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Abstract

Background: Pairwise sequence alignment is widely used in many biological tools and applications. Existing GPU
accelerated implementations mainly focus on calculating optimal alignment score and omit identifying the optimal
alignment itself. In GATK HaplotypeCaller (HC), the semi-global pairwise sequence alignment with traceback has so far
been difficult to accelerate effectively on GPUs.

Results: We first analyze the characteristics of the semi-global alignment with traceback in GATK HC and then propose
a new algorithm that allows for retrieving the optimal alignment efficiently on GPUs. For the first stage, we choose
intra-task parallelization model to calculate the position of the optimal alignment score and the backtracking matrix.
Moreover, in the first stage, our GPU implementation also records the length of consecutive matches/mismatches in
addition to lengths of consecutive insertions and deletions as in the CPU-based implementation. This helps efficiently
retrieve the backtracking matrix to obtain the optimal alignment in the second stage.

Conclusions: Experimental results show that our alignment kernel with traceback is up to 80x and 14.14x faster than
its CPU counterpart with synthetic datasets and real datasets, respectively. When integrated into GATK HC (alongside
a GPU accelerated pair-HMMs forward kernel), the overall acceleration is 2.3x faster than the baseline GATK HC
implementation, and 1.34x faster than the GATK HC implementation with the integrated GPU-based pair-HMMs
forward algorithm. Although the methods proposed in this paper is to improve the performance of GATK HC, they can
also be used in other pairwise alignments and applications.

Keywords: Semi-global alignment with traceback, Optimal alignment, GATK HaplotypeCaller (HC), GPUs

Background
NGS (Next Generation Sequencing) platforms offer the
capacity to generate large amounts of DNA sequencing
data in a short time and at a low cost. However, the anal-
ysis of the dramatic amounts of DNA sequencing data
is still a computational challenge. Researchers have pro-
posed many methods to improve the performance of the
DNA sequencing data analysis tools and applications. One
method is to execute these tools and applications on high
performance computing architectures, such as supercom-
puters, clusters and even cloud environments. Another
method is to use accelerators, such as GPUs and FPGAs,
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to accelerate the time-consuming kernels of these tools
and applications to improve their performance.
GATK HaplotypeCaller (HC) is a popular variant caller,

which is used to find the differences (or variants) between
the sample DNA sequence compared with the reference
sequence. Although GATK HC has higher accuracy of
identifying variants compared with many other variant
callers, its feasibility is limited by the long execution time
needed for the analysis, which has proven to be difficult to
optimize. This has driven researchers to improve its per-
formance. Intel and IBM researchers both employ vector
instructions to optimize the pair-HMMs forward algo-
rithm [1, 2], which is the most time-consuming part of
GATK HC, to reduce the total execution time. Ren et al.
[3, 4] uses GPUs to accelerate the pair-HMMs forward
algorithm in GATK HC, which achieved 1.71x speedup
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in single thread mode. After accelerating the pair-HMMs
forward algorithm on GPUs, profiling of GATK HC
shows that the semi-global pairwise sequence alignment
accounts for around 34.5% of the overall execution time,
making it the most time-consuming kernel in the applica-
tion. This provides an opportunity to further improve the
performance of GATK HC using GPU acceleration.
Pairwise sequence alignment, which includes global

alignment, semi-global alignment and local alignment, is
one of the commonly used techniques in many biologi-
cal tools and applications. The global alignment and the
semi-global alignment are calculated by the Needleman-
Wunsch algorithm and the modified Needleman-Wunsch
algorithm, respectively, while the local alignment is calcu-
lated by the Smith-Waterman algorithm. Although there
are some differences existing in the three algorithms, the
main framework of these algorithms is similar, which
includes two stages: (1) a dynamic programming kernel
to calculate the score matrices and find the optimal align-
ment score; (2) a traceback (or backtracking) kernel to find
the optimal alignment.
Since three kinds of pairwise sequence alignment

(global, semi-global and local) have the same framework
and differ only in details, techniques of speeding up one
can be applied to the other two with tiny modifications.
Different kinds of high-performance platforms, especially
accelerators, such as FPGAs [5, 6] and GPUs [7–16], are
used to reduce their execution time.
There has been much research done to reduce the exe-

cution time of the three kinds of pairwise alignment
on GPUs. There are two approaches to implement the
first stage of the pairwise sequence alignment on GPUs
(which is to calculate the optimal alignment score): inter-
task parallelization model and intra-task parallelization
model. The former is that each thread performs one align-
ment independently, such as [7] and [8]. The latter is
that threads in a block cooperate to perform an align-
ment, such as [9]. If the pairwise sequence alignment is
applied for sequence database scanning, aligning a query
sequence with all database sequences for sequence simi-
larity, a query profile and related data storage and access
techniques are employed to reduce memory accesses on
GPUs, such as [10] and [11]. In [11], alignments are per-
formed in interleaved mode in order to amortize the cost
of initiating each execution pass.
However, very few researchers implement the second

stage on GPUs. The existing implementations can be clas-
sified into two groups. The implementations of the first
group are based on backtracking matrices. Liu et al. [11]
proposed to store the score matrices and backtrack the
score matrices to obtain the optimal alignment. However,
the method is not described clearly. gpu-pairAlign [12]
proposed to store the alignment moves in four Boolean
backtracking matrices during the first stage and retrieve

the four Boolean backtracking matrices instead of the
score matrices. This group of implementations obtain the
optimal alignment in linear time, but the disadvantage is
that their space complexity is quadratic. The implementa-
tions of the second group are based on the Myers-Miller
algorithm.MSA-CUDA [13] developed a stack-based iter-
ative implementation of the Myers-Miller algorithm [17]
to retrieve the optimal alignment in linear space. SW# [14]
proposed a modified Myers-Miller algorithm. CUDAlign
2.0 [15] combined theMyers-Miller and Smith-Waterman
algorithm. Moreover, with several versions of incremen-
tal optimizations, CUDAlign 4.0 [16] is able to achieve
the optimal alignment of chromosome-wide sequences
using multiple GPUs. However, their approaches have
quadratic time complexity, making them only suitable for
the pairwise alignment of very long DNA and protein
sequences.
In this paper, we provide an accelerated solution tailored

to GATK HC which implements the semi-global pairwise
sequence alignment with traceback on GPUs to further
improve the performance. The contributions of this paper
are as follows:

• We first analyze the characteristics of the semi-global
alignment in GATK HC and then propose a
GPU-based implementation of the semi-global
alignment with traceback based on the analysis.

• During the first stage, we propose to record the length
of consecutive match(es)/mismatch(es) and store the
alignment moves in a special backtracking matrix.

• We also propose a new algorithm that allows for
retrieving the optimal alignment efficiently on GPUs.

• We benchmark the results and show an overall
speedup of GATK HC of about 2.3x over the
non-accelerated version.

Although this paper proposes to improve the perfor-
mance of GATK HC, the GPU-based implementation of
the semi-global alignment with traceback can be used
in other applications and tools. Moreover, since there
are only small differences among the global alignment,
semi-global alignment and local alignment, the methods
proposed in this paper can also be applied to the global
alignment and local alignment.

Methods
A brief overview of semi-global alignment
Semi-global alignment finds the overlap between two
sequences. Insertion and deletions introduce gaps in the
alignment. Gaps at the start or end of the sequences
may be neglected. Hence, different types of semi-global
alignments are possible between two sequences. Figure 1
shows an example of the type of the semi-global alignment
performed in GATK HC.
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Fig. 1 An example of an semi-global alignment of two sequences in
GATK HC. R1 and R2 represent two sequences. Gaps (‘-’) at the start
and end of two sequences are neglected. In the alignment, there are
three kinds of operations indicating how R2 aligns with R1. ‘M’
indicates that a base in R2 aligns with a base in R1 (matches or
mismatches); ‘I’ indicates that a base in R2 is not in R1; ‘D’ indicates
that a base in R1 is not in R2

The pairwise sequence alignment is to find the optimal
alignment between two sequences, which has the optimal
alignment score. The modified Needleman-Wunsch algo-
rithm with affine gap penalties to calculate the optimal
alignment score of the semi-global alignment in GATK
HC is defined as
Initialization:
Mi,0 = 0 (0 ≤ i ≤ m)

M0,j = 0 (0 ≤ j ≤ n)
(1)

Recurrence:

Mi,j = max

⎧
⎨

⎩

Mi−1,j−1 + sbt
(
R1[ i] ,R2

[
j
])

Di,j
Ii,j

Di,j = max
{
Di−1,j − β

Mi−1,j − α

Ii,j = max
{
Ii,j−1 − β

Mi,j−1 − α

(2)

Termination:

Result = max
{
max{1≤i≤m} Mi,n
max{1≤j≤n} Mm,j

(3)

where m and n are the length of R1 and R2, respec-
tively. In these equations, Mi,j represents the optimal
alignment score of two subsequences R1[ 1] ...R1[ i] and
R2[ 1] ...R2

[
j
]
, while Ii,j and Di,j represent the optimal

alignment score of two subsequences R1[ 1] ...R1[ i] and

R2[ 1] ...R2
[
j
]
with R2

[
j
]
aligned to a gap and R1[ i]

aligned to a gap, respectively. Here, the semi-global align-
ment uses an affine gap penalty model to calculate gap
penalties, in which α and β are the gap open penalty and
the gap extension penalty, respectively. sbt is the score of
a match or mismatch. As shown by Eq. 1, the penalties of
gaps at the start and end of two sequences are neglected.
As shown by Eq. 3, the optimal alignment score of the
semi-global alignment in GATK HC is the greatest value
of the elements in the last row and the last column of the
matrix M.
These equations indicate that the computation com-

plexity of the modified Needleman-Wunsch algorithm
is O(mn), which makes the execution time increase
quadratically with the sequence length. Usually, the algo-
rithm is implemented using dynamic programming which
solves three two dimensional matrices. According to the
equations, Mi,j, Ii,j and Di,j only depend on the up-left,
up and left neighbor elements, which implies that the
elements on the same anti-diagonal can be computed in
parallel. Thus, a method employed by many researchers
to reduce the execution time is to exploit this inherent
parallelism in the algorithm.
If the alignment only needs to find the optimal align-

ment score of two sequences, the dynamic programming
kernel can be calculated in linear space. Otherwise, the
alignment with affine gap penalties generally uses three
backtracking matrices to store the scores or alignment
moves calculated by the dynamic programming kernel.
The optimal alignment traceback starts from the posi-
tion of the element with the optimal alignment score until
reaching any element in the first row or the first column
of the backtracking matrices, which is calculated in lin-
ear time. Figure 2 presents an example of backtracking an
optimal alignment based on the score matrices.

Cigar format
In GATK HC, the goal is to get the optimal semi-global
alignments, which are represented in the CIGAR format
[18], and POS. CIGAR is a string including one or more

Fig. 2 An example of backtracking an optimal alignment. The backtracking of an optimal alignment starts fromM6,5 (central matrix in the figure),
passes throughM5,4, jumps to D5,4 (right matrix in the figure), passes through D4,4, jumps toM4,4, passes throughM3,3, jumps to I3,3 (left matrix in
the figure), passes through I3,2, jumps toM3,2 and ends atM2,1. The optimal alignment retrieved is “MDMIM”
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number-character pair(s). The character, including ‘M’, ‘I’,
‘D’, ‘N’, ‘S’, ‘H’, ‘P’, ‘=’ and ‘X’, defines an operation explaining
how the base in R2 aligns to the base in R1. Table 1 shows
the CIGAR operations used in GATK HC. The number
defines the length of the consecutive operations. POS is 0-
based left most position of the first matching base of R1,
which indicates the position of R1 where the alignment
starts.
Take the alignment in Fig. 1 for example. The CIGAR

representation of the alignment is “3M2D1M2I2M1S” and
POS of the alignment is 1.

GPU architecture
Modern GPUs are widely used to accelerate computation-
ally intensive algorithms. A GPU consists of thousands of
small cores capable of executing one thread at a time. On
NVIDIA GPUs, threads are grouped into blocks and these
blocks are grouped into grids. Furthermore, consecutive
threads in the same block are grouped intowarps. The size
of a warp is usually 32. The memory hierarchy includes
registers, shared memory, global memory, cache and so
on. Each thread is assigned a set of registers. The shared
memory is accessed by all threads in a block. Using the
shared memory, the threads in a block can exchange data
at a very fast rate. The global memory is accessed by all
the threads on the GPU. The latency of the global memory
access is high since it resides on the device DRAM. If the
data accessed by each thread in the same warp are stored
at consecutive addresses, the global memory accesses of
these threads can be coalesced. Usually, the width of one
global memory access is 128 bytes. If the global memory
accesses of threads in a warp are coalesced, there will be
only one global memory access when the data accessed
by each thread is not more than 4 bytes. Otherwise, there
would be 32 sequential global memory accesses in the
worst-case situation.

Semi-global alignment in GATK HC
Implementation of alignment in GATK HC
In GATK HC, the semi-global pairwise alignment is per-
formed in two stages.
The implementation of the first stage is realized with a

two-layer loop, which results in the O(mn) computational

Table 1 CIGAR operations used in GATK HC

Operation Description

M Match/mismatch

I Insertion (gap in R1)

D Deletion (gap in R2)

S Soft clipping (base at the beginning or the end of R2
but not in R1 )

complexity. The results of the first stage are two matri-
ces: the score matrix sw, which stores matrix M, and the
backtracking matrix btrack. In btrack, the value of each
element can be classified into three kinds, which is defined
as follows:

• > 0 - indicates a deletion and the length of the
consecutive deletion(s) is the value of the element

• = 0 - indicates a match or mismatch and the length
of the consecutive match(es)/mismatch(es) is
increased by 1

• < 0 - indicates an insertion and the length of the
consecutive insertion(s) is the absolute value of the
element

The absolute values of the elements in the backtrack-
ing matrix are calculated by recording the length of the
consecutive deletion(s) and consecutive insertion(s) when
calculating the score matrix.
The implementation of the second stage is to calculate

the optimal alignment in CIGAR format and POS. The
score matrix sw is first used to find the optimal alignment
score and the backtracking matrix btrack is then used
to obtain the optimal alignment and POS. The optimal
alignment is calculated in linear time. The backtracking
matrix in GATK HC is helpful during backtracking. It
is much easier to identify the next move compared with
other methods since it does not need to jump among
several backtracking matrices (shown in Fig. 1) or cal-
culate the next move based on the current move [12].
Moreover, the lengths of the consecutive deletion(s) and
consecutive insertion(s) are given by the element of the
btrack matrix. However, the length of the consecutive
match(es)/mismatch(es) is not given, which is increased
by one instead.

Data analysis
In GATK HC, the semi-global alignment is performed in
three situations:

1 Align the reference path with the dangling path to
recover dangling branches for the local assembly.

2 Align the read with the assembled haplotype.
3 Align the assembled haplotype with the reference to

decide whether the assembled haplotype satisfied the
defined requirements.

We profiled GPU-based GATK HC [3] with a typical
workload (Chromosome 10 of the whole human genome
dataset G15512.HCC1954.1 [19]) to investigate which sit-
uation is most time-consuming. The profiling results in
single-threaded mode are shown in Table 2, which spec-
ifies the relative execution time and the number of the
semi-global alignments in each situation. As shown in the
table, the execution time of all the semi-global alignment
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Table 2 Execution time of the semi-global alignment in three
situations of GATK HC

Situation Number of alignments Execution time

1 3529 0.03%

2 850376 14.58%

3 54802 19.89%

Total 908707 34.5%

accounts for 34.5% of the total execution time. Moreover,
situation 2 and 3 consumes around 100% of the semi-
global alignment execution time and the execution time
in situation 1 is negligible. However, although the num-
ber of semi-global alignments in situation 2 is much larger
than that in situation 3, the execution time in situation 2
is smaller than that in situation 3.
We then analyzed the lengths of the sequence pairs in

situation 2 and 3. In situation 2, let R1 be the assembled
haplotype and R2 be the read. In situation 3, let R1 be
the assembled haplotype and R2 be the reference. Figure 3
shows a scatter plot of the lengths of the sequence pairs
in these two situations. As shown in Fig. 3, the lengths
of the sequence pairs in situation 2 (40∼350) are shorter
than those in situation 3 (300∼520). Since the compu-
tation complexity is O(mn), the execution time of each
semi-global alignment in situation 3 is bigger than that
in situation 2. This explains why the total execution time
of situation 3 is bigger than that of situation 2, which is
shown in Table 2.Moreover, in situation 2, the length of R2
(the read) is shorter than the length of R1 (the assembled
haplotype).
In addition, we investigated the optimal alignments

achieved in situation 2 and 3 and added up the num-
ber of M/I/D/S operations in each optimal alignment.

Figure 4 shows that the number of M operations is
the largest. Especially in situation 2, the number of
M operations accounts for 99.65% of the total opera-
tions. Moreover, we found that most of M operations
are consecutive in each optimal alignment. However,
the length of the consecutive match(es)/mismatch(es)
is increased by one during the optimal alignment
retrieval.
Hence, although the computation complexity of the

optimal alignment is linear, most of its execution time
is used to calculate the length of the consecutive
match(es)/mismatch(es).
We last studied the source code of GATK HC version

3.7 and found that the semi-global alignments in situation
2 and 3 can be grouped into many batches without big
modifications of the source code. Each batch consists of
many semi-global alignments of sequence pairs. The num-
bers of batches in situation 2 and 3 are 13,142 and 13,977,
respectively. Figure 5 shows the number of sequence pairs
of each batch in situation 2 and 3. The biggest number of
sequence pairs in all the batches in situation 2 and 3 are
293 and 192, respectively. Furthermore, the majority of
batches in situation 2 include 25 ∼125 of sequence pairs
while the majority of batches in situation 3 include 1 ∼8
of sequence pairs.

Implementation on GPUs
The implementation of the semi-global pairwise align-
ment for GATK HC on GPUs is performed in two stages.
In the first stage, it performs the modified Needleman-
Wunsch algorithm in order to obtain the backtracking
matrix and the position of the optimal alignment score. In
the second stage, it retrieves the backtracking matrix in
order to obtain the optimal alignment in CIGAR format
and POS.

Fig. 3 Lengths of sequence pairs in situation 2 and 3. The lengths of the sequence pairs in situation 2 (40∼350) are shorter than those in situation 3
(300∼520)
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Fig. 4 Numbers of M/I/D/S in situation 2 and 3. The number ofM operations is the largest. Especially in situation 2, the number ofM operations
accounts for 99.65% of the total operations

First stage implementation
Intra-task parallelization As mentioned in “Data anal-
ysis” subsection, the number of sequence pairs in each
batch is less than 300. In order to effectively use the
resources on GPUs, the intra-task parallelization model

is employed to implement the modified Needleman-
Wunsch algorithm on GPUs. For the implementation on
GPUs, the elements on the same anti-diagonal of the score
matrix M, I and D and backtracking matrix are calcu-
lated in parallel, reducing the computational complexity

Fig. 5 Numbers of batches including different number of sequence pairs in situation 2 and 3. The biggest number of sequence pairs in all the
batches in situation 2 and 3 are 293 and 192, respectively. Furthermore, the majority of batches in situation 2 include 25 ∼125 of sequence pairs
while the majority of batches in situation 3 include 1 ∼8 of sequence pairs
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to O(m + n). Figure 6 shows the calculation of matrix M
as an example to explain the implementation. Let R1 and
R2 be the two sequences. There are in total 6 threads in
the block and the size of matrix M is 6 × 6. At each step,
the elements on an anti-diagonal are calculated in parallel
and every element is calculated by one thread. For exam-
ple, at step 5 (S5), M5,1, M4,2, M3,3, M2,4 and M1,5, which
are on the same anti-diagonal, are calculated by thread
0 (T0), thread 1 (T1), thread 2 (T2), thread 3 (T3) and
thread 4 (T4), respectively. These elements are then used
in the next step to calculate the elements on the next anti-
diagonal. Moreover, each thread is responsible to calculate
the elements in one column of matrixM. For example, the
elements in the second column are calculated by thread
1 (T1). The goal of the first stage is to obtain the back-
tracking matrix and the position of the optimal alignment
score. Therefore, elements of the score matrixM, I and D
are not stored. Instead, two vectors in the shared mem-
ory and three registers of each thread are used to store
the intermediate results of the three score matrices. Dur-
ing the calculation of elements of the last column and
the last row of matrix M, the optimal alignment score
and its position are obtained. However, the drawback of
the implementation is that some threads remain idle at
the beginning or at the end of the calculation procedure,
resulting in low thread utilization. If the length of R2 is
smaller than the number of threads in a block, the execu-
tion is similar to Fig. 6 while some threads would remain
idle during the whole calculation procedure. If the length
of R2 is bigger than the number of threads in a block, there
are two solutions to deal with it. One is to increase the size
of a block until the number of threads in a block is equal to

Fig. 6 Calculation of matrix M on GPUs

Algorithm 1 Pseudo code of optimal alignment retrieval
1: function CALCULATECIGAR(btrack[ ] [ ], Cigar[ ],

m, n, POS, P1, P2,max_col)
2: state ←′ N ′ � Initialization of state
3: length ← 0
4: if P2 > 0&&n − P2 > 0 then � Check soft

clippings at the end of R2
5: Cigar[ index] .num = n − P2
6: Cigar[ index + +] .c =′ S′
7: end if
8: i = P1, j = P2
9: while i > 0&&j > 0 do � Compute optimal

alignment
10: tp = B

[(
i − 1 + j − 1

) ∗ max_col + j − 1
]

11: if tp.x > 0 then
12: new_state =′ D′
13: i = i − tp.x
14: step_length = tp.x
15: else
16: if tp.x < 0 then
17: new_state =′ I ′
18: j = j − abs(tp.x)
19: step_length = abs (tp.x)
20: else
21: new_state =′ M′
22: i = i − tp.y
23: j = j − tp.y
24: step_length = tp.y
25: end if
26: end if
27: if state ==′ N ′ then
28: state = new_state
29: end if
30: if new_state == state then
31: length+ = step_length
32: else
33: Cigar [index] .num = length
34: Cigar[ index + +] .c = state
35: length = step_length
36: state = new_state
37: end if
38: end while
39: Cigar[ index] .num = length
40: Cigar[ index + +] .c = state
41: POS = i − 1
42: if j > 0 then � Check soft clippings at the

beginning of R2
43: Cigar[ index] .num = j
44: Cigar[ index + +] .c =′ S′
45: end if
46: end function
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or bigger than the length of R2. The other is to divide the
calculation into several passes. In each pass, the execution
is similar to Fig. 6. Three vectors in the global memory are
used to store the intermediate results produced by the last
thread of each pass, which would be used in the next pass.
The advantage of the second solution is that it increases
efficiency by reducing idle percentage of threads during
the calculation procedure while its disadvantage is that it
increases global memory accesses.

Recording the length of consecutive match(es)/mis-
match(es) Besides recording the length of the consecu-
tive deletion(es)/insertion(es), we also record the length of
the consecutive match(es)/mismatch(es) in the first stage.
The backtracking matrix on GPUs is stored in a short2
matrix. Each element of the matrix has two values, which
are x and y. The value of x and y are defined as follows:

• x > 0 - indicates a deletion and the length of the
consecutive deletion(s) is the value of the element

• x = 0 - indicates a match or mismatch and the length
of the consecutive match(es)/mismatch(es) is y.

• x < 0 - indicates an insertion and the length of the
consecutive insertion(s) is the absolute value of the
element

The data type of x and y is short, of which the mini-
mum value and maximum value are −32768 and 32767,
respectively. The absolute values of the minimum value
and maximum value are bigger than the theoretical max-
imum length of the consecutive operations, which is the
length of R1 or R2. In order to calculate the backtrack-
ing matrix, a short2 vector in the shared memory and two
registers of each thread are used.
Moreover, Since the backtracking matrix will be used in

the next stage and the shared memory is not big enough
to store it, the backtracking matrix is stored in the global
memory. Similar to calculation of the matrix M shown in
Fig. 6, elements of the backtracking matrix are calculated
in anti-diagonal order. Thus, the backtracking matrices
are stored in the diagonal-major data format (Fig. 7b),
which is proposed in [20], instead of the row-major data
format (Fig. 7a) to avoid non-coalesced global memory
accesses of 32 threads in a warp and reduce global mem-
ory accesses.

Second stage implementation
In the second stage, we use the backtracking matrix btrack
to obtain the optimal alignment and POS. Algorithm 1
presents the pseudo code of the optimal alignment
retrieval on GPUs. P1 and P2 describe the position of the
optimal alignment score. Algorithm 1 first checks whether
there are soft clippings at the end of R2, and then com-
putes the optimal alignment in a while loop. At the end,

it checks whether there are soft clippings at the begin-
ning of R2. The backtracking starts from (P1,P2) and
finishes when i � 0 or j � 0, which is calculated in lin-
ear time. POS is the value of (i − 1) at the end of the
while loop. In addition, the position of each element in
the backtracking matrix is calculated by i, j and max_col,
as shown in the 9th line in Algorithm 1. max_col is the
column size of the maximum backtracking matrix of all
sequence pairs.
The length of the deletion, insertion and match/-

mismatch is given by the value of an element of the
backtracking matrix, as shown in the 13th, 18th and
23rd line, respectively. This reduces the global memory
accesses used to calculate the length of the operations.

Results
All the experiments are performed on IBM Power System
S823L (82478-42L), which has 2 IBM Power8 processors
(10 cores each) running at 3.6 GHz, 256 GB of DDR3
memory, and an NVIDIA Tesla K40 card. The NVIDIA
Tesla K40 card has 2880 cores that run at up to 745 MHz
and has a CUDA compute capability of 3.5.
We first compare the performance of the GPU-

based semi-global alignment implementation with dif-
ferent techniques using the synthetic datasets. The
synthetic datasets are created based on the output
of Wgsim [21] with default parameters. We then
compare the performance of GPU-based semi-global
alignment implementation with gpu-pairAlign imple-
mentation using synthetic datasets. Next, we com-
pare the performance of GPU-based semi-global align-
ment implementation with CPU-based implementa-
tion using synthetic and real datasets. We last inte-
grate the GPU-based semi-global alignment implemen-
tation into GATK HC 3.7 and compare the overall
performance.
Throughput is used as a performance metric of the first

stage of the GPU-based implementation, which is mea-
sured by giga cell updates per second (GCUPS). Note that
it is not fair to compare the throughput of the first stage
of the semi-global alignment with traceback with that of
the score-only alignments since the former needs to store
backtracking matrices in the global memory.

Performance comparison of multi-pass
There are two solutions to implement the first stage of the
semi-global alignment on GPUs if the length of R2 is big-
ger than the number of threads in a block. We realized
these two solutions and used different synthetic datasets
to compare the performance of the two solutions.
Figure 8 shows the performance of the two solutions

with different synthetic datasets. There are 9 datasets each
with a different length of R1/R2, namely: 64, 128, 192, 256,
320, 384, 448, 512 and 576. In each dataset, the lengths of
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a b
Fig. 7 Layout of the backtracking matrix in the global memory. Elements of different backtracking matrices are marked with different colors. a is the
backtracking matrices stored in the row-major data format. b is the backtracking matrices stored in the diagonal-major data format

R1 and R2 are the same. The number of sequence pairs in
the 9 datasets is 25, 100 and 1000.
For the first solution, which is to increase the block size,

there are in total 9 implementations for 9 datasets. The
differences of these implementations are the block size
and the sizes of vectors in the shared memory which store

the intermediate results. For the second solution, which
employs multi-pass, there is 1 implementation with block
size of 128.
As shown by Fig. 8, the throughput of the first solution

is higher than that of the second solution when the
number of sequence pairs of the datasets is 25 and 100.

Fig. 8 Performance comparison of implementations for two solutions on synthetic datasets
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However, when the number of sequence pairs of the
datasets is 1000, the throughput of the second solution
is higher in most cases. This is because the efficiency of
the implementations for the first solution is smaller than
that of the implementation for the second solution and the
advantage of the second solution overweighs its disadvan-
tage when the number of sequence pairs of the dataset is
big. Thus, we can choose the implementation of these two
solutions based on the number of sequence pairs of the
dataset.

Performance comparison of recordingmatch/mismatch
lengths
In this section, we analyze the impact of recording the
length of consecutive matches/mismatches on the perfor-
mance of the second stage of the alignment on GPUs.
We realized two implementations. The first implementa-
tion is our approach shown in Algorithm 1 in which the
length of consecutive matches/mismatches is recorded
in the backtrack matrix. The second implementation is
similar to Algorithm 1 except that the length of M is
increased by one and the coordinates (i, j) of M are
decreased by 1. The backtracking matrices are produced
by 9 implementations for the first solution using 9 syn-
thetic datasets. Here, the synthetic datasets are not based
on the output of Wgsim since we consider the best case,
in which only many M operations exist in the opti-
mal alignment. The lengths of R1/R2 in the 9 synthetic
datasets are 64, 128, 192, 256, 320, 384, 448, 512 and

576. The number of sequence pairs in the 9 datasets
is 100.
Figure 9 shows the execution time of the two

implementations. The implementation which records
match/mismatch lengths is faster. Moreover, its execution
time remains nearly constant with increasing length of R1
and R2 as it only requires a single global memory access
per R1 and R2 pair. The execution time of the implementa-
tion without recording match/mismatch lengths increases
linearly with the length of R1 and R2. This is because
the number of global memory accesses increases linearly
with the number of M operations in the optimal align-
ment, which in turn increases linearly with the length of
R1 and R2.

Performance comparison with gpu-pairAlign
As mentioned in “Background” section, there are two
methods to implement the second stage on GPUs: the
method based on the Myers-Miller algorithm and the
method based on backtracking matrices. The method
based on the Myers-Miller algorithm is only suitable for
the pairwise alignment of very long DNA and protein
sequences. Thus, we compared our implementation with
gpu-pairAlign [12], which uses backtracking matrices to
obtain the optimal alignments. gpu-pairAlign is designed
to perform alignment of every given sequence pair on
GPUs, especially for protein sequence pairs. It includes
algorithms for global alignment, semi-global alignment
and local alignment. We compare with its semi-global

Fig. 9 Execution time of GPU-based optimal alignment backtracking implementations (not) recording match/mismatch lengths on synthetic
datasets
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alignment algorithm. The semi-global alignment algo-
rithm of gpu-pairAlign is also performed in two stages:
the optimal alignment score and the backtracking matri-
ces are computed in the first stage; the backtracking is
performed in the second stage.
There are two main differences between the gpu-

pairAlign implementation and our implementation: (1)
In the first stage, our implementation employs the
intra-task parallelization model, while the gpu-pairAlign
implementation employs the inter-task parallelization
model; (2) The backtracking matrix of our imple-
mentation is a short2 matrix, elements of which are
the length of consecutive deletion(es), insertion(es) and
match(es)/mismatch(es), while the backtracking matrices
of the gpu-pairAlign implementation are four Boolean
matrices, elements of which indicate the proper direction
of backtracking moves.
We modified the gpu-pairAlign implementation to

make it to deal with the data produced by GATK HC:
(1) Since the input data of our implementation is a set
of sequence pairs instead of a set of sequences, the way
in which the gpu-pairAlign implementation handles input
data is modified; (2) Integer arrays are used to store the
intermediate results instead of short arrays since the inter-
mediate results are bigger than the maximum value of the
short data type; (3) The alignments are modified to be
represented using the CIGAR format and POS.
We first used the synthetic datasets described in

“Performance comparison of multi-pass” subsection to
compare the performance of the first stage of the
two implementations, which is shown in Fig. 10. The

performance of gpu-pairAlign implementation is much
smaller than our implementation. The main reason is
that when the size of the synthetic datasets is small, the
resource on the GPU cannot be fully utilized for the inter-
task parallelization model. The second reason is that the
intermediate results are stored in integer arrays, which
increases the size of shared memory of each block and the
number of global memory accesses.
We then compared the performance of the second

stage of the two implementations using the synthetic
datasets described in “Performance comparison of record-
ing match/mismatch lengths” subsection, which is shown
in Fig. 11. The execution time of the second stage of
our implementation remains nearly constant when the
length of R1 and R2 increases, while the execution
time of the second stage of the gpu-pairAlign imple-
mentation increases linearly with the length of R1 and
R2. Although the gpu-pairAlign implementation reduces
the global memory space by using four Boolean matri-
ces, it still needs to calculate each move one by one,
which is avoided in our implementation through storing
the length of consecutive deletion(es), insertion(es) and
match(es)/mismatch(es).

Performance comparison with CPU-based implementation
In this section, we compare the performance of our
GPU-based semi-global alignment with traceback imple-
mentation with the CPU-based implementation using
synthetic and real datasets. We used the first solution
which increases the block size when the length of R2
is bigger than the block size and records the length

Fig. 10 Performance comparison of the first stage of two implementations on synthetic datasets
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Fig. 11 Execution time of the second stage of two implementations on synthetic datasets

of consecutive matches/mismatches. The CPU-based
implementation is written in the C++ programming
language and compiled with gcc O3 optimization,
running on one Power8 core. The real datasets
are produced by using a typical workload (Chro-
mosome 10 of the whole human genome dataset
G15512.HCC1954.1).

Figure 12 shows the speedup of the GPU-based
implementations compared with the CPU-based imple-
mentation using the synthetic datasets described in
“Performance comparison of multi-pass” subsection.
There are in total 9 GPU-based implementations for 9
datasets, block size of which are 64, 128, 192, 256, 320,
384, 448, 512 and 576. The GPU-based implementations

Fig. 12 Speedup of the GPU-based implementations compared with CPU-based implementation on synthetic datasets



Ren et al. BMC Genomics 2019, 20(Suppl 2):184 Page 115 of 185

is up to 80x faster than the CPU-based implementation.
Moreover, the speedup of the datasets with 1000 sequence
pairs is bigger than the speedup of the datasets with 25
and 100 sequence pairs.
Table 3 shows the execution time of GPU-based imple-

mentations with the real datasets. As shown by Fig. 3, the
length of R2 in situation 2 is 40∼120 and the length of
R2 in situation 3 is 300∼520. Thus, we used two GPU-
based implementations with block size of 128 and 576 to
execute the real datasets produced in situation 2 and 3,
respectively. The GPU-based implementation of situation
2 is 14.14x faster than the CPU-based implementation,
while the GPU-based implementation of situation 3 is
4.89x faster than the CPU-based implementation. The
throughput of the first stage of the GPU-based imple-
mentation for situation 2 is 1.86 GCUPS, while that for
situation 3 is 0.64 GCUPS. The throughput of situation
3 is much smaller than the throughput for the synthetic
datasets with size 25. This is because the number of
sequence pairs of batches in situation 3 is extremely small
(1 ∼ 8 in most cases).

Integration into GATK HC
The two GPU-based implementations with block size of
128 and 576 are integrated into GATK 3.7 to acceler-
ate the semi-global alignment with traceback of situation
2 and situation 3, respectively. The GATK HC imple-
mentation with both GPU-based pair-HMMs forward
algorithm and GPU-based semi-global alignment with
traceback is compared with other two GATK HC imple-
mentations: GATK HC (referred to as baseline), which
is downloaded from the GATK website, and GATK HC
with only GPU-based pair-HMMs forward algorithm. The
dataset is Chromosome 10 of the whole human genome
dataset (G15512.HCC1954.1). All the GATK HC imple-
mentations are performed in single thread mode.
Table 4 shows the overall execution time of these

three implementations. The implementation with both
GPU-based pair-HMMs forward algorithm and GPU-
based semi-global alignment with traceback is 2.30x faster

Table 3 Performance of GPU-based implementations on real
datasets

Throughput (GCUPS) GPU (sec) CPU (sec) Speedup

Stage 1 of S2 1.86 2.32 43.93 18.94x

Stage 2 of S2 - 0.14 0.62 4.43x

Overall of S2 - 3.15 44.55 14.14x

Stage 1 of S3 0.64 10.20 53.29 5.22x

Stage 2 of S3 - 0.09 0.17 1.89x

Overall of S3 - 10.93 53.46 4.89x

S2 and S3 stand for situation 2 and 3, respectively. “Overall of S2” and “Overall of
S3” represent the overall GPU execution time? CPU execution time and speedup
of situation 2 and 3, respectively

Table 4 Execution time of GATK HC implementations

Total time (s) Speedup

Baseline 8034.05 -

GPU (only pair-HMMs) 4687.08 1.71x

GPU (pair-HMMs + semi-global
alignment with traceback)

3490.70 2.30x

than the baseline implementation. Moreover, it is 1.34x
faster than the implementation with only GPU-based pair-
HMMs forward algorithm.
Note that the number of sequence pairs of each batch

produced by GATK HC is small, leading to under utiliza-
tion of the GPU resources. It is better to launch multiple
GATK HC processes at the same time to fully utilize the
GPU resources.

Conclusion
This paper presents an implementation of the semi-global
alignment with traceback on GPUs to improve the perfor-
mance of GATK HC. Semi-global alignment with trace-
back has two stages: in the first stage, a backtracking
matrix is computed; in the second stage, the optimal
alignment is calculated using the backtracking matrix.
Based on the characteristics of the semi-global alignment
with traceback in GATKHC, the intra-task parallelization
model is chosen. The first stage of our GPU implementa-
tion is up to 18.94x faster than CPU. Moreover, our GPU
implementation also records the length of consecutive
matches/mismatches in addition to lengths of consecutive
insertions and deletions as in the CPU implementation.
This helps to reduce global memory accesses and provides
a speedup of up to 4.43x in the second stage. Experimen-
tal results show that our alignment kernel with traceback
is up to 80x and 14.14x faster than its CPU counterpart
with synthetic datasets and real datasets, respectively. The
GATK HC implementation with both GPU-based pair-
HMMs forward algorithm and GPU-based semi-global
alignment with traceback is 2.30x faster than the base-
line GATK HC. It is 1.34x faster than the GATK HC
implementation with only GPU-based pair-HMMs for-
ward algorithm.

Abbreviations
HC: HaplotypeCaller; NGS: Next Generation Sequencing

Acknowledgements
The authors wish to thank the Texas Advanced Computing Center (TACC) at
the University of Texas at Austin and IBM for the giving access to the IBM
Power8 machines used in this paper.

Funding
This work was supported by CSC (Chinese Scholarship Council) grant and Delft
University of Technology. Publication of this article was sponsored by Delft
University of Technology.



Ren et al. BMC Genomics 2019, 20(Suppl 2):184 Page 116 of 185

Availability of data andmaterials
The algorithm generated in this manuscript as well as all input datasets are
publicly available on a publicly available repository: https://github.com/
ShanshanRen/semi-global-alignment-with-traceback.

About this supplement
This article has been published as part of BMC Genomics Volume 20
Supplement 2, 2019: Selected articles from the 17th Asia Pacific Bioinformatics
Conference (APBC 2019): genomics. The full contents of the supplement are
available online at https://bmcgenomics.biomedcentral.com/articles/
supplements/volume-20-supplement-2.

Authors’ contributions
SR designed and performed the experiments, analyzed the data, and wrote
the manuscript. All the authors jointly developed the structure and arguments
for the paper, made critical revisions and approved final version.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 10 April 2019

References
1. Takeshi O, Yinhe C, Kathy T. Performance optimization of Broad Institute

GATK Best Practices on IBM reference architecture for healthcare and life
sciences. IBM Systems Technical White Paper. 2017. https://www.ibm.
com/downloads/cas/LY1OY9XJ.

2. Proffitt A. Broad, Intel Announce Speed Improvements to GATK Powered
by Intel Optimizations. Bio-IT World. 2014. http://www.bio-itworld.com/
2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-
by-intel-optimizations.html.

3. Ren S, Bertels K, Al-Ars Z. GPU-Accelerated GATK HaplotypeCaller with
Load-Balanced Multi-Process Optimization. In: IEEE International
Conference on Bioinformatics and Bioengineering; 2017. p. 497–502.

4. Ren S, Bertels K, Al-Ars Z. Efficient Acceleration of the Pair-HMMs Forward
Algorithm for GATK HaplotypeCaller on Graphics Processing Units. Evol
Bioinform Online. 2018;14:1176934318760543.

5. Li IT, ShumW, Truong AK. 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinforma.
2007;8(1):1–7.

6. Benkrid K, Liu Y, Benkrid AS. A Highly Parameterized and Efficient
FPGA-Based Skeleton for Pairwise Biological Sequence Alignment. IEEE
Trans Very Large Scale Integr Syst. 2009;17(4):561–70.

7. Hasan L, Kentie M, Al-Ars Z. DOPA: GPU-based protein alignment using
database and memory access optimizations. BMC Res Notes. 2011;4(1):
261.

8. Ahmed N, Mushtaq H, Bertels K, Al-Ars Z. GPU accelerated API for
alignment of genomics sequencing data. In: IEEE International
Conference on Bioinformatics and Biomedicine; 2017. p. 510–5.

9. Maskell DL, Liu Y, Bertil S. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Res Notes. 2009;2(1):73.

10. Liu Y, Schmidt B, Maskell DL. CUDASW++2.0: enhanced
Smith-Waterman protein database search on CUDA-enabled GPUs based
on SIMT and virtualized SIMD abstractions. BMC Res Notes. 2010;3(1):93.

11. Liu Y, Huang W, Johnson J, Vaidya S. GPU Accelerated Smith-Waterman.
In: International Conference on Computational Science; 2006. p. 188–95.

12. Blazewicz J, Frohmberg W, Kierzynka M, Pesch E, Wojciechowski P.
Protein alignment algorithms with an efficient backtracking routine on
multiple GPUs. BMC Bioinforma. 2011;12(1):181.

13. Liu Y, Schmidt B, Maskell DL. MSA-CUDA: Multiple Sequence Alignment
on Graphics Processing Units with CUDA. In: IEEE International
Conference on Application-Specific Systems, Architectures and
Processors; 2009. p. 121–8.

14. Korpar M, Sikic M. SW#-GPU-enabled exact alignments on genome scale.
Bioinformatics. 2013;29(19):2494–5.

15. de O Sandes EF, de Melo ACMA. Smith-Waterman Alignment of Huge
Sequences with GPU in Linear Space. In: 2011 IEEE International Parallel
Distributed Processing Symposium; 2011. p. 1199–211.

16. Sandes EFO, Miranda G, Martorell X, Ayguade E, Teodoro G, Melo
ACMA. CUDAlign 4.0: Incremental Speculative Traceback for Exact
Chromosome-Wide Alignment in GPU Clusters. IEEE Trans Parallel Distrib
Syst. 2016;27(10):2838–50.

17. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl
Biosci Cabios. 1988;4(1):11–7.

18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25(16):2078–9.

19. TCGA Mutation Calling Benchmark 4 Files. https://gdc.cancer.gov/
resources-tcga-users/tcga-mutation-calling-benchmark-4-files.
G15512.HCC1954.1.

20. Xiao S, Aji AM, Feng W. On the Robust Mapping of Dynamic
Programming onto a Graphics Processing Unit. In: International
Conference on Parallel and Distributed Systems; 2009. p. 26–33.

21. Wgsim. https://github.com/lh3/wgsim.

https://github.com/ShanshanRen/semi-global-alignment-with-traceback
https://github.com/ShanshanRen/semi-global-alignment-with-traceback
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-2
https://www.ibm.com/downloads/cas/LY1OY9XJ
https://www.ibm.com/downloads/cas/LY1OY9XJ
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
https://gdc.cancer.gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files
https://gdc.cancer.gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files
https://github.com/lh3/wgsim

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	A brief overview of semi-global alignment
	Cigar format
	GPU architecture
	Semi-global alignment in GATK HC
	Implementation of alignment in GATK HC
	Data analysis

	Implementation on GPUs
	First stage implementation
	Intra-task parallelization
	Recording the length of consecutive match(es)/mismatch(es)

	Second stage implementation


	Results
	Performance comparison of multi-pass
	Performance comparison of recording match/mismatch lengths
	Performance comparison with gpu-pairAlign
	Performance comparison with CPU-based implementation
	Integration into GATK HC

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References

