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Abstract

The effective management of geo-energy systems heavily relies on robust modeling frameworks that
integrate diverse simulation capabilities, including flow and transport, phase equilibrium, geochemistry
and geomechanics. While a multiphysics simulation engine within a unified framework has its advantages,
integrating specialized modeling packages often enhances viability. Efficient and seamless communication
between these engines be- comes crucial for improving the performance and scalability of the integration.
Advanced parametrization tech- niques can facilitate this integration by efficiently approximating and
interpolating coupling data, ensuring both speed and accuracy. In this study, we compare the efficiency
of different interpolation techniques used for the parametrization of complex many-component fluid
systems in compositional simulation. We employ an Operator- Based Linearization (OBL) framework
that leverages the general formulation of corresponding conservation laws. OBL effectively learns the
operators required for assembly of the laws while interpolation delivers fast evalua- tion of operators
and their derivatives for all physical states in a simulation domain. Multilinear interpolation is a simple
and robust approach, yet it has poor scaling properties with respect to the dimension of the physical
state. To alleviate interpolation costs in multiple dimensions, we study the performance and accuracy of
other interpolation techniques, including linear interpolation with standard and Delaunay triangulation.
Overall, this approach provides great flexibility, saves development costs and simplifies the incorporation
of thermodynamics and geochemistry engines for precise modeling of phase equilibrium, reactive transport,
dissolution-precipitation and kinetics of chemical reactions. This research extends the scalability of the OBL
framework and addresses the challenges of high dimensionality in compositional modeling. Consequently,
this approach holds significant potential for integrating various complex multiphysics problems, enabling
the creation of more comprehensive digital twins for geo-energy systems management.

Introduction

Recent projections indicate a substantial rise in electricity demand, estimated at approximately 20% over the
next decade (McGeady, 2024). A sustainable approach to meeting this growing demand is barely possible
without the efficient development and management of geo-energy resources, including geothermal energy,
CO, and hydrogen storage sites. Effective management of these sites heavily relies on robust modeling
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frameworks that integrate diverse simulation capabilities, including flow and transport, phase equilibrium,
geochemistry and geomechanics. While a multiphysics simulation engine within a unified framework has
its advantages, integrating specialized modeling packages often enhances viability. Efficient and seamless
communication between these engines, therefore, becomes crucial for improving the performance and
scalability of the integration.

The choice of primary unknowns is a critical factor that affects the efficiency and flexibility of the
reservoir simulation framework. Natural formulation considers pressures, saturations and phase mole
fractions as primary unknowns (Coats, 1980). This formulation incorporates not only conservation
equations but also equilibrium rela- tions and normalization constraints. While the Jacobian assembly is
relatively straightforward, phase appearance and disappearance necessitate variable switching, complicating
simulations, especially under parallel computing architectures. Alternatively, molar formulation treats
component compositions as primary unknowns (Acs et al., 1985; Collins et al., 1992). It maintains the same
number of unknowns across all states, avoiding the necessity of Jacobian reduction and variable substitution.
Rigorous comparison of the two formulations is complicated, the related discussion is presented in Voskov
and Tchelepi (2012); Zaydullin et al. (2013); Young (2022).

The extension of multiphase compositional simulation to reactive flow and fluid-solid chemical
interactions further influences the choice of primary unknowns. Element-based approaches, which
formulate balance equa- tions with respect to chemical elements rather than components, can significantly
reduce the number of primary unknowns in systems with numerous chemical reactions (Fan et al., 2012).
These approaches eliminate equi- librium reaction rate terms while addressing kinetic and equilibrium
reactions (Kala and Voskov, 2020). The comparison of natural and molar formulations in reactive flow
modeling has been performed in Farshidi et al. (2013). For systems involving dissolution-precipitation
reactions, additional unknowns, such as volume fractions of rock matrix constituents, are introduced. This
kind of reaction further amplifies the nonlinearity of the overall system introducing porosity-permeability
alterations.

In reservoir simulation, the Operator-based Linearization (OBL) simplifies and accelerates Jacobian
assem- bly of coupled reactive flow, transport and phase equilibrium modeling (Voskov, 2017). Instead
of focusing on subproblems, OBL considers the operator-form of balance equations with localized state-
dependent operators, i.e. functions of single-cell unknowns. State-dependent operators are sampled at a
limited number of supporting points in the state space, while fast interpolation strategies provide evaluation
between supporting points. Consequently, the Jacobian and residual assembly benefits from the evaluation
of operators at supporting points shared among all cells, iterations, timesteps and even model runs. OBL
has been successfully extended to support buoyancy and capillarity effects (Lyu et al., 2021) and applied
in modeling of geothermal sites (Khait and Voskov, 2018), CO, storage (Lyu and Voskov, 2023), in the
presence of chemical reactions (Kala and Voskov, 2020; de Hoop et al., 2024; Ahusborde et al., 2024), with
further optimization on GPU platforms (Khait and Voskov, 2021).

However, the performance and accuracy of OBL depend heavily on its interpolation strategies. While
OBL employs linear and multilinear interpolations for fast and convexity-preserving interpolation, these
methods re- quire numerous supporting points to resolve nonlinear operators. Insufficient resolution
can impair nonlinear convergence, resulting in successive timestep cuts. Multilinear interpolation may
provide higher accuracy but suf- fers from exponential complexity as state space dimensionality increases.
Conversely, linear interpolation scales linearly with dimensionality which makes it more suitable for many-
component mixtures.

In this paper, we evaluate different interpolation strategies in terms of robustness, accuracy, performance
and scalability. As test models, we consider compositional multicomponent fluid models with thermal and
reactive effects relevant to CO2 sequestration applications. While multilinear interpolation demonstrates
its robustness in lower-dimensional spaces, linear interpolation gains superiority in higher dimensions due
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to better performance scaling. We investigate the robustness and efficiency of Delaunay and standard
triangulation for compositional systems with a large number of components.

Governing Equations

The modeling of mass and energy transport in the subsurface relies on the corresponding conservation laws.
The balance of property A can be represented in the following integral form

z z z
0
ZHav+  q nds-  rdv-=o (1)
v ov v

where a4, q, and r, are the accumulation, flux and source terms of property 4, respectively, n is an outward
unit normal vector to 0V. The first term in Eq. (1) accounts for the change of property 4 in the bulk of
volume ¥V caused by the change of thermodynamic state, i.e. change in pressure, fraction or temperature.
The second term in Eq. (1) considers fluxes of property 4 over the boundary 0V of volume V. The last term
in Eq. (1) represents sources (or sinks) of property 4 situated inside volume V.

For the mass balance of component 7 in the multiphase multicomponent fluid flow in porous media, we
have

l’lp np np l'lp
=0/ XS = = ( P Wy tj. +d, =/ X; 2)
i el 4; q;, XigPgWa Tl Tdig) T ioP oo
[ ) o )
Kk .
Wo= — ,u(:a (Vpa - paM(giZ), o T T (PSaDiaV(ania)a diy=— EionGJV(ania)a (3)

where the subscripts i =1, ..., n.and a = 1, ..., n, denote fluid components and fluid phases, respectively, ¢
is porosity, X;, 1s molar fraction of component 7 in phase a, p, is phase molar density, s, is volume fraction
(saturation) of phase a, q;, is total velocity of mass of component i in phase a, r, is molar phase rate. Phase
Darcy w,, molecular diffusion j,, and dispersion d,, velocities are defined in Eq. (3), where K is permeability
tensor, k,, 1s relative phase permeability, u, is phase viscosity, p, is phase pressure, M, is phase molar
weight, g is gravitational acceleration, z is depth, D;, is scalar molecular diffusion coefficient, £, is scalar
dispersivity coefficient. Here we limit our consideration of both molecular diffusion and dispersion fluxes
to corresponding Fickian terms.
For the energy balance of multiphase multicomponent fluid flow in porous media, we have

np
iae=(1-o)p,Us+ @Za:sapa(Ua ~g2) L (4)
np ne np
q,=(1— @+ Za (g~ gzfp™Wa+ Z, (j,.a + dia) Ct o5 Ke T Za Pofola (5)
Ko= —AVT, Ky= —AVT, (6)

where U, and U are specific (molar) internal energy of fluid phases and rock matrix, 4, is phase enthalpy,
K, and K are heat conduction velocities of fluid phases and rock matrix, A, and A, are heat conduction
coefficients of fluid phases and rock matrix, T is temperature. Note that while Eq. (6) defines Fourier law of
heat conduction, the advection heat fluxes in Eq. (5) account for not only Darcy but also Fickian mass fluxes
(R. Byron Bird, 2002). These advection heat fluxes associated with molecular diffusion and dispersion
fluxes can be important for model initialization and at the timescale of CO, storage applications.

Along with all properties, initial and boundary conditions have to be defined to close the system of
Egs. (2)—(6), the molar fractions of n. components have to be distributed between n, phases. We employ
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multiphase flash (Michelsen, 1982) to evaluate instantaneous thermodynamic equilibrium between fluid
phases. It can be formulated as a set of equations (Wapperom et al., 2023)

np N

TR ) "
= =k = onf.
X0, Xjo, a}zarxnllél G, G=37 4 Xg i XjgInf s
np
z?=ZXaX,-a (8)
)
p ne
Zxa:wa:L 0<xq<l 0<x,<l a=l..ny i=l..n, )
o 7
where G is the specific (molar) Gibbs energy of fluid mixture, R is gas constant, x, is molar fraction of

0
i
component /) which must be preserved here. Eq. (7) defines the nonlinear optimization problem subjected
to mass conservation Eq. (8) and normalization Eq. (9) constraints. Frequently, this problem is reformulated
in terms of necessary extremum conditions postulating equal component fugacities f;, = f; among all o,

=1 ... n, phases.

phase a, f;, is fugacity of component i in phase a, z? is initial fluid composition (i.e. overall molar fraction of

OBL approach

Efficient solution of the coupled system of Egs. (1)+(9) is challenging. Although the spatiotemporal
discretiza- tion of balance equations is well-established (K. Aziz, 1979), integrating these equations with
the phase equilib- rium problem often requires significant development and computational costs. In addition
to the complexity of differentiating cumbersome operator expressions, the primary difficulty lies in finding
thermodynamic equilib- rium defined in Egs. (7)—(9), which can be challenging even for two-phase fluid.
Many simulation frameworks employ automatic differentiation technique to reduce development cost
(Younis and Aziz, 2007; Zhou et al., 2011; Moyner, 2024), which is prone to compromising computational
efficiency. Operator-based linearization (OBL) is designed to overcome these challenges by simplifying
the treatment of state-dependent operators, providing efficient and flexible means for Jacobian and residual
assembly (Voskov, 2017; Lyu et al., 2021).

The efficiency of OBL stems from the localization of state-dependent operators, i.e. functions of single-
cell unknowns @ = {p, z, T}, called a state. Once discretized in space and time, the balance equations
can be rep- resented through state-dependent operators. OBL unifies the evaluation of these operators and
their derivatives across all cells in a computational grid. Instead of calculating them in many states, OBL
introduces a multidimensional grid covering state space, sampling operators at a predefined set of states
and interpolating values between these states. Moreover, it has been found that, for many problems, the
region of interest is localized in state space, forming a narrow path between injector and producer states.
Consequently, only a limited number of exact opera- tor evaluations are required, while the use of an efficient
interpolation strategy ensures a remarkable reduction in computational cost. This approach enables the
Jacobian and residual assembly to leverage cached operator values shared across all cells in a computational
grid, nonlinear and time iterations, and even multiple simulation runs.

Space-time discretization

We discretize the coupled system of Egs. (1)—(6) using the Finite Volume Method (FVM) that employs the
first-order backward Euler time integration, first-order single-point upstream weighting (SPU) and the two-
point flux approximation (TPFA). Applying FVM to the mass balance of component i in Eq. (1), we have
the following discrete analogue written in the operator residual form
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R, = Vo (afer!) - afer)) +Atzzqn+1 n,— AtV "“) 0, i=1...n, (10)

where R; is the residual of mass balance equation of fluid component i, V'is cell volume, ¢, is initial porosity,
o = {p, z;, T} is vector of unknowns (state), superscripts » and n + 1 denote the property taken at current
and next time steps respectively, Af is time step, the sum over / = {1, 2} € L represents the summation over
cell 1 connections with cell 2, and the following mass operator definitions are used

"p

%“D)—(l*Cs(P—Pref))Za Nasabe @) m= B (ol v b (1)
B () = Xiapykral y,.a(m):(Hcs(p—pref))saDm, 1) = Py (12)
ot = 1Py~ Pucar )~ (0, = Pucar 2] ~ (o) + o)l =) 2 (13)
ot (00,70 0 I dBulo) - 5uf0)]) 2 (14)

dioy = (Eia1 + EiaolWa1 + W) 2 f3i(e0) — 8fe,)] /2 (15)

where c; is rock compressibility, p is pressure of reference fluid phase which depends on specific form of
Pucap(®), Prer 1 reference pressure defining initial porosity @y = @(py.r), subscript /o denotes the property
evaluated using SPU approximation:

(X)l, W(X,l > 0,

o= (16)

0)2’, W(x,l < 0,

I' is Darcy flux transmissibility evaluated for heterogeneous permeability field, I'; is geometrical
part of trans- missibility, i.e. evaluated for a homogeneous field, p,.., 1s phase capillary pressure. The
approximations in Egs. (13)—(15) are the combination of arithmetic averaging and TPFA applied for Darcy
w,, molecular diffusion j;, and dispersion d;, fluxes

wy=—Kn- (Vpa - paMasz), jm = —¢s,Dign-V8;, djy=— Emea]n Vo, (17)

where cell-centered Darcy phase velocities w, ; and w,, are reconstructed from corresponding phase fluxes
as

1 1
B B (m;t;r Zj(—) Slnl
=(ATA) AT A= 1, el (18)
Bolop it S

where S; is area of the interface corresponding to connection /. Note that well connections do not while
boundary conditions do participate in velocity reconstruction in Eq. (18).

Applying FVM to the energy balance equation, the discrete version of Eq. (1) written in operator residual
form becomes

R.= V(l - (PO)(aes((’)nH) - (les((l)”)) + V(Po(ae ]((,)nﬂ) - aef(mn)) + Atz iqgll Tt Z q:;:} ’ nlL — At Vre((’)nﬂ) =0, (19)
e o

where the energy operators are defined as

np

Oes(M) = (1 tedp—p, f))Us, o ()= (1 +te\P D, f))z sapa(Ua - g2) (20)
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fel@=1refp b bt =(14elp b, b (1)
arlom=ry qritom=(hofor)- gzl)i(ql{zll I (22)
k= (1= og Puro)+ (1= 0P f@))rd T-Tl/2 (23)
Kt = (0 o, o @10y a2t {00 T T2 (24)

where Egs. (23) and (24) are combinations of arithmetic averaging and TPFA applied to respective heat
conduc- tion fluxes

K= —(1=@AV T, x4=—0sAVT. (25)

It is worth to mention that TPFA in Egs. (13)—(15), (23), (24) can be conveniently replaced with a suitable
multi- point flux approximations.

Discretization in state space
OBL approach entails the evaluation of state-dependent operators

{00010 B._Pasher Y. 8P cap e ee @) = F(@), (26)
at predefined grid nodes o covering the state space. For regular grid we have

a=pxZ1XLoZpcT, (27)

fo={p’1...,pr}, 21:{21,1’ ""ZLNz]}’ ...,?{1={ch], ...,znannc}, T={T1, . TNT}, (28)

where P, z;andT denote state-space axes coordinates, f is interpolant function used to reconstruct operator
values between supporting points. Regular grid guarantees fast evaluation of derivatives. The distribution of
points along axes in Eq. (28) can be dictated by specific model properties, e.g. for better resolution of phase
envelope. By default, they are distributed uniformly for simplicity. Once operators have been evaluated at
a certain point, they are stored in a multidimensional table and can be used for the evaluation of operators
and their derivatives in adjacent hypercubes. The state space dimension is equal to n, = n. for isothermal
simulation and 7, = n, + 1 for thermal one.

We consider two strategies of operator sampling at supporting points ®: static and adaptive. In static
sampling, operators are pre-evaluated at all supporting points within the state space before the simulation
begins. During the simulation, no new points are evaluated; instead, interpolation is performed over
the precomputed operator values. This approach eliminates the computational overhead associated with
evaluating new points during sim- ulation, which can be substantial, particularly when coupling with
third-party thermodynamics or geochemistry solvers. Static sampling usually brings benefits in simulation
scenarios involving multiple model runs with iden- tical fluid properties defined in a relatively low-
dimensional state space. However, in higher-dimensional state spaces, precomputing operator values at all
grid vertices becomes memory-exhaustive and often redundant.

In contrast, adaptive sampling evaluates operators dynamically during simulation. For any requested
state, the method identifies the set of supporting points required for interpolation. If any of these points have
not yet been evaluated, the exact operator values are computed at those points and stored. As the simulation
progresses, the ac- cumulation of operator values reduces the need for additional evaluations, with the
majority of exact computations occurring at the beginning of the simulation. Adaptive sampling can achieve
significant efficiency gains, particu- larly when requested states are localized within the state space. This
makes it well-suited for fluids composed of many components, where parametrization is computationally
demanding.
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The evaluation of operator values and their derivatives relies on interpolation between exact values at
sup- porting points. Various interpolation strategies can be applied, whereas, in this study, we focus on
multilinear and linear interpolation strategies. Their key advantages, such as high performance, robustness
and convexity- preserving, make them particularly suitable for compositional modeling. The piecewise
multilinear interpolation is performed over a hypercube by subsequently applying linear interpolation
along each axis. The recursive nature of the calculations required for constructing the interpolant results in
exponential complexity with respect to state space dimension, i.e. O(2"d )

In piecewise linear interpolation, a hypercube is subdivided into simplices, requiring triangulation. We
consider standard and Delaunay triangulations. The standard triangulation partitions a hypercube into a set of
sim- plices sharing the same vertex. This triangulation simplifies point location and evaluation of barycentric
coordi- nates within simplices (Weiser and Zarantonello, 1988). The Delaunay triangulation maximizes
minimum angles of the simplices that can reduce interpolation errors. However, the identification of
simplex where the input point resides becomes time-consuming. Furthermore, the evaluation of barycentric
coordinates for an input point in simplices constructed with Delaunay triangulation requires matrix
inversion, which can be pre-calculated for all simplices. Once barycentric coordinates of an input point are
known, the evaluation of operators and their derivatives has linear complexity with respect to the state space
dimension, i.e. O(ny).

T\:Bia’ (p' Z)

Multilinear Linear
interpolation interpolation

Figure 1—Interpolation of operator 8, in pz state space covered by
rectilinear grid. Multilinear and linear interpola- tions are considered.

Results

Comparison of interpolation strategies

We analyze and compare various interpolation strategies across three configurations: 1D homogeneous, 2D
homogeneous, and 3D heterogeneous reservoirs. For the latter one, we use the dataset from the 10th SPE
Com- parative Solution Project (SPE10). The reservoirs in all three setups are fully completed with a pair
of injection and production vertical wells. The setups are presented in Fig. 2.
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(a) 1D resevoir

(b) 2D reservoir

— '?‘?2:6"7

(c) SPE10

Figure 2—Simulation domain in three configurations: (a) 1D reservoir, (b) 2D reservoir, and (c) SPE10.

Our study focuses on the modeling of the isothermal injection of gaseous CO, into the oil-bearing
reservoir. The equilibrium of the resulting two-phase multicomponent fluid flow is governed by constant
ratios between gas and liquid compositions (K-values) which are listed in Tab. 1. The behavior of
interpolation strategies is examined including with respect to varying numbers of fluid components. The
particular components and their initial composition corresponding to a certain number of components, n,,
are provided in Tab. 2. For 1D and 2D reservoirs, we initialize the model with a uniform pressure p, = 100
bar, maintaining a fixed bottom hole pressure at the production well and a constant fluid rate at the injection
well until the final time 7= 2 years. In the SPE10 model, the reservoir is initialized with a gas-oil contact
(GOC) and an initial pressure defined at the middle of the reservoir. Below and above the GOC, uniform
composition equal to liquid and vapour mole fractions are specified which are calculated from the initial
compositions in Tab. 2. In this case, we use the similar well controls running model for 7'= 10 years. All
simulations use the adaptive sampling strategy for evaluating supporting points in the state space.

Table 1—Fixed K-values defining equilibrium of a two-phase fluid.

CO, C, C, C; C, nC, Cs nC; Cs C, Cs C,

1.5 2.5 2.0 1.0 0.7 0.5 0.4 0.3 0.2 0.15 0.12 0.10

C10 Cl11 Cl12 C13 Cl4 Cl15 Cl6 C17 Cl18 C19 C20

0.05 0.04 0.035 0.03 0.025 0.02 0.01 0.01 0.01 0.01 0.01

Table 2—Initial component compositions for different number of components n..

n. CO, ( C, C; C, nC, GCs nGC; Cq C; Cs (0 Cw Cu Ch, Cu Ci Ci Cu Cy
4 .005 5 3 195
6 .005 .35 25 195 125 .075
8 .005 .35 17 15 125 1 .075 .025
10 .005 3 17 15 .1 1 .075 .05 .025 .025
12 .005 3 15 1 075 .075 .065 .065 .06 .05 .035 .02
20 .005 .24 12 .09 .07 .07 .06 .06 .05 .045 .04 035 .03 .025 .02 .015 .01 .007 .005 .003

Figs. 3a and 3b demonstrate composition and gas saturation profiles obtained in 1D and 2D configurations
at t =1 yr and t = 2 yr, correspondingly. The diagonal cross-section is presented for the 2D reservoir.
The results obtained with linear interpolation on standard (LinS) and Delaunay (LinD) triangulations, and
multilinear interpolation (MLin) are shown. The results obtained with the coarse resolution of the state

620z Iudy Gz uo Jesn yied NL 3eayiolqig Aq | Apd sw-616£22-2ds/0r€9¥9/¥00M0 L 0S1.20A/0SHSGZ/0SHSZ/4Ppd-sbulpesdoid/osiads/Bio-onedauo/:dny woy pepeojumoq



SPE-223919-MS

space, N = 64 points per each of axes, are compared against the finely resolved one with N = 1024 points
per axes, treated as a reference solution. The results coincide with each other almost in the whole domain,
except for narrow regions around propagating fronts. Comparison of solutions around fronts demonstrates
superior accuracy of multilinear interpolation over linear interpolation, regardless of the triangulation
method. Moreover, the profiles obtained with Delaunay triangulation exhibit low-frequency oscillations of

small amplitude spreading across the whole domain.

1.0 Interpolations
ﬁ —— MLin, N=1024

NN e MLin, N=64
=== LinS, N=64

LinD, N=64

0.8

— €02
—a
—
— €10
C16
— C20
SatVv

Composition / Vapour Saturation

0.2

Composition / Vapour Saturation

1.0

0.8

0.6

0.4

0.2

—a' Interpolations
—— MLin, N=1024
————— MLin, N=64
—=- LinS, N=64
LinD, N=64

— €02
—a
—
— [C10
C16
-— 20
SatVv

0.0

0.0

(a) 1D reservoir, 300 cells

Figure 3—Composition and gas saturation profiles obtained at = 1 yr for 1D reservoir (a) and at # = 2 yr for 2D reservoir

1000

200 400 600 800 1000 1200

(b) 2D reservoir, 300 x 300 cells, diagonal

1400

(b) using different interpolation strategies, and number of supporting points in the state space of n. = 6 dimension.

Tab. 3 presents performance metrics obtained for linear interpolation on standard (LinS) and Delaunay
(LinD) triangulations, and multilinear interpolation (MLin), for N = 64, 256, 1024 points uniformly
distributed along each axis of the state space. The interpolation and point generation metrics are presented
in percentages of total simulation time. We use Newton iterations (NI) to resolve nonlinearities and CPR
preconditioner coupled with GMRES iterations (LI) for efficient solutions of linear systems. We can observe

the following takeaways from this table:

e Multilinear interpolation delivers significantly better convergence than linear interpolation.
Moreover, the coarse linear interpolation can introduce convergence issues, especially with

Delaunay triangulation, that waste simulation time.

¢ In highly resolved state space OBL performance is primarily limited by the point generation for
both linear and multilinear interpolations in the first simulation run. Note that in a series of runs
sharing the same operators, points are cached and this cost will be significantly reduced. The
high relative interpolation time for Delaunay triangulation for 2D setup can be explained by the

relatively high cost of simplex identification for given points.

e Delaunay triangulation constructed for linear interpolation not only does not show any benefits
over standard triangulation but can significantly worsen nonlinear convergence. The reason for this
behavior is a matter of ongoing study.
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Table 3—Performance metrics of 1D (left) and 2D (right) setup runs with n. = 6. Reservoirs are covered by
300 and 300 x 300 cells respectively, keeping the same cell sizes. LinS, LinD denote linear interpolation with
Standard and Delaunay triangulations, while MLin stands for multilinear interpolation. N is a number of points
uniformly distributed over each axes of the state space. The interpolation and point generation times are given
in percent of the total simulation time. TS, Nl and LI are the total numbers of time steps, nonlinear and linear
iterations respectively. The timesteps and iterations wasted due to lack of convergence are listed in brackets.

1D setup, 300 cells, n.=6 2D setup, 300 x 300 cells, n. = 6

Meth. N Interp., Point TS NI LI Meth. N Interp., Point TS NI LI

% gen., % % gen., %
LinS 64 5.7 53.7 203 398 1113 LinS 64 10.2 1.3 207(6)  434(58) 1912(262)
LinS 256 33 75.8 203 255 746 LinS 256 11.7 9.7 207(7)  340(70) 1660(345)
LinS 1024 2.7 85.1 203 217 643 LinS 1024 11.4 39.1 206(4)  360(40) 1771(190)
LinD 64 333 323 203 401 1132 LinD 64 18.0 0.04 613(420) 1201(4193)  4221(15260)
LinD 256 13.6 70.3 203 233 687 LinD 256 345 1.6 372(253) 903(2530) 4054(11920)
LinD 1024 8.2 81.1 203 214 634 LinD 1024 49.0 33.7 211(13) 360(130) 1779(601)
MLin 64 3.4 68.8 203 292 838 MLin 64 8.8 7.6 203 319 1521
MLin 256 2.5 922 203 220 653 MLin 256 5.7 53.5 203 259 1376
MLin 1024 2.0 95.7 203 213 632 MLin 1024 5.8 80.2 204(1)  250(10) 1348(54)

Tab. 4 presents performance metrics obtained for different numbers of fluid components: n. = 4, 6, 8,
while the state space remains covered by the same uniform grid with N = 128 points per each axis. The
results show that

e The multilinear interpolation manages to keep the iteration count low, even with increasing

dimensionality. In contrast, the linear interpolation introduces a noticeable increase in iteration
count in higher dimensions.

The multilinear interpolation does not exhibit convergence issues, whereas the linear interpolation
produces time step cuts in modeling of 2D setup.

The multilinear interpolation demonstrates increasing point generation and interpolation costs with
the state space dimensionality in the modeling of 2D setup. It is explained by the exponentially
increasing number of supporting points (2'd ) and by the complexity associated with the
interpolation.
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Table 4—Performance metrics of 1D (left) and 2D (right) setup runs with N = 128. Reservoirs are covered by 300 and
300 x 300 meshes respectively, keeping the same cell sizes. LinS, LinD denote linear interpolation with Standard
and Delaunay triangulations, while MLin stands for multilinear interpolation. N is a number of supporting points
uniformly distributed over each axes of the state space. The interpolation and point generation times are given
in percent of the total simulation time. TS, Nl and LI are the total numbers of time steps, nonlinear and linear
iterations respectively. The timesteps and iterations wasted due to lack of convergence are listed in brackets.
1D setup, 300 cells, V=128 2D setup, 300 x 300 cells, V=128
Meth. n, Interp., Point TS NI LI Meth. n, Interp., Point TS NI LI
% gen., % % gen., %
LinS 4 4.4 62.7 203 292 828 LinS 4 10.4 1.5 205(4)  327(40) 1775(206)
LinS 6 5.9 67.2 203 369 1007 LinS 6 11.7 4.4 204(1)  341(10) 1579(50)
LinS 8 7.4 64.3 203 386 1052 LinS 8 12.0 4.6 208(9)  394(90) 1761(414)
LinD 4 32.0 25.4 203 234 667 LinD 4 65.0 1.0 206(6)  328(57) 1786(291)
LinD 6 232 56.2 203 298 858 LinD 6 51.9 1.9 228(44) 596(440) 2703(1987)
LinD 8 19.6 44.5 204(1)  378(10) 1050(30) LinD 8 47.0 2.6 386(315) 1096(3150)  4898(15231)
MLin 4 2.6 53.5 203 220 626 MLin 4 3.2 2.9 203 285 1579
MLin 6 33 88.4 203 240 709 MLin 6 7.7 13.3 203 281 1435
MLin 8 35 92.3 203 238 697 MLin 8 15.4 30.3 203 277 1425

While the simulation results reported above are limited to rather simplistic homogeneous reservoirs, Tab.
5 presents performance metrics obtained in the modeling of the heterogeneous SPE10 setup. It incorporates
simulations performed for various numbers of components with linear (LinS) and multilinear (MLin)
interpolation strategies, whereas linear interpolation utilizes standard triangulation. The following findings
can be obtained from the table

of the state space, which highlights the exponential complexity of the interpolation.

¢ Point generation is negligible in a simulation of large-size setups.

o The interpolation costs of multilinear interpolation dramatically increases with the dimensionality

Table 5—Performance metrics of SPE10 setup runs. LinS and MLin stand for the linear interpolation on standard
triangulation and the multilinear interpolation respectively. N is a number of supporting points uniformly distributed
over each axes of the state space of dimension n,. The interpolation and point generation times are given in
percent of the total simulation time. TS, NI and LI are the total numbers of time steps, nonlinear and linear
iterations respectively. The timesteps and iterations wasted due to lack of convergence are listed in brackets.

SPE10 setup, 1122k cells

Meth. n, N Interp., % Point gen., % TS NI LI

LinS 4 128 6.4 0.1 3817 3875 54771
MLin 4 128 1.0 0.07 3817 3845 63305
MLin 6 128 3.4 0.3 3817 3822 43159
LinS 8 128 6.7 0.2 3817 3834 39422
MLin 8 128 11.4 1.5 3817 3820 23458
MLin 10 128 60.6 2.7 3817 3820 9128

LinS 12 128 7.0 0.2 3817(1) 3850(10) 69153(220)

Interpolation in highly-dimensional space
The scalability of interpolation strategies is a critical factor for efficient modeling of many-component
fluids. Moreover, improved scalability enables the OBL approach to extend its applicability to a wider
range of problems. Previous results (Tab. 5) indicate that multilinear interpolation can demand substantial
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simulation resources, even with n. = 10 in large heterogeneous models. In contrast, linear interpolation
demonstrates significantly better scalability which makes it a more suitable choice for modeling many-
component fluids.

In this section, we present the results of modeling such fluids using linear interpolation with standard
trian- gulation (LinS). To explore the limits of the state space dimensionality, we extended the test setup
to n. = 20 and performed simulations. The chosen reservoir configuration is a single-layer from the SPE10
setup, produced with an injector-producer well doublet and shown in Fig. 2¢. Fig. 4 demonstrates pressure
and compositions of 20 components at # = 91.7 yr after production. These results show that the injected
vapor CO, displaces liquid hydrocarbon fractions.

CO2 & c2 (OX]
9.9e-09 9.9e-01 | 1.8e-03 27e-01 @ 1.1e-03 1.3e-01 §93e-04 9.1e-02

C7 C8 c9 C10
4.1e-04 4.5e-02 g 3.6e-04 4.0e-02 @§3.2e-04 3.5e-02 @29e-04 3.0e-02
= =

Cll C12 Cl4 C16 C18 C19 C20
27e-04 25e-02 §27e-04 20e02 f26e04 15e-0226e-04 10e-02Q22e04 7.3e-03Q27e04 54e-03 §99e09 2.0e02
== == = _= E_= = E_3 B

Figure 4—Pressure and compositions for simulation of 20-component fluid in single (top) layer of SPE10 setup.

Tab. 6 presents the performance metrics of simulations conducted with three different resolutions of
the state space: N = 32, 64, 96. According to the table, the number of linear iterations increases with the
resolution of the state space. This trend can be attributed to the better-resolved nonlinear operators, which
contrast with smoother approximations obtained at lower resolutions. Consequently, these better-resolved
operators require more GMRES iterations to sufficiently suppress residuals.
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Table 6—Performance metrics of the modeling of the many-component mixture in a single layer of SPE10 setup.
LinS denotes the linear interpolation on standard triangulation, N is a number of supporting points uniformly
distributed over each axe of the state space of dimension n.. The interpolation and point generation times are

given in percent of the total simulation time. TS, Nl and LI are the total numbers of time steps, nonlinear and linear
iterations respectively. The timesteps and iterations wasted due to lack of convergence are listed in brackets.

single layer of SPE10 setup, 13.2k cells

Meth. n, N Interp., % Point gen., % TS NI LI

LinS 20 32 2.3 0.05 3818(1) 3818(3) 10160(7)
LinS 20 64 1.9 0.09 3817 3817 15340
LinS 20 96 1.6 0.12 3817 3817 19929

Dissolution-precipitation while CO, injection in carbonates

In this section, we demonstrate the results of modeling of dissolution-precipitation of carbonate rock while
isothermal CO, injection. Fluid flow and reactive compositional transport solver, open-darts (Voskov et
al., 2024), are coupled here with a geochemistry solver, PHREEQC (Parkhurst and Appelo, 2013), which
resolves both phase equilibrium and reaction kinetics. This combination allows the full complexity of
chemical alterations accompanying CO, injection to be modeled with relatively low development costs.
The performance results demonstrated below underscore the efficiency and flexibility of the OBL approach
while coupling multiple solvers.

The modeling of flow and transport in the presence of dissolution-precipitation reactions requires
modification of the formulation of balance laws presented above. First, the system of balance Egs. (1)—(3)
must be extended to account for the balance of immobile minerals that constitute rock matrix. We use the
volume fraction of these minerals as corresponding primary unknowns. Second, we employ element-based
formulation while working with multicomponent reactive flow (Kala and Voskov, 2020). It implies the
transformation of component-based bal- ance laws to element-based analogs and changing corresponding
primary unknowns from component to element compositions.

At the initial conditions, we consider the following components and the transformation defined by a
respective stoichiometric matrix

!HzO H+ OH- COz HCOs- COs2- CaCOs(aq) Ca?t CaOH* CaHCOs* CaCOs(s)

CaCOs3(s)| O 0 0 0 0 0 0 0 0 0 1
Ca 0 0 0 0 0 1 1 1 1 1 0
C 0 0 0 1 1 1 1 0 0 1 0 (29)
(0] 1 0 1 2 3 3 3 0 1 3 0
H 2 1 1 0 1 0 0 0 1 1 0

which is filled with stoichiometric coefficients of the elements constituting each of the components.
CaCOs(s) denotes the immobile calcite composing a solid porous matrix, whose volume fraction is treated
as a primary un- known. During the simulation, geochemistry solver consider wider range of components
appearing and disappear- ing out of given elements. The complete list of species and elements is presented
in Fig. 5. The distribution among vapor, aqueous and solid phases are also shown. The species mentioned
in Fig. 5a are taken from PHREEQC output and point out that complexation and speciation along with
oxidation-reduction, acid-based, methanogene- sis reactions take place. Fig. 5b presents the reduced element
system, which alleviates the complexity of solving numerous conservation equations in the flow and
transport modeling part.
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vapour

Aragonite .
solid Calcite solid CaCO3(s)

(a) Species participated in geochemistry modeling.  (b) Elements participated in flow and transport modeling.

Figure 5—The species and elements participating in modeling.

We consider two core-scale domain configurations shown in Fig. 6. The first one represents a 1D
homoge- neous domain, while the second one is a 2D heterogeneous domain. Both domains are initialized
with uniform initial pressure and component compositions which are transferred to element compositions.
Besides, both con- figurations are produced with a couple of injection and production wells mimicking the
fluid inlets and outlets located at the opposite sides of the domains. The constant pressure p, is maintained
at the production wells, while a fixed rate of CO, water solution is prescribed at the injection well. Both
the porosity-permeability relationship and relative phase permeabilities are defined as power laws. The
properties used in the simulation are listed in Tab. 7

(a) 1D setup (b) 2D setup

Figure 6—Simulation domain in two configurations: (a) 1D reservoir, (b) 2D reservoir.
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Table 7—The properties used in the modeling of calcite dissolution-precipitation.

Property Value Unit
Initial pressure, p, 100 bar
Initial mean porosity, @, 0.3 -
Rock density, ps pso( 1 + c(p — o) kgm
Rock initial density, py 2710 kgm
Rock compressibility, ¢, 10 bar!
Aquesous phase Viscosity, /iy CoolProp/IAPWS cP
Vapour phase viscosity, CoolProp/Fenghour et al. (1998) cP
Porosity-permeability relationship, & 1.25e+4x¢* mD
Relative phase permeabilities, &, ) -

o

Reaction kinetics

Acidic reaction order w.r.t. H', n 1 -

Reactive surface area, Q 0.925 m? mol!
Temperature, T 323.15 K
Reference temperature, T,ep 298.15 K
Reference acidic reaction constant, kgz)f 0301187234 molim?/see
Reference neutral reaction constant, kgré)f 1548826 mol/msec
Acidic activation energy, E@ 144 kJmol!
Neutral activation energy, £ 23.5 kJmol!
Maximum saturation ratio, SR .x 100 -

Empiric powers, p, g 1,1 -

Gas constant, R 8.314472 Jmol!' K!

The kinetics of chemical reactions is governed by the Arrhenius equation accounting for both acidic (a)
and neutral (n) reaction pathways. Thus, the total reaction rate r is represented by the sum of acidic # and
neutral ® contributions, i.e.

r=Ha)+ ) (30)
® i C g (| -t
re=an Q0(1-Q) rwexp ~—— T —Trd (-SRI, G1)
ref R
i (
) g (. -
=01 ¢ k»exp T 11 1 SrReq (32)
- )) ref _T  ref ( - ) /

where ay. is activity of H*, Q is a constant reactive surface area, p, is rock matrix molar density, T,.; and
k¢ are reference temperature and reaction constant evaluated at reference temperature respectively, E is
activation energy, R is gas constant, and SR denotes the upper-bounded saturation ratio SR = min(SR, SR ,x)-
While saturation ratio represents the tendency of a mineral to dissolve (SR < 1) or precipitate (SR > 1), the
multiplier (1 —SRy), (Lassin et al., 2018), introduced by the Transition Rate Theory (Aagaard and Helgeson,
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1982; Lasaga, 1981), measures the proximity of the heterogeneous reaction system to equilibrium. The
parameters defining reaction kinetics are also listed in Tab. 7.

Fig. 7 shows pressure, element compositions and porosity profiles evaluated for the 1D homogeneous
domain at # = 0.1 d and ¢# = 1 d. Propagation of carbon dioxide deeper into the domain dissolves the
calcite matrix enhances permeability and decreases the pressure gradient within the dissolved region. Fig. 8
demonstrates simulation results obtained for 2D heterogeneous domain at =9 d and r =42 d. Heterogeneity
distorts uniform dissolution front resulting in wormhole propagation.

100.3 100.3
=== P i
time = 0.1 days time = 1.0 days
5 100.2 5 100.2
0 £
g g
51001 ¢ 100.1
100.01 . i 100.01_, . i . S
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_ —— CaCOs(s) — Ca - —— CaCOy(s) — Ca
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Figure 7—Profiles of pressure, element compositions and porosity
obtained in the simulation of 1D configuration at7=0.1d (a) and =1 d (b).

Tab. 8 presents the performance metrics for simulation runs in 1D and 2D configurations, both with
and without caching of OBL operators. The results clearly indicate that the major part of simulation
time in both configurations is consumed by the sampling of OBL operators, i.e. by point generation.
This accounts for over 90% of the total simulation time in the 1D case and more than 80% in the 2D
case. The high computational cost of point generation is primarily attributed to the associated PHREEQC
simulations, which calculate geochemical speciation, phase equilibrium and reaction kinetics. The table
further highlights that caching OBL operators significantly reduces simulation costs by minimizing the need
for repeated PHREEQC simulations in subsequent runs. It is important to note that the time metrics reported
in Tab. 8, which are based each on single simulation run, may vary between runs and, therefore, are shown
only for qualitative performance assessments. Additionally, these simulations incorporate the sequential
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execution of PHREEQC while parallel extension can further alleviate costs of incorporated PHREEQC
simulations.

Table 8—Performance metrics of modeling 1D and 2D configurations. MLin stands for multilinear interpolation while ¥
denotes a number of supporting points uniformly distributed over each axes of the state space. The interpolation and point
generation times are given in percent of the total simulation time. TS, NI and LI are the total numbers of time steps, nonlinear
and linear iterations respectively. The timesteps and iterations wasted due to lack of convergence are listed in brackets.

Method n, N Cached Time, sec Interp., % Point TS NI LI
gen., %

1D setup, 500 cells

MLin 5 501 X 152.4 0.7 96.3 265 1060 3318
MLin 5 501 v 4.8 28.4 1.5 265 1060 3318

2D setup, 100 x 100 cells

MLin 5 201

x

1343.4 6.0 81.7 624 2726 41792
MLin 5 201 v 819.0 15.2 6.6 625(1) 2729(20) 43657(144)
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(b) t = 42d.

Figure 8—Compositions of elements, porosity and pressure estimated at
t=9d (a) and ¢ = 42 d (b) after the start of injection into 2D configuration.
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Conclusion

In this study, we investigated interpolation strategies required for evaluating state-dependent operators
within the OBL approach. We compared multilinear and linear interpolation strategies, with the latter
performed on both standard and Delaunay triangulations of a unit hypercube. A series of comparative studies
was conducted using a two-phase multicomponent fluid model across multiple domain configurations,
including homogeneous 1D and 2D domains as well as a heterogeneous 3D domain. The study revealed
the following key findings:

. Simulations employing multilinear interpolation exhibited superior convergence compared to those
using linear interpolation.

. For linear interpolation, standard triangulation demonstrated better performance than Delaunay
triangula- tion due to the time-consuming simplex location process required for Delaunay
triangulation.

° Multilinear interpolation remained efficient for state space dimensionalities n; < 8 but incurred
significant computational costs at higher dimensions.

o Linear interpolation emerged as the preferred and more robust approach for state space
dimensionalities n; > 8.

. The OBL approach was demonstrated to be applicable for state space dimensionalities up to n, = 20.

Furthermore, we demonstrated the efficiency of the OBL approach when coupled with third-party
solvers. We performed the simulation of CO, injection involving numerous chemical reactions, including
dissolution- precipitation kinetics. PHREEQC simulator was employed to calculate geochemical speciation,
phase equilib- rium, and reaction kinetics. The relatively high computational cost of PHREEQC simulations
was significantly reduced through the caching of OBL operators.

In conclusion, caching sampled properties is critical for achieving high performance in multiphase-
reactive- compositional modeling. This is particularly essential for highly nonlinear problems, especially
when integrating third-party solvers. With sufficient property sampling, both multilinear and linear
interpolation strategies can ensure efficient Jacobian assembly. The effectiveness of these techniques has
been demonstrated within the OBL framework, which also provides the flexibility needed to reduce
development costs in general-purpose modeling of geo-energy applications.
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