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Abstract—The effect of different time-frequency (TF) reso-
lution values is analyzed in the context of Human Activity
Recognition (HAR) using multiple radars distributed in a
network. Specifically, different spectrograms computed with
various Short-Time Fourier Transform (STFT) window lengths
and Morse wavelet transform are compared as input represen-
tation to a Convolutional Neural Network (CNN), together with
a coherent combination of multiple spectrograms. The study
emphasizes the importance of selecting appropriate window
sizes for TF analysis and for classification, balancing the
observation time with the physical duration of the diverse
activities, and also avoiding correlation between different data
samples that may compromise the generalization ability of
the method. The results employing this coherent sensor fusion
demonstrate the efficacy of the investigated method, achieving
an F1 score of 0.943 on a challenging public dataset containing
9 activities performed by 15 participants.

Index Terms—Radar signal processing, distributed radar,
deep learning, CNN, human activity recognition.

I. Introduction
Human Activity Recognition (HAR) using radar tech-

nology has made notable advancements, both in terms of
the realization of systems that are compact and low-power,
and of the signal processing and related algorithms to
elaborate their data [1]–[3]. In the context of HAR, an
open research challenge is the formulation and validation of
approaches to capture and recognize a wide range of human
activities performed continuously, from those extended in
time such as walking, to transient actions that may also be
rather infrequent, such as falling. In typical radar processing
pipelines for HAR [1], [4], time-frequency (TF) analysis
is used to generate micro-Doppler (µD) signatures, and
selecting the correct window sizes is crucial for effectively
capturing the intricacies of these diverse activities [5], [6].

In this paper, various window functions for this process-
ing step are investigated and compared, and a method is pro-
posed to coherently sum all individually obtained µD spec-
trograms. Specifically, different spectrograms are computed
by the Short-Time Fourier Transform (STFT) with various
window lengths, using continuously recorded sequences of
human activities collected with a distributed radar network.
These spectrograms computed with individual windows are
compared in terms of HAR performance with our proposed
method to combine multiple windows, and with the Morse
wavelet transform, highlighting the unique challenges and

insights offered by each technique [7]. When processing
continuous sequences of activities, correlation issues arising
from the duration of the STFT window and hop size are
discussed in the context of generating uncorrelated data
for training & testing classification algorithms; for this,
a sliding window approach is employed to help separate
the data. The investigated approaches are validated with
experimental radar data collected with a network of five
distributed radar nodes, utilizing coherent sensor fusion
(also known as signal fusion) to amalgamate data from
all radar nodes, effectively capturing human activities from
different aspect angles [8], [9]. Our comprehensive dataset
and the methodology for STFT extraction from radar data
are detailed in [10], and an example code1 2 for generating
a µD spectrogram is publicly available [11].

The rest of the paper is organized as follows. Sec-
tion II describes the signal processing pipeline, elucidating
the methodologies and techniques employed. Section III
presents the results with comprehensive analysis and dis-
cussion. Finally, Section IV concludes the paper.

II. Signal model & Processing
The dataset used in this work was collected with 5

distributed monostatic radar nodes, involving 15 partici-
pants [10]. These 5 Ultra-Wide Band (UWB) radar nodes
by Humatics P410 (former PulsON) are simultaneously
employed with coded waveform capabilities to reduce mu-
tual interference. The in-phase component is recovered
by filter banks, with the quadrature component obtained
by the Hilbert transform. The Pulse Repetition Frequency
(PRF) 𝑓PRF is equal to 122 Hz, with unambiguous Doppler
frequency of ±61 Hz (±2.2 m/s). The radar filterbanks have a
time-of-flight sampling rate of 𝜏=61 ps. The range resolution
with a bandwidth of 𝐵=2.2 GHz is 68 mm.

In terms of signal model, the integration of complex Range-
Time (RT) matrices r(𝑡, 𝑟) from each individual radar unit can
be represented mathematically as follows:

R(𝑡, 𝑟) = 1
𝑁𝑟

𝑁𝑟∑︁
𝑛𝑟=1

r(𝑡, 𝑟) (𝑛𝑟 ) (1)

1https://github.com/rgundel/micro-Doppler-STFT-PulsON-Radar
2https://doi.org/10.5281/zenodo.10402956
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Fig. 1: Processing block diagram for acquiring radar data: This involves transitioning from a range-time (RT) map of
single radar units to extracting time-frequency (TF) representations using STFT windows ranging from 16 to 256 samples
(equivalent in time to 131ms to 2,099ms). The process also includes the coherent summation of all individually computed
µD spectrograms and the application of the Morse wavelet transform before feeding the data into a Convolutional Neural
Network (CNN).

Here, R(𝑡, 𝑟) represents the composite RT matrix, synthe-
sizing data across all five radar nodes, where 𝑛𝑟 represents
each radar node, ranging from 1 to 𝑁𝑟 (typically assumed to
be 5), and 𝑡 and 𝑟 represents the slow-time and fast-time index,
respectively. The resulting matrix R(𝑡, 𝑟) is subsequently
utilized to compute a µD (𝜇𝐷) spectrogram, as illustrated
in the block diagram of Fig. 1.

In this work, various window functions, denoted as 𝑤𝑖 ,
are utilized in conjunction with the Short-Time Fourier
Transform (STFT) to derive spectrograms S from the input
signal 𝑥(𝑡). This is obtained from the composite RT matrix
and is defined as:

S𝑖{𝑥(𝑡)}(𝑚, 𝑓 ) =
∫ ∞

−∞
𝑥(𝑡) · 𝑤𝑖 (𝑡 − 𝑚) · 𝑒− 𝑗2𝜋 𝑓 𝑡 𝑑𝑡 (2)

where 𝑓 represents the frequency, and 𝑚 is the slow-time
shift. In addition, the individual spectrograms obtained using
various window lengths are coherently summed up as follows:

SΣ (𝑚, 𝑓 )=
∑︁
𝑖

S𝑖 (𝑚, 𝑓 ) (3)

This generates a new possible input for subsequent classifi-
cation algorithms, alongside the output of the Morse wavelet
transform [12] which is also considered in this study.

III. Experimental Results & Discussion
Specifically for the STFT, Hanning window sizes of 16,

32, 64, 128, and 256 samples were used, with each sample

TABLE I: Signal processing parameters for computing time-
frequency (TF) spectrograms and sliding window parameters
for the CNN input.

Parameter: TF Sliding window
Win. size 16,...,256 (131ms,...,2,099ms) 50 (410ms)
Win. type Hanning rectangle
Hops 1 (8.2ms) 4 (32.8ms)
Resize dim. – 64x64

corresponding in time to 8.2 ms, with a consistent hop size of
8.2 ms. These parameters are listed in Table I. Additionally,
the coherent sum of µD spectrograms, as described in Eq. (3),
was computed from the STFT outputs computed individually
with each window size from 16 up to 256 samples.

The resulting spectrograms as well as the output of
the Morse wavelet transform (WT) are 2D matrices that
represent continuous sequences of activities. In order to
leverage the effectiveness of Convolutional Neural Networks
(CNN) for classification, these matrices are segmented into
separated image samples with an additional sliding window.
Specifically, we employed a sliding window of 50 samples,
equivalent in time to 410 ms, with a hop size of 4 samples
(32.8 ms) as depicted in Fig. 1 and summarized in Table I.
Using these two windows, one for TF analysis and one to
segment the spectrograms, can introduce correlation within
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Fig. 2: Correlation factors for varying slow-time sample
distances across different Hanning window sizes used in the
STFT, denoted as 𝑤𝑖 , and a rectangular sliding window of 50
samples for segmentation, denoted as 𝑆𝑊 .

the data used to train, validate, and test the CNN. The potential
risk of introducing redundant and correlated features into the
CNN requires careful consideration. The correlations for the
windows used in the STFT and the additional sliding window
are graphically illustrated in Fig. 2.

The chosen CNN architecture, detailed in Fig. 3a, was
designed to optimize classification performance for this study.
The network begins with an image input layer, adjusted
for the selected 64x64 image-like data. Subsequently, the
network includes multiple convolutional layers with batch
normalization and ReLU activation, each followed by a
max pooling layer to extract and down-sample features. To
mitigate overfitting, dropout layers are strategically placed
within the network, with increasing dropout rates towards the
deeper layers. The architecture terminates in fully connected
layers leading to a softmax output, tailored to the number
of classes in our dataset. Class weights are integrated into
the final classification layer to address class imbalance. The
network was trained using Stochastic Gradient Descent with
Momentum (SGDM) optimizer, incorporating a learning
rate of 0.01 and L2 regularization to prevent overfitting.
Training parameters such as epochs, batch size, and validation
frequency were carefully chosen to ensure robust learning,
while monitoring the training progress through validation
data and periodic checks. The associated learning curves for
training loss and training accuracy are shown in Fig. 3b,
illustrating the CNN performance over 100 epochs.

Furthermore, to combat the risk of exploding gradients in
our CNN caused by large weights, we implemented random
under-sampling of the majority classes. This effectively
balanced the training data and mitigated weight-related
instability. Specifically, the main data imbalances arose from
the large prevalence of class samples such as ’walking’
& ’stationary’, on which we applied this under-sampling
strategy. This step harmonized the activity representation
in the mixed activity sequence dataset, reducing skewness.
For validation, we employed a random 20% holdout for
testing and divided the remaining 80% into training (75%)
& validation (25%) sets. This partitioning ensured that the
CNN was trained and validated on representative samples.

The results, as depicted in Fig. 4, show a testing and
validation accuracy and F1 score higher than 90% achieved
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(a) Network architecture.
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Fig. 3: Fig. 3a is the designed network architecture. Fig. 3b
shows the training accuracy & loss, with the final validation
accuracy (95.4217) and loss (0.1612) achieved with spectro-
grams obtained with a STFT window size of 256 samples.0.7
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Fig. 4: F1 score obtained by using different STFT window
sizes in addition to the coherent summation of all STFT
windows (’Sum’) and the wavelet transform.

with a window size of 64 samples. A slightly better perfor-
mance was observed with larger windows up to 256 samples,
although this led to the critical correlation issue between
different data samples previously described. Additionally, the
proposed coherent integrated µD spectrogram, denoted by
’Sum’ in Fig. 4, also demonstrates good performance. On
the other hand, the Morse wavelet transform (WT) did not
perform as well as expected. Comparing the WT with the
STFT in terms of TF analysis is challenging due to their
inherent differences. The STFT employs a singular basis
function —[𝑤𝑖 (𝑡 − 𝑚) · 𝑒− 𝑗2𝜋 𝑓 𝑡 ]— with a fixed resolution
to offer uniform analysis, but this may overlook details in
non-stationary signals. Conversely, the WT, using a family
of wavelets, adapts its resolution based on the signal content,
making it more suitable for analyzing signals with dynamic
frequency content. These differences in basis functions
and adaptability lead to divergent interpretations of results,
particularly for signals with complex TF characteristics, thus
complicating direct comparisons between the two methods.

When analyzing the classification matrices in Fig. 5, which
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(a) Confusion matrix of µD spectrogram with coherent summa-
tion {F1 score: 0.943}.
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Fig. 5: Confusion matrices for the test results for the proposed
coherent summation of all µD spectrograms in Fig. 5a, and
the µD spectrogram obtained with a STFT window size of
256 samples in Fig. 5b.

specifically shows Fig. 5a for the coherent summation of all
µD spectrograms and Fig. 5b for the highest classification
results using a STFT window of 256 samples, noticeable
outliers were identified in the classes of (1) Walking and (2)
Stationary. This may result from the forced under-sampling of
these classes to balance the dataset, thus reducing their inter-
class correlation as initially discussed. The other in-place
classes are (3) Sitting Down, (4) Standing Up from Sitting,
(5) Bending from Sitting, (6) Bending from Standing, (7)
Falling from Walking, (8) Standing Up from the Ground,
and (9) Falling from Standing, respectively. The achieved
test macro F1 scores were 0.943 and 0.961 for Fig. 5a and
Fig. 5b, respectively.

IV. Conclusion

In this study, the effectiveness of a coherent signal fusion
approach in integrating Range-Time (RT) data from multiple
radar nodes in a network was successfully demonstrated.
This technique is crucial for fusing radar data captured
from different aspect angles into unified representations in
the time-frequency (TF) spectrogram domain. Specifically,
in this work varying window sizes for the TF analysis
via STFT were considered and compared, together with an
alternative coherent summation of all individually computed
spectrograms and Morse Wavelet Transform. The result-

ing data were subsequently used as input to a CNN for
classification purposes. The validation of the investigated
approach was performed leveraging on a publicly available
dataset containing continuous sequences of human activities
recorded by five radars and 15 participants [10].

The results show that the proposed summation of all
spectrograms yielded a satisfactory F1 score of 0.943. The
use of a long window size of 256 samples showed even higher
results, but these findings should be interpreted with caution.
The equivalent time duration of approximately 2 seconds,
coupled with a high inter-sample correlation, although
beneficial in certain scenarios, may not be ideally suited
for accurately capturing the nuances of in-place, fast and
infrequent activities. This paves the way to implementations
of adaptive processing schemes where the window length
and other parameters related to the TF analysis of the radar
data can be dynamically adjusted, depending on the scenario
under test and the specific kinematics of the observed people.
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