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a b s t r a c t

In this paper, a classical Stefan problem with a prescribed and small time-
dependent temperature at the boundary is studied. By using a multiple time-scales
perturbation method, it is shown analytically how the moving boundary profile is
influenced by the prescribed temperature at the boundary and the initial condi-
tions. Only a few exact solutions are available for this type of problems and it turns
out that the constructed approximations agree very well with these exact solutions.
In particular, approximations of solutions for this type of problems, with periodic
and decaying temperatures at the boundary, are constructed. Furthermore, these
approximations are valid on a long time scale, and seems to be not available in
the literature.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The classical Stefan problem was introduced with the aim on describing the evolution of the boundary (or
interface) between two phases, i.e. the liquid and solid phase in ice melting. Also known as moving boundary
problem, it has been studied for more than a century. Since its introduction, a large number of applications
of Stefan problem can be found in the literature, such as solidification of a liquid [1], melting of an ice sheet
with heat convection in the liquid phase [2,3], mushy area formation between two phases [4], three-phase
transition models [5], diffusion or dissolution of particles [6–8], and many more. For a more comprehensive
review of the existing applications, the reader is referred to the classical books [9,10].

The existence and uniqueness of solution for such problems can be found in the literature, see [11,12].
However, exact analytical solutions are only available for some very specific cases. Furthermore, most Stefan
problems are solved approximately by means of numerical methods (see for instance [6–8,13–18]). Another
alternative to approximate the solution is by using a straightforward naive perturbation expansion (see for
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Fig. 1. Melting process of a semi-infinite ice sheet due to the temperature εH̄(θ) at X = 0.

instance [6,7,19–25]). There are a number of drawbacks for this approach. Firstly, this approximation is only
valid on a rather short time-scale. Secondly, this approximation is constructed from a stationary solution,
which implies that only very specific boundary and initial conditions can be considered.

In this paper, we consider a Stefan problem which is similar to the one studied in [19,26]. At the fixed
boundary, instead of considering a time-dependent heat flux as is in [23,26], in this paper we consider a
time-dependent temperature profile. We present the formulation of the problem in Section 2 of this paper.
Rather than using straightforward expansions, a two time-scales perturbation method is applied to our
problem in Section 3 of this paper. Various examples on how this method is applied to different kind of
problems can be found in standard books on perturbation methods, e.g. [27–29]. By using this method,
accurate approximations of the solutions of the classical Stefan problem subject to a constant temperature
at the fixed boundary, are constructed and compared with exact solutions in Section 4. We show that the
constructed approximation agrees very well with the exact solution on long time-scales. In Section 5 of this
paper, time-dependent boundary conditions, such as a periodic temperature or a decaying temperature at
the fixed endpoint, are introduced. Furthermore, accurate approximations for the solutions of these problems
on long time-scales are constructed. To our knowledge, these results are new in the literature. Finally, in
Section 6 of this paper, we draw some conclusions.

2. Formulation of the problem

Consider a one-dimensional Stefan problem with a Dirichlet boundary condition at the fixed endpoint:

ρc∂θT (X, θ) = K∂2
XT (X, θ), 0 < X < S(θ), θ > 0, (1a)

−K∂XT (S(θ), θ) = ρLS′(θ), (1b)
T (S(θ), θ) = Tm, T (0, θ) = εH̄(θ), (1c)

T (X, 0) = Tm + εF̄ (X), 0 < X < S(0) = b. (1d)

This problem describes an ice melting problem (see also [26]). In this problem, T (X, θ) represents the
temperature of the liquid phase at location X and time θ. The parameters ρ, c, K, L, and Tm represent
the density, the heat capacity, the heat conductivity, the latent heat, and the freezing temperature of the
water, respectively. The function S(θ) describes the moving interface position between the water and the
ice.

The incoming heat that melts the ice is provided by a given time-dependent, positively definite function
εH̄(θ), where ε is a small parameter. The initial location of the interface is given by the positive constant b,
so that it is assumed that the liquid phase already exists initially. And the function F̄ (x) is the x-dependent
part of the initial temperature distribution. See Fig. 1 for an illustration for the problem we are considering.

Let us introduce the following scaling transformations:

τ = K
θ, U(X, τ) = c (T (X, θ) − Tm) ,
cρ L
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(F̄ (X) − Tm), and H(τ) = c

L
H̄(θ),

o that problem (1a)–(1d) can be reformulated in the following non-dimensional form:

∂τ U(X, τ) = ∂XXU(X, τ), 0 < X < S(τ), τ > 0, (2a)
−∂XU(S(τ), τ) = S′(τ), τ ≥ 0, (2b)

U(S(τ), τ) = 0, τ ≥ 0, (2c)
U(0, τ) = εH(τ) τ ≥ 0, (2d)

U(X, 0) = εF (X), 0 < X < S(0) = b, (2e)

here H and F are positive-definite functions. The notations ∂η for a partial derivative ∂
∂η , and ′ for a

derivative of a one-variable function, are used throughout the paper. To immobilize the moving boundary,
we define:

t(τ) =
∫ τ

0
S−2(η)dη, x = X

s(t) , and v(x, t) = U(X, τ).

ubstituting the transformation into the problem (2a)–(2e), the following equations for v(x, t) are obtained:

−∂xv(x, t) x

s(t)s′(t) + ∂tv(x, t) = ∂xxv(x, t), 0 < x < 1, t ≥ 0, (3a)

v(0, t) = εh(t), t ≥ 0 (3b)

∂xv(1, t) = − 1
s(t)s′(t), t ≥ 0, (3c)

v(1, t) = 0, t ≥ 0, (3d)
v(x, 0) = εf(x), 0 < x < 1, (3e)

here f(x) = F (X), s(t) = S(τ), and h(t) = H(τ). Next, we remove the dependence on s(t) in (3a) by
ubstituting (3c) into (3a), i.e.,

∂tv(x, t) = ∂xxv(x, t) − x∂xv(x, t)∂xv(1, t).

inally, the following rescaling, v = εu, is introduced since small initial and boundary conditions are
onsidered. Problem (3a)–(3e) then becomes:

∂tu(x, t) = ∂xxu(x, t) − εx∂xu(x, t) ∂xu(1, t), 0 < x < 1, t ≥ 0, (4a)
u(0, t) = h(t), t ≥ 0, (4b)

u(1, t) = 0, t ≥ 0, (4c)
u(x, 0) = f(x), 0 < x < 1. (4d)

ystem (4a)–(4d) consists of a weakly nonlinear diffusion equation subject to an initial condition and subject
o linear Dirichlet boundary conditions on a fixed spatial domain.

. The two time-scales perturbation method

When applying a straightforward perturbation expansion for u(x, t) in (4a)–(4d), one usually encounters
erms in the equation which produce unbounded solution. These terms are usually called secular terms. To

void these secular terms and to obtain approximations which are valid on long time-scales, a two time-scales

3
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perturbation method will be used to (approximately) solve problem (4a)–(4d). It is assumed that the solution
depends on t0 = t and t1 = εt, and that u(x, t) can be expanded as

u(x, t) = u0(x, t0, t1) + εu1(x, t0, t1) + O(ε2).

y applying the time derivative operator: ∂t = ∂t0 + ε∂t1 , and by replacing u in (4a)–(4d) by its expansion,
nd then by collecting terms of equal order in ε, we obtain a family of initial–boundary value problems for
0, u1, u2, and so on. For our purpose, let us look at the problems for u0 and u1 only, i.e.:

O(1) : ∂t0u0(x, t0, t1) − ∂xxu0(x, t0, t1) = 0 (5a)
u0(0, t0, t1) = h(t0), (5b)
u0(1, t0, t1) = 0, (5c)
u0(x, 0, 0) = f(x), (5d)

O(ε) : ∂t0u1(x, t0, t1) − ∂xxu1(x, t0, t1) = −∂t1u0(x, t0, t1)
− x∂xu0(x, t0, t1)∂xu0(1, t0, t1), (5e)

u1(0, t0, t1) = 0, (5f)
u1(1, t0, t1) = 0, (5g)
u1(x, 0, 0) = 0. (5h)

By solving (5a)–(5d), and (5e)–(5d), we construct an O(ε) approximation for the solution on a time-scale
f order 1

ε .

O(1)-Part of the problem

To solve the O(1) problem, let us introduce another transformation

ũ0(x, t0, t1) = u0(x, t0, t1) − h(t0)(1 − x).

ubstituting this to (5a)–(5d), we obtain

∂t0 ũ0 = ∂xxũ0 + H0(x, t0),
ũ0(0, t0, t1) = ũ0(1, t0, t1) = 0,

ũ0(x, 0, 0) = f(x) − h(0)(1 − x),

here H0(x, t0) = −h′(t0)(1 − x). Suppose that the non-homogeneous solution can be written as

ũ0(x, t0, t1) =
∞∑

n=1
u0n(t0, t1)ϕn(x),

here ϕn(x) = sin(nπx). Substituting this into Eq. (5a) yields

∂t0u0m(t0, t1) + (mπ)2u0m(t0, t1) = 2
∫ 1

0
H0(x, t0)ϕm(x)dx.

or convenience, we present the integral in the right-hand side of the equation as a Fourier series, yielding

H0n(t0) = 2
∫ 1

−h′(t0)(1 − x) sin(nπx)dx = −2h′(t0)
.

0 nπ

4
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Using the method of integrating factors, we can solve the ODE for u0n, i.e.,

u0n(t0, t1) = C0n(t1)e−(nπ)2t0 − 2
nπ

∫ t0

0
e(nπ)2(η−t0)h′(η)dη. (6)

The general solution for the O(1) problem is

u0(x, t0, t1) =
∞∑

n=1
u0n(t0, t1) sin(nπx) + h(t0)(1 − x).

oreover, using the initial condition, we obtain

C0n(0) = 2
∫ 1

0
[f(x) − h(0)(1 − x)]ϕn(x)dx = fn − 2h(0)

nπ
, (7)

here fn is the nth Fourier series coefficient of f(x). Note that for each n, the solution in (6) still depends
n an unknown function C0n(t1). We will solve the O(ε) part of the problem to determine this function.

(ε)-Part of the problem

To solve (5e)–(5h), let us denote

H1(x, t0, t1) = −∂t1u0(x, t0, t1) − x∂xu0(x, t0, t1)∂xu0(1, t0, t1).

ubstituting u0 into H1 gives:

H1(x, t0, t1) =
∞∑

n=1
∂t1u0n(t0, t1)ϕn(x) − x

[
h2(t0) − h(t0)

∞∑
n=1

u0n(t0, t1)(ϕ′
n(1) + ϕ′

n(x))

+
∞∑

n=1

∞∑
m=1

u0n(t0, t1)u0m(t0, t1)ϕ′
n(x)ϕ′

m(1)
]

.

With a similar procedure as is done previously, we write

u1(x, t0, t1) =
∞∑

n=1
[u1n(t0, t1) sin(nπx)], (8)

here

u1n(t0, t1) = e−(nπ)2t0

[
C1n(t1) +

∫ t0

0
e(nπ)2ηH1n(η, t1)dη

]
, and (9)

H1n(t0, t1) = ⟨H1, ϕn⟩
⟨ϕn, ϕn⟩

. (10)

nd ⟨ , ⟩ is an inner product in L2[0, 1] as vector space over R, i.e. ⟨f, g⟩ =
∫ 1

0 f(x)g(x)dx. By using the
nitial conditions, we obtain C1n(0) = 0. We then can compute H1n as follows.

H1n(t0, t1) = −u0nt1(t0, t1) + 3h(t0)u0n(t0, t1)
2

− 2h2(t0)(−1)n+1

πn
+ 2h(t0)

∑
m̸=n

u0m(t0, t1)(1 − Kmn)

− 2
∞∑

p=1
u0p(t0, t1)ϕ′

p(1)

⎛⎝u0n(t0, t1)
4 +

∑
m̸=n

u0m(t0, t1)Kmn

⎞⎠ ,

here Kmn = − (2n−1)2(−1)m+n

(m+n−1)(m−n) . In order to completely compute u1n, we need an explicit expression for h(t).
n Section 4 and in Section 5 of this paper, we will determine u and u for various choices of h(t).
0n 1n

5
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Moving boundary profile

To obtain the moving boundary profile, we use the boundary condition (3c), that is, ∂xv(1, t) = − s′(t)
s(t) ,

hich in fact is an ODE for s(t). Using the initial condition s(0) = b, the ODE can be solved directly,
yielding

s(t) = b exp
(

−
∫ t

0
∂xv(1, η)dη

)
= b exp

[
−ε

∫ t

0

[ ∞∑
n=1

(
C0n(εθ)e−(nπ)2θ

+ 2
nπ

∫ θ

0
e(nπ)2(η−θ)h′(η)dη

)
nπ(−1)n − h(θ)

]
dθ + O(ε2)

]
. (11)

o determine s completely, we need to obtain the unknown function C0n. In the following sections, we will
compute C0n and so s(t) for specific choices for the function h(t).

. The case with a constant temperature at the boundary: h(t) = a

.1. Removing secular terms

Suppose h(t) = a, where a is a positive constant, then u0n easily follows from (6):

u0n(t0, t1) = C0n(t1)e−(nπ)2t0 ,

nd the O(1) solution becomes

u0(x, t0, t1) =
∞∑

n=1
C0n(t1)e−(nπ)2t0 sin(nπx) + a(1 − x). (12)

he function C0n(t1) still has to be determined, and follows from (9) by demanding that u1n is bounded,
r equivalently, by removing secular terms in u1n. From Eq. (9), we see that the formula for the order O(ε)
olution contains an integral. To simplify the notation, we introduce

Lnmp(t0) = e[n2−m2−p2]π2t0 − 1
(n2 − m2 − p2)π2 , Lnm(t0) = Lnm0(t0), Ln(t0) = Ln00(t0). (13)

hen, ∫ t

0
e(nπ)2ηH1n(η, t1)dη

= t0

⎛⎝−C ′
0n + 3aC0n

2 − 2
∑
p ̸=n

pπ(−1)pC0
√

n2−p2C0pK√
n2−p2n

⎞⎠
− 2a2(−1)n+1Ln

πn
+
∑
m̸=n

2aC0mLmn(1 − Kmn)

− 2
∞∑

p=1
ϕ′

p(1)

⎛⎜⎜⎝C0pC0nLnnp

4 +
∑
m ̸=n

m2 ̸=n2−p2

C0mC0pLnmpKmn

⎞⎟⎟⎠ . (14)
6
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The terms inside the first brackets, which are multiplied by t0, are secular terms. To keep the solution
ounded, we set

C ′
0n(t1) − 3aC0n(t1)

2 = Wn(t1), (15)

here
Wn(t1) = −2

∑
p ̸=n

pπ(−1)pC0
√

n2−p2C0pK√
n2−p2n

.

bserve that Wn is nonzero only for some values of n. We can see this by the fact that Wn is a sum over
which satisfies the Pythagorean formula n2 = m2 + p2 with n, m, p ∈ N+. For example, in case of n less

han 5, there is no p which satisfies the Pythagorean formula, so Wn is zero for n less than 5.

.2. On the Pythagorean triple

The term Wn(t1) in Eq. (15) is coupled to other equations for C0m. To be precise, for each value of n, the
differential Eq. (15) depends on other equations with index j and k where (j, k, n) is a Pythagorean triple.

or example, the following is a list of Pythagorean triples (j, k, n) corresponding to values of n up to 20.

• (3, 4, 5)
• (6, 8, 10)
• (5, 12, 13)
• (9, 12, 15)
• (8, 15, 17)
• (12, 16, 20)

f n does not correspond to a triple, then Wn(t1) vanishes, and Eq. (15) reduces to

C ′
0n − 3aC0n

2 = 0,

hich has the following solution
C0n(t1) = C0n(0)e

3at1
2 , (16)

here the initial condition C0n(0) is given in (7). However, if (j, k, n) is a Pythagorean triple for some integers
and k, Wn(t1) becomes

Wn(t1) = 2πn3

jk
C0j(t1)C0k(t1).

n some cases, one value of n may correspond to more than one triple. In that case, Wn(t1) contains more
erms. An example of this is n = 25, i.e. (15, 20, 25) and (7, 24, 25). For this case, we write

Wn(t1) =
∑

(j,k,n)∈Pn

qjkn(t1), qjkn(t1) = 2πn3

jk
C0j(t1)C0k(t1),

here Pn is the set of all Pythagorean triples corresponding to n. Actually, for most values of n, one finds
nly one isolated triple, at least for values up to n = 300. Formally, one can rewrite Eq. (15) into the following
quivalent integral equation:

C0n(t1) = e
3at1

2

[
C0n(0) +

∫ t1

0
Wn(η)e− 3aη

2 dη

]
. (17)

f neither j nor k is a hypotenuse of another Pythagorean triple, then C0j and C0k are given by (16) for
= j and n = k, respectively. And so, qjkn(t1) becomes:

qjkn(t1) = 2πn3
C0j(0)C0k(0)e3at1 .
jk

7
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Thus, the integral in (17) can be computed easily, and one obtains

C0n(t1) = e
3at1

2

⎡⎣C0n(0) +
(

e
3at1

2 − 1
) ∑

(j,k,n)∈Pn

4πn3

3ajk
C0j(0)C0k(0)

⎤⎦ . (18)

therwise, if j or k is a hypotenuse in another triple, then the solution for C0j or C0k is in the form of (18).
n example for this is the triple (5, 12, 13), where 5 is a hypotenuse for the triple (3, 4, 5). Let for example,

k correspond to a triple (k1, k2, k), then qjkn becomes

qjkn(t1) = 2πn3

jk
e3at1C0j(0)

⎡⎣C0k(0) +
(

e
3at1

2 − 1
) ∑

(k1,k2,k)∈Pk

4πk3

3ak1k2
C0k1(0)C0k2(0)

⎤⎦ .

he solution for C0n in this case becomes

C0n(t1) = e
3at1

2

⎡⎣C0n(0) +
(

e
3at1

2 − 1
) ∑

(j,k,n)∈Pn

4πn3

3ajk
C0j(0)C0k(0)

+2πn3

3ajk

(
e3at1 − 2e

3at1
2
) ∑

(k1,k2,k)∈Pk

4πk3

3ak1k2
C0k1(0)C0k2(0)

⎤⎦ . (19)

The complexity of the solution may not stop here. In the last computation, we assume that only one leg,
.e. k, corresponds to another triple. In some cases though, this chain of triples may be more complex and
onger.

Let us define some terminology. We define a Pythagorean chain as a tuple (ordered set) of numbers such
hat (i) each member of the tuple is a hypotenuse of a Pythagorean triple; (ii) each but one member of the
uple must also be a leg of another member’s triple. We will write the tuple with square brackets to avoid
onfusion with the triples. The only member that is not a leg of another triple is called head. We also define
he length of the chain as the number of chain members. For example, as we have seen before, we have [13, 5]
s a Pythagorean chain of length-2. Another example is [17, 15] which forms a chain because there are triples
8, 15, 17) and (9, 12, 15). If a chain has length-1, then we call it an isolated triple.

In Eq. (19), we describe the solution for the case when n is a head of a length-2 Pythagorean chain.
nfortunately, we may have longer chains for some values of n, which will add more terms in the solution.
For example, the case n = 25, which corresponds to the triple (15, 20, 25), is a case for which each

eg corresponds to a different triple, i.e., (12, 16, 20) and (9, 12, 15). This example forms a length-3 chain
25, 20, 15]. A longer chain of triples may also occur.

Now take a look at the triple (39, 52, 65). Leg 39 corresponds to (15, 36, 39) and leg 52 corresponds to
20, 48, 52). As we have seen in the previous example, number 15 and 20 itself are hypotenusa for other
riples. This example shows a length-5 chain [65, 39, 52, 15, 20]. An illustration of this chain is shown in

Fig. 2.
Interestingly, by counting systematically all triples with a hypotenuse up to 100, we obtain that there are

14 isolated triples, 20 chains of length-2, 4 chains of length-3, 1 chain of length-4, 2 chains of length-5, and
1 chain of length-6. By this observation, it is difficult to find a general form for the solution as the triples
may branch off and form different chains. For the sake of simplicity, we just have to rewrite (19) as follows

C0n(t1) = e
3at1

2

⎡⎣C0n(0) +
(

e
3at1

2 − 1
) ∑ 4πn3

3ajk
C0j(0)C0k(0)

⎤⎦+ · · · ,

(j,k,n)∈Pn

8
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Fig. 2. Illustration of Pythagorean branching that occurs for the case with n = 65 as head of the chain.

o that it is similar to the basic form (18), where the dots represent the possibility for more terms due to
he formation of chains. Thus, we can describe the “general” solution of (15) as

C0n(t1) = C0n(0)e
3at1

2 +

⎧⎪⎪⎨⎪⎪⎩
C0j(0)C0k(0) 4πn3

3ajk

(
e3at1 − e

3at1
2
)

+ · · · , if there is at least one
triple (j, k, n),

0, otherwise.

(20)

.3. Truncation method

Since we cannot construct the general form of the solution C0n, it is also not possible to obtain an exact
xpression for the solution v, or for s. Alternatively, we can take only the first N -terms in the expansion of
he solution. This truncation can be validated by arguing that the factors e−(nπ)2t0 are exponentially small

for all fixed t0 > 0, and for n large. Thus, we consider the solution in the form:

u(x, t0, t1) =
N∑

n=1
C0n(t1)e−(nπ)2t0 sin(nπx) + h(t0)(1 − x) + O(ε).

t can also be shown that the first N -terms in the expansion for the solution give accurate approximations
or t = O(ε−1). For simplicity, we choose N = 4 so that no Pythagorean triple occurs. In this case, we obtain
mmediately that

u(x, t0, t1) =
4∑

n=1

(
fn − 2a

nπ

)
e

3at1
2 −(nπ)2t0 sin(nπx) + a(1 − x) + O(ε). (21)

or the moving boundary profile, we can compute further from (11) and (21) that

s(t) = b exp
[

εat − ε

4∑
n=1

2(−1)n(fnnπ − 2a)
3εa − 2(nπ)2

(
e(3εa−2(nπ)2) t

2 − 1
)

+ O(ε2)
]

.

e still have to transform s(t) back to the original variable S(τ). To do so, we write s(t) in the following
orm:

s(t) = beεatI(ε, t), (22)

here

I(t) = exp
(

−ε

4∑ 2(−1)n(fnnπ − 2a)
3εa − 2(nπ)2

(
e(3εa−2(nπ)2) t

2 − 1
)

+ O(ε2)
)

.

n=1

9
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We can expand I in a Taylor series around ε = 0, yielding

I(ε, t) = 1 + ε

4∑
n=1

(−1)n

(nπ)2 (fnnπ − 2a)(1 − e−(nπ)2t) + O(ε2),

hich implies that

s(t) = beεat + O(ε).

f we take only the first term in the expansion for u, that is N = 1, then we can transform back to the
original variable by writing S(τ) = s(t(τ)) = beεat(τ) and by computing

t(τ) = ln(S(τ)/b)
εa

⇒

dt

dτ
= 1

S2(τ) = S′(τ)
εaS(τ) ⇒

S(τ) =
√

b2 + 2εaτ . (23)

Alternatively, we can compute S(τ) implicitly. To do so, we compute first s(t) for some values of t up to
the Nth term. Then, for each t, we compute τ by using the inverse transformation

τ(t) =
∫ t

0
s2(η)dη. (24)

or each τ obtained, we map it to the corresponding value of s(t), yielding S(τ) = s(t(τ)). To see the
nfluence of N on the approximations, we now choose a larger N . We take N = 12 to avoid length-2
ythagorean chains because the smallest head of a length-2 chain is 13. For N = 12, the only triples are

3, 4, 5) and (6, 8, 10). We denote MN as the set of natural numbers up to N excluding hypotenuse of any
ythagorean triple. In this case, we have M12 = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12}. Thus, we have the following

esult for C0n

C0n(t1) =

⎧⎪⎪⎨⎪⎪⎩
C05(0)e

3at1
2 + C03(0)C04(0) 125π

9a

(
e3at1 − e

3at1
2
)

+ · · · , n = 5,

C010(0)e
3at1

2 + C06(0)C08(0) 250π
9a

(
e3at1 − e

3at1
2
)

+ · · · , n = 10,

C0n(0)e
3at1

2 , n ∈ M12.

e then calculate s(t) up to 12 terms, yielding:

s(t) = b exp
[

εat − ε

( 12∑
n=1

2(−1)n(fnnπ − 2a)
3εa − 2(nπ)2

(
e(3εa−2(nπ)2) t

2 − 1
)

−10(f33π − 2a)(f44π − 2a)
12π(3εa − 50π2)

(
e(3εa−50π2) t

2 − 1
)

−20(f66π − 2a)(f88π − 2a)
48π(3εa − 200π2)

(
e(3εa−200π2) t

2 − 1
))

+ O(ε2)
]

.

For higher values of N , we still can compute and approximate the solution in the original variable S(τ)
explicitly or implicitly by using the procedure as explained before. If we compare the approximation where
N = 12 with the one where N = 4, then it turns out that the approximations are close to each other (see
also Fig. 3). For that reason, we will use N = 4 in Section 5 of this paper for computing interfaces.
10
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Fig. 3. Comparison of the approximations of the interface S(τ) for N = 4 and for N = 12.

.4. Exact solution

To see how accurate the approximations are (which are constructed in the previous subsection), we will
ow compute an exact solution of a special Stefan problem with h(t) = a, where a is a constant. The method
o be used is the similarity method. So, we start again with problem (2a)–(2e), where H(T ) = a. By using
he similarity method we look for solutions in the form:

U(X, τ) = y(z), z = X√
τ

.

By substituting this transformation into the problem (2a)–(2e), one obtains an initial value problem that
can be solved directly, yielding

y(z) = εa

(
1 −

erf
(

z
2
)

erf(α)

)
. (25)

rom (25), the moving interface S(τ) can readily be obtained, yielding

S(τ) = 2α
√

τ , (26)

here α is a constant which can be obtained by solving

εa =
√

πerf(α) exp(α2)α. (27)

q. (27) cannot be solved analytically for α, but has to be solved numerically. In terms of u, the solution is
iven by

U(X, τ) = εa

⎛⎝1 −
erf
(

X
2

√
τ

)
erf(α)

⎞⎠ . (28)

Observe that this solution is a very special solution and does not involve initial condition. Setting τ = 0
ields S = 0, which means the domain of the problem, i.e. [0, S] is only a point set. This implies that the
imilarity method only gives the exact solution of the Stefan problem for which initially no water phase is
resent.

.5. Comparing the results

In this subsection, we compare the approximation of the solution as obtained by using a multiple-time
cales perturbation method with exact solution as obtained by using the similarity method.
11
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Fig. 4. Moving boundary profile for small values of b.

.5.1. Negligible initial condition
The similarity solution describes the case with b = 0. However, we cannot take b = 0 in the multiple time

cales approach, as this will cause the moving interface solution to vanish (see Eq. (11)). One way to manage
his is by taking very small values for b. In this way, initially the temperature inside the domain is still very
ow and the amount of melted water is very small. So, in this way, the initial condition can be assumed to
e negligible.

We take a = 1. As shown in Fig. 4, both solutions are getting close to each other as b decreases. When b

s very small, i.e. b = 0.001, the two solutions coincide.

4.5.2. Stationary initial condition
In this subsection, we will use as initial condition, the ones which follow from the exact similarity solution

for a given time. Consider the exact solution (28), and as an initial condition, we choose:

f(x) = a

(
1 − erf(αx)

erf(α)

)
. (29)

hen, the solution is a stationary solution for all time. Computing the Fourier coefficient fn of this initial
ondition, yields

fn = a

πn

⎡⎢⎣2 + e
− (nπ)2

4α2

erf(α)

(
erf
(

α + inπ

2α

)
+ erf

(
α − inπ

2α

))⎤⎥⎦ .

ow it should be observed that limα→0 fn = 2a
πn , and from (27), it follows that limε→0 α(ε) = 0. This implies

hat smaller values of ε lead to fn tending to 2a
nπ . This limiting value for fn is important as it will cancel

terms in the summations in the solution for u and s (see Eq. (21) and (22)). Thus, for small enough ε, the
solution of S(τ) can be simplified to (23). We then use these fn’s to compute s(t) by using the multiple-time
scale perturbation method.

To compare the two solutions in this case, we must first determine the initial condition in the original
variable S. For a given value of b, we can compute the time τ0 = (b/2α)2 for which S(τ0) = b. Shifting the
time coordinate, we can determine a new moving boundary profile from the exact solution as

S(τ) = 2α

√(
b
)2

+ τ =
√

b2 + 4α2τ , (30)
2α

12
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Fig. 5. Moving interface profile for the stationary exact solution and its approximation for different values of b.

o that “S(0) = b” as we intended. This form is similar to the one we obtain from the multiple-time scale
ethod, i.e., from (23). Furthermore, it follows from the Taylor series around α = 0 of the right-hand side

f Eq. (27) that
εa = 2α2 + O(α4).

nd this implies that the multiple-time scales solution of S(τ) in (23) can be written as

S(τ) =
√

b2 + 2εaτ ≈
√

b2 + 4α2τ ,

which coincides with the exact solution S(τ), given by (30). In this way, we indicated that the approximations
obtained by using the multiple-time scales method and the exact solution remain close to each other for large
times. The exact solution and its approximation are plotted in Fig. 5. The plot also shows that the exact
solutions and its approximation remain very close to each other (not only for large times τ , but also for
relatively large values of b).

5. Time varying temperature inputs at the fixed endpoint

5.1. The case h(t) is periodic

Let us consider the more general case, where the temperature at x = 0 is T -periodic and positive definite.
e assume that T is O(1). We can expand h(t) in its Fourier series a +

∑∞ (A sin (κ t) + B cos (κ t)),
n=1 n n n n

13
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where κn = 2nπ
T for given constants a, An, and Bn. The solution for u0n now follows from (6) and is given

by
u0n(t0, t1) = Qn(t1)e−(nπ)2t0 − Rn(t0), (31)

where Qn(t1) = C0n(t1) + Rn(0), and

Rn(t0) =
∞∑

m=1

2κm

[
(Am(nπ)2 + Bκm) cos(κmt0) + (Amκm − Bm(nπ)2) sin(κmt0)

]
nπ((nπ)4 + κ2

m) .

omputing the next order term in the approximation of the solution leads to similar results (see the formula
fter Eq. (14)) as in the case of constant temperature at the boundary, i.e.,

∫ t0

0
e(nπ)2ηH1n(η, t1)dη =

⎡⎣Q′
n − 3aQn

2 + 2
∑
p ̸=n

pπ(−1)pQ√
n2−p2QpK√

n2−p2n

⎤⎦ t0 + n.s.t.,

here n.s.t stands for “non-secular terms”. To remove the secular terms in the above equation, we need to
onsider again the Pythagorean triples as discussed before. Obtaining the solution in C0n explicitly is too
omplicated because of the existence of Pythagorean triples. We apply again the truncation method and
onsider the case without Pythagorean triples. We derive that Qn(t1) = Q0n(0)e

3at1
2 , where

Q0n(0) =
[

fn − 2
nπ

(
a +

∞∑
m=1

(
Bm + κm

Am(nπ)2 + Bmκm

((nπ)4 + κ2
m)

))]
.

For the moving boundary profile, we have a similar form as for the constant case, i.e. s(t) = beεatI(ε, t),
where

I(ε, t) = exp

⎡⎣−2ε

4∑
n=1

⎡⎣Qn(0)
(

e( 3εa
2 −(nπ)2)t − 1

)
3εa − 2(nπ)2 nπ(−1)n + Jn(t)

⎤⎦+ O(ε2)

⎤⎦ ,

nd

Jn(t) =
∞∑

m=1

(Am(nπ)2 + Bκm) sin(κmt) − (Amκm − Bm(nπ)2)(cos(κmt) − 1)
(nπ)4 + κ2

m

(−1)n

+ An(cos(κnt) − 1) − Bn sin(κnt)
2κn

.

This result is actually almost similar to the case of the constant boundary temperature, except for the
additional periodic terms Jn. We now expand I around ε = 0 to obtain

I(ε, t) = 1 + ε

∞∑
n=1

(
Qn(0)(−1)n(1 − e−(nπ)2t)

nπ
+ Jn(t)

)
+ O(ε2).

hen we assume that An and Bn are relatively small compared to a, then we can neglect Jn and obtain the
ame result as for the constant temperature boundary case, i.e., s(t) = beεat + O(ε). We can see this case

also as a small wiggle around constant temperature a at the boundary. The movement of the interface s(t)
is dominantly influenced by the average boundary temperature, which is the constant a, giving us a similar
profile as for the constant temperature case.

5.2. The case h(t) is periodic with a relatively large amplitude

In this subsection, a more specific case for a periodic temperature profile at the fixed endpoint is
considered. In the last subsection, we see that the moving boundary profile tends to be the same as for
14
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Fig. 6. Position of the moving boundary in case of a periodic temperature at the fixed endpoint for different values of A. The left
gure is the position from initial time and the right one is a zoom-in at the τ-interval [200, 250].

the constant case when the periodic part can be ignored. Let us now assume that we have large amplitudes
An or Bn, so that the periodic part might significantly influence the interface movement. We consider a
simple form for the boundary temperature profile: h(t) = a + A sin(πt) where A is assumed to be large but
A| < a (in order to avoid additional occurrences of water–ice interfaces originating at x = 0 when |A| > a).
he solution s(t) is as before approximated by:

s(t) = exp

⎡⎣−2ε

4∑
n=1

(−1)n

⎛⎝Qn(0)
(

e( 3εa
2 −(nπ)2)t − 1

)
nπ

3εa − 2(nπ)2 + A

(
n2π sin(πt) − cos(πt) + 1

π(n4π2 + 1)

)⎞⎠
+Aε(cos(πt) − 1)

π
+ εat + O(ε2)

]
,

and can be written as follows

s(t) = e
ε
(

at+A
(cos(πt)−1)

π

)
I(ε, t),

here

I(ε, t) = exp

⎡⎣−2ε

4∑
n=1

(−1)n

⎛⎝Qn(0)
(

e( 3εa
2 −(nπ)2)t − 1

)
nπ

3εa − 2(nπ)2 + 2A
n2π sin(πt) − cos(πt) + 1

π(n4π2 + 1)

⎞⎠⎤⎦ .

Expanding I in ε yields

s(t) = e
ε
(

at+A
(cos(πt)−1)

π

)
+ O(ε).

The results for different values of A are given in Fig. 6. We can see that for small A, the profile tends to
ehave as in the constant case for h(t). In the case of larger values of A, the interface profile has a small
iggle, showing that the speed of the interface movement varies periodically. If we increase A, then the

wiggle will get larger.

15
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Fig. 7. The moving boundary profile in case of a decaying temperature at the fixed endpoint for different values of the decaying rate
c.

5.3. The case h(t) is decaying in time

Let us consider the case that h(t) is exponentially decaying, i.e., h(t) = ae−ct, where a and c are positive
onstants. The parameter c determines the decaying rate. The solution u0n now becomes

u0n(t0, t1) = C0n(t1)e−(nπ)2t0 + 2ac(e−ct0 − e−(nπ)2t0)
nπ((nπ)2 − c) .

We can rewrite this solution for u0n in the form as in Eq. (31), but with a different Rn:

Rn(t0) = − 2ace−ct0

nπ((nπ)2 − c) .

y computing the next order term in the approximation of the solution, we obtain

∫ t0

0
e(nπ)2ηH1n(η, t1)dη =

⎡⎣Q′
n + 2

∑
p ̸=n

pπ(−1)pQ√
n2−p2QpK√

n2−p2n

⎤⎦ t0 + n.s.t..

o avoid secular terms, it follows as before that Q′
n = 0 for n < 5, and so, for n < 5:

C0n(t1) = C0n(0) =
(

fn − 2a

nπ

)
.

hen we use again the truncation method, and only take into account the first four terms in the summation,
t follows that the position s(t) of the moving boundary is given by:

s(t) = b exp
[

ε

4∑
n=1

(−1)n

nπ

(
fn − 2a((nπ)2)

nπ((nπ)2 − c)

)
(e−(nπ)2t − 1)

−εa

c

(
1 −

4∑
n=1

2c(−1)n

((nπ)2 − c)

)
(e−ct − 1) + O(ε2)

]
.

As before S(τ) can be implicitly computed from s(t), and the results for different values of c are shown in
Fig. 7. We can see that for smaller values of c, the profile tends to approach the profile as in the case for
constant h(t).
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Fig. 8. Plot of G(t) in time (c = 1).

For large enough values of c, we can already see in Fig. 7 that for some point in time, the interface
ecomes more or less steady. To study this behavior, we take the derivative of s with respect to t. For ease
f computation, we denote first

Dn = (−1)n

nπ

(
fn − 2a((nπ)2)

nπ((nπ)2 − c)

)
, and E = εa

c

(
1 −

4∑
n=1

2c(−1)n

((nπ)2 − c)

)
,

o that we can write

s(t) = b exp
(

ε

4∑
n=1

Dn(e−(nπ)2t − 1) − εE(e−ct − 1)
)

.

Then, we compute
ds

dt
= −εs(t)

( 4∑
n=1

(nπ)2Dne−(nπ)2t − cEe−ct

)
.

o find the time for which the interface almost stops moving, we set the terms inside the brackets (denote
t as G(t)) to zero. However, if we plot G(t) with respect to t (assuming that f(x) represents the stationary
olution), we obtain the following profile as shown in Fig. 8, which shows that G(t) only asymptotically
ends to zero for t tending to infinity. Alternatively, we can now solve |G(t)| < δ for some small tolerance
alue δ to get the time when the interface almost stops moving.

. Conclusion

This work presents an approach to construct approximations of the solutions for the phase change heat
ransfer problem with small time-dependent Dirichlet boundary condition by using the multiple-time scales
erturbation method. It is shown that the obtained approximations of the solutions agree well with the exact
olutions for the cases where exact solutions are available. By using the multiple-time scales perturbation
ethod, we successfully simulate and analyze the dynamics of the problem for different boundary conditions

t the fixed endpoint. Examples with time-periodic temperatures and with decaying temperatures at the
xed endpoint have been treated in detail. The applicability of this method to the present problem opens
ossibilities for future research on more complicated Stefan problems.
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