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Abstract

It is computationally expensive to find out where vulnerable parts in a network are. In literature a variety
of methods were introduced that use relatively simple selection criteria (measured in real-life or calculated
in a traffic simulator) to pre-determine the seriousness of the delays caused by the blocking of that link
and thereafter perform a more detailed analysis. This paper reviews the selection criteria proposed in the
literature and assesses the quality of these criteria. Furthermore, a multi-linear fit of the criteria is made
to find a better, combined, criterion to rank the links according to their vulnerability. The paper shows
that different criteria indicate different links to be vulnerable. Also combined they cannot well predict the
vulnerability of a link. Therefore, it is concluded that to find vulnerable links, one has to look further than
link-based indicators.
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1 INTRODUCTION

Numerous situations can be thought of in which large parts of a road network are blocked due to an event on
one single location. For example, an incident in the peak hour in which a truck is involved could cause severe
congestion on many roads in the surroundings of the accident location. Other less frequently occurring
causes of disruptions are (terrorist) attacks, or disasters or calamities, or the thread thereof which causes
the authorities to close the road. All disruptions cause delays, which is undesirable for road users. Road
authorities want to know the most vulnerable links of their network because this enables them to protect or
to improve those links or parts of their network.

The term “road network robustness” refers to these issues. In the literature different definitions of
robustness can be found, but there is not yet a commonly accepted definition for robustness. The cause of
disruptions is one of the most important differences. Sometimes only severe and non-recurrent disruptions
are considered and sometimes daily variations are also taken into account. The terms robustness and vulner-
ability are often used as opposites and this is also done in this contribution. They have a strong relationship,
but they are actually each others opposites: vulnerability describes the weakness of a network and robust-
ness describes the strength of a network. Here, robustness is defined as follows: “Robustness is the ability
of the network to maintain its functionality under conditions that deviate from the normal conditions.” In
this definition, the normal conditions are conditions in which traffic operations are within the boundaries
of the design specifications, i.e. without serious incidents or exceptional demands. In this paper we focus
on (non-recurrent) incidents that block two lanes of a road. This choice was made because incidents on
freeways with more than 2 lanes usually do not block the complete freeway. Incidents on roads with 1 or 2
lanes are assumed to block the road completely.

It is difficult to predict the robustness of a road network. Generally, there are two possibilities.
Either one simulates all possible link blockings in a road network, which is computationally expensive.
Alternatively, one pre-selects potentially vulnerable links based on an equilibrium assignment and certain
criteria and performs an additional analysis for the selected links. The second approach raises the following
questions. What is the quality of the selection criteria used in the second group? How large should the
selection of possible vulnerable links be to be sure that the most vulnerable links are indeed included?
And if the selection is good, is a detailed analysis really needed, or could the vulnerability and robustness
of a network (or parts of the network) also be determined by applying only the selection criteria (without
reducing the capacity for a selected link)? If this is possible, then it would make the modeling of the
implications of protective measures much easier. A quick assessment of the vulnerability and the vulnerable
parts of a network is also needed for the design of robust road networks with network design models. This
problem of network design is very complex and computationally expensive even without the robustness
aspect. A very long computation time for the robustness assessment would increase the computation time of
the ‘robustness network design problem’ to an unacceptable level. Rather than running one traffic simulation
for each road network layout, one has to run many simulation runs in order to assess the consequences of
incidents at all locations of the network. Therefore, it would be useful to have indicators showing the most
vulnerable parts. The objective of this contribution is to assess the quality and validity of different selection
criteria for measuring road network robustness.

This paper is restricted to assessing link-level criteria that could be calculated from one equilibrium
run of the network, or, even better, can be measured from the everyday conditions in a road network. This
choice was made because our aim is to limit the computation time and the required data.

The next section of the paper gives an overview of the state-of-the-art methodologies used to identify
the vulnerable links. Then, we present a description of the method that is used for comparing the selection
criteria and an overview of the networks on which this comparison is made. The results and conclusions
about the quality of the selection criteria are presented in the sections thereafter.
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2 LITERATURE-OVERVIEW OF METHODOLOGIES TO FIND VULNERABLE LINKS

The methods for finding vulnerable links can be divided into two groups. The first group contains the “full
calculation methods” in which the capacity is reduced for each link separately. In order to find out which
links in a network are the most vulnerable, a complete simulation could be made. That is, for each link
the capacity could be reduced and a traffic assignment could be made. It would be best to take en-route
route choice since people are not aware of the incident beforehand. The effects of the capacity reduction on
for instance the total travel time could be regarded as an indicator for the vulnerability of a link. Jenelius
(1) uses the approach of blocking each of the links in a traffic simulation program without traffic jams.
Knoop and Hoogendoorn (2) use the same approach for calculating the consequences for a blocking at each
link. However, they argue that the network effects including spillback are significant. Hence, they use a
more accurate simulation that represents the dynamics of traffic jams, including spillback. The simulation
consequently needs a time dependent OD-matrix. The advantage of the approach used by both, a full
calculation, is that it gives a complete analysis. However, the computation time of this approach is very high
which can be considered as a disadvantage; this brute force method is furthermore lacking a structure for
searching weak links. Corthout et al. (3) show a method which is based on a simulation of the network in
equilibrium. They then only compute the changes due to an incident. Again, they compute the effects for
each incident location. This method is much quicker, but still lacks any direction in the search for vulnerable
links. Furthermore, the routechoice is assumed constant, whereas travellers might change their route due to
an incident. Furthermore, it is sensitive for the moment an incident occurs.

Several approaches have been introduced in order to overcome the disadvantage of computation
time. This second group uses criteria of links to have a direction in the search for the most vulnerable links.
These approaches first select links that are likely to be vulnerable based on certain criteria. For these links
a more detailed analysis is made by reducing the capacity and by assessing the vulnerability of these links.
Tampere et al., (4) were the first to introduce a method in which this approach was used. Also Tamminga
et al. (5) introduced their own selection criteria. These methods are still computationally intensive because
simulations for all the selected links are required.

There are also other approaches like the game-theoretical approach presented by Bell and Cassir
(6). However, this has to the best of our knowledge never been applied in a dynamic simulation environment
on a real-size network. These methods show the way people could avoid possible blockings and are more
relevant for fully informed travellers.

3 CALCULATION OF VULNERABILITY INDICATORS

This section describes the approach that is used for determining the quality of different selection criteria that
are used in the second group of approaches that were described in the previous section. Section 3.1 shows
the criteria we used to analyse. In section 3.2 is is described which traffic assignment method is chosen.

3.1 Selection Criteria

The different selection criteria are listed below. The selection criteria I*-I7 can be found in (5), (7) adds
I8 and (4) I°. Despite the fact that most of these criteria were intended for identifying vulnerable links for
different kinds of accidents compared to the kind we used (2 lane blockings), we still included them in order
to get a wide range of criteria. As indicated in the introduction, we only evaluate the criteria that can be
evaluated from one equilibrium assignment or that can be measured in a real-life situation without blocking.

Other criteria like the vulnerability index which was introduced by (8) and the recently introduced
criteria of (9) require more input because they also include the possible route choice if a link is blocked.
Compared to the other criteria, these add extra computation time for the rerouting part. Furthermore, they
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TABLE 1 List of symbols used
Variable name Description
Simulation level

At Time step

S The set of all criteria

R The correlation coefficient

Per link i

I Criterion n for link 1

i Flow, also taken as incident probability
C; Capacity

C’f Remaining capacity at blocking

vy, Free flow speed

k;j ; Jam density

L; Length

l; Number of lanes

Sk The sum of the correlation of criterion I* with the other criteria

need extra (calibrated) information about users’ choices when they face an unexpected blocking. Other
criteria mentioned in literature (5, 7) include the risk of a grid lock (cannot be calculated automatically), the
quality on alternative routes (adds computational complexity) and the criterion that all off-ramps (I°) could
be vulnerable (this is only one step in the selection process). The reasons for not including these criteria are
mentioned between brackets. Finally, some criteria explicitly take the chances of an incident into account.
This chapter discusses the possible consequences of an incident given that it happens and therefore also
these criteria are excluded.

Below, a short description of each of the used criteria is given. Some of the criteria have been
inverted, to get a better comparison. For each of the listed criteria, a higher value means that the predicted
impact of the blocking of that link is bigger. The list shows the criteria and indicates the meaning. The
symbols are explained in table 1.

L I'=q/(1-4q/C)
If the flow (q) increases with respect to the capacity (C') more travellers have to queue. 1! expresses
this influence of the flow.

2. I? = 1/T,.
Ty is the time it take before the tail of a queue reaches the upstream junction. The higher 7} is, the
lower will be the impact of an blockage. 73, depends on the traffic inflow, the current density of the
traffic and the length of the link. (5) shows the equation for 7:

Ty =Li/q (L kj; — qi/vs;) (1)

3. I* = I} - 9 (g —2500) Criterion 1 will indicate the links where the queues will be the largests.
However, network effects play an important role. Therefore, it is important to also include links with
a alow capacity. Therefore I? is the same as I', but limited to links with a capacity of 2500 pcu/hour.
Mathematically, this expression uses the step function ¥J(z), which is 0 for z < 0 and 1 for z > 0.
This criterion should capture the offramps.

4, I* = I' x q. I' aims at expressing the effects of an incident. (5) argues that vulnerability needs an
extra input, being the probability that an incident occurs. In the formulation for I* this probability is
taken proportional with flow q.
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5. IZ.5 = IZ-2 X q; X > 1 ]1 I® is equivalent to 14, capturing both effects and incident
upstream links j of ¢
probability. However, I° also takes the possible effet of blocking back into account. It does so by
multiplying I* by the effect of a blockage on link 7, (estimated as I ]1).

6. I iG =1 f X q; X > I}. I is the same as I°, but restricted to lower-capacity links. This
upstream links j of ¢
would capture for example risk-prone off ramps just downstream of a motorway junction.
7. 17 = 3 I;. I" is a sum of the effects if (estimated by I') if all upstream links j
upstream links j of ¢
of link ¢ are blocked by spillback. This shows the links that cause large problems in blocking back

effects: for example a link just downstream of a motorway junction.
8. I? = 4 This captures the links that have a large volume compared to their capacity. This ususally

is an indication that the link is heavily used, and that if an blockade happens, the queue will grow
quickly.

9. I =¢q — C’f. This shows rate at which cars arrive in the queue when an incident occurs on a link and
therefore shows the direct consequences; in this chapter, it is assumed that Cj, equals 0.

3.2 Assignment

Assignments can be divided according to several criteria, like static or dynamic, user equilibrium or no equi-
librium, stochastic or deterministic, path based or link based, single user class or multi user class, unimodal
or multimodal and en-route route choice possibility or no en-route route choice possibility. For modelling
robustness, especially the difference between static and dynamic assignments and the possibility for en-
route assignment are important. It is generally accepted that dynamic assignments are required for correctly
modelling robustness. Compared to static assignments, dynamic assignments are better at showing the exact
location of congestion and at determining the development over time of congestion. This is important for
correctly modelling the effects of variations in demand and capacity (e.g. incidents). The possibility of en-
route route choice is important, because in practice a certain percentage of the travellers change their route
when they are informed about congestion at a certain location. The importance of en-route route choice
for the assessment of the impact of incidents is advocated in the thesis of Li (7). Tampere et al. (5) argue
that en-route route choice can indeed be of added value, but that it is very difficult to correctly model the
en-route route choice of travellers during incidents because of the uncertainty that is inherent to human be-
haviour (10). Especially during incidents this uncertainty is important, because it is not known how many
people have information about the incident and how they will respond to that information. Besides these
two characteristics, (5) also claim that a correct modelling of the way in which congestion builds up (at
least consistent with first order traffic flow theory) and a correct modelling of intersections is required for
vulnerability analysis.

We used the traffic assignment model INDY (11, 12). INDY is a dynamic path based multi-user
class assignment model. The model finds an equilibrium route set for three driver types: drivers which
use a fixed path, drivers with deterministic route choice and drivers with stochastic route choice. In INDY
congestion is modelled in line with the first order traffic flow theory. En-route route choice is not possible
in INDY. However, since INDY was used to simulate non-incident situations only, the lack of en-route route
choice is not relevant. The package gives a good representation of the network flows without incidents.
Therefore, the assignment results can be used for the evaluation of the nine robustness criteria.

Obviously, when facing an incident, it is likely that drivers will deviate from their equilibrium paths.
Therefore, for the full calculation a different, dynamic non-equilibrium traffic simulator was used. The
macroscopic simulator DSMART first used by Zuurbier (13) includes en-route route choice and blocking
back. It is an implementation of an LWR model (14, 15). It works with a time step of 15 seconds and then
the flow from one cell to its neighbouring cell is re-calculated, yielding a change in density in each of the
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cells. The flows, densities and speeds are stored for each time step. The flows to the destination cells give
the cumulative arrival curves. Comparing the cumulative arrival curve of the unhindered situation with the
situation with a blockade in the network gives the total delay, The assessment of the vulnerability of each
link was done by evaluating the impact of blocking single links using this simulator. In this case, blocking
means that 2 lanes were blocked (or one if the link only contains one lane). The total travel time (including
the delay at the origin) was used as performance indicator. Li (7) shows the influnce of subtle choices in
modelling the traffic assignment. More details on the chosen DSMART simulator and the route-choice can
be found in (2).

The assignment on the first two test networks was not calibrated. For the network of Rotterdam a
calibration has been carried out that was based on link counts on the freeways.

4 ANALYSIS

Section 3 shows how different indicators can be calculated. This section shows how they are compared with
each other (section 4.1). In section 4.2 it is shown how the vulnerability indicators are compared with a
assessment of vulnerability by simulation (iteratively block a link and calculate the performance decrease).

4.1 Redundancy of criteria

Vulnerability indicators for all links are calculated for three different networks (see section 5 for the net-
works). First of all, the mutual cross-correlations were calculated. This indicates how good the correlation
between the numbers is. The statistical value R? is well known indicates how two stochastic variables relate.
The value of R? indicates which part of the variation in one variable (7)) can be explained by a variation in
the other, z. R? is the square of the “Pearson” R-statistic (see (16)). It is indicated with R, and is calculated

as follows: - -
po2xl@-0ly-9
525y

2

In this equation, T and ¥ indicate the mean values, s, and s, indicate the standard deviations, and n is
the size of the sample. The value of R lies between -1 and 1, and its absolute value shows the size of the
correlation and its sign shows whether it is a positive (+1) or negative (-1) correlation.

The “Pearson” correlation is a linear correlation method of which the underlying assumption is that
the numbers might be mutually linearly dependent. Any other relationship that would give the correct order
of vulnerability, also non-linear relationships, could make a perfect prediction. Another correlation test, the
Spearman Rank Correlation ((17)) is a similar standard test to show how much the ranks are correlated.
The Spearman R also has an outcome between -1 and 1. Here too, the absolute value shows the size of the
correlation and its sign shows whether it is a positive (+1) or negative (-1) correlation.

The advantage of using this test is that it shows whether the ranking is correct. However, if the
values of the criteria are similar, it can be more interesting to know whether there are similarities between
the values than to see the differences within that group. In that case the rank correlation might be low,
because the ranking within a group is changed, but the indicators might give an reasonable estimate for the
vulnerability.

The correlation coefficients R between two indicators show the correlation coefficients of one cri-
terion with all other criteria. Now, a sum of these variables, S, can be defined, which indicates whether that
criterion shows the same trend as others.

Sh= Y RU"I)=-14> RU"I (3)

1€S;14k les
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In this formula, k£ and [ are the numbers of the criteria. If criterion k£ matches positively linearly with criterion
I, the value R(I*, I') equals one. If there is no correlation at all, R(I*, I') equals zero. Since I* matches
perfectly with itself, the value R(I*, I*) equals one; this explains the second equal-sign in equation (3).

A high value of S* now means that there is a high positive correlation between criterion &k (I*) and
the other criteria. That means that its value can represent the average of the other criteria well, or the other
way round, the average of the other criteria already tells something about the value of criterion I*.

Apart from the correlations and rank correlations, we examined the top-n links, the n links predicted
as most vulnerable. Each of the criteria orders the links on a vulnerability scale. We compared the orders
given by the different criteria. In particular, we analyzed whether the links that are indicated as most vulner-
able are the same. For that purpose, we calculated the relative overlap between the top-n of most vulnerable
links.

Note that for the small network and the Delft network the results of statistics can be influenced
by the small number of links that is available. The statistical analyses are most interesting for the larger
Rotterdam network.

4.2 Predictive value of criteria for simulation result

For one network, the combined selection power compared to a simulation result was examined. Since the
criteria are intended to complement each other, the minimum number of links that is to be selected by each
criterion in order to get the complete top-n of the full analysis (found by complete simulation of all possible
blockings, like (18)) was determined. It is assumed that this method gives a correct representation of the
vulnerability of each of the link.

In an example it is now shown how this method works. If for instance link number 10 is the most
vulnerable link according to the full analysis, then the position of link 10 is determined in the link ordering
of the different criteria. Thereafter the minimum is determined. It could be that I? is the criterion that gives
link 10 the highest rank: position 3. From this, it would be concluded that at least 3 links are to be selected
by each criteria. Since it is likely that there is an overlap in the selected links by each criterion, the number
of uniquely selected links is also presented.

Also the correlation coefficients and rank correlation coefficients for each indicator and the full
calculation are determined for the simulation result.

4.3 Multi-linear fit of criteria

For one network, the delay caused by the blocking of the link (TDL) is known as well as all indicators. We
propose a linear model to predict the delay-values for each of the links

TDL; =Y BIF (4)

kel

In this equation, K is a set of criteria. The most simple models would take a set of 1 parameter, e.g. L = {1}.
The maximum complexity of the model is if all 9 criteria are included. Now, vector (3 is optimised in order
to minimise the error, €
N2
8 = argmine = argmin Z <T DL; - TDLl) 5)
b b ek

The aim of the fit is that the predicted value for the delay (Tﬁi) is similar to the simulated total delay
(T'DLy). For a set of validation links, we compute the residual error,

e=TDL; — TDL (6)
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Ideally, this would be zero. It is most interesting to analyse the variations in the errors, rather than a constant
offset. Therefore we assess the quality of the prediction model by the standard deviation of €.

The vector 3 is estimated based on a calibration set of links which is a sub-set of all the links in the
network. One third of the links will be kept out of the calibration. These links are used for the validation. In
fact, it is calculated what is the predicted delay for a blocking on each of these links. These predicted delays
are compared with the delays calculated in the dynamic traffic simulation program.

S NETWORKS

For the comparison of the selection criteria, we used three different sized networks. We used a simple test
network to show clearly the characteristics of the different indicators. The second test network is a bit more
detailed and shows the effects of on and off ramps. The simulation of traffic in a real-world, medium-sized
network shows how the effects work out in practice (third network).

The first network studied is a test network with 11 directional links (figure 1b). It can be seen as a
freeway that passes a city. There are 3 centroids (origins and/or destinations) 5 nodes and 11 links. There
are connections to the city (links 7, 8, 9 and 10) and there is a local road that passes the city (link 11). All
local connections have a maximum speed of 50 km/h, whereas the freeway has a maximum speed of 120
km/h. As congestion sets in, more drivers take the local road around the city.

The second network is a test network that is based on the network of Delft in the Netherlands (figure
1b). The freeways around the city are included as well as the largest two roads through the city. In total,
12 centroids are modelled, 90 nodes, and 150 links. All local roads are excluded. The on and off ramps are
modelled in detail. Since the capacity and location of on and off ramps is likely to be of relevance for the
robustness of a road network, this is an important addition compared to the first test network.

The network around the city of Rotterdam (about 600,000 inhabitants, shown in figure 1c) is the
third network considered here. It has 44 centroids, 239 nodes and 454 links. The freeways around the city
are modelled as well as the most important corridors through the city. The network is used for local traffic
and for transit traffic. The period from 6.30 to 9.30 in the morning was simulated.

6 RESULTS

In the section, we present the interesting results for all three networks.

6.1 Simple Network

All indicators are formulated chosen in such a way that bigger values indicate a higher vulnerability for the
network. It is therefore remarkable that some of the correlation indices are negative, meaning that a best fit
is a negative relationship.

S is even negative for 1> and I5. For I3, it can be explained by the exclusion of the freeway links.
When the freeway links are vulnerable according to the other criteria and (by exclusion) they are not any
more according to I3, the correlation coefficient becomes negative. I uses I as input, so it was expected
that it would follow the trend of I3. As that counteracts the average, so will 6. The cross correlation of C3
and C6 is relatively high (0.81). It is also the only combination with the same top-1, top-2, top-3 and top-5
of vulnerable links.

The correlation of the I' and the I is the highest of all with an R of 0.99. It is, apart from I3
and I, the only combination that produces the same top-5 (though not in the same order). Other related
combinations are: I2-7%, 11-1°, 11-19, 12-18, and I-1°.
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TABLE 2 The correlation coefficients

Correlation Linear Rank
Full calculation and I 0.15 0.10
Full calculation and 72 -0.01 -0.01
Full calculation and 12 0.078  -0.05
Full calculation and I* 0.13  0.15
Full calculation and I°  0.15  0.11
Full calculation and I  0.09 -0.06
Full calculation and I7  0.052  0.02
Full calculation and I®  0.15 0.12
Full calculation and I° 0.10  0.08

6.2 Delft Network

The strong correlations are the same in the Delft network. The cross correlation values are in the same order
of magnitude, but the accordance of the top-n values is lower. Due to the higher number of links, there is
less chance of accidentally including the same links in the top-n (n is chosen as a percentage of the total
number of links).

Here, we find strong correlations in the following combinations: I'-I° and I3-I°. The value for S
varies from 1.7 (I?) to 4.4 (I'").

6.3 Rotterdam Network
6.3.1 Analysis of indicators

Since the statistics on this 454-link network have the least random error, for this network all results for
the comparison with the full calculation are presented. Figure 2 shows the correlation between each of the
indicators with the full computation. They are very scattered, meaning that if one knows value of the indictor,
one doe does not know much about the vulnerability obtained by a (full computation). Numerically, one
could conclude that the correlation in values and rank is low. The correlation results as proposed in section
4.1 are presented in table 2. None of the indicators can properly predict the consequences of a blocking.
The highest R is 0.15. Figure 3 shows the ranks of the links (the lower the number the more vulnerable it
is) for each of the indicators and for the full computation, where there is no line at all. This means that if
one knows the order of vulnerablility predicted by one of the indicators, this does not imply anything on the
order of vulnerability according to the full calculation.

In this real-world network, the same combinations of indicators are related as in the other networks.
There is one relationship that correlates more than in the other networks, I'-1°. The cross correlation value
R s 0.85.

The combined selection power of the links is shown in figure 4a. The figure shows the number of
unique links (y) that are to be selected by each criterion in order to get the complete top-n of the actual
impact analysis. From the line ‘Number of links required to select per criteria’ it can be concluded that
more than 250 links (55% of all links) need to be selected in order to include the most vulnerable links. The
figure also shows (blue line) the number of unique links that result from selecting y links by each criterion.
In the example given above this corresponds to the union of the top-250 links from all criteria. Already for
a very small search area (top-1 vulnerable link), a very large subset of links needs to be considered (almost
all). This implies that, at least for this case, pre-selecting links has hardly any added-value. Finally, the
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FIGURE 2 The scatterplot of the results of the full calculation compared with the calcalated criteria

overlap is shown between the top-n of links selected by the criteria and the top-n of links based on the actual
impacts. If the high level of the blue line is caused by a few links that are not selected by the criteria, or in
other words, if most of the vulnerable links are captured by the criteria, this would appear in the overlap. We
selected the most vulnerable n links according to the full calculation and we analyzed which percentage of
these links also appears in the top-n of any criteria. This is the overlap percentage. The line will go to 100%
for all links: all links belong to the set of vulnerable links if there is no threshold. The ‘overlap line’ shows
that 10% of the top-10 of most vulnerable links are included in the selection of the criteria based top-10. For
the top-150 this is 33%. This implies that it is not just 1 link that is missing in the criteria selection.

We looked for the most vulnerable links according to the simulation and tried to identify reasons
why this was not included in the criteria. It showed that especially the freeway junctions, the links down-
stream of junctions and the main urban arterial are not well covered by the criteria. These are, in the full
calculation, vulnerable due to spillback effects, which are not captured good enough in the criteria. Espe-
cially secondary spillback (spillback from one link to the next and to the next, like present on a motorway
junction) are not properly included in the criteria. Graphically, figure 4b shows which links are the most
difficult to find. A dark shading implies that the maximum of the criteria scores for that link is higher than
its ranking (easier to find). The other links are shaded with an intensity according to the difficulty of finding
these links.

6.3.2  Multi-linear fit

For the Rotterdam network, the full computation results are known. We fit a multi-linear model on the
indicators to approximate the full computation results, as explained in section 4.3.
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Note that there are 2 = 512 possibilities to fit a multi-linear model if each of the 9 criteria could be
included or not. Exactly half of them (256) includes I' and the other half (256) does not include it. Figure 5a
shows the distribution of the error for the models which include each criteria. One bar indicates the spread
of the fits of the 256 models which include the indicator mentioned on the horizontal axis. It shows that
generally the performance is very poor because the spread in the error (equation 6) is more or less the same
as the spread in the delay. So in fact, the model could not find an explanation for the deviations. In some
cases, the standard deviation of the model becomes even worse, meaning the model overfitted the results.

The boxes in figure Sa show the distribution of the model fits with different complexity. A square
shows the performance of the linear fit including only one indicator (and none of the others). This is gener-
ally a slightly better fit than the fit which included more parameters.

This is also seen in figure 5b which shows the fitness for models with different complexity, i.e. the
number of criteria that are included in the fit. The standard deviation of the residual error for models with
one parameter lies slightly under the standard deviation of the the measurements. That shows that including
1 indicator is slightly better than not having any information at all. However, when more criteria are included
in the model, the error increases, which means the results are overfitted. Obviously, if one would plot the fit
results for the calibration set rather than the validation set, the error will go down.

7 CONCLUSIONS AND RECOMMENDATIONS

This contribution compares different criteria that have been proposed in literature to indicate the most vul-
nerable links in a network. We found that the different criteria indicate different links as most vulnerable.
They should therefore be seen as complementary. Excluding freeways gives a completely different list of
vulnerable links. This implies that the freeways are usually (i.e., by the other indicators) indicated as vulner-
able. The Incident Impact, ¢/ (1 — ¢/C'), gives the best correlation with the other criteria. When comparing
it to the fully calculated results, though, it is not better than the others.

In fact, none of the indicators on their own give a good representation of the full consequences of
the blocking of a link. It is also insufficient to take the top-level numbers and analyze them in depth, as there
is no indication that the indicated top-level vulnerable links are indeed the most vulnerable. Apart from
that, they differ among the criteria. Furthermore, a combination of the criteria also did not result in a good
prediction of the list of most vulnerable links. The combined selection power of the criteria in the network
appeared to be minimal. Especially, the freeway junctions, the links after the junctions and the main urban
arterial are not well covered by the criteria. This could imply that spillback effects are not properly included
in the criteria.

From these results it can be concluded that the quality of these criteria is not good enough to properly
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identify the most vulnerable links in a network. Also a linear model combining the criteria cannot predict
the right vulnerability of links.

Future research should analyse the quality of the selection criteria for identifying vulnerable links for
other disruptions then 2 lane blockings. Furthermore, the conclusion that the existing criteria are insufficient,
should lead to new research to find out whether new criteria can be introduced that enable us to identify
vulnerable links without doing a full calculation. For instance, the indicators based on routes instead of
links, for example mentioned by (8), can provide an interesting approach to this problem which is to be
integrated in a future study.
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