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SUMMARY 

This work is aimed at assessing the techniques used to calculate human 
pilot describing functions. The study considers data analysis methods based on ~ 

(a) cross power spectral density of pilot input, output and error ; 

(b) cross power spectral density of pilot output and error; 

(c) Fourier transform of pilot output and error. 

Taped r ecords of human pilot performance from previous investigations i n 
a compensator y control task with random input signals of continuous power spectr a 
wer e on hand and provided a pilot data base. The same data were used to exercise 
each method, permitting direct comparison of the results. Data are presented as 
amplitude and phase plots of measured describing functions using an average of 
a r easonab l y large amount of data as well as single experimental runs . 

A comparison of the linear. model fit parameter defined in two ways gave 
significant r esults. 
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1. INTRODUCTION 

Many previous studies have investigated the human operator in a system 
with the task of minimizing the system error signal. The display is called com­
pensatory if only the system error is displayed to the pilot. A block diagram of 
s uc h a system is shown in Fig. 1. The difference between the input to the system 
and the actual state of the system is defined to be the tracking error . If the 
input signal has a random appearing nature and the task involves single axis track~ 
ing~ then we have a single degree of freedom, random input tracking task. By 
changing the cut off frequency of the input power spectrum (Fig . 2), the difficulty 
of the task can be altered. The RMS value of the input was 0.5 in . An input with 
a higher cut off frequency is more difficult to track. Changing the controlled 
system dynamics also affects the difficulty of the task. Three different cut off 
frequencies and position and rate control dynamics were used in this study. 

A successful approach to identifying pilot describing functions has been 
the f r equency response measurement from a continuous serve analysis model , although 
sampled data models and optimal control theory models have also been used. Of ten 
pilot describing functions have been measured using the cross power spectral den~ 

sity of pilot input, output and error (Ref. 1 to 5). The accuracy of the result 
is good. in most frequency r anges. However, the computer time r equired is con­
sider ab l e. 

The purpose of this study is to measure the describing functions by 
employing the cross power spectral density of pilot output and error . This 
method discus s ed in Refs. 2, 5, 6, 7,8 and 9, is well suited for use in investi= 
gating the pilot as a single element and requires l ess computations than the 
method of cross power spectral density of input, output and error . 

In Ref. 10 the use of direc~ Fourier transforms has been suggested and 
further developments are covered by Ref. 11, 12 and 13. This method has been 
exercised and compared to the above mentioned cross correlation methods. Use of 
the direct Fourier transform method allows cons i derable simplification in the 
computation . The technique, however, when applied with a random input signal is 
doubtful. 

Ot her techniques for identifying the describing funétions ar e discus s ed 
in section 7. Comparisons of some of these techniques found in the liter ature 
are summarized in section 8. 

2 . MATHEMATICAL BACKGROUND 

2.1 Power Spectral Density Application 

The basic system is shown in Fig. 19 where the human operator is a non­
linear element and the aircraft a linear element. The pilot can be r epr es ented 
by a linear system Y(jw) plus a r emnant term n(t) as shown in Fig. 3a. Since 
this figure is a linear system with two inputs, iet) and n(t)~ the superposi t ion 
principl e applies and the system may be represented by the sum of the systems 
of Fig . jb. 

One pqssibili ty. is to choose the describing function Y(jw) to minimiz e 
the I.\MS value of p ~t), .the portion of the t otal signal being fed t o the aircr aft 
that results from· the remnant. Let Y (jw) correspond to minimizing of the RMS 

. 1 
value of pet). In Refs. 1 and 2 it has been proven that in this case 
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<p. (w) 
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o and Yl (jw) 
<P. (w) 

lO 

<P. (W) le 

Another possibility is to minimize the integral square value of' n(t). 
The re sult is derived in Ref'. 2, 

Since Yl(jw) and Y
2

(jw) are obtained by employing dif'ferent criteria it is not 

expected that they are generally identical. In Ref'. 6 the dif'f'erence between 
these two methods is shown to be 

Y (jW) = Y (jw) -
1 2 

where <P (w) is the auto power spectral density of' the remnant n(t) related to 
n

2
n2 

Y
2 

(jw) (minimizing of' the RM3 value of' n( t) ). 

In order to demonstrate the dif'f'erence between using Yl(jw) and Y2 (jw) 
consider the problem of identif'ying experimentally a system such as the human 
operator shown in Fig. l. {lfor simplicity's sake assume that in actual f'act the 
system to be identified consists of a linear element Y (jw) whose output is 
summed with the output of a random noise generator r(t), giving a system looking 
like Fig. 3a with Y replaced by Y

p 
and n(t) by r(t). It is f'urther assumed that 

i(t) and r(t) are QQcorrelated. l 

If the identification of' Y (jw) is carried out through the use of' 
p Yl(jw) then one obtains: 

But 0 = ë Y (s) + r 
p 

<P. (w) 
lO 

<P. (w) • 
le 

<P. (w) = Y ( jw) <P. ( w) s inc e <P. ( w) = 0 and 
lO p le lr 

Y (jw) = Y (jw) and the identification is exact in theory, 
1 p 

If the identification of' Y (jw) is carried out through the use of' 
p Y

2
(jw) then one obtains: 

-But 0 e Y (s) + r 
p 

<P (w) 
eo 

<P (w) 
ee 

<P ( w) = Y (jw) <P ( w) + '$' _', (w) and 
eo p ee er 

<P (w) 
Y2 (jw) = Yp(jw) + <per(w)· 

ee 
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The identification is not perfect and the error involved depends on 
the amount of correlation between e(t) and r(t). To see the implication of this 
consider the following: 

e = i - 0 A(s) 

o = r + e Y (s) 
p 

e i - r A(s) - ë AY (s) or e 
p 

i 
1+ AY (s) 

P 

r A(s) 
- l+AY (s) 

P 

<p (W) = 
ee 

<p (W) 
rr 

1 IA(jwj '12 
<P • • (w) + --'--=~--:2~ 

11 +AY (jw) 12 
H 11 +AY (jw) 1 

(since <P. (w ) = 0) 
~r 

and <p (w) er 

p p 

-A*(jw) <p (w) 
(l+AYp(jW))* rr 

A*(jw)~rr(w) 11 + AYp(jW) 1
2 

(l+AY (jw»* (<P .. (w)+ IA(jW) 1

2
<p (w)} 

p l~ rr 

if <P •• (w»> <P (w) then Y2(jw) = Yp(jw) and 
~~ rr 

if <P •. (w) «<P (w) then Y2(jw) = - ~(. ) • Thus the extent of the measure-' 
~~ rr JW 

ment error depends on the size of <P (w) relative to <P • • (w) • 
rr ~~ 

The model used in this example is of ten put forward as a reasonable 
approximation to the human operator. This indicates that care must be taken 
if Y2 (jw) is used to find human operator describing functions. In the event 
that another form of nonlinear system is under study, it is not possible t o 
indicate from the above analysis whether Yl(jw) or Y2(jw ) is more useful . 

2.2 Direct Fourier Transforms 

In Ref. 10 it is suggested that a direct Fourier transform can be 
used to measure pilot describing functions. The cross power spectral density 
method is employed by Fourier transforming the cross correlation between two 
signals x(t ) and y(t) that are non-zero between + T. 

rT 
Estimate of R (T) = ~T x(t)y (t+T)dt 

xy ~ -T 

Estimate of F(x(t ) ) 

Estimate of <P (w ) 
xYl 

~r T e -jwt x (t )dt 

-T 

,2T {~T,rT x(t)y(t+T)dt }e-
jWT 

dT 

-2T -T 
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Note that the ~ 2T limits come from the fact that -2T < T < 2T. However, this 
estimate of the cross power spectral density of x(t) and y(t) is a very bad 
estimate, not usually used when~the cross correlation technique is employed with 
random signals. In section 4 the estimate of @ (w) used in this experiment 
and in Refs. 1, 2 aI\d 3 is outlined . . xy 

In Refs. 10, 12 and 13 it is shown that 

F*[xJ F[yJ 
2T 

is identical to ~ (w ) . Following this the describing functions are identified 
xYl 

<P. (w ) 
10

2 
from 

:= ":"'<P -. --'-( w-..)-
1e

2 

!lEl 
:= FreT 

It will be shown in section 6.1 that this estimate of power spectrum leads to 
l arge variability in the data when applied to random signals. If the proof in 
Refs. 10, 12 and 13, showing that <P (w) is identical to <P (w), is assumed 

xYl xY2 
to hold in the case of the exact formulation for power spectral density, then 
it is, as shown in Appendix A, possible to prove that any two signals are 
corre~ated unless one of them is identically zero, thus indicating that the 
original function chosen (<p ) was a bad estimate of power spectral dens ity. 

xYl 

According to Refs. 10 to 13 the linear fit parameter 

2 
P (w) 

I<p. (w) I 2 
102 = F*[iJ F[oJ F[iJ F*[oJ 

'";"'<p-. . --r( w ...... )r--;'<P--.(-wT
) F* U ] F [ i ] F* [0 ] F [0 ] 

11
2 

00
2 

1.0 

This erroneously indicates linearity under all circumstances. 

However it is felt that direct Fourier transforms are a valid inter~ 
pretation under the following conditions (Ref. 14): 

1 . The input is a sum of sine waves 

2. The transforms are evaluated using the same sine and eosine functions for 
both transforms over the same run length 

3. The transforms are evaluated only at the input frequencies. 

Beyond these restrietions the use of the direct transforms is questionableo 
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3 0 LINEAR FIT PARAMETERS 

Since the controlled vehicle is a linear system, with the transfer func­
tion A(jw), we define a linear fit parameter p(w) to measure the linearity of the 
hvman operator aloneo If the pilot behaves in a nearly linear fashion, then 
p(w) will have values close to unity and the remnant will be small, while low . 
values of p(w ) indicate more nonlinear performance and the corresponding remnant 
will be large. 

2 
301 PI when Yl (jw) Is Used 

In Fig. 3a nr(t) is the remnant and is uncorrelated with the input i(t) o 

Define 
~ (w) 

nlnl 
1 -

~ (w) 
00 

where ~ (w) is the auto power spectral density of the remnant related to the 
n l n1 

minimizing of the RMS value of p(t). From Fig. 3a u = ö - ë Y (s) 
1 1 

~ (w) = ~ (w) + IYl(jw) r2~ (w)-Yl(jw)*<I:> (w)-y
1

(jw) ~ (w) 
nlnl 00 ee eo oe 

Since ~ (w) = ~ (w)* eo oe 

~ (w) = ~ (w) + 
nlnl 00 

IYl('jw) 12~ (w) _ Y (jw)* ~ (w)* - Y (jw ) ~ (w) 
ee 1 oe 1 oe 

1 

From Fig. 3a ö = Yl (s) (î - A(s) 0) -+ n 
1 

-o 
Yl(s) I + uI 
1 + A(S)Y

l 
(s) 

When i(t) and nl(t) are assumed uncorrelated then~. (w) 
~nl 

o 

~ (w) 
00 

Y
l 

(jw) 

Il +AYl (jw) 

2 2 

~ii(w) + Il+Ail(jw) 
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Y
l 

(jw) 2 2 

<P (w) <P •• (w) + (I 1 I -1) <P (w) 
2 nlnl 1 +AY

l 
~ jw} II l+AY1~jW} nlnl Pl (w) = 1 - <P (w) Yl (jw) 2 2 

00 
1 +AY

l 
(jw} I <P • • (w) + I 1 I <P (w) 

II l+AY1(jW) nlnl 

2 It <p (w) «<p .• (w) then P
l 
~ 1.0 and the linear model is a perfect fit. 

nlnl II 

If <P (w) »<p .• (w) then P~ ~ 1 - /1 + AY1 (jW)/2 and does not go to zero 
nlnl II 

as one might anticipate. 

3.2 P~ when Y2(jw) Is Used 

From Fig. 3a we obtain, Ö = ll2 + Y2 (s) ë 

<P (w) =<P (w) + /Y
2

(jw)/2<p (w) since it was found when Y
2

(jw) 
00 n2n2 ee 

<p (w) 
eo 

<P (w) ee 

(minimizing the RMS value of n(t) 

with e(t), i.e., <P (w) = o. 
) (Ref. 2) that n2(t) has zero correlation 

en2 <P (w) 
2 n2n2 

Again de fine P2(w) = 1 <P (w) 
00 

IY
2

(jw) 1
2 <p (w) ee 

1.0 

If <P n n (w) »<P (w) then P22 ~ 0 and thus behaves as expected. 
2 2 ee 

3.3 A Comparison of p
2 

Defined in Two Ways 

<pnn(w) 

From Fig. 3b we obtain p = n - p A(s) Y(s), 

11 + AY(jw) 12 <P Çw). If in practice 
pp <P. (w) 

10 
Yl = <P. (w) 

le 

is quite close to 

6 
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-. 

cP (w) 
eo 

cP (w) ee 

then Yl = Y2 = Y, nl = n2 = n and ~l = P2 = p. (This will be shown true for 
the present data in section 6). 

cP (w) 
Define p2 (w) = 1 - ~ • . Then in the case where Yl = Y2 = Y 

00 

2 2 2 2 cPnn(w)-cP (w) [ 2 ] cP (w) 
p (w) -Pl(w) = P (w) - P2 (w) = cPoo(W)pp = Il+AY(jw) I -1 cP!~(w) = 

~ [ll+AY(jW) 1
2 ~l ] (1_P

2
(W) ) 

2 IcP. (w) 1
2 

also P (w) = cP. ~(w)cP (w) 
1.1. 00 

(Ref. 1) 

2 In the past P ha1 usually been used when employing Yl(jw) 

In this case it can be shown by using the equations of section 3.1 that 

2 
P (w) = 

IY1(jw) 1
2 

cP .. (w) 
1.1. 

2 If cP (w)« cP .. (w) then P ..., 1.0 
ninl l.l. 

If cP (w) »cP .. (w) then p'2""O and thus behaves as expected. 
n

l 
n

1 
1.1. 

cP. (w) 
1.0 

cP. (w) • 
1.e 

Now P~ or P~ can be found from p2(w) - {ll+AY(jW) 12_1} {1_p2(W)} = p~(w) 

222 2 
Figure 4 is a sample comparison of single run Pl ' P2 and P

3 
(based on Pl as 

defined in section 3.1, and 2 

2 
I cP (w)1 

eo ) 
P2 cP (w)cP (w) • 

ee 00 

The fit is good except for the first few frequency points. In Ref. 1 it was 
shown that the experimental accuracy in calculating p2 for the low frequency 
points is poor. In this experiment P~ is calculated with p2 as a base 

( 2 2 1 . 12 2 P3(w) = P (w) + ( l+AY(Jw) -1) (l-p (w)) ). 

Since for the low frequency points, especially in a rate control task, the term 
11 + AY(jw) 12_1 is large and is multiplied by a very small n~er (1_P2), a small 
error in p2 causes a very large error in P~. In this study P3 has been used as 
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a measure of the linear model fit when 

y = 
1 

<Pio(w) 

<P. (w) 
~e 

is employed. 

As shown in Fig. 4 the equivalent pi is more accurate 
frequency points than P~. Therefore it is suggested 
in future studies based on 

<P . (w) 
~o 

<P. (w) 
~e 

if<P (w)«<p . . (w). 
nlnl ~~ 

at the first few low 
2 that P
l 

should be used 

2 2 The model fit parameters Pl and P2 are based on the remnant net). A 

t · . 2 d 2 . small remnan w~ll g~ve P
l 

an P2 close to unity, thus ind~cating close to linear 
behaviour. In a physical sense this is an excellent measure of the linearity of 
the pilot alone. In Figs. 15 and 19 p2~ is shown. 

2 

If we are interested in the system from a control system engineering 
point of view then we are more interested in the signal going into the aircraft 
and especially the portion pet) due to the remnant. p2 (based on pet) ) is a 
good measure of linearity in this case. 

4. EXPERIMENTAL SET UP 

Data from earlier experiments at UTIAS (Ref. 1) were used. The 
equipment used to provide this data has been described in detail in Ref. 1. The 
main parameters will be repeated here. 

The facility used consisted of a modified CF-100 fixed-base flight 
simulator cockpit coupled with an EAI TR-48 analogue computer. The signals 
iet), o(t) ~d eet) were recorded in digital form af ter passing through an 
EECO ZA37050 analogue-to-digital converter. The sampling rate was 20 samples 
per second. Of the 190 seconds long experimental run, 180 seconds (T) were 
recorded and used. The maximum length of lag in terms of samples (NLAGS) was 
200 giving T = 9.95 seconds in the correlation functions. The general procedure 
was to find ~e auto or cross correlation R (T), then multiplying this by a xy 
particular function aCT) before estimating <P (w) by Fourier transforming R (T). 

xy xy 
This leads to more acceptable spectral window shapes. Here the "Ranning window" 
was used (a(T) = ~ (1 + cos(m/T )). (For further details see Ref. 1). 

m 

Only compensatory data were analyzed here. The aircraft dynamics 
were a) position control (0.114 in/deg) and b) rate control (0.338/s in/deg/sec 
as measured from joystick input by the pilot to display motion). Both cases 
(K and lis) were further divided into three parts depending upon the cut off 
frequency of the random input signal. Low (2 rad/sec), medium (4 rad/sec) and 
high (6 rad/sec) cut off frequencies were used. Figure 2 shows the spectral 
shape of these input signals (L, Mand R). 

Initially each of these six conditions consisted of six experimental 
runs byeach of six subjects, i.e., 36 runs per condition. A few runs had to 
be skipped due to bad recording. Table 1 shows the number of runs to calculate 
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the means and standard deviations for each condition. 

The spectral calculations were done on an IBM 7094 computer . The 
describing function Y (jw) and corresponding p2(w) for one run require~ 57.9 
seconds. Some simplitications could be done to calculate Y2(jw) and P2(w ) • 

The t i me used to analyze one run was 39.5 seconds allowing a time saving of 
32% . I n this experiment anormal Fourier transform was used to cal cul at e Y

3
(jW ). 

At the end of the experiment a trial with a fast Fourier transfor m was pe rformed 
r equiring onl y 5.9 seconds to analyze one run. The time savi ng was 90% over 
t he Yl(jw) calculati on. Note that no p2 calculation is per formed in the case of 
Y~ (jW). All calculations used the same time records and found the pilot descri­
b1ng funct i on at 25 frequency points. 

5 . IDENTIFICATION OF AN ANALOO PILOT 

An analog pilot, Y(s) = 87.5/(s + 3) deg/in, performed experimental 
runs utilizi ng the normal experimental set up and i nput s i gnal leve l s. The 
result, Fig. 5, gives us an insight into the accuracy with which t he di gital 
programs (Fourier trans~orms ~d cross power spectr al density of output and 
error ) can i dentify pil ot describing funct i ons. The top of the triangal symbol 
l ocates the data pos i tions. As in Ref. 1 where the cross power spectral density 
of input ~ output and er ror was used, no problems wer e encountered wi t h t he posi­
t ion cont ro l task. In the rate control tasks the per formance was excell ent except 
for the fir st frequency point. Thi s problem is due to l ow power l evels for the 
signals o (t) and e ( t) as described in Ref. 1. 

6. RESULTS 

Figures 6 to 11 show the ampli tude and phase pl ots of t he describing 
func t ion Y

3
(j w) , i.e., data analyzed by Fourier transforms of the output signal 

and error signal as descr i bed in section 2.2. I n the f igures K stands for posi­
tion cont rol and lis f or r ate control. In the ampli tude plot s t he l eft corner 
a:nd. in the phase plots the right corner of the tr i angl e symbol indicat es the mean 
and t he bars s how plus and minus one standard deviati on . Figures 12 to 14 and 
16 t o 18 show the ampli tude and phase plots of the descr i bing f unc t ion when the 
analyzing process i s base~ on cross power spectr al dens i ty of output and error . 
The model fit parameter P2 (calculated from I~ (w) 12/~ (w)~ (w) ) pl us and eo ee 0 0 

minus one s t andar d deviation i s shown in Figs. 15 and 19 , wher e the right corner 
of t he t riangl e symbol indicates the mean. The descr ibing f unction Yl(jw ) , 
based on cros s power spectral density of input, output and error has been plotted 
(~ one 5) i n Ref. 1 f or the same experimental data ( see Figs. 36 and 37). 

6 . 1 COmpari son of Variat ion 

As s hown in Figs. 12 to 14 and 16 to 18 the variati on in the describing 
f unc t i on when cross power spectral dens i ty of output a nd error is employeè, iF 
small and smooth and very close to the result in Ref. 1 (Figs . 36 and. 37 ) , where 
cross power spectral density of input, output and error was used. Wh en Four~er 
t r ansforms are used, Figs . 6 to 11, the var iati on i s lar ge and rough. 

The cross power spectral density methods use data f r om a s hort experi­
mental r un and attempt t o predict the pilot describi ng function that would be 
f ound f or an infinitely long run. The variation f r om one experimental r~~ to 
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another is expected to be small and smooth. On the other hand if Y
3

(jW) and e(t) 
i s given for a particular run, then o(t) can be calculated exactly from Y (jw) = 

F( o)/F(e) for that particular 3 min. run, since the Fourier transform tec~nique 
calculates the describing function that fits the short experimental interval 
exactly and thus the variation from run to run is large (when random inputs a1e 
used)? although the means of a large number of experimental runs can be expected 
to approach the desired describing function. 

6.2 Comparison of Means 

The means of Yl(jw), Y2 (jw), Yj(jw) and corresponding model fit para­
meters are plotted in Figs. 20 to 27. The cross spectral density methods 
(Yl(j w) and Y

2
(jw) ) are very close to each other over the whole f r equency r ange 

f or all six conditions. Yl(jw) and the corresponding P~ (calculated as p~) ar e 

plotted as a line. Y
2

(jw) and the corresponding p; are represented by a triangle 
symbol, where the top is the data position. Y

3
(j w) is plotted as a plus sign. 

The means of p2 as measured in Ref. 1 are represented by a cross . 

The Fourier transforms technique (Y
3

(jw) ) gives a good approximation 

of the pilot describing function if a large number of runs are aver aged although 
the large variance in the data reduces its usefulness. 

The above roentioned results are verified in Figs. 28 to 35? wher e the 
pilot describing functions based on one experimental run per condition by the 
same typical subject, have been plotted. 

The linear fit parameters p~ and p; show a pilot behaviour quite close 
to linear. The plots are quite flat and close to unity. This indicates a fairly 
cons tant r emnant n(t). Since p2 in Ref. 1 drops off in the middle of the fr e­
quency range? p(t) is built up in the closed l09P system. 

7. OTHER METHODS FOR MEASURING PILOT DESCRIBING FUNCTIONS 

Techniques for identifying de~cribing functions other than thos e used 
in this experiment will briefly be described in this section. In section 8 
comparisons found in the literature are discussed. 

7.1 Parameter Model 

The parameter model method assumes a particular describing function 
model for the pilot dynamics and then solves for the parameters in that model. 
Wi th proper progr amming the parameters can be made to converge to values which 
minimize the differeryce between system and model outputs. Although the stability 
and speed of convergence of such parameter trackers is of concern? the technique 
has the adv~ntages of being physically easy and inexpensive to implement (requir= 
ing onlyan analog computer). The method is restricted in that only a l i mited 
set of systems, which have the specified form, can be adequately identifi ed. 

The model used in Ref. 15 has the form 

a
3 

s + a4 -Às 

Y(s) = e 
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where the time shift À accounts for any pure time delay in Y(s). Estimates of 
the parameters al~ a

2
, a

3
, and a4 were determined by a quasilinearization tech-

nique described in Ref. 15. 

In Ref. 16 two different model forms were used. The three parameter 
model was 

Y(s) 

and the two parameter model was Y(s) A(s) = 
crossover model as developed in Ref. 17. 

7.2 Orthogonal Filters 

K e 
s 

-TS 

This model is called the 

The orthogonal filter method (Ref. 18) is somewhat more general than 
the parameter model. It assumes that the unknown system dynamics can be modelled 
by a series of transfer functions of the form (Ref. 15) 

-Às { b 
Y(s) = e 1 1 + 

T lS + 

Estimates of the parameters bl ,b2 ,b
3

, ••• etc., can be determined by a multi­
r egression technique (Ref. 7). 

7.3 Impulse Response 

The impulse response method (Refs. ' 7, 9, 12 and 19) assumes a very 
general input-output relationship that can be represented by the form (Ref. 15) 

T 

-Às r m -TS Y(s) = e ~ g(T)e dT 

o 
wher e g(T) is an impulse response function that is assumed to be zero for T < 0 
and also zero for T > T • The calculation of the impulse response function at 
discrete times, g(o), g(Nt), g(26t), etc., is shown in Ref. 15. 

8. COMPARATIVE EXPERIMENTS IN THE LITERATURE 

A few comparisons of techniques for measuring pilot describing f unc­
tions can be found in the literature. The techniques of Fourier transforms, 
parameter models, orthogonal filters and cross power spectral density are cov-
ered in Ref. 16. However, the experiment compared techniques on single runs 
only and thus there is no variation in the data shown. Furthermore the input 
was in all cases of sum of sinusoids. These methods provided good measurement s 
in the region of system crossover frequency. This is the frequency where the 
product of the absolute values of the pilot dynamics and of the aircraft dynamics 
passes from greater than unity to less than unity. The more computationally expen­
sive techniques provided more accurate results away from crossover. All methods 
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deteriorated when signal levels were low. Controlled dynamics of the form lis 
or 1/s2 and the pilot's ability to control either very wellor poorly reduced 
signal levels over certain frequency ranges outside the region of crossover 
frequency. 

In Fig. 38 (from Ref.16) the Fourier transform method is compared to 
the two and three parameters model for an analog pilot (known system). The 
Fourier transform technique is good (since the input is a sum of sinusoids) but 
the parameter models are accurate only in the region of crossover. 

In Fig. 39 (from Ref. 16) the Fourier transform, two and three para­
meters models, orthogonal filters and cross correlation are compared for a human 
pilot. Since this comparison is based on a single run and no variation in the 
describing function based on different techniques can be shown, it is difficult 
to draw any conclusions. 

In Ref. 15 three different identification methods (the parameter model, 
orthogonal filters, and impulse-response techniques) were applied to the identi­
fication of both simulated (i.e., known) systems and piloted systems. According 
to Ref. 15 the three methods were shown to estimate adequately the pilot descri­
bing functions. However, the input signals were a sum of sinusoids. No varia­
tion of the describing functions could be shown since the experiment consisted 
of a single run per condition. 

In Ref. 17 the two parameter model (the crossover model) is compared 
to the cross spectral density of input, output and error. Figure 40 shows a 
typical pilot comparison from Ref. 17. The fit is good as long as the linput 
power in the region of crossover is high 'enough to allow accurate par~eter 
tracking. In Fig. 40 the input signal had a power spectrum with a cut off fre­
quency of 4 rad/sec (M). A cut off frequency of 2 r ad/sec (L) was also used in 
this experiment. No comparison of variations of the describing functions was 
done. 

9. C ONC LUS I ONS 

1. The overall agreement between the pilot describing function measured by 
cross power spectral density of input, output and error and by cross 
power spectral density of output and error is very good. This s econd 
technique can successfully be used to measure the pilot describing func­
tion and the linear model fit parameter, when the nonlinear and noise 
components are small. This technique allows a 32% saving in computer 
time. 

. 
2. If a large amount of data is available, the Fourier t r ansforms method 

gives a good approximation to the mean, although the lar ge variance 
r educes its usefulness as an experimental technique (when r andom inputs 
ar e employed) relative to other approaches. The computer time saving was 
90% as compared to the cross spectral density method of input, output 
and error. 

3. As a measure of the ' lin2arity of the human pilot, the linear model f it 
para~eters PI(w) and P2 (w) based on the reID?ant n(t), are pr eferabl e 
to P , provided that ~ . . (w) »~ (w) and ~ (w»> ~ (w). 

II nlnl ee n2n2 
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APPENDIX A 

Consider two independent stationary random signals x(t) and y(t) with 
amplitude probability funetions that are symmetrie about zero. 

Pl(x) is symmetrie ab out x = 0 

P
2

(y) is symmetrie ab out y = 0 

(00 P
l 

(x) )C. dx = 0 
~ 

_00 

and 

J
oo 

P
2

(y) y dy = 0 
-00 

Now lim 1 fT 2T x(t) y(t+T) dt 
-T T-7 OO 

= J 00 JOOp 1 (x) P 2 ( y) xy dxdy 

-00 -00 

{ sinee ~(x/y) = Pl(x)} 

beeause x(t) and y(t) 
are assumed independent. 

o 

And 1 roo -jWT 
cp (w) R (T) e dT 

xy 21T xy 
-00 

0 R (T) == 0 xy 

However this does not require cp (w) or cp (w) = 0 
xx yy 

Now eonsider the identieal si tuation but apply the 

cp (w) 
xy 

lim 
~T F* (x) F(y) 

for cp (w) = 0 for all w xy 

requires ~:moo ~T F~(K) F (y) = 0 
T 

or that either F* (x) or F (y) = AT
E 

T T 

assumption that 

where A is a constant and E < 1/2 as T-7 OO 

whieh means that either 

cp (w) or cp (w) = 0 for all w . xx yy 

Aeeording to this it is impossible to have two eompletely uneor related s i gna l s 
unless one of them is identieally zero. As shown above this is not t r ueo 
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TABLE 1 

TASK K lis 
FREQ. TYPE L M N L M N 

S 1 6 6 6 6 6 6 

S 2 6 6 6 5 6 6 

S 3 6 6 5 5 6 6 

S 4 6 6 6 4 6 6 

S 5 6 6 6 6 6 6 

S 6 5 6 4 5 6 6 

TarAL 35 36 33 31 36 36 
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100-0 
PHI (IO) /PHI (IE) 

6. PHI (EO) /PHI (EE) 
:z: + F (0) /F (E) t--I 
"-l:J 
W 
0 

~ 10-0 :=J 
f- + 
t--I + + + ~ + 
D--
~ 
<-

+ 

1·0 
2 4 5 8 10 12 14 15 

0-0 RAD/SEC 

-sopo +--\--:r--------------------l 

~ 

~ -100·0 +-----J~=-------------------l 
w 
Ul 

~ 
CL -150-0 +---------E~~-____=:___--------l 

-200·0 

-250·0 
+ 

6.6. 

+ + 

Figure 29 Comparison, one run, typical subject, M K task. 
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Figure 30 Comparison, one run, typical subject, H K task. 
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Figure 32 Comparison, one run, typical subject, L l/s task. 
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