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SUMMARY

This work is aimed at assessing the techniques used to calculate human
pilot describing functions. The study considers data analysis methods based on,
(a) cross power spectral density of pilot input, output and error;

(b) cross power spectral density of pilot output and error;
(c) Fourier transform of pilot output and error.

Taped records of human pilot performance from previous investigations in
a compensatory control task with random input signals of continuous power spectra
were on hand and provided a pilot data base. The same data were used to exercise
each method, permitting direct comparison of the results. Data are presented as
amplitude and phase plots of measured describing functions using an average of
a reasonably large amount of data as well as single experimental runs,

A comparison of the linear. model fit parameter defined in two ways gave
significant results.
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NOTATION
Transfer function of the aircraft dynamics
Error signal
Fourier transform of x(t)
Input signal
Pilot's remnant
Pilot's output
That Pilot's output due to n(t)

The cross correlation between x(t) and y(t), called auto
correlation if x(t) = y(t)

The Laplace transform variable
Sampling period, sec.
The Laplace transform of x(t)

The pilot describing function

@nn(w)
1 -

(DOO(w)

Time delay, sec.
Frequency, rad/sec.

The cross spectral density of x(t) and y(t) called auto power
spectral density if x(t) = y(t)




1. INTRODUCTION

Many previous studies have investigated the human operator in a system
with the task of minimizing the system error signal. The display is called com-
pensatory if only the system error is displayed to the pilot. A block diagram of
such a system is shown in Fig, 1., The difference between the input to the system
and the actual state of the system is defined to be the tracking error., If the
input signal has a random appearing nature and the task invelves single axis track-
ing, then we have a single degree of freedom, random input tracking task., By
changing the cut off frequency of the input power spectrum (Fig. 2), the difficulty
of the task can be altered. The RMS value of the input was 0.5 in. An input with
a higher cut off frequency is more difficult to track., Changing the controlled
system dynamics also affects the difficulty of the task. Three different cut off
frequencies and position and rate control dynamics were used in this study.

A successful approach to identifying pilot describing functions has been
the frequency response measurement from a continuous servo analysis model, although
sampled data models and optimal control theory models have also been used. Often
pilot describing functions have been measured using the cross power spectral den-
sity of pilot input, output and error (Ref. 1 to 5). The accuracy of the result
is good in most frequency ranges. However, the computer time required is con-
siderable.

The purpose of this study is to measure the describing functioens by
employing the cross power spectral density of pilot output and error., This
method discussed in Refs. 2, 5, 6, 7,8 and 9, is well suited for use in investi-
gating the pillot as a single element and requires less computations than the
method of cross power spectral density of input, output and error.

In Ref. 10 the use of direct Fourier transforms has been suggested and
further developments are covered by Ref. 11, 12 and 13. This method has been
exercised and compared to the above mentioned cross correlation methods, Use of
the direct Fourier transform method allows considerable simplification in the
computation. The technique, however, when applied with a random input signal is
doubtful.

Other techniques for identifying the describing functions are discussed
in section 7. Comparisons of some of these techniques found in the literature

are summarized in section 8.,

2., MATHEMATICAL BACKGROUND

2.1 Power Spectral Density Application

The basic system is shown in Fig. 1, where the human operator is a non-
linear element and the aircraft a linear element. The pilot can be represented
by a linear system Y(jw) plus a remnant term n(t) as shown in Fig. 3a. Since
this figure is a linear system with two inputs, i(t) and n(t), the superposition
principle applies and the system may be represented by the sum of the systems
of Fig. 3b. g

One possibility is to choose the describing function Y(jw) to minimize
the RMS value of p(t), the portion of the total signal being fed to the aircraft
that results from the remnant. Let Y (jw) correspond to minimizing of the RMS

value of p(t). 'In Refs, 1 and 2 it has been proven that in this case




®io(w)
@ln(w) = 0 and Yl(jw) = m 0

T

Another possibility is to minimize the integral square value of n(t).
The result is derived in Ref. 2,
2_ ()

o . hel e
(I)en((.k)) = 0 and Y2(JU)) = W °

Since Yl(jw) and Y2(jw) are obtained by employing different criteria it is not

expected that they are generally identical. In Ref. 6 the difference between
these two methods is shown to be .

A(-jw) ©n2n2(w)

¥ (Jw) = ¥,(J0) - THA(-0) T (-30)  ° &__(a)

where @n i (w) is the auto power spectral density of the remnant n(t) related to
L)
Yz(jw) (minimizing of the RMS value of n(t) ).

In order to demonstrate the difference between using Y (jw) and Y (jw)

consider the problem of 1dent1fy1ng experimentally a system such as the human
operator shown in Fig., 1./ For simplicity's sake assume that in actual fact the
system to be identified consists of a linear element Y (jw) whose output is

summed with the output of a random noise generator r(t), giving a system looking
like Fig. 3a with Y replaced by Yp and n(t) by r(t). It is further assumed that

i(t) and r(t) are uncorrelated,:
If the identification of Y (Jw) is carried out through the use of
4 (Jw) then one obtains:
o, (w)
¥ (Jw) = F—
1 @ieiwi =
But5=EYP(s)+'f~ |
@io(w) Yp(Jw) ®ie(w) since @ir(w) = 0 and
¥, (Jw)

]

1l

Yp(jw) and the identification is exact in theory.

If the identification of Y (jw) is carried out through the use of
Yz(jw) then one obtains: p

®eo(w)

Y2(jw) = m o

ee "

But o0 = e Yp(s) + T

cbeo(w) = Yp(,jw) @ee(w) +-c1ré‘r(w) and
Y ( ) e ( ) cDer(w)



The identification is not perfect and the error involved depends on
the amount of correlation between e(t) and r(t). To see the implication of this
consider the following:

e =1-0A(s)
o=T+e Yp(s)
e=1-TA(s)-¢ AY (s) or & = 33 Aip(S) i lfAé;?Z)
[
Bt |l+AY:(J'w)|2 ) |1Ii‘(;:z;“’) BT
(since &, (w) = 0)
and @ (u) = -saxle) )

(l+AYP(jw))* Y

A*(J0)Prp(w) |1 + AYp(jw) |°

Y, (jw) = Y _(jw) -
» P (1Y (J0))* (9, (w)+[a(30) [0, ()
if ®ii(w) b2 @rr(w) then Yg(jw) = Yp(jw) and

. : i .
if @ii(w) << ®rr(w) then YE(Jw) =i Trey Thus the extent of the measure=

ment error depends on the size of @rr(w) relative to @ii(w) $

The model used in this example is often put forward as a reasonable
approximation to the human operator. This indicates that care must be taken
if ¥, (jw) is used to find human operator describing functions. In the event
that "another form of nonlinear system is under study, it is not possible to
indicate from the above analysis whether Yl(jw) or Yz(jw) is more useful.

2.2 Direct Fourier Transforms

In Ref. 10 it is suggested that a direct Fourier transform can be
used to measure pilot describing functions. The cross power spectral density
method is employed by Fourier transforming the cross correlation between two
signals x(t) and y(t) that are non-zero between + T,

T
oy , S .
Estimate of ny(T) = x(t)y (t+7)dt

«
-

> -Jjwt
Estimate of F(x(t) ) = f‘ e x(t)dt
LT
SR - jwT
Estimate of & _ (w) = f e [‘ x(t)y(t+1)dt re ar
Xy, 7 s

-2T =T




Note that the + 2T limits come from the fact that -2T < 7 < 2T, However, this
estimate of the cross power spectral density of x(t) and y(t) is a very bad
estimate, not usually used when.the cross correlation technique is employed with
random signals. In section 4 the estimate of & (w) used in this experiment
and in Refs. 1, 2 and 3 is outlined. i/

In Refs. 10, 12 and 13 it is shown that

Xyg(w) i F*[X]zTF[YJ i ’

{f_z x(t)emjwt dt}{f—T y(T)e-ij d'r} %-T— .

is identical to ®xy (w). Following this the describing functions are identified
i
from o, (w)

G e _1/27 F%[i] F[oe] _F
1) < =y = VaAmTT e " Aol -

182

It will be shown in section 6.1 that this estimate of power spectrum leads to
large variability in the data when applied to random signals. If the proof in
Refs. 10, 12 and 13, showing that ®xy (w) is identical to ®xy (w), is assumed

ik 2
to hold in the case of the exact formulation for power spectral density, then

it is, as shown in Appendix A, possible to prove that any two signals are

correlated unless one of them is identically zero, thus indicating that the

original function chosen (@Xy ) was a bad estimate of power spectral density.
15

According to Refs. 10 to 13 the linear fit parameter
2
[, (w)]
2 ¥l i

PR _Fx[i] F
) e e, @ T T

o
a1

This erroneously indicates linearity under all circumstances.

However it is felt that direct Fourier transforms are a valid inter-
pretation under the following conditions (Ref. 14):

l. The input is a sum of sine waves

2. The transforms are evaluated using the same sine and cosine functions for
both transforms over the same run length

3. The transforms are evaluated only at the input frequencies.

Beyond these restrictions the use of the direct transforms is questionable.



3. LINEAR FIT PARAMETERS

Since the controlled vehicle is a linear system, with the transfer func-
tion A(jw), we define a linear fit parameter p(w) to measure the linearity of the
human operator alone. If the pilot behaves in a nearly linear fashion, then
p(w) will have values close to unity and the remnant will be small, while low °
values of p(w) indicate more nonlinear performance and the corresponding remnant
will be large.

6l 8 pi when Y_(jw) Is Used

1

In Fig. 3a hl(t) is the remnant and is uncorrelated with the input i(t).

Define 5 ®nlnl(w)
pP(w) =1 - —2L
@ ()
where @n i (w) is the auto power spectral density of the remnant related to the
Tk
minimizing of the RMS value of p(t). From Fig. 3a El =8 - e Yl(s)

o (@) =0 () + [¥,(jw)[Pe,_(0)-Y, (Ju)*0,_ (0)-Y, () O __(w)
11

i - *
Since @eo(w) ®oe(w)

B ) T v, (0) [Po_ () - ¥ (qu)* @ (w)* - ¥ (j0) & (v)

@oo(w) + lYl(jw) l2®ee(w) - 2 Re-{ Yl(jw) ¢Be(w) }

00gl@) + 11, (30) [0, (w) - 2[Rely, e { 0, (@)} -1uf, jrnfe, ()} |

pi(w) =1 - Q%ng = = J¥30) i %2(7:';' +.2 550—70137 [Re{Yl}Re{dDoe(w)} quu{Yl}

00 Im{®oe(@)} J

Il

From Fig. 3a o = Yl(s) (I - A(s) B) + El

Yl(s) 1+ n

1+ A(s)Yl(s)

o =

When i(t) and nl(t) are assumed uncorrelated then ®in {w) = 0
1

el £

i
® (W) = liggﬁfzrﬁgy-l 0, (w) + 'i:KfITEET | ®n1n1(w)




¥, (30) 4 :
: nn @ Limrmey | %@ (' TR ()| ‘1> o n, )
pr(w) =1 - N 2 I 2 67 B 5

A L (w) << @ii(w) then p2 — 1.0 and the linear model is a perfect fit.

AL x
Irf @ (w) > &..(w) then g /1. + AY (jw)/2 and does not go to zero
n,n, 1.4 ik 2
as one might anticipate.

348 pg when Ye(jw) Is Used

From Fig. 3a we obtain, o = 52 + Yg(s) e
® ( =B i 2 . 2 . q)eo(w)
i w) = n2n2(w) - /Y2(Jw)/ @ee(w) since it was found when Yg(Jw) = EZZT;T

(minimizing the RMS value of n(t) ) (Ref. 2) that n.(t) has zero correlation

2

with e(t), i.e., & (w) = 0.
: A 2 ) ! 2 Qee(w)
Again define pe(w) =1- EZZCET__ = | Y2(Jw)l 5;;@37

2
A | @, (@) |
2 3__(@)8__(w)

s ] £ 4 2
Now since CDenz(w) = 0 then CDOO(w) = CDnenz(w) + /YZ(JOJ)/ @ee(w)

00 (0)  [¥,(30) 7 o ()

! cI)oo(w) _ o (w) + le(jw)Ig ®ee(w)
242

po(w) = /1 (3w)/?

. 2
If cpnzne(w) <§ cbee(w) then p; = 1.0

IE~d

n2n2(w) >> @ee(w) then pg — O and thus behaves as expected.

3.3 A Comparison of p2 Defined in Two Ways

From Fig. 3b we obtain p = n - p A(s) Y(s), n = (1 + A(s)¥Y(s)p
® (w) = |1+ AY(jw)l2 ® (w). If in practice
nn PP o, (w)
10

St vy

ie
is quite close to



®eo(w)

Y2 RN ey

ee
then Yl = Y2 =Y, nl = n2 = n and ﬁl =Py = D (This will be shown true for
the present data in section 6).
2 o (w)
Define p“(w) = 1 - EEETBT o - Then in the case where Yl = Y2 =X

b @nn(w)—¢bp(w)

0%(w) —og(w) =79 - [|1+AX(jw)|2-l} 522157 &

vivh % [|1+AX(jw)|2-l] (1-6°(w) )

p%(w) -7 (w)

2
R
also p (w) = @ (w)(b (w) (Refa l)
ii 00
o ®io(w)
In the past p ha% usually been used when employing Yl(Jw) 7 &E;TE) 2

In this case it can be shown by using the equations of section 3.1 that

v, (J0) 1Z @, (w)

1, (3u) [P0, (6P, | (v)
i

0% (w)

, 2
At (I)ninl(w) =5 q)ll(w) then p~ —» 1.0

If o (w) > @, . (w) then p2 — 0 and thus behaves as expected.
n 0y ii

Now pi or pg can be found from p2(w) --{ll+AY(jw)|2-l}-{ —pe(w)} = pg(w)

Figure 4 is a sample comparison of single run pi y pg and pg (based on pi as

defined in section 3.1, and o
5o )
pS = eo )°
2 @ee(w)éoo(w)

The fit is good except for the first few frequency points. In Ref. 1 it was
shown that the experimental accuracy in calculating p2 for the low frequency
points is poor., In this experiment p% is calculated with p“ as a base

( pg(w) = pz(w) + (| 1+AY(jw)|2-l) (l-pz(w) s

Since for the low frequency points, especially in a rate control task, the term
|1 + AY(jw)|2-1 is large and is multiplied by a very small nugber (1-p%), a small
error in p2 causes a very large error in p3. In this study p5 has been used as

3




a measure of the linear model fit when
o, (w)
Y. = 10 is employed
i @ieiwi i Aol
As shown in Fig. 4 the equivalent p2 is more accurate at the first few low

frequency points than pg o Therefore it is suggested that pi should be used

in future studies based on

e, (w)
Y, () = g0 -
il @ie ) .
if @ (w) << &, . (w).
nlnl o s 1 @

The model fit parameters pi and pg are based on the remnant n(t). A

small remnant will give pi and p_ close to unity, thus indicating close to linear

2
behaviour. In a physical sense this is an excellent measure of the linearity of

the pilot alone. In Figs, 15 and 19 pggis shown,

If we are interested in the system from a control system engineering
point of view then we are more interested in the signal going into the aircraft
and especially the portion p(t) due to the remnant., p~ (based on p(t) ) is a
good measure of linearity in this case,

4y, EXPERIMENTAL SET UP

Data from earlier experiments at UTIAS (Ref. 1) were used. The
equipment used to provide this data has been described in detail in Ref. 1. The
main parameters will be repeated here,

The facility used consisted of a modified CF-100 fixed-base flight
simulator cockpit coupled with an EAI TR-48 analogue computer, The signals
i(t), o(t) and e(t) were recorded in digital form after passing through an
EECO ZA37050 analogue-to-digital converter, The sampling rate was 20 samples
per second. Of the 190 seconds long experimental run, 180 seconds (T) were
recorded and used. The maximum length of lag in terms of samples (NLAGS) was
200 giving 7_ = 9.95 seconds in the correlation functions. The general procedure
was to find the auto or cross correlation R (1), then multiplying this by a

particular function a(7) before estimating @Xy(w) by Fourier transforming ny(T).

This leads to more acceptable spectral window shapes. Here the "Hanning window"
was used (a(t) = & (1 + COS(WT/Tm) ). (For further details see Ref. 1).

Only compensatory data were analyzed here. The aircraft dynamics ’
were a) position control (0.114 in/deg) and b) rate control (0.338/s in/deg/sec
as measured from joystick input by the pilot to display motion). Both cases
(K and 1/g) were further divided into three parts depending upon the cut off
frequency of the random input signal, Low (2 rad/sec), medium (4 rad/sec) and
high (6 rad/sec) cut off frequencies were used. Figure 2 shows the spectral
shape of these input signals (L, M and H).

Initially each of these six conditions consisted 6f six ekperimental
runs by each of six subjects, i.e., 36 runs per condition. A few runs had to
be skipped due to bad recording. Table 1 shows the number of runs to calculate



the means and standard deviations for each condition.

The spectral calculations were done on an IBM 7094 computer. The
describing function Y. (jw) and corresponding p°(w) for one run require% 57.9
seconds. Some simpli%ications could be done to calculate Yz(jw) and pe(w)

The time used to analyze one run was 39.5 seconds allowing a time saving of

32%, In this experiment a normal Fourier transform was used to calculate Y, {jw).
At the end of the experiment a trial with a fast Fourier transform was performed
requiring only 5.9 seconds to analyze one run, The time saving was 90% over

the Yl(jw) calculation. Note that no p2 calculation is performed in the case of
Y. (jw"). All calculations used the same time records and found the pilot descri-
b%ng function at 25 frequency points.

o

5. IDENTIFICATION OF AN ANALOG PILOT

An analog pilot, Y(s) = 87.5/(s + 3) deg/in, performed experimental
runs utilizing the normal experimental set up and input signal levels. The
result, Fig. 5, gives us an insight into the accuracy with which the digital
programs (Fourier transforms and cross power spectral density of output and
error) can identify pilot describing functions. The top of the triangal symbol
locates the data positions. As in Ref. 1 where the cross power spectral density
of input, output and error was used, no problems were encountered with the posi-=
tion control task. In the rate control tasks the performance was excellent except
for the first frequency point. This problem is due to low power levels for the
signals o(t) and e(t) as described in Ref, 1.

6. RESULTS

Figures 6 to 11 show the amplitude and phase plots of the describing
function Y3(j w), i.e., data analyzed by Fourier transforms of the output signal

and error signal as described in section 2.2, In the figures K stands for posi-
tion control and l/s for rate control. In the amplitude plots the left corner
and in the phase plots the right corner of the triangle symbol indicates the mean
and the bars show plus and minus one standard deviation. Figures 12 to 14 and

16 to 18 show the amplitude and phase plots of the describing function when the
analyzing process is based on cross power spectral density of output and error.
The model fit parameter pg (calculated from I@eo(w)|2/®ee(w)®oo(w) ) plus and

minus one standard deviation is shown in Figs. 15 and 19, where the right corner
of the triangle symbol indicates the mean. The describing function Yl(jw) ;

based on cross power spectral density of input, output and error has been plotted
(+ one 8) in Ref. 1 for the same experimental data (see Figs. 36 and 37).

6.1 Comparison of Variation

As shown in Figs. 12 to 14 and 16 to 18 the variation in the describing
function when cross power spectral density of output and error is employed, is
small and smooth and very close to the result in Ref. 1 (Figs. 36 and 37), where
cross power spectral density of input, output and error was used. When Fourier
transforms are used, Figs. 6 to 11, the variation is large and rough.

The cross power spectral density methods use data from a short experi-
mental run and attempt to predict the pilot describing function that would be
found for an infinitely long run. The variation from one experimental ruan to



another is expected to be small and smooth. On the other hand if Y_(jw) and e(t)

is given for a particular run, then o(t) can be calculated exactly from Y_(jw) =

F(o)/F(e) for that particular 3 min. run, since the Fourier transform technique
calculates the describing function that fits the short experimental interval
exactly and thus the variation from run to run is large (when random inputs are
used), although the means of a large number of experimental runs can be expected
to approach the desired describing function,

6.2 Comparison of Means .

The means of Yl(jw), Ye(jw), Y3(jw) and corresponding model fit para-

meters are plotted in Figs. 20 to 27. The cross spectral density methods <
(Yl(j w) and Yz(jw) ) are very close to each other over the whole frequency range
2

for all six conditions. Yl(jw) and the correspond%ng pi (calculated as pg) are
plotted as a line. Yg(jw) and the corresponding p, are represented by a triangle
symbol, where the top is the data position. Y_(j w) is plotted as a plus sign.
The means of p as measured in Ref. 1 are represented by a cross.

The Fourier transforms technique (Y3(jw) ) gives a good approximation

of the pilot describing function if a large number of runs are averaged although
the large variance in the data reduces its usefulness,

The above mentioned results are verified in Figs. 28 to 35, where the
pilot describing functions based on one experimental run per condition by the
same typical subject, have been plotted.

The linear fit parameters p2 and p2 show a pilot behaviour quite close
to linear. The plots are quite flat and close to unity. This indicates a fairly
constant remnant n(t). Since p2 in Ref. 1 drops off in the middle of the fre-
quency range, p(t) is built up in the closed loop system,

7. OTHER METHODS FOR MEASURING PILOT DESCRIBING FUNCTIONS

Techniques for identifying describing functions other than those used
in this experiment will briefly be described in this section. In section 8
comparisons found in the literature are discussed.

7.1 Parameter Model

The parameter model method assumes a particular describing function
model for the pilot dynamics and then solves for the parameters in that model.
With proper programming the parameters can be made to converge to values which
minimize the difference between system and model outputs. Although the stability
and speed of convergence of such parameter trackers is of concern, the technique
has the advantages of being physically easy and inexpensive to implement (requir-
ing only an analog computer). The method is restricted in that only a limited
set of systems, which have the specified form, can be adequately identified.

The model used in Ref. 15 has the form

a_ s + au -As

Y(s) = g e
s° +as+a,

10



where the time shift A accounts for any pure time delay in Y(s). Estimates of
the parameters 815 85, a3, and a) were determined by a quasilinearization tech-

nique described in Ref. 15,

In Ref. 16 two different model forms were used. The three parameter

model was
K K
i < 1o+ —g-s >
T )
Y(s) =
(5) :
T
4 -Ts
and the two parameter model was Y(s) A(s) = E—g——— . This model is called the

crossover model as developed in Ref. 17,

T.2 Orthogonal Filters

The orthogonal filter method (Ref. 18) is somewhat more general than
the parameter model. It assumes that the unknown system dynamics can be modelled
by a series of transfer functions of the form (Ref. 15)

skl —?\s{ b, b2(TlS—l) b3(TlS—l)(T28-l) 2

T s+ 1 (Tls+1)(72s+1)+ (7 5+ 1) (7 8+ 1) (7 5571) gey

¢ K =4

11722

Estimates of the parameters b.,b b3,,.. etc.,, can be determined by a multi-
regression technique (Ref. 7).

7.3 Impulse Response

The impulse response method (Refs. 7, 9, 12 and 19) assumes a very
general input-output relationship that_can be represented by the form (Ref. 15)

m
Yia) = em?\S [\ g(T)e-TS ar

[

o

where g(7) is an impulse response function that is assumed to be zero for T < O
and also zero for T > 7_. The calculation of the impulse response function at
discrete times, g(o), g(&t), g(2At), etc., is shown in Ref. 15,

8. COMPARATIVE EXPERIMENTS IN THE LITERATURE

A few comparisons of techniques for measuring pilot describing func-
tions can be found in the literature. The techniques of Fourier transforms,
parameter models, orthogonal filters and cross power spectral density are cov-
ered in Ref, 16. However, the experiment compared techniques on single runs
only and thus there is no variation in the data shown. Furthermore the input
was in all cases of sum of sinusoids. These methods provided good measurements
in the region of system crossover frequency. This is the frequency where the
product of the absolute values of the pilot dynamics and of the aircraft dynamics
passes from greater than unity to less than unity. The more computationally expen-
sive techniques provided more accurate results away from crossover. All methods

L i




deteriorated when signal levels were low, Controlled dynamics of the form 1/s
or 1/s2 and the pilot's ability to control either very well or poorly reduced
signal levels over certain frequency ranges outside the region of crossover
frequency.

In Fig. 38 (from Ref.16) the Fourier transform method is compared to
the two and three parameters model for an analog pilot (known system). The
Fourier transform technique is good (since the input is a sum of sinusoids) but
the parameter models are accurate only in the region of crossover.,

In Fig. 39 (from Ref. 16) the Fourier transform, two and three para-
meters models, orthogonal filters and cross correlation are compared for a human
pilot. Since this comparison is based on a single run and no variation in the
describing function based on different techniques can be shown, it is difficult
to draw any conclusions.

In Ref., 15 three different identification methods (the parameter model,
orthogonal filters, and impulse-response techniques) were applied to the identi-
fication of both simulated (i.e., known) systems and piloted systems. According
to Ref, 15 the three methods were shown to estimate adequately the pilot descri-
bing functions. However, the input signals were a sum of sinuscids. No varia-
tion of the describing functions could be shown since the experiment consisted
of a single run per condition.

In Ref, 17 the two parameter model (the crossover model) is compared
to the cross spectral density of input, output and error. Figure 40 shows a
typical pilot comparison from Ref. 17. The fit is good as long as the jinput
power in the region of crossover is high enough to allow accurate paraﬁeter
tracking., In Fig. 40 the input signal had a power spectrum with a cut off fre-
quency of L4 rad/sec (M). A cut off frequency of 2 rad/sec (L) was alsc used in
this experiment. No comparison of variations of the describing functions was
done.

9, CONCLUSIONS

1. The overall agreement between the pilot describing function measured by
cross power spectral density of input, output and error and by cross
power spectral density of output and error is very good. This second
technique can successfully be used to measure the pilot describing func-
tion and the linear model fit parameter, when the nonlinear and noise
components are small, This technique allows a 32% saving in computer
time,

2, If a large amount of data is available, the Fourier transforms method
gives a good approximation to the mean, although the large variance
reduces its usefulness as an experimental technique (when random inputs
are employed) relative to other approaches. The computer time saving was
0% as compared to the cross spectral density method of input, output
and error.

3. As a measure of the‘lingarity of the human pilot, the linear model fit
parameters p2(w) and p5(w) based on the remnant n(t), are preferable
to p~, provided that @ii(w) > @ n(w) and ®ee(w) .

(w).
1ol ofo
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APPENDIX A

Consider two independent stationary random signals x(t) and y(t) with
amplitude probability functions that are symmetric about zero.

0

Pl(x) is symmetric about x

0

P2(y) is symmetric about y

[0" Pl(x)x.dx=0

~ -—

and e
f Pily)wdy = 0
—00
Now lim 1 T
ny(T) o EI_T x(t) y(t+7) dt
oo 0
% f f Pl(X)PQ(Y) xy dxdy {since P(x/y) = Pl(x)}
PR because x(t) and y(t)
are assumed independent.
=0
And 1 ,—\00 —,jU)T
dDXy(w) =37 ny("r) e ar
—00
=0 ny(T) =0

However this does not require @ (w) or @& (w) =0
XX vy

Now consider the identical situation but apply the assumption that

lim

. L opx
cpxy(w) = mew e TEla) My)
for & (w) = 0 for all w
Xy
: lim I
requires . . T F?(K) FT(Y) e

or that either FX (x) or FT(y) = AT
where A is a constant and € < 1/2 as T—
which means that either

® (w) or & (w) =0 for all w .
XX vy

According to this it is impossible to have two completely uncorrelated signals
unless one of them is identically zero. As shown above this is not true.
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Figure 33 Comparison, one run, typical subject, M 1/s task.
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Figure 34 Comparison, one run, typical subject, H 1/s task.
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