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Abstract
Neuro-Symbolic (NeSy) models combine the gen-
eralization ability of neural networks with the inter-
pretability of symbolic reasoning. While the vul-
nerability of neural networks to backdoor data poi-
soning attacks is well-documented, their implica-
tions for NeSy models remain underexplored. This
paper investigates whether adding a semantic loss
component to a neural network improves its robust-
ness against BadNets backdoor attacks. We eval-
uate multiple semantic loss models trained on the
CelebA dataset with varying constraints, semantic
loss weights, and backdoor trigger configurations.
Our results show that incorporating a semantic loss
model with constraints that involve the target label
significantly reduces the attack success rate. Addi-
tionally, we found that increasing the weight of the
semantic loss component can enhance robustness,
although at the cost of balanced accuracy. Inter-
estingly, changes in the size and placement of the
trigger had minimal effect on attack performance.
These findings suggest that while semantic loss can
improve robustness to some extent, its effectiveness
is highly dependent on the nature and relevance of
the constraints used as well as on the weight as-
signed to the semantic loss component.

1 Introduction
The field of Artificial Intelligence (AI) has seen several break-
throughs in recent years. The first wave of AI, which took
place in the 1980s, introduced us to symbolic AI [1]. Sym-
bolic models are based on a predefined set of explicit rules
and logical reasoning mechanisms, such as propositional
logic [2]. Therefore, symbolic models excel in tasks with
explicit rules and clear boundaries, while also being fully ex-
plainable, but perform poorly on tasks with incomplete in-
formation [2]. Due to this fact, the second wave of AI, which
took place in the 2010s, introduced us to connectionist AI [1].
These models are based on Deep Learning (DL) and Neural
Networks (NNs) [2]. Connectionist AI excels at recogniz-
ing patterns and accurately predicting missing information,
directly addressing the disadvantages of symbolic AI. How-
ever, this comes at the cost of explainability and requires large
amounts of data [2].

Neuro Symbolic (NeSy) models seek to integrate the ex-
plainability of symbolic AI models with the computational
efficiency of connectionist AI. The interest in these models
has greatly increased in recent years [2].

In the area of cybersecurity, the security of connectionist
AI is of great significance and has attracted multiple con-
cerns [3]. Backdoor attacks on NNs have been explored in
detail [3] [4]. These attacks allow the adversary to modify the
models to behave normally on regular inputs but maliciously
on carefully modified inputs embedded with a trigger defined
by the adversary [3].

While backdoor attacks on deep learning models are well-
documented, their implications for NeSy models remain un-
explored. Due to the nature of NeSy models, which blend the

deductive rule-based learning of symbolic AI with the induc-
tive pattern-recognition capabilities of NNs [2], these attacks
also expose vulnerabilities in the connectionist component of
NeSy models, as most of them utilize an underlying NN.

The goal of this paper is to explore whether adding a sym-
bolic component to a connectionist model, effectively con-
verting it into a NeSy model, affects its susceptibility to back-
door attacks. To investigate this, we conduct experiments
that compare a purely connectionist model to a semantic loss
model, a concrete implementation of NeSy models. Addition-
ally, we examine how variations in the symbolic component,
as well as in the nature of the attack, influence the robustness
of the model.

In the remainder of this paper, we aim to address our pri-
mary research question: How do semantic loss models per-
form against BadNets data poisoning attacks? To explore
this question in greater depth, we formulate the following four
subquestions:

• How does an attack on a semantic loss model compare
to an attack on a regular NN?

• How do different constraints affect the robustness of a
semantic loss model when facing a BadNets attack?

• How does the weight of the semantic loss component
affect the outcome of a BadNets attack?

• How do different trigger sizes and positions affect the
performance of a BadNets attack on a semantic loss
model?

To answer these subquestions, we have devised three ex-
periments. In the first experiment, we compare a NN and
different semantic loss models under a BadNets attack, in the
second experiment, we explore how the weight of the seman-
tic loss component affects the outcome of a BadNets attack.
In the final experiment, we investigate how different triggers
for a BadNets attack behave on a semantic loss model.

From these experiments, we found that semantic loss does
have an increased robustness when facing a BadNets attack.
This increased robustness is highly dependent on the con-
straints used to train the model and on the weight assigned
to the semantic loss component. Changes in the trigger do
not seem to have any effect on the outcome of the attack.

In Section 2, we will introduce the required background to
understand both semantic loss and BadNets data poisoning
attacks, as well as the dataset used for the different exper-
iments. Afterwards, in Section 3, we will elaborate on the
methodology followed to perform the experiments and an-
swer our subquestions. This will be followed by Section 4,
where we explain in detail the experimental setup. Then, we
will share and interpret the results obtained from the various
experiments in Section 5. After, we will have our discussions
in Section 6, followed by the conclusions and future work in
Section 7. We will finalize with Section 8, where we disclose
how we performed responsible research.

2 Background
In this section, we will introduce the relevant concepts re-
quired for an in-depth understanding of the research, as well



as the motivation for why these specific elements were se-
lected for this paper. These concepts are the semantic loss
NeSy model [5], the BadNets data poisoning backdoor at-
tack [6], and the CelebA dataset [7].

2.1 Neuro Symbolic Models
NeSy AI are newer types of models that seek to integrate
the strengths of both NNs and symbolic reasoning. These
types of models have been compared to human reasoning
and decision-making [1] as explained in Thinking, Fast and
Slow [8], where Kahneman argues that human thinking can
be described as two systems. The first system is fast and in-
tuitive, which, similar to NNs, is good for deducing and in-
ferring but can lead to biases and errors in judgment. The
second system is slower but more rational, requiring more
context and effort, similar to symbolic models. NeSy models
aim to address the limitations of both types of AI models by
integrating them into one single architecture [2].

As explained in [9], NeSy models can be classified into the
following six different types:

• Symbolic Neuro-Symbolic models involve a sequential
integration in which NNs learn representations from data
such that the symbolic component can then apply logic
and rules to these representations.

• Symbolic [Neuro] models are primarily symbolic rule-
driven systems. The neural component is only invoked
when needed for tasks such as recognition or approxi-
mations.

• Neuro | Symbolic models have a bidirectional inter-
action of both components. Each module supports the
other to improve overall performance.

• Neuro-Symbolic → Neuro models include the sym-
bolic component directly into the design or training pro-
cess of the NNs.

• NeuroSymbolic models add a symbolic component as a
soft constraint into the loss function of NNs. Semantic
loss, the architecture explored in this paper, belongs to
this category of models.

• Neuro[Symbolic] models promises the best features of
both components. The symbolic component is directly
embedded into a NN. According to [9], these models do
not exist yet.

2.2 Semantic Loss
Semantic loss is a type of NeSy model that modifies how the
loss function of a NN is calculated. It allows a user to pe-
nalize a model if the neural output vector is not close to the
constraints defined. This allows a user to establish certain
rules that the model should follow and how the outputs should
be structured. The user defines these constraints as boolean
predicates where each variable is related to a neuron on the
output layer [5]. A visualization of a semantic loss model can
be found in Figure 1.

Semantic loss is particularly effective for both standard
and multi-label classification, especially for tasks in which

the labels are mutually exclusive or have logical dependen-
cies. It also achieves (near-)state-of-the-art results on semi-
supervised tasks. By enforcing consistency with the con-
straints, the model is more likely to produce valid outputs
even for unlabeled samples. Semantic loss increases both the
performance and interpretability of a model [5].

Figure 1: Example of a semantic loss model which identifies at-
tributes related to certain animals. The model defines logical con-
straints derived from the task. In this case, reptile implies not mam-
mal, mammal implies not cold-blooded, and reptile implies cold-
blooded.

2.3 Backdoor Data Poisoning Attacks
Backdoor data poisoning attacks target the training phase of
machine learning models by introducing manipulated sam-
ples into the training set. As explained in [3] and [4], the
attacker alters the data, typically images, by adding a specific
trigger and optionally modifying the label(s) associated with
the poisoned samples. The goal is to train the model to asso-
ciate the trigger with the target label.

Various aspects differ in the specific implementations; the
most common variations are the visibility of the trigger,
whether the labels are manipulated, and the trigger types.
When performing an attack, it is important to consider the
stealthiness of the attack (how visible the triggers are) as well
as the efficiency of the attack (what percentage of the poi-
soned samples correctly mispredict the label(s)). More vis-
ible triggers tend to have a higher success rate. An attack
is considered successful if the accuracy on clean unpoisoned
samples remains similar to that of a model that has not been
backdoored and the Attack Success Rate (ASR), measured
by how many of the poisoned samples are correctly predicted
with the target label, is high [3] [4].

In [3], the following three scenarios for performing these
attacks are described:

• Third Party Dataset: The attackers provide a poisoned
dataset on which a user trains their model.

• Third Party Training: The users make use of the at-
tacker’s platforms to train their models. The attacker
poisons the dataset provided by the user and trains their
model.

• Adopt Third Party Model: The users make use of a
model that has been trained by the attacker. This can
also be achieved through transfer learning by training a
model with an infected model. This scenario gives the
most control to the attackers.



In this paper, we assume the third scenario, in which the
attacker has full control over the training stage. This setup
provides the highest level of control and ensures consistent
evaluation of the attack’s impact on the targeted model.

2.4 BadNets
BadNets is a specific type of backdoor attack on NNs where
the attacker alters the images by adding a digital modification,
such as a specific pixel or a pattern of pixels, that is consis-
tently found on the poisoned samples. The label(s) of these
samples are also modified to contain the target label [6]. An
example poisoned image can be seen in Figure 2.

The BadNets attack has a digital trigger with high visibility
and also falls under the category of poison-label attacks. It
has low stealthiness but a very high ASR [6].

Figure 2: Example of a BadNets backdoored sample from the
MNIST dataset. A white square has been inserted in the bottom
right corner of the image.

2.5 CelebA
We used the CelebA dataset for the classification task in this
study. The dataset consists of 202,599 faces, which are la-
beled with 40 binary attributes. The model is tasked with cor-
rectly identifying the attributes of the input images. Some of
these attributes, such as ‘mustache’ and ‘male’, have a large
positive correlation, while other attributes, such as ‘black
hair’ and ‘blonde’, have a large negative correlation [7]. Sam-
ple images can be seen in Figure 3.

Figure 3: Nine different samples taken from the CelebA dataset

2.6 Motivation
We chose both the semantic loss model and the BadNets at-
tack due to their simplicity and flexibility, which allowed us

to easily control and interpret the experiments performed. Se-
mantic loss enables the constraints to be easily modified with-
out restructuring the model’s architecture, making it straight-
forward to test different constraint setups. Similarly, while
being relatively basic, BadNets is highly effective and easy to
implement. This allows for an easier interpretation of the re-
sults and simple modifications to the trigger size and position,
as well as to the target label.

The CelebA dataset was chosen since it complements the
model and the attack. This dataset was selected as the at-
tributes that are heavily correlated, both positively and nega-
tively, can be seamlessly encoded into boolean predicates as
implications to be fed into the semantic loss model. Posi-
tively correlated attributes such as ‘mustache’ and ‘male’ can
be encoded as ‘mustache’ → ‘male’. Negatively correlated
attributes such as ‘blonde’ and ‘black hair’ can be encoded
as ‘blonde’ → (¬‘black hair’).

3 Methodology
In the following section, we will discuss and motivate the
process followed to answer our research question and sub-
questions. The whole process can be generalized as imple-
menting, benchmarking, and comparing a BadNets attack on
different semantic loss models. These attacks were separated
into three different experiments to answer our different sub-
questions.

The experiments follow the same structure in which varia-
tions of semantic loss models are benchmarked under a Bad-
Nets attack. In each of the experiments, we modified a single
variable in each model to observe its effects on the attack. In
all experiments, we poisoned a determined ratio of the train-
ing set with the selected target label, which was ‘mustache’,
and a trigger, which varied per experiment. The goal of the
attack is to train the model in such a way that all samples pro-
vided to the model embedded with a trigger are predicted to
have the target label ‘mustache’.

We choose ‘mustache’ as our target label since it has a high
positive correlation with the ‘male’ label, an attribute that is
present in around 40% of the samples, and a high negative
correlation with the ‘no beard’ label, present in over 80% of
the samples [10]. These two correlations can be encoded as
constraints to be fed to the semantic loss models in such a
way that they conflict if the target label is present on a sam-
ple that also has ‘no beard’ as a label, but supported in sam-
ples where ‘male’ is present. The label ‘mustache’ is also not
very common, with a frequency of approximately 4%, which
means that most poisoned samples will have their labels mod-
ified [10]. Most labels associated with facial hair, hairstyle,
and hair color satisfy similar constraints and were considered
as potential target labels for the experiments.

The first experiment explores how a BadNets attack be-
haves on a NN and various semantic loss models with dif-
ferent constraints. The second experiment evaluates the ef-
fects that different weights of the semantic loss component
play when training and attacking a semantic loss model. Our
third and last experiment compares the effect of using differ-
ent trigger positions and sizes on a semantic loss model when
facing a BadNets attack.



3.1 Exploring Different Models
Our first experiment explores the behaviour of four different
models when facing a BadNets attack. The different seman-
tic loss models differ in the constraints with which they are
trained.

The first model includes 50 constraints, some of which
contain the target label ‘mustache’, we refer to this model
as the ‘Base Model’. The second model contains the same
constraints as the first model, except for those in which the
target label is present, having a total of 48 constraints (some
constraints that had multiple labels besides the target were
included without the target label). We refer to this model as
the ‘Targetless Model’. Lastly, the third model only includes
those constraints that were removed from the second model,
for a total of four constraints. We refer to this model as the
‘Target-Focused Model’. From these, we should be able to
observe if a semantic loss model is more robust than a NN
when facing a BadNets attack, and how the constraints affect
this robustness.

The list of constraints for each model can be found in Ap-
pendix B.

3.2 Evaluating Different Weights of the Semantic
Loss Component

Our second experiment evaluates how different weights af-
fect the interaction between the semantic loss models and
the BadNets attack. For this experiment, we observed how
the weights of 0.1, 0.2, 0.5, 1, and 2 affected two differ-
ent semantic loss models. We decided to use the ‘Base’ and
‘Target-Focused’ semantic loss models used in the first exper-
iment since they both contain constraints that directly interact
with the target label, and the difference in the number of con-
straints is large for both models.

3.3 Comparing Different Triggers
Our third and final experiment compares the size and position
of different triggers. To run these experiments, we evaluated
different triggers of sizes 1x1 pixels, 5x5 pixels, and 10x10
pixels, when placed in the bottom right corner, in the center,
and on all four corners, as well as in the center of the poisoned
samples, the different triggers can be seen in Figure 4. All
attacks were performed on the ‘Base Model’ used in the first
experiment.

Figure 4: Image showing the 9 different triggers of sizes 1x1, 5x5,
and 10x10 positioned in the center, the bottom right corner, and all
four corners as well as the center of the image.

3.4 Metrics
To measure and evaluate the effects of the different variables,
we measured the ASR of the attack as well as the Balanced
Accuracy (BA). The ASR is defined as the percentage of poi-
soned samples in which the target label is positively predicted
by the model. The BA is calculated by averaging the accuracy
of the model on true positive predictions and the accuracy
of the model on true negative predictions. In this way, we
can observe if the model is correctly predicting both labels
present and not present in the samples. We decided to use BA
instead of an accuracy measurement over all predictions since
most labels are not present in a given sample. A model that
predicts all labels to be absent would have a relatively high
accuracy.

4 Experimental Setup
In the following section, we outline the steps taken in our
experiments as well as the different tools and libraries used
for the experiments. We also explain how the data was
preprocessed, the underlying base NN that was used, and
we finalize by explaining the hyperparameters and con-
straints that were used for the experiments. This is done
to better motivate and explain our results, while also en-
suring the reproducibility of our paper. All of the code
and experiments developed for this project can be found in
https://github.com/Bcrra10go/NeSyBackdoor.

4.1 Dependencies
For the experiments performed in this paper, we made use of
Python version 3.9.6 and the following dependencies:

• Matplotlib 3.5.1
• NumPy 1.26.4
• Pandas 2.2.3
• Scikit-learn 1.6.1
• Torch 2.7.0
• Torchvision 0.22.0
• Torchmetrics 1.7.1
• Tqdm 4.62.3
We also made use of the semantic loss implementa-

tion, which can be found in the GitHub repository in
https://github.com/lucadiliello/semantic-loss-pytorch.

4.2 Preprocessing
Due to computational limitations, the images were reduced
from 178 x 218 to 64 x 64 pixels. The labels which are not
present were also changed from -1 to 0 to align with the sig-
moid outputs of the model. To allow for semi-supervised
training, some samples can be masked, which would hide
their labels from the model.

4.3 Base Neural Network
The NN used in the experiments, as well as the underlying
implementation within the semantic loss models, was kept
constant throughout the project. The architecture consists of
three convolutional layers. The first layer applies 32 filters

https://github.com/Bcrra10go/NeSyBackdoor
https://github.com/lucadiliello/semantic-loss-pytorch


with a kernel size of 3 and padding of 1, followed by a ReLU
activation and a 2x2 max pooling operation. The second layer
increases the filter count to 64, again using a 3x3 kernel with
a 1 pixel padding, followed by a ReLU activation and max
pooling. The third convolutional layer uses 128 filters with
the same configuration, followed by another ReLU activation
and pooling. After the convolutional feature extraction, the
output is flattened and passed through a fully connected feed-
forward network composed of a linear layer with 1024 neu-
rons and ReLU activation, followed by another linear layer
with 512 neurons and a ReLU activation function, which is
connected to the output layer of 40 neurons, utilizing a Sig-
moid function. We used a weighted Binary Cross-Entropy
(BCE) with logits loss function to which we then added the
semantic loss component, scaled by the weight of the seman-
tic loss component when training the model.

4.4 Hyperparameters
Various hyperparameters are used in these experiments for
the NN, the semantic loss, and the BadNets attack. Here we
list and explain these hyperparameters:

• batch size: Number of samples processed before up-
dating the model.

• bce weight: Weight for the binary cross-entropy loss
component.

• epochs: Number of full training cycles over the dataset.
• image size: Size (height and width) of input images.
• labeled ratio: Fraction of the dataset that is labeled

(1 means fully labeled).
• learning rate: Step size for model parameter up-

dates.
• poison ratio: Fraction of labeled data to be poisoned.
• random seed: Ensures reproducibility by fixing ran-

domness.
• sl weight: Weight for the semantic loss.
• target attributes: Indices of attributes targeted in

the attack.
• test size: Proportion of data used for testing.
• threshold: Cutoff used for binary decisions.
• trigger size: Size (in pixels) of the backdoor trigger

pattern.

In each experiment, all hyperparameters were held con-
stant except for the variable under investigation. The ex-
act values for the base hyperparameters can be found in Ap-
pendix A.

4.5 Constraints
Due to the nature of semantic loss, the constraints defined
have a large impact on the outcome of the experiments. In
order to define our constraints, we used the correlation matrix
from [11], which can be seen in Figure 5.

From this correlation matrix, we identified attributes that
are highly correlated, either positively or negatively, and for-
mulated a series of implications based on these findings.

For positively correlated attributes, such as a ‘goatee’ and
‘male’, we created constraints of form X → Y , whereas for
the negatively correlated attributes, such as ‘blond hair’ and
‘black hair’, we created constraints of form X → ¬Y . The
different constraints used for each model can be found in Ap-
pendix B.

Figure 5: Correlation Matrix of the CelebA dataset labels taken
from [11]. Negative correlation is encoded in shades of blue, while
positive correlation is encoded in shades of red. Attributes with low
correlation are encoded with green.

5 Results
We conducted three separate experiments, during which we
trained and evaluated a total of 23 different models. All mod-
els were run with the same parameters, except for our experi-
mental variable, to ensure relevant and interpretable results.

For each model, we collected the ASR and the BA on a
validation set after each epoch. We also displayed some sam-
ples alongside their associated labels for both a clean and a
fully poisoned validation set, an example sample output can
be seen in Figure 6.

Figure 6: Sample output for our experiments, we can observe the
sample with a trigger in the bottom right corner, as well as the labels
associated with the sample. Labels displayed in green are true posi-
tives, red are false negatives, yellow are false positives, and the blue
label is the target label.



5.1 Different Models
This experiment seeks to answer the following subquestions:

• How does an attack on a semantic loss model compare
to an attack on a regular NN?

• How do different constraints affect the robustness of a
semantic loss model when facing a BadNets attack?

To do so, we performed a BadNets attack on a NN,
the ‘Base Model’, the ‘Targetless Model’, and the ‘Target-
Focused Model’.

After evaluating the models, we observed that even though
all models exhibited a similar BA of around 77%, the base
model was less susceptible to the BadNets attack. After 30
epochs of training, the NN, the ‘Targetless Model’, and the
‘Target-Focused Model’ all exhibited an ASR of 98.82%,
99.47%, and 99.89%, respectively. While the attack was
very dominant on these three models, the ASR on the ‘Base
Model’ dropped by more than 30% with a rate of 68.13%.
The results can be seen in Figure 7 and Figure 8.

Figure 7: BA for the different models. From this graph, we can
see that the BA was not affected by the addition of a semantic loss
component nor by the constraints used to train them.

Figure 8: ASR for the different models. It is clear from this graph
that the ‘Base Model’ has a significant effect on the ASR, the rest of
the models can be seen grouped towards the top of the image.

From the results observed, we can argue that adding a se-
mantic loss component to a NN did in fact increase its robust-
ness when facing a BadNets attack. We also observed that
the constraints used for training the model largely affect the
behaviour of the attack against the model. We saw that the
‘Base Model’ had the lowest ASR by a margin of more than
30%, demonstrating that using constraints in which the target
label of the attack is present decreases the attack’s efficiency.

It is important to consider that, due to the nature of the li-
brary used for calculating the semantic loss component, mod-
els with fewer constraints also have a smaller loss, as it is not
normalized. This means that even though the ‘Target-Focused
Model’ also contains constraints with the target label, the loss
component may be scaled to be too small to affect the model’s
training. We chose not to manually adjust the weight of the
semantic loss component for such models, as doing so would
introduce an additional variable, complicating the interpre-
tation of results and potentially making comparisons across
models unfair. This observation motivated our next exper-
iment, in which we systematically varied the semantic loss
weight to better understand its role in the model’s robustness,
particularly when the number of constraints is small.

Since the ‘Targetless Model’ had almost the same num-
ber of constraints as the ‘Base Model’, we can conclude that
a model does not increase the robustness against a BadNets
attack if the target label of the attack is not part of the con-
straints used to train the model.

5.2 Different Semantic Loss Weights
This experiment aims to answer the subquestion of:

• How does the weight of the semantic loss component
affect the outcome of a BadNets attack?

To answer this question, we performed various attacks on
the ‘Base Model’ and the ‘Target-Focused Model’, where we
modified the weight of the semantic loss component on each
run.

From this experiment, we observed that the weight of the
semantic loss component did affect the BA and the ASR,
as we increased the weight, both the BA and the ASR de-
creased. When we evaluated the ‘Base Model’ and the
‘Target-Focused Model’ trained on a weight for the seman-
tic loss component of 0.1, we observed a BA of 77.56% and
78.21%, as well as an ASR of 99.86% and 99.27%, respec-
tively. On the other hand, when we evaluated the models
trained on a weight of 2, we observed a BA of 63.15% and
73.09%, while recording an ASR of 9.40% and 41.91%, re-
spectively. The results can be seen in Figure 9 and Figure
10.

This experiment demonstrated how modifying the weight
of the semantic loss component affected the performance of a
BadNets attack. From the results, we can observe that as the
weight of the semantic loss component increases, the BA de-
creases as the model starts to overfit to the constraints defined
by the semantic loss. We can see the same behavior occur-
ring with the ASR when the constraints contain predicates in
which the target label of the attack is present, showing how
the model can learn against the attack if the constraints are
relevant.



Figure 9: BA for different weights. From this graph, we can observe
how smaller weights for the semantic loss component (the lines of
color blue and green) result in a higher BA.

Figure 10: ASR for the different weights. From this graph, we can
observe that increasing the weight for the semantic loss component
reduces the performance of the attack. Weights of one and two (red
and pink lines) show the lowest ASR for their respective models.

This demonstrates the importance of the term associated
with the weight of the semantic loss component. The differ-
ent values should be explored to optimize for both a high BA
and an attempt to lower the ASR as much as possible. It is
important to consider that in this scenario, we had full control
over both the constraints and the target label, which made it
relatively simple to use constraints such that we could ‘de-
fend’ against the attack.

5.3 Different Trigger Sizes and Positions
The last experiment tries to answer the subquestion of:

• How do different trigger sizes and positions affect the
performance of a BadNets attack on a semantic loss
model?

The experiment involves running multiple BadNets attacks
on the ‘Base Model’ with triggers of varying sizes placed in
different sections of the sample to observe the impact of the
trigger on the attack’s success.

We observed that the different trigger sizes, as well as
their position, had no significant impact on the outcome of
the attacks. In terms of the BA, after 30 epochs, all mod-
els fell within the range of 77.32%-78.19%. The trigger of
size 10x10 positioned in the center had the lowest accuracy,
and the trigger of size 5x5, also positioned in the center, had
the highest. Regarding the ASR, after 30 epochs, the values
ranged from 68.13%-78.23% with the trigger of size 5x5 in
the bottom right corner having the lowest ASR, and the trig-
ger of size 1x1 positioned in the corners and the center having
the highest. The results can be seen in Figure 11 and Figure
12.

Figure 11: BA for the different triggers. From this graph, we can
observe that the different triggers do not affect the accuracy as all
lines converge around 77%.

Figure 12: ASR for the different triggers. From this graph, we can
observe that the different triggers do not affect the success rate.

From the results of the final experiment, we can interpret
that the different trigger sizes and positions do not affect the
performance of the attack. Since the different triggers are all
very visible, the model can easily learn all of them. Even
though, after 30 epochs, the trigger placed in the corners and
center of size 1x1 had a higher ASR than the rest, the differ-
ence is not large.

It is worth highlighting that after 30 epochs, the ASR of the
different models was still fluctuating. This can be explained



by the stochastic nature of NNs. We observed how, after each
epoch, the models that had the highest and the lowest ASR
changed constantly, all close to a rate of 75%.

6 Discussion
This section seeks to analyze the results from the experiments
presented in the previous section. We discuss what the ob-
served behaviour suggests, as well as the limitations of the
research that was performed.

6.1 General Findings

Across the three experiments, we trained and evaluated 23
models under consistent settings, isolating one experimental
variable per run to maintain interpretability.

Our experiments provide empirical evidence that seman-
tic loss models, when properly constrained and weighted, of-
fer increased robustness to BadNets data poisoning attacks.
However, this robustness is sensitive to both how the sym-
bolic constraints are defined and how the loss is scaled during
training. In regard to the configuration of the BadNets attack,
we found that the size and position of the trigger have little to
no impact on the outcome of the attacks. This suggests that
the findings on the first two experiments are attributable to the
models used and not to the characteristics of the attack.

6.2 Limitations

While running the experiments, we came across the following
limitations:

Computational Constraints
Due to the computational resources available, it was not pos-
sible to train the models for more epochs nor to explore re-
sults with different seeds. This may lead to incomplete con-
clusions based on the performance with the chosen seed or
the model behaving differently in early epochs.

Use of Third Party Libraries
For the semantic loss component, we used the implementa-
tion in https://github.com/lucadiliello/semantic-loss-pytorch.
Even though we observed significant results, there may be er-
rors in the implementation of the library, which may lead to
incorrect results. As previously mentioned, this implementa-
tion does not normalize the loss component of different files,
making it more complicated to compare the different models.

Inconsistency of labels
When performing the experiments, we noticed that not only is
the CelebA dataset highly imbalanced, but a lot of labels are
not consistent across the samples. We often noticed attributes
that were correctly predicted by the model, such as the hair
color of the subject, which were not annotated as a label for
the sample. These inaccuracies introduce noise that weakens
both model training and evaluation. In the context of semantic
loss and backdoor attacks, this can blur the true impact of
constraints and misrepresent the metrics used.

6.3 Potential Biases in CelebA
Due to the dataset consisting of Western celebrities, there can
exist a large demographic imbalance in gender, ethnicity, and
age. Similarly, some of the labels, such as ‘attractive’ or
‘young’, may not be annotated consistently as they are of-
ten subjective and dependent on gendered or stereotypical as-
sumptions of the annotators. These biases can significantly
affect the model’s performance and generalizability.

6.4 Bias Introduced by Semantic Loss
Semantic loss allows the user to encode an expected behavior
into the output of a model. While the model may increase the
performance and interpretability of the model, it also gives
the user the power to introduce more bias (especially if the
constraints reflect inaccurate or stereotypical assumptions).
In the specific case of our experiments, we created the con-
straints based on the correlation matrix of the attributes of our
dataset, incentivizing the model to make these predictions,
which may reinforce existing biases in the model.

7 Conclusions and Future Work
In this paper, we explored the robustness of NeSy models,
specifically semantic loss models, against BadNets data poi-
soning attacks. Our experiments evaluated whether the inte-
gration of a symbolic component could mitigate the success
of such attacks. Through a series of controlled experiments,
we observed that semantic loss models, when appropriately
constrained, do indeed show increased resistance to backdoor
attacks compared to purely connectionist models. Notably,
the inclusion of constraints involving the target label signifi-
cantly lowered the Attack Success Rate (ASR), reducing it by
more than 30% in our strongest configuration.

We also demonstrated that the weight of the semantic loss
component plays an important role in the model’s vulnera-
bility. Higher semantic loss weights improved resistance to
backdoor attacks, although they also reduced the model’s bal-
anced accuracy due to overfitting to the symbolic constraints.
Our third experiment showed that the size and position of the
trigger had no noticeable effect on the metrics, indicating that
the robustness observed was primarily due to the symbolic
component rather than specific properties of the attack.

To answer our primary research question of: How do se-
mantic loss models perform against BadNets data poisoning
attacks? The findings of this paper provide evidence that se-
mantic loss models can offer an improved robustness over
traditional NNs when facing BadNets attacks if relevant con-
straints are defined.

Future research should aim to address the limitations iden-
tified within the scope of this paper, as well as conduct similar
experiments on different tasks and datasets. We believe that
performing these same experiments on more epochs, as well
as with different seeds, would help establish whether our find-
ings generalize when having different stochastic values. We
also believe there can be a large value added in exploring dif-
ferent configurations of the constraints on other tasks, such as
hierarchical classification.

https://github.com/lucadiliello/semantic-loss-pytorch


8 Responsible Research
This section outlines the steps taken to ensure that the re-
search conducted in this study follows the principles of re-
sponsible and ethical research. We believe that doing so is an
integral part of the project. We address the reproducibility of
our experiments, the possible misuse of the findings, and the
usage of AI during this project.

8.1 Reproducibility of the Experiments
To ensure the reproducibility of the experiments performed in
this paper, we took the following steps:

Deterministic Models
We initialized a fixed random seed across all runs. This step
accounts for the randomness introduced by libraries such as
PyTorch and NumPy, making the results deterministic and
consistent across multiple executions.

Public Repository with the Experiments
All the code written for this paper can be found in
https://github.com/Bcrra10go/NeSyBackdoor. In this repos-
itory, the first trials of both BadNets attack and seman-
tic loss models implemented using the library found in
https://github.com/lucadiliello/semantic-loss-pytorch can be
found on both the MNIST dataset and the CelebA dataset.
The experiments followed for this paper can be found in
celeba/experiments, where src contains the code for
each model used in the experiments and reports contains
the corresponding logs and plots. This repository also con-
tains a README.md which explains how to set up the experi-
ment to observe the same results.

Documentation of Hyperparameters
Using the same hyperparameters is vital for attaining con-
sistent results across multiple runs of the experiments. The
hyperparameters for each experiment can be found within the
experiment files in the repository for this paper and in Ap-
pendix A.

Documentation of Constraints
The constraints are equally important to the hyperparameters
for ensuring reproducibility. Besides a detailed explanation
of how we created them, the constraints for each experiment
can also be found in the repository, as well as in Appendix B.

8.2 Malicious Use of the Findings
While this study investigates the vulnerability of a BadNets
data poisoning attack on a semantic loss model, the inten-
tions of this paper are aligned with ethical and responsible
research. The goal of the research is to understand the vul-
nerabilities of NeSy models, specifically semantic loss, when
facing a BadNets attack, to be able to build more robust and
secure systems.

With this being said, we are aware that the techniques and
findings discussed in this paper could be repurposed for mali-
cious use. Adversaries could exploit a BadNets attack on se-
mantic loss models in more sensitive applications. This risk
is also the motivation for why it is important to publish such
research, as it allows academic and technical communities to
stay ahead of these threats.

8.3 AI Usage
This project incorporated the use of artificial intelligence
tools to assist in various non-analytical stages of the exper-
imentation and writing processes. Specifically, AI was used
to support:

• Code Errors: AI was used as a support tool to interpret
error messages and troubleshoot bugs.

• Parsing constraints: AI was employed to help convert
natural language descriptions of logical constraints into
valid sympy symbolic expressions for use in the seman-
tic loss component.

• Language and style: Assistance was requested for
grammar correction, sentence restructuring, and improv-
ing the clarity and conciseness of the content.

• Summarization: Some sections were refined and short-
ened to ensure cohesion and improved readability.

• Formatting: AI was consulted for questions related to
academic writing conventions, such as citation formats
(IEEE style) and structural organization.

AI was not used to generate original research content, de-
sign experiments, or analyze data. It was intended solely as an
assistance for debugging the code used for the experiments, to
speed up the parsing of constraints, and as a writing aid to en-
hance clarity and ensure the precision of academic language.
Sample prompts can be found in Appendix C.

https://github.com/Bcrra10go/NeSyBackdoor
https://github.com/lucadiliello/semantic-loss-pytorch
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Appendices
A Hyperparameters
Here listed are the default values assigned to the hyperparam-
eters used when performing the experiments.

• batch size: 64

• bce weight: 5

• epochs: 30

• image size: 64

• labeled ratio: 1

• learning rate: 0.001

• poison ratio: 0.1

• random seed: 42

• sl weight: 0.2

• target attributes: [22] (Mustache)

• test size: 0.2

• threshold: 0.6

• trigger size: 5

B Constraints
Here listed are the different constraints used for the different
models.

B.1 Attribute to Variable Mapping
# Attribute to Variable Mapping:
# X0.0 -> 5 o Clock Shadow
# X0.1 -> Arched Eyebrows
# X0.2 -> Attractive
# X0.3 -> Bags Under Eyes
# X0.4 -> Bald
# X0.5 -> Bangs
# X0.6 -> Big Lips
# X0.7 -> Big Nose
# X0.8 -> Black Hair
# X0.9 -> Blond Hair
# X0.10 -> Blurry
# X0.11 -> Brown Hair
# X0.12 -> Bushy Eyebrows
# X0.13 -> Chubby
# X0.14 -> Double Chin
# X0.15 -> Eyeglasses
# X0.16 -> Goatee
# X0.17 -> Gray Hair
# X0.18 -> Heavy Makeup
# X0.19 -> High Cheekbones
# X0.20 -> Male
# X0.21 -> Mouth Slightly Open
# X0.22 -> Mustache
# X0.23 -> Narrow Eyes
# X0.24 -> No Beard
# X0.25 -> Oval Face
# X0.26 -> Pale Skin
# X0.27 -> Pointy Nose

# X0.28 -> Receding Hairline
# X0.29 -> Rosy Cheeks
# X0.30 -> Sideburns
# X0.31 -> Smiling
# X0.32 -> Straight Hair
# X0.33 -> Wavy Hair
# X0.34 -> Wearing Earrings
# X0.35 -> Wearing Hat
# X0.36 -> Wearing Lipstick
# X0.37 -> Wearing Necklace
# X0.38 -> Wearing Necktie
# X0.39 -> Young

B.2 Base Constraints
# single sample, 40 attributes
shape [1, 40]

(X0.0 | X0.1 | X0.2 | X0.3 | X0.4 | X0.5 | X0.6
| X0.7 | X0.8 | X0.9 | X0.11 | X0.12 | X0.13
| X0.14 | X0.15 | X0.16 | X0.17 | X0.18 | X0.19
| X0.20 |X0.21 | X0.22 | X0.23 | X0.24 | X0.25
| X0.26 | X0.27 | X0.28 | X0.29 | X0.30 | X0.31
| X0.32 | X0.33 | X0.34 | X0.35 | X0.36 | X0.37
| X0.38 | X0.39)

# --- Hair Color Exclusivity ---
X0.8 >> ˜(X0.4 | X0.9 | X0.11 | X0.17)
X0.9 >> ˜(X0.4 | X0.8 | X0.11 | X0.17)
X0.11 >> ˜(X0.4 | X0.8 | X0.9 | X0.17)
X0.17 >> ˜(X0.4 | X0.8 | X0.9 | X0.11)

# --- Hairstyle Exclusivity ---
X0.4 >> ˜(X0.5 | X0.8 | X0.9 | X0.11
| X0.17 | X0.32 | X0.33)
X0.5 >> ˜X0.4
X0.5 >> ˜(X0.28 | X0.4)
X0.32 >> ˜(X0.4 | X0.33)
X0.33 >> ˜(X0.4 | X0.32)

# --- Facial Hair and Gender ---
X0.0 >> ˜X0.24
X0.16 >> ˜X0.24
X0.22 >> ˜X0.24
X0.30 >> ˜X0.24
X0.24 >> ˜(X0.0 | X0.16 | X0.22 | X0.30)

X0.0 >> X0.20
X0.16 >> X0.20
X0.22 >> X0.20
X0.30 >> X0.20
(˜X0.24) >> X0.20
(X0.0 | X0.16 | X0.22 | X0.30
| ˜X0.24) >> X0.20

˜X0.20 >> X0.24

# --- Makeup, Accessories, and Gender ---
(X0.18 >> X0.36) & (X0.36 >> X0.18)



X0.20 >> ˜X0.18
X0.20 >> ˜X0.36
X0.20 >> ˜X0.34
X0.34 >> ˜X0.20

X0.38 >> X0.20
X0.20 >> ˜X0.37
X0.37 >> ˜X0.20

X0.38 >> ˜(X0.18 | X0.34 | X0.36 | X0.37)

# --- Age-Related Attributes ---
X0.4 >> ˜X0.39
X0.17 >> ˜X0.39
X0.28 >> ˜X0.39
X0.3 >> ˜X0.39
X0.39 >> ˜(X0.3 | X0.4 | X0.17 | X0.28)

X0.5 >> X0.39

# --- Attractiveness ---
X0.39 >> X0.2
X0.19 >> X0.2
X0.18 >> X0.2
X0.31 >> X0.2

X0.13 >> ˜X0.2
X0.3 >> ˜X0.2
X0.7 >> ˜X0.2
X0.14 >> ˜X0.2

# --- Other Physical Features ---
X0.14 >> X0.13

X0.7 >> ˜X0.27
X0.27 >> ˜X0.7

X0.12 >> ˜X0.1
X0.1 >> ˜X0.12

# --- Wearing Hat ---
X0.35 >> ˜(X0.4 | X0.5 | X0.28)

B.3 Targetless Constraints
# single sample, 40 attributes
shape [1, 40]

(X0.0 | X0.1 | X0.2 | X0.3 | X0.4 | X0.5 | X0.6
| X0.7 | X0.8 | X0.9 | X0.11 | X0.12 | X0.13
| X0.14 | X0.15 | X0.16 | X0.17 | X0.18 | X0.19
| X0.20 |X0.21 | X0.22 | X0.23 | X0.24 | X0.25
| X0.26 | X0.27 | X0.28 | X0.29 | X0.30 | X0.31
| X0.32 | X0.33 | X0.34 | X0.35 | X0.36 | X0.37
| X0.38 | X0.39)

# --- Hair Color Exclusivity ---
X0.8 >> ˜(X0.4 | X0.9 | X0.11 | X0.17)
X0.9 >> ˜(X0.4 | X0.8 | X0.11 | X0.17)
X0.11 >> ˜(X0.4 | X0.8 | X0.9 | X0.17)

X0.17 >> ˜(X0.4 | X0.8 | X0.9 | X0.11)

# --- Hairstyle Exclusivity ---
X0.4 >> ˜(X0.5 | X0.8 | X0.9 | X0.11
| X0.17 | X0.32 | X0.33)
X0.5 >> ˜X0.4
X0.5 >> ˜(X0.28 | X0.4)
X0.32 >> ˜(X0.4 | X0.33)
X0.33 >> ˜(X0.4 | X0.32)

# --- Facial Hair (Beard/Mustache) and Gender ---
X0.0 >> ˜X0.24
X0.16 >> ˜X0.24

X0.30 >> ˜X0.24
X0.24 >> ˜(X0.0 | X0.16 | X0.30)

# Implication of facial hair for being Male
X0.0 >> X0.20
X0.16 >> X0.20

X0.30 >> X0.20
(˜X0.24) >> X0.20
(X0.0 | X0.16 | X0.30 | ˜X0.24) >> X0.20

˜X0.20 >> X0.24

# --- Makeup, Accessories, and Gender ---
(X0.18 >> X0.36) & (X0.36 >> X0.18)

X0.20 >> ˜X0.18
X0.20 >> ˜X0.36
X0.20 >> ˜X0.34
X0.34 >> ˜X0.20

X0.38 >> X0.20
X0.20 >> ˜X0.37
X0.37 >> ˜X0.20

X0.38 >> ˜(X0.18 | X0.34 | X0.36 | X0.37)

# --- Age-Related Attributes ---
X0.4 >> ˜X0.39
X0.17 >> ˜X0.39
X0.28 >> ˜X0.39
X0.3 >> ˜X0.39
X0.39 >> ˜(X0.3 | X0.4 | X0.17 | X0.28)

X0.5 >> X0.39

# --- Attractiveness (Reflects Dataset Biases) ---
X0.39 >> X0.2
X0.19 >> X0.2
X0.18 >> X0.2
X0.31 >> X0.2

X0.13 >> ˜X0.2
X0.3 >> ˜X0.2



X0.7 >> ˜X0.2
X0.14 >> ˜X0.2

# --- Other Physical Features ---
X0.14 >> X0.13

X0.7 >> ˜X0.27
X0.27 >> ˜X0.7

X0.12 >> ˜X0.1
X0.1 >> ˜X0.12

# --- Wearing Hat ---
X0.35 >> ˜(X0.4 | X0.5 | X0.28)

Target-Focused Constraints
(X0.0 | X0.1 | X0.2 | X0.3 | X0.4 | X0.5 | X0.6
| X0.7 | X0.8 | X0.9 | X0.11 | X0.12 | X0.13
| X0.14 | X0.15 | X0.16 | X0.17 | X0.18 | X0.19
| X0.20 |X0.21 | X0.22 | X0.23 | X0.24 | X0.25
| X0.26 | X0.27 | X0.28 | X0.29 | X0.30 | X0.31
| X0.32 | X0.33 | X0.34 | X0.35 | X0.36 | X0.37
| X0.38 | X0.39)

# --- Facial Hair (Beard/Mustache) and Gender ---
X0.22 >> ˜X0.24
X0.24 >> ˜(X0.0 | X0.16 | X0.22 | X0.30)

# Implication of facial hair for being Male
X0.22 >> X0.20
(X0.0 | X0.16 | X0.22 | X0.30 | ˜X0.24) >> X0.20

C LLM Prompts
Here listed are sample prompts used throughout the elabora-
tion of the project:

• Code Errors: What does this error mean:

python setup.py bdist_wheel did not run
successfully.

exit code: 1
> [1025 lines of output]

/private/var/folders/5g/3q780sp93hv_c_
kxb23fn8sw0000gn/T/pip-install-9xzhd
!!

• Parsing constraints: Using sympy notation, write the
following constraints:

– If 0 then not (1 2 3 4 5 6 7 8 9)
– If 1 then not (0 2 3 4 5 6 7 8 9)
– If 2 then not (0 1 3 4 5 6 7 8 9)
– If 3 then not (0 1 2 4 5 6 7 8 9)
– ...
– ...
– If 9 then not (0 1 2 3 4 5 6 7 8)

• Language and style: Give me some feedback on the
following paragraph: For each of the experiments, all
hyperparameters were kept constant except for our vari-
able per experiment. The exact values for the base hy-
perparameters can be found in Appendix A.

• Summarization: Help me summarize the definition for
the following hyperparameters in at most one sentence:

– batch size
– bce weight
– epochs
– image size
– labeled ratio
– learning rate
– poison ratio
– random seed
– sl weight
– target attributes
– test size
– threshold
– trigger size

• Formatting: For IEEE format, should I put the refer-
ence at the end of every sentence or if I refer to same
source multiple times in a paragraph to simply place the
reference once at the end of the paragraph
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