
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

CE-MS-2012-29

M.Sc. Thesis

Hardware Components for Real-Time
Stereo Matching: Acceleration of 3D HD

TV with FPGAs

Hsiu-Chi Yeh

Abstract

In recent 3D TV market, the technologies addressing to the applications
such as stereoscopic depth scaling, glass-free 3D display, and Free Viewpoint
TV are getting more attentions. A low-cost solution that can synthesize inter-
mediate views from stereoscopic input contents(left and right camera views)
is strongly needed. To render the interpolated views, the depth information
of the left and right views are commonly-used in view synthesis algorithm.
Therefore, this thesis researches stereo matching algorithms, which generate
disparity maps. We implement a state-of-the-art semi-global stereo matching
algorithm(dynamic programming and cross based) with FPGA. Our solution
also concerns several aspects include disparity mapsequences quality, hard-
ware cost, and real-time performance. Afterward the stereo matching engine
design is integrated into IMEC’s 3D TV SoC prototype. Several peripheral
components, include color space converters, video IO adaptors and a dedi-
cated memory hierarchy, are developed for supporting both stereo matching
and view synthesis engines. Finally, the SoC prototype is evaluated with
EP3SL150 FPGA chip. So far it can process dual channel XGA video for-
mat (1024×768 @ 60 FPS) in real-time performance and render an acceptable
synthesized view quality for depth scaling application. This design shows a
promising solution for the 3D TV market.

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

Hardware Components for Real-Time Stereo
Matching: Acceleration of 3D HD TV with

FPGAs
Yeh Hsiu-Chi B.Sc.

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

Embedded Systems

by

Hsiu-Chi Yeh
born in Keelung, Taiwan

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF

MICROELECTRONICS & COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled ” Hardware Components for Real-Time Stereo Matching: Accelera-
tion of 3D HD TV with FPGAs” by Hsiu-Chi Yeh in partial fulfillment of the
requirements for the degree of Master of Science.

Laboratory : Computer Engineering
Codenumber : CE-MS-2012-29

Committee Members :

Advisor: Dr.ir. Gauthier Lafruit, IMEC-Leuven

Advisor: Dr.ir. Georgi Kuzmanov, CE, TU Delft

Chairperson: Dr.ir. Koen Bertels, CE, TU Delft

Member: Dr.ir. Rene van Leuken, CAS, TU Delft

i

ii

Acknowledgements

This master thesis research work was undertaken at the Department of NVision at IMEC-
Leuven with the support from the Computer Engineering group of TU Delft. During
the nine months of thesis research work, I received much support from many people. I
would like to take this opportunity to express my gratitude to the people around me.

First, I must to thank my promoters, Dr. Gauthier Lafruit and Dr. Francesco Pes-
solano for providing me this opportunity to join the 3D TV project at IMEC. I must
also thank my thesis supervisor, Dr. Georgi Kuzmanov, for his thesis work recommen-
dation. During these nine months, the suggestions from Dr. Gauthier and Dr. Georgi
Kuzmanov kept me on the right track of research decisions and provided me with all
essential support.

During my nine months of research at IMEC, I was lucky to have a chance to work
with a group of brilliant experts. I want to thank Ke Zhange for guiding me into the
stereo matching world. Many ideas from Ke inspired me on algorithm implementation
and optimization. I thank Geert Vanmeerbeeck and Eddy De Greef for all their support
on building the developed environment and providing design suggestions. In this 3D
TV project, we also collaborated with IMEC-Taiwans team members. I would like to
thank Christine Lin and Josh Tu for all their technical support in building the SoC
architecture and test works. I also appreciate the algorithm advice from CK Liao, PK
Huang, and Eddy Wu. Further, the view of synthesis kernel design was supported by
Professor Chang and NCTU. I would like to thank them all for their contributions. Last
but not the least, I would like to especially thank Guanyu Yig. We worked day and
night with each other to construct the complete system. He built the first version of the
dynamic programming architecture, and my design was inspired and improved by his
work. All in all, it has been my honor to work with these people.

Finally, I would like to express my gratitude to my family. Although I live abroad,
they keep providing me full support. When I was struggling with the research work,
they were always my best mental supporters. I would like to thank also all my friends
who have shared all the joys and sorrows of my research life.

Thank You All

Hsiu-Chi Yeh
Delft, The Netherlands
April 20, 2012

iii

iv

Contents

Acknowledgements iii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goals and Problem Definition 2

1.3 Solution and Contribution . 4

1.4 Overview of Chapters . 5

2 Background on Stereo Matching and Related Works 7

2.1 Stereo Matching Principle . 7

2.2 Stereo Matching Algorithms . 11

2.2.1 Matching Cost Computation . 11

2.2.2 Matching Cost Aggregation . 12

2.2.3 Disparity Computation and Optimization 14

2.2.4 Disparity Map Refinement . 20

2.3 Temporally Consistent Disparity Map Sequences 23

2.4 Implementation Platforms . 23

3 Stereo Matching Algorithm Implementation and Optimization on
Hardware 25

3.1 Hardware Efficient Dynamic Programming Processor 26

3.1.1 Dynamic Programming Algorithm and Architecture Co-design . . 26

3.1.2 Dynamic Programming - On-chip Memory Optimization - Back-
ward Path Data Compression . 27

3.1.3 Dynamic Programming - On-chip Memory Data Mapping 28

3.1.4 Dynamic Programming Processor - Hardware Architecture 30

3.2 Run-Length Coding Algorithm and Disparity Map Sequence 30

3.3 Temporal Consistency for Disparity Sequence 32

4 Evaluation of the proposed Stereo Matching Hardware 35

4.1 Global Stereo Matching with Dynamic Programming - Disparity Map
Evaluation . 35

4.1.1 Parameter Exploration for Dynamic Programming Processor . . . 36

4.1.2 Comparison of Local and Global Stereo Matching Approaches . . . 36

4.2 Temporal Quality Evaluation for Disparity Map Sequences 38

4.2.1 Parameter Exploration for Temporal Consistency 38

v

4.2.2 Evaluation of Temporal Consistency Function 39
4.3 Hardware Resource Estimation of Dynamic Programming Processor . . . 40

4.3.1 Hardware Resource Estimation . 40
4.4 Evaluation of the Memory Architecture with Run-length Coding for Ver-

tical Voting Processor . 41
4.4.1 Parameter Exploration for the Memory Architecture with Run-

length Coding . 41
4.4.2 Hardware Resource Estimation and Comparison 43

4.5 Hardware Resource Estimation of Stereo Matching Engine on FPGA . . . 45
4.6 Performance Analysis of Stereo Matching Engine on FPGA 46

5 IMEC 3D Depth Intensity Adjustable System with Stereo Matching
on FPGA 47
5.1 System Architecture Overview . 47

5.1.1 Function Definition . 47
5.1.2 Clock Domain Design . 47
5.1.3 System On-chip Interconnection 49

5.2 Background of View Synthesis Engine . 50
5.3 Video Adaptor Design and Implementation 50
5.4 Color Space Convertor Design and Implementation 52

5.4.1 Background of Color Space Conversion 52
5.4.2 Background of Floating Point to Integer Mathematic Approaches . 54
5.4.3 Hardware Architecture Design and Implementations 55

5.5 Memory Hierarchy Design and Implementation 57
5.5.1 Memory Architecture Analysis for Stream Processing 57
5.5.2 Memory Architecture Design for Stream Processing 59

6 IMEC 3D TV SoC Evaluation and Experimental Result 67
6.1 Color Space Converter Design Evaluation 67

6.1.1 Quality Evaluation . 67
6.1.2 Hardware Utilization Evalution . 69

6.2 Quality Evaluation . 70
6.3 Hardware Utilization Estimation . 72
6.4 Evaluation of Real-Time Performance . 72

7 Conclusion and Future Works 77
7.1 Conclusion . 77
7.2 Summary of Chapters and Contributions 78
7.3 Future Work and Application Development 80

Bibliography 85

vi

List of Figures

1.1 3D Perception . 1

1.2 Depth perception according to visual comfort 2

1.3 Depth adjustment processing flow . 3

1.4 Ghost effect and inaccurate disparity map 3

1.5 disparity map sequence without temporal consistency 4

2.1 Overlapped stereo camera scene . 7

2.2 Example of disparity maps . 8

2.3 Stereo image pair rectification . 8

2.4 Example of triangulation principle . 9

2.5 Example of occlusion problem . 10

2.6 Example of occlusion problem . 10

2.7 Example of textureless and repetitive regions 10

2.8 Disparity map extraction flow . 11

2.9 Fundamental pixel-to-pixel matching scenario 12

2.10 Census transform and hamming distance to generate raw matching cost . 13

2.11 Matching cost aggregation approaches . 14

2.12 Example of winner take all strategy(WTA) 15

2.13 Example of smoothness cost penlties by linear model 17

2.14 Example of disparity map by linear model 17

2.15 Example of disparity map by potts model 17

2.16 Example of smoothness cost penlties by truncated linear model 17

2.17 Example of smoothness cost penlty by Potts model 18

2.18 Example of forward pass function . 19

2.19 Example of backward pass procedure . 20

2.20 Simple occlusion handling method . 21

2.21 2D disparity voting . 21

2.22 The support region of anchor pixel p . 22

2.23 The example of disparity voting . 23

2.24 Two-pass 1D disparity voting . 23

3.1 System architecture of stereo matching engine 25

3.2 Forward pass with backward path encoding 28

3.3 Example of backward pass with decoded path data 29

3.4 DP operation sequence . 29

3.5 Example of 2-Port RAM access patterns 29

3.6 Proposed Forward Pass HW design . 30

3.7 Proposed Backward Pass HW design . 30

3.8 Disparity output from dynamic programming function 31

3.9 Circular memory architecture for Vertical Diaprity Voting processor . . . 32

3.10 Proposed memory architecture with run-length coding 32

3.11 Example of temporal consistency algorithm in dynamic programming . . . 33

vii

4.1 Parameter exploration for Dynamic Programming 37
4.2 Evaluation results from Middleburry’s benchmark 37
4.3 Ground truth disparity maps and test disparity maps 37
4.4 Exploration of matching cost scaling parameter α with Book Arrival test

set . 38
4.5 Temporal consistency empirical evaluation 39
4.6 PSNR improvement of temporal consistency 40
4.7 RTL circuit gate count synthesis for Dynamic Programming Processor . . 40
4.8 On-chip memory utilization estimation for Dynamic Programming Processor 41
4.9 Exploration of truncated line buffer length and pixel error rate 42
4.10 Disparity results by using the proposed memory architecture with RLC . 43
4.11 Explore the range of run length counter (Outdoor) 44
4.12 Explore the range of run length counter (Cones) 44

5.1 Dual DVI receivers scenario . 48
5.2 Avalon Interface . 50
5.3 High level architecture of View Synthesis Engine 51
5.4 Standard VGA signal format . 51
5.5 Example of RGB and YCbCr Format . 52
5.6 Color space conversion flow . 55
5.7 RGB to YCbCr Processor Unit . 55
5.8 Constant multiplier implementation (77) with Wireshifter-Add/Sub ar-

chitecture . 56
5.9 Upper 4 bit nibble and lower 4 bit nibble multiplication 56
5.10 Example of Look Up Table . 57
5.11 8x8 Constant multiplier with two 4x8 LUTs and Adder 57
5.12 Proposed Memory Hierarchy . 58
5.13 5x5 slide window operation . 59
5.14 Example of data reuse . 59
5.15 Proposed memory hierarchy for frame buffering 60
5.16 SG-DMA architecture for write function 61
5.17 Example of data concatenation . 61
5.18 SG-DMA architecture for read function 62
5.19 The interface between SG-DMA and Arbiter 63
5.20 Handshaking protocol between SG-DMA and Arbiter 64
5.21 Avalon stream interface between processing unit and SG-DMA 64
5.22 Example of address generation pattern . 66

6.1 Interpolated video evaluation structure for our system 71
6.2 Interpolated video evaluation structure for DERS+VSRS 71
6.3 Quality evaluation for Book Arrival . 72
6.4 Anaglyph outputs for different depth intensity 72
6.5 Example of latencies during burst reading 74
6.6 Memory hierarchy evaluation environment 75

viii

List of Tables

2.1 Definition of absolute difference and square difference 12
2.2 Definition of area-based matching cost functions 13
2.3 Common used smoothness function models 16

4.1 Hardware resource comparison of run length counter and compression rate 44
4.2 On-chip memory architecture resource utilization analysis 45
4.3 Hardware resource analysis of optimized stereo matching engine 45
4.4 comparison of state-of-art stereo matching implementations 46

5.1 Function definition in SoC . 49
5.2 Common used YCbCr formats based on A:B:C notation 53
5.3 System memory breakdown . 58

6.1 Test sets . 68
6.2 PSNR evaluation for different color space conversion standards 68
6.3 scale resolutions of integer approximation from four bit (256) to ten bit

(1024) . 69
6.4 Rounding approach evaluation . 69
6.5 Hardware resource comparison of Full LUT Size approach and 2LUT-

Adder approach . 69
6.6 Hardware utilization analysis of RGB to YCbCr converter 70
6.7 Hardware resource utilization summary on EP3SL150 FPGA 73
6.8 Throughput estimation based on standard VGA video source 73
6.9 Burst length settings and critical latency analysis 74

ix

x

Introduction 1
This thesis work is developed at IMEC Leuven, Belgium and supported by the Computer
Engineer Group from Delft University of Technology at the Netherlands. The main re-
search and development goal surrounds an IMEC proposed 3D HD TV Project, which
is a SoC solution addressing to 3D TV market. This thesis work especially interests in
the stereo matching engine part, which is used for extracting depth information from
two stereoscopic camera sources. We designed the stereo matching algorithm and imple-
mented with FPGAs. Then it has been furhter integrated with a view point synthesis
engine. Another assignment in this thesis work is to develop peripheral components for
supporting the IMEC 3D HD TV SoC prototype.

1.1 Motivation

Nowadays, 3D display related applications are getting more attentions in the consumer
market. One obvious clue is the number of movies with 3D content is growing dramati-
cally. It shows the trends to the entertainment tendency of audiences. It is foreseeable
that 3D display applications will become prevalent in the coming future.

The fundamental principle of 3D display technologies is based on binocular vision. It
is about how our brain perceives the depth of objects in real world. As Figure 1.1, our eyes
receive horizontal deviated views, and our brain automatically analyzes the disparities of
objects and fuses them to 3D perception. Many stereoscopic vision technologies, such as
Free Viewpoint Television (FTV) [48][65], 3D Autostereoscopic Displays [17] and depth
scaling, are based on this principle.

���������� 	
���������

����	����
��

Figure 1.1: 3D Perception

1

2 CHAPTER 1. INTRODUCTION

It is frequently reported that audiences easily suffer from nausea, eye strain or
headache after watching 3D contents. Figure 1.2 illustrates the personal depth com-
fort regions in a green zone. However, the ranges of comfort zone depends on different
people. For example, the eye distance of adult is around 6.25 cm. However, the eye
distance is shorter in the case of children, so the 3D contents might not applicable to
them. Moreover, the comfort zone also relates to screen size, view distance and display
technology. It leaves a great challenge to the 3D contents vendors.

L

����������������������
����������������������

R

����������������������
����������������������

P
e
rs

o
n
al

 D
e
p
th

 R
an

ge

Screen

Figure 1.2: Depth perception according to visual comfort.

Therefore, IMEC proposes a low-cost depth scaling solution addressing to the visual
comfort for 3D TV. The principle is synthesizing the virtual view that lies in-between
stereoscopic video sources, then outputs the in-between virtual view associated with
one raw stereoscopic video channel instead of original stereoscopic video sources to 3D
TV. Through this method, audiences receives less 3D depth perception from the 3D
TV. In order to synthesize the in-between virtual view, the depth information of the
original stereoscopic video sources are needed to be extracted firstly. With the raw
stereoscopic scenes and their depth information, the in-between virtual view can be
synthesized through warping and occlusion holes filling processes. Figure 1.3 simply
illustrates the general principle of the proposal. With this system, audience can choose
an arbitrary depth intensity of 3D video contents based on their preferences. In this
project, we aims at realizing the prototype with FPGAs.

1.2 Research Goals and Problem Definition

This thesis work aims at the SoC prototyping work for the IMEC proposed 3D TV
system. First of all, we are assigned to design and implement an efficient stereo matching
algorithm with FPGAs. The selection of stereo matching algorithm takes three aspects
into consideration: real-time performance, disparity mapvideo quality, and hardware
cost. The reasons are explained in the following:

Rendering quality disparity maps from a good stereo matching algorithm is one of
the goals in this thesis. Although the stereo matching algorithms have been researched
for decades, the solutions to occlusion, texture less, and repetitive pattern regions are
not always perfect. Besides, generating quality disparity map is required in the IMEC
proposed 3D TV system because it affects the accuracy of the synthesized virtual view.
Previous study has shown that humans are sensitive to the edge regions of the image than

1.2. RESEARCH GOALS AND PROBLEM DEFINITION 3

Figure 1.3: Depth adjustment processing flow with stereo matching and viewpoint syn-
thesis engine.

the plain parts. The inaccurate disparity maps easily cause the so called ghost effect
in the synthesized view. Figure 1.4 is an example that demonstrates the mentioned
synthesis error.

Figure 1.4: Ghost effect and inaccurate disparity map

Generally, the disparity map sequences suffer from a temporal inconsistency problem.
Figure 1.5 demonstrates an example of inconsistent disparity map sequences. Because
most stereo matching algorithms only take individual frames into the computation flow,
there is a lack of links among the disparity map sequences, which causes the inconsistent
disparity map video. A previous study [64] showed that humans are most sensitive to
the inconsistent pattern (temporal noise) that flickers in 10 to 20 cycles per second. It
also reports that the temporal noise is even more obvious than spatial noise.

The hardware cost of SoC is concerned in the design. For example, we would like use
dynamic programming algorithm to improve the quality of disparity maps. However, it

4 CHAPTER 1. INTRODUCTION

Figure 1.5: disparity map sequence without temporal consistency

will require O(W ·D2
max) computational complexity and (W ·Dmax ·Dbit) memory space

when real-time performance is expected. Where the term W represents the image width,
and Dmax represents the maximum disparity range. Obviously, a solution is needed to
improve the tradeoff between the computational performance and hardware cost.

Finally, this thesis work also in charge of designing extra peripheral components such
as off-chip memory controller, color space converters, and adaptors for the entired 3D
TV SoC solution.

1.3 Solution and Contribution

This thesis aims at providing a totoal solution for the IMEC 3D TV SoC design ad-
dressing to video quality, real-time performance, and hardware cost. The contributions
of thesis are listed in the following:

Stereo Matching Algorithm Improvement and Implementation

• Firstly, we survey the state-of-art stereo matching algorithms.

• We refer to the stereo matching engine design [63] that was contributed by Zhang
and chose the scanline-based dynamic programming algorithm [23] for improving
the quality of disparity maps. A 6.6% average pixel error rate is achieved according
to Middlebury’s benchmark [52].

• A simple pixel-based temporal consistency method is used to enhance the disparity
map sequences by adjusting the matching raw cost based on last disparity maps
and images. After introducing the temporal consistency method into our proposed
stereo matching algorithm, the stability and quality of the disparity map sequences
is improved.

• We compare the computational complexity and performance of different smooth-
ness models for the global optimization function of our stereo matching engine. A
smoothness model, Potts model, is chosen in our case. We proposed a method to
reduce the computational complexity and memory consumption by rewriting the
energy function. The result shows the computational complexity can be reduced
from O(W ·D2

max) to O(W ·Dmax) , and the memory consumption can be reduced
from (W · Dmax · Dbit) to (W · (Dmax + Dbit). The term W represents the im-
age width, and Dmax represents the maximum disparity range. We also propose
a hardware efficient memory architecture by using a single 2-Port BRAM with a

1.4. OVERVIEW OF CHAPTERS 5

sophisticated memory mapping mechanism instead of the conventional ping-pong
BRAM architecture. All in all, the on-chip memory can be reduced 11 times with-
out quality loss.

• Run-length coding algorithm is first proposed for compressing disparity maps. Our
pre-experiments show the compression rate can reach above 12 times compression
rate to the disparity map with almost no loss of quality. Therefore, we proposed
a new memory architecture with run-length coding encoder/decoder. The new
memory architecture only consumes 21% hardware cost comparing to conventional
on-chip memory architecture. It proofs run-length coding is a promising solution
for disparity map compression.

To construct the IMEC 3D TV SoC, we design and implement extra peripheral
components to support our stereo matching engine and the view synthesis engine that
is supported by NCTU(National Chiao Tung University). Those components are finally
integrated in the IMEC 3D TV SoC. More specifically, they are:

• A dedicated memory hierarchy is proposed and implemented to support frame
buffering for temporal consistency function. The memory hierarchy successfully
cooperates with stream processors by using pre-fetch and data burst techniques.

• Color space converters are designed to perform RGB-YCbCr and YCbCr-RGB
conversions. We compare two hardware efficient designs and evaluated it from
quality, hardware consumption, and flexibility aspects.

• Three video signal adaptors are designed for input sequences synchronization, mem-
ory data extraction, and output display signal generation based on standard VGA
signal timing.

Finally, the IMEC 3D TV prototype SoC is evaluated on EP3SL150 FPGA. The
SoC integrates video adaptors, color space converters, stereo matching engine, view
synthesis engine, and memory hierarchy. So far, the IMEC 3D TV prototype is capable
of processing up to XGA format (1024x768@60FPS 65MHz Pixel Rate) video stream
in real-time performance. Users can adjust the depth intensity of 3D contents through
on-board buttons and watch anaglyph or synthesized stereoscopic video from 2D or 3D
TV through our solution.

1.4 Overview of Chapters

In the next chapter, Chapter 2, it provides the background of stereo matching algorithms.
In Chapter 3, we introduce a stereo matching algorithm proposal that was achieved by
last thesis student. In addition, we evaluate its performance and hardware complexity.
Then, several techniques and proposals are illustrated to optimize the disparity map
sequences quality and hardware usage. The proposals of Chapter 3 are evaluated in
Chapter 4. The designs are estimated addressing to image/video quality, hardware
cost, and real-time performance. In Chapter 5, we integrate our stereo matching engine
design into IMEC 3D TV SoC. The overview of the system architecture will first be

6 CHAPTER 1. INTRODUCTION

introduced. Then we will mention about the designs of peripheral components, including
memory hierarchy, color space converters, and video signal adaptors. In Chapter 6, we
evaluate complete IMEC 3D TV SoC design with EP3SL150 FPGA. Firstly, the quality of
interpolated virtual view sequences is measured by PSNR and TPSNR. Then the overall
hardware cost and real-time performance information are also listed in this chapter for
reference. The final chapter summarizes this thesis work. Several suggestions for future
work and relative applications will be mentioned too.

Background on Stereo
Matching and Related Works 2
This chapter makes a survey of depth extraction methods. We are especially interesting
in stereo matching algorithms, which estimate the depth information by using stereo-
scopic image pairs. In Section 2.1, it reveals the principle of stereo vision and depth
estimation. Then we try to summarize and compare the related works of stereo match-
ing algorithms in Section 2.2. Furthermore, we survey the algorithms for reinforcing the
consistency of disparity map sequences in Section 2.3. Finally, Section 2.4 concludes the
frequently used platforms to implement stereo matching algorithms.

2.1 Stereo Matching Principle

The stereo matching principle is to mimick human’s visual sensation from stereo in-
put images. Figure 2.1 depicts a overlapped scene that is taken from two horizontally
separated cameras. The nearby objects show larger displacement on the stereo images,
whereas the distant objects only have trivial displacement on the stereo pair. We define
the offset between corresponding points along scanline as the term D̈isparitÿ. Our goal
is to apply this principle to computer algorithm, which helps to explore pixel correspon-
dence on the stereo image pair and find their displacement. Since the disparity of each
pixel is integer number, it can be encoded to grey scale range for output display. Fig-
ure 2.2 demonstrates a disparity map. Where the low gray pixel values represent low
disparities and high grey pixel values correspond to high disparities.

Figure 2.1: Overlapped stereo camera scene

7

8 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

Figure 2.2: Example of disparity maps

Image rectification is an important step to simplify stereo matching searching space
(pixel correspondence exploration) from two dimensions to one dimension searching
space. Because the stereo scenes are not always taken from the well horizontally-aligned
cameras, as Figure 2.3 shows, the mapping work is based on the concept of Epipolar line
geometry [22][2]. In the example, the upper two images are not taken from two perfectly
aligned cameras. The yellow Epipolar lines of the left image are mapped to different
positions on the right image. Therefore, the work of image rectification [55][41][8] uses
the intrinsic and extrinsic camera parameters (camera calibration information) which in-
cludes camera rotation, translation, lenses distortion, rotation, etc to align the Epipolar
line geometry of two projected points to new image plane. The stereo matching problem
is therefore simplfied to one dimensional searching space (along the horizontal line).

Figure 2.3: Stereo image pair rectification [38]

2.1. STEREO MATCHING PRINCIPLE 9

With the disparity map and stereo camera parameters, we can reconstruct the 3D
model of view scenes by using triangulation principle. Figure 2.4 demonstrates the
relations between stereo camera parameters and object P.

P

b

f

Z

OL ORLine/Left Scene Line/Right SceneXL XR
Figure 2.4: Example of triangulation principle. It depicts object P is captured from
stereo cameras. Where f represents focal length, b represents the physical horizontal
displacement between stereo cameras, and Z is the physical depth length from object P
to stereo cameras.

Once the disparity of the object P between left and right scenes is known, its depth
value Z can be calculated by refering to the camera focal length and baseline length as
2.1. Where the disparity d is generally constrained by a disparity range [dmin, dmax]. In
addition, the X and Y position of object P can also be traced back by using 2.2.

Z =
2× l × f
XL −XR

=
b× f
d

(2.1)

X =
Z ×XR

f
, Y =

Z × YR
f

(2.2)

Based on the stereo matching principle, there are several common challenges to ex-
tract disparity map. Occlusion problem is the one should be concerned. It occurs when
the lack of correspondence matching position in stereo image pairs. Figure 2.5 illus-
trates that the marked regions are unmatchable on the stereo image pairs because the
foreground objects block the background information as Figure 2.6. The same scenario
occurs to both stereo scenes. In general, the occlusion regions are nearby object bound-
aries.

Luminance difference between stereo scenes is also a common challenge for stereo
matching. Different camera sensors might capture images by using different intensity
gain. Consequently, the luminance bias between left and right scenes easily leads to
mismatching.

10 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

Figure 2.5: Example of occlusion problem

OL OR
� �

Figure 2.6: Example of occlusion problem

Another challenge for stereo matching principle is tthe textureless and repetitive
regions. Figure 2.7 depicts the examples of texture less and repetitive regions. When
trying to match the corresponding pixels for those regions in left and right scenes, we
found the difficulty to make the right choice, which easily leads to mismatching.

���������������	

Figure 2.7: Example of textureless and repetitive regions

2.2. STEREO MATCHING ALGORITHMS 11

2.2 Stereo Matching Algorithms

There are two main classes of stereo matching algorithms: feature-based and correlation-
based. A feature-based approach refers to searching correspondence by matching sparse
sets of image features. The image features are usually derived from feature-identified
methods (such as edge detection and object pattern). The other approach, correlation-
based, refers to searching for the best correlation pixel on the target image by matching
the homologous pixel within a disparity range. This thesis will focus on the correlation-
based approach because of its robustness and simplicity for real-time hardware imple-
mentation.

According to the taxonomy summarized by Scharstein and Szeliski [16], the algo-
rithms for correlation-based stereo matching can be categorized into two classes, the
local-approach and the global-approach algorithms. The stereo matching computational
flow can be summarized in four processing steps as Figure 2.8.

Figure 2.8: Disparity map extraction flow

ps. Local stereo matching algorithm generally performs four processing steps but
without global optimization. Global stereo matching algorithm sometimes ignore the step
2 (cost aggregation).

In the local-approach algorithms, the disparity is calculated by matching the corre-
sponding pixel candidates within a disparity range. In order to increase the matching
accuracy, the local approaches rely on cost aggregation step to cover more matching cost
information from neighborhood pixels. Whereas the global-approach algorithms con-
centrate more on disparity computation and global optimization by introducing energy
functions and smoothness assumptions. The energy function includes the matching cost
information from the entire image. It reduces the chance of mismatching in some critical
pixels/regions such as signal noise, occlusion, texture less, or repetitive pattern, etc. Al-
though global-approaches improve the quality of disparity map, they require higher com-
putational complexity demands and memory resources, compared to the local-approach
methods, making a real-time system implementation challenging. All in all, there exists
a trade-off between matching quality and computational complexity. In this section, we
will introduce more detail about the stereo algorithm.

2.2.1 Matching Cost Computation

The variable, matching cost, is defined firstly between reference pixel and target matching
candidates as Figure 2.9. Generally, the higher the raw matching cost represents the
lower similarity between reference pixel and candidate matching pixel; vice versa.

The simplest method to define the matching cost is based on pixel color information.
There are two common-used methods: absolute difference (AD) and squared difference

12 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

Figure 2.9: Fundamental pixel-to-pixel matching scenario

(SD) as Table 2.1 [51]. The raw matching cost value only takes pixel color information
from stereo image pair. To enhance the pixel-based matching cost approach, area-based
matching cost approaches [30] are proposed to improve the matching accuracy, which
will be introduced in next sub-section.

Table 2.1: Definition of absolute difference and square difference
Matching
Cost Alg.

Description Definition

AD

Absolute difference approach ag-
gregates the color(luminance) dif-
ference of reference pixels and tar-
get candidate pixels.

f(u, v, d) = |Iref (x, y)− Itar(x+ d, y)|

SD

Square difference approach squares
and aggregates the difference of
reference pixels and target candi-
date pixels.

f(u, v, d) = (Iref (x, y)−Itar(x+d, y))2

2.2.2 Matching Cost Aggregation

To improve the matching accuracy, cost aggregation is a solution to gather more neighbor
pixels information. The pixel-based matching cost is extended to area-based approach.
The most commonly used techniques are Sum of Absolute Intensity Difference (SAD),
Sum of Square Difference (SSD), Normalized Cross Correlation (NCC), Rank, and Cen-
sus Transform as Table 2.2.

In the case of Census Transform matching cost function, the raw matching cost
is aggregated by measuring the hamming distance between two census bit strings as
2.10. The hamming distance between 01001001 and 00001111 is 3 because 3 bits are
unmatched.

In recent years, the Census Transform with Hamming Distance approach has be-
come popular because of its robust performance. Chang [10], Heiko [21], Bleyer [36]
have proofed Census Transform performs outstandingly against other approaches for
stereo matching algorithm. The advantage of census-transform is it encodes the lumi-
nance relationship between the central pixel and neighbor pixels. Since no luminance

2.2. STEREO MATCHING ALGORITHMS 13

Table 2.2: Definition of area-based matching cost functions
Matching
Cost Alg

Description Definition f(u, v, d)

SAD

Sum of Absolute Difference
sums up the absolute differ-
ences in the corresponding re-
gion of pixels. (such as square
window)

∑
(x,y)∈B(u,v) |Iref (x, y)− Itar(x + d, y)|

SSD

Sum of Square Difference
squares and aggregates the
differences in the correspond-
ing region of pixels. (such as
square window).

∑
(x,y)∈B(u,v)(Iref (x, y)− Itar(x + d, y))2

NCC

Normalized Cross Correla-
tion. The cross correlation is
normalized by the mean value
in the block. Higher NCC
stands better match.

∑
(x,y)∈B(u,v)(Iref (x,y)−µtar(x+d,y))·(Itar(x+d,y)−µtar(u+d,v)))

2
√∑

x,y∈B(u,v)(Iref (x,y)−µtar(x+d,y))2 ·(Itar(x+d,y)−µtar(x+d,v))

Rank

Rank transform calculates the
number of neighbor pixels
which have the value lager
than the central pixel. The
matching cost is calculated
from the absolute difference of
the two ranks.

∑
(x,y)∈B(u,v) |Rankref (x, y)−Ranktar(x + d, y)|

Rank(u, v) =
∑

(i,j)∈R(u,v) L(i, j)

L(i, j) =

{
0 , I(i, j) > I(u, v)

1 , I(i, j) ≥ I(u, v)

Census

Census Transform encodes
the comparison result of cen-
tral pixel and neighbor pix-
els (window) into a bit string.
The matching cost is calcu-
lated from the hamming dis-
tance of census bit string of
corresponding matching can-
didate.

f(u, v, d) =
∑

(x,y)∈B(u,v) Hamming(Censusref (x, y)−
Censustar(x + d, y))

Census(u, v) = Bitstring(i,j)∈R(u,v)(I(i, j) ≥
I(u, v))

�� ��� ���� �� ���� 	� ���
�� ��� ���� �� ����
� �� �� �� ���� �� ���� ��
�

�����������	
��

�
�����	
��

���������
�����	��������
�������� �������� �������� ����������

��� ��� ��� ���
�
		�������
���

��������������������
���������� ���

���
�

� ��	
�������
���
 �� �� �� �

Figure 2.10: Census transform and hamming distance to generate raw matching cost

14 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

or chrominance value is involved in generating the matching cost, any luminance and
gamma variations of stereo sources doesn’t effect the final result.

Now the question is how to define the cost aggregsion region? So, we further inves-
tigate the commonly used aggregation region strategies from coarse to fine. Figure 2.11
shows different aggregation strategies [61] include fixed window, multiple window, adap-
tive shape, and adaptive weight. Fixed window is a efficient approach, which requires
low computation complexity. However, it performs badly to the regions such as bound-
ary, slant surface, and repetitive pattern. Therefore, multiple windows approach [38]
is a advanced solution. A number of sub-windows are predefined to make the support
region, which is not only constrained to rectangular shape. Another approach is the
adaptive shape method. It partitions the image in regions with similar color intensity
and aggregates costs within the similar segmentation. The last but the most accurate
one is adaptive weight [29] [24]. It assumes that the nearest pixels with similar intensity
to the central pixel share the same disparity value. Based on the assumption, the weight
of the intensity difference to the central pixel is gradient based on distance. By using
adaptive weight method, it helps achieve highest matching performance against to other
methods. However, the computational complexity is higher than others.

Figure 2.11: Categories matching cost aggregation approaches from coarse to fine.

2.2.3 Disparity Computation and Optimization

There are two categories of disparity computation approaches: local stereo matching and
global optimization method. Both approaches have their pros and cons to computational
resource and matching accuracy. Their details will be introduced in the following:

[Local Stereo Matching]

The local stereo matching method computes the disparity value by selecting the
matching candidate which possesses the minimum matching cost value as Figure 2.12.
This method is so-called winner-take-all (WTA) strategy [16]. Where the matching cost
generation methods were mentioned in the previous sub-section. Then the displacement
between the reference pixel and the maching pixel is regarded as the disparity result.

[Global Optimization]

2.2. STEREO MATCHING ALGORITHMS 15

����������	
����
��������	�
��

� ���� ��������

Figure 2.12: Example of winner take all strategy(WTA)

The global algorithm improve the WTA strategy by introducing the energy function
with smoothness assumptions. The energy function is defined as 2.3. We can simply
regard the matching strategy as an energy minimization problem.

E(d) = Edata(d) + Esmooth(d) (2.3)

Where d ∈ [0, Dmax − 1].

Edata(d) =
∑
j∈N

C(j, d) (2.4)

Where C() is matching cost function, and N represents global pixels.

Esmooth(d) =
∑

j∈N,d′∈[0,Dmax−1]

λ · S(d, d′) (2.5)

where S() represents smoothness function. λ is a scaling coefficient, which adapts to
the luminance variation of adjacent pixels. For example, it provides sharper disparity
discontinuity when encountering edge regions; whereas it stabilize the disparity variation
when processing the surface of objects.

The first term, 2.4, illustrates the sum of matching costs in a disparity range number
of arrary. The second term, 2.5, is a smoothness function, which generates a penalty
value for smoothness assumption based on the disparity distances of adjacent pixels.
The idea of smoothness assumption is to impose cost penalty on disparity variation in
order to increase the smoothness of disparity map. The higher penalty value reduces the
chance of the disparity candidate to be chosen in winner take all(WTA) step, and vice
versa. Thus this increases the smoothness of disparity map.

The smoothness function models will be further introduced in the next paragraph.
The energy function is widely used in global optimization approaches such as Dynamic
Programming [23], Graph Cut [7], and Belief Propagation [44]. In this thesis, we will
focus on scanline dynamic programming algorithm because of its hardware-friendly trait.

16 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

In the following, we introduce two type of smoothness models: first order and second
(higher) order smoothness functions. The most commonly used smoothness function
models are summarized in Table 2.3.

Table 2.3: Common used smoothness function models

Model Name Smoothness Function
Computational
Complexity

Linear Model S(d, d′) = |d− d′| O(D2)

Truncated Lin-
ear Model

S(d, d′) = min(|d− d′|, k)
where k is user-defined truncation constant

O(D2 +D)

Potts Model
S(d, d′) =

{
0 , if d = d′

C , if d 6= d′

where C is a constant introduces smoothness cost
penalties

O(D)

Modified Potts
Model

S(d, d′) =

0 , if d = d′

C1 , if |d− d′| = 1

C2 , if otherwise
where C1 and C2 introduce constant smoothness cost
penalties, and C1 is lower than C2

O(2D)

Second(Higher)
Order Model

S(p, q, r) = |dp − 2dq + dr|
where q and r are p’s left and right neighborhood
pixels

O(D3)

Truncated
Second Order
Model

S(p, q, r) = min(|dp − 2dq + dr|, k)
where k is user-defined truncation constant

O(D3 +D)

In the linear model, the higher distance between the disparity array of adjacent pixels
d and d’ intorduces the larger smoothness penalty. Figure 2.13 is an example shows the
gradient penalty costs are imposed on heterogenous disparity positions. This leads the
disparity result changes gradually only within small steps. Hence, the linear model
performs outstanding in extracting the disparity information for slanted surfaces.

However, the linear model performs badly in the disparity continuity regions (edge).
Figure 2.14 is an example shows the blurrd edge in the disparity discontinuity region. To
solve the weakness of the linear model, a truncated constant penalty value k is introduced
to improve the linear model. The penalties of high distance between the disparities of d
and d’ are limited to k in order to preserve discontinuous disparity regions (Figure 2.16).

The Potts model can preserve the edge information of objects in disparity map by
imposing a constant cost penalty to any heterogenous disparity position. Figure 2.17
illustrates the cost penalties are added on the disparity dissimilar positions in energy
function. Figure 2.15 is an example of disparity map by using Potts model, which
performs superior in disparity discontinuous regions against linear model. However, the
Potts model performs poorly in reconstructing slanted surfaces. To solve this weakness
of Potts model, a modified Potts model introduces a lower level of constant cost penalty
to adjacent disparities. The modification not only allows the Potts model to handle
slight slanted surfaces but also permits it to reconstruct disparity discontinuous regions.

The Second (higher) order model is proposed by Woodford [57], which improves the

2.2. STEREO MATCHING ALGORITHMS 17

Figure 2.13: Example of smoothness cost penlties by linear model

Figure 2.14: Linear Model
Figure 2.15: Potts Model

Figure 2.16: Example of smoothness cost penlties by truncated linear model

18 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

Figure 2.17: Example of smoothness cost penlty by Potts model

disparity map in curvature surface regions. The second order model detects slanted
planes and assigns lower cost penalty to them. Besides, the truncated principle can
also be applied to this model. In recent researches, this possesses the state-of-the-art
quality against the above mentioned models. However, the computational complexity is
relatively high.

The above-mentioned energy function principle is broadly apply to global stereo
matching. Global stereo matching approach extends the local Winner-Take-All strategy
to global energy minimization problem. The state-of-art global stereo matching
algorithms such as graph cuts [7], belief propagation [44], and dynamic programming
[23] are all using energy function as their background. In this thesis, we will take the
scanline-based dynamic programming algorithm as an example to explain how energy
minimization can be used for stereo matching.

Dynamic Programming

Dynamic programming (DP) is a technique to used to solve the complex problem
by breaking them down into subproblems. It solves each subproblem only once, which
greatly reduces the computational complexity. Thus, we can apply the dynamic program-
ming principle to solve energy minimization problem (minimizing the energy function
E(D)) in stereo matching. By using energy function, it is possible to achieve the nearly
optimal disparity map solution. In the following, we demonstrates how dynamic pro-
gramming principle can be applied to find the optimal matching disparity along a image
scanline.

After the cost aggregation step, each pixel position has Dmax (maximum disparity
range) number of matching cost array C(j, d), where the term j represents the pixel
position along a scanline and d is defined as disparity range. The dynamic programming
algorithm requires two processing steps, forward pass and backward pass, to find the
optimal disparity solution for a scanline.

1. Forward Pass

2.2. STEREO MATCHING ALGORITHMS 19

Figure 2.18: Example of forward pass function

The forward pass procedure seeks optimal backward disparity entries (path) along
the scanline by selecting the minimum matching cost energy with smoothness as-
sumption. Figure 2.18 illustrates the forward pass procedure as an example. As
we mentioned before, most global optimization methods can be regarded as energy
minimization problems. In the forward pass formula, Equation 2.6, the second
term can be represented as an energy function which includes aggregation, match-
ing cost and smoothness penalty terms. Therefore, the second term searches for
the minimum sum of aggregation, matching cost and smoothness penalty for each
disparity candidate of pixel along the scanline. In each forward pass iteration,
the winner of minimum aggregation cost energy (second term) will be summed
with matching cost (first term) as an aggregation cost again. When executing the
forward pass step, the dynamic programming tree path information are stored in
Backward Path array Equation 2.7 for the later backward pass step.

Cagg(j, d) = Craw(j, d) +minj∈scanline W,d′∈[0,Dmax−1]{Cagg(j − 1, d′) + S(d, d′)} (2.6)

Where d ∈ [0, Dmax−1], Cagg(j, d) is a matching cost aggregation array, Craw(j, d)
is raw cost array, and S() is smoothness cost function.

Backward Path(j, d) = arg mind′∈[0,Dmax−1](Cagg(j − 1, d′) + S(d, d′)) (2.7)

Where d ∈ [0, Dmax − 1].

2. Backward Pass

The backward pass step tracks the backward pass paths iteratively in order to
obtain the optimal disparity map scanline solution. In the beginning of the back-
ward pass step, the initial disparity entry of the last disparity pixel is decided
by the minimum winner of disparity matching cost candidates as Equation 2.8.
Afterward, the backward path step, Equation 2.9, starts to trace back along the
backward paths from the last pixel of scanline back to first pixel. Finally, the final
backward pass path is regarded as the optimal disparity solution over the scanline.
Figure 2.19 shows the backward pass procedure as an example.

20 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

Figure 2.19: Example of backward pass procedure

Initially, the entry point at the end of the line (W −1, d(W −1)) is computed from:

d(W − 1) = arg mind∈[0,D]Cagg(W − 1, d) (2.8)

Where W-1 represents the last pixel of image scanline

Then we traverse backwards from j = W − 1 to j = 0 along the paths that were
built in the forward pass stage iteratively:

d(j − 1) = Backward Path(j, d(j)) (2.9)

The above-mentioned scanline based dynamic programming approach can be further
improved. Olga Veksler [54] extends the scanline structure to tree structure for dynamic
programming based stereo matching, which has no restriction on accumulating the cost
energies only within scanline. Another proposals [31][20], two pass dynamic program-
ming, solves the inter-scanline inconsistency problem by executing dynamic programming
on horizontal scanlines firstly then do vertical passes.

2.2.4 Disparity Map Refinement

Disparity map refinment is usually used in the post processor unit of stereo matching
algorithm to improve the matching quality. This sub-section summarizes the solutions
for the problems such as occlusion region, disparity mismatching, and sparkle noise.

Left-Right consistency check is a commonly used technique to detect the mismatched
regions on disparity maps. After extracting the left and right disparity maps, Equa-
tion 2.10 can be used to check whether the disparity map pixels on left disparity map
share the same disparity values with the corresponding pixels on the right disparity
map. The same scenario can be applied to check the consistency of right disparity map
by Equation 2.11. If the disparity value difference between a pixel and its corresponding
pixel is beyond a threshold value, it is regarded as inconsistent pixel, which is not a
reliable result.

Consistency check of left disparity map{
Good Disparity , if |dright′(x− dleft(x, y), y)− dleft(x, y)| ≤ Threshold
Occlusion , if |dright′(x− dleft(x, y), y)− dleft(x, y)| > Threshold

(2.10)

2.2. STEREO MATCHING ALGORITHMS 21

Consistency check of right disparity map{
Good Disparity , if |dleft′(x+ dright(x, y), y)− dright(x, y)| ≤ Threshold
Occlusion , if |dleft′(x+ dright(x, y), y)− dright(x, y)| > Threshold

(2.11)

One simple solution to fix the mismatched pixels is replacing them by the nearest
good disparity pixels. This method assumes the occlusion regions that tend to produce
mismatching share the same disparity value with the nearest background objects. Based
on this assumption, the mismatched pixels on the left disparity map can be replaced by
the nearest good disparity pixel from its left side. On the contrary, the mismatching pix-
els of the right disparity map can be replaced by the nearest good disparity pixel from its
right side. Figure 2.20 demonstrates that the mismatching pixels can be replaced by the
nearest good disparity pixels from the nearest good disparity pixels. Since this method
only performs on horizontal scanline (one dimension), it provides a simple solution for
dispairty map refinement.

Figure 2.20: Simple occlusion handling method

Another commonly used solution for disparity map refinment is segmentation based
method [18][32][58][6][45][43]. Most proposals apply color segmentation strategy. The
general idea assumes the segmentation with similar color intensity shares the same dis-
parity value. Figure 2.21 demonstrates an example of 2D support region voting for
disparity map refinement. Where the disparity voting stage counts the disparity values
within the support region (segmentation) to the central pixel into a histogram and then
chose the winner as its final disparity value.

Figure 2.21: 2D disparity voting

In this thesis we introduce cross-based algorithm [60] that is proposed by our group

22 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

member Zhang. It’s principle is based on segmentation to achieve disparity map refine-
ment. The cross-based algorithm firstly searches the support region in four directions
(upper, lower, left and right) for each pixel. Where the cross-based support region is ob-
tained by simply extending the central pixel until two adjacent pixels are not consistent
in color or reaches the maximum arm length. To find out the arm length, the method is
according to Equation 2.12 and Equation 2.13.

r∗ = maxr∈[1,L](rΠi∈[1,r]δ(p, pi)) (2.12)

Where r∗ indicates the largest span for the four direction arms. pi represents (xp−i, yp).
and L corresponds to the predetermined maximum arm length.

δ(p1, p2) =

{
1, maxc∈[R,G,B](|Ic(p1)− Ic(p2)|) ≤ Threshold
0, otherwise

(2.13)

After having the cross arm information of each pixel, we can reconstruct their segmen-
tations (support regions) through entired image. Figure 2.22 demonstrates the support
region of the anchor pixel p. The four arms of pixel p(h−p , h

+
p , v

−
p , v

+
p) are used to define

the horizontal segment H(p) and vertical segment V(p). Then the full support region
U(p) is the integration of all the horizontal segments of those pixels residing on the
vertical segment.

����

����

����

����

�

	

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

Figure 2.22: The support region of anchor pixel p

Once the support region has been determined, we can use disparity voting method to
enhance the disparity value consistency within support region. The disparity value has
maximum population within the support region is regarded as the final voting result.
Figure 2.23 shows the example of disparity voting.

In Lu’s proposed design [62], he simplified the 2D voting into two-pass 1D voting in
order to reduce the computational complexity as Figure 2.24. The maximum computa-
tional complexity can be reduced from O(N2) to O(N), where N is the maximum double
lengths of the cross-arm.

Finally, we introduce median filter for disparity map refinement. It is wildly used in
image processing applications to eliminate the so-called pepper and salt noises. Median
filter selects the median value within the window to the anchor pixel as the final disparity
value. It helps alleviate the speckle and impulsive noises.

2.3. TEMPORALLY CONSISTENT DISPARITY MAP SEQUENCES 23

� �� �� ��� �� � �� �� �� �� �� � �� �� ��� � � ��� � �� ��� � �� �� ��� ��� �� �� � � disparity
Counter

0 1 2 3 4 5 6 7 1 3 2 1 3
42

3 0 �
Figure 2.23: The example of disparity voting

Figure 2.24: Two-pass 1D disparity voting

2.3 Temporally Consistent Disparity Map Sequences

The static parts of disparity map sequences are expected to remain the same disparity
value. Some researches [13][35][11] expand the disparity estimation from single frame
to video sequences. The general idea is to update the matching cost according to the
static regions. DERS, a disparity map generation reference software, is contributed from
MPEG community can achieve temporal consistency by updating the cost function for
Graph Cut stereo matching algorithm. The DERS defines the motion regions with pixel
blocks by using mean absolute difference (MAD). In the static regions, the raw cost
corresponding to the disparity value of the previous frame is scaled down. This leads
to the static regions keep the same disparity result again, and the stability of disparity
map sequences is enforced.

2.4 Implementation Platforms

CPU, GPU, DSP, and FPGA/ASIC are commonly used platforms to realize stereo
matching algorithms. Several aspects such as matching accuracy, robustness, real-time
performance, computational complexity and scalability should be taken into consid-
eration into the design based on the application. Zhang[60][61] achieve a real-time
design with high matching accuracy by CUDA. Banz[3] also realize the Semi-Global
algorithm[23] to a GPU platform. Unfortunately, the GPU based design is not always
flexible to computational logic, instructions and data paths. Besides, high clock fre-
quency and memory bandwidth are required. FPGA and ASIC platforms are the alter-
native options which allow parallelism exploration and a pipeline architecture to achieve

24 CHAPTER 2. BACKGROUND ON STEREO MATCHING AND RELATED
WORKS

a higher throughput at moderate clock speeds. Chang[9] implement a high performance
stereo matching algorithm with mini-Census Transform and Adaptive Support Weight
on UMC 90 nm ASIC, achieving 352288@42FPS with 64 disparity ranges. Jin[28] de-
sign a pipelines hardware architecture with the Census Transform and sum of hamming
distances, achieving 640480@30FPS at a 64 disparity range under 20MHz. Banz[4] real-
ize the Semi-global matching algorithm on a hybrid FPGA/RISC architecture, achiev-
ing 640480@30FPS at a 64 disparity range under 12M 208MHz. Stefan[19] also utilize
Semi-global matching algorithm to implement a stereo matching engine, which achieves
340200@27FPS with a disparity range of 64 levels. Zhang[63] implement a local algo-
rithm with a Cross-Based support region in the cost aggregation and refinement stages,
achieving over a range of 64 disparity levels with a resolution of 1024768@60FPS under
65MHz.

Stereo Matching Algorithm
Implementation and
Optimization on Hardware 3
This chapter implements our stereo matching algorithm to SoC architecture as Figure 3.1.
We improve the design that was contributed by Zhang’s work [62][63] by replacing the
local winner-take-all algorithm to semi-global scanline-based dynamic programming.

Figure 3.1: System architecture of stereo matching engine

It performs the following steps:

1. Pre Processor: support region builder, raw cost generator with Census Transform
and Hamming distance

2. Dynamic programming based stereo matching

3. Post Processor: L-R consistency check, disparity voting, and median filter

The arechitecture includes three parts: pre-processor, dynamic programming, and
post-processor. In the design of pre-processor, the raw matching costs are generated
from census transformhamming distance and vertical aggregation functions. In the dis-
parity matching processor, dynamic programming algorithm is chosen for disparity map
computation and optimization. Finally, the post-processor refines the disparity maps by

25

26 CHAPTER 3. STEREO MATCHING ALGORITHM IMPLEMENTATION AND
OPTIMIZATION ON HARDWARE

using L-R consistency check technique, cross-based disparity voting, and median filter.
Beyond the stereo matching engine, a external memory hierarchy is designed to sup-
port frame bufferring function for enhancing the temporal consistency of disparity map
sequences. In this thesis, we will propose a solution for the gray regions which include
Dynamic Programming and Vertical Voting functions. The peripheral components, video
adaptors, color space converters, and memory hierarchy, will be proposed in Chapter 5
to support IMEC’s 3D TV SoC.

Two proposals for Dynamic Programming and Vertical Voting functions are designed
to improve the hardware utilization. Because dynamic programming algorithm requires
tremendous memory resources for storing the backward path information, this thesis will
propose a hardware efficient architecture in Section 3.1. In addition, an unconventional
on-chip memory architecture with run-length encoder/decoder will be proposes in Sec-
tion 3.2 for reducing the on-chip memory consumption of the Vertical Voting Processor.

Temporal inconsistency is a common issue to disparity map sequences. It is because
of the lack of links between disparity maps in the stereo matching algorithm. Any reasons
such as camera noise, depth mismatching, occlusion problem, etc. could cause disparity
map sequences be inconsist. Therefore, Section 3.3 introduces temporal consistency
algorithm into the stereo matching computation flow in order to increase the video
stability.

3.1 Hardware Efficient Dynamic Programming Processor

This section proposes a hardware-friendly dynamic programming architecture. As in
the synthesis results that have been mentioned in the beginning of this chapter, dynamic
programming approach requires tremendous a memory space to store the scan line length
of backward path information. Therefore, this section will implement a path data sim-
plification idea that is inspired by Zhang Ke, which takes the advantage of Potts model
smoothness function. Finally, a dynamic programming architecture with Potts model
smoothness function design will be presented in the last subsection.

3.1.1 Dynamic Programming Algorithm and Architecture Co-design

First, the parallelism of dynamic programming algorithm is explored for hardware im-
plementation. Equation 3.1 shows the conventional minimum energy searching method
of dynamic programming with Potts model smoothness function. The computational
complexity is O(W · D2

max) and the memory consumption is (W · Dmax · Dbit). The
term W represents the image width, and Dmax represents the maximum disparity range.
To make the hardware design be more efficient, we simply rewrite the minimum energy
searching functions in Equation 3.2.

Cagg(j, d) = Craw(j, d) +mind′∈[0,Dmax−1]{Cagg(j − 1, d′) + S(d, d′)}
Backward Path(j, d) = arg mind′∈[0,D−1]{Cagg(j − 1, d′) + S(d, d′)}

(3.1)

where the smoothness function S(d, d′) =

{
0 , if d = d′

C , if otherwise
is potts model

d and d′ are adjacent disparity arrays ∈ [0, Dmax − 1]

3.1. HARDWARE EFFICIENT DYNAMIC PROGRAMMING PROCESSOR 27

j represents the pixel position of a scanline

C is constant for smoothness cost penalty

CminAssum = mind′∈[0,Dmax−1]{Cagg(j − 1, d′)}+ C

Cagg(j, d) = Craw(j, d) +min{CminAssum, Cagg(j − 1, d′)}
Backward Path(j, d) = arg min{CminAssum, Cagg(j − 1, d′)}

(3.2)

The minimum aggregated cost is computed firstly and summed up with a smoothness
cost penalty to form a minimum aggregate cost assumption CminAssum. Then the term,
CminAssum, will be compared with the original aggregation cost array Cagg(j − 1, d′).
The compared results represent the encoded backward path information which will be
stored into on-chip Block RAM. It is noteworthy that only the path information, the
selection information of minimum aggregation cost, is needed for the backward step but
not the minimum cost itself. If the aggregate cost is less than CminAssum, the backward
path will point to the same disparity position. If CminAssum is less than the aggregate
cost value Cagg, the backward path will point to the corresponding disparity value of
CminAssum. After rewriting the forward pass equation, the computational complexity
can be reduced from O(W ·D2

max) to O(W ·Dmax). The term W represents the width
of image, and Dmax represents the maximum disparity range.

3.1.2 Dynamic Programming - On-chip Memory Optimization - Back-
ward Path Data Compression

The backward path information can be further simplified in order to reduce the on-chip
memory requirement. In Equation 3.2, the memory requirement for storing the backward
path can be formulated in Equation 3.3.

BRAM for backward path(bit) = (W − 1)×Dmax ×Dbit (3.3)

where W represents scanline length

Dmax is maximum disparity range

Dbit is the bit numbers of backward pass path information

To reduce the memory consumption, the backward path can be represented in Equa-
tion 3.4. Thanks to the characteristic of the Potts model, the backward path only has
two decisions in the dynamic programming tree: to retain the same disparity or jump to
the path which has the minimum sum of aggregation cost CminAssum. After applying the
proposed backward path reduction idea, the memory requirement for storing backward
path is formulated in Equation 3.5. The memory stores the decision of the backward path
in 1 bit and the path with minimum aggregation cost assumption. It uses 1 bit to store
the backward path decisions, jump (1) or not jump (0) to the disparity assumption with
minimum aggregation cost, instead of using full Dbit physical path. Equation 3.5 shows
the memory requirement after the simplification. The Dbit term contains the maximum
disparity range number of 1 bit encoded paths, and D bit is the path with the minimum
aggregation cost assumption. Finally, the memory consumption complexity is reduced

28 CHAPTER 3. STEREO MATCHING ALGORITHM IMPLEMENTATION AND
OPTIMIZATION ON HARDWARE

from (W ·Dmax ·Dbit) to (W · (Dmax +Dbit)). The term W represents the image width,
and Dmax represents the maximum disparity range.

Backward Path(j, d) =

{
1 , if CminAssum ≤ Cagg(j − 1, d)

0 , if CminAssum > Cagg(j − 1, d)

Backward MinC Path(j) = arg mind∈[0,D−1]{Cagg(j − 1, d)}
(3.4)

where j ∈ [0, Image Width− 1], and D represents maximum disparity range.

BRAM for backward path (bit) = (W − 1)× (Dmax +Dbit) (3.5)

where W represents scanline width

Dmax is maximum disparity range

Dbit is the bit numberof backward path information

Figure 3.2 is an example shows each backward path information is encoded in one
bit. The red dot represents the path with minimum aggregation cost assumption.

Figure 3.2: Forward pass with backward path encoding

In the backward pass step, the backward path information will be decoded as the
Equation 3.6. When the path decision is 0, the backward entry retains the same disparity.
When the path decision is 1, the backward entry will point to the path with the minimum
aggregation cost assumption. Finally, Figure 3.3 is an example that shows how to decode
the backward path data and traverse the procedure work.

d(j − 1) =

{
Backward MinC Path(j) , if Backward Path(j, d) = 1

d(j) , if Backward Path(j, d) = 0
(3.6)

where j represents image scanline pixels

3.1.3 Dynamic Programming - On-chip Memory Data Mapping

This thesis proposes using only one scanline length of 2-Port Block RAM (BRAM) to
store the backward path data for the Dynamic Programming architecture. 2-Port RAM
allows that writing and reading commands can operate concurrently. As Figure 3.4

3.1. HARDWARE EFFICIENT DYNAMIC PROGRAMMING PROCESSOR 29

Figure 3.3: Example of backward pass with decoded path data

shows, the forward pass loop writes the new incoming backward path data into BRAM;
meanwhile, the backward pass loop reads the backward path data that was generated
for the previous scanline from BRAM. So the Dynamic Programming processor can keep
processing the matching cost inputs and generating disparity output simultaneously in
pipeline architecture. In order to avoid data conflict problem, a relatively sophisticated
address generation mechanism is proposed here. The memory reading address (backward
pass) is generated in a back and forth order, and the memory writing address (forward
pass) will follow the reading address in 1 cycle of delay. Figure 3.5 is an example of
memory address access pattern for 1024 data length of line buffer. By applying the 2-
Port-RAM and a sophisticated address generator, the Dynamic Programming processor
is able to achieve pipeline processing and utilize the on-chip memory efficiently.

Figure 3.4: DP operation sequence

Figure 3.5: Example of 2-Port RAM access patterns

30 CHAPTER 3. STEREO MATCHING ALGORITHM IMPLEMENTATION AND
OPTIMIZATION ON HARDWARE

Figure 3.6: Forward Pass HW design

Figure 3.7: Backward Pass HW design

3.1.4 Dynamic Programming Processor - Hardware Architecture

Finally, a hardware efficient Dynamic Programming architecture is proposed in Fig-
ure 3.6 and Figure 3.7. In the proposed hardware architecture, Equation 3.4 is applied
to construct the forward pass function, which generates encoded backward path infor-
mation. This design expands the maximum parallelism. Both the forward pass and
backward pass computations should be completed within 1 clock cycle. The forward
pass function processes one set of matching cost array at one time. In the meanwhile,
the backward pass function back tracks the path information that was stored in 2-Port
RAM and generates disparity output pixel concurrently.

3.2 Run-Length Coding Algorithm and Disparity Map Se-
quence

In this section, we propose using a run-length coding algorithm to compress disparity
map data. Then we apply this idea to reduce the on-chip memory utilization of Vertical
Voting processor.

From our observation, the output sequence of a disparity map tends to show a long
repetitive disparity value. Figure 3.8 is an example of disparity sequence that is captured
from the output of Dynamic Programming processor. Therefore, it inspired us to encode
the disparity sequence to format [repeat count, disparity value]. This encoding tech-
nique is so called run-length coding (RLC)[39]. The pseudo-code of run-length encoder
and decoder are presented in Equation 1 and Equation 2 separately.

In this thesis, we creatively apply run-length coding algorithm to the Vertical Dispar-
ity Voting processor [62] architecture to reduce the on-chip memory resource. Figure 3.9
shows the original memory architecture of the Vertical Disparity Voting processor. It
takes 30 scanline lengths of 2-Port RAM (line buffer) to buffer the output sequence of
disparity map in a circular memory architecture. This memory architecture is commonly
used in stream processors to include both horizontal and vertical dimensions of pixel data
by using data-reuse technique. However, the 30 line buffers will consume tremendous on-

3.2. RUN-LENGTH CODING ALGORITHM AND DISPARITY MAP SEQUENCE
31

Figure 3.8: Disparity output from dynamic programming function. The depth/disparity
value can be represented in run-length coding format [Repeat count, Disparity value]:
[12, 13], [0, 5], [7, 9], [6, 14], [18, 7], [1, 2], [0, 3], [0, 2], [7, 0], [31, 5], [15, 5].

Algorithm 1 Run-Length Coding: encoder

while (1) do
if (disp 6= next input disp)or(count > max run length) then
output disp← disp
output count← count
disp← next input disp
count← 0

else
count← count+ 1

end if
end while

chip memory resources. Hence, we propose a new memory architecture with run-length
coding mechanism in Figure 3.10.

Different from the circular memory architecture, the proposed memory architecture
only writes the encoded run-length disparity sequence into one line buffer at a time;
meanwhile, the encoded run-length data are fetched out in parallel in order to access
vertical disparity pixels for computation. The MUX array is used to map the disparity
pixels to a corresponding vertical positions. Although the proposed memory architecture
is more sophisticated than the original circular memory architecture, the length of the
line buffers can be reduced dramatically in several magnitudes.

Unfortunately, the run-length coding algorithm does’t generate fixed-length ouputs.
The length of encoded sequence changes depending on the complexity of the disparity

Algorithm 2 Run-length coding: decoder

while (1) do
if (count 6= 0) then
output disp← disp
count← count− 1

else
output disp← next input disp
disp← next input disp
count← next input count

end if
end while

32 CHAPTER 3. STEREO MATCHING ALGORITHM IMPLEMENTATION AND
OPTIMIZATION ON HARDWARE

Figure 3.9: Circular memory architecture for Vertical Diaprity Voting processor

Figure 3.10: Proposed memory reduction architecture with run-length coding

map. In the other words, the length of line buffers should be long enough to store
the compressed disparity sequence. If the length of the compressed disparity sequence
exceeds the length of line buffer, the run-length encoder will discard them. Besides,
the decoder is designed to repeat the last valid disparity pixel when encountering an
incomplete run-length sequence. It shows a tradeoff between the length of line buffers
(on-chip memory resource) and pixel error rate. In the next Chapter, we will further
evaluate the optimal settings based on different complexities of disparity map sequences.

3.3 Temporal Consistency for Disparity Sequence

To solve the inconsistent disparity video problem that was mentioned in Chapter 1, this
section applied a simple cost adjustment method based on Absolute Difference (AD)
algorithm to enforce the temporal consistency of disparity sequence. The temporal con-
sistency method encourages the static background to select the same disparity value
again; contrarily, it encourages motion regions to explore new disparity result. In our
proposed algorithm, the matching cost is adjusted based on the luminance variation of
the pixel in 2 frames. If the luminance of the pixels in current frame remains the same

3.3. TEMPORAL CONSISTENCY FOR DISPARITY SEQUENCE 33

as previous frame, it assumes their disparity value are unchanged. Equation 3.7 shows
the matching raw cost adjustment function. The corresponding raw matching cost to
the disparity value will be scaled down when the absolute difference of pixel luminances
between previous and current frames is less than a defined threshold value.

Craw =

{
Craw(j, d)× α , when (|Y(x,y,t) − Y(x,y,t−1)| < Threshold)and(d = d(x, y, t))

Craw(j, d) , otherwise
(3.7)

where j ∈ [1, Scanline width]

α represents a scaling down coefficient, Y(x,y,t) is the luminance value of the pixel in current

frame; Y(x,y,t−1) is the luminance value of the pixel in previous frame.

Figure 3.11 demonstrates that the corresponding matching cost is modified depending
on the luminance variation of pixels in 2 frames.

Figure 3.11: Example of temporal consistency algorithm in dynamic programming

The on-chip memory is not a cost efficient solution to store complete frame informa-
tion(previous luminance map and disparity map). Hence, we will propose a dedicated
memory hierarchy to support the temporal consistency function in Chapter 5.

34 CHAPTER 3. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

Evaluation of the proposed
Stereo Matching Hardware 4
This chapter summaries the experimental results of our stereo matching engine design.
The proposed algorithms and hardware architectures are co-evaluated from three points
of view:

• Quality of disparity map and disparity sequences

• Hardware utilization and scalibility

• Computational performance

In the beginning of the last chapter, we proposed a stereo matching computational
flow. In Section 4.1, we measure the quality of disparity maps that are generated from
the Stereo Matching Engine with dynamic programming algorithm. In Section 4.2, we
measure the temporal quality of disparity map sequences that are generated from the
Stereo Matching Engine with temporal consistency function. Then, in Section 4.3, we
estimate the hardware usage of the proposed Dynamic Programming Processor design.
Afterward, in Section 4.4, the trade-off between compression rate (length of line buffers)
and pixel error rate are explored based on the proposed on-chip memory architecture with
run-length coding for Vertical Voting Processor. Section 4.5 evaluates the hardware usage
of the entire stereo matching design. Finally, the critical path of the Stereo Matching
Engine design is evaluated in Section 4.6.

4.1 Global Stereo Matching with Dynamic Programming
- Disparity Map Evaluation

The evaluation disparity maps are generated from the hardware model of the stereo
matching algorithm. Since the corresponding hardware RTL designs are implemented in
VHDL, we can generate the disparity map or video sequences by using RTL simulation
tools such as Modelsim and Candence Simulator.

Two evaluation models [16], Root-Mean-Squared Error(RMS) Equation 4.1 and Bad
Matching Pixel(B) Equation 4.2, are usually chosen to measure the disparity map qual-
ity. The generated disparity map is compared with the ground truth disparity map. We
use an academic evaluation benchmark tool, Middlebury Stereo Evaluation Benchmark
[52], which is provided by Middlebury University to execute the measurement. It applies
Bad Matching Pixel model to evaluate disparity map quality. The Middlebury Stereo
Evaluation website provides three error metrics: unconcluded, complete image and dis-
parity discontinuity regions. This provides designer with more flexibility to focus on
improving specific regions.

35

36 CHAPTER 4. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

1. Root-Mean-Squared Error

RMS = (
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2)
1
2 (4.1)

where N is the total number of pixels.

dC(x, y) is computed disparity map and dT (x, y) is ground truth map.

2. Percentage of Bad Matching Pixels

B =
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)| > λd (4.2)

where λd is the disparity error threshold. Normally, it is set to 1.

Four commonly used academic stereoscopic images (including Tsukuba, Venus,
Teddy, and Cones [53]) are tested with our algorithm.

4.1.1 Parameter Exploration for Dynamic Programming Processor

There are two parameters have great effects on the performance of Dynamic Program-
ming Processor. One is the threshold for the absolute difference of adjacent pixel lumi-
nances. If the absolute difference is larger than the threshold, the continuous boundary
is assumed on the disparity map. The other parameter is the smoothness cost penalty
from Potts model smoothness function. If the adjacent pixel is regarded as a discon-
tinuous boundary, the smoothness cost penalty will be scaled down in order to provide
the minimum energy selection function with more flexibility to select other backward
path. By contrast, the smoothness penalty will be kept high in order to preserve the
smoothness (select the same backward path again). In the following, we will explore the
optimal settings for the threshold (thc) and the smoothness cost penalty C.

The evaluation starts from exploring the threshold. Then use the optimal fixed
threshold to explore the smoothness penalty. We do it iteratively until we get the optimal
result. Finally, the evaluation results Figure 4.1 show thc = 15 and C = 5 are the optimal
combination based on the average error rate of four test sets. The optimal error rate
achieves a 6.6% pixel error rate in average on Middlebury’s testbench Figure 4.2. The
disparity map results are shown in Figure 4.3.

4.1.2 Comparison of Local and Global Stereo Matching Approaches

In this subsection, we estimate the quality improvement of the disparity maps with the
help of dynamic programming algorithm. Without global optimization stage, the stereo
algorithm can be regarded as a local approach because it only uses WTA strategy for
matching computation.

Referring to Zhang’s work [63], we improve the winner-take-all stereo matching
method with Dynamic Programming algorithm. Zhang’s work achieves a 8.2% average
error rate on Middlebury’s Benchmark. After applying Dynamic Programming algorithm
in the stereo matching computational flow, the average error rate decreases to 6.6%.

4.1. GLOBAL STEREO MATCHING WITH DYNAMIC PROGRAMMING - DIS-
PARITY MAP EVALUATION 37

Figure 4.1: Parameter exploration for Dynamic Programming

Figure 4.2: Evaluation results from Middleburry’s benchmark

Figure 4.3: Ground truth disparity maps and test disparity maps

38 CHAPTER 4. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

4.2 Temporal Quality Evaluation for Disparity Map Se-
quences

In this section, the temporal quality of disparity map sequences is assessed through two
methods: empirical and VSRS. The main problem of temporal quality evaluation for
disparity map sequences is the lack of ground truth disparity video source. Therefore,
we first adapt empirical observation because it is the most straightforward way to eval-
uate the temporal quality of a disparity map sequences. The other evaluation method
measures the synthesis quality by using View Synthesis Reference Software (VSRS) [46],
which is proposed by MPEG-FTV Group. VSRS requires both left and right disparity
maps that are extracted from multiple or stereoscopic cameras to generate the virtual
central view. The virtual central video sequences are then compared with the true central
video sequences in terms of PSNR. MPEG-FTV Group also provides a model, Temporal
PSPNR [64], to measure the temporal quality of the synthesized view. The PSPNR
model classifies an image into two regions: static and motion regions. It converts the
noise perception sensitivity that is influenced by motion into a probability model. In the
motion regions, three types of noise are differentiated: plain, edge, and texture. There-
fore, we will use VSRS and PSPNR measurement tool 2.0 [64] to measure the temporal
consistency performance of our stereo matching algorithm.

4.2.1 Parameter Exploration for Temporal Consistency

We explore the parameter α, which scales down the matching cost. The scaling parameter
not only influences the consistency effects of disparity map sequences but also affects the
disparity map quality because global algorithm is used. Therefore, we try to explore
the optimal configuration for α. Figure 4.4 illustrates that α = 0.9 achieves the optimal
PSNR and TPSPNR in the 100 frames in Book Arrival test sequences.

Figure 4.4: Exploration of matching cost scaling parameter α with Book Arrival test set

4.2. TEMPORAL QUALITY EVALUATION FOR DISPARITY MAP SEQUENCES
39

4.2.2 Evaluation of Temporal Consistency Function

The following captured disparity map sequences Figure 4.5 demonstrate the stability
of disparity sequence after temporal consistency function is introduced into the stereo
matching algorithm. The flickering and mismatching disparity regions are reduced ob-
viously.

Newspaper video sequence

Depth map sequence without temporal consistency

Depth map sequence with temporal consistency

Book Arrival video sequence

Depth map sequence without temporal consistency

Depth map sequence with temporal consistency

Figure 4.5: Temporal consistency empirical evaluation

Currently there is no standard ground truth video source available for measuring
the consistency of disparity map sequences. One solution is measuring the quality of the

40 CHAPTER 4. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

Figure 4.6: PSNR improvement of temporal consistency

synthesized virtual sequences. To measure the performance of temporal consistency func-
tion, the PSNR and Temporal PSNR of synthesized virtual sequences are summarized
in Figure 4.6 based on 100 frames of Book Arrival test sequences.

4.3 Hardware Resource Estimation of Dynamic Program-
ming Processor

In the last chapter, we proposed a hardware friendly dynamic programming architecture
for Stereo Matching Engine. Hence, the hardware utilization of the Dynamic Program-
ming Processor will be estimated in this section. The RTL circuit gate count is measured
by Cadence RTL compiler with OSU academic TSMC 0.25 library.

4.3.1 Hardware Resource Estimation

Figure 4.7 shows the cell area of RTL circuit. We measure the gate count in different
disparity range scenarios. It shows that the cell area increases linearly when the disparity
range rises.

Figure 4.7: RTL circuit gate count synthesis for Dynamic Programming Processor

4.4. EVALUATION OF THE MEMORY ARCHITECTURE WITH RUN-LENGTH
CODING FOR VERTICAL VOTING PROCESSOR 41

The on-chip memory consumption (BRAM) is evaluated in Figure 4.8. We also ex-
plore the scalability under different disparity ranges. It shows the memory consumption
increases linearly when the disparity range rises. We further compare the improvement
of on-chip memory utilization before applying 2-Port RAM and the path simplification
method. Under the disparity 64 scenario, the BRAM requirement of the Dynamic Pro-
gramming Processor with path simplification design only takes one eleventh of 2-Port
RAM.

Figure 4.8: On-chip memory utilization estimation of Dynamic Programming Processor

4.4 Evaluation of the Memory Architecture with Run-
length Coding for Vertical Voting Processor

In last Chapter, we propose an on-chip memory architecture with run-length en-
coder/decoder to reduce the memory usage of the Vertical Voting Processor. However,
run-length coding is a variable length coding algorithm because the compression rate
various depending on the complexity of disparity sequences. Since the proposed memory
architecture uses fixed length line buffers (BRAM) to store the compressed disparity
scanline pixels, the length of line buffer should be long enough; otherwise, part of the
encoded disparity data will be discarded. Besides, we explore the range of run-length
counter because it relates to the compression efficiency and the BRAM utilization. Thus,
we propose a procedure to explore the trade-off between compression rate, bad pixel rate,
range of run-length counter, and hardware efficiency for different complexities of dispar-
ity sequences.

To measure the error rate that is caused of the truncated length of line buffers and
different complexities of disparity sequences, we evaluate the decoded disparity map with
raw disparity map. Then, the percentage of bad pixels is computed by using Equation 4.2.

4.4.1 Parameter Exploration for the Memory Architecture with Run-
length Coding

Figure 4.9 explores the bad pixel rate under different compression rates (truncated length
line buffer). Several common used stereoscopic test sets including Tsukuba, Venus,

42 CHAPTER 4. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

Teddy, Cones [53], and Outdoor are chosen. First, we extrat the disparity maps that are
directly output from the proposed Dynamic Programming Processor to be the control
group. These disparity maps will be compared with the disparity maps that are generated
from the proposed memory architecture with run-length coding function in bad pixel
error rate.

Figure 4.9: Exploration of truncated line buffer length and pixel error rate

Figure 4.10 shows the disparity maps that are derived from different compression
rates by using the proposed memory architecture with run-length encoder/decoder. The
disparity map, Outdoor, is able to tolerate more than a twenty times of compression
rate without losing quality. This is because of the high simplicity of the disparity map.
In contrast, the disparity map, Cones, can only achive a twelve times of compression
rate without losing quality because of the high complexity of the Cones’ disparity map.
Since the compression rate varies in different disparity map complexities, it should be
adjusted based on applications.

The range of the run length counter is another parameter that should be taken into
consideration when applying run-length coding. Figure 4.11 and Figure 4.12 illustrate
the evaluation results on Outdoor and Cones’ disparity maps when applying different
ranges of run length counter and compression rates. From the observation, the low range
run-length counter can only achieve a low compression rate without quality degradation
because it requires longer length of line buffers to store repetitive disparity sequences. In
contrast, the higher range of run-length counter could achieve higher compression rate
without quality degradation.

In the case of the Cones’ disparity map, the compression rates, without losing qual-
ity, stop increasing after a certain range of run-length counter. In order to achieve
better hardware efficiency, the range of run length counter should be chosen optimally.
The optimal compression rate is explored based on pixel error rate criteria. Table 4.1
estimates the memory consumptions in different truncated lengths of line buffer (com-

4.4. EVALUATION OF THE MEMORY ARCHITECTURE WITH RUN-LENGTH
CODING FOR VERTICAL VOTING PROCESSOR 43

Figure 4.10: Disparity results by using the proposed memory architecture with RLC

Tsukuba Tsukuba 1:1 Tsukuba 1:15 Tsukuba 1:20 Tsukuba 1:30

Venus Venus 1:1 Venus 1:15 Venus 1:20 Venus 1:30

Teddy Teddy 1:1 Teddy 1:15 Teddy 1:20 Teddy 1:30

Cones Cones 1:1 Cones 1:15 Cones 1:20 Cones 1:30

Outdoor Outdoor 1:1 Outdoor 1:25 Outdoor 1:30

pression rate) and different ranges of run length counters. Equation 4.3 illustrates the
memory consumption formula for the proposed memory architecture with run-length
encoder/decoder. Taking the Cones’ disparity map for example, a 32 run-length counter
and 64 truncated length line buffer are the optimal configurations to achieve both optimal
on-chip memory consumption and lossless pixel error rate.

BRAM size = line buffer length×(bit number of run length counter+bit number of disparity value)
(4.3)

4.4.2 Hardware Resource Estimation and Comparison

Finally, we evaluate the hardware cost of the proposed memory architecture for the Ver-
tical Voting Processor. Although the BRAM (line buffer) requirements are reduced by

44 CHAPTER 4. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

Figure 4.11: Explore the range of run length counter (Outdoor)

Figure 4.12: Explore the range of run length counter (Cones)

using the proposed memory architecture with run-length coding, extra logic gate counts
are burdened from extra circuits, including run-length encoder, run-length decoders,
MUX array, and control circuit. Table 4.2 lists the resource usage of two memory archi-
tecture designs for Vertical Voting Processor. The design is measured by Cadence RTL
compiler with OSU TSMC 0.25um library. One of the memory architectures uses 30

Table 4.1: Hardware resource comparison of run length counter and compression rate
Range of Run Length Counter 4 (2 bit) 8 (3 bit) 16 (4 bit) 32 (5 bit) 64 (6 bit) 128 (7 bit) 256 (8 bit)
512 Line Buffer Length(50%) 4096 4608 5120 5632 6144 6656 7168
256 Line Buffer Length(25%) 2048 2304 2560 2816 3072 3328 3584

128 Line Buffer Length(12.5%) 1024 1152 1280 1408 1536 1664 1792
64 Line Buffer Length(6.25%) 512 576 640 704 768 832 896
Assuming the disparity value range is 64 (6 bit) and the full scanline length is 1024

4.5. HARDWARE RESOURCE ESTIMATION OF STEREO MATCHING ENGINE
ON FPGA 45

full line buffers in a circular memory architecture, while the other memory architecture
applies the run-length coding algorithm which contains 31 truncated line buffers with
extra logic counts (1 run-length encoder, 31 runlength decoders, MUX array, and control
logics). We assume the range of run length counter is 32(5bit) and the truncated length
of line buffers is 128(1:8). Comparing the proposed memory and circular memory ar-
chitectures, the BRAM consumption is reduced by 4.75 times but with 10.5k extra gate
overhead.

Table 4.2: On-chip memory architecture resource utilization analysis
Mem Architecture NO. of Line Buffer Line buffer Length Total BRAM (bit) RTL Gate Count(NAND)

Circular 30 1024 245760 0
Proposed 31 64(1:8) 51584 10.5 K

Assuming the scanline length of disparity map is 1024, and one disparity pixel is represented by 8 bits

4.5 Hardware Resource Estimation of Stereo Matching En-
gine on FPGA

We further estimate the improvement of the resource overhead for the stereo matching
engine Table 4.3. On the one hand, the logic gate count of dynamic programming func-
tion is reduced 1.72 times by rewriting the forward pass equation. On the other hand,
the on-chip memory consumption of dynamic programming function is improved 11.4
times by simplifying the backward path information and using 2-Port RAM. Further-
more, the block RAM of vertical voting function is reduced 4.75 times when applying a
run-length coding technique on disparity data compression. Inevitably, the run-length
encoder, decoder and Mux circuit introduce an extra logic gate penalty to the vertical
voting process unit 1.44 times. Finally, the hardware optimization proposals achieve 2.53
times of improvement to the overall on-chip memory consumption and remain almost
the same logic gate count in this thesis work.

Table 4.3: Hardware resource analysis of optimized stereo matching engine
Stereo Matching Engine Yig [59] Proposal

Processor units (x2) LC Comb. LC Reg.
Block Mem

(Bit)
LC Comb. LC Reg.

Block Mem
(Bit)

CT + SRB 2916 1451 498704 2916 1451 498704

Bypass FIFO 24 24 131072 24 24 131072

Raw Cost Scatter 6065 3991 2672 6065 3991 2672

Dynamic Programming 16717 4452 1630208 9300 2212 143360

Disparity Output Logic 9 38 0 9 38 0

Consistency Check 622 1429 0 622 1429 0

Horizontal Voting 10782 9168 624 10782 9168 624

Vertical Voting 10602 8704 491520 15288 10036 103168

SR FIFO for Voting 0 0 294912 0 0 294912

Median Filter 448 389 32768 448 389 32768

Sum 49376 29703 3049712 45454 28738 1207280

46 CHAPTER 4. EVALUATION OF THE PROPOSED STEREO MATCHING
HARDWARE

4.6 Performance Analysis of Stereo Matching Engine on
FPGA

From the report of Synplify Premier, the critical path is located in the forward passing
function of Dynamic Programming Processor, in which 72.4MHz frequency is estimated.
Therefore, the SoC is capable of handling up to standard XGA (1024x768@ 60FPS
65MHz) video format. It is believed that the new generations of FPGA or ASIC can
easily handle higher pixel rate based on our design.

To compare the computational performance with others’ designs, MDE/s (Million
Disparity Evaluation per second) is commonly used to measure the matching performance
despite the implementation platform. The formula of the MDE is listed in Equation 4.4.
Table 4.4 simply compares the computational performance of our design with others’
works. It depicts our design performs a quite good performance in existing SoC solutions.

MDE/s = frame width × frame height × Dmax × FPS (4.4)

Table 4.4: comparison of state-of-art stereo matching implementations
Algorithm Platform Disparity Frame Rate MDE/s
Jin et al. 2010[28] FPGA Virtex-4 64 640X480 @ 230 4521
Our Method FPGA Stratix III 64 1024X768 @ 60 3019
John el al. 2006 [56] Tyzx DeepSea II 52 512x480 @ 200 2600
Jacobi et al. 2010 [27] FPGA Virtex II 64 176x144 @ 52 1420
Masrani [37] FPGAs Transmogri er-4 64 480 x 640 @ 30 330

IMEC 3D Depth Intensity
Adjustable System with Stereo
Matching on FPGA 5
In this chapter, we apply our stereo matching engine to IMEC’s 3D TV SoC to achieve
the depth intensity adjustment function. The depth adjustment function is based on
synthesizing the interpolated virtual view from the stereoscopic cameras/video sources.
Watching from the original left view and the interpolated virtual view, the viewer can
perceive less 3D effects. To generate an interpolated view, both left and right disparity
maps and image sources are required. Hence, we apply the proposed stereo matching
engine to IMEC’s 3D TV system for depth extraction. To support the completely sys-
tem design, peripheral components include video adaptors, color space converters, and
memory hierarchy are designed.

The overview of system architecture is presented in Section 5.1. Then, the individual
function units will be introduced in the following sections. We firstly provide a brief
background of view synthesis engine in Section 5.2. Then we presents the design of color
space converter in Section 5.3. In Section 5.5, we further propose a customized memory
hierarchy to support frame buffering for the temporal consistency function.

5.1 System Architecture Overview

Figure 5.1 reveals the IMEC’s 3D TV SoC architecture. The input stereoscopic sequences
are processed in a pipeline manner through stream processors. The throughput is ex-
pected to match the input pixel clock in order to achieve real-time performance. The
system is composed of five parts: video adaptors, color space converters, stereo matching
engine, memory hierarchy, and view synthesis engine. Anaglyph processor is an option to
adapt conventional 2D display technology. In this thesis works, we design and implement
most of components by ourselves, which includes video adaptors, color space converters,
stereo matching engine, and DDR scheduler. The view synthesis engine is provided by
NCTU(National Chiao Tung University) and IMEC-Taiwan. And we use a DDR2 High
Performance Controller [15] to speed up the development of memory hierarchy.

5.1.1 Function Definition

The function of each component are briefly summarized in Table 5.1. More detail infor-
mation will be introduced in the following sections.

5.1.2 Clock Domain Design

Figure 5.1 and Table 5.1 depicts that the proposed system architecture contains three
clock domains: pixel clock, DDR local interface clock, and DDR clock.

47

48 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

Figure 5.1: Dual DVI receivers scenario

Under the Dual Port DVI inputs scenario, the pixel clock domain is synchronized with
input pixel rate. Taking standard XGA video format (1024X768@60FPS 65MHz) for ex-
ample, the pixel clock rate synchronizes with the input pixel clock rate under 65MHz. In
order to achieve real-time processing, pipeline architecture is applied throughout entired
system. The design of each processor unit must abide by the limitation of critical path.

The proposed Scatter-Gather(SG) DMA components of DDR Scheduler run under
both pixel clock and DDR local interface clock domains. The YCbCr422 and disparity
map streams are gathered in the Dual-Port RAM of SG-DMA device under pixel clock
rate and will be delivered to DDR controller in DDR local interface clock rate. Vice versa
for the data reading operations. Therefore, the Dual-Port RAM plays an important role
as a clock domain bridge.

The DDR2 HPC controller [15] provides two clock rate modes for external interface:
full clock rate and half clock rate. Full data rate mode captures the signal in both clock

5.1. SYSTEM ARCHITECTURE OVERVIEW 49

Table 5.1: Function definition in SoC
Block Function Description Clock Domain
Video Input Adaptor Synchronizes stereo video sources by utilizing

FIFO. The other task is to filter out the incom-
plete input pixels and output complete valid
frame pixels

clk pixel

RGB to YCbCr422 Converts RGB 444 to YCbCr 422 format clk pixel
Stereo Matching Engine
(Dynamic Programming)

Extracts left and right disparity maps with the
help of Dynamic Programming function

clk pixel

DDR Scheduler It includes multiple Scatter-Gather DMAs and
an arbiter for frame buffering

clk pixel/clk local

DDR2 HPC DDR2 high performance controller IP from Al-
tera.

clk local/clk ddr

VS Adaptor Fetches image and disparity map streams for
View Synthesis Engine based on standard
video timing

clk pixel

View Synthesis View Synthesis Engine generates the in-
between virtual view from stereoscopic video
sources (YCbCr 422 format) and dispairty
maps

clk pixel

YCbCr422 to RGB Converts YCbCr 422 back to RGB444 format clk pixel
Anaglyph Generates anaglyph video for 2D TV clk pixel
Video Out Adapter Generates video timing signals (hsync/vsync)

and outputs 3D content
clk pixel

edges, whereas half rate mode captures the signal at the positive edge of clock but requires
double data width. The half-rate solution allows the bus works in double bandwidth for
a given number of data pins when the external logic is frequency limited. Generally,
the half clock rate mode is chosen because it provides lower clock rate limitation to
user interface but remain the same throughput as full clock rate mode. In the proposed
system Figure 5.1, the external interface of DDR2 controller works under 150 MHz and
DDR wirks under 300 MHz.

5.1.3 System On-chip Interconnection

Avalon Stream Interface (Avalong ST) protocol [14] is applied to the video processing
data path because it can handle the stream computational flow properly. The interface
is illustrated in Figure 5.2, which contains DATA, VALID, RREADY, SOP, and EOP
signals. The pin width of data signal is user-defined so it provides great flexibility for
designers. The READY signal generates back pressure to Data Source block when Data
Sink block is unable to accept any incoming data. The back pressure stops the pipeline
output from Data Source block. As a result, the Data Source block will also generate
pressure (READY = 0) back to its superior block. Finally, the SOP (start of packet)
and EOP (end of packet) signals are reserved to indicate the start and end points of a
frame.

For the interface between stream processing units and DDR controller, a multi-port

50 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

Figure 5.2: Avalon Interface

front end memory controller, DDR Scheduler, is proposed instead of using conventional
standard bus protocol such as Wishbone, OCP, ARM, ARM and AHB. The dedicated
DDR Scheduler is able to operate off-chip memory access stand alone without additional
processor core. Multiple components include SG-DMA devices, Mux, and Arbiter are
integrated in side of DDR Scheduler to enhance memory efficiency. Since it is mainly
designed for stream processing application, the interface adapts Avalon ST protocol.
Furthermore, the interface between the DDR Scheduler and DDR2 high performance
controller is configured to DDR local interface [15].

5.2 Background of View Synthesis Engine

The view point synthesis engine is co-designed by NCTU and IMEC-Taiwan. It is capable
of generating virtual interpolated views from stereoscopic images and depth maps. The
view synthesis engine design has three stages: depth maps forward wrapping, texture
reverse wrapping, and blending/hole-filling stages. Figure 5.3 illustrates the high level
architecture of View Synthesis Engine.

In the depth maps forward wrapping stage, two virtual depth views are generated
separately from left and right depth maps. In texture reverse warping stage, the new
virtual views are produced from mapping the texture of original image based on the
virtual depth view information. In the last stage, the new generated virtual view is
refined with blending and hole filling functions.

5.3 Video Adaptor Design and Implementation

Video Input Adaptor outputs synchronized left and right sequence streams, and it guar-
antees the output pixels start from the first pixel of a frame. Since the DVI sources are
not synchronized all the time, the Video Input Adaptor is designed to synchronize left
and right DVI input streams by using FIFOs. The other task of Video Input Adaptor is
to filter the incomplete pixel signals of a frame in the intial stage. Figure 5.4 illustrates
the standard VGA signal format. In the initial stage, the state machine of Video Input
Adaptor waits for the positive edge of v sync signal in order to confirm the beginning

5.3. VIDEO ADAPTOR DESIGN AND IMPLEMENTATION 51

Figure 5.3: High level architecture of View Synthesis Engine

pixel of a frame. Afterward, the following valid pixel data are regarded as valid frame
pixels for output.

Figure 5.4: Standard VGA signal format

View Synthesis Adaptor (VS Adaptor) is designed to fetch out both stereo disparity
map and image sequences (YCbCr422) from DDR Scheduler to View Synthesis Engine.
The data fetching timing is generated based on the valid pixel signal of standard VGA
format. Because the pre-fetch mechanism of DDR Scheduler, VS Adaptor can acquire
the disparity and YCbCr422 pixel streams in the first cycle without delay.

Finally, the Video Output Adaptor exports the synthesized sterescopic sequences in
standard VGA timing to DVO port for display.

52 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

5.4 Color Space Convertor Design and Implementation

YCbCr image format has been used in many popular video applications such as MPEG1-
4, H.261-4, and JPEG etc. In the IMEC’s 3D TV SoC design, the stereo matching
engine takes the luminance information of pixel for depth extraction, and viewpoint
synthesis engine also receives the YCbCr format of stereoscopic sequences. Since the
input sequences from DVI are RGB format, the Color Space Converters are required.
In Sub-section 5.4.1, we provides the background of color space conversion. Before
proposing the hardware design, the background of floating point to integer mathematic
approaches will be introduced in Sub-section 5.4.2. Then the hardware designs of color
space converter will be presented in Sub-section 5.4.3.

5.4.1 Background of Color Space Conversion

The YCbCr model defines a color space that contains one luminance (Y) and two chromi-
nance (Cr and Cb) elements [50]. More specifically, Y represents perceptual brightness,
and Cr and Cb represent blue-luminance and red-luminance differences. Figure 5.5 il-
lustrates YCbCr information that are extracted from RGB format image. In reality,
human eye is more sensitive to the luminance variation of an image, whereas it is poor
to differentiate subtle color variasion. Therefore, the chrominance information, Cr and
Cb, could be down-sampled. Hence, YCbCr color format is broadly used in industry.

Figure 5.5: Example of RGB and YCbCr Format

YCbCr color space was defined in ITU-R 601 [25] and ITU-R 709 [26] standards for
worldwide digital component video format. In the scaled YCbCr color space format, Y
is in the range of 16 to 235, and Cb and Cr are in the range of 16 to 240.

YCbCr format can be converted from RGB source. There are two commonly used
standards for color space conversion: ITU-R BT. 601 and ITU-R BT. 709. ITU-R
BT.601 [25] defines its coefficient vector for Standard TV, whereas ITU-R BT.709 [26]
possesses different coefficient vector for High-Definition TV. Equation 5.1 is an example
that demonstrates RGB to ITU-R 601 full-range YCbCr format. Equation 5.2 is that
inversion vector to convert the YCbCr signal back to RGB format.

1. RGB to Full Range YCbCr Format Y
Cb
Cr

 =

 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081

RG
B

 (5.1)

5.4. COLOR SPACE CONVERTOR DESIGN AND IMPLEMENTATION 53

2. Full Range YCbCr to RGB FormatRG
B

 =

1 0 0.114
1 −0.343 −0.711
1 1.765 0

 Y
Cb
Cr

 (5.2)

In YCbCr format, A:B:C notation is used to describe the sample factor of Cb and
Cr (chrominance) components that relative to Y (luminance) component. The first digit
indicates the sub-sampling factor of luminance component on vertical domains. The
second digit specifies the sub-sampling factor of Cb and Cr components on horizontal
domains. The third digit represents the sub-sampling factor of Cb and Cr on vertical
domains. Table 5.2 lists the commonly used YCbCr formats in A:B:C notation.

Table 5.2: Common used YCbCr formats based on A:B:C notation

Unfortunately, down-sampling and up-sampling chrominance components introduce
the artificial colour information which doesn’t exist in the original image; therefore the
image quality will be slightly different after the conversion. In here, we compare three
common used interpolation methods for chrominance up-sampling: nearest neighbor in-
terpolation, bicubic interpolation, and fractal interpolation. Firstly, the nearest neighbor
interpolation approach duplicates the information of adjacent pixels. This method is the
most hardware efficiency option. However, this tends to make the chrominance channel
looks blocky, and accentuates the jaggedness. Secondly, bicubic interpolation is more
sophisticated and produces smoother edges than bilinear interpolation. It calculates the
missing gap position by interpolating four adjacent pixels with weight. Finally, the frac-
tal interpolation [42] is broadly used for enlarging object as retaining the shape. The
result is more cleaner, sharper edges, less halos and blurring around the edges than bicu-
bic interpolation would do. In this thesis work, we will only adopt the nearest neighbor
interpolation method to implement the up-sampling function.

54 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

5.4.2 Background of Floating Point to Integer Mathematic Approaches

Fixed-point approach is preferable than floating-point when implementing digital system
because of computation simplicity. Fixed-point approximation is a common technique
to operate floating point calculation in integer format. The floating-point variables are
firstly scaled up and rounded to integers. So the following calculations can be fully
operated under numerical mathematics. After the numerical calculations, the result will
be rounded and scaled down.

Recalling the RGB-YCbCr conversion Equation 5.1 (ITU-R 601 Full Range Format),
RGB signals are fixed point variable and the coefficient matrix are also represented in
floating point. The floating point coefficients are good candidate to implement integer
approximation. Thus, the RGB-YCbCr conversion equations can be rewritten as the
following two equations where the original floating-point coefficients are scaled up to
constant numbers by multiplying 256. After the numerical calculation, the final sum
of each channel will be divided by 256. In digital system, the divide operand can be
achieved by bit shifting technique.

RGB to YCbCr Conversion Range

Y = clip(rounding(77 ∗R+ 150 ∗G+ 29 ∗B) >> 8 + 0) Y = [0− 255]
Cb = clip(rounding(−43 ∗R− 85 ∗G+ 128 ∗B) >> 8 + 128) Cb = [0− 255]
Cr = clip(rounding(128 ∗R− 107 ∗G− 21 ∗B) >> 8 + 128) Cr = [0− 255]

where the clip function returns 255 when the sum excesses 255; it returns 0 when the sum is

negative number. In equation Y, +0 is for the base range; in equation Cb and Cr, +128 is to

ensure the final integer values is positive number.

YCbCr to RGB Conversion Range

CB = Cb− 128
CR = Cr − 128
R = rounding and clip((128 ∗ Y + 358 ∗ CR) R = [0− 255]
G = rounding and clip((128 ∗ Y − 88 ∗ CB + 182 ∗ CR) G = [0− 255]
B = rounding and clip((128 ∗ Y + 452 ∗ CB) B = [0− 255]

When applying integer approximation, rounding is an important factor which affects
the computational precision. The commonly used rounding methods are round towards
zero and round half up. Round towards zero (truncate or round away from infinity)
method directly truncates the fraction part and keeps the integer portion. In contrar-
ily, round half up method rounds towards n̈earest neighborünless both neighbors are
equidistant, in which case round up. For example, 11.5 will be rounded to 12. This is
the rounding mode that is typically taught in schools. In next chapter, we will further
compare the above mentioned rounding methods to the quality losses during color space
conversions.

5.4. COLOR SPACE CONVERTOR DESIGN AND IMPLEMENTATION 55

5.4.3 Hardware Architecture Design and Implementations

Figure 5.6 illustrates the computation flow of the color space conversion in the 3D Depth
Intensity Adjustable System. The incoming pixel sequences in RGB format will be
converted into YCbCr color space in the beginning. The luminance component Y will
support Stereo Matching Engine. Simultaneously, the YCbCr streams will be further
down-sampling to YCbCr 422 format and stored in DDR2. In the last stage of the
IMEC 3D TV System, the YCbCr 422 format streams will be converted back to RGB
format for display.

Figure 5.6: Color space conversion flow

Equation 5.4.2 is rewritten in Equation 5.4.3 which turns the round half up function
into calculation. Then the hardware structure is showed in Figure 5.7.

HW:RGB to YCbCr Conversion Range

Y = clip((77 ∗R+ 150 ∗G+ 29 ∗B + 128) >> 8) Y = [0− 255]
Cb = clip((−43 ∗R− 85 ∗G+ 128 ∗B + 32768) >> 8) Cb = [0− 255]
Cr = clip((128 ∗R− 107 ∗G− 21 ∗B + 32768) >> 8) Cr = [0− 255]

Figure 5.7: RGB to YCbCr Processor Unit

Since the proposed RGB-YCbCr hardware structure requires nine multipliers, we fur-
ther consider the design of constant multiplier in two approaches to reduce the hardware
utilization and latency.

56 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

Firstly, constant multiplier can be simply illustrated as Wireshifter-Add/Sub sce-
nario. Since the constant is fixed, it is possible to implement one constant multiplier by
multiple Wireshifter-Add/Sub operands in parallel. For example, constant 77 is the sum
of 64, 8, 4, and 1. To multiply R and number 64, 8 and 4 are able to be computed with
bit shift technique in digital system. Therefore, we can apply the Wireshifter-Add/Sub
scenario to all constant multipliers in RGB-YCbCr processor unit as Figure 5.8. The
main advantage of Wireshift-Add/Sub architecture is the low hardware utilization.

Figure 5.8: Constant multiplier implementation (77) with Wireshifter-Add/Sub archi-
tecture

The major problem of the constant multiplier in the first proposed design is lack of
flexibility. The convertion vector (coefficients) will be unchangeable once the standard
is predefined. Therefore, we introduces look up table (LUT) approach into the design
of constant multiplier. One approach is utilized full look up table to store the complete
product results of color value and fixed point coefficient but it takes tremendous on-chip
memory. To reduce the on-chip memory requirement, the solution is to improve the
shift-and-add Multiplication method [5] with two look up table [33]. Figure 5.9 shows
the 8 bit multiplicand can be separated to upper 4 bit nibble and lower 4 bit nibble
and perform multiple operations with 4x8 LUTs. Hence, each look up table only has
4 bit address which points to 16 entries. Figure 5.10 illustrates the LUT configuration
for constant 77. Finally, we sum up the two products with a 12 bit adder. The sum of
adder is assigned to upper 12 bits of final product result. The full hardware architecture
of constant multiplier is implemented in Figure 5.11. Although this approach takes a
extra hardware utilization than the first approach, it keeps the flexibility to cope with
different standards in run-time configuration.

Figure 5.9: upper 4 bit nibble and lower 4 bit nibble multiplication

5.5. MEMORY HIERARCHY DESIGN AND IMPLEMENTATION 57

Figure 5.10: 16 Entries of Look Up Table for multiplying constant 77

Figure 5.11: 8x8 Constant multiplier with two 4x8 LUTs and Adder

5.5 Memory Hierarchy Design and Implementation

Although FPGA/ASIC is capable of achieving high computational power with the help
of parallelism, the on-chip memory is still relatively limited because of cost concern.
Off-chip memory is a solution for the case of great memory consumption. Therefore,
this section proposes a memory hierarchy to support the 3D Depth Intensity Adjustable
System implementation.

Sub-section 5.5.1 firstly analyzes the off-chip bandwidth and critical latency require-
ments for the 3D Depth Intensity Adjustment System. In Section 5.5.2, a memory
hierarchy design which includes SG-DMA, arbiter, and DDR controller is proposed to
support stream processor units.

5.5.1 Memory Architecture Analysis for Stream Processing

In this thesis work, we utilize DDR2 SDRAM as off-chip memory. The DDR2 SDRAM
bandwidth can be formulas as Equation 5.3 [1].

Bandwidth = SDRAM Bus Width× 2 Clock Edges× Frequency of Operation× Efficiency
(5.3)

When the DDR SDRAM component has 64 bit bus width working under 300 MHz,
the maximum available bandwidth achieves 64×2×300MHz×100% = 38.4Gbps in the-
ory. However, the bus efficiency is alternative depending on the factors include command
latency, refresh period, and access addresses. To increase the memory access efficiency,
we summarize the suggestions from Altera[1] as following:

1. Accessing continuous addresses is preferable than random addresses. This related
to data mapping.

2. Series of write or read commands is preferable than interlaced write/read opera-
tions.

3. Accessing different row introduces extra latencies because active command has to
be executed again.

58 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

4. Well-controlled refresh timing contributes to better efficiency.

In the proposed memory hierarchy architecture Figure 5.12, seven Scatter-Gather
DMA devices access to the DDR controller: two data writing SG-DMA and five data
reading SG-DMA devices. The required throughput can be calculated based on Equa-
tion 5.4. Table 5.3 is an example shows the total throughput when processing XGA
video format (1024x768 @60FPS). The sum of required throughput is 8.305G bps which
consumes 22% of total bandwidth.

Figure 5.12: Proposed Memory Hierarchy

Throughput = Frame Rate× Frame Width× Frame Height× Pixel Format× Channel Number
(5.4)

Table 5.3: System memory breakdown
Memory Access Components Throughput (G bps) Critical Latency

IMG WR 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

TC PRV DEPTH RD 60× 1024× 768× 8× 2 = 0.755 Internal buffer length ×16

TC PRV IMG RD 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

TC CUR IMG RD 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

DEPTH WR 60× 1024× 768× 8× 2 = 0.755 Internal buffer length ×16

IMG RD 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

DEPTH RD 60× 1024× 768× 8× 2 = 0.755 Internal buffer length ×16

Total 8.305

5.5. MEMORY HIERARCHY DESIGN AND IMPLEMENTATION 59

5.5.2 Memory Architecture Design for Stream Processing

In the IMEC 3D TV SoC, off-chip memory is required to implement frame buffering.
Since temporal disparity consistency mechanism is presented to strengthen the consis-
tency between disparity maps, the disparity value and luminance value of the pixel from
previous and current frames are required the calculation. Furthermore, the disparity
map and image information are needed again in View Point Synthesis Processor unit.
Therefore, we propose a memory hierarchy with customized Scatter-Gather DMAs, Ar-
biter, DDR controller, and off-chip SDRAM (DDR2) to support the SoC. The memory
hierarchy is designed to access multiple frame buffers simultaneously without delay.

Data locality has to be analyzed first. The goal is to keep the frequently used data on
chip in order to reduce the off-chip bus overhead. Slide window technique is a solution
which is broadly used in our stream processor unit designs such as median filter, support
region builder, and disparity voting units. The processing data includes horizontal and
vertical direction of image pixels. The line buffers(2-Port BRAM) in the on-chip memory
architecture are used to store and propagate stream data in a circular manner. This
architecture is able to serve the pixels include vertical domain. Figure 5.13 is an example
that shows the on-chip memory architecture for 5x5 slide window application [40]. As
the demonstration in Figure 5.14, each scanline data will be reused 4 times when the
slide window shifts to next row.

Figure 5.13: 5x5 slide window operation

Figure 5.14: Example of data reuse: the weaved texture region represents the data reuse
zone in slide window application

When large storage space is required and impossible to keep them locality, off-chip
memory structure will be needed. Figure 5.15 shows the proposed memory hierarchy

60 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

for frame buffering in this thesis work. This memory hierarchy contains four parts:
Scatter-Gather DMAs (SG-DMA), Arbiter, memory controller, and off-chip memory.

Figure 5.15: Proposed memory hierarchy for frame buffering

Dual-Port block RAM plays an important role in the proposed memory hierarchy.
On the one hand, the transfer latency between function units and off-chip memory can
be hid by a series of burst operations with the help of Dual-Port RAM. On the other
hand, the Dual-Port RAM is able to deal with the data crossing tasks. To achieve
higher off-chip memory bandwidth, the off-chip memory controller usually works in a
higher frequency. Memory can execute both write and read operations in different clock
domains. In addition, the Dual-Port RAM can be regarded as buffer for data packing
and reordering, which makes the off-chip memory bandwidth be efficient.

To construct the memory hierarchy for IMEC 3D TV system, latency constraints
have to be explored. In order to achieve real-time performance, stream data are
computed throughout processor units in pipeline architecture. Any pending will
produce back pressure through the system. It means the frame buffer should be able to
store input stream continuously. In the other hand, frame buffers are designed to serve
stream data in the first cycle with zero latency whenever the function unit asserts data
request signal. In order to achieve the latency constraint, line buffers (Dual-Port RAM)
and pre-fetch technique are used to hide the latency.

[SG-DMA Design]

Figure 5.16 shows a SG-DMA design to handle data writing task for frame buffer
function. It contains three parts: Write to lb control unit, Dual port line buffer, and

5.5. MEMORY HIERARCHY DESIGN AND IMPLEMENTATION 61

Write to DDR control unit. This structure passes input data crossing two different clock
domains. The Write to lb control unit concatenates consecutive input pixels to the data
width that fits for burst and stores it in the Dual port line buffer in pixel clock domain
(CLK1). The data width of the Dual port line buffer is set to the product of DDR burst
length and DDR data width. Figure 5.17 shows how the image pixels(YCbCr 4:2:2)
and disparity map pixels be concatenated. In the YCbCr 422 scenario, each address
space of Dual port line buffer contains 8 sets of YCbCr 422 stereoscopic pixels. In the
disparity map pixel scenario, each address space of Dual port line buffer contains 16
sets of disparity stereoscopic pixels. When any one of Dual port line buffers is full,
Write to DDR control unit launches bus request signal to Arbiter. The Write to DDR
control unit works in the way as a dependent DMA controller. After the writing authority
is confirmed by Arbiter, the Write to DDR control unit will start to transfer the data
from Dual port line buffer to DDR controller in a higher clock rate (CLK2) to gain
more off-chip memory bandwidth. All in all, the proposed SG-DMA writing mechanism
guarantees that the input data can be stored into off-chip memory continuously without
pending.

Figure 5.16: SG-DMA architecture for write function

Figure 5.17: Example of data concatenation

62 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

Figure 5.18 shows a SG-DMA design to handle data pre-fetch task for frame buffer
function. It contains three parts: Read Line Buffer control unit, Dual port line buffer,
and Read from DDR control unit. This structure pre-fetches frame data from DDR
then outputs in stream whenever processing unit requests. Firstly, Read from DDR
control unit will preload one scan line of concatenated stream data from DDR to the
Dual port line buffer after the first scan line data have been bursted into off-chip mem-
ory. When external function unit requires the stream data from frame buffer, the
Read from lb control unit will unpack the concatenated data from Dual port line buffer
and outputs the data stream pixel by pixel. In the meaning while, the Read from DDR
control unit will monitor the condition of Dual port line buffer devices. If any one of
Dual port line buffer devices is empty, the Read from DDR control unit will send a pre-
fetch request to the Arbiter in order to get the access authority of off-chip memory. The
proposed SG-DMA reading mechanism guarantees that the requested external function
units will never suffer from data starving.

Figure 5.18: SG-DMA architecture for read function

The access addresses to off-chip memory are generated from the address generator
which is placed in both Write to DDR control unit Figure 5.16 and Read from DDR
control unit Figure 5.18. The address generator cooperates with a state machine. It
makes the SG-DMA components capable of working independently without the control
of CPU. In the proposed SoC, we choose DDR2 to implement the off-chip memory.
The address of DDR2 includes row address, bank address, column address and chip
select signals. Each row is divided into banks, and each bank is composed of columns.
Currently one dimension linear address and two dimensions block-based address are the
most commonly-used address generation patterns in video processing applications [34].
In one dimensional address generator scenario, the 1-D address generator automatically
generates addresses linearly by giving the offset address and access length. The 2-D
address generator is designed for block based processing units such as MPEG 2 motion
estimation and DCT. Group writing or reading in consecutive addresses is prefferable
because the operations such as accessing different row or interlaced commands intro-
duces additional latencies. Fortunately, 1-D address generator has already fulfilled the
requirement of frame buffer function in this thesis work. In order to make multiple
frame buffers working simultaneously, each frame buffer is assigned to an offset address
(index address) and an address range (data length) in off-chip memory. Therefore, the
address generator in each SG-DMA component (WR/RD) can generate the physical
address by summing up the offset address and a counter. Of course the range of the
counter is defined based on the frame size and data width. The detail of memory

5.5. MEMORY HIERARCHY DESIGN AND IMPLEMENTATION 63

allocation will be further introduced in the next section.

[Arbiter]
Arbiter is designed to manage the access schedule of SG-DMA devices to off-chip

memory. More specifically, the Arbiter decides which SG-DMA device be served first.
The most commonly used scheduling policies are round-robin, first in first serve and
fixed priority mechanisms. Round-robin policy repeatedly checks all memory bus
requirements and provides even opportunity to all request devices. However, there is an
uncertainty to predict and guarantee the waiting latency for the latency sensitive device.
In contrarily, fixed priority policy assigns priority to each off-chip memory bus request
device based on its latency and bandwidth constraints. However, the lower priority
devices are easily suffered from data starving when the devices with higher priority
occupy the channel all the time. [34] In the proposed Arbiter design, both priority and
round-robin policies are implemented in RTL code.

[Memory Hierarchy Interconnection]

1. Interface between SG-DMAs and Arbiter

In order to reduce the system complexity, SG-DMA devices and DDR controller
are connected directly through an Arbiter. We abandon the conventional standard
bus design such as AMBA, Avalon, Wishbone, etc. Instead, the Arbiter not only
responses of managing access schedule but also in charge of switching the chan-
nel (DDR Local Interface) between multiple SG-DMA devices and DDR controller
5.19 with MUX.

Figure 5.19: The interface between SG-DMA and Arbiter

The interface between SG-DMA devices and Arbiter abides by Virtual Component
Interface (VCI) protocol. The Virtual Component Interface is an interface rather
than a bus. The design follows request-response protocol, contents and coding
for the transfer of requests and responses. Flexibility and adaptive are the main
advantages of using VCI protocol. To deal with the interface between SG-DMA
devices and Arbiter, a handshaking procedure is illustrated in Figure 5.20.

(a) SG-DMA asserts request signal for the access authority of DDR local Interface
channel

64 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

Figure 5.20: Handshaking protocol between SG-DMA and Arbiter

(b) When the channel is available, arbiter assigns memory access acknowledg-
ment to the SG-DMA request device. After the SG-DMA possesses the chan-
nel authority, it starts to transmit memory read/write commands to DDR
controller.

(c) After SG-DMA finishes memory read/write operations, the request signal will
be retracted.

(d) Arbiter releases the acknowledgement and ready to cope with next request.

2. Interface between stream processors and SG-DMA

The interface between stream processors and SG-DMA devices abides by Avalon
ST protocol [14] in Figure 5.21. The main advantage of using this structure is the
Ready signal indicates back pressure to the source unit. When the Sink unit is
readied to accept data, the Ready signal is asserted. Otherwise the Ready signal
will be de-asserted to pause the data sending from its source port. When the SG-
DMA is configured for writing off-chip memory, it is defined as a data sink device
and the external stream processor is defined as a data source device. In contrarily,
SG-DMA is defined as a data source device and the external stream processor is
defined as data sink device when the SG-DMA is configured for reading off-chip
memory.

Figure 5.21: Avalon stream interface between processing unit and SG-DMA

[Memory Allocation]

5.5. MEMORY HIERARCHY DESIGN AND IMPLEMENTATION 65

The memory allocation in the off-chip memory (DDR2 SDRAM) contains two parts:
stereo image frame buffer and disparity map buffer. The memory spaces for theose two
frame buffers are calculated in the following:

1. Image (L/R) frame buffer

The memory space for image frame buffer can be calculated in Equation 5.5. Taking
standard XGA video for example, it requires 2× 2× 1024× 768× 16 = 50331648
bits memory space.

Image(L/R) Frame Buffer Space = 2(current and previous frame)×
2(stereo left and right channels)× Frame Width× Frame Height

×16bit(Y CbCr422 Pixel Format)

(5.5)

Assuming that the data width of SDRAM is 64 bits, we can concatenate two sets
of left and right YCbCr 422 pixel pairs into one memory address. Therefore, the
required memory space is calculated in Equation 5.6. Taking standard XGA video
for example, a range of 2 × 2 × 1024 × 768 × 16/64 = 786432 physical memory
addresses are needed for buffering two frames.

Image Frame Buffer Address Range = 2(current and previous frame)

×2(stereo left and right channels)× Frame WidthxFrame

Heightx16bit(Y CbCr422 Pixel Format)/64(DDR2 data width)

(5.6)

2. Disparity map (L/R) frame buffer

The memory space for disparity map frame buffer can be calculated in 5.7. Taking
standard XGA video for example, it requires 2 × 2 × 1024 × 768 × 8 = 25165824
bits memory space.

Disparity Map(L/R) Frame Buffer Space = 2(current and previous frame)

×2(stereo left and right channels)× Frame Width× Frame Height

×8bits(0− 255 disparity range)
(5.7)

Assuming that the data width of SDRAM is 64 bit, we concatenate four sets of
disparity pixel pairs that from left and right channels into one memory address.
Therefore, the required memory address space can be calculated as Equation 5.8.
Taking standard XGA video for example, a range of 2× 2× 1024× 768× 8/64 =
393216 physical memory addresses are needed for buffering two frames.

Disparity Frame Buffer Address Range = 2(current and previous frame)

×2(stereo left and right channels)× Frame Width× Frame Height

×8bits(0− 255 disparity range)/64(DDR2 data width)
(5.8)

66 CHAPTER 5. IMEC 3D DEPTH INTENSITY ADJUSTABLE SYSTEM WITH
STEREO MATCHING ON FPGA

Figure 5.22 is an example shows the address generating patterns according to the
storage data allocation. To generate the physical access address for a frame buffer, the
offset address is accumulated with the burst size to gain the efficiency. If the burst size
is 4 and the data width is 64 bit, DDR controller will bursts 256 bits into 4 addresses
from/to SDRAM in one single reading/writing command. Then the accumulated result
can be further mapped on SDRAM address. In general, SDRAM address includes chip
select, row, bank, and column addresses. It is prefferable to perform group writing or
reading commands consecutively but avoiding row changes in order to achieve higher
off-chip memory bus efficiency. On the one hand, row switching should be avoid, which
introduces extra latencies. On the other hand, it is possible to refresh other banks when
accessing one bank in the same row.

Figure 5.22: Example of address generation pattern

IMEC 3D TV SoC Evaluation
and Experimental Result 6
In Section 6.1, we firstly evaluate the color space converter designs. Then we will test
the IMEC 3D TV system SoC architecture at the system level. Section 6.2 will measure
the quality of interpolated virtual view by using PSNR model. In addition, we analyze
the temporal quality of the interpolated video sequences by TPSNR model. Then the
component hardware costs are estimated in Section 6.3. Finally, the real-time perfor-
mance of the system is estimated in Section 6.4. This work ensure the critical path of the
entire SoC system and the bandwidth of off-chip memory achieve the real-time criterias.

6.1 Color Space Converter Design Evaluation

This part evaluates the color space converter designs according to their quality, hardware
resource, and latency.

6.1.1 Quality Evaluation

This sub-section evaluates the quality degradation from color space conversions. After
the RGB-YCbCr-RGB color space conversions, some color information will lose because
of the round-off errors of floating point to integer. If the integer approach adopts a lower
scaling resolution to implement floating math calculation, the result will be far from
the floating point math approach. In addition, video quality degrades when applying
down-sampling and up-sampling conversions. Although the luminance component is
kept, parts of the chroma (Cb and Cr) information are discarded during down-sampling.

Table 6.2 illustrates the evaluation statistic of different RGB-YCbCr-RGB ap-
proaches by using PSNR model. The PSNR model is measured from comparing original
input image and inverted output image. The higher PSNR represents the less loss of
color information during conversions. In general, the PSNR result is required to be more
than 30db-40db so that the human eye will not easily notice the degradation of image
quality. This table exams eight approaches based on ITU-R 601 and ITU-R 709. As
well, five test images are chosen and shown on Table 6.1. We chose the frequently-used
test picture, Lena, for image processing evaluation. The rest of four images (Tsukuba,
Venus, Teddy, and Cones [53]) are the test sets from stereo matching society. Of course
theose pictures are not the only test candidates. The test set can be expanded to video
so that the PSNR can be computed in average value.

The result of Table 6.2 shows that the accuracy of all kind of YCbCr 4:4:4 approaches
without chroma sampling. The difference between the original image and the image after
conversion is hardly noticeable. It also shows that the wider range of pixel resolution
(0-255) achieves slightly higher accuracy than the lower range of pixel (16-235-240).
It is found that chroma sampling (YCbCr 4:2:2 and YCbCr 4:2:0) conversion causes

67

68 CHAPTER 6. IMEC 3D TV SOC EVALUATION AND EXPERIMENTAL
RESULT

Table 6.1: Test sets

Lena Tsukuba Venus Teddy Cones

tremendous quality degradation to test images. The more chroma samples that are
excluded during sub sampling, the more color information is lost.

Table 6.2: PSNR evaluation for different color space conversion standards
Color Format/Sample Rate/Data Range

/ Computation Approach
PSNR Lena
(512x512)

PSNR Tsukuba
(512x512)

PSNR Venus
(434x383)

PSNR Teddy
(450x375)

PSNR Cones
(450x375)

YCbCr 444 ITU601 8bit 0-255 floating maths 52.994 52.891 52.633 52.833 52.783
YCbCr 422 ITU601 8bit 0-255 floating maths 47.016 40.783 35.689 34.511 32.906
YCbCr 420 ITU601 8bit 0-255 floating maths 46.204 38.076 33.541 32.205 31.184
YCbCr 444 ITU601 8bit 0-255 integer maths (8bit) 52.000 52.793 52.393 52.650 53.569
YCbCr 422 ITU601 8bit 0-255 integer maths (8bit) 46.739 40.777 35.682 34.508 32.906
YCbCr 420 ITU601 8bit 0-255 integer maths (8bit) 45.988 38.073 33.538 32.205 31.183
YCbCr 444 ITU601 8bit 16-235-240 floating maths 50.002 49.918 49.950 49.884 49.875
YCbCr 422 ITU601 8bit 16-235-240 floating maths 46.044 40.550 35.623 34.446 32.854
YCbCr 420 ITU601 8bit 16-235-240 floating maths 45.370 37.960 33.503 32.164 31.146
YCbCr 444 ITU601 8bit 16-235-240 integer (8bit) 51.735 52.014 51.429 51.727 51.599
YCbCr 422 ITU601 8bit 16-235-240 integer (8bit) 46.665 40.727 35.656 34.493 32.893
YCbCr 420 ITU601 8bit 16-235-240 integer (8bit) 45.913 38.053 33.518 32.194 31.176
YCbCr 444 ITU709 8bit 0-255 floating maths 53.042 53.170 53.083 53.040 53.055
YCbCr 422 ITU709 8bit 0-255 floating maths 46.679 40.442 35.303 34.039 32.362
YCbCr 420 ITU709 8bit 0-255 floating maths 45.872 37.753 33.122 31.719 30.657
YCbCr 444 ITU709 8bit 0-255 floating maths 52.064 52.965 51.685 52.473 52.279
YCbCr 422 ITU709 8bit 0-255 floating maths 46.442 40.419 35.289 34.035 32.353
YCbCr 420 ITU709 8bit 0-255 floating maths 45.652 37.744 33.114 31.718 30.653
YCbCr 444 ITU709 8bit 16-235-240 floating maths 51.740 51.933 51.803 51.701 51.724
YCbCr 422 ITU709 8bit 16-235-240 floating maths 46.348 40.374 35.281 34.026 32.348
YCbCr 420 ITU709 8bit 16-235-240 floating maths 45.582 37.728 33.106 31.715 30.649
YCbCr 444 ITU709 8bit 16-235-240 integer (8bit) 49.372 50.775 50.485 49.307 49.776
YCbCr 422 ITU709 8bit 16-235-240 integer (8bit) 45.546 40.325 35.253 33.995 32.338
YCbCr 420 ITU709 8bit 16-235-240 integer (8bit) 44.900 37.707 33.091 31.705 30.638

Since floating point approach is much complicated for hardware implementation,
fixed point approach is preferred option. It scales up the floating point coefficients to
integers in color space transform. Table 6.3 evaluates several scaling up resolution from
four bit (256) to ten bit (1024). As a result, the lower scaling up resolution delivers a
lower quality of output image. From the observations, the result of PSNR by using 6
bit (128) scaling up resolution approximates to the result of PSNR in the floating point
approach. Thus, from our experiment, it is possible to use less hardware resources to
achieve a quality result with the fixed point approach.

Two commonly used rounding approaches were mentioned: rounding towards zero
and rounding to the nearest neighbor. Therefore we measure those two rounding methods
in the software. Table 6.4 illustrates that the rounding to nearest method keeps a higher
PSNR than rounding to nearest method. From our observation, rounding to the nearest
method is strongly recommended to be implemented in the color space converter, in
order to keep the quality.

6.1. COLOR SPACE CONVERTER DESIGN EVALUATION 69

Table 6.3: scale resolutions of integer approximation from four bit (256) to ten bit (1024)
Color Format/Sample Rate/Data Range

/ Computation Approach
PSNR Lena
(512x512)

PSNR Tsukuba
(512x512)

PSNR Venus
(434x383)

PSNR Teddy
(450x375)

PSNR Cones
(450x375)

YCbCr 444 ITU601 8bit 0-255 integer maths(4bit) 34.603 35.176 36.043 34.943 35.530
YCbCr 422 ITU601 8bit 0-255 integer maths(4bit) 34.418 34.146 32.893 31.764 31.099
YCbCr 420 ITU601 8bit 0-255 integer maths(4bit) 34.376 33.407 31.630 30.403 29.919
YCbCr 444 ITU601 8bit 0-255 integer maths(6bit) 51.360 52.849 51.241 50.489 50.083
YCbCr 422 ITU601 8bit 0-255 integer maths(6bit) 46.547 40.758 35.635 34.434 32.835
YCbCr 420 ITU601 8bit 0-255 integer maths(6bit) 45.781 38.059 33.495 32.145 31.129
YCbCr 444 ITU601 8bit 0-255 integer maths(8bit) 52.000 52.793 52.393 52.650 53.569
YCbCr 422 ITU601 8bit 0-255 integer maths(8bit) 46.739 40.777 35.682 34.508 32.906
YCbCr 420 ITU601 8bit 0-255 integer maths(8bit) 45.988 38.073 33.538 32.205 31.183
YCbCr 444 ITU601 8bit 0-255 integer maths(10bit) 53.015 52.880 52.668 52.842 52.787
YCbCr 422 ITU601 8bit 0-255 integer maths(10bit) 47.021 40.782 35.691 34.512 32.907
YCbCr 420 ITU601 8bit 0-255 integer maths(10bit) 46.208 38.075 33.543 32.206 31.185
YCbCr 444 ITU601 8bit 0-255 floating maths 52.994 52.891 52.633 52.833 52.783
YCbCr 422 ITU601 8bit 0-255 floating maths 47.016 40.783 35.689 34.511 32.906
YCbCr 420 ITU601 8bit 0-255 floating maths 46.204 38.076 33.541 32.205 31.184
YCbCr 444 ITU709 8bit 0-255 integer maths(4bit) 29.805 34.856 32.200 30.914 31.159
YCbCr 422 ITU709 8bit 0-255 integer maths(4bit) 29.750 33.775 30.593 29.223 28.722
YCbCr 420 ITU709 8bit 0-255 integer maths(4bit) 29.724 33.072 29.771 28.309 27.913
YCbCr 444 ITU709 8bit 0-255 integer maths(6bit) 39.324 44.407 42.774 41.366 41.844
YCbCr 422 ITU709 8bit 0-255 integer maths(6bit) 38.744 39.033 34.576 33.327 31.914
YCbCr 420 ITU709 8bit 0-255 integer maths(6bit) 38.625 37.005 32.638 31.276 30.340
YCbCr 444 ITU709 8bit 0-255 integer maths(8bit) 52.064 52.965 51.685 52.473 52.279
YCbCr 422 ITU709 8bit 0-255 integer maths(8bit) 46.442 40.419 35.289 34.035 32.353
YCbCr 420 ITU709 8bit 0-255 integer maths(8bit) 45.652 37.744 33.114 31.718 30.653
YCbCr 444 ITU709 8bit 0-255 integer maths(10bit) 52.929 53.140 53.048 53.033 53.042
YCbCr 422 ITU709 8bit 0-255 integer maths(10bit) 46.654 40.441 35.304 34.042 32.364
YCbCr 420 ITU709 8bit 0-255 integer maths(10bit) 45.855 37.753 33.123 31.722 30.661
YCbCr 444 ITU709 8bit 0-255 floating maths 53.042 53.170 53.083 53.040 53.055
YCbCr 422 ITU709 8bit 0-255 floating maths 46.679 40.442 35.303 34.039 32.362
YCbCr 420 ITU709 8bit 0-255 floating maths 45.872 37.753 33.122 31.719 30.657

Table 6.4: Rounding approach evaluation
Color Format/Sample Rate/Data Range

/ Computation Approach
PSNR Lena
(512x512)

PSNR Tsukuba
(512x512)

PSNR Venus
(434x383)

PSNR Teddy
(450x375)

PSNR Cones
(450x375)

YCbCr 444 ITU709 0-255 8bit
floating maths with rounding to nearest

53.042 53.170 53.083 53.040 53.055

YCbCr 444 ITU709 0-255 8bit
floating maths with round towards zero

43.589 43.612 43.695 43.665 43.619

YCbCr 444 ITU709 0-255 8bit
integer maths (8bit) with rounding to nearest

52.064 52.965 51.685 52.473 52.279

YCbCr 444 ITU709 0-255 8bit
integer maths (8bit) with round towards zero

42.487 43.238 42.407 43.244 42.714

6.1.2 Hardware Utilization Evalution

In Table 6.5, we further calculate the requirements of look up table (LUT) for imple-
menting a 8x8 constant multiplier in different scale resolutions. In this table, constant
multipliers are implemented in the Full LUT and 2LUTs-Adder structure that was intro-
duced in Chapter 4. From the observations, the size of LUT increases in linear when the
coefficient resolution increases. This table also shows that the 2LUTs-Adder structure
takes much less hardware resource.

Table 6.5: Hardware resource comparison of Full LUT Size approach and 2LUT-Adder
approach

Adder approach Full LUT Size 2 LUT+Adder
LUT Size

Improvement

Gate Count 4bit coefficient 256 entries x(8+4)=3072 2x16 entries x(4+4)=256 12

Gate Count 6bit coefficient 256 entries x(8+6)=3584 2x16 entries x(4+6)=320 11.2

Gate Count 8bit coefficient 256 entries x(8+8)=4096 2x16 entries x(4+8)=384 10.67

Gate Count 10bit coefficient 256 entries x(8+10)=4608 2x16 entries x(4+10)=448 10.29

Gate Count 12bit coefficient 256 entries x(8+12)=5120 2x16 entries x(4+12)=512 10

70 CHAPTER 6. IMEC 3D TV SOC EVALUATION AND EXPERIMENTAL
RESULT

Finally, Table 6.6 evaluates the resource consumption of RGB-YCbCr color space
converters by using three different common constant multipliers (8x8) on Altera Quar-
tus II9.1. A RGB-YCbCr444 converter requires 9 constant multipliers and 9 adders.
From the observation, Full LUT constant multiplier consumes a great amount of Block
ROMs size. 2LUTs-Adder constant multiplier solution takes a little bit more combina-
tional resource than Full LUT approach but only requires one-tenth of the block ROM.
WireShift-AddSub approach takes the minimum hardware resource because it is com-
posed of wire-shift and adders. Obviously, the wireshift-AddSub approach provides the
lowest cost solution for implementing the constant multiplier of color space converter.
And the 2 LUTs-Adder approach not only consumes low Block ROM resources but also
keeps the flexibility to different convertion vectors.

Table 6.6: Hardware utilization analysis of RGB to YCbCr converter
Constant Multiplier approach Full LUT approach 2 LUTs-Adder Wireshift-Add/Sub approach
LC Combinational 157(9 adder) 256(18 adder) 354 (28 adder)
LC Registers 10 9 33
Block ROMs (bits) 36864 3456 0

The worst case propagation delay of RGB to YCbCr converter for both 2LUTs-Adder
and Wireshift-AddSub approaches is further evaluated by the synthesizing tool, Sinplify
Premier, with stratix III library. The result shows the RGB-YCbCr converter with
2LUTs-Adder constant multiplier has a 0.66 ns execution propagation delay because of
the look up table structure. This means the clock rate can achieve up to 979.8MHz. In
the case of RGB to YCbCr converter with Wireshift-AddSub constant multiplier, the
propagation delay is around 3.4ns. The clock rate can achieve 297 MHz.

6.2 Quality Evaluation

To assess the output video quality of our 3D TV system, the synthesized virtual video
is compared with the true interpolated video by using PSNR model [49] [12]. The
interpolated position is defined to be located in the center of two stereo cameras as
shown in Figure 6.1. Then the quality of the synthesized virtual view from our system
will be monitored in PSNR value.

We compare the synthesis sequences from IMEC 3D TV system design with the
synthesis sequences from Depth Estimation Reference Software (DERS) [47] and View
Synthesis Reference Software (VSRS) [46]. Both DERS and VSRS were contributed
from the MPEG community. It is worth noting that DERS requires three camera views
to generate each disparity map. In our design, only two views are required. DERS ap-
plies a Graph Cut stereo matching algorithm, a global optimization method. Compared
to our stereo matching algorithm, Dynamic Programming is chosen to implement the
global optimization function. In the disparity map refinement stage, DERS uses image
segmentation and plane fitting; whereas, we use cross-based support region disparity
voting. Besides, DERS also equips with a cost adjustment mechanism for temporal con-
sistency enhancement; the cost adjustment condition is based on block-based motion
detection. The motion detection mechanism applies Mean of Absolute Different (MAD)

6.2. QUALITY EVALUATION 71

Figure 6.1: Interpolated video evaluation structure for our system

algorithm on a 16x16 block. Contrarily, in our case, we apply Absolute Different (AD) on
single pixels in order to reduce the computation complexity. Figure 6.3 shows the virtual
view evaluation results for 100 frames of Book Arrival stereo sequences. Obviously, the
DERS solution achieves a higher video quality because the computational complexity of
the algorithm itself is much higher than ours.

Figure 6.2: Interpolated video evaluation structure for DERS+VSRS

Finally, several anaglyph outputs with different depth intensity from our proposed
system are captured and demonstrated in Figure 6.4.

72 CHAPTER 6. IMEC 3D TV SOC EVALUATION AND EXPERIMENTAL
RESULT

Figure 6.3: Quality evaluation for Book Arrival

Figure 6.4: Anaglyph outputs for different depth intensity

6.3 Hardware Utilization Estimation

To estimate the hardware utilization of the 3D TV SoC design, we use Synplify Premier
and Stratix III library. Table 6.7 concludes the hardware utilization of each processor
unit on EP3SL150 FPGA. The default length of line buffers is set to 1024 in order
to handle up to XGA format VGA video. It shows that the stereo matching engine
consumes a large portion of the logic gates and block memory resources in the system.

6.4 Evaluation of Real-Time Performance

We evaluate the real-time performance of the proposed IMEC 3DTV SoC architecture
on FPGA. There are three clock domains in the proposed system: pixel clock, DDR con-
troller local clock, and DDR clock. Based on the clock frequency, the timing constraints
of our designs are checked because it definitely shows much real-time performance this
system can achieve.

6.4. EVALUATION OF REAL-TIME PERFORMANCE 73

Table 6.7: Hardware resource utilization summary on EP3SL150 FPGA
Processor Units LC Comb. LC Reg. Block Mem Bits
Video Input Adaptor 27 52 0
RGB → YUV422 (X 2) 708 66 0
Stereo Matching Engine-D64 (X 2) 46970 27921 1207280
DDR W/R Scheduler 2745 1163 393216
DDR2 HPC controller 2312 2560 5120
VS Adaptor 142 148 0
View Synthesis Enginse 4854 16989 598196
YUV422 → RGB (X 2) 524 176 0
Anaglyph 11 7 192
Video Out Adapter 126 87 0
Sum of Hardware Utilization 58419 49169 2204004
Available Hardware Resource 113600 113600 5630976
Hardware Utilization Rate 51.4% 43.3% 39.1%

In the pixel clock domain, the clock frequency is synchronized with the input pixel
clock. Since our processing units process the stream data in pipeline throughout the
system, the critical path of the design has to follow the timing constraint of the pixel
clock. From the report of Synplify Premier, the critical path lies to the Stereo Matcher
Engine, in which 72.4MHz frequency is estimated. Therefore, the SoC can process up
to standard XGA (1024x768@60FPS 65MHz under 65 MHz Pixel Rate) video format on
EP3SL150FPGA.

The memory hierarchy crosses both pixel and DDR controller local clock domains.
The report of Synplify Premier shows that the circuit works on pixel clock domain can
achieve a maximum of 275.4MHz, and the other part of the circuit that works on DDR
clock domain can achieve a maximum of 311.7MHz. Since the pixel clock rate is far
lower than the pixel clock rate in the proposed SoC, and the DDR controller local clock
domain is 150MHz in our default setting, this proves that the worst case latency is still
in the range of critical latency.

In what follows, we further evaluate the real-time performance of the customized
memory hierarchy design. We first evaluate the bandwidth requirement of stream pro-
cessors based on different standard video input sources in Table 6.8. The interface
between DDR Scheduler and DDR controller are working at half the DDR clock rate,
which is 150MHz, and the DDR is working at 300MHz. The bandwidth usage shows it
is sufficient to support a stream processor in all kinds of standard VGA formats.

Table 6.8: Throughput estimation based on standard VGA video source
Format VGA SVGA XGA HD-720p Sbs Full HD-1080p
Frame Size 640X480 800X600 1024X768 1280x720 Side-by-side 1920x1080
Pixel Rate (MHz) 25.175 40 65 74.15 148.5 (half rate 74.25)
Frame per Second 60 60 60 60 60
Throughput (G bit/s) 3.26 5.07 8.3 9.73 10.95
Bandwidth Utilization (%) 10.5 16.3 26.7 31.3 35.2

However, the command efficiency is not guaranteed to support the critical latency re-

74 CHAPTER 6. IMEC 3D TV SOC EVALUATION AND EXPERIMENTAL
RESULT

quirement of each SG-DMA device. Stream processors access frame buffers continuously.
If the critical latency of the SG-DMA is not fulfilled, stream processor will suffer from
data starvation or data congestion. Extra latencies might be contributed from DDR
refresh period, pre-charge time, command activate time, DDR controller latency, or Ar-
biter latency. Figure 6.5 is an example that depicts the long latencies which includes
regions (1), (2), (3) and (4).

Figure 6.5: Example of latencies during burst reading

To ensure no critical latency constrains of SG-DMA devices are violated, a simulation
environment is built as Figure 6.6. The memory and controller models [15] are gener-
ated from VHDL from Altera Quartus II 9.1. The device under test (DUT) includes
multiple SG-DMA components, Arbiter, DDR controller, and DDR model. To trigger
the operation of SG-DMA component, the data access patterns of stream processors are
generated based on standard video timing with pipeline delays. Finally, the worst case
latencies of SG-DMA devices are monitored on Simulation tool (Modelsim).

Since the design of SG-DMA devices uses long data burst technique, we try to esti-
mate the impacts of different burst lengths to the efficiency. Table 6.9 reveals different
burst length configurations to bus efficiency. In this experiment, the data access pattern
is based on the signal timing of XGA (1024x768@60FPS under 65 MHz Pixel Rate). The
DDR SDRAM model works at 300 MHz, and the local interface of DDR controller works
at 150 MHz with burst size 4. The result shows long burst length facilitate the com-
mand efficiency because extra latencies are shared in one long burst. In contrarily, short
burst length dampens the command efficiency because extra latencies are frequently in-
troduced from command switching. The final result shows the top three burst length
configurations can pass the critical latency constrain in worst case scenario.

Table 6.9: Burst length settings and critical latency analysis
Burst Length

(Line Buffer Length)
Command

number(cycle)
Commands + Worst
case latencies(cycle)

Command
Efficiency(%)

Critical
Latency(cycle)

Latency
Violation

Image Depth

256 128 1408 1573 89.5 2048 Pass

128 64 704 869 81 1024 Pass

64 32 352 507 69.4 512 Pass

32 16 176 341 51.6 256 Fail

16 8 88 249 35.3 128 Fail

6.4. EVALUATION OF REAL-TIME PERFORMANCE 75

Figure 6.6: Memory hierarchy evaluation environment

76 CHAPTER 6. CONCLUSION AND FUTURE WORKS

Conclusion and Future Works 7
This chapter summarizes entire thesis work. In Section 7.1, the proposals and experi-
mental results are concluded. Then we review each chapter and present the contributions
in Section 7.2. Finally, the future works and relative applications are suggested in Sec-
tion 7.3.

7.1 Conclusion

Two improvements for stereo matching algorithm have been introduced and proofed in
this thesis. In order to generate high quality disparity map, the dynamic programming
algorithm is used. We select Potts model as the smoothness function because it performs
outstandingly in the disparity discontinuous regions and requires less computational com-
plexity. From the test result of Middlebury’s benchmark, our stereo matching algorithm
achieves a 6.6% average pixel error rate. In order reinforce the temporal consistency
of disparity sequences, we adjust the raw matching cost based on the history disparity
map result and pixel-based motion information. The final disparity map sequences is
improved addressing to the flickering problem.

In this thesis we provide two ideas to improve the hardware utilization of the stereo
matching engine. By taking the advantage of Potts model smoothness function, we pro-
posed a hardware efficient architecture. The back track path data is simplified by only
recording the encoded path information(decision). Furthermore, we apply 2-Port BRAM
with a sophisticate memory address generation pattern to reduce the on-chip memory
requirement to half, compared to the conventional ping-pong memory architecture. The
on-chip memory requirement of dynamic programming processor is reduced by 11 times
without losing the quality in the case of 64 disparity range. As well, we creatively in-
troduce run-length coding (RLC) algorithm into the post-processor of stereo matching
engine in order to reduce memory consumption. This thesis found the disparity sequence
is a perfect candidate to implement RLC algorithm. The experiment shows that it can
achieve above 4.75 times of compression rate with nearly lossless quality. So we further
propose an on-chip memory architecture with RLC coder/decoder for the vertical voting
processor. Finally, the resource consumption of our stereo matching engine is reduced
dramatically after applying memory compression techniques on dynamic programming
and post processor functions. The on-chip memory of the stereo matching engine is opti-
mized by 2.53 times. So far, the stereo matching engine only takes 40% of combinational
logic, 25.3% of register and 21% of bit on-chip Block RAM on EP3SL150 FPGA.

In the system implementation work, we successfully implement IMEC’s 3D TV SoC
with EP3SL150 FPGA, which allows the 3D intensity of stereoscopic contents become
adjustable. The proposed system architecture is mainly composed of five parts: video
adaptors, color space converters, stereo matching engine, memory hierarchy, and view

77

78 CHAPTER 7. CONCLUSION AND FUTURE WORKS

synthesis engine. The video adaptor designs successfully synchronize input streams and
output complete video frame pixels in a standard timing sequence. Then we design the
color space converters and provide two low cost constant multiplier solutions, based on
the requirement of flexibility. Furthermore, the proposed memory hierarchy successfully
supports the temporal consistency function of stereo matching and view point synthesis
blocks for frame buffering. The memory hierarchy hides the DDR access latency by long
burst with the help of 2-Port RAM. The total throughput achieves the required 8.035G
bits with a 81% command efficiency. Finally, we integrate the above mentioned works
with our stereo matching engine and NCTU’s view synthesis engine. The stereo video
sources and disparity streams are properly calculated to generate an accurate virtual
view from the viewpoint synthesis engine. According to the report of quality evaluation,
the interpolated videos achieve average 34.7db PSNR and 50db TPSPNR in Book Arrival
test sequences which show an acceptable video quality for 3D TV application. To display
3D video on screen, we insert an anaglyph IP into the proposed system to generate two
dimension video for conventional 3D monitor. Through the proposed system, an audience
is able to adjust the depth intensity of stereoscopic 3D contents by the on-board buttons
and watch the 3D video in true real-time.

7.2 Summary of Chapters and Contributions

Chapter 1 points out that 3D visual comfort is required by viewers. Due to the depth
comfort region, variously dependent on the viewer and display technology, adaptive 3D
contents is a challenge for the existing 3D content standards. Therefore, this thesis
aims to provide a SoC solution to support depth intensity adjustment. In this chap-
ter, we point out the spatial and temporal quality issues in generating synthesized 3D
contents. We also point out that the hardware overhead is introduced by applying dy-
namic programming algorithm which performs global optimization in a stereo matching
computational flow.

Chapter 2 provides a background overview of the stereo matching algorithm. This
chapter first sum up the common stereo matching flows in both local and global stereo
matching approaches. Then the relevant researches for individual steps, including match-
ing cost generation, stereo matching computation, global optimization, and refinements,
are concluded. Since we are interesting in global optimization approach, the background
of dynamic programming approach is explained explicitly.

In Chapter 3, we introduce the dynamic programming algorithm into the stereo
matching computational flow. This thesis further propose a hardware efficient dynamic
programming architecture by taking the advantage of Potts model smoothness function.
A backtrack path data simplification method and a sophisticated 2-Port BRAM access
pattern were presented to reduce the on-chip memory requirement. However, the on-chip
memory consumptions of the preprocessor and the postprocessor in the stereo match-
ing engine are still large. Therefore, we propose an on-chip memory architecture with
run-length coding algorithm to reduce the memory consumption of the vertical voting
processor in disparity voting function. Finally, we insert matching cost updating tech-
nique into the stereo matching algorithm in order to enhance the temporal consistency
of disparity sequences.

7.2. SUMMARY OF CHAPTERS AND CONTRIBUTIONS 79

In Chapter 4, several proposals from Chapter 3 are evaluated. We first measure the
quality of test disparity maps. It achieves a 6.6% average pixel error rate in Middlebury’s
benchmark. Then we evaluate the hardware utilization and scalability of the Dynamic
Programming Processor. The hardware utilization of the proposed hardware efficient
Dynamic Programming Processor was estimated. The on-chip memory shows an 11
times of improvement without quality being lost in 64 disparity range scenario. Another
memory optimization proposal is in the vertical voting processor. The proposed memory
architecture with run-length coding encoderdecoder is explored based on the tradeoff of
compression rate and pixel error rate. We developed an evaluation flow to search for
the optimal parameter settings. The proposed memory architecture shows above a 12
times of improvement without quality being lost in 5 test sets. Finally, the total on-
chip memory utilization of the stereo matching engine is optimized by 2.53 times in the
above-mentioned designs.

In Chapter 5, the 3D TV System SoC architecture is designed and implemented on
EP3SL150 FPGA. The SoC architecture includes Video Adaptors, Color Space Con-
verter, Stereo Matching Engine, memory hierarchy, and View Synthesis Engine. We
designed most of the components, except the viewpoint synthesis engine (support by
NCTU and IMEC-Taiwan) and DDR controller (Altera’s IP). In the beginning, we pro-
vided a system architecture overview from three aspects: function definition, clock do-
main, and system on-chip interconnection. Then the individual component designs are
presented. First, the background of view synthesis algorithm is given. Then the Video
InputOutput Adaptors are proposed to synchronize and control the incoming and dis-
play sequences based on standard VGA signal. Afterward, we present the RGB-YCbCr
Color Space Converter designs. Two hardware-friendly constant multiplier configura-
tions for the color space converter, Wireshift-AddSub and 2LUT-Adder approaches, are
proposed. Finally, a customized memory hierarchy is constructed to support frame
buffering for stream processors. The memory architecture contains SG-DMA, arbiter,
memory controller, and off-chip memory. The SG-DMA and arbiter are integrated into
DDR Scheduler block, which can work alone without extra processor kernel and standard
on-chip bus to increase the efficiency. The proposed memory hierarchy is designed to
hide the data read-and-write latency by long data burst and data pre-fetch scheduling.

Chapter 6 evaluates the entire 3D TV SoC design from three aspects: quality, hard-
ware utilization, and real-time performance. With the support from memory hierarchy,
the temporal consistency function works on the stereo matching engine and generates
stable and accurate depth map video for viewpoint synthesis engine. The experiment
shows the interpolated view achieves an average 34.7db PSNR and 50 db TPSPNR in
Book Arrival test sequences. We analyzed the entired SoC design from hardware utiliza-
tion aspect. To analyse the real-time performance, we start from evaluating the memory
hierarchy design in a worst case latency and detected the command efficiency under
different burst lengths, in the case of the SoC. The critical latency of each SG-DMA
device is monitored and verified on both simulation tool and FPGA. Finally, the critical
paths of stream processors are estimated by synthesis tool. The analysis shows that it
can process up to XGA standard video format (1024x768@60FPS 65MHz under 65 MHz
Pixel Rate) on EP3SL150 FPGA.

80 CHAPTER 7. CONCLUSION AND FUTURE WORKS

7.3 Future Work and Application Development

Regarding the current processing unit designs, there are several aspects can be improved.
The proposed idea will be introduced as follows.

1. Rendering better disparity mapvideo is a motivation to improve the Stereo Match-
ing Engine. The matching cost generation algorithm can be further improved in
order to achieve high quality disparity map. The global optimization algorithm
can also be improved since the scanline-based dynamic programming algorithm is
applied. In the scanline-based dynamic programming algorithm, the global opti-
mization is only restricted to single scanline. There is a lack of connection between
scanlines. In addition, the temporal consistency of disparity video can be improved
since the current system is only using pixel-based motion detection mechanism.
The pixel-based motion detection mechanism is still relativelly simple and can be
improved in advance.

In the resource utilization aspect, dynamic programming algorithm requires a large
memory space for storing the backward pass information. We have introduced a
specific compression method by using Potts model smoothness function in Chapter
4. However, it is unable to cover other smoothness function models such as linear
and second ordered models. Besides, the pre-processor and post-processor still
take a large among of onchip memory because of the cross-based disparity voting
algorithm. A hardware-friendly stereo matching algorithm with both hardware
efficiency and accuracy is expected.

2. The proposed memory hierarchy will integrate with extra processing units. For
example, H.264 codec can be extended into HD3DTV processing unit, and it will
consume a large amount of off-chip bandwidth. Thus, both critical latency-aware
arbiter and high efficient off-chip memory controller will be strongly required to
achieve the quality of service (QoS).

3. Standard network on chip bus such as AHB, OCB, Wishbone etc. can be introduced
into the SoC system when the number of processing units are expended. For
example, a standard bus structure could be built to deal with the interconnections
between processing units and off-chip memory controllers.

All in all, the technologies in the proposed IMEC’s 3D TV SoC can be applied to many
applications such as object tracking, 3D reconstruction, navigation system, gesture detec-
tion, 3D digital camera and eye-gazing view point interpolation, as potential examples.
There is no doubt that 3D-related technologies will influence our lives profoundly in the
near future soon to come.

Bibliography

[1] Altera, The efficiency of the ddr & ddr2 sdram controller compiler, May 2011.

[2] Pedram Azad, Tilo Gockel, and R’diger Dillmann, Computer vision: Principles and
practice, elektor, 2008.

[3] C. Banz, H. Blume, and P. Pirsch, Real-time semi-global matching disparity estima-
tion on the gpu, ICCV Workshops, IEEE (2011).

[4] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, Real-time stereo vi-
sion system using semi-global matching disparity estimation: Architecture and fpga-
implementation, Embedded Computer Systems (SAMOS) (2010).

[5] Z. F. Baruch, Structure of computer systems, page 62, isbn 973-8335-44-2, U. T.
PRES, Cluj-Napoca, 2002.

[6] Michael Bleyer, Margrit Gelautz, Carsten Rother, and Christoph Rhemann, A stereo
approach that handles the matting problem via image warping.

[7] Yuri Boykov, Olga Veksler, and Ramin Zabih, Fast approximate energy minimization
via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence
(2001).

[8] G. Bradsky and A. Kaehler, Learning opencv, O’Reilly, 2008.

[9] N.Y.-C. Chang, Tsung-Hsien Tsai, Bo-Hsiung Hsu, Yi-Chun Chen, and Tian-
Sheuan Chang, Algorithm and architecture of disparity estimation with mini-census
adaptive support weight, Circuits and Systems for Video Technology (2010).

[10] Y.C. Chang, Y.C. Tseng, and T.S. Chang, Analysis of color space and similarity
measure impact on stereo block matching, IEEE Asia Pacific Conference, In Circuits
and Systems APCCAS (2008).

[11] A.Y.C. Chen and J.J. Corso, Temporally consistent multi-class video-object segmen-
tation with the video graph-shifts algorithm, IEEE Workshop on Applications of
Computer Vision (WACV) (2011).

[12] Wei Chen, Jerome Fournier, Marcus Barkowsky, and Patrick Le Callet, New re-
quirements of subjective video quality assessment methodologies for 3dtv, VPQM
(2010).

[13] C. Cigla and A.A. Alatan, Temporally consistent dense depth map estimation via
belief propagation, 3DTV Conference: The True Vision - Capture, Transmission and
Display of 3D Video (2009).

[14] Altera Coperation, Avalon interface specifications, May 2005.

81

82 BIBLIOGRAPHY

[15] Altera Corp., Ddr and ddr2 sdram high-performance controller user guide, March
2009.

[16] Scharstein D., Szeliski R., and Zabih R., A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms, IEEE Workshop, Stereo and Multi-Baseline
Vision (2001).

[17] N. A. Dodgson, Autostereo displays: 3d without glasses, EID ’97.

[18] Zeng fu Wang and Zhi gang Zheng, A region based stereo matching algorithm using
cooperative optimization, CVPR 2008.

[19] Stefan Gehrig, Felix Eberli, and Thomas Meyer, A real-time low-power stereo vision
engine using semi-global matching, ICVS (2009).

[20] Minglun Gong and Yee-Hong Yang, Real-time stereo matching using orthogonal
reliability-based dynamic programming, Image Processing, IEEE (2007).

[21] Hirschmuller H. and Scharstein D., Evaluation of stereo matching costs on im-
ages with radiometric differences, Pattern Analysis and Machine Intelligence, IEEE
Transactions (2009).

[22] Richard Hartley and Andrew Zisserman, Multiple view geometry, CVPR, June 1999.

[23] Heiko Hirschmuller, Accurate and efficient stereo processing by semi-global matching
and mutual information, IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (2005).

[24] Asmaa Hosni, Michael Bleyer, Margrit Gelautz, and Christoph Rhemann, Local
stereo matching using geodesic support, IEEE, ICIP (2009).

[25] ITU, Recommendation bt.601, 2011.

[26] , Recommendation bt.709, 2011.

[27] Ricardo P. Jacobi, Renato B. Cardoso, and Geovany A. Borges, A reconfigurable
matrix for stereo vision processing, 20th International Parallel and Distributed Pro-
cessing Symposium IPDPS (2006).

[28] Seunghun Jin, Junguk Cho, Xuan Dai Pham, Kyoung Mu Lee, Sung-Kee Park,
Munsang Kim, and Jae Wook Jeon, Fpga design and implementation of a real-
time stereo vision system, IEEE Transactions on Circuits and Systems for Video
Technology (2010).

[29] Kuk jin Yoon Student Member In So Kweon, Adaptive support-weight approach for
correspondence search, IEEE Trans. PAMI (2006).

[30] T. Kanade and M. Okutomi, A stereo matching algorithm with an adaptive window:
Theory and experiments, IEEE Transactions on Pattern Analysis and Machine In-
telligence 16 (1994), 9.

BIBLIOGRAPHY 83

[31] Jae Chul Kim, Kyoung Mu Lee, Byoung Tae Choi, and Sang Uk Lee, A dense
stereo matching using two-pass dynamic programming with generalized ground con-
trol points, CVPR 2005. IEEE.

[32] A. Klaus, M. Sormann, and K. Karner, Segment-based stereo matching using belief
propagation and a self-adapting dissimilarity measure, ICPR 2006.

[33] Steve Knapp, Constant-coefficient multipliers save fpga space and time, EDA (1998).

[34] Kun-Bin Lee, Tzu-Chieh Lin, and Chein-Wei Jen, An efficient quality-aware mem-
ory controller for multimedia platform soc, IEEE Circuits and Systems for Video
Technology (2005).

[35] Carlos Leung and Brian C. Lovell, An energy minimisation approach to stereo-
temporal dense reconstruction, Proc. International Conference on Pattern Recogni-
tion (2004).

[36] Humenberger M., Engelke T., and Kubinger W., A census-based stereo vision al-
gorithm using modified semi-global matching and plane fitting to improve matching
quality, IEEE Computer Society Conference , Computer Vision and Pattern Recog-
nition Workshops (CVPRW) (2010).

[37] D.K. Masrani and W.J. MacLean, A real-time large disparity range stereo-system
using fpgas, IEEE International Conference on Computer Vision Systems (2006).

[38] Stefano Mattoccia, Stereo vision:algorithms and applications, \www.vision.deis.
unibo.it/smatt, May 2011.

[39] Mark Nelson, The data compression book, M&T Books, 1992.

[40] Daggu Venkateshwar Rao, Shruti Patil, Naveen Anne Babu, and V Muthukumar,
Implementation and evaluation of image processing algorithms on reconfigurable ar-
chitecture using c-based hardware descriptive languages, 2006.

[41] R.I.Hartley and A. Zisserman, Multiple view geometry in computer vision, Cam-
bridge University Press, 2000.

[42] Gary Sullivan and Stephen Estrop, Video rendering with 8-bit yuv formats, Microsoft
Digital Media Division (2002).

[43] Jian Sun, Yin Li, Sing Bing, and Kang Heung yeung Shum, Symmetric stereo match-
ing for occlusion handling, CVPR 2005.

[44] Jian Sun, Heung yeung Shum, and Nan ning Zheng, Stereo matching using be-
lief propagation, IEEE Transactions on Pattern Analysis and Machine Intelligence
(2003).

[45] Yuichi Taguchi, Bennett Wilburn, and C. Lawrence Zitnick, Stereo reconstruction
with mixed pixels using adaptive over-segmentation, CVPR 2008.

84 BIBLIOGRAPHY

[46] M. Tanimoto, T. Fujii, K. Suzuki, N. Fukushima, and Y. Mori, Reference softwares
for depth estimation and view synthesis, ISO/IEC JTC1/SC29/WG11, Archamps,
France, Tech. Rep. M15377 (2008).

[47] M. Tanimoto, T. Fujii, M. P. Tehrani, and M. Wildeboer, Depth estimation reference
software(ders) 4.0, ISO/IEC JTC1/SC29/WG11, MPEG 2008/M16605, London,
UK (2009).

[48] M. Tanimoto, M.P. Tehrani, T. Fujii, and T. Yendo, Free-viewpoint tv, Springer.

[49] A. Tikanmaki, A. Gotchev, A. Smolic, and K. Miller, Quality assessment of 3d video
in rate allocation experiments, ISCE (2008).

[50] M. Tkalcic and J. Tasic., Color spaces perceptual, historical and applications back-
ground, EUROCON, IEEE 1 (2003), 304–308.

[51] T.Kanade, Development of a video-rate stereo machine. in image understanding
workshop, pages 549-557, Morgan Kaufman, 1994.

[52] Middlebury university, Middlebury stereo evaluation tool, http://vision.

middlebury.edu/stereo/eval/.

[53] , Middlebury stereo datasets, http://vision.middlebury.edu/stereo/

data/, 2001.

[54] O Veksler, Stereo correspondence by dynamic programming on a tree, CVPR 2005.
IEEE.

[55] E. Trucco ; A. Verri, Introductory techniques for 3d computer vision, Prentice Hall,
1998.

[56] John Iselin Woodfill, Gaile Gordon, Dave Jurasek, Terrance Brown, and Inc. Ron
Buck Tyzx, The tyzx deepsea g2 vision system, a taskable, embedded stereo camera,
IEEE Computer Society Workshop on Embedded Computer Vision, Conference on
Computer Vision and Pattern Recognition, (New York, NY) (2006).

[57] O. J. Woodford, P. H. S. Torr, I. D. Reid, and A. W. Fitzgibbon, Global stereo
reconstruction under second order smoothness priors, CVPR (2008).

[58] Qingxiong Yang, Ruigang Yang, J. Davis, and D. Nister, Spatial-depth super reso-
lution for range images, CVPR 2007.

[59] Guanyu Yi, High-quality real-time hd video stereo matching on fpga, Master’s thesis,
TU Delft, 2011.

[60] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit, Cross-based local stereo matching
using orthogonal integral images, IEEE transactions on circuit and systems for video
technology (2009).

BIBLIOGRAPHY 85

[61] Ke Zhang, Jiangbo Lu, Gauthier Lafruit, Rudy Lauwereins, and Luc Van Gool, Ac-
curate and efficient stereo matching with robust piecewise voting, IEEE international
conference on Multimedia and Expo (2009).

[62] Lu Zhang, Design and implementation of real-time high-definition stereo matching
on soc on fpga, Master’s thesis, TU Delft, 2010.

[63] Lu Zhang, Ke Zhang, Tian Sheuan Chang, Gauthier Lafruit, Georgi Krasimirov
Kuzmanov, and Diederik Verkest, Real-time high-definition stereo matching on fpga,
19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(2011), 55 64.

[64] Yin Zhao and Lu Yu, Pspnr tool 2.0, MPEG2009/M16890 (2009).

[65] Svitlana Zinger, Luat Do, Daniel Ruijters, and Peter H. N., iglance: Interactive free
viewpoint for 3d tv, 17th International Conference on Computer Graphic, Visual-
ization and Computer Vision.

