

19

4. CANDIDATE SEQUENCE SEARCH

From a software testing perspective, object-oriented software is very different from pro-

cedural software. Testing object-oriented software often requires considerably more effort

than testing procedural software. This is due to language features such as encapsulation,

inheritance and polymorphism, which make testing object-oriented software significantly

harder. One of the most important differences between testing units of procedural software

and object-oriented software is how functions (procedural) and methods (object-oriented)

depend on program state. In procedural software, most functions do not depend on state

(i.e. static and global variables in C), or when they do, this state is easily manipulated by a

test generator. Whereas, in object-oriented software almost every method depends on its ob-

ject’s state, which is much harder to manipulate due to encapsulation. Hence, the success of

testing object-oriented software depends primarily on the ability to set the unit under test in

the right state. This is achieved by generating invocation sequences that consist of construc-

tor invocations, method invocation and field assignments. These elements of invocation

sequences are called invokables and each invokable represents a statement in a test case.

The complete test sequence represents a test case, where the object, static fields and the

method arguments are put in the right state, and finally, the method under test is executed.

In this chapter we introduce the new Candidate Sequence Search algorithm to generate invo-

cation sequences. This algorithm wastes very little time on redundant sequences and deals

effectively with language features, such as arrays, inheritance and polymorfism.

The first section discusses the limitations of current approaches that generate invocation

sequences. Then an overview is given of the Candidate Sequence Search algorithm. The

following two sections discuss the two steps of this algorithm in more detail. The last

section summarizes the main conclusions of this chapter.

4.1 Current Approaches and Their Limitations

In this section two approaches are discussed to generate invocation sequences. As far as

we are, nearly all algorithms discussed in the literature use parameter types of constructors

and methods to generate invocation sequences. The only exception is the algorithm of

Buy et al. that uses method summaries that are computed using symbolic execution to

generate invocation sequences [6]. Both approaches and their limitations are discussed in

the following two subsections.

4.1.1 Type-based Approaches

An often used approach is to use the parameter types of the invokables of the system under

test to generate invocation sequences [8, 31]. However, this approach suffers from two

problems. First of all, this approach generates many redundant sequences, because it is

only necessary to explore sequences where every invocation influences the execution of the

method under test. All other sequences are redundant, since the same effect can be obtained

by executing a shorter sequence where the methods that do not influence the method under

test are removed.

For example, getter methods, methods that provide read access to access restricted mem-

ber variables, do not alter the program state. If the return value of these methods is not used

20

Current Approaches and Their Limitations

later on in the sequence, then it does not influence the system under test. Hence, a sequence

that is exactly the same except that it does not contain this getter method call will execute

exactly the same paths though the method under test and produce exactly the same states as

the original sequence. Therefore, the original sequence does not need to be explored.

The second problem is that this approach does not take (static) class variables into ac-

count, which means that this approach is likely to fail generating useful test cases for meth-

ods that depend on static state.

4.1.2 Combining Execution Paths

The approach by Buy et al. uses symbolic execution and define-use pairs to address the two

problems associated with the type-based approaches [6]. A define-use pair describes two

locations in the program code: where a variable is defined and where a variable is used. A

variable is defined when it is assigned a value and a variable is used when it is used in a

comparison or computation. For example, the following line of code shows an example of

a define and a use.

a
︸︷︷︸

define

= b
︸︷︷︸

use

+1;

Their algorithm works as follows. First, the methods of the system under test are summa-

rized using symbolic execution. Each summary describes an execution path with a path

constraint and the state changes it causes. After having computed these summaries, these

method paths are combined to generate invocation sequences that exercise all define-use

pairs of the fields in the class under test.

To illustrate this method we use the coin box example of Buy et al. [6]. The CoinBox

class is shown in listing 4.1. The code represents control code for a vending machine.

The vending machine requires at least two coins before serving a drink. The CoinBox

class contains a known defect [18], since the method returnQtrs() does not reset variable

allowVend. Hence, it is possible to get your money back after you have inserted two coins

and get a drink for free.

The computed summary of the method of this class is shown in table 4.1. The algorithm

will then try to combine pre- and post-conditions of the method paths to generate invo-

cation sequences. For example, the sequence of the following method paths is infeasible:

Coinbox1(); vend2(). The number in subscript corresponds to the path number in the sum-

mary table. This sequence is infeasible, because the postcondition ‘allowVend’ = 0’ of the

Coinbox1() path cannot be combined with the precondition ‘allowVend 6= 0’ of the vend1()

path. Eventually the algorithm will find the following feasible sequence that uncovers the

known defect: Coinbox1(); addQtr2(); addQtr1(); returnQtrs1(); vend1();.

Martena et al. extended this approach to generate tests for clusters of classes that com-

pose a program or subsystem [21]. There are still some limitations to their work. First, the

computed method summaries can be infeasible because they depend on a state that does not

exists. As a result, resources are wasted on exploring infeasible invocation sequences. Sec-

ond, their prototype has limited support for pointers and does not support arrays, exceptions,

inheritance and polymorfism. While support for these features can be added, we expect it to

21

4. CANDIDATE SEQUENCE SEARCH

class Coinbox {
private int totalQtrs = 0;

private int curQtrs = 0;

private boolean allowVend = false;

void addQtr() {
curQtrs = curQtrs + 1;

if (curQtrs > 1) {
allowVend = true;

}
}

void returnQtrs() {
curQtrs = 0;

//missing: allowVend = false;

}

void vend() {
if (allowVend) {

totalQtrs = totalQtrs + curQtrs;

curQtrs = 0;

allowVend = false;

}
}

}

Listing 4.1: Coinbox example of Buy et al. rewritten in Java [6]

Method Path Precondition Postconditions

Coinbox 1 totalQtrs’ = 0

curQtrs’ = 0

allowVend’ = 0

addQtr 1 curQtrs > 0 curQtrs’ = curQtrs + 1

allowVend’ = 1

2 curQtrs == 0 curQtrs’ = 1

vend 1 allowVend 6= 0 totalQtrs’ = totalQtrs’ + curQtrs

curQtrs’ = 0

allowVend’ = 0

2 allowVend == 0

returnQtrs 1 curQtrs’ = 0

Table 4.1: Execution summary computed using symbolic execution for the Coinbox class.

22

Algorithm Overview

be very complex to do so for arrays and pointers, since their prototype needs to be extended

with symbolic heap support. Moreover, when a symbolic heap is incorporated in their solu-

tion, we expect that only a small fraction of the method paths can be combined to construct

feasible sequences and the resulting algorithm therefore becomes very inefficient.

4.2 Algorithm Overview

In the previous sections we discussed the problems that limit the applicability and scalabil-

ity of current invocation sequence generation algorithms. These are that current approaches

can overlook some sequences, consider too many sequences or miss (efficient) support for

language features such as arrays, inheritance and polymorfism. We propose the new Candi-

date Sequence Search (CSS) algorithm to address these problems. This algorithm is based

on the idea that the test generator only has to explore sequences where every invokable in

sequence influences the execution of the methods under test. Unfortunately, it is very hard

to determine whether an invokable influences another invokable without executing them.

This is because we do not know beforehand which execution paths and array loads are

possible. CSS addresses this problem by first generating candidate sequences where ev-

ery invokable could potentially influence the method under test. A candidate sequence is

a sequence of invokables where the invokable arguments have not yet been specified. Al-

though the generated set of candidate sequences likely contains many redundant sequences,

it is also guaranteed to include all sequences where every invokable influences the method

under test. After a candidate sequence is generated, the algorithm explores execution paths

through these sequences to locate test cases. During the exploration of a candidate sequence,

partially explored execution paths that cannot influence the method under test are pruned

from the search to improve performance.

It is important to note that the CSS algorithm only determines what possible sequences

need to be explored and under which conditions their exploration can be pruned. Hence,

it can be combined with any test generation technique, including search-based testing. In

this thesis we present an implementation of this algorithm that uses concolic execution, in

combination with the Heap Simulation Representation and the Constraint Tree optimization,

which are discussed in the previous chapter. In the following two sections the generation

and exploration steps of the CSS algorithm are discussed in more detail.

4.3 Sequence Generation

The first step of the CSS algorithm is to generate candidate sequences such that every in-

vokable in sequence could potentially influence the execution of the methods under test. In

this section we first discuss the criteria that determine whether an invokable in a sequence

could influence the method under test. Then the candidate sequence generation algorithm is

discussed that uses these criteria to generate a set of candidate sequences.The last two sub-

sections discuss two optimizations that further reduce the number of generated sequences

that are redundant.

23

4. CANDIDATE SEQUENCE SEARCH

Invokable Argument Types Return Type

Array Constructor Array Element Type* Array Type

Constructor Method Invocation Constructor Argument Types* Constructed Object Type

Instance Field Load Instance Type Field Type*

Instance Field Store Instance Type, Field Type* -

Instance Method Invocation Instance Type, Method Argument Types* Method Return Type*

Static Field Load - Field Type*

Static Field Store Field Type* -

Static Method Invocation Method Argument Types* Method Return Type*

Table 4.2: Invokable Types. Argument and return types marked with a * could also have a

primitive type or no type at all.

4.3.1 Criteria

There exist many techniques to determine whether an invokable could influence the exe-

cution of another invokable [29, 32]. These techniques vary in accuracy and complexity.

For the CSS algorithm we developed a simple and fast static analysis algorithm. This algo-

rithm checks whether at least one data-flow pair could exist between the two invokables. A

data-flow pair consists of two operations of which the first operation could affect the value

loaded by the second operation. There exist three types of data-flow pairs:

Return-Argument Pair The invokable returns a reference type that can be used as an ar-

gument by the other invokable. The analysis assumes that the returned value is not

null and that the value is actually used by the other invokable. Note that an invokable

argument is not strictly an argument that is used in a method call. For example, an

argument for an array constructor is an element that can be stored within the array.

Table 4.2 shows the argument and return types for different types of invokables.

Define-Use Pair The program code of the invokable contains a field define and the other

invokable contains a field use of the same field. The analysis does not determine

whether the define and use access the same object.

Store-Load Pair The program code of the invokable contains an array store operation and

the other invokable contains an array load operation of the same array type. The

analysis assumes that both array references and indices could be the same.

The execution of an invokable also depends on the constructors and methods it calls.

Hence, the algorithm also checks the above criteria for all the constructors and methods that

can be called by the invokables. In order to support polymorfism, all methods that overload

the called methods are considered as well.

An invokable in a sequence can influence the method under test in two ways. First, an

invokable can influence the method under test directly with the criteria discussed above.

Second, an invokable can influence the execution of another invokable in the sequence that

in turn influences the method under test. The method under test is always the last invokable

24

Sequence Generation

void candidateSequenceSearch(Method mut) {
List<Sequence> candidates = new List();

// the initial candidate sequence is the method or constructor under test

Sequence mutSequence = new Sequence(mut);

candidates.add(mutSequence);

if (mutSequence.isExecutable())

exploreSequence(mutSequence, new Path());

for (Sequence sequence : candidates)

for (Invokable invokable : sut) // i.e. method, field assignment, array or object constructor

if (invokable.influences(sequence)) {
Sequence successorSequence = new Sequence(invokable, sequence);

candidates.add(successorSequence);

if (successorSequence.isExecutable())

exploreSequence(successorSequence, new Path());

}
}

Listing 4.2: Candidate Sequence Search Algorithm - Generation

of a sequence. Hence, when each invokable could influence one of the following invokables

in the sequence, all invokables in the sequence could always influence the method under

test directly or indirectly.

4.3.2 Algorithm

The basic candidate sequence generation algorithm is shown in listing 4.2. Initially, one

candidate sequence is created that consists only of the method under test. New candidate

sequences are created by inserting new invokables in front of previously generated candidate

sequences1,2. In order to avoid generating redundant sequences, only invokables are added

that can influence the execution of the rest of the sequence. When a new candidate sequence

is found, it is added to the list of candidate sequences. If the new candidate sequence can

be executed, then the execution paths through this sequence are also explored. It is only

possible to execute a candidate sequence when all non-static method calls in the sequence

have an object on which the method can be invoked.

An example that demonstrates the candidate sequence generation algorithm is shown in

listing 4.3. We are interested in testing the warning() method. In order for this method to

return true, an TemperatureMonitor object must be constructed, enabled and set to a tem-

perature higher than 80. First, the test generator performs static analysis. The results of this

1The tester controls which invokables are allowed to appear in the generated sequences by specifying the

invokables that belong to the system under test.
2The access to invokables is often restricted by private and protected access modifiers. Normally,

a software tester would want a test generator to only generate sequences that do not violate these access re-

strictions. In this case, the algorithm should not generate sequence that contain these restricted invokables.

However, a software tester sometimes overrules these access restrictions in cases where it is otherwise too hard

to test a specific case. Hence, it might be a good idea to give a test generator the option to use a selection of

access restricted invokables.

25

4. CANDIDATE SEQUENCE SEARCH

class TemperatureMonitor {
private boolean enabled = false;

private int temperature;

void setEnabled(boolean enabled) {
this.enabled = enabled;

}

void updateTemperature(int temperature) {
if(enabled)

this.temperature = temperature;

}

int getTemperature() {
return temperature;

}

boolean warning() {
return getTemperature() > 80;

}
}

Listing 4.3: TemperatureMonitor example

analysis are shown in table 4.3. Note that the warning() method includes the field defines

and uses of the getTemperature() method, since it calls this method. Then the algorithm

constructs the initial candidate sequence that consists of only the method under test, which

is the warning() method. The first invokable that could influence the initial sequence is the

TemperatureMonitor constructor, since it returns a TemperatureMonitor object that can be

used by the initial sequence and it modifies the temperature field, which is used by the ini-

tial sequence. The updateTemperature() method could define the temperature field as well.

These invokables are then used to construct the following two new candidate sequences:

TemperatureMonitor(); warning(); and updateTemperature(); warning();. These candidate

sequences are used in turn to generate new candidate sequences. Figure 4.1 shows some of

the other candidate sequence this algorithm generates. This figure reveals that the algorithm

generated the sequence that we were looking for: TemperatureMonitor(); setEnabled();

updateTemperature(); warning(); .

The candidate sequence generation algorithm also works in cases where multidimen-

sional arrays must be constructed. For example, when a two-dimensional integer array is

required, the algorithm adds a two-dimensional integer array constructor in front of the

candidate sequence. This array is then filled by adding array constructors of one lower

dimension in the front of the candidate sequence.

Special care needs to be taken when generating tests for methods that have argument

types with many subtypes. For example, the equals(Object obj) method returns whether

the object that invokes the method is equivalent to the passed argument object. When a

26

Sequence Generation

Invokable
Field Reference Type

Defines Uses Arguments Return

TemperatureMonitor() enabled, temperature - - TemperatureMonitor

setEnabled() enabled - TemperatureMonitor -

updateTemperature() temperature enabled TemperatureMonitor -

getTemperature() - temperature TemperatureMonitor -

warning() - temperature TemperatureMonitor -

Table 4.3: Static analysis results for TemperatureMonitor example

warning()

setEnabled()

TemperatureMonitor() updateTemperature()

TemperatureMonitor()

TemperatureMonitor()

updateTemperature()TemperatureMonitor()

updateTemperature()
...

...

... ...

Figure 4.1: Candidate Sequence Generation for the TemperatureMonitor example. This fig-

ure shows the generated candidate sequences for the warning() method. These sequences

are grouped in a tree. Each node represents an invokable and each line represents an in-

fluence relationship between the starting node and the candidate sequence it points to. Ex-

ecutable sequences start with an invokable with a bold outline. The dots represent other

candidate sequences that are not shown in the tree.

27

4. CANDIDATE SEQUENCE SEARCH

class overrides this method, it could take any reference type as its argument. Instead of

considering all possible reference types, it is best to only consider types that are used in

the code of the method. These are the types used in type cast and type check instructions.

In addition, classes that may show different behavior in the context of the method should

be considered as well. These are the classes that overload one of the methods called in the

method code.

It is important to note that the presented candidate sequence generation algorithm can

be implemented more efficiently by making two adjustments. First, the algorithm should

cache the results of the influence check that determines whether an invokable influences a

candidate sequence, since otherwise the algorithm would be bottlenecked by these checks.

Second, the algorithm should be implemented such that only one candidate sequence is

stored in memory. The stored sequence is used to computed the next candidate sequence,

which then replaces the old candidate sequence. This adjustment reduces the exponential

number of sequences stored in memory to a single sequence.

4.3.3 Data-flow Check

An invokable in a sequence can only influence the method under test when there is data-flow

possible between them. Data-flow is only possible when every invokable in the sequence

can be linked to each other by return-argument pairs or by define-use pairs on static fields.

Hence, a test generator could perform a check if data-flow is even possible before exploring

the candidate sequence to reduce the number of generated redundant sequences.

The following example demonstrates a sequence where no data-flow is possible be-

tween all the invokables and the method under test. In this example the following candidate

sequence is generated to test the hashCode() method of the Integer class:

Integer ret0 = new Integer (primitiveVariable0);

Integer ret1 = new Integer (primitiveVariable1);

referenceVariable0 .hashCode();

The first two invokables of this sequence create an Integer object by invoking the constructor

that takes a symbolic variable as its argument. This symbolic variable is stored in a primitive

integer field called value. The hashCode() method uses this field to compute the hash code

of an Integer object. Since the hashCode() method takes only one reference argument, there

is only data-flow possible between either the first or the second invokable of the sequence

and the method under test. Hence, this candidate sequence is redundant and can be pruned

from the search.

4.3.4 Partial Order Reduction

Another optimization is to explore only one candidate sequence of a set of similar candi-

date sequences where the invokables are executed in different orders, but perform the same

computations. For example, consider the calculate() method in the following example:

28

Sequence Exploration

class PartialOrderReductionExample {
private boolean a, b, c;

void setA(boolean a) { this .a = a; }
void setB(boolean b) { this .b = b; }
void setC(boolean c) { this .c = c; }

void calculate () {
if (a && b && c) {

// target

}
return;

}
}

In this example, the target statement can only be reached when the private fields a, b

and c are set to true. In order to do this, the setter methods associated with these fields must

be called first. These three setter methods can be called in six different orders. However,

the order in which they are executed before the calculate() method is called does not matter.

Hence, it is only necessary to explore one of these six sequences.

To implement this optimization each invokable is associated with a number. When an

invokable is inserted in front of a candidate sequence, the invokable must either directly

influence the first invokable of the sequence or have a number lower than or equal to the

first invokable of the sequence. This ensures that for parts in candidate sequences where the

invokables do not influence each other, only one subsequence is generated.

This optimization can also be used during the exploration of these candidate sequences.

When the first of two following invokables in a sequence has a higher number than the

second invokable, then execution paths where the first invokable does not influence the

second invokable directly can be pruned from the search.

4.4 Sequence Exploration

The second step of the CSS algorithm is to explore the execution paths through a candidate

sequence to locate test cases. First, the criteria that determine whether an invokable in

a sequence has influenced the method under test are listed. Then the candidate sequence

generation algorithm is discussed. The last section addresses an optimization that groups

similar sequences together before exploring them to avoid unnecessary work.

4.4.1 Criteria

It is easy to check whether an invokable influenced another invokable directly after an invo-

cation sequence has been executed. This is done by analysing the execution trace to see if

one of the following criteria holds:

Return-Argument Pair The invokable returned a non-null reference type that is used as

an argument by the other invokable.

29

4. CANDIDATE SEQUENCE SEARCH

Method 1 Method 2 Method 3 Redundant Sequence

def(a) use(a) use(a) Yes, the execution of method 2 does not change

the program state.

def(a) def(a) use(a) Yes, the define of method 2 overwrite the define

of method 1.

def(a) def(b) use(a), use(b) No, both defines directly influence the uses at

method 3.

def(a) use(a), def(a) use(a) No, the define of method 2 is first influenced by

the define of method 1, thus both methods influ-

ence the execution of method 3.

Table 4.4: Redundant Sequence Examples. This figure shows four method invocation se-

quences, each one is represented by a row in the table. The first three columns of the row

show which fields are defined and used by the executed path. Whereas, the last column

explains whether the sequence is redundant.

Define-Use Pair The invokable defined a field that the other invokable used. Note that if

the field is a (non-static) object field, then the define and use must access the field of

the same object.

Store-Load Pair The invokable stored an element in array at a specific index that the other

invokable loaded from.

This analysis considers the complete execution trace. Therefore, all the constructors and

methods that are called by the invokables are considered as well. Moreover, these data-flow

pairs describe the three cases where an invokable has influenced the execution of another

invokable by passing a value between the two invokables. This requires that the value is

not redefined before it is used, since otherwise another value is used instead of the passed

value. To check whether all invokables have influenced the method under test, the execution

trace must show that all invokables have influenced one of their following invokables in the

sequence. Table 4.4 shows some typical example sequences that illustrate in what cases

invocation sequences are redundant. It is interesting to note that, in general, the order in

which the fields and array elements are defined and used in an invokable does not matter.

We illustrate this using the following example, where a and flag are both object fields:

public void m() {
flag = false ;

if (a > 0)

flag = true ;

}

This example shows that the value of the flag variable depends of the value of a, even though

the flag variable is defined before variable a is used.

30

Sequence Exploration

void exploreSequence(Sequence candidateSequence, Path path) {
for (ReferenceAssignment referenceAssignment : candidateSequence.getReferenceAssignments(path)) {

ConstraintTree tree = new ConstraintTree();

Path exploredPath = invokeSequence(candidateSequence, referenceAssignment,

candidateSequence.getRandomPrimitiveAssignment(path));

tree.addSatisfiablePath(exploredPath);

if (exploredPath.passesExplorationCriteria(candidateSequence))

exploreSequence(candidateSequence, exploredPath);

while (tree.hasUnexploredPath()) {
Path unexploredPath = tree.nextUnexploredPath();

ConstraintSolverResult result = solver.solve(unexploredPath);

if (result.isSatisfiable()) {
Path exploredPath = invokeSequence(candidateSequence, referenceAssignment,

result.getPrimitiveAssignment());

tree.addSatisfiablePath(exploredPath);

if (exploredPath.passesExplorationCriteria(candidateSequence))

exploreSequence(candidateSequence, exploredPath);

} else {
tree.addInfeasiblePath(path);

}
}

}
}

Listing 4.4: Candidate Sequence Search Algorithm - Exploration

4.4.2 Algorithm

Listing 4.4 shows the second step of the CSS algorithm that explores a candidate sequence

using concolic execution. Initially, the explored path is empty and the first invokable is

executed with random values using concolic execution. If the invokable has reference ar-

gument types, then these are all null, since no references exists yet. The collected path

constraint, is then added to the Constraint Tree. The sequence is explored further when the

executed path can influence the rest of the sequence. If executed path must be influenced

by a previous invocation, then this condition must also hold before the sequence is explored

further. When a path does not meet the exploration criteria, then the algorithm continues to

search for another path that does meet these criteria. Otherwise, the sequence is explored

further by calling the sequence exploration method recursively with the explored path and

the same candidate sequence. Since it is often not possible to explore all execution paths,

a configurable limit is placed on the number of explored paths per invokable in a sequence.

From the passed path the algorithm concludes what the current invokable is that needs to

be explored. The current invokable is explored with each possible assignment of previously

obtained references3. Then the paths that start with the passed path and continue through

3If the symbolic heap is implemented with the Heap Reasoning Representation, the constraint solver is

able to reason about the heap and also about the previously returned references. Hence, it is not necessary to

explore all possible reference argument assignments for each invokable in a sequence. Instead, the constraint

31

4. CANDIDATE SEQUENCE SEARCH

this invokable are explored. This algorithm continues until the whole sequence is explored.

4.4.3 Sequence Grouping

The CSS algorithm discussed so far explores each candidate sequence directly after it has

been generated. The drawback of this approach is that it involves a lot of rework, since

many sequences start with the same (subsequence of) invokables. Another approach is to

group invokables with the same starting invokables together before these sequences are

explored. This avoids exploring the same set of paths many times. For example, consider

the following two sequences: a(); b(); c(); and a(); b(); d();. Both sequence start by calling

the subsequence a(); b();. By grouping the two sequences together the subsequence a();

b(); needs to be explored only one time. As a result, this optimization significantly reduces

the time needed to explore shared subsequences.

4.5 Conclusion

In this chapter we introduced the new Candidate Sequence Search (CSS) algorithm. This

algorithm generates invocation sequences that are essential for testing object-oriented soft-

ware. An invocation sequence consists of constructor invocations, method invocation and

field assignments and is used to set the unit under test in the right state. Current approaches

overlook some sequences, consider too many sequences or miss (efficient) support for lan-

guage features such as arrays, inheritance and polymorfism. CSS is a two-step algorithm

that addresses these issues. First, candidate sequences are generated where every invok-

able could potentially influence the method under test. In these candidate sequences the

arguments of these invokables have not yet been specified. After a candidate sequence has

been generated, the algorithm explores the execution paths through these sequences to de-

termine arguments of the invokables and as a result, locate test cases. We also provided

various enhancements that improve the efficiency of the CSS algorithm. The next chapter

discusses how the CSS algorithm in combination with the Heap Simulation Representation

and the Constraint Tree optimization, which were discussed in the previous chapter, are

implemented in a prototype test generator.

solver could compute both the values of the primitive arguments and which of the returned references have to

be assigned to the reference arguments.

32

Chapter 5

JTestCraft

33

5. JTESTCRAFT

In this chapter the design of JTestCraft is discussed. JTestCraft is a test generator proto-

type that implements the new algorithms and techniques proposed in the previous chapters.

This chapter starts with an overview of the architecture of the test generator. After this

section we discuss the components that form this test generator in more detail. The compo-

nent that is first discussed is the Sequence Generator. This is followed by a description of

the Instrumentation Class Loader, which alters the program code of the system under test

such that it informs the Symbolic Virtual Machine of its execution. The Symbolic Virtual

Machine that collects symbolic constraints for the executed paths is explored in the next

section. Section 5.5 explains how JTestCraft simplifies the collected constraints. Then in

section 5.6 we briefly discuss the constraint solver that determines which concrete method

arguments lead to the execution of an unexplored path. The following section describes

how JTestCraft deals with floating point arithmetic. Section 5.9 discusses the measures

taken to ensure the correctness of the test generator prototype. Finally, we describe how the

collected execution traces are transformed in a test suite and conclude this chapter.

5.1 Architecture Design Overview

Figure 5.1 shows the architecture of the test generator prototype. The test generator starts

by generating a candidate sequence. Then the paths through each candidate sequence are

explored and their associated constraints collected.

In our prototype the component responsible for collecting the symbolic constraints is

divided in two parts: the instrumentation class loader and the Symbolic Virtual Machine

(SVM). The job of the instrumentation class loader is to instrument the system under test,

such that the instrumented code informs the SVM of the concrete execution. The SVM uses

this information to construct the path constraint of the executed path. After having executed

a concrete invocation sequence, the collected path constraint is stored in a Constraint Tree

data structure, which has been discussed in chapter 3.

The test generator uses the Constraint Tree to select a random unexplored path and its

associated constraints are passed to the constraint solver. The constraint solver determines

whether a concrete invocation sequence exists that satisfies that path constraint. If it exists,

the concrete invocation sequence is executed by the instrumented system and stored in the

Constraint Tree. Otherwise, the path constraint is marked as infeasible to avoid exploring

this path again and another unexplored path is tried.

This process repeats until enough code coverage has been obtained or when the number

of iterations exceeds a threshold. After each iteration the state (both concrete and symbolic)

of the system under test is reset by reloading all its classes. This avoids situations where the

generated test sequences depend on a global state (static fields) that is the result of executing

other sequences.

Finally, a selection of the concrete invocation sequences stored in the execution tree is

sent to the test code generator to generate JUnit test cases that execute these sequences.

34

Sequence Generator

Instrumentation

Class Loader

System Under

Test

Instrumented

System Under

Test

Symbolic Virtual

Machine

Constraint Solver

Explored Path

Unexplored

Path
Test Case

Code

Test Code

Generator

Primitive

Arguments

Concrete Test

SequencesConstraint

Tree

Instruction

Calls

Infeasible

Path

Test Targets

Sequence

Generator

Candidate

Sequence

Data-flow

Information

Figure 5.1: JTestCraft Architecture

5.2 Sequence Generator

The sequence generator is responsible for generating candidate sequences that need to be

explored by the test generator. The previous chapter introduced the Candidate Sequence

Search (CSS) algorithm that generates only candidate sequences that could influence the

methods under test. The CSS algorithm needs data-flow information of the system under

test in order to generate these candidate sequences. This data-flow information is obtained

from the instrumentation class loader that also analyses the classes for data-flow information

when it instruments the system under test. Initially, we implemented the CSS algorithm

in JTestCraft without any optimizations and with only support for invokables (methods,

constructors, array constructors) that have a public access modifier. In early experiments

this version of JTestCraft spent most of its time on exploring redundant sequences where

there was no data-flow possible between some of the invokables in the sequence and the

method under test. Hence, we decided to also implement the data-flow check optimization

that avoids exploring these kinds of redundant sequences. This optimization significantly

increased the maximum length of the sequences that can be explored by the test generator.1

Unfortunately, the Partial Order Reduction and Sequence Grouping optimizations were not

implemented due to time constraints.

1In our experiments the data-flow checks increased the maximum sequence length from 3 or 4 statements

to 5 or 6 statements.

35

5. JTESTCRAFT

5.3 Instrumentation Class Loader

This section discusses the component of the prototype test generator that executes a path

through an invocation sequence and collects its symbolic constraints. The first subsection

explains why byte-code instrumentation of the system under test was chosen to monitor the

concrete execution. The second subsection explains how this technique is implemented in

the prototype test generator. Finally, we discuss the Symbolic Virtual Machine, which is

responsible for collecting the symbolic execution traces.

5.3.1 Execution Monitoring Techniques

We considered collecting the symbolic constraints by either modifying an existing Java

Virtual Machine or using instrumentation of the Java source code or byte-code executed by

the JVM.2 All three solutions are able to monitor individual instruction executions.3

We have opted for Java byte-code instrumentation, since this has the following advan-

tages over adapting an existing JVM:

1. Full compatibility with the Java platform, because it allows to use a certified JVM.

2. It offers higher performance, because the constraint collector runs in the same virtual

machine as the code that is being tested. It also allows us to take advantage of highly

performance-optimized JVM’s.

3. It requires significantly less debugging effort, since both the concrete and symbolic

state of a program are visible within the same debugger.

Java byte-code instrumentation has the following advantages over Java source code instru-

mentation:

1. Does not require the availability of source code, which allows us to test closed-source

software.

2. It requires less development effort to instrument correctly, because byte-code requires

significantly less semantic analysis than Java source code.

The following sections describe how the byte-code of the executed code is instrumented

to trace the execution of the system under test.

5.3.2 Byte-code Instrumentation

Byte-code instrumentation is achieved by using a custom class loader for the classes that

need to be tested and all the classes on which the system under test depends.4 The classes

2An instrumented program has additional instructions added to its code that allows another program to

monitor the behavior of the instrumented program.
3We also considered hooking our test generator into the Sun JVM using the Java Platform Debugger Archi-

tecture (http://java.sun.com/javase/technologies/core/toolsapis/jpda/). However,

this infrastructure is not suited to be used at the instruction execution level, which is the only level at which the

constraints can be collected.
4This custom class loader is written using the Apache Byte Code Engineering Library, see http://

jakarta.apache.org/bcel/ for more details.

36

Instrumentation Class Loader

are instrumented such that they invoke a method of the SVM for each instruction executed.

This method invocation describes the instruction and allows the SVM classes to monitor

the concrete execution of the system under test and construct a symbolic representation

of the executed instructions. However, not all instructions are instrumented by the test

generator. Unconditional control transfer instructions, such as goto instructions, do not

influence the path constraint due to their deterministic nature and are therefore ignored.

Thread synchronization instructions are also ignored, because we are mainly interested in

investigating techniques for testing object-oriented software.

The SVM operates on a simplified JVM instruction set. By abstracting the instruction

set, the number of JVM instructions is reduced from 210 to approximately 50 instruction

types that need to be handled by the SVM. This reduction is achieved by mapping multiple

JVM instructions to a single symbolic representation type. The first kind of instructions

that allow this reduction are arithmetic and conversion instructions. For most of these in-

structions there exists 4 variants, each for the primitives of the JVM, which are int, long,

float, double.5 For instance, iadd (integer), ladd (long), fadd (float) and dadd

(double) are all instructions that pop two values from the operand stack, perform an addi-

tion, and push the resulting value on the stack. In the SVM primitive types are converted to

Number objects and then, wherever possible, treated the same. The other kind of instruc-

tions that can be simplified are instructions that push constants on the stack or instructions

that store and load variables. For these instructions there exist optimized variants of these

instructions that have an operand or memory address hardcoded in their instruction, for ex-

ample, iconst 0 is an dedicated instruction for pushing a zero value on the operand stack.

These optimized instructions are mapped to the same symbolic representation type as their

unoptimized counter-parts.

For example, listing 5.1 shows a method that increments an object field. The Java

compiler transforms this method in the JVM byte-code shown in listing 5.2. When this

method is loaded by the test generator, it is instrumented by a custom class loader. The

resulting byte-code of this process is shown in 5.3. The additional instructions added by

the instrumentation class loader were written in Java instead of byte-code for the reader’s

convenience. Each time the instrumented method is executed by the JVM, it obtains a sym-

bolic thread object from the SVM, which it uses to keep SVM informed of the instructions

that are executed by the JVM. The next section discusses how these instructions are inter-

preted by the SVM. However, first we discuss how the Java Core Library Classes can be

instrumented, since they cannot be instrumented using a custom class loader.

Instrumentation of Core Library Classes

The instrumentation of the core library classes is complicated by the fact that the SVM is

build on top of these classes. Java, by design, requires that classes belonging to the java

package or any of its subpackages are loaded by the default class loader.6 This means

5The other Java primitives, boolean, byte, char and short primitives, are all represented by the int type in

the JVM.
6Note that this requirement is enforced in the native code of the JVM, hence cannot be circumvented by

altering the java runtime library.

37

5. JTESTCRAFT

public class Example {
private int field;

public void incrementField(int value) {
field = field + value;

}
}

Listing 5.1: Field Increment Example

aload 0 # load InstrumentationExample instance

aload 0 # load InstrumentationExample instance

getfield Example. field # load field from InstrumentationExample instance

iload 1 # load method argument

iadd # add loaded field and method argument value

putfield Example. field # store computed result

return # exit method

Listing 5.2: Original byte-code for Field Increment Example

SymbolicThread symbolicThread = SymbolicVirtualMachine.getSymbolicThread();

aload 0 # load InstrumentationExample instance

symbolicThread.load (0);

aload 0 # load InstrumentationExample instance

symbolicThread.load (0);

getfield Example. field # load field from InstrumentationExample instance

symbolicThread. getField (Example.class , ” field ”, new Integer (loadedFieldValue));

iload 1 # load method argument

symbolicThread.load (1);

iadd # add loaded field and method argument value

symbolicThread.add ();

putfield Example. field # store computed result

symbolicThread. putField (Example.class , ” field ”);

symbolicThread. ret ();

return # exit method

Listing 5.3: Instrumented byte-code for Field Increment Example

38

Symbolic Virtual Machine

that only one version of these classes can exist in the JVM. Unfortunately, we need two

versions. First, a normal (uninstrumented) version is needed that is used by the symbolic

JVM. Second, for the system under test an instrumented version is needed that collects the

symbolic constraints of such a library class. In Java 6, it is only possible to instrument the

core library classes such that the structure of the classes is maintained, e.g. it is not allowed

to add new fields or to introduce new methods.7 Moreover, since it is impossible to move

native method declarations to other packages, the solution must keep the classes in the same

package as they were originally declared. The solution is to implement both versions in the

same method. This is achieved by combining the normal and instrumented versions of the

method as subroutines in the same method. The first instructions of this method then check

whether the normal or instrumented subroutine should be run. The instrumented subroutine

should only be run when the SVM thread has called that method, which is checked using

method signatures. The resulting instrumented byte-code then looks as follows:

SymbolicThread symbolicThread = SymbolicVirtualMachine.getSymbolicThread();

if(symbolicThread.isTracing(methodSignature)) {
instrumented bytecode...

} else {
original bytecode...

}

5.4 Symbolic Virtual Machine

The previous section discussed techniques to observe which instruction are executed. In this

section we discuss the Symbolic Virtual Machine that uses these observations to construct

a path constraint that describes the executed path. This is achieved by symbolically inter-

preting the executed JVM byte-code instructions. The internal workings of the SVM are

quite similar to those of a JVM. The only difference is that the SVM operates on symbolic

expressions instead of primitive variables. The following subsections illustrate how JVM

instructions are symbolically interpreted by the SVM and discusses the components of the

JVM that are duplicated in the SVM.

5.4.1 Stack Instructions

The JVM creates for each method invocation a frame, that contains space for local vari-

ables (method variables) and an operand stack to store partial results. More specifically,

instructions load constants or values from local variables or fields onto the operand stack,

while other instructions take operands from the operand stack, operate on them, and push

the result back onto the operand stack. In the SVM this operand stack is duplicated and

holds symbolic expressions instead of primitive variables. Similar to a JVM operand stack,

a SVM operand stack can also contain array and object references.

7See http://java.sun.com/javase/6/docs/api/java/lang/instrument/

package-summary.html for more details on the Instrumentation API.

39

5. JTESTCRAFT

The JVM instruction set has dedicated instructions to manipulate this operand stack.

These instructions pop, duplicate or swap operands located on the operand stack. For ex-

ample, the swap instruction, which swaps the two operands at the top of the operand stack,

is implemented as follows:

public void swap() {
//take two operands from the stack

Operand firstOperand = getCurrentFrame().popOperand();

Operand secondOperand = getCurrentFrame().popOperand();

//place the two operands in reverse order on the stack

getCurrentFrame().pushOperand(firstOperand);

getCurrentFrame().pushOperand(secondOperand);

}

Note that the actual implementation of the swap() method also implements numerous con-

sistency checks (assertions) to quickly detect defects in the test generator prototype.

5.4.2 Constant Instructions

Instructions that push constants on the stack are represented by placing symbolic constant

expressions on the symbolic stack. This includes instructions that load constant values

from constant object fields. These instructions push either primitives or references on the

operand stack, and the system under test is instrumented such that the corresponding method

of the SVM is called. These methods are pushPrimitive() and pushReference(), which are

implemented as follows:

public void pushPrimitive(Number constantValue) {
getCurrentFrame().pushOperand(new Constant(constantValue));

}

public void pushReference(Object reference) {
if(reference == null) {
getCurrentFrame().pushOperand(new NullReference());

} else {
getCurrentFrame().pushOperand(new ObjectReference(reference));

}
}

5.4.3 Arithmetic Instructions

Arithmetic and primitive type conversion instructions are represented by forming new ex-

pressions by composing them of the symbolic expressions located on the symbolic stack.

For example, the following add() method belongs to this type of instructions, which is used

to symbolically represents addition instructions for all primitive types.

public void add() {
PrimitiveExpression right = (PrimitiveExpression) getCurrentFrame().popOperand();

PrimitiveExpression left = (PrimitiveExpression) getCurrentFrame().popOperand();

getCurrentFrame().pushOperand(new Addition(left, right));

}

40

Symbolic Virtual Machine

5.4.4 Branch Constraints

Conditional control transfer instructions, that correspond to if-then-else and switch-case

language constructs, determine the execution path taken through the program. Each time a

branch is taken, a branch constraint is added to the path constraint. The branch constraint

consists of a branch condition expression that captures the symbolic condition that deter-

mines which branch is taken and a branch evaluation that records which branch actually

has been executed. Instructions that represent an if-statement that compares two values are

implemented symbolically as follows:

public void if cmp xxx(int condition, boolean result) {
Expression right = getCurrentFrame().popOperand();

Expression left = getCurrentFrame().popOperand();

pathConstraint.add(new IfEvaluation(new IfExpression(condition, left, right), result));

}

The if cmp xxx() method takes two arguments. The condition argument describes the

kind of comparison used in the branch constraint, i.e. <, <=, ==, !=, >= or >. The result

argument indicates whether the first branch was taken. These method arguments and the

two symbolic expressions located on the symbolic operand stack are used to construct the

branch constraint, which is then added to the path constraint. Even though the constraint

solver does not reason about reference and typing constraints, these kinds of constraints are

also added to the path constraint, since they are needed to discriminate between paths in the

execution tree.

5.4.5 Load and Store Instructions

Primitives and references can be loaded from and stored in (local) method variables, class

and object fields, and arrays. This subsection explains how the SVM deals with these differ-

ent types of memory locations. This explanation uses the symbolic instruction implementa-

tion methods shown in listing 5.4.

Method variables are stored in the frame associated with the method that is being ex-

ecuted. For example, the load() method loads a symbolic expression from a local variable

index.

Field variables and array elements are stored in the symbolic heap. The symbolic heap is

implemented as a hash map data structure that maps heap locations to symbolic expressions.

It can happen that a field or an array element is loaded, before a value is stored at that

location. In this case, the JVM loads the default value associated with the type of that

location. The getstatic() method loads a symbolic expression stored in a (static) class field.

Recall that the prototype test generator is implemented using the Heap Simulation Rep-

resentation, therefore each time an element is loaded from or stored into an array, the con-

crete index used in this array operation is added to the path constraint. This is illustrated by

the astore() method, which loads a symbolic expression stored in a (static) class field.

41

5. JTESTCRAFT

public void load(int index) {
Expression expr = getCurrentFrame().getLocalVariable(index);

getCurrentFrame().pushOperand(expr);

}

public void getstatic(Class clazz, String fieldName, Object result) {
StaticField staticField = new StaticField(clazz, fieldName);

Expression storedExpression = SymbolicHeap.get(staticField);

if(storedExpression != null) {
getCurrentFrame().pushOperand(storedExpression);

} else {
//if the symbolic heap does not contain an expression

//then create a new expression, from the loaded result

Expression expression = createExpression(result, staticField.isPrimitive());

getCurrentFrame().pushOperand(unsoundExpression);

}
}

public void astore() {
Expression valueExpression = getCurrentFrame().popOperand();

PrimitiveExpression indexExpression = (PrimitiveExpression) getCurrentFrame().popOperand();

ArrayReference arrayReference = (ArrayReference) getCurrentFrame().popOperand();

//update symbolic heap

ArrayElement arrayElement = new ArrayElement(arrayReference, indexExpression);

SymbolicHeap.put(arrayElement, valueExpression);

//add index constraint

Constant indexConstant = new Constant(indexExpression.getConcreteValue());

IfEvaluation indexConstraint = new IfEvaluation(

new IfExpression(IfExpression.EQ, indexExpression, indexConstant),

true);

pathConstraint.add(indexConstraint);

}

Listing 5.4: Symbolic Implementation of Load and Store Instructions

42

Symbolic Virtual Machine

5.4.6 Method Invocations

When a method call is made, the JVM copies the argument methods argument from the

stack frame from the calling method to the local variable space of the method that is called.

The SVM duplicates this functionality. Recall, that when a polymorfic method invocation is

made on an object, the method that is actually executed is determined by the object’s type.

Hence, the SVM also adds the executed method to the path constraint in order to keep track

of polymorfic method calls. For example, the following SVM code handles (non-static)

method calls:

public void invoke method(String methodName, Class[] parameterTypes) {
//push new stack frame that stores the method call arguments as local variables

List<Expression> arguments = collectInvocationArguments(parameterTypes.length + 1);

frameStack.push(new StackFrame(arguments));

//add actually invoked method to path constraint

ObjectReference objectReference = (ObjectReference) arguments.get(0);

Class referenceClass = objectReference.getReference().getClass();

Method method = CodeRepository.lookupMethod(referenceClass, methodName, parameterTypes);

pathConstraint.add(new Invocation(method));

}

One of the advantages of Concolic Testing is that it can deal with native library calls.

After a method is called, this method has to register itself with the SVM to indicate that it

is instrumented. If it fails to register itself, the SVM knows that the method was a native

method. Return values of native methods are copied to the SVM and treated as either

symbolic references or symbolic constants depending on their type. This allows the test

generator to reason about these native return values.8

5.4.7 Exception Handling

Exceptions are typically thrown by a program or the JVM to signal that something went

wrong. When an exception is thrown or caught, this event is recorded in the execution

trace. This allows the test case generator to filter test sequences that (do not) throw excep-

tions, or to add code to the generated test code to catch uncaught exceptions. The current

implementation of JTestCraft does not support handling cases where exceptions are caught,

but this feature can easily be added.

Many frequently occurring exceptions, such as a IndexOutOfBoundsException

or a ArithmeticException (e.g. divide by zero), are thrown when an implicit check

done by the JVM fails. In the Symbolic JVM these checks are made explicit by adding them

to the path constraint. The result is that the prototype test generator actively tries to locate

test data that triggers these exceptions.

8In a future version of JTestCraft we also want to record which object fields and array elements are used

and defined by a native method. This would allow the test generator to build a model of a native method, which

can then be used to reason more accurately about this native method.

43

5. JTESTCRAFT

5.5 Constraint Simplification

Recall that Concolic Testing collects both the concrete values and symbolic constraints for

the executed path. Many of these symbolic constraints can be simplified to reduce the load

on the constraint solver. The constant substitution simplification technique simplifies parts

of the path constraint and is based on the observation that many of the subformulas passed to

the constraint solver only contain constant values and no variables. The constraint formula

can then be simplified by substituting the subformula with its associated concrete value. For

example, the constraint i = (2 ∗ 3) + 1 can be rewritten as i = 7.

The constant substitution simplification technique can be extended to deterministic

branch constraints. When a branch constraint is completely independent from the argu-

ments passed to the function, it is impossible to negate this branch constraint. We can use

this observation in two ways to optimize the search. First, the search knows beforehand

that the alternative path is infeasible, hence unnecessary constraint solver queries can be

avoided. Second, because the branch constraint always evaluates to the same branch, it can

be removed safely from the path constraint without influencing the set of feasible solutions.9

For example, consider the following method that initializes the values of a buffer:

private void initialize buffer() {
for(int i = 0; i < BUFFER SIZE; i++) { // BUFFER SIZE == 2

this.buffer[i] = −1;

}
}

The completely explored Constraint Tree for this example is shown in 5.2. In this example

the BUFFER SIZE is set to only 2 to demonstrate the principle. The Constraint Tree shows

that that even in this simple example this optimization avoids exploring 3 infeasible paths.

Both simplification techniques can be implemented with virtually no overhead. De-

pending on the type of code, it is expected that both optimizations significantly reduce the

size and number of the constraint formulas passed to the constraint solver. It also reduces

memory consumption, since smaller path constraints are stored in the Constraint Tree.

The optimizations discussed in this section are less advanced than the technique pro-

posed by Cadar et al. [7]. For instance, their technique also simplifies the constraints that

were already collected, which should result in simpler constraints. However, their approach

takes more effort to implement, since it uses rewrite techniques to determine the concrete

value, whereas our proposed approach only needs to perform a substitution. Moreover,

the constraint solver that JTestCraft employs, uses advanced constraint simplification tech-

niques, which significantly reduces the need for more effective constraint simplification

techniques in the test generator prototype.

9Note that this optimization is in effect a more powerful variant of loop unrolling, which is a program

transformation technique that replaces a loop by a list of repeating statements that achieve the same result as the

original loop. Our technique is more powerful, because also works on complex expressions, even when these

expressions are passed from another method. Another advantage of our technique is that is relatively easy to

implement.

44

Constraint Solver

1

1

1

2

INF

INF

(i < BUFFER_SIZE) where i = 0¬(i < BUFFER_SIZE)

(i < BUFFER_SIZE) where i = 1¬(i < BUFFER_SIZE)

(i < BUFFER_SIZE) where i = 2¬(i < BUFFER_SIZE)

INF

T

Figure 5.2: Tree constraints for the buffer initialization example. BUFFER SIZE is a con-

stant that is set to 2. All numbered nodes are computation nodes that correspond to part of

the code of the power function example. Nodes labeled T are terminal nodes, and nodes

labeled INF are infeasible nodes.

5.6 Constraint Solver

The constraint solver is responsible for determining the values of primitive arguments that

satisfy the constraints of an unexplored path in an invocation sequence. All features of

a modern programming language can be expressed in first-order logic. However, general

purpose solvers for first-order logic lack the necessary performance to reason about soft-

ware and most cannot deal efficiently with all programming language concepts, e.g. some

only support linear constraints. This severely limits the applicability of symbolic execution

to test data generation. Instead of solving the constraints using one general-purpose algo-

rithm, Satisfiability Modulo Theories (SMT) solvers combine various optimized decision

procedures to reason about software efficiently. These decision procedures target among

others equality, linear arithmetic, fixed-size bit-vectors, arrays, lists and pointer logic prob-

lems. Due to the advantages, most recent symbolic and concolic test generation tools are

built on top of SMT solvers, as is the prototype test generator.10

The int and long primitive types can be represented using linear arithmetic or fixed-

size bit-vector theories. JTestCraft uses fixed-size bit-vectors to represent these primitive

types, since they allow the constraint solver to reason about non-linear arithmetic con-

straints, such as division and bit-shift operations.11 It also allows the constraint solver

to reason about cases where int or long primitives overflow. Unfortunately, this exact

reasoning scales worse than the approximate linear arithmetic theory, because of its added

complexity. Due to the lack of support of floating point arithmetic in constraint solvers

today, the prototype test generator is limited in its ability to reasoning about these kinds of

10The prototype employs the Microsoft Z3 SMT Solver [24], which supports all the theories and techniques

needed to develop a test generator. Moreover, it ranks as one of the fastest solvers in the SMT competition.

http://www.smtcomp.org/
11The prototype test generator only uses fixed-size bit-vector theories. Hence, the constraints passed to the

constraint solver are NP-complete.

45

5. JTESTCRAFT

constraints. In the following section we discuss how JTestCraft deals with floating point

arithmetic.

5.7 Floating Point Arithmetic

Many other test generators lack support for floating point arithmetic [7]. The test generators

that do deal with floating point constraints use linear real arithmetic to solve these floating

point constraints [27]. However, this approach requires considerable effort to implement

and cannot deal with non-linear arithmetic operations, casts to integers, and Not-a-Number

and ‘infinite’ floating point numbers. JTestCraft uses another approach that combines ran-

dom testing with concolic testing to support floating point arithmetic. JTestCraft simply

explores a sequence that requires floating-point variables, multiple times and each time with

other random values. JTestCraft uses then concrete execution to deal with the floating point

arithmetic and simply ignores the collected floating point constraints. This new approach is

even less effective than the ‘linear real arithmetic’ approach, because it does not involve any

reasoning about floating point constraints at all. However, we chose this approach because

it requires very little effort to implement and is sufficient for evaluating the new algorithms

and techniques introduced in this thesis.

5.8 Test Code Generator

The test code generator turns concrete invocation sequences in JUnit test cases. These

concrete invocations are stored in the execution tree at the terminal nodes, i.e. the nodes

where the method returns or where an exception is thrown and not caught within the same

method. Unfortunately, due to time constraints we have chosen not to prioritize the con-

crete invocation sequences, i.e. selecting a small subset that provides sufficient test criteria

coverage [25]. Hence, all the concrete invocation sequences stored in the execution tree are

transformed into JUnit test cases. In practice, this means that JTestCraft generates test cases

that aim to achieve full path coverage for the methods under test.

5.9 Correctness

It is important that a test generator functions correctly to avoid overlooking important test

cases. A large number of assertions were added to the codebase of the test generator proto-

type to ensure its correctness. The most important set of assertions check whether the input

that satisfies the constraints of an unexplored path does indeed cause the execution of that

path. Similarly, if the constraint solver finds a path infeasible, then assertions check that

this path is never executed. These checks ensure that the collected constraints are correct

for the executed path and that the constraint solver interprets these constraints correctly.12

12The correctness checks have been very effective for locating (subtle) software bugs in the prototype test

generator and these checks even found some defects in the Z3 SMT solver.

46

Conclusion

5.10 Conclusion

This chapter presented JTestCraft, a test generator for the Java programming language,

which is able to reason accurately about almost all language features, including recursion,

polymorfism, encapsulation and integer under- and overflows. Moreover, it can be used to

test software that contains floating-point arithmetic and native library calls. The only un-

supported features are exception catching and generating sequences that contain non-public

constructor and method calls. However, both features can easily be added to the test gen-

erator. Since JTestCraft has full support for almost all language features, it can be used on

real-world software. In the next chapter we will evaluate the performance of prototype test

generator.

47

Chapter 6

Empirical Evaluation

49

6. EMPIRICAL EVALUATION

In this chapter the performance of JTestCraft is evaluated using three experiments. Each

experiment answers one the research questions posed in the first chapter. In the first experi-

ment the prototype is run on a small and well-designed object-oriented program to evaluate

the method invocation sequence algorithm and compare the quality (code coverage) of the

generated test suite to a test suite written by a software developer. The second experiment

identifies the bottlenecks of the prototype test generator using code profiling. The last ex-

periment measures the performance of the prototype test generator on several algorithm

implementations. The results of this experiment are used to compare the performance of

JTestCraft to other test generators described in the literature. Finally, a summary is given of

the three experiments discussed in this chapter.

6.1 Test Generation Performance

The goal of the first experiment is to answer the research question: “How does the quality

of the generated test cases compare to test cases written by software developers?” This

is achieved by comparing the quality of the generated test suite to a test suite written by

a software developer and by measuring the maximum explored length of the generated

invocation sequences. Note that the outcome of this experiment is determined primarily

by the effectiveness of the Candidate Sequence Search algorithm. First, we discuss the

JPacman application, which is used the evaluate the performance of JTestCraft, and then we

discuss the experiment.

6.1.1 JPacman

JPacman is an object-oriented program based on the well known Pacman game. The pro-

gram is used in a lab course to teach students about software testing, and the teacher’s

version includes a JUnit test set of high quality.

JPacman consists of approximately 3800 lines of code including whitespace and com-

ments. The codebase is split in two packages. The jpacman.controller package is

responsible for rendering the game on screen, processing input and updating the game state

accordingly. Whereas the jpacman.model package contains the game logic and the

classes that are used to represent the game internally. Even though JTestCraft can reason

about the user interface classes perfectly, the current implementation needs future enhance-

ments before it can unload the user interface. Therefore we decided to evaluate the test

generator only on the jpacman.model package. This package consists of 15 classes and

2500 lines of code of which 612 lines are executable method body statements.

JPacman makes use of array types and object-oriented features, such as encapsulation

and polymorphism. Another noteworthy fact of this program is that it uses assert statements

throughout its codebase to represent contracts [23], i.e. class invariants and method pre and

post conditions. This puts more constraints on the method input and makes it harder for

JTestCraft to generate useful method sequences. Fortunately, it also increases the quality

of the generated tests, since the generated code is more likely to represent a use case that

occurs in practice.

50

Test Generation Performance

�����

����

	
��
�

���

����

����������

��������	�������

�����

��
����

��
��������

����

����
������

������

����������

����

�����

� �� �� � !� "� #� $� %� &� ���

�����
����(���(�����

	�����
� ��
������

��������()*+

Figure 6.1: JPacman line coverage results for the existing and generated test sets.

6.1.2 Experimental Setup

The JTestCraft experiments were conducted on a Windows computer with a Core 2 Duo 2.4

GHz processor using Sun’s Java 2 SDK 1.6.0 JVM with 1024 MB allocated memory. In

these tests JTestCraft was given 5 minutes for each method under test, and the constraint

solver time limit was set to 10 seconds per problem. For the JPacman experiments an upper

limit of exploring ten paths per method invocation was set, since many of the methods un-

der test have an almost infinite number of paths that can be explored. Note that the number

of paths explored per sequence can still grow exponentially when the length of a sequence

increases. The maximum allowed array size was set to 64 elements (per dimension) to

avoid the creation of arrays of several hundreds of megabytes. The only modification made

to JPacman was to rewrite Engine.initialize(). This method throws an exception

even when used correctly, which makes JTestCraft discard potentially useful sequences that

contain this method. Hence, this method was rewritten such that it does not throw an excep-

tion. The code coverage statistics for both the generated and the human-made test set were

measured using EMMA1.

1http://emma.sourceforge.net/

51

6. EMPIRICAL EVALUATION

6.1.3 Results

We compared the generated test set against the existing (human-made) test set. The ex-

isting test set consists of 80 test cases while the generated test set consists of 315 test

cases. We estimate that about 70% of the generated test cases are redundant (add no ad-

ditional coverage). JTestCraft explored all sequences with lengths equal to four and less.

In some cases, it reached exploring sequences with six method invocations. The obtained

line coverage for both test sets is shown in figure 6.1. Both test sets achieve similar code

coverage results. There are some noticeable differences between both test sets if we look

at specific parts of the source code. First of all, the generated test set achieves significantly

higher coverage in the Board and Cell classes, because the existing test set does not test

their toString() methods. The other reason, which holds also for the Food and Move

classes, is that the generated test suite also includes many test cases where the assertions

are violated. The existing test set achieves higher coverage for the classes Engine, Game,

Player and PlayerMove. These classes require longer sequences to obtain full coverage than

JTestCraft can explore. JTestCraft currently only supports generating sequences that con-

tain public methods invocations and methods with other access modifiers can only be tested

indirectly. Hence, the test generator could achieve higher coverage with less effort when

support is added for generating sequences that also include method invocations with default

and protected access modifiers.

6.1.4 Threats to Validity

In this experiment only one object-oriented program was tested. Further experiments on

other test subjects need to be conducted to determine the extent to which the obtained re-

sults are representative for different types of programs, such as web applications, industrial

control systems and physics simulations.

6.1.5 Discussion

JTestCraft was designed to generate test cases for object-oriented program units. The cur-

rent implementation was successful in testing JPacman. We are confident that performance

improvements will allow JTestCraft to surpass the existing test set and perhaps even obtain

100% feasible code coverage. These optimizations consist of algorithmic optimizations,

which have been discussed in chapters 2 and 4, and implementation improvements, which

are identified in the following section.

6.2 Performance Measurements Using Profiling

This second experiment is used to answer the research question: “What are the main areas

of improvement for the prototype test generator?” In this experiment the test generator was

profiled while it generated tests for JPacman. The profiler measured the processor time and

memory needed to perform different subtasks in the test generation process, which allowed

us to determine the bottleneck in the current JTestCraft implementation.

52

Performance Measurements Using Profiling

6.2.1 Experimental Setup

The setup for the performance profiling experiment is the same as for the previous JPacman

experiment. The only difference is that the JVM profiler was enabled.

6.2.2 Results

The performance profiling results show that most of the processor time (75%) and memory

usage (90%) is spent on generating method sequences. Fortunately, memory usage can be

brought down significantly (to a few megabytes), since method sequences are enumerable.

In contrast, generating sequences will remain computationally expensive, because of the

underlying exponential time algorithm. This problem could be reduced by implementing

the algorithm more efficiently.2 The remaining processor time (25%) is used to explore

these sequences. Almost all this time is used to determine alternative paths. With a little

bookkeeping we can change this algorithm such that it completes in constant time. Only

1% or less of the total time was spent on solving alternative path constraints.

6.2.3 Threats to Validity

The JVM profiler imposes a significant overhead on the computational performance of

JTestCraft. As a result, the number of explored sequences was two to three times lower

and the maximum sequence length was also shorter. We observed that as the sequences got

longer, relatively more time was spent on generating invocation sequences. It is therefore

likely that even more than 75% of the processor time was spent on generating invocation

sequences.

In addition, similar to the previous experiment only one object-oriented program was

tested. This makes it hard to draw general conclusions about the bottlenecks in JTestCraft.

However, a similar performance profile was obtained for the algorithm experiments dis-

cussed in the next section.3 Therefore, we are confident that the bottlenecks of JTestCraft

were identified.

6.2.4 Discussion

While designing JTestCraft we tried to keep the constraints as simple as possible, since we

know that the constraint solver is often the bottleneck in symbolic test generators. However,

after noticing that at most 1% of the total processor time was spent in the constraint solver,

we expect that shifting some of the complexity from the test generator to the constraint

solver should result in significant performance improvements. For example, letting the

constraint solver reason about reference types and arrays reduces the number of concolic

invocations and calls made to the constraint solver.

2For instance, the current implementation relies heavy on String comparisons to check whether two meth-

ods, fields or types are equal. By assigning each method, field and type with an unique identifier, this String

comparison can be replaced by an integer comparison, which speeds these comparisons up by roughly a hundred

times.
3The only difference was that up to 2% of the total time was spent in the constraint solver.

53

6. EMPIRICAL EVALUATION

6.3 Performance Comparisons Using a Standard Set of

Algorithms

Up to now the research of test generators focused almost exclusively on applying the gen-

erator to algorithms. Hence, we tested the prototype also on algorithms in order to answer

the following research question: “How does the performance of the prototype test generator

compare to other test generators discussed in the literature?” We evaluated the performance

of JTestCraft on the seven Java classes listed in table 6.1. These classes were also used to

evaluate the performance of other test generators, such as Rostra [34], Symstra [33] and

Korat [5] (only the last five classes). In this experiment the performance of JTestCraft

is compared against Rostra and Symstra. It is important to note that the performance of

JTestCraft is only compared against the other test generators on test subjects that require

only simple invocation sequences to test, e.g. only sequences where the method arguments

consist of primitive types. For test subject where more complicated sequences are required,

e.g. where an object is passed as a method argument, Rostra and Symstra would fail to

generate any test cases.

Rostra and Symstra are discussed in the following subsection, while the other subsec-

tions describe the experiment.

6.3.1 Rostra & Symstra

Rostra and Symstra are both test generators that also generate invocation sequences.

Rostra is a random test generator that draws its primitive arguments from a limited set of

random values. This allows it to prune many redundant sequences based on the observation

that similar program states result in the same behavior. Hence, when the resulting program

state of a sequence has occurred before in another sequence, then the former sequence can

be pruned from the search.

This technique is illustrated using the sorted list data structure that is implemented using

a sorted array. When a new element is added to the array, the size of the array increases and

the element is inserted at a location such that the array remains ordered. For example,

the sequences add(1), add(2), add(5) and add(5), add(1), add(2) result in the same array

configuration: [1, 2, 5]. Since both sequences result in the same program state, it is only

necessary to explore one of these sequences further. Hence, only one of the following two

Class Methods Under Test Relevant Private Methods Lines Branches

IntStack push, pop - 30 9

UBStack push, pop - 59 13

BinSearchTree insert,remove removeNode 91 34

BinomialHeap insert, extractMin, delete findMin, merge, unionNodes, decrease 309 70

LinkedList add, remove, removeLast addBefore 253 12

TreeMap put, remove fixAfterIns, fixAfterDel, delEntry 370 170

HeapArray insert, extraMax heapifyUp, heapifyDown 71 29

Table 6.1: Algorithm classes used in the experiments

54

Performance Comparisons Using a Standard Set of Algorithms

sequences needs to be explored: add(1), add(2), add(5), add(4) or add(5), add(1), add(2),

add(4).

Symstra is a symbolic test generator that uses a similar technique as Rostra. The dif-

ference is that Symstra uses symbolic states instead of concrete states to prune redundant

sequences, which makes this technique even more effective. For example, this symbolic

technique needs only one sequence for each sorted list of a different length. The sequences

add(1), add(2), add(5); add(5), add(1), add(2) and add(4), add(5), add(6) all result in the

same symbolic array configuration: [a1, a2, a3] where a1 ≤ a2 and a2 ≤ a3. As a result

only one program path needs to be explored for each sequence length.

These techniques make both test generators well suited for the algorithms implemented

in Java [33].4 Recall that JTestCraft does not implement any of these optimizations, and

thus explores all generated sequences and all paths through these sequences. Even though

we did not expect JTestCraft to outperform the other test generators, we still wanted to

know how much performance could be gained if a similar optimization was implemented in

JTestCraft.

6.3.2 Experimental Setup

The experiments for Rostra and Symstra were performed on a Linux machine with a Pen-

tium IV 2.8 GHz processor using Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated

memory. The JTestCraft tests were conducted on a Windows computer with a Core 2 Duo

2.4 GHz processor using Sun’s Java 2 SDK 1.6.0 JVM with 1024 MB allocated memory.

In these tests JTestCraft was given 5 minutes for each method under test, and the constraint

solver time limit was set to 10 seconds per problem. The only modifications made to the

algorithm classes was that the inner classes were rewritten to normal Java classes, since

JTestCraft does not support the instrumentation of inner classes. The code coverage statis-

tics for JTestCraft were measured using Cobertura5, whereas Rostra and Symstra measured

the obtained coverage statistics themselves.

Redundant sequences In order to avoid the testing of redundant method invocation se-

quences, only sequences that were fully connected and that contained no null references

were tested. The test generator was also instructed to only use the Integer.valueOf(int)

method to obtain instances of Comparable, Object and Integer objects. Otherwise, JTestCraft

would spent most of its time on exploring irrelevant sequences.6 The following two se-

quences are examples of the many redundant sequences that would otherwise have been

explored.

4As far as we are aware Rostra and Symstra are the fastest test generators for testing algorithm implemen-

tations.
5We use Cobertura instead of EMMA for this experiment, since only Cobertura can determine branch

coverage statistics. http://cobertura.sourceforge.net/
6Without this adjustment we measured a decrease in the maximum explored sequence length by approxi-

mately 1 to 3 invocations.

55

6. EMPIRICAL EVALUATION

HeapArray heapArray = new HeapArray();

String string = heapArray.toString();

Integer integer = Integer.valueOf(string);

boolean b = heapArray.insert(integer);

TreeMap treeMap1 = new TreeMap();

TreeMap treeMap2 = new TreeMap();

Integer integer = Integer.valueOf(699252145);

Object object = treeMap1.put(integer, treeMap2);

The sequence on the left illustrates a case where an Integer object is constructed from a

String object. However, assuming that the Integer construction call does not throw an ex-

ception, then the resulting Integer object is exactly the same as if it was constructed using

an integer primitive. Hence, it is unnecessary to explore these sequences. The other se-

quence creates an object (treeMap2) to store it in a Treemap object (treeMap1). However,

the behavior of a TreeMap is not influenced by the type of the stored objects, since all of the

TreeMap methods only use the reference of the stored object. Therefore, it suffices to only

explore sequences where objects of only one type (e.g. Integer) are stored in a TreeMap.

Integer object method arguments In all of the algorithm classes Integer objects are used

as method arguments. JTestCraft treats these arguments as objects and adds Integer object

constructors to the generated sequences. By treating them as objects, it is possible to pass

the same Integer object multiple times as an argument in a method sequence, for example:

HeapArray heapArray = new HeapArray();

Integer integer = Integer.valueOf(−195898993);

boolean b1 = heapArray.insert(integer);

boolean b2 = heapArray.insert(integer);

In contrast, Rostra and Symstra treat these arguments as primitives, and insert one Integer

object constructor call for each method argument that has an Integer object type. The result

is that JCraftTest generates more redundant sequences than the other test generators in this

case. However, Rostra and Symstra will fail to generate test cases in other situations where,

for example, the references of Integer objects are checked for equality.7

6.3.3 Results

The results of this experiment are listed in table 6.2 for each algorithm and shows the time

needed to explore all sequences of a given length N. The table also shows for JTestCraft

the number of explored paths through the sequences and the number of tests selected by

the test generator that makes its selection based on the method path coverage criterion in

the parentheses. The results for Rostra and Symstra were obtained from [33], where they

recorded the number of generated tests and in the parentheses the cumulative number of

tests that increase branch coverage. The table also shows the branch coverage that was

obtained for generated test suites.8 As expected, the results reveal that both Rostra and

Symstra outperform JTestCraft with a significant difference in both the coverage obtained

7Note that this difference accounts for the lack of sequences of even length in the result table.
8A test suite consists of test cases of all lengths.

56

Performance Comparisons Using a Standard Set of Algorithms

Class
JTestCraft Rostra Symstra

N Time Tests Cov. N Time Tests Cov. N Time Tests Cov.

UBStack

5 7.41 1591(6)

90

9 4.98 1950(6)

100

9 0.85 43(5)

100
6 *89.28 14830(8) 11 31.83 13734(7) 11 1.24 67(6)
7 *103.33 27119(8) 13 *269.68 *54176(7) 13 1.57 94(6)
8 - - 15 - - 15 2.33 141(6)

IntStack

5 5.68 1022(4)

33

9 12.76 5766(4)

67

9 0.26 18(3)

100
6 39.42 6062(4) 11 *207.59 *47208(5) 11 0.47 24(4)
7 - 338.9 47659(4) 13 *689.02 *52480(5) 13 0.54 32(5)
8 - 600.02 83098(4) 15 - - 15 0.67 40(6)

BinSearchTree

5 19.87 3865(9)

83

9 4.80 1460(16)

100

9 4.07 350(15)

100
6 174.03 27543(14) 11 23.05 7188(17) 11 15.22 1274(16)
7 - 600.01 65718(22) 13 - - 13 70.94 4706(16)
8 - - 15 - - 15 *251.30 *12626(16)

BinomialHeap

5 27.44 5757(16)

79

9 4.97 1320(12)

84

9 1.41 40(13)

91
6 493.68 88970(22) 11 50.92 12168(12) 11 3.59 66(13)
7 * - 13 - - 13 5.67 86(15)
8 - - 15 - - 15 17.53 157(16)

LinkedList

5 21.08 4398(7)

100

9 32.61 8591(6)

100

9 0.56 25(6)

100
6 248.01 41790(9) 11 *412.00 *20215(6) 11 0.66 33(6)
7 - *736.34 112206(9) 13 - - 13 0.80 42(6)
8 * - 15 - - 15 0.94 52(6)

TreeMap

5 69 12169(9)

15

9 3.52 560(31)

84

9 3.79 114(28)

84
6 - 600.02 82578(9) 11 12.42 2076(37) 11 17.32 386(34)
7 - - 13 41.89 6580(39) 13 38.15 698(36)
8 - - 15 - - 15 173.71 2074(36)

HeapArray

5 7.1 1054(7)

70

9 3.75 1296(10)

76

9 2.79 51(9)

100
6 53.04 6230(8) 11 - - 11 5.77 96(11)
7 - 375.32 35614(13) 13 - - 13 14.52 175(13)
8 - 600.02 59629(17) 15 - - 15 28.50 389(13)

Table 6.2: Results for the algorithm experiments. The symbol ‘*’ represents a case where

the test generation process timed out and the symbol ‘-’ represents a case where a test

generator exceeded the memory limit. It is important to note that JTestCraft generates tests

for one method at a time and in this table the aggregated results are shown for each class

under test.

and the explored sequence length reached, since their optimizations allow them to prune

most sequences.9

6.3.4 Threats to Validity

The results for this experiment were obtained by running the tests on two machines that have

different performance characteristics. The results for the test generators are so far apart that

the performance difference could only have a little impact on the measured coverage and

explored sequence length differences.

9As stated before, the sequence generation algorithm of JTestCraft treats Integer objects differently than

Rostra and Symstra treat them. We conducted another experiment where we changed the Integer object ar-

guments to integer primitives. In this case, JTestCraft explores exactly the same sequences as the Rostra and

Symstra. In this experiment the performance of JTestCraft approaches the performance of Rostra and reaches

sequence lengths of 9 to 11. We estimate that most of the redundant sequences that are avoided this way, could

also have been pruned by the Partial Order Reduction optimization discussed in chapter 4. This indicates that

the Partial Order Reduction optimization could be very effective at improving the scalability of the Candidate

Sequence Search algorithm.

57

6. EMPIRICAL EVALUATION

6.3.5 Discussion

The results show that JtestCraft in its current state is not particularly suited for testing algo-

rithms. However, we are confident that adding the optimization that Symstra uses to prune

redundant sequences would make the performance of JTestCraft comparable to Symstra.

6.4 Summary

In this chapter JTestCraft was tested on an object-oriented program and a set of algorithms.

In the first experiment JTestCraft was evaluated by comparing its generated test set to an

existing test set for an object-oriented Pacman implementation. This test revealed that the

coverage of the existing (human-made) and generated test set achieve similar code coverage

results. Moreover, we found that all test cases that consist of up to four invocation state-

ments were located, and in some cases the test generator explored sequences of up to six

invocation statements.

In the second experiment JTestCraft was profiled while it generated tests for the Pacman

program. The results of this experiment show that there is room to significantly improve the

performance of the implementation of the test generator. We also noticed that only a small

amount of the total processor time was spent in the constraint solver. Therefore we expect

that shifting some of the complexity from the test generator to the constraint solver could

also result in significant performance improvements.

Finally, the algorithm experiment results indicate that there are also opportunities to

considerably improve the performance of JTestCraft by implementing additional optimiza-

tions discussed in the literature.

58

Chapter 7

Conclusions and Future Work

59

7. CONCLUSIONS AND FUTURE WORK

This thesis introduced novel techniques to automatically generate unit tests for object-

oriented software. These techniques promise to reduce the costs of unit testing up to 70%,

while at the same time increase the quality of the software tests. This results in significantly

lower development costs, less defects in both the software system as its test set, and shorter

software development life-cycles. In this project we investigated techniques that generate

test cases from program code and then leave it to the software developer to extend these

test cases with an expected behavior specification. The first problem of these techniques is

the path explosion problem that limits test generation techniques to scale up to software of

industrial size and complexity. The other problem is that these techniques have only limited

support for testing object-oriented software. In this thesis both problems were addressed

and the main research question was formulated as follows:

“How do we add support for object-oriented software to program-based test

generation techniques, such that their scalability to large and complex software

is maximized?”

In this thesis we introduced novel algorithms and techniques to answer this question. The

most promising algorithms and techniques were implemented in a prototype test generator

to evaluate their effectiveness. These contributions are discussed in the following section.

7.1 Contributions

The main contributions of this work are as follows:

Candidate Sequence Search We introduced the novel Candidate Sequence Search (CSS)

algorithm to generate invocation sequences. This algorithm is able to find all in-

vocation sequences that can influence the unit under test and deals effectively with

object-oriented language features, such as arrays, inheritance and polymorfism. In

addition, we proposed three optimizations that ensure that very little time is wasted

on redundant sequences.

Heap Simulation Representation We introduced a new technique to represent the heap

symbolically. This technique, called Simulated Heap Representation, simplifies the

implementation of a test generator that supports software containing array, field, ref-

erence and typing instructions. This techniques also reduces the load on the constraint

solver.

Constraint Tree We proposed the Constraint Tree data-structure that is used to avoid ex-

ploring the same program paths twice in order to improve the scalability of the test

generation techniques.

JTestCraft We developed a test generator for the Java programming language, called JTestCraft,

that uses the Candidate Sequence Search algorithm, Heap Simulation Representation

and Constraint Tree data-structure. JTestCraft is able to reason accurately about al-

most all language features, including recursion, polymorfism, encapsulation and in-

teger under- and overflows. Moreover, it can be used to test software that contains

60

Conclusions

floating-point arithmetic and native library calls. Due to its support for almost all

language features, JTestCraft can be applied to real-world software.

Evaluation We evaluated the performance of JTestCraft in three experiments to determine

the bottlenecks in its implementation and to measure its performance against human

testers and other test generators described in the literature.

7.2 Conclusions

In the introduction of this thesis we formulated the main research question and three specific

research questions. These research questions are answered in this section.

Specific Research Questions

The most promising algorithms and techniques were implemented in a prototype test gen-

erator and to answer the main research question we investigated the following three sub-

questions.

“How does the quality of the generated test cases compare to test cases written

by software developers?”

JTestCraft was evaluated by comparing its generated test set to an existing test set for JPac-

man, which is an object-oriented Pacman implementation. This experiment revealed that the

coverage of the existing (human-made) and generated test set achieve similar code coverage

results.

“What are the main areas of improvement for the prototype test generator?”

The only language features that JTestCraft currently does not support are exception

catching, instrumentation of inner classes and generating sequences that contain non-public

constructor and method calls. We recommend to add support to JTestCraft for these features,

since it is also relatively easy to do so.

The performance profiling results show that most of the processor time and memory

space is used for generating method sequences. We expect that these numbers can be

brought down significantly when the candidate sequence generator component is imple-

mented more efficiently. At a later stage, the performance of JTestCraft can be improved

further by implementing additional scalability optimizations discussed in this thesis (chap-

ter 4), in other works (chapter 2).

“How does the performance of the prototype test generator compare to other

test generators discussed in the literature?”

As opposed to other test generators discussed in the literature, JTestCraft deals effec-

tively with object-oriented language features, such as arrays, inheritance and polymorfism.

Another unique feature of JTestCraft is that it does not overlook invocation sequences that

61

7. CONCLUSIONS AND FUTURE WORK

influence the unit under test. Both features enable JTestCraft to generate test cases for

program code where other test generators would fail. In order to improve its scalability

JTestCraft explores only sequences that could influence the unit under test. The scalability

of JTestCraft can be improved further by implementing other optimizations (chapter 2). The

algorithm experiments seem to confirm this, as their results reveal that two other test gen-

erators outperform JTestCraft with a significant difference in both the coverage obtained

and the explored sequence length reached, since their optimizations allow them to prune

most sequences. However, we are confident that adding similar optimizations to JTestCraft

should cancel out the performance difference.

Main Research Question

Now that we have answered the three sub-questions, we are ready to answer the main re-

search question:

“How do we add support for object-oriented software to program-based test

generation techniques, such that their scalability to large and complex software

is maximized?”

The success of testing object-oriented software depends primarily on the ability to set the

unit under test in the right state. This is achieved by generating invocation sequences that

consist of constructor invocations, method invocation and field assignments. In this work

we proposed the Candidate Sequence Search algorithm that is guaranteed to find all in-

vocation sequences that can influence the unit under test and deals effectively with all

object-oriented language features including inheritance and polymorfism. The JPacman

experiment confirms these claims and shows that JTestCraft generated a test set that obtains

similar coverage as the existing (human-made) test set.

Invocation sequence generation algorithms fail to scale to large and complex software,

because the number of invocation sequences that need to be considered grows exponentially

with the sequence length. The CSS algorithm addresses this problem by only considering

sequences where every invokable could influence the system under test. As a result, con-

siderably less invocation sequences need to be explored. In order to further improve the

scalability of the CSS algorithm, we proposed three optimizations that avoid the explo-

ration of sequences that cannot reveal new test cases. Due to time constraints we were only

able to implement the Data-flow Check optimization, which almost doubled the maximum

length of the explored sequences. We are confident that the Partial Order Reduction and

Sequence Grouping optimizations will also significantly improve the scalability of the Can-

didate Sequence Search algorithm. With these optimizations the CSS algorithm becomes a

very effective and efficient solution to generate test cases for object-oriented software.

Although the scalability problem remains the subject of active research, we expect that

the CSS algorithm combined with other optimizations, such as those discussed in the litera-

ture (chapter 2) and the Constraint Tree data-structure, can already be successfully applied

to generate test cases for object-oriented program units of moderate size (at least 10 kloc).

We are also confident that the ideas behind the CSS algorithm will form the foundation for

future test generation techniques that target object-oriented software.

62

Discussion

7.3 Discussion

Based on the results we are confident that the prototype can be used successfully to sig-

nificantly reduce the effort needed to construct software test sets. In this case, a software

developer is only required to write tests for cases that require long sequences, while the

rest (most) of the test cases are generated by the test generator. It should be noted that the

performance of JTestCraft depends on the testability of the system under test. Hence, to

increase the effectiveness of a test generator, the system under test should be designed for

testability.

7.4 Future Work

In this section we provide some directions for further research to improve the applicability

and effectiveness of future test generators.

Usability

The most important thing that stands in the way of adopting JTestCraft for use in actual

software development is that it lacks usability. This can be solved by turning this prototype

test generator into a stand-alone GUI application or, even better, into a highly integrated

IDE plug-in.

Test Case Prioritization

The current version of JTestCraft outputs a test for every executed path through a method

under test. However, in practice software developer are often only interested in generating

test cases such that every line of code or every branch in the system under test is executed.

Therefore, a future version of JTestCraft should have the option to filter test cases based on

a test criteria, such as statement coverage or branch coverage.

Regression Testing

The current version of JTestCraft is not particularly suited for regression testing, since it

generates test cases without any assert statements. This can easily be resolved in a future

version where the test generator records the values returned by the method under test and

the state changes (field and array stores) this method causes. When the executed invocation

sequence is transformed into a test case, the recorded values are turned into assert state-

ments.

Test Criteria

JTestCraft attempts to locate test cases that cause exceptions to be thrown, such as assertion

exceptions, divide by zero exceptions, array out of bounds exceptions and null pointer ex-

ceptions, since these test cases are likely to reveal software defects. Other common sources

for software bugs include arithmetic overflows and wrong boundaries in branch conditions,

63

7. CONCLUSIONS AND FUTURE WORK

e.g. i ≤ 5 instead of i < 5 [35]. An improved version of JTestCraft should also try to

find test cases where overflows occur and where the boundary values are tested, e.g. for the

branch condition i ≤ 5 two test cases should generated where i = 5 and i = 6. In addi-

tion, the software testing literature has an extensive array of other test criteria that should

be considered as well [1, 35].

Symbolic Heap Representation Trade-Offs

This thesis discussed the heap simulation and heap reasoning solutions to represent the

heap symbolically. JTestCraft implemented the heap simulation solution, since it can be

implemented with relatively little effort and produces less complex path constraints than

the heap reasoning solution. However, the heap simulation solution can only reason about

one array element at a time, whereas the heap reasoning solution reasons about the whole

heap configuration. Further research is needed to determine which solution (or combination

of both solutions) is best used for automatic unit test generation.

Floating Point Arithmetic

Current constraint solvers can only approximate floating point arithmetic using linear real

arithmetic. As a result, test generators are unable to deal effectively with floating point

multiplication and division operations, infinite and NaN (Not a Number) values, and round-

ing errors. Especially these special floating point values and rounding errors are common

sources for software defects. Therefore, full support for floating point arithmetic would sig-

nificantly increase the chances of a test generator locating software defects in code that uses

floating point arithmetic extensively. This requires the research of new decision procedures

for floating point arithmetic.

Sequence Search Control

The test generation techniques presented in this thesis can be used to automatically generate

unit tests for software that require little effort to set up the test environment, such as algo-

rithms and industrial control systems. However, these techniques fail when program units

require a specific test environment. For example, program units in a database application

could require that a database connection exists. Unfortunately, the test generator tries ran-

dom network addresses and ports to establish an connection and, as a result, will probably

fail to connect. Another problem is that these techniques are not yet suited for integration

tests due to scalability limitations.

Both problems can be alleviated when a software developer could provide the test gen-

erator with more guidance. For example, in order to test a complete program, a software

developer could instruct the test generator to only influence the program state through simu-

lated keyboard and mouse events. While we do not expect this approach to be very scalable,

it scales much better than when all methods that could influence the program state are ex-

plored. In the case of the database example, the software developer could provide the test

generator with an initial sequence that sets up the database connection. This potential solu-

64

Future Work

tion raises several important questions: ‘In which ways can the software developer provide

guidance to the test generator?’ and ‘How effective is this guidance?’

Another possible solution to the test environment and scalability problems are mock

objects. Mock objects are objects that simulate the behavior of real objects. In this case,

the test generator specifies the behavior of the simulated objects. For the database example

it would mean that the test generator simulates the database connection and has complete

control over what values are ‘read’ from the database. The advantage of this solution is

that the test generator has more freedom to control the execution of the method under test.

However, this freedom can also result in test cases that do not represent realistic situations,

since the test generator has no idea how the real objects behave. Further research is needed

to determine the effectiveness of this solution. We also need to discover if the quality of the

generated test cases presents an actual problem and, if so, what solutions there are to this

problem.

65

Bibliography

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University

Press, New York, NY, USA, 2008.

[2] Andrea Arcuri and Xin Yao. On test data generation of object-oriented software. In

TAICPART-MUTATION ’07: Proceedings of the Testing: Academic and Industrial

Conference Practice and Research Techniques - MUTATION, pages 72–76, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[3] Boris Beizer. Software Testing Techniques. John Wiley & Sons, Inc., New York, NY,

USA, 1990.

[4] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. Rwset: Attacking path explo-

sion in constraint-based test generation. In Tools and Algorithms for the Construction

and Analysis of Systems, pages 351–366. Springer, 2008.

[5] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated

testing based on java predicates. In ISSTA ’02: Proceedings of the 2002 ACM SIG-

SOFT international symposium on Software testing and analysis, pages 123–133, New

York, NY, USA, 2002. ACM.

[6] Ugo Buy, Alessandro Orso, and Mauro Pezze. Automated testing of classes. In ISSTA

’00: Proceedings of the 2000 ACM SIGSOFT international symposium on Software

testing and analysis, pages 39–48, New York, NY, USA, 2000. ACM.

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 2008), San Diego, CA,

December 2008.

[8] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robustness tester

for java. Software Practice & Experience, 34(11):1025–1050, 2004.

[9] Xianghua Deng, Robby, and John Hatcliff. Kiasan/kunit: Automatic test case gen-

eration and analysis feedback for open object-oriented systems. In TAICPART-

MUTATION ’07: Proceedings of the Testing: Academic and Industrial Conference

67

BIBLIOGRAPHY

Practice and Research Techniques - MUTATION, pages 3–12, Washington, DC, USA,

2007. IEEE Computer Society.

[10] Michael Ellims, James Bridges, and Darrel C. Ince. The economics of unit testing.

Empirical Software Engineering, 11(1):5–31, 2006.

[11] Patrice Godefroid. Compositional dynamic test generation. In POPL ’07: Proceedings

of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 47–54, New York, NY, USA, 2007. ACM.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated ran-

dom testing. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 213–223, New York, NY,

USA, 2005. ACM.

[13] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Transactions on

Software Engineering, 2(3):208–215, 1976.

[14] Capers Jones. Applied software measurement (2nd ed.): assuring productivity and

quality. McGraw-Hill, Inc., Hightstown, NJ, USA, 1996.

[15] Ancel Keys, Flaminio Fidanza, Martti J. Karvonen, Noboru Kimura, and Henry L.

Taylor. Indices of relative weight and obesity. Journal of Chronic Diseases, 25(6-

7):329–343, 1972.

[16] J. King. A new approach to program testing. In Proceedings of the International

Conference on Reliable Software, pages 228–233. ACM Press, 1975.

[17] J. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.

[18] David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, Chris Chen, Young-Si Kim,

and Young-Kee Song. Developing an object-oriented software testing and mainte-

nance environment. Communications of the ACM, 38(10):75–87, 1995.

[19] Kiran Lakhotia, Mark Harman, and Phil McMinn. Handling dynamic data structures

in search based testing. In GECCO ’08: Proceedings of the 10th annual conference

on Genetic and evolutionary computation, pages 1759–1766, New York, NY, USA,

2008. ACM.

[20] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE ’07: Proceed-

ings of the 29th international conference on Software Engineering, pages 416–426,

Washington, DC, USA, 2007. IEEE Computer Society.

[21] V. Martena, A. Orso, and M. Pezze. Interclass testing of object oriented software.

Engineering of Complex Computer Systems, 2002. Proceedings. Eighth IEEE Inter-

national Conference on, pages 135–144, 2002.

68

[22] Phil McMinn. Search-based software test data generation: a survey. Software Testing,

Verification and Reliability, 14(2):105–156, 2004.

[23] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, 1992.

[24] Leonardo Moura, de and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer

Berlin / Heidelberg, 2008.

[25] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. Prioritizing test cases for re-

gression testing. IEEE Transactions on Software Engineering, 27(10):929–948, 2001.

[26] RTI. The economic impacts of inadequate infrastructure for software testing. Techni-

cal report, National Institute of Standards and Technology, May 2002.

[27] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for

c. In ESEC/FSE-13: Proceedings of the 10th European software engineering confer-

ence held jointly with 13th ACM SIGSOFT international symposium on Foundations

of software engineering, pages 263–272, New York, NY, USA, 2005. ACM.

[28] Michael Sipser. Introduction to the Theory of Computation, Second Edition. Course

Technology, February 2005.

[29] Frank Tip. A survey of program slicing techniques. Technical report, Amsterdam, The

Netherlands, The Netherlands, 1994.

[30] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation with

java pathfinder. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international

symposium on Software testing and analysis, pages 97–107, New York, NY, USA,

2004. ACM.

[31] Stefan Wappler and Joachim Wegener. Evolutionary unit testing of object-oriented

software using strongly-typed genetic programming. In GECCO ’06: Proceedings

of the 8th annual conference on Genetic and evolutionary computation, pages 1925–

1932, New York, NY, USA, 2006. ACM.

[32] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international con-

ference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981. IEEE

Press.

[33] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating

object-oriented unit tests using symbolic execution. In Tools and Algorithms for the

Construction and Analysis of Systems, pages 365–381. Springer, 2005.

[34] Tao Xie, Darko Marinov, and David Notkin. Rostra: A framework for detecting re-

dundant object-oriented unit tests. In ASE ’04: Proceedings of the 19th IEEE inter-

national conference on Automated software engineering, pages 196–205, Washington,

DC, USA, 2004. IEEE Computer Society.

69

BIBLIOGRAPHY

[35] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and

adequacy. ACM Computing Surveys, 29(4):366–427, 1997.

70

