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Abstract—The security of energy supply in a power grid
critically depends on the ability to accurately estimate the state
of the system. However, manipulated power flow measurements
can potentially hide overloads and bypass the bad data detection
scheme to interfere the validity of estimated states. In this paper,
we use an autoencoder neural network to detect anomalous
system states and investigate the impact of hyperparameters on
the detection performance for false data injection attacks that
target power flows. Experimental results on the IEEE 118 bus
system indicate that the proposed mechanism has the ability to
achieve satisfactory learning efficiency and detection accuracy.

Index Terms—Anomaly detection, autoencoder, false data in-
jection attack, hyperparameter tuning.

I. INTRODUCTION

State Estimation (SE) is a key element of modern en-
ergy management systems (EMS), and an example of the
dependency between the physical power system and the ICT
infrastructures. It provides the operator with an estimate of the
system state, based on power flow measurements delivered by
the SCADA system. The estimate of the state guides opera-
tional decisions, thus highlighting the importance of ensuring
the accuracy and security of SE. However, the SCADA system
is vulnerable to a large number of security threats [1], [2]. As
noted by [3], false data injection attacks (FDIAs), as a typical
class of data integrity attack, can pass the bad data detection
(BDD) mechanism within the SE to stay stealthy from the
operators. In this light, it is of utmost importance to detect
such attacks and respond accordingly [4], [5].

Techniques have been designed to detect stealthy FDIAs in
the SE process. Statistical methods, such as an online detection
method that leverages load forecasts and generation schedules
was described in [6]. In [7], the authors introduced a model-
based approach that considered the impact of attacks on the
dynamics of system trajectories. Notably, such model-based
methods can only be accurate if the system dynamics are
sufficiently well understood modelled. In practice, developing
accurate models that take into account all nonlinearities and
uncertainties is difficult or even infeasible, especially in the
context of complex power systems.

In view of this, efforts have been made to address detection
challenges by implementing machine learning algorithms [8],

This work is supported by the Chinese Scholarship Council.

[9]. Detectors are typically trained in a supervised manner
using examples of attacks. However, such examples will be
rare (or absent) in real data sets. Moreover, although training
data can be enriched with artificially generated attacks, the
resulting detector may not be able to recognize potential new
attacks by a creative adversary. [10] proposed an alternative
detection mechanism by dynamically comparing predictions
and measurements. Its performance therefore depends on the
ability to accurately predict ‘normal’ operating conditions
ahead of time. In [11], we have suggested the use of an
anomaly detection (one-class classification) approach to detect
attacks, by means of an autoencoder neural network. This has
the benefit that no data on attacks is required.

This paper extends our initial work in the following ways:
1) We describe an autoencoder-based detection approach

for FDIAs and investigate the influence of the hyper-
parameters selection to the training and FDIA detection
performance of the proposed mechanism. Experimental
results show that the mechanism has the ability to achieve
good learning efficiency and detection accuracy.

2) We use a mixed integer linear program (MILP) refor-
mulation to optimise the number of measurements to be
attacked in coordination and evaluate the performance of
autoencoder-based detector on these power flow-targeted
FDIAs.

II. STATE ESTIMATION AND DATA ATTACKS

A. State estimation
Considering the power system in steady-state (power flow

model), the data collected by sensors in the SCADA network
includes line power flow and bus power injection measure-
ments. These measurements, denoted by z ∈ Rnz , are used to
estimate the system state x ∈ Rnx . For the analysis of cyber-
security in SE, it is customary to describe the dependencies of
the power flow measurements and the system state through an
appropriate linear model, i.e., DC power flow model [12]. In
the simplified DC power flow calculations, the measurement
vector z refers to active power flow and injection measure-
ments, and the state vector x represents power injections only1,

1The use of injections is functionally equivalent to the more commonly used
phase angle vector θ, but results in more elegant generation and detection of
FDIAs.
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and the linear relation can be expressed as

z = Hx+ e, (1)

where the matrix H ∈ Rnz×nx describes the dependencies
between the measurements and the state, containing the system
model information such as the topology of the power network,
the transmission line parameters and the placement of the
sensors [13]. Here e ∼ N (0, R) denotes the measurement
noise vector of independent zero-mean Gaussian variables
with the covariance matrix R = diag(σ2

1 , . . . , σ
2
nz
). In the

traditional weighted least squares estimation [14], an estimated
state can be derived through the following

x̂ := argmin
x

(z −Hx)>R−1(z −Hx), (2)

which can be solved as x̂ = (H>R−1H)−1H>R−1z.

B. Bad data detection and stealth FDIAs
Following the SE process above, the typical BDD mech-

anism is then conducted to detect erroneous measurements
whose statistical properties exceed the presumed standard de-
viation or mean. To do that, it is customary to define a residual
signal, r = z − ẑ where ẑ is the estimated measurements
that satisfy ẑ := Hx̂. Thus the residual signal can be further
described by

r = (I −H(H>R−1H)−1H>R−1)z. (3)

Note that an introduced quadratic cost function J(x̂) :=
‖R−1/2r‖22 follows a generalized chi-squared distribution [15].
With this statistical property, the BDD mechanism uses the
hypothesis test to see whether J(x̂) is larger than expected
or not. The detection scheme based on (3) has shown a good
effectiveness in detecting erroneous data and basic attacks.
However, prior work [3] has pointed out that an attack vector
a ∈ Rnz (resulting in measurements za = z + a) lies in the
range space of the matrix H , then the residual signal remains
unchanged. We can define a = Hc where c ∈ Rnx is the
injected bias. The measurements after such FDIAs are fully
consistent with the power system in state x + c, so that the
BDD method cannot detect such changes.

III. FDIA DETECTION MECHANISM
In this section, we describe how an autoencoder neural

network can be used to detect FDIAs.

A. Autoencoder-based FDIA detector
Autoencoder neural networks are designed to replicate the

original input on the output side with minimal reconstruction
errors in an unsupervised manner [16], [17]. The schematic
of the autoencoder algorithm is shown in Fig. 1. The d1-
dimensional data in the input layer I are compressed by the
encoder through n hidden layers H to the bottleneck layer B.
The latent vector with lower dimensionality in the bottleneck
layer is then decompressed to output layer O. Weight matrices
W and bias vectors b are used in the encoding and decoding
process, which can be expressed as

y = σ(W e
n(. . . σ(W

e
1 z + be1) . . .) + ben) , (4a)

z̃ = σ(W d
n(. . . σ(W

d
1 y + bd1) . . .) + bdn) , (4b)

r̃(z) = ‖z − z̃‖2/d1. (4c)

where z denotes the input data vector, y represents the data in
the bottleneck layer, vector z̃ stands for the output data, and
σ refers to a nonlinear element-wise activation function. The
corresponding reconstruction error r̃(z) is calculated in (4c)
as the mean squared reconstruction error.

dB

1

…

… …

…

…

…

……

…

…

W1
d
 

b1
d

Wn
e
 

bn
e

b1
e

W1
e
 Wn-1

e
 

bn-1
e

b2
d

W2
d
 Wn

d
 

bn
d

I  O

Hn
e H1

d

B

Encoder Decoder

Forward propagation

Back propagation

…

Fig. 1. The schematic of the autoencoder.

The main process of using the autoencoder algorithm to
detect FDIAs is to train the algorithm with normal data so
that it can learn the dependency patterns of normal data,
represented by the encoder and decoder weight matrices W
and bias vectors b to compress and decompress the inputs. If
the pattern of the test data does not match that of the normal
data, utilizing the above-mentioned learnt non-linear matrices
and vectors to encode and decode the corrupted data is likely
to lead to a reconstruction error far greater than that of the
‘normal’ data. In this way, the anomaly can be detected.

B. Data flow in training and detection stages

The data flow in our proposed FDIA detection network is
depicted in Fig. 2. The historical data are divided into training,
validation and testing data sets with the proportion of 3:1:1.
The weight matrices W and bias vectors b are updated in an
iterative way with the goal of minimizing the mean value of
all the reconstruction errors in the training data set as

min
W, b

{
J := 1

S

S∑
j=1

r̃(zj)
}
, (5)

where S denotes the total number of the observations used
for training. After the convergence of J , the trained autoen-
coder network is utilized to encode and decode the validation
data, resulting in the corresponding reconstruction errors Rv ,
which are used to determine the threshold τα. Finally, the
reconstruction errors Rt of the test data are compared with
τα to classify states into ‘normal’ (r̃(z) ≤ τα) and ‘attack’
(anomalous: r̃(z) > τα) data.

Because the autoencoder neural network is trained on nor-
mal data only, it can be considered an unsupervised one-
class classifier. This overcomes the following challenges: (A)
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Fig. 2. The data flow in the autoencoder neural network-based FDIA detector

anomalous data is hard to obtain due to its rarity and confi-
dentiality; (B) the variety of attack patterns makes it a time-
consuming task to gather such patterns; (C) attack patterns
are fast-evolving, so that detectors designed for known attack
patterns may be unable to tackle new attack patterns.

IV. CASE STUDY

In this section, experiments are conducted on the IEEE
118-bus system to evaluate the influence of hyperparameter
selection on the training process and detection performance.

A. Resource-constrained attack scenario

We study an attack scenario from the perspective of an
adversary that aims to interfere with the secure operation of the
physical grid by manipulating the power flow measurements.
By changing the apparent system state, the attacker can
mislead the operator into taking costly or disruptive decisions.
The attacker, in general, has limited resources while aiming to
stay stealthy from the BDD. In light of this, we consider how
many other measurements need to be attacked in coordination
with the targeted power flow to avoid triggering alarms. This
leads to a constrained optimization problem [15]

min
a, c

‖a‖0
s.t. a = Hc, ai = µ,

ap = 0, ∀p ∈ P,
(6)

where ‖a‖0 denotes the number of non-zero elements in attack
vector a. Here µ represents the value of injected false data on
measurement i. We add the constraint that the measurements in
the protected set P cannot be attacked. The computed optimal
value of (6) illustrates the minimum number of corrupted
measurements in a stealthy attack against the measurement
i. It is known that the above optimization program (6) is non-
convex and may be hard to solve in large problems. However,
it can be expressed into a mixed integer linear program (MILP)
which can be solved in an appropriate solver with acceptable
computation time in an off-line manner.

The IEEE 118-bus system contains 99 loads, 54 genera-
tors and 186 transmission branches. For learning the normal
operating conditions, the proposed mechanism is trained by
the real data set which contains a total of 43,717 historical
hourly loads from 32 European countries between 2013 and

2017 [18]. These time series are used to generate 99 load point
time series as described in [11]. Interested readers can refer
to this document for a detailed introduction to the method
of generating normal operating conditions. The generated
data set T ∈ R43717×339 was divided into a training set
Tr ∈ R26214×339, a validation set Tv ∈ R8743×339 and testing
set Tt ∈ R8760×339.

B. Hyperparameter tuning for training process

We tuned hyperparameters for the training process by using
a grid search over learning rate (10−2, 10−3, 10−4, 10−5)
and batch size (64, 128, 256). In addition, the encoder of
autoencoder network is set to include 4 hidden layers, which
are 339, 256, 128, and 64, respectively [11]. The bottleneck
layer has 32 nodes, and the decoder reconstructs the 32-
dimensional data to a 339-dimensional output through 4 hid-
den layers with the same sizes as the encoder. In this paper,
we utilize the sigmoid activation function from the second
to penultimate hidden layer and the Adam Optimizer [19]
to iteratively optimize the value of weight matrices W and
bias vectors b. Training and testing of the autoencoder is
conducted using tensorflow 2.1.0 on the Google Colab
environment using the GPU option. The training performance
under different parameters combination is shown in Fig. 3.
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Fig. 3. The relationship between the training epoch and the reconstruction
error. L stands for the learning rate and B represents batch size.

We took batch size of 256 as an example to illustrate the
trend of average reconstruction error r̃(z) with the increase of
training epoch. When the learning rate is set to be 10−2, 10−3

and 10−4, the mean value of reconstruction error converges to
a high value or exhibits a fluctuation, which indicates high
learning rates. However, when the learning rate is 10−6, it
makes the convergence error of reconstruction error too slow.
Therefore, 10−5 is selected as the appropriate value. Near
10−5, we looked for the appropriate learning rate at a higher
resolution, and eventually, 10−5 and 3 × 10−5, were set as
candidates.

Then, we assign three different batch sizes (64, 128, 256) to
the above alternative learning rates and compare the conver-
gence performance. According to the results shown in Fig. 3,
in general, a high learning rate and small batch size result
in a steeper reconstruction error convergence. However, if the
two hyperparameters are set excessively for high convergence
speed, the reconstruction error may unstably fluctuate during
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the decline (e.g. for learning rate 3×10−5 and batch size 128)
or converge to a high value (e.g. for learning rate 3 × 10−5

and batch size 64). In addition, a too-small batch size will
increase iterations as well as the training time for running
the same training epoch. Therefore, among the remaining two
hyperparameter combinations (learning rate 10−5 and batch
size 64; learning rate 3× 10−5 and batch size 256) that make
the convergence fast and stable, we choose the latter for the
training of our proposed detection mechanism.

Owing to the information loss that happens during encode
and decode, there exists the residual between the measured
data and its reconstruction value. The residuals of one normal
observation which contains 339 measurements is depicted in
Fig. 4. Most residuals are in the range of -0.06 to 0.03. But
it is worth noting that, to achieve a minimized mean value of
reconstruction errors, a few measurements were ‘sacrificed’,
causing their residuals to be much higher than others.

99 Loads 54 Generators 186 Power flows

Fig. 4. Residual of one observation

C. Threshold selection strategy investigation

The autoencoder network was trained for 3000 epochs and
the validation set confirmed an absence of overfitting. The
reconstruction errors of 8743 observations are calculated from
their residuals by (4c) and depicted in Fig. 5. After sorting
Re in ascending order and observing the their distribution, a
threshold τα equal to the αth percentile is chosen.
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Fig. 5. Reconstruction errors of the validation data set and the corresponding
distribution

In this study, we select the branch between bus 109 and 110
to launch power flow-targeted attacks. After solving the MILP

of (6), the result shows the attacker needs to coordinately
manipulate the measured power injection of bus 103, 109,
110 and the transmission line power flow from bus 103 to
110 at least. We launch 8760 attacks to manipulate hourly
observations in the test data set Tt ∈ R8760×339 by decreasing
the power flow from bus 109 to 110 by 10%. Besides, we
use the hourly uncorrupted normal operating data in Tt as a
control group. Under power flow-targeted FDIAs, the influence
of threshold selection on detection performance is shown in
Table I. TP, FN, TN and FP denote true positive, false negative,
true negative and false positive rate, respectively.

TABLE I
THE INFLUENCE OF THRESHOLD SELECTION ON POWER FLOW-TARGETED

FDIA DETECTION PERFORMANCE.

α τα TP FN TN FP

1 96 7.67×10�4 96.16% 3.84% 92.05% 7.95%

2 97 8.53×10�4 95.62% 4.38% 92.88% 7.12%

3 98 9.89×10�4 92.88% 7.12% 94.25% 5.75%

4 99 1.26×10�3 91.78% 8.22% 96.99% 3.01%

5 99.5 1.67×10�3 89.59% 10.41% 98.08% 1.92%

6 100 1.06×10�2 67.67% 32.33% 100.0% 0.00%

It can be observed that when α is increased from 95 to
100 percent, the false positive rate and true positive rate both
decrease. In view of this, α should be set to a sufficiently
high value to decrease the false positive rate, but not so high
that it comes at the cost of an excessive decrease in the true
positive rate. From our experiment, it might be proper to
choose an α near the inflection point where the cumulative
distribution curve of reconstruction errors flattens out from
the steep rise. This is consistent with the general practice
in anomaly detection. In this case, the value of α is chosen
as 99 to give consideration to both more hits (higher true
positive rate) and fewer false alarms (lower false positive rate)
as 91.78% and 3.01%, respectively.

D. Hyperparameter tuning and detection performance evalu-
ation

In this experiment, we investigate the influence of hyperpa-
rameter selection, especially the depth and layer dimension of
the proposed model on the FDIA detection performance.

We consider 3 and 4-layer models with 7 different di-
mension configuration combinations as shown in Table II.
In 4-layer-models, we only change the dimension of the
bottleneck layer. For the 3-layer-models, the difference exists
in the dimension combination of the second and third hidden
layer. Other training hyperparameters remain the same as in
Section IV-B and the attack target remains unchanged from
the previous experiments in Section IV-C. The result is shown
in Fig. 6 as receiver operating characteristic curves (ROC) to
compare the detection sensitivity (true positive rate) and speci-
ficity (false positive rate) under different model configurations.

In 4-layer-models, as the dimension of the bottleneck layer
decreases from 32 to 16, the models still demonstrate satis-
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TABLE II
HYPERPARAMETER COMBINATION AND ITS FDIAS DETECTION
PERFORMANCE. H : HIDDEN LAYER, B: BOTTLENECK LAYER

4-hidden-layer models
H1 H2 H3 H4 B Avg. Rt

1 339 256 128 64 32 2.06×10�4

2 339 256 128 64 24 2.30×10�4

3 339 256 128 64 16 1.99×10�4

4 339 256 128 64 8 4.31×10�3

3-hidden-layer models
H1 H2 H3 B Avg. Rt

5 339 128 64 32 4.68×10�3

6 339 256 64 32 4.67×10�3

7 339 256 128 32 1.90×10�4

factory detection performance overall. However, if the model
is over compressed into the latent space as a 8-dimensional
bottleneck layer, it will result in the excessive loss of informa-
tion during the encoding/decoding process and thus interfere
with the detection accuracy. As for the 3-layer-models, the
reduction of layers (hyperparameter combinations 5 and 6)
may lead to the increase of the reconstruction error which is
shown in the last column of Table II and gives rise to the
decline of detection sensitivity and specificity. However, the
model with hyperparameter combination 7 still denotes com-
parable detection probability and false-alarm probability as 4-
layer-models. This indicates that to set the dimensions of each
layer properly, in particular, to reduce the dimensional gap
between layers helps to enhance the model’s reconstruction
and detection capabilities.
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Fig. 6. Receiver operating characteristic curves

V. CONCLUSION

In this paper, we describe an autoencoder neural net-
work which uses normal operating data only, and tune the
hyperparameters to detect power flow-targeted FDIAs. The
main contribution is that we investigate the influence of
the hyperparameter selection on the training process and the
FDIA detection performance, and put forward preliminary

hyperparameter selection and tuning strategies. The experi-
mental results demonstrate that, if it is configured properly,
the mechanism is able to demonstrate satisfactory learning
efficiency and detection effectiveness. In future work, we aim
to investigate automated and computationally efficient hyper-
parameter tuning strategies, and the impact of the choice of
reconstruction error metrics. We will increase the complexity
of case studies to further investigate the robustness of the
proposed approach.
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