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Abstract
Magnetic Resonance Imaging is a widely used technique to obtain images of the interior
of the human body for diagnosis and treatment. MRI machines capture the raw signal in
spatial frequency domain i.e. k-space and the image is obtained via Fourier transform. The
Cartesian acquisition is one of the most commonly used acquisition patterns in MRI and is
most susceptible to the patient’s motion. Due to long scanning times, the possibility of the
patient’s movement is higher which introduces bulk motion artifacts reducing the quality
of the image. Motion artifacts can affect the diagnosis and the necessity of re-scanning
can cause significant financial costs as well as delays in diagnostics. Current methods for
correcting motion artifacts work in image domain which need completely sampled k-space
for reconstruction and hence are not useful for real-time artifacts correction. In this thesis,
machine learning methods that can detect, estimate and correct motion artifacts in k-space
were investigated making it possible to correct artifacts in real-time without the necessity
of reconstruction. For each of these methods, we analyze the performance and discuss the
merits and demerits.
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1
Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging method that gives clear, de-
tailed images of soft-tissue structures. During an MRI scan, the patient must remain still
in an enclosed machine, which may be a problem for pediatrics, stroke patients, and in the
elderly. Due to long scanning times, artifacts can occur due to motion which causes signifi-
cant financial costs due to repeated scans. The motion artifacts can affect the diagnosis if an
image of acceptable diagnostic quality is not obtained. Although many solutions exist for the
detection and correction of motion artifacts, those solutions are limited in their applicability.
Techniques such as anatomical restraints are uncomfortable and anesthesia has a risk of
ill effects on patient’s health. In this project, the aim is to implement a technique that can
detect and correct the motion artifacts in a brain MRI scan with the Cartesian acquisition
by comparing two consecutively scanned spatial frequency domain lines (also known as k-
space). This method is useful to detect the occurrence of motion in an MRI scan ”on the go”
and further measures (either correction or re-scan) can be taken depending on determined
motion parameters.

1.1. MRI Acquisition

During an MRI scan, a patient is placed in a static magnetic field produced by an MR scan-
ner magnet. Due to the application of this static magnetic field, all protons inside tissues,
align parallel to the magnetic field. During image acquisition, Radio Frequency (RF) pulse
is emitted from scanner tuned to Larmor frequency resonating with the rotation frequency
of the intrinsic magnetization vector of hydrogen atom proton. The duration of this pulse is
such that, it tilts the spin magnetization such that a transverse component can be detected.
Current generated in the coil due to transverse magnetization by Faraday induction is called
Nuclear Magnetic Resonance (NMR). The loss of coherence of the spin system attenuates the
NMR signal with a time constant called transverse relaxation time (T2). Magnetization vector
relaxes towards its equilibrium orientation parallel to the magnetic field with time constant
called spin-lattice relaxation time (T1). Different tissues have different T1 and T2 relaxation
times which give good contrast in MR images.

To identify the location of the signals coming from different parts of body, small magnetic
field gradients are applied with different frequencies and/or phases. On one of the axis, this
frequency is changed and on the other, the phase is changed using these gradients. The
signal is encoded using different frequencies and phases to know the location of it’s origin.
This encoding is referred as frequency and phase encoding.
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2 1. Introduction

1.2. Raw data from MRI and k-space

During data acquisition of MR sequence, transversal components of magnetization in an
imaging object after excitation are sampled from the receiver coil signal. As gradients are
applied on phase and frequency encoding, this raw signal is already in a Fourier-like format
suitable for filling the k-space matrix [9].
The relationship between signal acquired by MR scanner (raw signal) and object image is
given by imaging equation,

𝜎(𝑡) = ∫
ℝᎴ
𝜌(𝑟)eዅ᎐። ∫

ᑥ
Ꮂ ፆ⃗(Ꭱ)⋅፫⃗dᎡd𝑟. (1.1)

where, 𝜎 is acquired signal, 𝜌 is image value at point 𝑟 ∈ ℝኼ given by transverse magnetization
state, 𝛾 is a physical constant and �⃗�.𝑟 with �⃗� ≡ (𝐺ፗ , 𝐺፲) is gradient field. By setting �⃗�(𝑡) =
᎐
ኼ᎝ ∫

፭
ኺ �⃗�(𝜏)d𝜏, in equation (1.1), we get,

𝜎(𝑘) = ∫
ℝᎴ
𝜌(𝑟)eዅ።ኼ᎝፤⃗⋅፫⃗d𝑟. (1.2)

To get the image (𝜌) from the acquired signal 𝜎, inverse Fourier transform is applied,

𝜌(𝑟) = ∫
ℝᎴ
𝜎(𝑘)e።ኼ᎝፤⃗⋅፫⃗d�⃗�. (1.3)

This relationship is similar to frequency-time relationship and hence, �⃗� can be considered as
spatial frequency. In the field of MRI imaging, the frequency domain is called k-space [28].
In 2D imaging, each point in k-space indicates spatial frequency over the x-axis and y-axis
and amplitude at each point indicates the contribution of that spatial frequency in an image.
Data near the center of k-space corresponds to low spatial frequencies (i.e. general shapes
and image contrast), whereas data from the periphery relates to high-spatial frequencies (i.e.
edges, details) [8]. If the k-space is filled by data near the center, the image will have low
resolution, but if k-space is filled by data farther away from the center, the image will have
high resolution but poor contrast. Cartesian sampling, radial sampling, and spiral sampling
are the three most commonly used sampling patterns to fill k-space. In clinical MRI, Carte-
sian sampling is most commonly used because of simple reconstruction by using Inverse
Fast Fourier Transform (IFFT) and instrumental imperfections of early MRI systems [33]. In
the Cartesian acquisition, data is filled in k-space line by line. Due to this, the Cartesian
acquisition is susceptible to object motion. The data acquired during the MR imaging se-
quence is then taken to the image domain by using techniques like fast Fourier transform
with computational complexity 𝑂(𝑁 log𝑁).

1.3. Bulk head motion and its effects

The inconsistency between the various portions of the k-space data used for image recon-
struction is the main cause of motion artifacts. The simple reconstruction technique like
IFFT assumes that the object has remained stationary during the scanning time. If the ob-
ject is not stationary during the scanning period, it introduces artifacts.

Though physiological processes (e.g. breathing, cardiacmotion, blood pulsation, and tremors)
introduce some motion artifacts, in case of brain MR imaging, sudden position changes, for
example, due to swallowing, often lead to artefacts[21].This is also known as bulk patient
motion and is one of the most common sources of artifacts in MRI brain imaging [2]. In
bulk-head motion, there are two types namely translation and rotation also known as rigid
motion. The effect of these motions in 2-D image space can be shown by the equation men-
tioned below.



1.3. Bulk head motion and its effects 3

1. Translation:
In (1.4), the effect of translation motion in k-space can be observed. The occurrence of trans-
lation motion in image domain causes change in phase in k-space (frequency) domain. Here,
it can be observed that there is no change in the amplitude of the signal.

𝑓(𝑥 − 𝑥ኺ, 𝑦 − 𝑦ኺ)
DTFT←−−→ 𝐹(𝑢, 𝑣)𝑒ዅ፣ኼ᎝(፮፱Ꮂዄ፯፲Ꮂ). (1.4)

Here, 𝑓(𝑥, 𝑦) is image data and 𝐹(𝑢, 𝑣) is its k-space (Fourier) equivalent. 𝑥ኺ, 𝑦ኺ are translation
motion parameters along 𝑥 and 𝑦 axis respectively and 𝑗 is unit imaginary number.
2. Rotation:
In equations (1.5) and (1.6), rotation occurred in image space is equivalent to rotation in k-
space. Equation (1.5) indicates the effect of rotation in polar co-ordinates and equation (1.6)
indicates the effect of rotation in Cartesian co-ordinates.

𝑓(𝑟, 𝜃 − 𝜃ኺ)
DTFT←−−→ 𝐹(𝜔, 𝜙 − 𝜃ኺ), (1.5)

𝑓(𝑥 cos(𝜃ኺ) + 𝑦 sin(𝜃ኺ), −𝑥 sin(𝜃ኺ) + 𝑦 cos(𝜃ኺ)), (1.6)

DTFT ↕

𝐹(𝑢 cos(𝜃ኺ) + 𝑣 sin(𝜃ኺ), −𝑢 sin(𝜃ኺ) + 𝑣 cos(𝜃ኺ).

Here, f(x,y) is image data and F(u,v) is its k-space (Fourier) equivalent. On the left side of
the equations (1.5) and (1.6), is image data with rotation parameter 𝜃ኺ and on right side its
k-space equivalent.

In figure 1.1, a 2D slice of brain MRI image can be seen. Ghosting effects can be observed in
the image which is the effect of motion during MRI scan.

Figure 1.1: Motion affected brain MRI image
Source: University Medical Center, Utrecht



4 1. Introduction

1.4. Objective and Research Question

This project aims to detect and correct motion artifacts in k-space. By estimating the motion
parameters we aim to compensate for object motion in k-space which will save the necessity
of performing reconstruction before correction. In this project, the aim is to estimate motion
in between consecutive scanned rows of k-space with Cartesian acquisition ”on the go”. The
detected motion parameters are then used to correct the motion artifacts and reconstruct
the image.

The main research question we are trying to answer is ”can we predict and correct bulk mo-
tion artifacts in k-space?” The second question we are trying to address is ”which regression
method works best for this prediction of motion parameters ?”.

We implemented and compared four different methods for predicting motion parameters.
Least squares regression was selected as a starting point as it is one of the most commonly
used and simple methods. The least-squares method is a model driven method which as-
sumes the model shape and then minimizes the unknown parameters to fit that shape. In
real-life scenarios, the model is not always completely known. Hence, the next thee methods
implemented were data-driven. Then we implemented Gaussian Process regression. Gaus-
sian process regression provides a Bayesian non-parametric approach and has a unique
feature of predicting the targets with the confidence interval for each target. Prior informa-
tion about the shape of the model can be incorporated by using different kernel functions
and some of the kernel functions have the ability of automatic feature selection. Then we
moved on to more complex and more expressive models. In search of more complex mod-
els, we selected fully connected neural networks as FNN models are complex but are easy to
build. After analyzing the FNN models, we moved on to implementing Convolutional Neural
Networks as they can extract the features from the spatial structure of data and have advan-
tages like sparse interactions, parameter sharing, and equivariant representations.

These predicted motion parameters are then used to reconstruct the actual locations of k-
space from where the data is collected and then reconstruct the original image by using the
iterative non-uniform Fourier transform.

1.5. Datasets

The brain MRI images are huge and hence need more memory for storage and processing.
The images are more complex and difficult to obtain. Because of no specific geometry, ver-
ifying the results with the analytical solution is not possible. Hence, It was decided to use
some simpler models for initial experimentation instead of brain MRI data. As it was easy
to generate images of the rectangle and it was possible to create a complete analytical model
assuming rectangle as an image space object, it was decided to use rectangles with differ-
ent dimensions as the experimental dataset. Multiple datasets were created using different
rotation or translation or both motions in-between consecutive rows of k-space data. As we
know that, the k-space equivalent of the rectangle is a 2D sinc function, creating k-space
data with rotation was possible without introducing structural errors. As Signal to Noise
Ratio (SNR) of typical MRI scanner is around 50, a dataset with SNR = 50 was also created
from the noise-free dataset. The continuous motion was also simulated with time-dependent
motion parameters. In figure 1.2a, a sample image created can be observed and in figure
1.2b, the effects of simulated motion artifacts can be observed.
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(a) Synthetic Data test image
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(b) simulated rotation motion affected image

Figure 1.2: Synthetic data image with simulated motion artifacts

1.6. Organization of the report

This thesis report is divided into six chapters. In chapter 1, the background and objective of
this thesis is discussed. The datasets created and used for the experiments were also dis-
cussed in the first chapter. In chapter 2, the previous work in the MRI motion correction field
is discussed. In chapters 3, 4, 5 and 6 the experiments performed with Least squares re-
gression, Gaussian process regression, Fully Connected Neural Networks and Convolutional
Neural Networks for predicting motion parameters were discussed respectively. In chapter7,
the results on brain image dataset were discussed. Finally, in chapter 8 the results, conclu-
sion, and outlook of this project were discussed.





2
Related work

MRI motion can be handled using three methods [18]:

1. Preventing motion

2. Avoiding the effects of motion

3. Correcting the effects of motion

Preventing the motion using restraints is the most commonly used method but the level of
immobilization achieved is low. To achieve higher levels of immobilization during a scan,
custom made molds are used which have higher manufacturing time and are uncomfortable
[3][22][7]. Another way to prevent motion is sedation. This may have an ill effect on patients
like hypoxemia and is not useful on normal volunteers for research studies due to safety
concerns[19]. Another commonly used method to prevent the motion is training the patients
before their scan. This method is only useful on healthy subjects and cannot be used for
unconscious or acutely ill patients[30].

To avoid the effects of motion, fast imaging techniques like Fast spin echo[12] and echo-
planar imaging[20] comes at a cost of low image quality and/or resolution. To avoid the
effects of motion, Radial or spiral imaging schemes can be used which are more robust to the
motion artefacts[14][27][13][29]. Though the use of these acquisition methods is increasing
in research, most commonly used acquisition method in clinical MRI is a Cartesian acquisi-
tion.

The third approach to handle motion artifacts is allowing the motion to occur, then detect,
quantify and discard or correct the acquired data. In [17] a supervised machine learning
approach using random forests to classify the motion affected image was implemented. Two
types of motion are considered, bulk motion and respiratory motion respectively. The syn-
thetic motion affected dataset was created by altering the k-space data according to a motion
trajectory. Here, the problem addressed was only classification problem, detecting the pres-
ence or absence of motion. In [24] a deep CNN was developed to correct the motion affecting
MRI images. In this paper, the focus was to correct the motion artifacts by using deep CNN
as a motion correction filter in image space. In [15], the motion artifacts in brain MRI images
were corrected using variants of Generative Adversarial Networks(GAN). In [25] a new method
”Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction” for data
collection and reconstruction is developed. In this method, the central region of k-space is
over-sampled helping the correction and reconstruction of motion affected data. This method
needs more acquisition time as it collects more data by oversampling at the center. In [32],
the radial acquisition was used with the registration technique for measuring and correcting
rigid motion. Though this method implements motion correction in k-space but needs image

7



8 2. Related work

registration and radial acquisition techniques. In [16] using deep network architectures of
Variational Auto-encoder and GAN, motion affected image to motion-free image translation
problem was tried to solve. In this method, a motion-corrected image is generated from a
motion-corrupted image. To do this, complete k-space data has to be collected first and
hence real-time motion estimation is not possible.

In Figure 2.1, in the proposed method, estimation and correction of motion artifacts are
done in k-space, saving time to reconstruct the image before artifacts correction. This is
an advantage over the current methods as this method can be implemented to estimate the
motion parameters in real-time. This is not only useful for prospective motion correction but
also for interventional techniques, such as Radiotherapy which aims at tracking the tumor in
real-time. The proposed method is implemented for Cartesian acquisition which is the most
commonly used method in clinical MRI. In the proposed method, the aim is to estimating
motion parameters using consecutive k-space rows as input. After estimation, the correc-
tion of motion artifacts is done by using a non-uniform Fourier transform for reconstruction.
The advantage here is we do not need to reconstruct the complete image for artifacts cor-
rection and the method can be used as an online correction(”on the go”) method parallelly
while capturing the next k-space row in a Cartesian acquisition. In the next chapters, we

Figure 2.1: Proposed method

try to experiment with multiple regression methods to predict motion parameters. We start
with a simple method like least squares and then experiment with methods like the Gaussian
process, Fully connected Neural Network and Convolutional Neural Network. After achiev-
ing certain prediction accuracy, predicted values were used to improve the quality of the
reconstructed image. The reconstruction is done by iterative Non- Uniform Fourier Trans-
form(NUFFT) with the help of ”MIRT toolbox” by Fessler[10]. In figures 2.2c and 2.2d, you can
see original and corrupted object due to rotation motion. The rotation angle in consecutive
rows and its cumulative value is as shown in figure 2.2a and 2.2b. Using these cumula-
tive angles, we create a non-uniform co-ordinates system from where the k-space raw data is
collected(figure 2.2b). Using these values of raw k-space data and iterative NUFFT, we recon-
struct the image as shown in figure 2.2f. In iterative NUFFT, we solve minimize ||𝐹ፍፔፅፅፓ𝑋−𝐷||
problem in an iterative way to find X, using linear least squares, where 𝐹ፍፔፅፅፓ is non-uniform
Fourier transform operator, 𝐷 is raw data from k-space and 𝑋 is an object image.
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Figure 2.2: (a) rotation angle values for each row (b) cumulated values of rotation angles (c) original
object under scan (d) reconstructed object using IFFT of raw k-space data (e) New co-ordinates of
scanned data based on cumulated theta values (f) reconstructed object using new co-ordinates of
scanned data, raw scanned data and iterative NUFFT

In the next chapter, we discuss the least squares method implementation for predicting
motion parameters on synthetic dataset.





3
Least Squares Regression

To start estimating the motion parameters, we first assume the geometry of the object (rectan-
gle object with dimensions 𝐴፱ and 𝐴፲) is known and we try to estimate the motion parameters
by minimizing the difference between collected k-space data and function of motion affected
k-space(model). This estimation of motion parameters is done for each k-space row. Assum-
ing we have an image of 128×128, we have 128 equations for each row and 3 unknowns
𝜃, 𝑋፭፫ፚ፧፬ , 𝑌፭፫ፚ፧፬. Though the simplest form is a linear model, after multiple experiments with
the linear model it was observed that objective function is too complicated to fit with the
linear model. Hence we start our discussion with Non-Linear Least Squares.

Non-Linear least squaresmethod is used to solve a set of𝑚 non-linear equations in 𝑛 unknowns(𝑚 ≥
𝑛). With least-squares we try to estimate motion parameters 𝜃, 𝑋፭፫ፚ፧፬ , 𝑌፭፫ፚ፧፬ by fitting the ex-
pected model equation to scanned data. The objective function here will look like the equation
below.

minimize
᎕

ፍ

∑
።዆ኻ
||(𝑓።(𝜃, 𝑥፭፫ፚ፧፬ , 𝑦፭፫ፚ፧፬) − 𝐴(𝑖, ∶))||ኼ. (3.1)

where, 𝑓።(𝜃, 𝑋፭፫ፚ፧፬ , 𝑌፭፫ፚ፧፬) is k-space function of known object for 𝑖፭፡ row(model equation) and
A(i,:) is the k-space data acquired at 𝑖፭፡ row. After solving this for each row of k-space data
scanned, we get row-wise vectors for 𝜃, 𝑋፭፫ፚ፧፬ , 𝑌፭፫ፚ፧፬.
To solve non-linear least square, the trust-region-reflective algorithm was used by means of
MATLAB ”lsqnonlin” function[34].

3.1. Experiments with Non-Linear Least Squares

3.1.1. Experiment 1

The project aims to predict the motion parameters from the data and correct the motion af-
fected part of that data. To do this, we started with a simple experiment. First, we tried
to predict the motion parameters(in this case angle of rotation 𝜃) between two images one
with rotation and one without rotation. Here, we use 𝑁 × 𝑁 k-space data of the image of a
rectangle of known dimensions rotated with angle 𝜃 and try to predict 𝜃 which is the angle of
rotation. So, in this case, we have 𝑁×𝑁 equations and one unknown 𝜃 is to be predicted. In
Figure 3.1, images on the left are of non-rotated and rotated rectangle and images on right
are k-space data for the same. The k-space data values are real in this case as both the
objects are centered and there is no translation motion in this case.

11
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Figure 3.1: Simple model of rectangle with known dimensions and its corresponding k-space data

The objective function will look like,

minimize(
ፍ

∑
።዆ኻ
||(𝐴፱)(𝐴፲)(sinc((𝐾፱ cos(𝜃) + 𝐾፲(𝑖) sin(𝜃))(𝐴፱/𝑁))×

sinc((−𝐾፱ sin(𝜃) + 𝐾፲(𝑖) cos(𝜃))(𝐴፲/𝑁))) − 𝐼፤ᑩ፤ᑪ ||ኼ).

(3.2)

In the above equation, 𝐾፱ and 𝐾፲ are k-space co-ordinates, 𝐴፱ and 𝐴፲ are rectangle dimen-
sions, 𝑁 × 𝑁 is image size, and 𝐼፤ᑩ፤ᑪ is k-space read data matrix of size 𝑁 × 𝑁. We minimize
the objective function to find the value of 𝜃 using least squares method. Value of objective
function for different values of 𝜃 (domain plot) will look as shown in Figure 3.2. Here, the
angle of rotation between two rectangles is 𝜃 = 10፨. In figure 3.2 you can observe that the
domain has a clear global minimum at 10 and -170 as the objective function is 𝜋 periodic.
So by using least squares, we can find the values of theta.

3.1.2. Experiment 2

From the previous experiment it was concluded that if the k-space signal function is known,
we can use non-linear least squares to find the angle of rotation between two images. In the
next experiment, we tried to find the angle of rotation between consecutive rows. As we are
working with the Cartesian acquisition in k-space, the rows in k-space will be scanned one
by one. This experiment aims to find the angle of rotation if the object rotates by angle 𝜃
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Figure 3.2: Plot of objective function over 𝜃 to find single 𝜃 value for complete image. The plot indicates
that in noiseless case, clear global minima can be observed and using least squares, it is possible to
predict angle of rotation 𝜃 when k-space function of object is known

between the scanning of two rows. In this experiment, we have a single row of N points as
input data and we try to minimize the objective function for each row to predict the value of
𝜃።. So, we have N data points with N equations and a single unknown 𝜃። to fit using least
squares for each row. For a k-space data of 𝑁 × 𝑁, 𝑁 rotation parameters are estimated.

minimize(
ፍ

∑
።዆ኻ
||(𝐴፱)(𝐴፲)(sinc((𝐾፱ cos(𝜃።) + 𝐾፲(𝑖) sin(𝜃።))(𝐴፱/𝑁))×

sinc((−𝐾፱ sin(𝜃።) + 𝐾፲(𝑖) cos(𝜃።))(𝐴፲/𝑁))) − 𝐼፤ᑩ፤ᑪ(𝑖, ∶)||ኼ).

(3.3)

In equation (3.2) a single 𝜃 is to be predicted for 𝑁 × 𝑁 input data whereas in equation
(3.3), we try to predict 𝑁 𝜃 values for 𝑁 × 𝑁 input data.
In the Figure 3.3, we show the similar domain plot as in Figure 3.2, but for every k-space
row. On the x-axis we have row number, on the y-axis we have values of 𝜃 and on z-axis
objective function which is to be minimized is plotted. The objective function is the differ-
ence between the assumed k-space function and the collected k-space data. In Figure 3.3, it
can be observed that the objective function becomes difficult to minimize as we move away
from the center due to multiple local minima values. From figure 3.1, it is clear that low
frequencies contribute more to the k-space data (describing the global shape, contrast)than
high frequencies(describing edges, corners). At the center of the k-space, we have lower fre-
quencies and hence it is easier to minimize the objective function at the center. Hence, it was
decided to use the minimization at center first for predicting the motion parameter values
and then using the predicted values at the center for initializing the minimization for next
rows and so on in a recursive fashion; The solution of the objective function of 𝑖፭፡ pair of lines
is used to initialize the minimization of objective function for 𝑖 + 1፭፡ pair of lines.

The object under consideration is a rectangle with known dimensions. The object starts
rotating from the original position slowly as shown in Figure 3.5 when capturing of k-space
data is started. The object which is reconstructed from raw k-space data acquired is shown
in figure 3.4.
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Figure 3.3: Normalized objective function plot for each k-space row over 𝜃. As we move away from
central row 0 to row ±64 the objective function has more and more local minima values.

In 3.5 the dotted line indicates actual motion occurred and the blue solid line indicates
predicted values using non-linear least squares. The rotation parameter 𝜃 is time-dependent
and is sinusoidal.
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Figure 3.4: k-space data scanned with continuous object rotation in sinusoidal motion pattern and
reconstructed object with inverse Fourier transform.

From this experiment, it was concluded that in noiseless case, if k-space data function
is known, rotation parameters can be estimated using non-linear least squares considering
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Figure 3.5: Prediction of rotation motion for each row for continuous sinusoidal rotating motion. Here,
central minimization is done first and using the results to initialize next minimization, good prediction of
motion values is obtained in noiseless data. Object geometry and k-space model of object is assumed
to be completely known.

motion is smooth. Now, in the next experiment, it was tried to find out if non-linear least
squares can be used to estimate multiple motion types together(rotation and translation) in
the presence of noise.

3.1.3. Experiment 3

In this experiment, we try to find if for a known object, with multiple types of motions (rotation
and translation) and when acquired k-space data is affected by noise, if motion parameters
can be estimated. From equation (1.4) and equation (1.6), k-space equation (3.4) can be
derived assuming object in image space is a rectangle of dimensions 𝐴፱ and 𝐴፲, image size is
𝑁 × 𝑁 and 𝜃። , 𝑥፭፫ፚ፧፬ᑚ , 𝑦፭፫ፚ፧፬ᑚ are rotation and translation parameters along x and y-axis for 𝑖፭፡
row. 𝐼𝒩፤ᑩ፤ᑪ is k-space noisy data scanned. For different noise levels, we try to find the motion
parameters using least squares.

minimize(
።዆ኻ

∑
ፍ
||((𝐴፱)(𝐴፲)(sinc((𝐾፱ cos(𝜃።) + 𝐾፲(𝑖) sin(𝜃።))(𝐴፱/𝑁))×

sinc((−𝐾፱ sin(𝜃።) + 𝐾፲(𝑖) cos(𝜃።))(𝐴፲/𝑁)))×

𝑒ዅ።ኼ᎝(((ፊᑩ cos(᎕ᑚ)ዄፊᑪ(።) sin(᎕ᑚ))(፱ᑥᑣᑒᑟᑤᑚ/ፍ))ዄ((ዅፊᑩ sin(᎕ᑚ)ዄፊᑪ(።) cos(᎕ᑚ))(፲ᑥᑣᑒᑟᑤᑚ/ፍ)))) − 𝐼𝒩፤ᑩ፤ᑪ(።)(𝑖, ∶)||
ኼ).

(3.4)

In figure 3.6a, 3.6b and 3.6c, the effect on noise on the predictions for motion parameters
can be observed. Here, you can observe the effect of noise is more at the rows away from
central k-space. As we discussed before, the amplitudes of high frequencies are less, the
effect of noise on high-frequency data is more than the effect of noise on low-frequency data.
So, for the same amount of noise, higher frequencies affect more than the lower frequencies.
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When SNR value goes higher(figure 3.6), the motion parameters estimated are close to actual
values not only at the center but also away from the center. Here, the motion parameters are
changing slowly and the object geometry is completely known. Now, in the next experiment,
we tried to estimate fast-changing motion value parameters using least squares.

3.1.4. Experiment 4

In this experiment, the objective is to find if the least-squares minimization can estimate
the motion parameters of the fast-moving rectangle of known dimensions by using noisy
scanned data in k-space. Here, we consider the rectangle object is rotating with an angle of
2፨ per row and translation motion parameters are the same as the previous experiment(slowly
moving). The only change from the previous experiment is the fast-changing rotation motion
parameter. Similar to previous experiment, equation (3.4) is used for minimization. As seen
in Figure 3.7, we get good predictions at the center but as we move away from the center,
predictions start deviating from actual motion parameter values. This is analogous to the
observation made using figure 3.3 where it was observed that the domain has global minima
at the center but as we move away from the center, the objective function has more local
minima. As the value of one of the motion parameters is changing fast, as we move away
from the center, the least square algorithm tends to get stuck in local minima. As we are
using prediction from the previous row for initializing the algorithm to predict the motion
parameters for next rows, once the algorithm gets stuck in local minima, the predictions of
motion parameters from that row go wrong and the error in the prediction increases.
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Figure 3.7: Prediction of rotation and translation motion for each row. SNR of scanned data is 50. The
value of 𝜃 is changing by 2፨ per row. Here, the motion is smooth but fast. The values predicted at
the center and near central region are close to actual values but as we move away from the center,
predictions are wrong due to local minima issue. Once the predictions go wrong for single row, as we
use the same prediction for initialization of next row motion parameter predictions, all next predictions
go wrong.
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Figure 3.6: Prediction of rotation and translation motion for each row. SNR of scanned data is 10, 50,
100 respectively. Object is a rectangle with known dimensions.
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From experiment 4, it was concluded that if the motion value parameters are changing
fast or the motion occurs when k-space lines away from the center are being scanned, it is
difficult to predict the motion parameters. Also, with the least-squares minimization, the
object geometry is supposed to be known which is never the case in real-life scenarios. In
experiment 3, it was observed that predictions using least-squares are affected by noise more
for the rows away from the central k-space data. The least-squares minimization is used as
the first step to understand the nature of the problem. In the next step, we will discuss
Gaussian Process regression method and experiments performed with the same.



4
Gaussian Process Regression

In the previous section, we experimented with nonlinear least squares to find if we can predict
the motion parameters when object geometry is known. In a practical scenario, the object
geometry will be unknown and the motion parameters will need to be predicted. For this
purpose, we need a regression model that will read the k-space data (pair of rows in this
case) and will find the motion parameters associated with it (data-driven). We selected the
Gaussian Process (GP) regression as a starting point of regression models for the following
reasons. The Gaussian process provides a Bayesian non-parametric approach for regres-
sion and classification. It directly captures the model uncertainty. When using GP, prior
knowledge and specifications about the shape of the model can be used by selecting different
kernel functions. Automatic Relevance Determination (ARD) kernels in Gaussian Process
can be used for automatic feature selection.

In this chapter, we discuss theory, experiments, and results of Gaussian Process models
for predicting motion parameters in k-space.

A Gaussian Process is defined as a probability distribution over functions 𝑦(𝑥) such that
the set of values of 𝑦(𝑥) evaluated at an arbitrary set of points 𝑥ኻ, ..., 𝑥ፍ jointly have a Gaus-
sian distribution[4].
Now consider a function,

𝑦(𝑥) = 𝑤ፓ𝜙(𝑥). (4.1)

where 𝑥 is the input vector and 𝑤 is 𝑀- dimensional weight vector. Now, consider prior over
𝑤 is given by a Gaussian,

𝑝(𝑤) = 𝒩(𝑤|0, 𝛼ዅኻ𝐼). (4.2)

where 𝛼 is a hyperparameter that represents the precision of distribution. In practical sce-
narios, we want to model the values of 𝑦 at specific 𝑥 values i.e training data points 𝑥ኻ, ...𝑥ፍ
Hence we are interested in joint distribution of the function values 𝑦(𝑥ኻ), ...𝑦(𝑥ፍ), which we
denote by the vector y with elements 𝑦፧ = 𝑦(𝑥፧) for 𝑛 = 1, ..., 𝑁.

y = Φw. (4.3)

whereΦ is the designmatrix with elementsΦ፧፤ = 𝜙፤(𝑥፧) From equation (4.2), we can conclude
that,

𝔼[y] = Φ𝔼[𝑤] = 0. (4.4)

cov[y] = 𝔼[yyፓ] = Φ𝔼[𝑤𝑤ፓ]Φፓ = 1
𝛼ΦΦ

ፓ = 𝐾. (4.5)

𝐾፧፦ = 𝑘(𝑥፧ , 𝑥፦) =
1
𝛼𝜙(𝑥፧)

ፓ𝜙(𝑥፦). (4.6)

19
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where, 𝑘(𝑥, 𝑥ᖤ) is kernel function. To apply Gaussian Process models to the problem of re-
gression, we need to take account of the noise on the observed target values, which are given
by

𝑡፧ = 𝑦፧ + 𝜖፧ . (4.7)
Here, we consider Gaussian noise processes,

𝑝(𝑡፧|𝑦፧) = 𝒩(𝑡፧|𝑦፧ , 𝛽ዅኻ). (4.8)

where 𝛽 is a hyperparameter representing noise precision. As the noise is independent for
each data point, the joint distribution of the target values 𝑡 = (𝑡ኻ, ..., 𝑡ፍ)ፓ conditioned on the
values of 𝑦 = (𝑦ኻ, ..., 𝑦ፍ)ፓ is given by an isotropic Gaussian of the form,

𝑝(t|y) = 𝒩(t|y, 𝛽ዅኻIN). (4.9)

where 𝐼ፍ denotes the 𝑁 × 𝑁 unit matrix.

𝑝(y) = 𝑁(y|0,K). (4.10)

where 𝑝(𝑦) is marginal distribution is a Gaussian with mean 0 and the covariance matrix is
𝐾. In order to find the marginal distribution 𝑝(𝑡), conditioned on the input values 𝑥ኻ, ..., 𝑥ፍ ,
we need to integrate over y.

𝑝(t) = ∫𝑝(t|y)𝑝(y)𝑑y = 𝑁(t|0,C). (4.11)

Where C is covariance matrix with elements,

C(𝑥፧ , 𝑥፦) = 𝑘(𝑥፧ , 𝑥፦) + 𝛽ዅኻ𝛿፧፦ . (4.12)

Now predictive conditional distribution is given by,

𝑝(tNዄ1) = 𝑁(tNዄ1|0,CNዄ1). (4.13)

Here, CNዄ1 is given by, CNዄ1 = [
CN k
kT 𝑐] where CN is the 𝑁×𝑁 covariance matrix with elements

given by equation (4.12) for 𝑛,𝑚 = 1, ..., 𝑁 , the vector 𝑘 has elements 𝑘(xn,xNዄ1) for 𝑛 = 1, ..., 𝑁
, and the scalar 𝑐 = 𝑘(xNዄ1,xNዄ1) + 𝛽ዅኻ.
Conditional distribution is given by 𝑝(𝑡ፍዄኻ|t) which is a Gaussian distribution with mean and
covariance given by,

𝑚(𝑥ፍዄኻ) = kTCዅ1N t 𝜎ኼ(𝑥ፍዄኻ) = 𝑐 − kTCዅ1N k. (4.14)

Equation (4.14) is used in predicting the future/missing values of time series.

4.0.1. Squared Exponential Kernel

Depending on the prior information about the data, different kernels (k) are used to suit the
structure of data. The squared exponential is one of the most widely-used kernels within the
kernel machines field [5]. The squared exponential kernel function for two inputs 𝑥 and 𝑥ᖣ is
shown in equation (4.15).

𝑘፬፞(𝑥, 𝑥ᖣ) = 𝜎ኼ exp(−0.5||𝑥 − 𝑥ᖣ||ኼ/𝑙ኼ). (4.15)

The squared exponential kernel has two parameters (𝑙 and 𝜎). The former is known as the
length-scale parameter, which controls the horizontal scale over which the function changes
and the latter is the amplitude of the process, which controls the vertical scale changes[23].
This covariance function is infinitely differentiable, which means that the GP with this co-
variance function has derivatives of all orders, and the resulting Gaussian Process using this
kernel is thus very smooth.
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4.0.2. Learning the hyperparameters

Prediction of the Gaussian Process model will be depending on k i.e covariance function as
seen equation (4.14). Instead of using fixed covariance function, we use a family of functions
parameterized by few hyperparameters and then using maximization of the marginal likeli-
hood, we tune the hyperparameters for these functions [4].

The log-likelihood function for a Gaussian Process regression model is easily evaluated using
the standard form for a multivariate Gaussian distribution, giving

ln𝑝(t|𝜃𝜃𝜃) = −12 ln |Cፍ| −
1
2t

ፓCዅኻፍ t− 𝑁2 ln (2𝜋). (4.16)

Here, 𝜃𝜃𝜃 denotes the hyperparameters of the Gaussian Process model. Here, we want to maxi-
mize LHS with respect to 𝜃𝜃𝜃. In practice, we do this by minimizing the negative log-likelihood.
As equation (4.16) is non-convex, there is a chance of getting stuck in local minima if initializa-
tion is not good enough. Hence, we have to be careful while initializing the hyperparameters
𝜃𝜃𝜃. For initialization, we find the value of ln𝑝(t|𝜃𝜃𝜃) over a range of 𝜃𝜃𝜃 values and use the best
combination of 𝜃𝜃𝜃 values for initialization.

In addition to the covariance kernel hyperparameters, there are two more hyperparameters
to be taken care of. First, one is mean, but as we assume that the process is a zero-mean
process, this parameter can be skipped from the optimization process. The second parameter
is noise variance indicating the effect of noise in the system. If this parameter is initialized
lower than the noise present in the system, the model might fail to fit the data. Whereas, if
the model fits very well to the data, this parameter will be optimized to the value close to the
noise level in the system.

4.1. Experiments with Gaussian Process regression

In this experiment, we use 𝑁፭፡ and 𝑁 + 1፭፡ rows concatenated together as input and motion
parameters (in this case rotation angle 𝜃) as output. We have generated a noiseless dataset
of 10,000 samples which then split to training and validation data. The size of image 𝑁 × 𝑁
is 128× 128 from which rotated and non-rotated k-space rows are sampled, angle of rotation
between consecutive rows is limited to ±5፨, the dimensions of rectangle object, 𝐴፱ and 𝐴፲ are
in a range of 10-100.

4.1.1. Experiment 1

In this experiment, we will try to find if the simple squared exponential kernel can map the
relationship between input-output for predicting rotation angle for noiseless data. As we
know that the central part k-space has more information as lower frequencies contribute to
k-space more than higher frequencies, we first try to build a model for predicting the rotation
angle between row 64-65 (image size 128×128). For this experiment, we use Matlab R2019a,
prtools [26] and Gaussian Process regression and classification Toolbox version 4.2 [6].

In the first part of this experiment, we try to explore how the size of the training dataset
affects validation error. In figure 4.1, the validation error (MAE) for 1000 samples is shown
for training dataset from 100 samples to 3000 samples. Here, you can see for more train-
ing samples, the training error is reducing and for 3000 training sample the validation error



22 4. Gaussian Process Regression

(MAE) is 1.96፨. In equation (4.16), you can observe that for learning the hyperparameters,
we need to calculate Cዅኻፍ , which has a computational complexity of 𝑂(𝑛ኽ). With the system
hardware limitations, we have to limit the number of training samples to 3000.
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Figure 4.1: Validation error for Gaussian Process regression when training data size is increased. The
experiment is done for central k-space row pair (64-65)

From figure 4.1, the error for predicting rotation motion parameter which is in range ±5፨,
is 1.996፨ for training data size of 3000 samples. The mean absolute value of actual output
targets (validation set) is 2.56፨ whereas validation error is 1.996፨ indicating the performance
of the model is poor (as the mean absolute value of targets is 2.5፨). Next, we try to analyze
the reason behind high validation error.
In the squared exponential kernel, there are two hyperparameters to be tuned 𝑙 and 𝜎 as seen
in equation (4.15). In figure 4.2, we have shown the normalized log of negative log-likelihood
against the log of two hyperparameters (𝑙 and 𝜎). To plot this, first, we calculate the negative
log-likelihood against the log of two hyperparameters. In this negative log-likelihood, it is
difficult to see the minima and hence we calculate the log of the negative log-likelihood, then
normalize it and plot it against the two hyperparameters. In this plot, it can be seen that
for lower values of log(𝑙), the normalized log of negative log-likelihood is minimum. After
minimization, the value of 𝑙 was observed around 0.13 which is small.

If the value of 𝑙 parameter is small, according to equation (4.15), diagonal values for the kernel
matrix will be close to 𝜎ኼ and non-diagonal values of kernel matrix will be small. We know
that the Kernel matrix can be considered as a function of the correlation between inputs.
So, smaller off-diagonal values indicate that the inputs are correlated just to themselves and
not to the other inputs. This lack of correlation between inputs is a characteristic of noise.
This shows that the model is unable to map the relation between inputs and hence considers
input samples as noise. Another reason for the failure of model might be due to the shape of
domain (figure 4.2) with multiple local minima values and minimization results depend on
a good initialization (We used 0.5 steps for both log hyperparameter values to plot domain.
Smaller steps might give better domain plot but is computationally expensive). Training error
is 0.7015 × 10ዅ9 indicating that the model predicts the output perfectly only for training data
samples.

From the results of this experiment, it was concluded that the data is too complex for a
Gaussian Process and hence it maps the inputs as noise. The experiment was performed
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Figure 4.2: Plot of normalized log negative log likelihood vs hyperparameters

with noiseless data (initializing noise hyperparameter to a very small value) and for cen-
tral pair rows (row number 64-65). With this scenario, if the model fails on validation data,
it was assumed that the model will fail for the data away from k-space and also for noisy data.

Hence, we do not investigate further using Gaussian Process regression and go for the more
complex model like fully connected neural networks and convolutional neural networks.





5
Fully Connected Neural Networks

After discussing the Gaussian processes, we now try to explore more complex and more
expressive models like Artificial Neural Networks. In this section, we discuss model architec-
ture, experiments, and results of fully connected regressive neural networks for predicting
the motion parameters in k-space.

5.0.1. Introduction to fully connected neural networks

In fully connected neural networks, every neuron in a layer is connected to every other neu-
ron in the previous and the next layer. The first layer is the input layer with dimensionality
depending on input size and the final layer is called the output layer with dimensionality
depending on output size. The layers in between these two layers are called hidden layers
and the number of hidden layers and their dimensionality is dependent on model complexity
requirements. Every connection between two neurons is given a weight. Weights are tuned
by minimizing the loss function. The activation function is used to introduce non-linearity
in the model.

Consider a fully connected neural network(one-layer) with input dimensions ”𝑚” and out-
put dimensions ”𝑛”. Here, 𝑥 ∈ ℝ፦ represents the input and 𝑦። ∈ ℝ be the 𝑖፭፡ output of fully
connected layer. The output 𝑦። can be represented as,

𝑦። = 𝜎(𝑤።,ኻ𝑥ኻ + ... + 𝑤።,፦𝑥፦). (5.1)

where 𝜎 is non-linear function and 𝑤። are weight parameters which are to be learned. The
complete output 𝑦(𝑚 dimensions) is represented as,

𝑦 = [𝜎(𝑤ኻ,ኻ𝑥ኻ + ... + 𝑤ኻ,፦𝑥፦); 𝜎(𝑤ኼ,ኻ𝑥ኻ + ... + 𝑤ኼ,፦𝑥፦); ...; 𝜎(𝑤፧,ኻ𝑥ኻ + ... + 𝑤፧,፦𝑥፦)]. (5.2)

Equation (5.2) can also be represented as matrix multiplication,

𝑦 = 𝜎(𝑊𝑥). (5.3)

where 𝑊 is a matrix in ℝ፧×፦ and the non-linearity 𝜎 is applied component-wise. Such mul-
tiple layers are stacked together to create a multi-layer fully connected neural network. The
output of such a multi-layer neural network with 𝑙 layers can be described as,

𝑦 = 𝜎፥(𝑊፥(𝜎፥ዅኻ(𝑊፥ዅኻ(...𝜎ኻ(𝑊ኻ𝑥))))). (5.4)

25
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Model
We use a Fully connected Neural Network of 3 hidden layers of 128 neurons each with one
output for predicting rotation angle. For all layers except the output layer, the ReLu acti-
vation function was used and for the output layer, the linear activation function was used.
L2 regularization parameter (𝜆) was selected to be 0.005 and batch size was selected to be
512. Gaussian kernel initialization was selected. The ”adam” optimizer was selected and
”mean absolute error” was used as a loss function for training. 10,000 data samples were
used for training each model and 1000 samples were used for validation. FNN model was
trained a number of times on 10000 training samples and validated with 1000 samples(simple
validation was used as cross-validation is computationally expensive and data generated is
uniformly sampled data) by varying the hyperparameters and the model with the best per-
formance on validation data was selected.

For training and testing the model, we use python 3.6.8 with TensorFlow version 1.7.0.
NVIDIA TITAN 𝑋፩ (12 GB) GPU was used to train and test the models.

5.1. Experiments with Fully Connected Neural Network

5.1.1. Experiment 1

In the first experiment, we try to find out if we can use ”fully connected neural networks” to
predict motion parameters for consecutively scanned k-space rows. The motion parameter,
in this case, is the angle of rotation between consecutive rows. The datasets used here were
the same as the previous experiment(𝐴፱, 𝐴፲ are in the range of 10-100 and angle of rotation
between consecutive rows is in the range ±5፨). We start the experiment with central k-space
row pair and then we move on to the k-space row pair away from the center. In the first part
of this experiment, we use a noiseless dataset. In figure 5.1, you can observe that validation
error(MAE) reduces to 0.65፨ for fully connected neural network model trained on data near to
central k-space rows(row pair 64-65) whereas, for model trained on data away from central
k-space values(row pairs 1-2 and 127-128), validation error is in the range of 1.25፨ − 1.5፨ .
The mean absolute value of targets(rotation angle) is 2.5፨ as targets are uniformly distributed
in the range ±5፨. So the MAE of 1.25፨ − 1.5፨ indicates that the model is performing poorly
with a very high validation error.

In the second part of this experiment, we try to find out if the same difficulty in learn-
ing for the model trained on k-space rows away from the center is observed in noisy data
(SNR=50) as well. In both figures 5.1 and 5.2, it can be observed that the model trained on
central k-space performs better than the model trained on data away from central k-space. In
the noiseless case, it was observed that though the model trained on data away from central
k-space performs worse than the model trained on central k-space data, the training and val-
idation errors reduce when trained for more epochs (refer figures 5.3b and 5.3c). Whereas in
the noiseless case for the model trained on data away from central k-space(figures 5.4b and
5.4c), after the first 5 epochs, the validation error does not reduce (indicating model is unable
to learn) and reduction in the value of only training error can be observed. This indicates
that the model fails to predict the target values (rotation angle) for unknown data( validation
data) and can only learn targets for training data. When the validation error is higher than
the training error it is considered as overfitting. This might be the effect of a complex model
(FNN has a large number of training parameters) or less training data. Also due to the effect
of noise, the model performance reduces and its effect is significant for models trained on
data away from central k-space.

From the experiments performed on noiseless and noisy data, it was observed that the
model works better on central k-space data. But for predicting the motion parameter val-
ues for k-space rows away from the center, the model fails and gives poor validation results.
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Figure 5.1: Mean Absolute error for 1000 validation samples for models trained on equally spaced
noiseless k-space row pairs from 1-2 to 127-128
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Figure 5.2: Mean Absolute error for 1000 validation samples for models trained of equally spaced
k-space row pairs (SNR=50) from 1-2 to 127-128

The datasets we are using are of rectangle objects. The k-space function for a rectangular
object is a 2-D sinc function. From figure 3.1, it can be observed that the contribution of
low-frequency data(central k-space) is higher than the contribution of high-frequency data
in k-space. Due to this, the model trained on central k-space data can learn from the data
and hence can predict with validation error(MAE) of 0.7፨. Due to small high-frequency com-
ponents in k-space, the model trained on that data fails to learn any pattern or relationship
in input and output data and hence fails to predict the output.
This model works better for non-scaled data rather than scaled data. When we scale the data
feature-wise, the model loses the information about the shape of the k-space function(2D sinc
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(a) Training and Validation error after each epoch for 100 epochs for
row pair 64-65 i.e. central k-space row pair

(b) Training and Validation error after each epoch for 100 epochs for
row pair 1-2 i.e. row pair away from center

(c) Training and Validation error after each epoch for 100 epochs for
row pair 127-128 i.e. row pair away from center

Figure 5.3: Training and validation error for noiseless data for a fully connected neural network model
trained at central k-space and at extreme ends.
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(a) Training and Validation error after each epoch for 100 epochs for
row pair 64-65 i.e. central k-space row pair

(b) Training and Validation error after each epoch for 100 epochs for
row pair 1-2 i.e. row pair away from center

(c) Training and Validation error after each epoch for 100 epochs for
row pair 127-128 i.e. row pair away from center

Figure 5.4: Training and validation error for noisy data for a fully connected neural network model
trained at central k-space and at extreme ends.
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function in this case). We also tried scaling the complete k-space data rather than scaling
the data feature-wise but in that case, also the central k-space components are significantly
higher than the k-space components away from the center and hence the model does not
work. One of the disadvantages of the fully connected neural network model is it does not
takes advantage of the structure of data i.e. spatial relationship in nearby k-space values
and considers every input individually.

In the next chapter, we will experiment with convolutional neural networks that can take
advantage of the structure of data using convolutional filters.



6
Convolutional Neural Networks

In a fully connected neural network (CNN), every neuron in each layer is connected to ev-
ery neuron in the previous and next layer. Due to this structure, the number of trainable
parameters in the network is very high. The convolutional neural network has advantages
over fully connected neural networks such as sparse interactions, parameter sharing, and
equivariant representations[11]. In the next section, we discuss the CNN model, experiments
and results of CNN for predicting the motion parameters in k-space.

6.0.1. Introduction to convolutional neural networks

Convolutional neural networks have similarities with fully connected neural networks (mul-
tilayer network of neurons with trainable parameters) except these networks assume that
the input has some spatial structural properties. CNNs extract the features of an image us-
ing convolution and pooling operations and using these features as input to fully connected
layer, assign a value or a label to the input.

CNNs are built from 3 main types of layers namely Convolutional Layer, Pooling Layer, and
Fully-Connected Layer. Convolution layer consists of a number of small convolution filters
that are passed over the input that learn the structural features of an image. The pooling
layer is used to reduce the number of parameters by selecting the most important features.
The pooling layer helps to reduce the number of trainable parameters and hence reducing
the risk of overfitting. Fully connected layers flatten these 2-D inputs into a vector and then
assign a label or a value to each input sample. Initial convolutional layers extract the low-
level features like edge, color, gradient while as we go deep, the next convolutional layers give
high-level features showing the wholesome understanding of the image/input [1].

Model:
After multiple experiments on training data, a CNNmodel with 3 convolution-pooling-dropout
layers followed by a dense layer and then a single unit output layer was used. 64, 32 ,
16 filters of size 2 × 2 were used in convolution layer respectively with stride of 1 × 1. L2
regularization parameter (𝜆) was 0.005 and dropout rate was 0.1 (10%). The model was
trained for 100 epochs with ”mean absolute error” as a loss function and ”adam” optimizer.
Using 10000 training samples and 1000 validation samples (simple validation was used as
cross-validation is computationally expensive and data generated is uniformly sampled data)
a CNN model with different set of hyperparameters was trained each time and the model with
the best performance on validation data was selected.For training and testing the model, we
use python 3.6.8 with TensorFlow version 1.7.0. NVIDIA TITAN 𝑋፩ (12 GB) GPU was used to
train and test the models.

31
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6.1. Experiments with Convolutional Neural Network

6.1.1. Experiment 1

In the first experiment, we are trying to find out how accurate model can learn in the noise-
less and noisy scenario. The dataset used is similar to the dataset used in the experiments
in sections 4 and 5 i.e. simple rectangle centered at the origin with random rotation. For
each pair of consecutive k-space rows, we train a separate CNN model. Each input for this
model is of size 2×128 (two consecutive rows), with a single output 𝜃 (rotation angle between
two input rows). For each pair of rows, 10000 such samples were created for training. The
validation set of 1000 samples was created separately for each pair of rows. For each pair of
rows, separate CNN models were trained, effectively training 127 CNN models. In figure 6.1
and 6.2 it can be observed that, model is able to learn the data well and is able to predict the
rotation motion parameter with the validation error (MAE) 0.3፨ in central k-space and 0.4፨
in k-space region away from center for 1000 validation samples each in noiseless case. This
is the best error rate we have achieved (compared to Gaussian Processes and FNNs) and we
believe that this error rate is sufficient for a good reconstruction (will be discussed in 6.1.5).

Now, in the presence of noise (SNR=50), the results of training the models can be seen in
figure 6.2. The validation error (MAE) for the model trained on the central row pair is lower
(0.5፨) than the error away from the center (0.75፨). Here, the effect of noise is more for a model
trained on data away from the center of k-space. The reason is the same, as mentioned in
the previous section, that the low-frequency contribution is higher than high frequencies in
k-space and hence the effect of noise is more on high-frequency data i.e. data away from the
k-space center.

After this experiment, now we will check the effect of the amount of training data on val-
idation error.
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(a) Training and Validation error after each epoch for 100 epochs for
central k-space row pair

(b) Training and Validation error after each epoch for 100 epochs for
row pair 1-2 i.e. row pair away from center

(c) Training and Validation error after each epoch for 100 epochs for
row pair 127-128 i.e. row pair away from center

Figure 6.1: Training and validation error for noiseless data for model trained at central k-space and at
extreme ends.
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(a) Training and Validation error after each epoch for 100 epochs for
central k-space row pair

(b) Training and Validation error after each epoch for 100 epochs for
row pair 1-2 i.e. row pair away from center

(c) Training and Validation error after each epoch for 100 epochs for
row pair 127-128 i.e. row pair away from center

Figure 6.2: Training and validation error for noisy data (SNR=50) for model trained at central k-space
and at extreme ends.
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6.1.2. Experiment 2

For this experiment, we check the effect of the amount of training data on validation error.
We train a CNN model on central k-space data (row pair 64-65) in the presence of noise
(SNR=50) by increasing the number of training samples from 1000 to 10000.

As we increase the number of training data samples, validation error for the CNN model
reduces as shown in figure 6.3. We decided to use 10000 training samples for each model by
considering the limitation of system storage capabilities (127 × 50 MB storage for the data of
one experiment) and training time (127×80 seconds for training all models of one experiment).

2000 4000 6000 8000 10000

Number of training samples

0.5

0.6

0.7

0.8

V
a
lid

a
ti
o
n
 E

rr
o
r 

[M
A

E
] 
in

 d
e
g
re

e

Validation Error for 

varying training dataset size

Validation Error

Figure 6.3: Mean Absolute error for 1000 validation samples for varying size of training dataset

6.1.3. Experiment 3

From the previous experiments, it was concluded that the CNNmodel works better as we start
increasing the number of training data samples. The variation in 𝐴፱ and 𝐴፲ in the previous
dataset was 10-100. Now, we decided to limit this variation to 18-22 for 𝐴፱ and to 45-55 for
𝐴፲ with an initial angle of rotation between −45፨ to 45፨ and angle between consecutive rows
was limited in the range of ±5፨. We reduce the variability of the object as the real dataset
(brain images) will have fewer variations in the size of the object.

In this experiment, we will train the model on noiseless data. For each pair of rows, we
use a separate model ending up with 127 models for a k-space image of 128 × 128. As we
know, more information is present at the center of k-space data as low frequencies contribute
more to k-space data than higher frequencies, we first check the performance of CNN for cen-
tral lines. After evaluating performance at the central k-space rows, we train a similar model
on pair of rows away from the center and then evaluate the performance.

To obtain the graph below, we trained 127 models on 127 training datasets for each pair
of rows having 10000 samples and validated on 1000 samples. In Figure 6.4, on Y-axis
we have a mean absolute error in degree, for 1000 validation samples for 127 models each
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Figure 6.4: Mean Absolute error for 1000 validation samples for each model

trained on 10000 samples of one particular pair of rows. For the rows away from the center,
a validation error is around 0.28፨ whereas for the rows near to the center, the validation error
is around 0.18፨. The reduction in validation error compared to the previous experiment is
because of the reduction in the variability of object dimensions. Now, in the next experiment,
we try to find the effect of noise on model accuracy trained on similar dataset as this experi-
ment with added noise.

6.1.4. Experiment 4

In this experiment, model architecture, number of training and validation samples is the
same as a previous experiment but now, we train the models on noisy data (SNR=50).
Now, in Figure 6.5, when we train the CNN models on noisy data (SNR=50), it was observed
that the MAE is more than in the case of noiseless data. The effect of noise on validation
error is more for rows away from the center. The error reduces to 0.3 for the central k-space
rows from 0.7 for the k-space rows away from the center.

6.1.5. Experiment 5

After performing the previous experiments, it was clear that the effect of noise reduces the
performance of CNN models. This hampers the performance more for the models trained on
data away from the k-space center.

Now, in the next experiment, using the CNN models which were trained in the previous
experiment (on noisy data), we try to correct the motion corrupted k-space data to recon-
struct the object image. The noise level we used for training and testing is 50 SNR as MRI
data has SNR levels around 50. This experiment aims to check how good is the error rate of
rotation angle predictions we have achieved in the previous experiments for reconstructing
the object using motion corrupted data. For this, now we try to test the prediction accuracy
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Figure 6.5: Mean Absolute error for 1000 validation samples for each model for data with SNR 50

of data which is corrupted by continuous rotation motion. After predicting these values, we
try to reconstruct the data to reduce motion artifacts by using iterative non-uniform Fourier
transform[10]. First, we experimented with rotation parameter which is parabolic in nature
(Figure 6.6e). In figure 6.6 you can observe the raw k-space data, predicted angles between
rows and reconstructed object image using predicted angles and iterative NUFFT toolbox[10].

In figure 6.6b and 6.6c, the raw k-space data and reconstructed object using IFFT is shown.
At the central part of k-space, the signal with higher amplitude is present showing dominance
of lower frequencies in raw data. Due to rotation motion occurred between rows 40-60, the
ghosting effect can be seen clearly in figure 6.6c. Now, using the models trained in the pre-
vious experiment, we try to predict the rotation parameter 𝜃 for all consecutive row pairs. In
figure 6.6d, predicted and actual 𝜃 values are shown. Here, the predictions near the center
are very good confirming the model behavior in figure 6.5. The predictions away from the
center are less accurate due to the effect of noise and lower amplitude of high frequencies in
the raw data. In figure 6.6e, you can observe the behavior of the rotation angle is parabolic
for both predicted and actual values. Each model is trained separately and each test data row
pair is fed separately to each model. So each model predicts the rotation angle separately and
the resulting predictions for consecutive row angles are not smooth. Also, the models have
some error in the prediction, hence the predictions for angles in consecutive rows are more
fluctuating. We use low pass filtering in cumulative predicted values to avoid these sudden
changes as we assume the nature of motion is smooth. We use the Matlab lowpass filter func-
tion with a normalized bandpass frequency of 0.3 (decided by multiple experiments) to filter
the signal of row-wise cumulative predictions of rotation angle values. Using these low pass
filtered values, we then predict the new co-ordinates of scanned points as shown in figure
6.6f. Using iterative NUFFT[10], the reconstructed object image is shown in figure 6.6g. The
structural similarity matrix (SSIM) values of corrupted-original and reconstructed-original
image pairs are 0.7608 and 0.7803 respectively. The significant improvement in the object
image can be seen after reconstruction with motion effect correction. The reconstructed ob-
jects look a bit rotated as a whole, might be due to the difference in the cumulative value of
actual and predicted theta.

In figure 6.7, similar reconstruction is shown as the previous example but here, the rota-
tion angle is linearly dependent on the row number. The SSIM values of corrupted-original
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and reconstructed-original image pairs are 0.7089 and 0.7534 respectively

From figure 6.6 and figure 6.7 it was clear that using CNN models and iterative NUFFT, it
was possible to improve the quality of reconstructed image using motion corrupted k-space
data.
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Figure 6.6: reconstructing the object image affected by rotation motion (non-linear motion)
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Figure 6.7: reconstructing the object image affected by rotation motion (linear motion)
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Results on brain MRI dataset

7.1. MRI Data and experimental setup

OASIS-3 is the latest release in the Open Access Series of Imaging Studies (OASIS) [31].The
dataset includes 2228 3D MR sessions of 1098 Subjects (age 42-95). Around 15 2D slices of
every session are useful as training and test data for our motion correction framework since
they display similar anatomic characteristics. The signal and noise distribution have an ap-
proximate mean (and standard deviation) of 156.21 (99.3883) and 4.88 (3.51) respectively.
The mean and standard deviation for signal is calculated by masking the image to separate
the intracranial area. The mean and standard deviation of noise is calculated by separating
the background and calculating its mean and standard deviation. As the images only have
absolute values (0 to 255) the noise has Rice distribution. All these images are assumed to
be free of motion artifacts. To create motion affected images, we introduce simulated motion
artifacts using a non-uniform Fourier transform. We choose arbitrary rotation angles (angle
between consecutive k-space rows is limited to ±5፨) and rotate the k-space coordinates to
mimic the effect of rotation of k-space. Subsequently, we compute NUFFT with respect to the
rotated k-space coordinates to simulate the acquired data. Figure 7.1a is a 2D brain image
of 128 × 128 and effects of simulated motion artifacts can be observed in figure 7.1b.

The CNN model architecture, the number of models and the number of training samples
used is the same as chapter 6. In the synthetic dataset, the k-space data values are real
whereas in the brain image dataset, k-space data values are complex. This is because the
image is not symmetric and hence its k-space equivalent is complex. As the rotation in image
space is equivalent to the rotation in k-space and rotation affects both amplitude and phase
(unlike translation which affects only phase), using only absolute values of k-space data it
is possible to determine rotation angle. By using absolute values of k-space data as inputs,
CNN models with single input channel (similar to synthetic dataset) can be used for training
and testing the brain image dataset.

The total images extracted from the OASIS [31] dataset were 33405. Out of these images,
10000 images were used for training and 1000 images used for validation. Remaining 22405
were used for testing and reconstruction.

7.2. Results

The validation error for central k-space rows was around 0.3፨ and for k-space data away from
the center, the validation error was in the range of 0.7፨ − 1.4፨. The results of reconstructed
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sample brain image from test dataset are as shown in figure 7.1.

In figure 7.1c, predictions of rotation parameters can be observed. At central k-space, these
predictions have better accuracy than the prediction away from the center. In figure 7.1d, it
can be observed that the predicted cumulated rotation angle values are close to the actual
cumulated rotation angle values. To reduce the sudden changes in cumulated angle, we filter
the predicted cumulated angle values as shown in 7.1d. The brain image was reconstructed
using k-space data, new co-ordinates based on CNN 𝜃 predictions and iterative NUFFT as
observed in figure 7.1f. The structural similarity index (SSIM) is 0.3251 for corrupted brain
image-actual brain image whereas SSIM for reconstructed brain image -actual brain image
is improved to 0.7325.
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8
Conclusion, Discussion and Future Work

8.1. Discussion

In the previous chapters, experiments performed to predict motion parameters using non-
linear least squares, Gaussian Processes, Fully Connected Neural Networks and, Convolu-
tional Neural Networks were discussed. In this chapter, the results of all the experiments
are analyzed and then the advantages and shortcomings of the methods implemented are
discussed with possible future work.

To estimate the motion parameters, first, the object geometry is assumed to be known. Non-
linear least squares is one of the simplest and most widely used method hence we start our
experiments with this method. In section 3.1.1, using non-linear least squares, the rotation
angle of an object was estimated when object geometry is known. From figure 3.2, it can be
observed that the objective function has a clear minimum and hence can be minimized. This
is because the model is simple (rectangle object) and the system is noiseless. Also, rotation
is a global parameter that affects more at the lower frequencies than the higher frequencies.
As all the data (𝑁 × 𝑁) is used to predict a single rotation angle, the low-frequency data was
also being used for prediction of the rotation angle. From this, it was concluded that, if object
geometry is known and the object has a well-defined k-space function (simple setup) using
non-linear least squares, the angle of rotation can be estimated from scanned k-space data.

Instead of estimating a single rotation angle value for a complete object, in the next ex-
periment, the rotation angle for each row of k-space was estimated.In figure 3.3,the objective
functions for central k-space rows have clear minima unlike objective functions away from
center. In figure 3.1 it can be seen that the low-frequency components present in the im-
age contribute more to the k-space than the high-frequency components. Also, as discussed
earlier, the rotation being a global parameter affects the low frequencies more than the high
frequencies. Hence predicting the rotation parameter is easier using low-frequency data.
From figure 3.3, we concluded that minimizing the objective function is easier at central
k-space. Due to multiple local minima for objective function away from central k-space, it
is difficult to minimize this function with random initialization. As it was assumed that the
motion is smooth and scanning time for each row is in order of ms, the angle between consec-
utive rows was limited in the range of ±5፨. Hence, the least-squares problem was minimized
at the central k-space row pair with random initialization first and then using that prediction
the minimization of the objective function for the pair of rows further away from the center
was initialized. In figure 3.6, when there is noise in the k-space data, as the noise level in-
creases, the accuracy of prediction reduces for the k-space rows away from the center. As we
discussed earlier, low-frequency components are at the center of k-space and have a higher
contribution, the effect of noise on low-frequency k-space data is smaller compared to the
effect of noise on high-frequency k-space data.
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When the noise in the system is increased, the prediction accuracy for the k-space data
away from the center reduces. As observed in figure 3.6a, translation and rotation param-
eters were estimated and for lower SNR values, the prediction accuracy away from center
reduces.
In the least-squares problem, it was assumed that the geometry of the object and its di-
mensions are known. In a practical scenario, this is hardly the case. We started with the
least-squares problem as it is the most commonly used and simple method for regression.
From the prediction error of least squares method in presence of noise and when motion pa-
rameter is changing fast and the fact that it needs the geometry of object completely known
(model-driven), it was decided to explore data-driven regression methods.

Gaussian process regression was the second method used to estimate motion parameters.
In equation (4.16) for training the hyperparameters, the inverse of the covariance matrix is
to be calculated. For more than 3000 training points, calculating this matrix inverse is com-
putationally expensive and hence the number of training points was limited to 3000. This is
one of the big disadvantages of the Gaussian processes regression which limits its use for a
large amount of training data. For the squared exponential kernel, the length-scale parame-
ter decides the relationship between multiple input samples. After minimizing the marginal
negative log-likelihood, the length-scale parameter goes to a very small value indicating fail-
ure of the model to map the correlation between input samples. Due to this, the model treats
each input sample as noise and even if the training error is minimum, the model gives poor
generalization performance with a very high validation error.

For learning the hyperparameters, the marginal negative log-likelihood is minimized. For
this minimization, one of the critical aspects is the initialization of these hyperparameters.
In figure 4.2, it can be observed that the domain is non-convex and has multiple local min-
ima. If we use random initialization, there is a risk of getting stuck in local minima and it is
computationally expensive to perform grid search for good initialization.

The poor validation results are obtained for a model trained on noiseless central k-space
data and hence it was assumed that the model will also fail for noisy data as well as for the
data away from the central k-space. This behavior of the model might be due to the high
variance and complexity in the training data. If we wish to use more training samples we can
either use better hardware or use faster and less computationally expensive training methods
for training the Gaussian process.

Now, we move on to more complex and expressive models than Gaussian processes and opted
for Artificial Neural Networks. We experimented with Fully Connected Neural Networks (FNN)
and from figures, 5.3 and 5.4 it was concluded that FNN works well with central k-space data
both in noisy and noiseless case but with k-space data away from the center, the value of
validation error is high. In figures 5.3b and 5.3c, it can observed that though the validation
error reduces after each epoch, it is still higher than training error and stabilizes around
100 epochs. This indicates that the FNN model fails to establish the relationship between
inputs and targets for the k-space data away from the center. In figures 5.4b and 5.4c when
noise is added in the systems, after first 5 epochs, the model trained on k-space data away
from center fails to improve the validation error performance. One of the reasons behind this
performance might be, the fully connected neural networks treat each input separately and
do not take advantage of spatial relationships in the data. As the data, in this case, has a
lower contribution of high frequencies, the information it contains is not sufficient for FNNs
to derive the relationship between inputs and targets with a given amount of training data.
Also, rotation is a global parameter and it affects the local frequencies as they determine
the global properties of the image, and hence it is easier to predict the rotation angle with
low-frequency values than higher frequencies. We also tried using scaled data (both feature
scaling and image scaling) but the same issue is faced for FNNs.
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CNNs use the spatial relation by means by convolutional filters and hence we use CNNs
for the next experiment. In figures 6.1, 6.2, 6.4 and 6.5 it can be observed that though the
validation error for the model trained on k-space data away from center is larger, it is still
comparable to validation error for model trained on central k-space. Now we want to verify
that how good is error rate (MAE) of 0.3፨ − 0.7፨ for target values ranging in ±5፨. This was
done by reconstructing the image using predictions of CNN models. In figures 6.6 and 6.7
the reconstruction results can be seen. The reconstruction results show a clear improvement
in the quality of the image from the image reconstructed by using a simple inverse Fourier
transform. In figures 6.6 and 6.7, when the predictions are compared, the difference in ac-
tual and predicted values is observed. The variance in the data and noise (SNR=50) might be
the reasons behind this difference. The filtering of the rotation angle’s temporal behavior is
necessary as we assume the motion to be smooth. In figures 6.6e and 6.7e it can be observed
that the predicted rotation motion parameter curve follows closely the actual rotation motion
parameter curve. Even if we predict the motion exactly, we will not be able to reconstruct the
object perfectly as due to non-uniform k-space sampling as an effect of motion, some spatial
frequency components are lost.

We performed some preliminary experiments with a more complex dataset of brain images
and obtained some promising results as shown in section 7. The performance of the CNN
models on the brain dataset is better for central k-space data (low frequencies) than k-space
data away from the center (high frequencies) similar to that of the synthetic dataset. The
significant improvement in the quality of reconstructed brain image indicates that the CNN
models give good predictions for brain MRI dataset as well and can be used for reconstruction
of brain images affected by rotation motion.

From the four methods we implemented, it was concluded that CNNs work better than the
other three methods namely non-linear least squares, Gaussian processes and FNNs for pre-
dicting motion in k-space.

8.2. Conclusion and Outlook

With the methods discussed, we tried to detect, estimate and correct the effects of motion in
the k-space of MRI data. Using CNN models for prediction of rotation parameters and itera-
tive NUFFT for reconstruction, we get improved quality of reconstructed image for synthetic
data consisting of simple rectangles. Least squares, Gaussian processes, and FNNs fail to
predict motion parameters accurately for this synthetic dataset as explained in the discus-
sion section. The CNNs show some potential for k-space motion parameters prediction for
the simple setup as well as the complex dataset of brain images.

The average time for training a CNN model for a pair of k-space lines is 80 seconds and
average prediction time using a pre-trained CNN model for one pair of rows is 0.05 seconds.
As the prediction time is short and the CNN model predicts the rotation angle for each pair
of row independently from other k-space data, it was concluded that the proposed method
has some potential to detect the motion parameters in real-time.

The method we implemented was the first step towards correcting the motion artifacts di-
rectly from k-space data. Using the selected approach, good reconstruction results were
obtained for the synthetic dataset and some promising preliminary results were obtained for
brain images.

Suggested future work:

1. In the current implementation, we tried to predict rotation angle in k-space using CNN
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models and obtain good reconstructions on a synthetic dataset. The input data we used
to perform the experiments of CNNs was real. As a next step, we also want to predict
translation motion in k-space. After introducing translation motion, the object image
is not symmetric anymore and k-space data is now complex. To predict translation
motion, we have to use this complex k-space data as input and hence need to use two
input channels for CNN models with three outputs (rotation angle and x-y translation
motion values). In the current set up, we are predicting a single parameter with some
prediction error. For three parameters, the effect of the prediction error will be higher
and needs to be analyzed further.

2. Many clinical MRI scans acquire 3D data. If we want to use a similar approach for 3D
MRI k-space data[𝑁×𝑁×𝑁], we need to have [𝑁ኼ−1] models of CNN. Training and storing
these many models is difficult even if they have a few thousand parameters. If we want
to reduce the number of models, further research is necessary to find out if we can
use the same model for multiple k-space row pairs for predicting motion parameters.
In the case of 3D MRI data, three rotation motion parameters and three translation
motion parameters are to be predicted for each row pair. The number of parameters to
be predicted for the data of [𝑁 × 𝑁 × 𝑁] will be 6 × (𝑁ኼ − 1). In case of 3D data, for each
row, the number of inputs will be the same (2×𝑁) and the number of motion parameters
to predicted will be higher (six parameters for each row pair). The possibility of error
will be higher in this case and needs further research.

3. With the current implementation, we train each model separately and then use them
for predicting the rotation angle. As we have observed, the models trained on the cen-
tral k-space data have better performance than the models trained on k-space data
away from the central k-space. All the models we use for prediction are independent
and hence they do not use this information. Introducing dependency in predictions of
consecutive models and combining the information of motion parameters predictions of
low-frequency k-space data for predicting motion parameters of high-frequency k-space
data can improve the results. One of the methods which could be used for this purpose
is to put smoothness constraints on predictions of models. This can be done by training
a model on multiple rows instead of a single row pair and putting a smoothness con-
straint on the predictions of this model. In the current setup, we are training a model
on the input size of 2×𝑁 to predict the single output. Training a model on 𝑚×𝑁 input to
predict 𝑚−1 outputs with a smoothness constraint on predictions can help to improve
the results and can be researched further.

4. The current approach can be be used to predict the motion parameters in real-time.
This can be used to detect the motion parameters and if the motion predicted is very
high, the re-scan could be started instantly without the necessity of reconstruction.
This could be done by setting a threshold on predicted cumulative motion parameters.
This application could be explored further to find the limits on motion parameters for
recommending re-scan.
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