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A Tutorial on Control-Oriented Modeling and Control of Wind Farms

S. Boersma1, B.M. Doekemeijer1, P.M.O. Gebraad2, P.A. Fleming3, J. Annoni3,
A.K. Scholbrock3, J.A. Frederik1, and J-W. van Wingerden1

Abstract— Wind turbines are often sited together in wind
farms as it is economically advantageous. However, the wake
inevitably created by every turbine will lead to a time-varying
interaction between the individual turbines. Common practice
in industry has been to control turbines individually and
ignore this interaction while optimizing the power and loads
of the individual turbines. However, turbines that are in a
wake experience reduced wind speed and increased turbulence,
leading to a reduced energy extraction and increased dynamic
mechanical loads on the turbine, respectively. Neglecting the
dynamic interaction between turbines in control will therefore
lead to suboptimal behaviour of the total wind farm. Therefore,
wind farm control has been receiving an increasing amount
of attention over the past years, with the focus on increasing
the total power production and reducing the dynamic loading
on the turbines. In this paper, wind farm control-oriented
modeling and control concepts are explained. In addition, recent
developments and literature are discussed and categorized. This
paper can serve as a source of background information and
provides many references regarding control-oriented modeling
and control of wind farms.

I. INTRODUCTION

Ever since the industrial revolution at the beginning of the
19th century, the worldwide energy demand has been grow-
ing. The main energy production techniques, using fossil-
fuel reserves (i.e., coal, oil, and gas), have consequences
on the environment and are finite. The International Energy
Agency’s annual report on energy, the World Energy Outlook
2014 [1], predicts fossil fuels to still account for 55% of the
total global energy production by 2040, quantifying the sig-
nificance of this problem for current and future generations.
Fortunately, renewable energy methods are on the rise, and
their share in energy generation is expected to grow from
21% in 2012 to 33% in 2040 [1]. Wind energy is a significant
source of renewable energy in several countries (e.g., in
Denmark, wind power produced the equivalent of 42.1% of
Denmark’s total electricity consumption in 2015 [2]).
Significant advances have been made in the area of wind
turbine control for many years (see, e.g., [3], [4], [5], [6]).
Placing wind turbines in farms, as in Fig. 1, resulted in
new control challenges researched in, e.g., [7], [8], [9]. Still,
many challenges remain in the field of wind turbines and
wind farms. A number of challenges arise from the complex
interactions between turbines in a wind farm. These interac-
tions often result in decreased power capture and accelerated
structural degradation of the turbine structures. The conse-
quence of accelerated structural degradation is the increase

1 Delft University of Technology, The Netherlands.
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Fig. 1. Part of the Gemini offshore wind farm located in the Netherlands.
Picture taken from http://geminiwindpark.nl/foto-s.html.

in maintenance costs, and furthermore it may exclude more
cost-efficient lightweight turbine designs. Both increased
power losses and structural degradation increase the overall
cost of wind energy. Currently, wind farm control typically
relies on greedy control, in which the turbine’s structural
loading and power production are optimized individually.
However, this often appears to be suboptimal for the overall
performance of the wind farm [10]. Current research on
wind farm control aims to provide plant-wide minimization
of the cost of energy while taking wake interactions into
account. The goal of this paper is to provide an overview of
current research on control-oriented modeling and control of
wind farms. This paper will discuss background theory of a
wind turbine, wakes, control-oriented modeling and control
of wind farms and recent developments therein.
This paper is, with respect to the literature overview pre-
sented in [11], focused on the corresponding flow control
problem and discusses recent wind farm research devel-
opments and field test experiments in more detail. It is
organized as follows. In Section II, a brief introduction
to wind and wind turbines will be given. At the end of
this section, the concept of a wake will be introduced. In
Section III, wind farm control objectives in terms of per-
formance indicators will be presented. Typically, controllers
are designed and evaluated according to these indicators. In
Section IV, control-oriented wind farm modeling will be
discussed. These models can be used for designing and/or
testing a controller. In Section V, control of wind farms will
be introduced and typical wind farm sensors and actuators
will be discussed. In Section VI, a categorization of wind
farm control strategies will be presented. In Section VII,
a number of field tests for model validation are briefly
discussed. In Section VIII, conclusions and an outlook will
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be provided.

II. WIND AND WIND TURBINES

This section briefly introduces wind energy and single wind
turbine control as it pertains to the challenge of larger wind
farm control. A more complete and detailed description can
be found in [12], [13], [14], [15]. This section will end by
introducing the concept of a wake and its essential character-
istics relevant for wind farm control-oriented modeling and
control.

A. WIND

Wind is the source of energy exploited by a wind turbine.
Wind flows are mainly caused by the Earth’s rotation and
thermal heating of the Earth’s surface by the sun, hence
wind is ubiquitous. However, its force is not everywhere
equivalent. The behavior of wind at a specific location and
for a certain time instant can be characterized by a direction
and magnitude. The process of energy extraction by turbine
rotors can better be understood by looking at the energy
extracted from the wind flowing through a thin disk (see
Fig. 2), with this disk being equivalent to the rotor swept
area.

Fig. 2. Flow with velocity U [m/s] through a rotor disk with rotor swept
area A [m2]. Figure adapted from [12].

From the continuity equation of fluid mechanics, the mass
flow of air is a function of air density ρ [kg/m3], surface
area A [m2], and flow velocity U [m/s]. Assuming the latter
is uniform across the rotor swept area, A, the mass flow of
air dm

dt through a rotor disk is defined as

dm
dt
= ρAU. (1)

The instantaneous kinetic power of the wind available at
surface A, Pw [W], is calculated by

Pw =
1
2

dm
dt

U2 =
1
2
ρAU3. (2)

Note that the power expression depends linearly on the rotor
disk area, A, (and thus rotor radius squared), and on the wind
velocity, U, cubed. This implies that relatively higher gains
in power generation can be achieved by placing turbines at
locations with high wind velocities.
However, a wind turbine cannot extract all this available
power from the wind, as the flow is required to still have
velocity behind the rotor. The theoretical limit for energy
extraction by a rotor is determined by the Betz limit [16].
This limit will be, i.a., discussed in the following section.

B. WIND TURBINE

There are different types of vertical-axis and horizontal-axis
wind turbines. The most commonly produced and used wind
turbine is the upwind horizontal-axis wind turbine. One of its
advantages can be explained by the fact that the blades are
always facing fully into the wind, because incoming wind
does not have to pass the turbine tower first (in contrast to
downwind turbines) or other blades (in contrast to vertical-
axis turbines). A horizontal-axis wind turbine consists of a
rotor, most often with three rotor blades, that is attached
to the generator through a drivetrain. The generator and
drivetrain are housed in the nacelle, which is supported by a
tower. See Fig. 3 for a schematic representation of the main
wind turbine components.

nacelle

generator

gearbox

blade

tower

yaw

generator torque

pitch

Fig. 3. Horizontal-axis wind turbine with labeled main components and
control variables. Figure adapted from [13].

The rotor blades convert the momentum of a wind field
passing the rotor plane into aerodynamic forces that drive the
rotor. The drivetrain transfers the aerodynamic torque from
the rotor to the generator shaft, either directly (direct drive)
or through a transmission (gearbox). The generator converts
rotational kinetic power into electrical power by generating a
reactive torque on the shaft. To control the power production
and forces (torques) on the wind turbine, a number of degrees
of freedom (control variables) are typically available:
• Blade pitch (θ) - The rotor blades can rotate, with their

axis of rotation aligned with the blades, using hydraulic
actuators or servo pitch motors. Pitch control can be used
to influence the power capture (see, e.g., [17]) and the
loads (see, e.g., [18], [19], [20], [21]) experienced by the
wind turbine.

• Generator torque (τg ) - The generator converts mechanical
power into electricity. Torque control is used to control the
power capture.

• Yaw (γ) - The nacelle can rotate, with the axis of rotation
aligned with the tower, using a yaw motor. The yaw angle
is defined as the angle between the axial rotor axis and
the incoming wind direction. In single turbine control, yaw
control is often used to set the rotor plane perpendicular
to the incoming wind direction to increase the turbine’s
power capture.
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The control variables are shown in Fig. 3 with a number
of basic components of a wind turbine. With these control
variables we can optimize the performance of a single wind
turbine, such as produced power, P, and turbine loading.
An uncommon, and for now more scientifically interesting,
control variable is the tilt angle of a turbine. This is defined
as the difference of the wind angle of attack and the nacelle
angle, with respect to the horizontal plane. In current wind
turbines, this tilt angle is fixed.
A wind turbine exerts a force on the wind flowing through
the rotor. This thrust force represents the amount of energy
extracted from the flow and can be described by

F = CT (θ,λ,γ)
1
2
ρAU2

∞ , (3)

with U∞ [m/s] as the free-stream wind velocity and
CT (θ,λ,γ) as the dimensionless thrust force coefficient,
which is a function of the tip-speed ratio, λ, blade pitch,
θ, and yaw angle, γ. The tip-speed ratio is defined as the
ratio of the tangential speed at the blade tip to free-stream
wind velocity:

λ =
ωR
U∞

, (4)

with R the rotor radius and ω the rotor rotational speed.
The tip-speed ratio is directly influenced by the rotor speed,
which is influenced by the generator torque or by changing
the pitch angle to change the lift forces on the rotor blades.
The generator torque control loop is relatively fast because
the system is manipulated at the electrical level, though
changes in the rotor speed itself are not that fast due to
inertia, especially for large rotors. Although the blade pitch
control loop is slower than the torque loop, it is still relatively
fast because of powerful motors that typically can achieve
up to a 10 [deg/s] blade pitch rate for a utility-scale wind
turbine.
The power in the wind across a rotor was given in (2).
Although power production can be improved using control,
not all the power in the wind can be extracted by a wind
turbine. The wind power available for extraction by a turbine
is given by:

P = CP (θ,λ,γ)
1
2
ρAU3

∞ , (5)

where CP (θ,λ,γ) < 1 is the dimensionless power coefficient
and the ratio of generated power by the wind turbine to the
available power in the wind (see (2) and (5)). There are many
models in literature that provide expressions for the thrust
and power coefficient. One popular way to get an expression
for the force and power coefficients is by exploiting the
momentum theory developed in the 19th century by W. J.
M. Rankine, A. G. Greenhill, and R. E. Froude. R. E. Froude,
D. W. Taylor, and S. Drzewiecki combined momentum
theory with blade element theory, which resulted in the blade
element model (BEM) for calculating the forces that a blade
exerts on a flow. When these forces are then converted into a
disk of distributed forces that model the rotor, this is referred
to as the actuator disk model (ADM). In [12], it is explained

that, by using momentum theory for an ideal rotor, the thrust
coefficient, CT , and power coefficient, CP , can be written as:

CT (a,γ) = 4a(cos(γ)−a), CP (a,γ) = 4a(cos(γ)−a)2, (6)

for 0 ≤ a ≤ 1
2 and the yaw angle, γ. The parameter, a, is

called the axial induction factor of a wind turbine. It is the
ratio of the difference between U∞ and the wind velocity at
the rotor Ur to U∞, and is defined as:

a =
U∞ −Ur

U∞
. (7)

The axial induction factor is thus a measure of the decrease in
wind velocity behind a wind turbine and provides a relatively
simple expression for coordinated control of wind turbines.
Note that this factor, or more precisely, Ur , can be controlled
using the generator torque and blade pitch angle, but is also
influenced by the yaw angle.
It was already stated that even a perfect wind turbine
cannot fully capture all of the available power in the wind.
There is a theoretical maximum that can be extracted by
a turbine. This maximum can be obtained by calculating
the supremum of CP (a,γ), given in (6), among the axial
induction factor. It can be found that for any wind turbine,
the induction factor that results in the maximum power
extraction is a? = cos(γ)/3, which translates to a theoretical
limit of CPmax = 16/27cos3(γ), which is approximately 0.6
if γ = 0. This theoretical maximum is called the Betz limit.
In a practical sense, the maximum power coefficient for
horizontal-axis wind turbines lies around 0.45 according
to [13]. The maximum force can be found in a similar
way: for a = 1/2, the wind exerts the maximum force on
the wind turbine. Note that empirical data published in [22]
revealed that the thrust coefficient expression given in (6)
is not accurate when a > 1/2. A possible correction based
on empirical data has been proposed in that paper. This
correction is based on the Glauert empirical relation between
the thrust coefficient and axial induction.
A more detailed representation of the rotor than the ADM is
the actuator line model (ALM), which represents each blade
individually in the flow, as a distribution of forces along a
rotating line.

Operating regions:
For single wind turbines, different operating regions can be
distinguished. Each region has its own control strategy and
is typically determined based on a generator speed feedback
signal. The ideal power curve for a variable pitch/speed wind
turbine is shown in Fig. 4. In addition, a wind power curve is
depicted and the ratio between this curve and the power curve
is defined by the power coefficient. The ideal power curve
exhibits three main regions with distinct control objectives.
In Region II, the control problem can be seen as a tracking
problem, whereas in Region III, the control problem can be
seen as a disturbance rejection problem.

C. WAKE

As a wind turbine extracts energy from the wind, it causes a
change in the wind flow downstream from the wind turbine.
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Fig. 4. Typical wind turbine power curve. Figure adapted from [15].

The altered flow is called the wake of a turbine. The wake
characteristics are space-, time-, and parameter-dependent.
A wake is space-dependent because, e.g., far downstream of
a turbine, it is different from the wake closer downstream
of the turbine. The wake is also time-dependent because the
operation of a wind turbine changes over time as well as the
surrounding flow. Finally, a wake is parameter-dependent,
as the external variables (such as temperature) influence the
behavior of the wake. It should be clear that studying and
modeling a wake is a broad research topic by itself and
ongoing [23], [24]. Models range from low to high fidelity,
where the latter describes the wake in more detail and tries to
capture more of its characteristics than the former. However,
this increase in precision will result in higher computational
costs. A more complete discussion on different wake models
is presented in Section IV.
Typical characteristics of a wake and its main causes are:
• Wind velocity deficit, as a result of the turbine’s energy

extraction.
• Increased turbulence intensity, as a result of i.a., the

turbine blade’s rotation.
• Wake recovery, which is the phenomenon that downwind

a wind turbine, i.a., the wind velocity recovers to the free-
stream velocity due to mixing.

• Wake meandering, which is a large-scale stochastic phe-
nomenon of a wake in which the entire wake structure will
show horizontal and vertical oscillations over time, rather
than maintaining a certain fixed position and shape [25],
[26].

• Wake expansion, which occurs with distance from the
turbine and can be explained using the law of mass
conservation and the assumption of flow incompressibility.
It can be shown that a decrease in velocity means a
proportional increase in the wake’s cross-sectional area
(see e.g., [14]).

• Wake deflection, which is the phenomenon that the com-
plete wake is diverging in the latitudinal direction from
the rotor center because of blade rotations [27] or the fact
that the rotor is not oriented perpendicular with respect to
the incoming wind, i.e., a yawed or tilted turbine.

• Wake skewing, as a result of veer [28].

• Vertical wind shear, which is the change of wake proper-
ties with height, typically an increase of wind speed with
height because of ground friction.

• A kidney-shaped wake, as a result of a yawed turbine [29].

Note that the external atmospheric properties also have a
critical impact on wakes and their propagation, and thus,
i.e., land-based and offshore wind turbines develop different
wakes. Fig. 5 illustrates a horizontal slice of the wake at
turbine hub height with γ = 30◦. The contour plot with
normalized velocities is obtained from wind tunnel data.

Fig. 5. A time-averaged, stream-wise wind velocity contour plot at hub
height obtained from wind tunnel data. The center of the wake is shown in
filled magenta circles. Figure taken from [29].

Using momentum theory and assuming γ = 0, a lower bound
on the wind velocity, U_, and a wind velocity at the rotor,
Ur , can be estimated as

U_ =U∞ (1− 2a), Ur =U∞ (1− a). (8)

As stated before, it is through the wake that an upwind
turbine can influence the performance of downwind turbines.
The key objective of wind farm modeling and control is to
take these interactions into account and use control variables
to ensure a specific level of performance. One option is to
capture the nonlinear stochastic behavior in a mathematical
model and then use this model to design a controller that
guarantees a performance. The assumption is that, when
applying this controller to the real wind farm, equivalent
performance will be achieved as predicted by the model used
for controller design. This assumption is based on the validity
of the used model. In this approach lies one of the main
challenges in wind farm modeling and control: understanding
wake behavior and capturing the important dynamics of wake
interactions. An open question is: which wake dynamics
are important for a control-oriented wind farm model. A
subsequent challenge is controller design for the identified
model. Most standard controller synthesis methods known
in literature are based on linear state-space models. When
dealing with nonlinear and stochastic systems, control design
techniques are less available, and optimal performance can
(in these cases) not be ensured because of possible local
minima.
Another option is to find an optimal control policy following
a model-free approach. Both model-based and model-free ap-
proaches will be discussed later in this paper. In Section III,
an introduction to wind farms will be given. This paper will
then discuss control-oriented modeling and control of a wind
farm in Section IV and Section V, respectively.
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III. WIND FARM: MOTIVATION AND
CHALLENGES

The previous section gave a brief introduction on wind
energy and single turbine control and ended by introducing
the concept of a wake. This was defined as the changed
downstream flow caused by a wind turbine (see Fig. 6) and
can result in interactions between wind turbines. It was stated
that wind farm control aims to take these interactions into
account while ensuring wind farm performance. This section
follows by discussing reasons why it is interesting to study
wind farms, and also the related challenges.

Fig. 6. Horns Rev offshore wind farm with, normally invisible, wakes.
Source: Christian Steiness. See also [30] for more information on the picture.

Placing turbines together has a number of benefits, which
are, i.a.:
• Reduced deployment costs of the turbines
• Reduced deployment costs of the electricity grid
• Reduced operation and maintenance costs
• Reduced land use and impact.
Especially in densely populated countries such as the Nether-
lands, deploying turbines individually is unfeasible, with
governments often investing in both land-based and offshore
wind farms. However, grouping turbines together in farms
also introduces a number of complications that often sig-
nificantly affect their performance. These complications can
impact downstream turbines as follows:
• Because of the wind velocity deficit in the wakes of up-

stream turbines, the downstream turbine will capture less
power than when operated in free-stream conditions [31],
[32].

• As a result of increased turbulence in the wake, fa-
tigue loads on the downstream turbine can increase (see,
e.g., [33], [34]), thereby shortening its lifetime in the
absence of control algorithms that take this turbulence
increase into account.

• In most cases, the center of the wake will not coincide with
the center of a downstream rotor. This can be caused by
wake meandering, deflection, and wind direction (mostly).
Because of this, there is more thrust on one side of
the rotor, leading to large cyclic variations as the blades

pass in and out of the wake [35], [36]. This imbalance
can contribute to an accelerated structural degradation of
waked turbines.

Wind farm control consists of finding control inputs using
measurements to increase the performance of a wind farm,
thus improving quality or minimizing the cost of wind en-
ergy. The latter can of course be carried out by increasing the
spacing between turbines, though this may have a negative
impact on the aforementioned advantages, such as reduced
deployment costs of the electricity grid. Also, obtaining the
required spacing is an increasing challenge as rotor sizes
grow with the newer turbines [37]. Next, the objectives
and corresponding challenges in wind farm control will be
discussed.

A. OBJECTIVES OF WIND FARM CONTROL

In this section, the two most common wind farm performance
indicators will be discussed. In general, the goal of wind
farm control is to minimize the cost of wind energy. This
can be translated into a number of technical objectives,
namely maximizing power production, minimizing structural
degradation, and active power control (APC). APC provides
grid services, such as frequency control and power reference
tracking, and its objective is to improve the quality of
wind energy. It will not be discussed in this paper, though
interested readers can find related information in [38], [39],
[40], [41], [42]. The power production and load performance
indicators will be discussed in this section.

Power production maximization:
Wind turbines extract momentum from the flow, which
results in the previously explained velocity deficit in the
wake. The amount of this deficit limits the power production
of downwind turbines, but can be controlled using the wind
farm control variables that will be discussed in Section V-
A. In [43], the authors show that, when considering a
perfectly aligned two-turbine case, the power loss of the
downwind turbine scales approximately linearly with the
spacing. Losses range from around 25% for radially aligned
turbines spaced 16 rotor diameters apart to 80% when the
aligned turbines are placed 4 rotor diameters apart. The study
in [44] reports a power production loss of 12%, averaged
over different wind directions, in an offshore wind farm as
a result of wake effects.
It is important to note that results like these are in general
obtained using a specific mathematical model trying to
capture the wake dynamics for specific atmospheric con-
ditions. Outcomes can differ according to the model and
method used. However, wake loss predictions have also been
measured in real wind farms. Wind farm control can mitigate
part of the wake losses, although given the variable nature of
a wake, it is still a point of research to quantify how much
wind farm control can reduce wake losses exactly.

Load minimization:
A wind turbine structure has been designed to withstand
steady loads several times larger than nominal loads [45],
and so it is necessary to study fatigue loading with respect
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to the lifetime of a wind turbine. In [46], it is stated that
modern wind turbines are fatigue-critical machines, i.e.,
the design of many of their components is dictated by
fatigue considerations. The authors in [47] also conclude that
mostly dynamic loads are responsible for fatigue and reduced
lifetime of wind turbines in wind farms. In these papers,
different loading models were used, hence it is important to
first investigate which type of loading occurs. The three most
important sources for the loading of an upwind horizontal-
axis wind turbine are [14]:

• Gravitational loading
• Inertial loading
• Aerodynamical loading.

The first type of loading is caused by the gravitational field
of the Earth and rotation of the blades. It is clear that a
blade rotating downward experiences different forces than a
blade rotating upward. It causes a sinusoidal loading on the
blades with a frequency corresponding to the rotor rotation
of once per revolution (1P). Inertial loading occurs when
the wind turbine changes the rotation speed. Certain parts
on the blades experience different changes that will result in
inertial loading. Another source is the centrifugal force acting
on the blades. Aerodynamical loading is caused by the flow
passing the wind turbine and varies in space and time. For
example, a wind field contains a velocity profile with a bigger
magnitude that is relatively high from the ground because of
shear effects, whereas the turbulent effects introduce time-
varying behaviour in a wind field. Also, according to [14],
the yaw (and tilt) angle of a wind turbine causes additional
aerodynamical periodical forces on a wind turbine. In a
wind farm, a wind field will also be perturbed by wind
turbines causing changes in a wind field as highlighted at
the end of Section II. Downwind turbines in a wind farm
can then experience a changing wind field over the rotor
that can introduce additional aerodynamical loading. Loading
can, in the end, lead to fatigue damage and breakdowns.
There are different measures of fatigue loading, such as
the rainflow counting, spectral, stochastic, and hysteresis
operator method. This paper does not cover these methods,
but the interested reader is referred to [48].

The purpose of single turbine control is to mitigate the effects
of gravitational, inertial, and aerodynamical loading. On a
wind farm control level, it is more important to focus on
the effects of the changed aerodynamical loading caused by
the upwind wind turbines in the farm. Damage equivalent
load (DEL) is a measure that is commonly used in literature
to quantify loading, and allows for direct quantitative com-
parisons of different loading types on the turbine structure.
DEL defines the equivalent fatigue damage caused by a load,
taking into account the fatigue properties of the material.

In this section, two wind farm performance indicators were
introduced. Wind farm control aims to optimize these indica-
tors. For synthesis and evaluation of controllers, wind farm
models are typically used. This will therefore be the topic of
the following section.

IV. CONTROL-ORIENTED WIND FARM
MODELING

The advancements in wind farm control have gone hand in
hand with advancements in wind farm modeling, as typically
modern control algorithms rely on an internal model. These
models are often simple and relatively computationally in-
expensive. We refer to these types of models as low fidelity
(possibly parametric) models. High fidelity simulation mod-
els are typically used to assess a controller’s performance as
the last step before being put to the test on an actual wind
farm. These models are more accurate, but also significantly
more computationally time consuming, and can therefore
not be employed for real-time control. Although wind farm
models are different, two main components can always be
distinguished:
• Turbine model: These models predict the interaction be-

tween the flow and the turbine structure. Additionally,
structural loads on the turbine given the incoming flow
field may be predicted, which can include extreme loading,
vibrational modes, and fatigue.

• Flow model: A model that predicts the flow properties in
a wake or of the total flow field in a wind farm.

A turbine model gets a flow field from a flow model as an
input, whereas the turbine loadings are inputs to a flow model
that indicates the unavoidable interconnection between the
two submodels. The two types are described next.

A. TURBINE MODEL

Wind turbine models describe the flow effect on the turbine
structure, including loading and vibrations. A flow field
serves as an input with which the turbine model evaluates
the resulting loading. Two models traditionally used for
estimating aerodynamic loading are the ADM and ALM,
both introduced in Section II. These models can predict
turbine flow interactions and provide estimations of the
turbine’s power capture and forces exerted on the flow. A
more elaborate turbine model is FAST [49], developed by the
National Renewable Energy Laboratory (NREL). It contains,
i.a., the ALM and takes into account, given an incoming flow
field, all of the three types of loading discussed in Section III-
A. DEL values can be determined and the lifetime of a
turbine can be assessed. Other turbine models exist, such as
HAWC [50], but will not be further discussed in this paper.
By using models such as these, accurate predictions can be
made on the (extreme and fatigue) forces, moments, and
vibrations of a turbine structure for given wind conditions.
Also, these models provide accurate predictions of power
capture of the turbine at given inflow conditions. It should
be clear that more advanced turbine models require relatively
more computation time. An overview of the components
generally present in such turbine models can be found
in [51].

B. FLOW MODEL

It was previously stated that the dynamical behaviour of a
wake (or more general, a flow) is governed by the three-
dimensional (3-D) unsteady Navier-Stokes equations. These
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equations are mathematically defined as a nonlinear infinite
dimensional system with equality constraint. Under boundary
conditions (inflow conditions) and forcing terms (the wind
turbines) typically used in a wind farm model, and without
making significant assumptions, no analytic solution has
been found yet for these equations. Hence, in such a case,
it is impossible to solve the governing equations directly.
Computational fluid dynamics (CFD) is a branch of fluid
mechanics that uses numerical analysis and algorithms to
solve and analyze this type of problem.
Spatial discretization is a method that is applied to obtain a
set of solvable equations. Because turbulence exists on many
different temporal and spatial scales in a wind farm, the most
accurate way to simulate turbulent flows is to directly solve
the obtained set of equations on a very dense grid, capturing
all eddy scales. This method is referred to as direct numerical
simulation (DNS). It is computationally expensive because,
after spatially discretizing, the dimensionality of the obtained
set of equations is huge as a result of the fact that every
cell in the wind farm has its own Navier-Stokes equations.
Large-eddy simulations (LES), on the other hand, resolve the
governing equations (after spatially or temporally filtering
the Navier-Stokes equations) on a coarser mesh (capturing
only the large-scale eddies), but can approximate the smaller-
scale eddies with subgrid models. Small-scale turbulence is
then calculated within each coarse cell using this subgrid
model. Most wind farm flow solvers that are considered as
high fidelity models employ this method.
Less computationally expensive models are also present
in literature. Most of these models consider a two-
dimensional (2-D) space to reduce the model complexity
and assume incompressibility of the flow, and only have
a simplified turbulence model to induce wake recovery. In
addition, parametric models exist that only estimate specific
characteristics of a wake, such as velocity deficit and wake
deflection. This paper will continue giving a brief overview
of some wind farm models that exist.

C. EXAMPLES

Wind farm models that use LES flow models include Simu-
lator fOr Wind Farm Applications (SOWFA) [52] and UTD
Wind Farm (UTDWF) [53], a wind farm model developed
at UT Dallas, and SP-Wind (Leuven) [54], and PArallelized
LES Model (PALM) [55]. These 3-D, high fidelity flow
solvers contain, in general, sophisticated wind turbine models
and 106 or more states. The resulting computation time
can be on the order of days or weeks using distributed
computation. It should be clear that these types of models
are not useful for online control, wherein measurements
are fed into a controller that calculates optimal actuator
settings based on an internal model in real time. However,
these models can serve as analysis tools. The cost of doing
simulation experiments using these solvers is significantly
less than the cost of doing experiments on a real wind
farm. Moreover, simulation experiments can be done in
controlled atmospheric conditions, which is important for

one-to-one quantitative comparisons after, e.g., changing a
control policy.
The authors in [56], [57], [58] present more control-oriented
and relatively less computationally expensive wind farm
models based on the unsteady 2-D Navier-Stokes equations
following a LES approach. It is attempted to solve the set of
discretized equations governing the wake and wind turbines
directly, without model reduction nor any assumptions other
than incompressibility. The number of states in these models
can easily be 103 or more, which makes it challenging to
use them for controller design. A second challenge using
this approach is the choice of a (relatively simple) turbu-
lence model, which should be included to account for wake
recovery. In [58], the authors include a simplified mixing-
length turbulence model to create wake recovery behind a
turbine, whereas in [56], no turbulence model is included. In
these dynamic wind farm models, the turbines are modeled
using the ADM. The cost of solving these wind farm models
is relatively low because of the exploitation of sparsity and
structure in the system’s matrices.
Another approach is using simplified versions of the gov-
erning equations. For example, in the 2-D Ainslie [59] and
2-D dynamic wake meandering (DWM) model (also called
the Larsen model) [60], assumptions are made such that the
Navier-Stokes equations can be approximated with a thin
shear layer approximation that is less computationally ex-
pensive. Currently, NREL is developing FAST.Farm, which
extends the DWM model to include more control-relevant
dynamics [61]. WakeFarm (also referred to as Farmflow),
developed at Energy research Centre of the Netherlands
(ECN), simulates the wind turbine wakes by solving the
steady parabolized Navier-Stokes equations in perturbation
form in three dimensions [62], [63]. When applying time
averaging on the Navier-Stokes equations, the Reynolds
Averaged Navier-Stokes (RANS) equations can be obtained.
With this approach used in, e.g., [64], a time-averaged
(mean) flow is computed and the effects of turbulence
are implemented using the mixing-length hypothesis. The
computational cost for using RANS equations in a wind
farm model will also be computationally less expensive than
for high fidelity flow solvers. A combination is presented
in [65], in which the authors present a RANS wind farm
model for which model parameters are updated online using
the high fidelity flow solver UTDWF. The authors in [66]
present a, with wind tunnel experiment data validated, wind
farm model based on simplified RANS equations. The sim-
plification results in the approximate governing equations
upon which an inexpensive analytical model is built. A
completely different dynamic wind farm model is presented
in [67] where the Navier-Stokes equations are solved using a
semi-Lagrangian approach. The interested reader is referred
to [68], [69] for more background information on the Navier-
Stokes equations and its varieties.
One way to circumvent the complexity of wake modeling
is by using 2-D parametric models. The idea is to capture
only the most dominant wake characteristics. Most of these
parametric wake models estimate a steady-state situation for,
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i.a., a given inflow direction. If the wind farm is large,
this inflow direction should then hold for the whole farm,
which can be an unrealistic assumption. Examples are the
Frandsen model [70], the model presented in [71], and
the Jensen Park model [72], [73], which predict a linearly
expanding wake with a velocity deficit that only depends
on the distance behind the rotor. Extending Jensen’s model
resulted in the parametric model called FLOw Redirection
and Induction in Steady-state (FLORIS) [74]. A dynamical
version named FLOw Redirection and Induction Dynamics
(FLORIDyn) of this is presented in [75] and a similar model
is SimWindFarm [76], wherein relatively simple dynamical
equations are used to estimate the velocity deficit in a
wake. Interestingly, recent findings have shown that these
simple parametric models, such as the Jensen model and
models based on the Jensen model like FLORIS, can in
some cases predict wake losses accurately, if uncertainty is
included in the calculation [77], [78], [79], [80]. Inclusion of
uncertainty in wake models, and evaluating controllers based
on uncertain wake models, is an active field of research.
Note that never all flow behaviour will be captured when
simulating a wind farm using a model, especially when
employing a 2-D model. For example, in the latter case,
the inflow from above and below is not taken into ac-
count, even though it influences wake properties. In addition,
the underlying assumption of infinitely tall turbines in 2-
D models that are based on the unsteady Navier-Stokes
equations results in flow speedup effects on the right and left
downwind the turbines. Interestingly, the model presented
in [81] includes information on the third dimension in the
2-D unsteady Navier-Stokes equations, effectively reducing
this undesired effect. However, for some specific cases, 2-D
wind farm models have been validated with high fidelity 3-D
models, which hints to the fact that the assumption could be
reasonable. It is the time-reducing property that makes 2-D
models attractive for wind farm control.
In addition to the above, the authors in [23], [82], [83], [84],
[85], [86] provide overviews of rotor blade models and wake
models. In Table I, a classification of previously described
models is given, noting that in this table the term "fidelity" is
mainly used to describe the amount of detail described by the
model. This does not automatically imply that more detailed
models are more suitable for (online) control purposes, as
discussed before. In addition, it has been shown in several
wind farm simulation cases that medium and low fidelity
models are able to estimate wind velocity and power data
from a high fidelity model. The acronym NS stands for the
Navier-Stokes equations.

Reduced order models: Performing model order reduction
techniques, such as proper orthogonal decomposition and
dynamic mode decomposition on high fidelity flow solver
data, is another method to obtain a model. The authors
in [87] illustrate that it is possible to apply proper orthogonal
decomposition and compare the flow fields obtained with
the low-order model with that of a high fidelity flow solver.
Other articles that deal with proper orthogonal decomposition

TABLE I
A CLASSIFICATION AND PROPERTIES OF DIFFERENT MODELS.
Table 1. Wind farm models overview.

Low fidelity Medium fidelity High fidelity

Model

type
Kinematic models Flow field models Flow field models

Funda-

mentals
Parametric 2D NS 3D NS

Models

Jensen,

FLORIS,

Frandsen, ...

FLORI-

Dyn,...

DWM, WFSim,

Ainslie...

SOWFA, WakeFarm,

UTDWF, SP-Wind,...

Flow

dimension
2D 2D 3D

Dy-

namic/Static
Static Dynamic Dynamic

Turbine

model
ADM

ADM/ALM and/or an aerodynamic package (e.g.,

FAST)

Comp.

effort

Order of seconds on a desktop

PC

Order of minutes on a

desktop PC

Order of days on a

cluster of 102 CPUs

Model

accuracy
Low – medium Medium – high High – very high

applied to a wind farm model are [88], [89]. In [88] and [90],
the authors illustrate that by using data from a high fidelity
flow solver and dynamic mode decomposition, a low-order,
two-turbine wind farm model can be obtained in which states
retain a physical interpretation.
Note that model order reduction techniques rely on specific
operating conditions, i.e., they provide linear models for
a specific operating point and are only valid within small
deviation from this point. These reduced-order linear models
can be defined at, e.g., specific wind speeds and directions.
However, techniques in parameter-varying control exist that
can help link these models together [91]. Also, reduced-order
models could be data-driven in a more system identification
approach (see e.g., [92]) or model-based considering, e.g.,
the Navier-Stokes equations. Examples of the latter are
balanced proper orthogonal decomposition and the Galerkin
projection (see e.g., [93]). This paper will not discuss these
different techniques.
A note for this section is that a model’s accuracy and appli-
cability are highly dependent on the atmospheric conditions
of the relevant wind site. It is shown in, e.g., [94] that wake
characteristics change a lot relatively when the atmosphere is
stable or not. In addition, in unstable atmospheric conditions,
often wakes are extremely hard to control, and no significant
improvements can be yielded by active wind farm control. In
stable conditions, wakes are less difficult to control; however,
the problem is still challenging.
In this section, two main components of a wind farm model
were discussed and examples of wind farm models were
given. These models can be used to conduct wind farm
analysis or control. The latter will be the topic of the
following section.

V. WIND FARM CONTROL

It was stated earlier that wind farm control is aimed at
optimizing the previously presented objectives: minimization
of power losses and structural loading. More precisely, wind
farm control aims to find control actions that increase the
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wind farm performance by taking measurements (and pos-
sibly an internal model) into account. By (partially) relying
on measurements, a controller can cope with changing en-
vironments. In this section, wind farm actuators and sensors
will first be discussed, followed by the discussion of two
wind farm actuation methods. The categorization of different
control strategies will be covered in Section VI.

A. ACTUATORS AND SENSORS

In wind farm control, measurements from sensors and/or
possibly an internal model are used to compute control
settings. These control settings are assigned to the turbine’s
actuators, which can be considered the degrees of freedom in
the wind farm control problem. In this section, typical wind
farm actuators and sensors will be discussed.

Actuators: For a single turbine, actuators were defined as
turbine yaw, γ, generator torque, τg , and blade pitch angles,
θ. Tilting the turbine’s rotor provides an additional actuator
for control, though this approach has only been used in
simulations until now [27], [95], [96], [97]. In a real wind
farm and some wind farm models, the control variables are
(γi ,τgi ,θi ) for i = 1,2,. . . ,N , with N the number of turbines
in the farm. However, it is common in wind farm modeling
to define the axial induction (see (7)) or similarly the thrust
force coefficient (see (6)), and the yaw angles as actuators.
Although this approach neglects the dynamics between the
physical turbine actuators τgi ,θi and the axial induction or
thrust force coefficient, it simplifies the modeling and control
problem. Some studies (see e.g., [98]) include a first-order
time filter to circumvent sudden unrealistic axial induction
changes in simulations. The following wind farm actuators
can be defined for models employing the ADM:
• γi for i = 1,2,. . . ,N ,
• ai (or CTi ) for i = 1,2,. . . ,N .
Note that by changing ai , the thrust force, i.e., the amount of
energy the turbine extracts from the flow, will change. These
two variables are illustrated for one turbine in Fig. 7.

Fig. 7. A schematic representation of wind farm actuators typically used in
simulations. The thrust force, F (ai ), is determined by the axial induction
ai of turbine i.

Sensors: Proper placement and choice of sensors is key to
the success of wind farm control. Examples of wind turbine
sensors include:
• Anemometers and wind vanes. These devices are mounted

on the nacelle to locally determine the wind speed and
direction at the rotor plane. However, note that when a

turbine is in operation, these measurements are disturbed
because of the interactions between the flow and tur-
bine rotor, especially at small distances around the rotor
plane [10].

• Power sensors.
• Strain sensors, which measure structural deformations.
• Accelerometers, which measure the turbine’s acceleration.
• Generator shaft-speed sensors.
• Torque sensors.
• Temperature sensors, which are used for anti- and de-icing

techniques [99].

These turbine sensors are also useful for wind farm control.
Examples of sensors on a wind farm level are:

• Separate meteorological measurement masts, which are
located in the farm, and provide information on the flow
velocity for their respective positions.

• Remote-sensing (RS) technologies, which measure the
flow field at different positions upstream or downstream
of turbines, without the need for repositioning the sensor.
RS can use sodar, lidar, or radar technology, or satellite
scatterometry.

According to [100], sodar systems use sound waves and
are deemed too slow and of too low accuracy for wind
farm applications, although they are capable of wind field
monitoring [101], [102]. More recently, lidar technology
has been applied, which relies on the same principle as
sodar but using laser instead of sound waves [103]. The
authors in [104] show that sodar and lidar can achieve
similar accuracy in field tests on one of the Vattenfall wind
farms. However, theoretically, lidar is able to achieve higher
measurement accuracy because of the nature of light [100].
Furthermore, both [103], [105] show that lidar has real
potential to improve the accuracy of current wind speed
measurements above the resolution of a mast. Also, a lidar
device can be placed on top of a wind turbine to measure
upwind or downwind. Because a lidar device is relatively
expensive, it is interesting to investigate how to use it in
an optimal way such that expenses can be minimized. The
authors in [106] present such a study. Interestingly, lidar
technology was initially applied for single-turbine control,
incorporating feed-forward control (see, e.g., [105], [107],
[108], [109], [110], [111]). A project in which the use of
radar in a wind farm is investigated can be found in [112].
At this moment, radar devices are relatively expensive and
large regarding dimension.
The main challenges in RS technology are data outliers
because of hard targets and interference with the turbine
blades, and problematic wind field reconstruction due to
the cyclops dilemma. For example, a single lidar system
measures the wind from only one angle of view. Thus, with
a single lidar system, it is not possible to reconstruct the full
3-D wind field without making any assumptions [113]. An
example of this can be found in [114], which shows that it
is possible to estimate a 3-D wind field using lidar.
Given the actuators and sensors, the next question is which
actuation methods can be used to optimize performance
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within the wind farm. This will be the topic of the following
section.

B. ACTUATION METHODS FOR WAKE CONTROL

Currently, most wind farms are operated using individually
optimal wind turbine control settings referred to as greedy
control. As stated before, wind farm control consists of
finding control inputs using measurements (and possibly an
internal model) to increase the performance of a wind farm,
thus minimizing the cost of wind energy. It has been an active
research topic since the 1990s and relies on the assumption
that the performance of a wind farm can be increased by
operating turbines in the farm at configurations different
from their individual optimal settings. Two general control
methods exist for this purpose: axial induction control (AIC)
and wake redirection control (WRC). Simulation studies
such as [115], [116], illustrated that both methods have a
potential to increase the power production and can influence
structural loading. Another possible future method is to
actively reconfigure the wind turbines in a wind farm with
floating turbines. Wind farm layout optimization can be
considered as initial work towards such a strategy. This will,
however, not be discussed further in this paper though the
interested reader is referred to [117], [118], [119], [120]. AIC
and WRC will be topics of the remainder of this section.

Axial induction control:
The idea of AIC is to reduce the power production of upwind
turbines by changing the axial induction so that downwind
turbines can generate more. The axial induction is changed
by adjusting the blade pitch angles and generator torque
away from individually optimal settings. AIC is worthwhile
if the reduced power production of the upwind turbines
can be compensated for by the downwind turbines, and if
performance of a turbine is significantly impacted by an
upstream turbine through its wake, e.g., in situations with
little wake recovery, dense turbine spacing, and relatively
high wake-rotor overlap. Fig. 8 illustrates an aligned two-
turbine situation in which this is not completely the case.
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Fig. 8. A cut-through at different distances of a wake from SOWFA data
(red colored area contains higher wind velocity than the blue colored area).
Figure taken from [9].

Typically, in a wind farm, the distance between up and down-
wind turbines is around 7D, meaning seven times the rotor

diameter. Hence, the power that is purposely not captured by
the upwind turbine will not be captured completely by the
downwind turbines for the case in Fig. 8. It is the deviation
of the upwind turbine wake which, according to the authors
in [121], is, i.a., determined by:

• Wind direction
• Relative position of turbines
• Wake meandering
• Atmospheric conditions
• Wake expansion.

Wind direction is important in two ways. First, changes in
the wind direction in the farm contribute to deflection and
skewing of the wake, which causes the wake to overlap
less with the downwind rotor. Second, the wind direction
is never exactly perpendicular to the rotor, and hence there
will always be a deviation of the upwind turbine wake from
the downwind rotor. Note that especially the latter could
be captured using uncertainties in the model. Importance of
wake expansion is emphasized because the authors in [121]
show that, when using pitch offsets, most power passed
by the upwind turbine is located in the outer ring of the
wake. This complicates AIC, as it becomes more difficult
for the downstream to capture this energy because of wake
expansion. Note that this specific spatial distribution of the
power cannot be modeled using the standard ADM, but can
be captured using ALM.
Another interesting point regarding AIC is that, when the
thrust force is reduced, the turbulent wake mixing and
thereby wake recovery will be reduced. There are thus two
counteracting effects: increased velocity in the near wake,
but reduced recovery downstream (effectively decreasing
velocity of the far wake). In [121], it is shown that including
this effect in an engineering model reduces the expected
power production increase from AIC.
Research of AIC is done quite extensively, showing inconclu-
sive results on its feasibility. Most work in recent literature
only takes power production into account, whereas loading
is neglected. An example is the LES simulation results
presented in [122], wherein power production is increased
using AIC by enforcing quick variations in the thrust force.
These variations will increase turbulence in the wake and
mixing with the upper boundary layer containing a higher
flow velocity, which is beneficial for the power production.
Subsequent work [123] shows that by constraining thrust
force variations, the power gain will again be reduced. The-
oretically, it can be possible to increase power, but of course
quick variation of thrust force will have implications on loads
and these should be taken into account. Differentiation of the
results can be made with respect to the used models: steady-
state [115], [124], [125], [126] or dynamical [122], [127],
[128]. In general, early results based on relatively simple
steady-state parametric models illustrate increases in wind
farm power production. The simplified models in mentioned
studies might not represent the relevant wake phenomena
in AIC, and thus it is questionable if the optimized control
settings would work for the atmospheric conditions under
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consideration. High fidelity studies such as [121] and wind
tunnel experiments such as [129] show that it is not always
possible to increase power by AIC, and this can be explained
by phenomena mentioned earlier. Interestingly, the authors
in [130] show that, although it seems that the power pro-
duction cannot be increased, it can be interesting to employ
AIC to reduce turbine loading while maintaining equivalent
power production. In addition, AIC can possibly be used in
APC.
It is still difficult to make conclusive statements on AIC.
Perhaps a solution lies in adjusting the structural design of
wind turbines in a farm according to previously described
phenomena, but this is beyond the scope of this paper. In
conclusion, although the concept of AIC is promising, recent
advances in wind farm modeling and wind tunnel and field
tests have shown that possible production gains may be
smaller and more difficult to harvest than initially expected
based on static control strategies and more simplified models.
Further research is needed to conclude whether it is possible
to find a wind farm controller that will use AIC to reduce
loads and/or increase production by dynamically adjusting
pitch and torque settings to atmospheric conditions.

Wake redirection control:
In this approach, the rotor of the upstream turbine is pur-
posely misaligned with the incoming flow to deflect the wake
downstream so that it will not at all or partially overlap a
downwind turbine. The deflection can be done using:
• Tilt actuation
• Individual pitch control (IPC)
• Yaw actuation.
Tilt actuation will not be further discussed in this paper, but
the reader is referred to [27], [95], [96], [97]. In simulation
studies, IPC is shown to be effective at inducing wake redi-
rection, though this results in a large increase in loads [27].
Fig. 9 depicts a schematic illustration of yaw actuation.

γopt

φ

sD

wind
speed

8 7 6 5 4 3 m/s

x
y

Fig. 9. An illustration of wake redirection control with inflow angle φ
and a second turbine placed s rotor diameters D downstream of the first
turbine. Figure taken from [36].

Wake redirection promises significant improvements in sim-
ulation with power production increases on the order of 4%-
7% [11] and an annual energy production increase on the
order of 3%-4% [131]. In [132], a similar simulation is done
as previously presented in Fig. 8, but instead of changing

the axial induction of the first turbine, it is actuated with
a yaw angle of 25 degrees. The authors conclude that the
induced velocity increase caused by yaw actuation is better
concentrated within the rotor area of a downwind turbine
placed more than 3D behind the upwind turbine. Wake
behavior as a result of yaw actuation is an actively researched
topic [29], [133], [66]. The developments in WRC as an
actuation method go hand in hand with these studies and
more details regarding this method need to be investigated
using simulation and field studies.
An interesting but rarely seen approach is to use both AIC
and WRC [134]. Here, a relatively simple engineering model
to capture wake dynamics is used, but its parameters are
calibrated using one data set from a high fidelity flow solver.
The AIC and WRC analysis is done for different wind
directions. It is shown that a power increase is achieved for
all studied wind directions using the proposed approach. The
obtained control settings are not tested on a real wind farm
nor a high fidelity flow solver.
In this section, we discussed the most common wind farm
actuation methods. Section VI will discuss possible control
strategies.

VI. WIND FARM CONTROL STRATEGIES

In wind farm control, a supervisory controller determines a
collective control policy using measurements (and possibly
an internal model) so that performance (as defined in Sec-
tion III-A) is achieved. According to this control policy, the
supervisory controller assigns individual control settings as
defined in Section V-A to each turbine in the farm. Then,
relatively simple internal controllers enforce the tracking of
this assigned turbine setting. In this closed-loop approach,
not only the atmospheric conditions but also quantities such
as power production and a turbine’s structural loading can
be defined as measurements. Hence, control actions can
adapt to the changing wind farm and atmospheric properties,
which has the potential to lead to robust control solutions.
Controllers are evaluated using an internal model, which can
be dynamic or static. For a dynamical model, the model states
can have a physical meaning, such as wind flow velocity, but
it can also be a nonvariable. No system states are present with
(parametric) steady-state models.
A distinction between closed-loop controllers can be made
with respect to the measurements used. In closed-loop state-
feedback, all the states of the model (e.g., flow velocity
vectors or power signals from the turbines) are assumed
to be measured and fed back to the controller. This as-
sumption can be unrealistic, because measuring each system
state can be impractical and often impossible depending on
the used model. In closed-loop output feedback, only the
measurements, e.g., a subset of the states, are fed back to
the controller and used to evaluate control actions. State
estimators (observers) can be used to estimate the system
states using only measurements. For example, the state of a
model can contain all flow velocities (or a linear combination
of these velocities) in a wind farm, whereas the output may
be only the flow velocity at hub height of the rotors. An
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observer (discussed in Section VI-C) can estimate all flow
velocities using only these few measured flow velocities at
the rotors. Different closed-loop control strategies and their
applications to wind farms will be discussed next.

A. OPTIMIZATION-BASED CLOSED-LOOP CONTROL

In this strategy, wind farm measurements are fed into a
controller. Here, an optimization procedure evaluates, using
an internal model, optimal control inputs such as yaw angles,
pitch angles, and generator torque (or axial induction) values
for the turbines in the farm. In addition, the model parameters
can be updated using the wind farm measurements. Then,
optimal control inputs are sent to the turbines in the farm
and new measurements are taken.
An algorithm that can be used for finding optimal inputs
is game theory (GT). Here, favorable actions lead to high
rewards and unfavorable actions to low rewards. The algo-
rithm tries to find the most rewarding action according to the
used model. The reward can, e.g., be the amount of power
or the experienced loading. Because of the random search
actions, the algorithm needs time to converge to optimal
control settings. The duration depends on the complexity
of the internal model, but even if the model is a simple
parametric steady-state model and consequences of certain
control actions can be evaluated quickly, GT needs many
iterations to converge to an optimal solution. If atmospheric
conditions in a wind farm change during the search for
optimal control settings, the algorithm has to start again
finding optimal settings for these new atmospheric condi-
tions. Literature such as [126], [135] illustrate AIC using
GT. For specific conditions, power production improvements
are shown with respect to a baseline controller. However,
relatively simple engineering wake models are used, and the
found optimal inputs are not applied on a wind farm nor
a high fidelity model. It is therefore not clear how these
results would apply to real wind farms. The authors in [136]
illustrate AIC and WRC using GT to optimize the power
production. Using their approach on an engineering model
results in improvements, though again the control settings are
not tested on a more realistic situation. The authors in [74]
apply WRC using GT with FLORIS, a steady-state model
introduced in Section IV. The optimal inputs are then applied
to a high fidelity model SOWFA. An increase in power with
respect to a baseline controller is presented.
Another approach is extremum seeking control (ESC), an
optimization approach that can work for nonlinear, time-
varying systems. ESC algorithms estimate the gradient of
the cost function (e.g., the total power of a wind farm) using
measurements. In literature such as [137], [138], [139], AIC
using ESC and a greedy controller are applied on a relatively
simple wind farm model and the results are compared. The
found optimal values are not sent to a high fidelity model
or real wind farm to validate the results. The authors show
that, for different cases, power production can increase with
respect to greedy control. In [140], AIC using ESC is applied
on the high fidelity model UTDWF and power production
improvements with respect to a baseline controller are pre-

sented. In [125], AIC using gradient-based ESC (therein
defined as maximum power-point tracking (MPPT)) while
having information only from neighboring turbines is applied
to maximize the power output of a wind farm for different
atmospheric conditions. An extended Jensen Park wind farm
model is used and a benchmark power production is obtained
using GT. The results illustrate that, by using gradient-based
ESC, the power production can be improved with respect
to the benchmark results. The optimal control inputs are
not tested on a wind farm nor a high fidelity model, hence
results depend on the validity of the model used. In this
case study, the information for the individual wind turbines
is also limited, hence a global optimum cannot be guaranteed,
but the computation time is reduced. In [141], AIC and
WRC using a similar gradient-based ESC algorithm as [125]
is applied in a wind tunnel with power maximization as
an objective. The case study includes three turbines with
limited information for the individual turbines. Hence, again,
it is observed that a global optimum cannot be guaranteed
though a power production increase with respect to a baseline
controller is presented. In [142], AIC and WRC using a
Bayesian Ascent method is presented. Simulation and wind
tunnel test results are shown for a four-turbine case. Dynamic
programming is another algorithm also applied to wind farm
models (see, e.g., [143], [144], [145]). The latter aims at
optimizing the power production among the yaw angles
employing an extended Jensen Park model. These results will
not be discussed further in this paper.
Note that the optimization-based closed-loop control results
presented so far, except for [74], [140], [141], [142], are
obtained using a relatively simple model. The control actions
are not tested in high fidelity simulations nor a real or scaled
wind farm, and the question is if similar results will be
obtained when doing so. It is also important to note that
GT and ESC are, in essence, model-free approaches, hence
they could be applied directly on a wind farm. However, this
is due to, i.a., wake traveling delays, unpractical hence these
methods are applied on relatively simple (fast) models. With
MPPT, only information from neighboring turbines is used,
which decreases the necessary wake traveling time. This is
the reason why MPPT can be applied in a wind tunnel,
and possibly a wind farm, but not GT or ESC. GT, ESC,
and MPPT are typically applied using parametric steady-
state models and optimal control settings are evaluated for
specific atmospheric conditions and in steady state. Because
a wind farm most likely never reaches the steady state, it
is questionable if the found results are really optimal. In
addition, the computation time these optimization algorithms
need to converge remains a critical issue because of the time-
varying conditions in a wind farm. We therefore encourage
researching methods that can increase the convergence rate
of these optimization algorithms.
Closed-loop control based on a dynamic model has potential
to find a temporally optimal solution. An example of this is
presented in [122], [123]. Here, model-predictive control is
applied using the high fidelity model SP-Wind. Knowledge
of all the flow velocities and wind turbine power signals
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is assumed and the algorithm maximizes the total power
production among axial induction factors for a given time
horizon. Computationally, this is a heavy task, but the results
give insights into the possibilities of AIC. The authors
in [45], [47], [128] also present AIC using MPC via a
medium fidelity flow model to reduce the computational
effort. Power increase (and load reduction in [45], [47]) with
respect to a baseline controller are presented, though the
controller is not tested in a high fidelity model. In all the
MPC examples, full state knowledge is assumed. As stated
before, this is in general not realistic.

B. LINEAR DYNAMIC CLOSED-LOOP CONTROL

Examples of these approaches are PID, H2, and H∞ con-
trollers. These controllers are defined as dynamic controllers
and can be designed using (mostly) linear models. Tracking
behavior and disturbance rejection are time-domain specifi-
cations that can be imposed relatively easily on closed-loop
systems.
The authors in [146] did implement a H2 controller using a
medium fidelity wind farm model that neglects turbulence.
The controller is tested on a nonlinear model and the authors
conclude that the controller provides a distribution of power
references between wind turbines so that demanded wind
farm power is ensured and structural loading is minimized.
The authors claim that their method can also be used to
evaluate a H∞ controller. Unfortunately, the controller is not
evaluated on a high fidelity model.
In [147], the authors designed a PID controller for wake
tracking. The controller is applied in SimWindFarm, a model
discussed in Section IV. In [148] and [149], a H∞ and a
robust H∞ controller are designed, respectively, to steer the
wake while employing a dynamic wind farm model based on
the 2-D Navier-Stokes equations. Perfect knowledge of the
center of the wake using lidar is assumed in both papers. The
concept of steering the wake to a certain position makes the
work in these papers unique. However, the question remains
as to which position the wake should be steered to increase
wind farm performance as discussed in Section III-A.

C. OBSERVER

An observer is able to estimate the full state (and possibly
update model parameters) based on specific measurements.
A closed-loop control scheme using an observer is depicted
in Fig. 10. In this figure, rk is a reference signal, x̂k is the
system state estimated by the observer, yk are measurements
taken from the plant, uk is the control signal, and wk and
vk are process and measurement noise, respectively. For
example, given only rotor velocities, an observer can, when
containing a proper model, estimate the flow velocity vectors
in the whole farm assuming observability. The latter holds
true if initial conditions can be inferred from measurements
(see, e.g., [150] for more information on this topic). Ob-
servers (also called estimators) contain a dynamical model
and can be used in combination with, e.g., a model-predictive
controller. Observer properties include the ability to:
• Estimate states from specific measurements

wk

Plant

+

vk

+uk yk

−ŷk
+

error

x̂k

r k

Controller

Fig. 10. A closed-loop wind farm control scheme with an observer.

• Deal with noise in measurements and may act as a low-
pass filter in estimating the system states

• Enrich the state estimation with small-scale flow behavior
in which a control-oriented model is able to estimate the
large-scale flow behavior.

The latter property is especially interesting because model
mismatches are most likely to occur as a result of the
dynamic complexity in a wind farm. In [151] and [152], the
authors implement a type of observer called the Ensemble
Kalman filter using a medium fidelity flow model. Although
the initial results are promising in simulation with LES data,
no real closed-loop simulations have yet been performed with
a controller and state observer. The authors show that the
flow estimations can be improved using an observer, and
flow fields can better approximate high fidelity flow data
when applying an observer.
In [153], the authors use a relatively simple dynamic wake
model in an observer while taking measurements from the
SP-Wind flow solver. The objective of the control framework
is power reference tracking, and AIC using a MPC controller
is applied. The results look promising. Another example of
applying an observer in a wind farm simulation can be found
in [154].
Open questions regarding the application of an observer in
wind farms are 1) what are the optimal sensor locations and
2) how many sensors should be used such that state recon-
struction is still possible and qualitatively acceptable. The
first question relates to increasing the information density
from each sensor. Minimizing the number of sensors is from
an economical perspective important. These questions are
not easy to be answered due to the time-varying behaviour
a wind farm exhibits.
In Section VI-A, VI-B and VI-C, a summary of wind farm
control strategies has been given. It can be concluded that
most of these strategies are optimization-based and evaluate
optimal control settings by optimizing a cost function. How-
ever, most controllers in literature are not implemented in a
wind farm or a high fidelity flow solver to validate their
true performance. Less research has been done regarding
the application of modern control strategies in wind farms,
thereby making this a relatively undiscovered research area.
Applying observers in wind farms shows promising results,
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though more research is necessary.

VII. FIELD TESTS

From Section IV, it can be concluded that there are many
wind farm models that predict flow fields, power capture,
and/or loading in a wind farm. Parametric and medium
fidelity models are sometimes validated using flow data from
high fidelity wind farm models. However, validation of these
solvers using real wind farm data is still ongoing. Although
it is expensive to do field testing, it is essential for further
development. Field tests are not only used to validate high
fidelity flow models, but also to obtain results that show
that wind farm control can be worthwhile in general. For
example, fields tests are described in [155], [156], [157],
[158], [159]. A less expensive approach is doing wind tunnel
experiments (see e.g., [29], [34], [66], [129], [141], [160]).
Although wind tunnel tests can provide interesting data, the
experiment environment remains a scaled conditioned one.
This prevents a one-to-one comparison to real wind farms.
In addition, it appears to be challenging to have realistic
turbines and flow characteristics at a smaller scale. However,
the advantage of this is that a more idealized experiment can
be performed, which can better be represented in simulation,
and thus provide a better comparison between a simulation
and an experiment.

VIII. CONCLUSIONS

In this paper, basic wind farm control-oriented modeling
and control concepts have been explained and literature has
been categorized and discussed. The following summarizing
conclusions can be drawn:
• High fidelity models are suitable for flow and wind farm

controller analysis. They are also suitable for exploring
the possibilities of wind farm control. However, more
validation of high fidelity models with field test data is
necessary to improve their quality. Because high fidelity
models are computationally complex, they are not suitable
for online control.

• The use of medium fidelity dynamical models can, e.g.,
be employed to predict the available power and/or flow
fields in a wind farm. In addition, they can deal with
changing atmospheric conditions over space and time.
However, current medium fidelity dynamical models based
on the Navier-Stokes equations are still computationally
complex, hence studying simple dynamical and parametric
steady-state models could be helpful. The question is if a
sufficient amount of dynamics can still be captured with
these models so that they can be used for wind farm
control resulting in realistic results. In some specific cases,
medium fidelity dynamical and low fidelity steady-state
models have shown similar simulation results with respect
to high fidelity models, though no conclusive statement
can be made yet.

• Reduced-order models can provide information on im-
portant wake farm dynamics with limited computational
complexity. However, these models are valid for one
specific atmospheric condition, and applicability in real

wind farms is yet to be proven. Still, the use of techniques
in parameter-varying control that can help link multiple
linear reduced-order models is promising.

• Current literature tells us that axial induction control
will most likely not result in power production increases
without increasing structural loading. Open questions are
if axial induction control can be used to minimize the
turbine’s structural loading while maintaining power pro-
duction and if it is applicable in active power control.

• Wake redirection control is a promising actuation method
for wake control. Additional field tests are required to
provide more information on the true potential of this
actuation method. Furthermore, it could be beneficial
to study the combination of axial-induction and wake
redirection control in greater detail.

• Designed controllers should be tested on real wind farms,
or at least in a high fidelity wind farm simulator for dif-
ferent test cases, to get a better idea of their effectiveness
in realistic wind farm scenarios.

• Remote-sensing technologies, or other measurement de-
vices used in wind farms, should be researched further.
These methods are critical for control algorithms to obtain
reliable measurements of wake dynamics used for deter-
mining a certain control policy and to update an internal
model.

• The application of an observer in a wind farm is promis-
ing. It provides the ability to take a few measurements and
thereby estimate the full state space of the model. From
a practical point of view, this is much more realistic than
assuming full state knowledge. An observer is based on a
dynamical model and can be used in combination with,
e.g., a model-predictive controller. However, relatively
little research has been done regarding this topic, and its
true potential is still a question.

• More field experiments should be conducted to further
investigate if wind farm control can improve the perfor-
mance of a real wind farm and to obtain data to validate
existing models.

• For long-term research challenges in wind energy,
see [161].
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