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We study the density of states in disordered s-wave superconductors with a small gap anisotropy. We consider
disorder in the form of common nonmagnetic scatterers and pairing-potential impurities, which interact with
electrons via an electric potential and a local distortion of the superconducting gap. Using quasiclassical Green
functions, we determine the bound-state spectrum at a single impurity and the density of states at a finite
concentration of impurities. We show that, if the gap is isotropic, an isolated impurity with suppressed pairing
supports an infinite number of Andreev states. With growing impurity concentration, the energy-dependent
density of states evolves from a sharp gap edge with an impurity band below it to a smeared BCS singularity
in the so-called universal limit. Within one spin sector, pairing-potential impurities and weak spin-polarized
magnetic impurities have essentially the same effect on the density of states. We note that, if a gap anisotropy is
present, the density of states becomes sensitive to ordinary potential disorder, and the existence of Andreev states
localized at pairing-potential impurities requires special conditions. An unusual feature related to the anisotropy
is a nonmonotonic dependence of the gap edge smearing on impurity concentration.

DOI: 10.1103/PhysRevB.93.104521

I. INTRODUCTION

Thermodynamic and transport properties of disordered
superconductors crucially depend on the symmetry of super-
conducting pairing as well as on the nature of the impurities
that scatter the electron waves. It is widely known that ordinary
scatterers described by coordinate-dependent potentials hardly
affect the density of states or the order parameter in supercon-
ductors with conventional spin-singlet s-wave pairing [1–5],
unless in the Anderson localization regime [6]. The main effect
of such impurities is the suppression of the anisotropic part of
the order parameter, which is small as far as the anisotropic
part is small. By contrast, for unconventional superconducting
pairing that is essentially anisotropic, the effect of potential
disorder on the density of states is drastic. For instance, even a
single potential scatterer in an unconventional superconductor
brings about a bound or quasibound state localized at the
defect [7–9], while a large concentration of defects leads to
the complete suppression of superconductivity.

The situation is different for magnetic impurities [10].
In an s-wave superconductor, a single magnetic impurity
induces a localized state, known as a Yu [11], Shiba [12],
or Rusinov [13] state, with an energy below the gap edge.
If the exchange field of the magnetic impurity is weak, the
impurity state is formed close to the gap edge. At finite
impurity concentration, cimp, the Shiba states hybridize and
form an impurity band that becomes wider with increasing
cimp. Simultaneously, the disorder smears the BCS singularity
in the density of states at the gap edge. The impurity band is
initially concentrated around the energy of the single-impurity
bound state, yet widens with increasing cimp. It eventually
merges with the continuum spectrum above the gap edge
and fills the whole superconducting gap. This explains the
phenomenon of gapless superconductivity [10].

A separate class of disorder in superconductors is due to
the inhomogeneities of the superconducting order parameter

or pairing potential � (we will use these terms as synonyms),
which can be induced, for instance, by random spatial varia-
tions of the coupling constant. Larkin and Ovchinnikov [14]
demonstrated the smearing of the BCS singularity by disorder
of this type (see also Refs. [15,16]). The shape of the smearing
is essentially the same as for magnetic disorder and was argued
to be universal [16–18] for all depairing mechanisms. The
absence of impurity bands in Refs. [14–16] at low disorder is a
property of the model: here, the pairing-potential disorder was
not associated with distinct impurities. A different situation,
corresponding to pairing-potential impurities not overlapping
with other impurities, has been analyzed in Refs. [19–22] (see
also references therein for studies of d-wave superconductors).
According to Refs. [19,21,22], a pointlike impurity with
suppressed pairing always supports a bound state. A numerical
study of impurities with a size of the order of the Fermi
wavelength λF [20] did not find such a state when the ratio
of the coherence length to λF was sufficiently large. The
formation of an impurity band at small impurity concentrations
was discussed in Ref. [19].

Generally, one may expect that, upon increasing the con-
centration of pairing-potential impurities, there is a complex
crossover in the density of states near the gap edge: discrete
impurity states below the gap edge form a narrow impurity
band that widens and merges with the gap edge at some critical
concentration. Upon further increasing the concentration, the
complex shape of the density of states near the edge simplifies,
approaching a universal one. The common potential scatterers
do not influence this crossover, if the anisotropy of the pairing
potential is neglected. However, in realistic situations, the
anisotropy also modifies the density of states near the gap edge.
In this paper, we present a detailed analysis of the crossover,
thus providing more insight into the properties of the bound
quasiparticle states near the gap edge.

The impurity model we are mainly concerned with is a
nonmagnetic scatterer that brings about a variation of the
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pair potential on a scale L � ξS , where ξS is the coherence
length in the pure limit. We evaluate the quasiclassical Green
functions using the T -matrix approximation [23]. We find
that the behavior of the density of states in the cases of
pairing potential impurities and weak magnetic impurities
is essentially the same, in a given spin sector, provided
the latter are polarized along the same axis. This analogy
has strong implications, reproducing the sequence of the
crossovers mentioned above. However, in contrast to magnetic
impurities, the pairing-potential impurities cannot completely
close the superconducting gap at any realistic concentration.

For localized impurity states, we demonstrate that a
spherically symmetric impurity with local suppression of the
order parameter gives rise to an infinite number of subgap
bound states. We give explicit expressions for the energies El

of the states with orbital momentum l, and for the widths of the
impurity bands at small impurity concentrations. The energy
scale involved, �0 − El , is of the order of �0(L/ξS)2 � �0,
where �0 is the bare superconducting order parameter.

It is almost forgotten nowadays that real superconductors
have a slightly anisotropic gap, and with this the density of
states is sensitive to common potential disorder [1,2,4,5]. We
derive the condition for the existence of impurity states, which
is modified by the anisotropy. A qualitative feature related to
the anisotropy is a nonmonotonic dependence of the gap edge
smearing on impurity concentration.

The paper is organized as follows. In Sec. II we introduce
the model for the impurities and derive general equations
within the T -matrix approximation for the quasiclassical
Green functions. In Sec. III we analyze the case of isotropic
pairing. In the limit of vanishing impurity concentration, we
elucidate the properties of the impurity-bound states. At finite
concentrations, we investigate and illustrate the crossover
mentioned above. Section IV considers the effects of a pairing
anisotropy. We show that, in dirty superconductors, the
remaining anisotropy leads to a “universal” broadening of the
gap edge. Thus, in general, the anisotropy affects the presence
of impurity bound states, and we derive the condition for
this. We analyze in detail the case of dirty superconductors
at finite concentration of potential impurities. We give our
conclusions in Sec. V. Several technical details are relegated to
Appendixes.

II. GENERAL RELATIONS FOR THE GREEN FUNCTION
AND THE T MATRIX

A general disordered superconductor can be characterized
by a Hamiltonian

Ĥ =
∑

α

∫
ψ̂+

α (r)

[
− �

2

2m

∂2

∂r2
− μ + V (r)

]
ψ̂α(r)d3r + ĤS,

(1)

where

ĤS =
∫

�∗
(

p + k
2

,p − k
)

ψ̂↓(p)ψ̂↑(−k)

× d3p
(2π )3

d3k
(2π )3

+ H.c. (2)

describes electron pairing within mean-field theory. Here
ψ̂α(r) and ψ̂+

α (r) are the electron field operators, α = {↑ , ↓}
is a spin label, μ is the chemical potential, V (r) is an electric
impurity potential, and

ψ̂α(p) =
∫

ψ̂α(r)e−iprd3r, ψ̂+
α (p) =

∫
ψ̂+

α (r)eiprd3r.

(3)

Note that the pairing potential � depends on two arguments,
which reflect the pairing strength along the Fermi surface and
its spatial variation, respectively.

To determine the density of states associated with the
Hamiltonian (1), we introduce the real-time retarded Green
functions defined as

G(r,r′,t) = −i〈ψ̂↓(r,t)ψ̂+
↓ (r′,0) + ψ̂+

↓ (r′,0)ψ̂↓(r,t)〉,
F (r,r′,t) = i〈ψ̂↓(r,t)ψ̂↑(r′,0) + ψ̂↑(r′,0)ψ̂↓(r,t)〉,

F+(r,r′,t) = i〈ψ̂+
↑ (r,t)ψ̂+

↓ (r′,0) + ψ̂+
↓ (r′,0)ψ̂+

↑ (r,t)〉,
Ḡ(r,r′,t) = i〈ψ̂+

↑ (r,t)ψ̂↑(r′,0) + ψ̂↑(r′,0)ψ̂+
↑ (r,t)〉 (4)

at t > 0, and G = F = F+ = Ḡ = 0 at t < 0. Here, the field
operators ψ̂ are in the Heisenberg representation. The Green
functions satisfy the conventional Gor’kov equation, which in
momentum representation reads

(
E + iε+ − ξ (p) 0

0 −E − iε+ − ξ (p)

)
ǦE(p,p′)

−
∫ (

V (p − k) −�
( p+k

2 ,p − k
)

�∗( p+k
2 ,k − p

)
V (p − k)

)
ǦE(k,p′)

d3k
(2π )3

= (2π )3δ(p − p′)1̌, (5)

where ε+ is an infinitely small positive quantity, ξ (p) is the kinetic energy measured from the Fermi level,

ξ (p) = �
2p2

2m
− μ = �

2

2m

(
p2 − k2

F

)
, (6)

with the Fermi wave number kF = 2π/λF , V (p) is the Fourier-transformed electric potential, and ǦE is a matrix composed of
the Fourier-transformed Green functions,

ǦE(p,p′) =
(

GE(p,p′) FE(p,p′)

−F+
E (p,p′) ḠE(p,p′)

)
=

∫ (
G(r,r′,t) F (r,r′,t)

−F+(r,r′,t) Ḡ(r,r′,t)

)
eiEt/�−ipr+ip′r′

d3rd3r′ dt

�
. (7)
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In a clean superconductor, V = 0, the order parameter is
spatially uniform, �(Q,q) = (2π )3�0(Q)δ(q), and the trans-
lation invariance of the Green function yields ǦE(p,p′) =
(2π )3Ǧ

(0)
E (p)δ(p − p′). Using Eq. (5), we obtain

Ǧ
(0)
E (p) =

(
E + iε+ − ξ (p) �0(p)

−�∗
0(p) −E − iε+ − ξ (p)

)−1

. (8)

For a start, let us assume that the disorder in the super-
conductor is induced by identical impurities with “size” L,
inducing a local electric potential as well as a variation of the
coupling constant. These two factors, in turn, lead to a local
modification of the pairing potential �. If the positions of the
impurities are given by a set of vectors Ri , the pairing potential
and the electric potential in the superconductor are

�(Q,q) = (2π )3�0(Q)δ(q) + �1(Q,q)
∑

i

e−iqRi , (9)

V (q) = U (q)
∑

i

e−iqRi , (10)

where the functions �1(Q,q) and U (q) give the distortion
of the pairing potential and the electric potential induced by
a single impurity, respectively. A self-consistent numerical
calculation of the pairing potential by Flatté and Byers [20]
revealed that in the case of isotropic pairing, the correction
�1(r) in real space is localized on a scale much smaller
than ξS near the impurity, provided that kF ξS 	 1. Here,
ξS = �vF /π�0 is the coherence length, and vF = �kF /m

is the Fermi velocity. Thus, we may safely assume that the
characteristic range L of the functions U (r) and �1(r) is much
smaller than ξS [24].

We will evaluate the Green functions averaged over
impurity positions, 〈ǦE(p,p′)〉av, assuming a homogeneous
distribution of the impurities. Then, the averaging proce-
dure restores translational invariance, so that 〈ǦE(p,p′)〉av =
(2π )3ǦE(p)δ(p − p′).

Usually the impurity potential is taken into account in
the second-order Born approximation [25]. For our purposes
this is not sufficient, since this approach does not yield
localized impurity states. Instead, we make use of the more
general T -matrix approximation (see Ref. [23], for example),
which accounts for multiple scattering off each impurity.
Within this approximation, we will derive an equation for the
quasiclassical Green functions.

The T matrix and the Green functions are determined from
the following system of equations:

ŤE(p,p′) = V̌imp(p,p′) +
∫

V̌imp(p,k)ǦE(k)ŤE(k,p′)
d3k

(2π )3
,

(11)

ǦE(p) = [
Ǧ

(0)
E (p)−1 − cimpŤE(p,p)

]−1
, (12)

where

V̌imp(p,k) =
(

U (p − k) −�1
( p+k

2 ,p − k
)

�∗
1

( p+k
2 ,k − p

)
U (p − k)

)
. (13)

Equations (11) and (12) can be simplified for momenta close
to the Fermi surface. Assuming that the Fermi energy is the

largest energy scale, let us introduce the quasiclassical Green
functions,

ǧ(E,n) = i

π

∫
ǦE(pn) dξ (p), (14)

where n is a unit vector, and integration is performed over
a relatively small energy range, |ξ (p)| � μ. For simplicity,
we restrict ourselves to the case of real functions �0(Q) and
�1(Q,q) (a phase shift between �0 and �1 would manifest
the violation of time-reversal symmetry). Then, the matrix ǧ

has only two independent components,

ǧ(E,n) =
(

g1(E,n) g2(E,n)
−g2(E,n) −g1(E,n)

)
. (15)

The density of states per spin is given by

ν(E) = ν0

∫
Re[g1(E,n)]

dn
4π

, (16)

where ν0 = k3
F /(4π2μ) is the density of states at the Fermi

surface in the normal state for one spin direction. Under the
assumptions that the dependence of �0(pn) and ŤE(pn,pn)
on p may be neglected when p is close to kF , it can be proved
(see Appendix A) that the matrix ǧ satisfies the relations

ǧ(E,n)ŠE(n) − ŠE(n)ǧ(E,n) = 0 (17)

and

g2
1(E,n) − g2

2(E,n) = 1, (18)

where

ŠE(n) =
(

E + iε+ �0(n)
−�0(n) −E − iε+

)
− cimp

πν0
ŤE(n,n) (19)

with �0(n) ≡ �0(kF n), and ŤE(n,n′) ≡ πν0ŤE(kF n,kF n′).
Actually, Eq. (17) is the standard Eilenberger equation
for a macroscopically homogeneous superconductor [25].
Equation (18) expresses the normalization condition ǧ2 = 1̌
for the quasiclassical Green function in the Eilenberger
equation.

In the case L � ξS , Eq. (11) can be further simplified. To do
this, we introduce an auxiliary normal-state scattering matrix
f̌ (n,n′) that satisfies the equation

f̌ (p,p′) = V̌imp(p,p′) +
∫

f̌ (p,k)Ǧ(k)V̌imp(k,p′)
d3k

(2π )3
,

(20)

where Ǧ(k) = Ǧ
(0)
E (k) taken at �0 = 0 and E = 0. The

diagonal components of f̌ (p,p′) have the meaning of the
electron and hole scattering amplitudes off an impurity in
the normal state. The off-diagonal components are the ampli-
tudes of Andreev reflection of electrons and holes. Within the
quasiclassical approximation, Eq. (11) can then be rewritten
as (see Appendix A)

ŤE(n,n′) = f̌ (n,n′) + i

∫
f̌ (n,n′′)[τ̌z − ǧ(E,n′′)]

× ŤE(n′′,n′)
dn′′

4π
, (21)

where τ̌z is the third Pauli matrix acting in Nambu space,
and f̌ (n,n′) ≡ πν0f̌ (kF n,kF n′). In Appendix B the matrix
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f̌ (n,n′) is calculated for a spherically symmetric impurity with

V̌imp(p,k) =
(

U (p − k) −�1(p − k)
�1(p − k) U (p − k)

)
. (22)

In the next two sections, we will solve the equations for the
matrices ŤE and ǧ and analyze the resulting density of states
in the cases of an isotropic and weakly anisotropic gap �0(n),
respectively.

III. SUPERCONDUCTOR WITH AN ISOTROPIC GAP

We start with the case of isotropic pairing, when �0(n) =
const and �1(Q,q) = �1(q). Without loss of generality, we
may then choose �0 > 0. If, additionally, the impurities are
spherically symmetric, the matrix ǧ(E,n) will not depend on
n, and the matrix f̌ will have the form

f̌ (n,n′) =
(

f1(n,n′) f2(n,n′)
−f ∗

2 (n,n′) f ∗
1 (n,n′)

)
. (23)

To solve Eq. (21), we expand f̌ and ŤE in terms of Legendre
polynomials Pl :

ŤE(n,n′) =
∞∑
l=0

(2l + 1)Ťl(E)Pl(n · n′), (24)

f̌ (n,n′) =
∞∑
l=0

(2l + 1)f̌lPl(n · n′). (25)

Using the addition theorem for spherical harmonics
[Eq. (B22)], one can show that this leads to separate equations
for the components Ťl with different orbital indices l. In
particular, Eq. (21) yields

Ťl(E) = {1̌ − if̌l[τ̌z − ǧ(E)]}−1f̌l . (26)

To transform the right-hand side of this relation, it is convenient
to use Eq. (B33), which is a corollary of a generalized optical
theorem [Eq. (B32)]. We obtain from Eqs. (24) and (26)

ŤE(n,n) =
∞∑
l=0

(2l + 1)
f̌l + i[ǧ(E) − τ̌z]Im[f1l]

1 − 2if2lg2(E)
. (27)

Substituting Eq. (27) into Eq. (17) yields

Eg2(E) −
[
�0 − cimp

πν0

∞∑
l=0

(2l + 1)f2l

1 − 2if2lg2(E)

]
g1(E) = 0.

(28)

Thus, Eq. (28) defines the Green functions in terms of the
off-diagonal scattering amplitudes f2l . Note that a very similar
relation can be derived for weak polarized magnetic impurities,
see Sec. III C.

Near the gap edge, when |E − �0| � �0, both g1 and g2

are large, |g1|,|g2| 	 1, and the normalization condition (18)
gives g2 ≈ g1 − 1/2g1. Thus, Eq. (28) may be reduced to an
equation for g1 only. Namely,

(E − �0)g1 − �0

2g1
+ cimp

πν0

∞∑
l=0

(2l + 1)f2l

1 − 2if2lg1
g1 = 0. (29)

An explicit calculation of the coefficients f2l is given in
Appendix B. Under the assumption that |f2l| � 1 and for

l2 � kF ξS , we find that these coefficients are given by

f2l = −π2ν0

k2
F

∫ ∞

0
�1(r)|ul(r)|2dr. (30)

The functions ul(r), defined in Appendix B, are the solutions
of the Schrödinger equation in the normal state in the presence
of the electric potential U (r) only. If, furthermore, l + 1/2 �
kF L, the amplitudes f2l can be estimated as

f2l ∼ �1

�0

L

ξS

. (31)

Thus, the applicability condition of Eq. (30), |f2l| � 1, is
satisfied in the realistic situation when |�1| � �0.

We would like to point out that within our model, in full
agreement with Anderson’s theorem [1], common potential
impurities have no effect on the density of states, since f2l = 0
for such impurities, and thus their T matrix commutes with ǧ.
Hence, Eq. (29) is not modified if the material is in the dirty
limit with respect to potential disorder, i.e., �0τ � �, where
τ is the mean free time due to this disorder.

A. Impurity states

A defect with suppressed pairing, i.e., �1(r) < 0, supports
a set of localized Andreev states that are similar to the well-
known Shiba states [11–13] generated by magnetic impurities.
For a pointlike defect the existence of a single Andreev
state has been predicted in Refs. [19,21]. Gunsenheimer and
Hahn [26] found multiple localized states for a sufficiently
large pairing defect with L 	 λF . Here, we generalize these
results, demonstrating that a defect with �1 < 0, in fact,
supports an infinite number of Andreev states.

To calculate the energies of the localized quasiparticle
states, one has to determine the poles of the T matrix at
cimp → 0 (or, equivalently, solve the Bogoliubov–de Gennes
equation; see Appendix C). They are obtained from the
equation

1 − 2if2lg2(E) = 0, (32)

where the function g2(E) is taken at cimp = 0, i.e., g2(E) =
−i�0/

√
�2

0 − E2 . Since we assume |f2l| � 1, the energies
El of the bound states lie close to the gap edge and are given
by El = �0 − El , where

El = 2f 2
2l�0. (33)

We would like to point out that the characteristic ranges ξl of
the wave functions of the bound Andreev states are much larger
than the size of the impurity: ξl ∼ ξS(�0/El)1/2 in the pure
limit, which can be proved using the Bogoliubov–de Gennes
equations.

As stated above, Eq. (33) is applicable for l2 � kF ξS .
However, this does not limit the number of bound states: as
shown in Appendix C, there are bound states at arbitrary large
l. For typical impurity parameters kF L ∼ 1, |�1| � �0, we
have El ∼ �3

0/μ
2 when l is of the order of unity. At larger

orbital momenta, the energies of the bound states quickly
approach the gap edge with growing l. Explicit expressions for
the quasiparticle energies in the particular case of a steplike
function �1(r) are derived in Appendix C.
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B. Finite impurity concentration

Above we showed that a single impurity produces bound
states. At a finite impurity concentration, one expects these
states to hybridize and form impurity bands that may merge
with the continuum at a sufficiently high impurity concen-
tration. Note that the formation of the impurity band is
determined by the overlap of the bound-state wave functions
at large distances ξl 	 L. Hence, the interesting behavior of
the density of states occurs at concentrations cimp � L−3,
when the impurities do not overlap. In the following, we
employ a standard simplifying assumption of pure s-wave
scattering, neglecting all scattering amplitudes f2l , except
f20. We do this to restrict ourselves to a single bound state,
avoiding the consideration of a complex series of bound states,
corresponding to higher orbital momenta. The assumption
of pure s-wave scattering is justified if kF L ∼ 1, so that
f20 � �1/μ. Then, it is convenient to characterize the impurity
concentration by the maximum scattering rate

1

τu
= 2cimp

�πν0
, (34)

produced by these impurities in the unitary limit. To reduce
the number of parameters in Eq. (29), we rescale the Green
functions as well as energy and impurity concentrations,
introducing the following dimensionless quantities:

G1 =
√

2E0

�0
g1, 
 = E − �0

E0
, P = �

√
2

4
√
E0�0 τu

. (35)

It can be seen that the values P ∼ 1 are achieved at �/τu ∼√
E0�0. In the new notations, Eq. (29) takes the form


G1 − 1

G1
± PG1

1 ∓ iG1
= 0, (36)

where one should take the upper sign for f20 > 0 (correspond-
ing to gap suppression, �1 < 0), and the lower sign for f20 < 0
(corresponding to gap enhancement, �1 > 0).

When f20 < 0, one finds a renormalized gap edge with
a broadened BCS singularity. When f20 > 0, such that an
individual impurity hosts bound states, the localized states
overlap at finite impurity concentration. At 0 < P � 1, they
form a band centered around 
 = −1 with a width in units
of E0

W = 4
√

2P . (37)

Upon further increasing the impurity concentration, at P =
8/27 the impurity band touches the continuum at the energy

 = 1/27, where Eq. (36) has a triple root. At P > 8/27
there is no more separate impurity band. The change of the
energy dependence of the density of states with increasing P

is illustrated in Fig. 1.
When P 	 1 the absolute value of G1 becomes small at all

values of 
, and Eq. (36) takes the form

(
 ± P )G1 − 1

G1
+ iPG2

1 = 0. (38)

This equation describes the behavior of the Green function
in superconductors with pair-breaking impurities of different
nature in the so-called universal limit, i.e., at sufficiently large
impurity concentrations [16–18]. In this limit, the smoothing of

FIG. 1. Energy dependence of the density of states in a supercon-
ductor with an isotropic gap containing (a) gap suppression and (b)
gap enhancement impurities [Eq. (36)]. The parameter P [Eq. (35)]
is proportional to the impurity concentration.

the BCS singularity is commonly characterized by an effective
depairing rate [16], which equals in our case

1

τdep
= f 2

20

τu
, (39)

in agreement with the second-order Born approximation. It
follows from Eq. (38) that the gap edge is smeared on a scale
of the order of

δ
 ∼ P 2/3, (40)

and there is an additional shift of the gap edge by ∓P due to the
average pairing suppression/enhancement by the impurities.
The characteristic values of the Green function are of the order
of G1 ∼ P −1/3. These observations allow to rewrite Eq. (38)
in a form containing no parameters. Namely,


′G′
1 − 1

G′
1

+ iG′2
1 = 0, (41)

where 
′ = (
 ± P )P −2/3 and G′
1 = G1P

1/3. Note that the
universal limit is approached rather slowly: corrections to G′

1
are of the order P −1/3.

Using Eq. (29), now taking into account all components
f2l , we arrive at the following equation for g1 in the universal
limit:[

E − �0 + �

2τu

∑
l

(2l + 1)f2l

]
g1 − �0

2g1
+ i

�

τdep
g2

1 = 0,

(42)

where the depairing rate equals

1

τdep
= 1

τu

∞∑
l=0

(2l + 1)f 2
2l = 1

τu

∫
f 2

2 (n,n′)
dn′

4π
. (43)

Let us point out that Eq. (42) was also obtained in the seminal
paper by Larkin and Ovchinnikov [14] for a different model
of pairing-potential disorder. Namely, they assumed that the
coupling constant exhibits fluctuations. Then, on the basis of
the distribution of the coupling constants, the distortion of the
pairing potential was calculated. This implies that there are
fluctuations of the pairing potential on a scale that exceeds
ξS . On the mean field level, this leads to a smoothing of
the gap edge with a universal shape described by Eq. (42).
They evaluated the depairing rate for a superconductor with
an arbitrary mean free path—see Eq. (21) in Ref. [14]. For an
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infinite mean free path and L � ξS , that equation yields(
1

τdep

)
LO

= πν0cimp

�k2
F

∫ ∫
�1(r)�1(r′)

|r − r′|2 d3r d3r′. (44)

Within our model, we find the same result in the quasiclassical
limit (L 	 k−1

F ) and for U = 0, when one should substitute
f2(n,n′) = πν0�1[kF (n − n′)] in Eq. (43).

C. Comparison with magnetic impurities

Let us compare our results with the case of magnetic
impurities that has been extensively studied in the literature. To
describe such impurities, we add the following spin-dependent
term to the Hamiltonian (1):

ĤM =
∑
α,β

∫
ψ̂+

α (r)[J(r) · σ̂ ]αβψ̂β(r)d3r, (45)

where J(r) is the exchange field, and σ̂ is a vector composed
of Pauli matrices acting in spin space. The exchange field is
given by

J(r) =
∑

i

J1(r − Ri)Si , (46)

where J1 > 0, and the unit vectors Si specify the polarizations
of the impurities.

Let us first assume that all impurities are polarized in
the same direction, i.e., all vectors Si are identical. When
evaluating the Green functions, we may now neglect the
distortion of the pairing potential induced by the impurities,
since its effect on the density of states in realistic situations is
much smaller than the influence of the exchange field [13].
Then, within the T -matrix approximation, we obtain the
following relation (a similar calculation has been previously
done in Ref. [27] for pointlike impurities):

Eg2(E) − �0g1(E) ± cimp

πν0

∞∑
l=0

(2l + 1)f M
l

1 ∓ 2if M
l g1(E)

g2(E) = 0.

(47)

Here, the upper/lower sign corresponds to “spin-up”/“spin-
down” electrons with respect to the polarization direction, and
f M

l are the differences of scattering amplitudes of “spin-up”
and “spin-down” electrons. Under the constraints |f M

l | � 1
and l2 � kF ξS one can prove that the magnetic coefficients
f M

l are given by expressions similar to Eq. (30),

f M
l = −π2ν0

k2
F

∫ ∞

0
J1(r)|ul(r)|2dr. (48)

Note that f M
l < 0. It can be seen that Eqs. (47) and (28)

have almost the same form, the only difference being the
permutation of g1 and g2 in the last term. However, this
difference is not essential near the gap edge, when |E − �0| �
�0. As noted earlier, in that case g2 ≈ g1 − 1/2g1, and Eq. (47)
yields

(E − �0)g1 − �0

2g1
± cimp

πν0

∞∑
l=0

(2l + 1)f M
l

1 ∓ 2if M
l g1

g1 = 0. (49)

Comparing Eqs. (29) and (49), we see that pairing-potential
impurities with �1 > 0 act like magnetic impurities in the

FIG. 2. Density of states vs energy in a superconductor containing
either impurities with a local gap suppression [solid line, Eq. (36) with
the upper signs] or magnetic impurities with randomly oriented spins
[dashed line, Eq. (50)], and the density of states in the universal limit
[dotted line in graph (b), Eq. (38)]. The additional shift −P of the gap
edge, appearing in Eqs. (36) and (38), is compensated via a positive
translation of the corresponding curves by PE0 in graph (b).

“spin-up” sector whereas pairing-potential impurities with
�1 < 0 act like magnetic impurities in the “spin-down” sector.
The full density of states in the case of magnetic impurities is
obtained by summing over both spin sectors.

The comparison with magnetic impurities can be extended
to the case of randomly oriented spins. To see this, we recast
the relation for the Green function derived in Ref. [13] to a
form similar to Eq. (36),


G1 − 1

G1
+ iPG2

1

1 + G2
1

= 0. (50)

This equation is obtained by averaging Eq. (36) over impurity-
spin directions, and accordingly G1 is the Green function
averaged over impurity-spin directions. At small P , Eq. (50)
gives an impurity band with a width W = 4

√
P . The merger

of this band with the continuum occurs at P ≈ 0.49. The plots
shown in Fig. 2 demonstrate the qualitative similarity of the
energy dependent densities of states derived from Eqs. (36)
and (50).

When P 	 1, Eq. (50) reduces to the relation in the
universal limit, Eq. (41). Note than, due to the averaging
over impurity spin directions, unlike in Eq. (38), there is
no additional gap shift ∓P . Moreover, the universal limit
is approached faster than in the case of pairing-potential
impurities or polarized magnetic impurities, as corrections to
the Green function averaged over impurity-spin directions G′

1
are of the order P −2/3 only.

Finally, let us mention that in the case of relatively strong
magnetic impurities (with J1 	 �0) a gapless regime can be
reached. By contrast, within the field of applicability of our
approach, a superconductor with pairing-potential impurities
is always gapped. Indeed, to reach the gapless regime we
would need �f20/τu ∼ �0 [see Eq. (42)], which requires
cimp � k2

F L−1 according to Eq. (31), i.e., at least cimp � L−3.
At such large concentrations, the impurities “overlap” and
our simple model is not valid any longer. The estimates
above also indicate that the quasiclassical Green functions
and the density of states are modified only in a narrow energy
range, |E − �0| � �0, at realistic impurity concentrations.
As a consequence, in contrast to magnetic impurities, a
self-consistent recalculation of the bulk pairing potential �0

is not required.
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IV. SUPERCONDUCTOR WITH A WEAKLY
ANISOTROPIC GAP

In any realistic superconductor the pairing potential is at
least slightly anisotropic, i.e., �0(n) �= const. The anisotropy
used to be a subject of active theoretical and experimental
research [28], but has been largely ignored in modern models
of s-wave superconductors. It is clear that even a small
anisotropy significantly influences the spectral properties of
the superconducting state in the vicinity of the gap edge. As
such, it may modify the results of the previous section. In this
section, we consider these modifications.

We assume a weak anisotropy, so that the anisotropic part
of the bulk pairing potential, �′(n) ≡ �0(n) − 〈�0〉, is small:
|�′| � 〈�0〉. Here and further, the angle brackets denote the
average over the Fermi surface,

〈X〉 ≡
∫

X(n)
dn
4π

. (51)

Under the assumption of a weak anisotropy of �0(n), it is
reasonable to neglect the anisotropy of the impurity pairing
potential, i.e., put �1(Q,q) = �1(q). The matrix f̌ (n,n′)
does not depend on �0(n), hence, in the case of spherically
symmetric impurities it is still given by Eq. (25), and the
off-diagonal components of the expansion coefficients f2l are
defined by Eq. (30). In the presence of anisotropy, the T matrix
is defined by Eq. (21). Now, since the Green function ǧ(E,n)
depends on n, it is impractical to solve this equation using the
expansion in terms of Legendre polynomials. To overcome this
inconvenience, we employ again the approximation of s-wave
scattering: f̌ (n,n′) = f̌0 = const. In this case ŤE(n,n′) does
not depend on n and n′, and is given by

ŤE = [f̌ −1 + i〈ǧ〉 − iτ̌z]
−1

= Re[f̌ ] − idet[f̌ ]〈ǧ〉
1 − 2if20〈g2〉 − det[f̌ ](det[〈ǧ〉] + 1)

. (52)

We made use of Eq. (B33) to arrive at the last line. Under the
approximation of s-wave scattering, Eq. (52) is valid even in
the case of strong anisotropy.

As above, the energies of the impurity states correspond to
the poles of the T matrix, which are given by

1 − 2if20〈g2〉 − detf̌ (det[〈ǧ〉] + 1) = 0. (53)

If the potential scattering is weak (|det[f̌ ]| � 1) or in the
limit of sufficiently large impurity concentrations, when the
Green functions are essentially isotropic, so that det[〈ǧ〉] ≈
〈det[ǧ]〉 = −1, we can neglect the third term in Eq. (53). Then,

ŤE ≈ Re[f̌ ] − idet[f̌ ]〈ǧ〉
1 − 2if20〈g2〉 . (54)

The third term in Eq. (53), which is proportional to det[f̌ ],
generally, cannot be neglected in a strongly anisotropic super-
conductor. In d-wave superconductors, this term is responsible
for the quasibound states [9], that possess a complex energy
with a small imaginary part. Such states are absent in the case
of weak anisotropy under consideration here.

A. Ordinary potential scatterers

Before addressing the influence of pairing-potential impu-
rities on the density of states, we will briefly consider the effect
of ordinary potential scatterers [2,3,5].

At �1 = 0, one obtains f20 = 0, and Eq. (54) reduces to

ŤE = Re[f̌ ] − i|f10|2〈ǧ〉. (55)

The T matrix given by Eq. (55) has no pole, so there is no
subgap state. Equations (17) and (18) yield

g1 = − iẼ√
�̃2(n) − Ẽ2

, g2 = − i�̃(n)√
�̃2(n) − Ẽ2

, (56)

where

Ẽ = E + i�

2τ
〈g1〉, �̃(n) = �0(n) + i�

2τ
〈g2〉, (57)

and the scattering time is given by

1

τ
= |f10|2

τu
. (58)

This is equivalent to a set of equations derived in Refs. [2]
and [5].

In the case of weak anisotropy the density of states is
affected by the scatterers only at energies near the gap edge,
|E − 〈�0〉| � 〈�0〉. In this energy range we can utilize that
|δg| � |〈g1〉|, where δg = 〈g1〉 − 〈g2〉. As a consequence,
|Ẽ − �̃(n)| � |Ẽ|, and

〈g1〉 ≈ 1√
2

〈(
Ẽ − �̃(n)

Ẽ

)−1/2
〉
, (59)

δg ≈ 1√
2

〈(
Ẽ − �̃(n)

Ẽ

)1/2
〉
, (60)

or

〈g1〉 =
√

〈�0〉 + i�
2τ

〈g1〉√
2

〈[
E − �0(n) + i�

2τ
δg

]−1/2
〉
, (61)

δg = 1
√

2
√

〈�0〉 + i�
2τ

〈g1〉

〈[
E − �0(n) + i�

2τ
δg

]1/2
〉
. (62)

To understand the scaling of the Green function in the case of
weak anisotropy, it is instructive to rewrite these relations in
terms of the dimensionless quantities

δ(n) = �′(n)√
〈�′2〉

, G̃1 =〈g1〉
√

2 4
√

〈�′2〉√〈�0〉
, δG̃ = δg

√
2〈�0〉

4
√

〈�′2〉
,

P̃ = �

2
√

2〈�0〉 4
√

〈�′2〉τ
, 
̃ = E − 〈�0〉√

〈�′2〉
. (63)

Then we have

G̃1 =
√

1 + iP̃ G̃1〈[
̃ − δ(n) + iP̃ δG̃]−1/2〉, (64)

δG̃ = 1√
1 + iP̃ G̃1

〈[
̃ − δ(n) + iP̃ δG̃]1/2〉. (65)
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In the limit P̃ � 1 of low concentrations of the scatterers,
the gap edge is rounded at an energy scale

√
〈�′2〉. In the

opposite limit of large impurity concentrations, the rounding
becomes more narrow. This is due to the suppression of the
anisotropy of the pairing potential, which becomes essential
when P̃ 	 1. This condition is satisfied even in relatively
clean superconductors, at 〈�0〉τ � �.

Let us consider the limit of strong suppression of the
anisotropy, P̃ 	 1. In this limit we can expand the expressions
in the angular brackets in Eqs. (64) and (65) in terms of the
small ratio δ(n)/(P̃ δG̃). Then, we can eliminate δG̃ from the
equations to arrive at the relation


̃G̃1 − 1

G̃1
+ i

2P̃
G̃2

1 = 0. (66)

We observe that Eq. (66) is equivalent to the “universal limit”
equation of Ref. [16]. Thus, the rounding of the gap edge
owing to the weak anisotropy and potential scattering can also
be described in the framework of this universal scheme. In this
limit the density of states is isotropic in the main order, not
depending on the details of the shape of �0(n). The “depairing
rate,” as defined in Ref. [16], equals

1

τdep
= 2〈�′2〉τ

�2
. (67)

Finally, the substitutions

G̃1 = G′
1(2P̃ )1/3, 
̃ = 
′

(2P̃ )2/3
(68)

reduce Eq. (66) to the form (41), containing no parameters.
Note that the dependence 1/τdep ∝ τ in Eq. (67) reflects the
gap edge sharpening with growing impurity concentration,
which was discussed above.

B. Suppressed anisotropy and pairing-potential impurities

Now we will analyze the situation when the material
contains both common potential scatterers and pairing-
potential impurities. The ordinary scatterers and pairing-
potential impurities have the concentrations c1 and c2, and
scattering amplitude matrices f̌ (1) and f̌ (2), respectively. The
corresponding T matrices are

Ť
(1)
E = Ref̌ (1) − i

∣∣f (1)
10

∣∣2〈ǧ〉 (69)

for ordinary scatterers and

Ť
(2)
E ≈ Ref̌ (2) − i

∣∣f (2)
10

∣∣2〈ǧ〉
1 − 2if20〈g2〉 (70)

for pairing-potential impurities, where f20 ≡ f
(2)
20 , similar to

Sec. III. To determine the Green functions, we substitute in
Eq. (17) Š(E,n) in the form

Š(E,n) =
(

E + iε+ �0(n)
−�0(n) −E − iε+

)
−

∑
i=1,2

ci

πν0
Ť

(i)
E (n,n).

(71)

Then, g1(n) and g2(n) are given by Eq. (56) with

Ẽ = E + i�

2τ (E)
〈g1〉, (72)

�̃(n) = 〈�0〉(� − Q) + �′(n), (73)

1

τ (E)
= 1

τ1
+ 1

τ2(1 − 2if20〈g2〉) ,
1

τ1,2
= 2c1,2

∣∣f (1,2)
10

∣∣2

�πν0
,

(74)

� = 1 + i�

2τ (E)〈�0〉 〈g2〉, (75)

Q = c2f20

πν0〈�0〉
1

1 − 2if20〈g2〉 . (76)

Let us note that the quantities � and −Q in Eq. (73)
represent the renormalizations of the isotropic part of �0(n)
due to common superconducting and potential scattering,
respectively. From Eq. (74) we can see that the contribution
τ−1

2 of pairing-potential impurities to the potential scattering
rate is enhanced at energies close to the energy of the bound
state [see Eq. (32)], manifesting resonant scattering near this
energy.

Let us now derive simplified equations, applicable in the
vicinity of the gap edge (|E − 〈�0〉| � 〈�0〉). Simplifications
are possible, if Q is small. If the second fraction in Eq. (76)
is of the order of or smaller than unity, this statement is
rather obvious since |Q| � c2|f20|/(πν0〈�0〉) � c2k

−3
F � 1,

as estimated in Sec. III B. The danger is that the second fraction
in Eq. (76) can become large close to the energy of the bound
state. However, at finite concentrations of the pairing-potential
impurities, the largest value of this fraction is proportional
to 1/

√
c2 (see, e.g., Appendix D). Hence, Q ∝ √

c2, and it
vanishes at c2 → 0. This proves that |Q| � 1. In turn, the
smallness of Q provides the validity of Eqs. (59) and (60) with

Ẽ − �̃(n)

Ẽ
=

E − �0(n) + Q〈�0〉 + i�
2τ (E)δg

�〈�0〉 . (77)

A further simplification is obtained in the limit of strongly
suppressed anisotropy, |�/τ (E)| 	 4

√
〈�′2〉√�0. Acting like

in Sec. IV A, we obtain a generalization of Eq. (66):

〈g1〉[E − 〈�0〉(1 − Q)] − 〈�0〉
2〈g1〉 + 2i〈�′2〉τ (E)

�
〈g1〉2 = 0.

(78)

This equation can describe the bound states at low c2 as well
as the universal smoothing with enhanced 1/τdep, as we will
see below.

C. Small concentration of pairing-potential impurities

In contrast to the isotropic case, the pairing-potential impu-
rities with a local gap reduction (�1 < 0) do not necessarily
provide bound states, even in the limit of small anisotropy. In
this section, we derive the condition of the emergence of the
bound states and evaluate the width of the impurity band in
the limit of small concentrations c2.
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The energy of the possible bound state is determined by the
pole of Ť

(2)
E in the limit of vanishing c2,

1 − 2if20〈g1(E)〉 = 0. (79)

Let us concentrate on the limit of strongly suppressed
anisotropy, described by Eq. (66). To satisfy Eq. (79), 〈g1〉
must be purely imaginary. This requires that the density of
states is zero at this energy, i.e., E below the gap edge. We
notice that in the universal limit the gap edge Ecr is shifted
with respect to 〈�0〉 by a small energy [5,16]

Ecr ≡ 〈�0〉 − Ecr = 3

2
〈�0〉

(
�

〈�0〉τdep

)2/3

. (80)

At E = Ecr the averaged Green function equals

〈g1(Ecr)〉 = −i

(
τdep〈�0〉

�

)1/3

, (81)

reaching its maximal negative purely imaginary value. Hence,
the existence of bound states requires

1 − 2if20〈g1(Ecr)〉 < 0, (82)

or

�

〈�0〉τdep
<

(
2E0

〈�0〉
)3/2

, (83)

where E0 = 2f 2
20〈�0〉 would give the bound-state energy for

an isotropic gap. This implies that even a small gap anisotropy
can prevent the formation of a bound state at sufficiently
small E0.

If the bound state exists, its energy E (counted from 〈�0〉)
is obtained by substituting 〈g1(E)〉 = −i/(2f20) from Eq. (79)
to Eq. (66), and yields

E = E0 + �

τdep

√
〈�0〉
2E0

. (84)

The width of the impurity band W in the limit of small c2 is
obtained from the expansion of Eq. (78) at energies close to
E ; see Appendix D:

W ≈ Wiso

(
1 − �

2τdepE0

√
〈�0〉
2E0

)1/2

, (85)

where Wiso is the width of the impurity band for an isotropic
gap [Eq. (37)]. Equation (85) is valid as long as the width of
the impurity band is much smaller than the distance from an
isolated bound state to the edge of the continuum, i.e., E − Ecr.
The dependencies of the bound-state energy [Eq. (84)], the gap
edge [Eq. (80)], and the impurity band width [Eq. (85)] on the
depairing rate τ−1

dep are shown in Fig. 3.
For comparison, we give here also the energy of the bound

state and the width of the impurity band in the opposite limiting
case of a vanishing concentration of ordinary scatterers. In this
case, the answers are not universal, depending on the concrete
shape of the anisotropic part of the pairing potential �′(n).
We consider a common model [5], where the values of �′
are uniformly distributed in an interval [−�a,�a]. Explicit
equations for 〈g1〉 in this case are given in Sec. IV E. One

FIG. 3. The bound-state energy E , the gap edge Ecr, and the
impurity band width W vs the depairing rate τ−1

dep in the limit of
strongly suppressed anisotropy (P̃ 	 1).

can show that within the approximation of weak potential
scattering (|f10|2 � 1) a bound state exists, provided

E0 >
�a

2
. (86)

The energy of the bound state is given by

E = E0 + �2
a

4E0
. (87)

The width of the impurity band at small impurity
concentrations is

W = Wiso

(
1 − �2

a

4E2
0

)1/2

. (88)

D. Universal behavior in the presence
of pairing-potential impurities

As we have seen, at large impurity concentrations the shape
of the smoothing of the gap edge eventually approaches the
universal limit. We have discussed two situations for this to
occur: the disorder in the pairing potential for an isotropic gap,
and the suppression of the anisotropy of the pairing potential
by potential scattering. Here, we consider a more general
situation, where both an anisotropic gap and pairing-potential
impurities are present. The universal regime then requires

|f20〈g1〉| � 1, �
(
τ−1

1 + τ−1
2

) 	 4
√

〈�′2〉
√

〈�0〉. (89)

In this limit, Eq. (78) takes the form

〈g1〉
(

E − 〈�0〉 + c2f20

πν0

)
− 〈�0〉

2〈g1〉

+ 2i〈g1〉2

(
〈�′2〉

�
(
τ−1

1 + τ−1
2

) + c2f
2
20

πν0

)
= 0. (90)

This reproduces the universal limit with

1

τdep
= 2〈�′2〉

�2
(
τ−1

1 + τ−1
2

) + 2c2f
2
20

�πν0
, (91)

104521-9



BESPALOV, HOUZET, MEYER, AND NAZAROV PHYSICAL REVIEW B 93, 104521 (2016)

FIG. 4. Schematic dependence of the depairing rate τ−1
dep on the

concentration of pairing-potential impurities in the universal limit
[Eq. (91) with τ−1

1 = 0]. The dashed lines indicate the regions where
Eq. (91) is not applicable.

and an extra shift of the gap edge −c2f20/(πν0). Interestingly,
the depairing rate exhibits a nonmonotonic dependence on the
concentration c2 (see Fig. 4). In particular, if ordinary scatterers
are absent (P1 = 0), the depairing rate has a minimum at

c2 = cmin ≡ πν0

√
〈�′2〉√

2|f20|
∣∣f (2)

10

∣∣ . (92)

At this concentration

1

τdep
=

(
1

τdep

)
min

≡ 2
√

2〈�′2〉|f20|
�
∣∣f (2)

10

∣∣ . (93)

A major consequence of the nonmonotonicity of the
depairing rate is the nonmonotonic dependence of the gap-edge
smearing on the concentration of pairing-potential impurities.
This feature is present, if the universality conditions (89) are
satisfied at concentrations close to cmin. This is the case when

E0 � 〈�0〉
√

〈�′2〉∣∣f (2)
10

∣∣2
. (94)

In addition, the concentration cmin should be realistic: at least
cmin � L−3. When L ∼ λF , this yields the condition

〈�0〉
√

〈�′2〉
μ|f2|

∣∣f (2)
10

∣∣ � 1. (95)

E. Numerical calculations of the density of states

In this section, we report some numerical calculations to
exemplify the typical behavior of the density of states in the
presence of pairing-potential impurities and anisotropy.

Except for the universal limit, the results will depend on the
details of the anisotropic part of the gap �′(n). To be specific
and keep it simple, we concentrate on the model [5] with the
values of �′ uniformly distributed in an interval [−�a,�a].

To derive an equation for the Green function 〈g1〉 in the
presence of ordinary potential impurities we use Eqs. (61)
and (62), where the averaging over the directions of momentum
can be performed analytically. After this we eliminate δg from

the two equations to obtain the fifth-order polynomial equation

3y4 − 2py5

3(1 − py)2
+ 2Eay

2 = −1. (96)

Here, we made use of the dimensionless variables

y = −i〈g1〉
√

�a

�0
, Ea = E − 〈�0〉

�a

, (97)

p = �

2
√

�a〈�0〉τ1
, (98)

which differ from G̃1, 
̃, and P̃ , introduced in Sec. IV A, by
numeric factors. An equation similar to Eq. (96) has already
been studied by Clem [5]. To adjust the equation for the
case when both pairing-potential and ordinary impurities are
present, we implement Eq. (77) to show that the adjustment
amounts to the following substitutions:

p → p1 + p2

1 + αy
, Ea → Ea + p2α

2
∣∣f (2)

10

∣∣2
(1 + αy)

, (99)

where

α =
√

2E0

�a

, p1,2 = �

2
√

�a〈�0〉τ1,2
. (100)

With these substitutions Eq. (96) becomes an eighth-order
polynomial equation with respect to y. In the limit of
strongly suppressed anisotropy, this is simplified to a fifth-
order polynomial equation [Eq. (78)]. We solved these
equations numerically. The physical root has been deter-
mined using the asymptotics of the function y(Ea) at large
|Ea| − y ≈ √−1/(2Ea)—and by continuity of y(Ea).

Let us first consider relatively large values of the parameter
α, so that the energy scale E0 is of the order of or larger than the
characteristic broadening of the gap edge. The characteristic
width �Ea of the gap edge, measured in the units �a , equals
unity in the pure case and is of the order of p

−2/3
1 when

the anisotropy is suppressed by potential scatterers: p1 	 1.
We consider the range of parameters where α2 � �Ea . At
α2 	 �Ea the broadening of the gap edge is not relevant
for the formation and merging of the impurity band with
the continuum. The situation is qualitatively the same as in
the isotropic case; see Sec. III. It is therefore interesting to
concentrate on the range of parameters α2 ∼ �Ea .

We start with the case of strongly suppressed anisotropy,
when Eq. (78) is applicable. We choose

�

τdep
= E0

3

√
E0

3〈�0〉 , or α2 = 2.88p
−2/3
1 . (101)

Then, the smoothing shifts the gap edge to −E0/2, and Eq. (84)
predicts a bound state at the energy E ≈ 1.14E0. Figure 5(a)
illustrates the behavior of the density of states upon increasing
concentration of pairing potential impurities. We observe the
qualitative similarity with the isotropic case—see Fig. 1(a).
In particular, there is the formation of the impurity band that
merges with the continuum with growing c2. Moreover, the
characteristic scale for the concentration c2 is the same as in
the isotropic situation and corresponds to P ∼ 1, where the
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FIG. 5. Density of states vs energy in an anisotropic supercon-
ductor in the limit of strongly suppressed anisotropy (a),(b) [Eq. (78)]
and in the absence of ordinary potential scatterers (c),(d) [Eqs. (96)
and (99)]. (a) E0 = 2Ecr, f

(2)
10 = 0; (b) E0 = Ecr/8, f

(2)
10 = 0; (c)

E0 = 2�a , |f (2)
10 |2 = 0.1; (d) E0 = 0.5�a , |f (2)

10 |2 = 0.1.

parameter P is [compare with Eq. (35)]

P = c2√
2E0〈�0〉πν0

. (102)

However, while in the isotropic case the smoothing of the
peak was due to pairing-potential impurities only, now the
pairing-potential impurities provide an extra contribution to
the existing smoothing.

The situation changes if the scales α2 and �Ea remain
comparable, but the bound state is absent. For Fig. 5(b) we
choose

�

τdep
= 16E0

√
2E0

〈�0〉 , or α2 = 0.12p
−2/3
1 . (103)

Here we see no trace of the impurity band. The pairing-
potential impurities widen the peak and shift down the gap
edge.

Apparently, the effect of potential scattering by pairing-
potential impurities on the density of states is negligible, as
long as α2 ∼ �Ea , and if the anisotropy is already suppressed
by ordinary potential scatterers: τ−1

1 	 4
√

〈�′2〉√〈�0〉/�.
Taking |f (2)

10 | = 0 and |f (2)
10 | = 1 (which is the maximal

permitted value) produces profiles of the density of states
that are almost visually indistinguishable. To get a qualitative
understanding of this, let us consider, e.g., the depairing rate
in the universal limit—see Eq. (91). Here, potential scattering
by pairing-potential impurities may become important only at
relatively large concentrations c2, when τ−1

2 is of the order
of τ−1

1 . However, at such values of c2 the second term on
the right-hand side of Eq. (91) becomes dominant, so that
the depairing rate is determined by the off-diagonal scattering
amplitude, f20. Thus, the scattering rate τ−1

2 can be neglected
in Eq. (91) at all concentrations c2.

It is interesting to spot the similarities with the seemingly
different situation when potential scatterers are absent—see
Figs. 5(c) and 5(d). Here, we use Eqs. (96) and (99), putting

FIG. 6. Density of states vs energy in an anisotropic supercon-
ductor containing pairing-potential impurities with a small parameter

E0: E0 = 0.025|f10|2�a , |f (2)
10 |2 = 0.1.

p1 = 0. The density of states at p2 = 0 exhibits a typical
cusp structure, typical for the model we use. However, the
qualitative behavior of the density of states is analogous to
the case of strongly suppressed anisotropy, if we choose
E0 ∼ �a (α2 ∼ 1). If the shift of the gap edge amounts to
E0/2, the bound state is formed at E = 1.06E0—see Fig. 5(c).
Upon increasing the impurity concentration, we see again
the impurity band formation, merging with the continuum,
and the extra smoothing of the coherence peak at the scales
P ∼ 1 of the dimensionless concentration. For Fig. 5(d) we
choose E0 = �a/2. This corresponds to the threshold of the
bound-state formation. Similar to Fig. 5(b), we don’t see any
signs of the impurity band, rather the effect is a combination
of the peak smoothing and shift.

Finally, we have modeled the density of states in another
interesting limiting case, α2 � |f (2)

10 |2. As pointed out in
Sec. IV D, this inequality guarantees the nonmonotonic be-
havior of the peak smoothing vs the impurity concentration. In
this case, at small impurity concentrations the pairing-potential
impurities affect the anisotropic part of �0 mostly as potential
scatterers. One can see this in Fig. 6, where the increase of the
dimensionless impurity concentration p2 results in a narrowing
of the peak. Further increase of the concentration leads to a
peak shift, manifesting the pairing potential distortion brought
by the impurities. Starting from p2 = 5.16 the peak also
widens upon increasing concentration, in accordance with
Eq. (91).

V. CONCLUSION

In conclusion, we considered the effect of pairing-potential
impurities on the behavior of the density of states in a
superconductor. We found that this behavior is strongly
affected by the anisotropy of the bulk pairing potential.

We considered first the limit of negligible anisotropy. In
this case, we established an analogy between the pairing-
potential impurities and weak polarized magnetic impurities.
This analogy allows us to extend the results obtained for one
type of defect to the other type. The persistence of bound
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states at single impurities is typical for the isotropic case. We
demonstrate that a spherically symmetric impurity with local
suppression of � gives rise to an infinite number of subgap
bound states. Upon increasing the impurity concentration,
these states form an impurity band that eventually merges
with the continuum, resulting in a smoothed gap edge.

Even a slightly anisotropic pairing potential forbids the
formation of bound states at sufficiently small pairing-potential
distortion at the impurities. We derived the criterion of
existence of the bound states and have analyzed in detail the
behavior of the density of states.
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APPENDIX A

In this Appendix we derive Eqs. (17), (18), and (21).
Using Eqs. (12) and (14), the quasiclassical Green function

can be written in the form

ǧ(E,n) = i

π

∫
[Š(E,pn) − 1̌ξ (p)]−1dξ (p), (A1)

where

Š(E,p) =
(

E + iε+ �0(p)
−�0(p) −E − iε+

)
− cimpŤE(p,p). (A2)

Let us assume that we can keep Š(E,p) constant when
integrating over ξ , i.e., Š(E,pn) ≈ Š(E,kF n) ≡ ŠE(n). Such
simplification is justified if Š(E,pn) does not change sig-
nificantly while ξ (p) is of the order of or smaller than the
largest of the moduli of the eigenvalues of ŠE(n). Then, we
have

ǧ(E,n) ≈ i

π
−
∫ +∞

−∞
[ŠE(n) − 1̌ξ ]−1dξ, (A3)

where integration is understood in the sense of principal value.
From this relation immediately follows Eq. (17). By writing
Eq. (A3) in the basis where the matrix ŠE(n) is diagonal it can
be proven that all eigenvalues of ǧ are either 1 or −1. In the
pure case

ǧ(E,n) = i√
|�0(n)|2 − E2

( −E −�0(n)

�0(n) E

)
, (A4)

and the two eigenvalues are 1 and −1. There is no reason
for them to change discontinuously with growing impurity
concentration, hence, for any value of cimp we have Tr[ǧ] = 0,
and det[ǧ] = 1, which gives Eq. (18).

Then, to simplify Eq. (11), we want to exclude the region of
integration far from the Fermi surface. To do so, we employ the
trick used in Ref. [13]. Let us introduce an auxiliary normal-
state scattering matrix f̌ (p,p′), defined by Eq. (20). Using
Eqs. (11) and (20), we obtain

ŤE(p,p′)= f̌ (p,p′) −
∫

f̌ (p,k)Ǧ(k)V̌imp(k − p′)
d3k

(2π )3
+

∫
f̌ (p,k)ǦE(k)ŤE(k,p′)

d3k
(2π )3

−
∫∫

f̌ (p,k)Ǧ(k)V̌imp(k − k′)ǦE(k′)ŤE(k′,p′)
d3k

(2π3)

d3k′

(2π )3
= f̌ (p,p′) +

∫
f̌ (p,k)(ǦE(k) − Ǧ(k))ŤE(k,p′)

d3k
(2π )3

.

(A5)

Far from the Fermi surface the difference between ǦE(k) and Ǧ(k) vanishes. This typically happens at |ξ (k)| 	 max{|�0(n)|,|E|}.
For impurities with a size much smaller than the coherence length ξS , the functions f̌ (p,k) and ŤE(k,p′) depend very weakly on
|k| as long as ξ (k) ∼ �0 (see Appendix B). This means that in Eq. (A5) we can integrate over |k| and obtain Eq. (21).

APPENDIX B

In this Appendix, the matrix f̌ (p,p′) will be evaluated for a spherically symmetric impurity. Considering Eqs. (20) and (22)
with a real function �1(p), one can see that f̌ has the form

f̌ (p,p′) =
(

f1(p,p′) f2(p,p′)

−f ∗
2 (p,p′) f ∗

1 (p,p′)

)
. (B1)

The equations for f1 and f2 read

f1(p,p′) = U (p − p′) +
∫ [

f1(p,k)G(0)
N (k)U (k − p′) + f2(p,k)G(0)∗

N (k)�1(k − p′)
] d3k

(2π )3
, (B2)

f2(p,p′) = −�1(p − p′) +
∫ [

f2(p,k)G(0)∗
N (k)U (k − p′) − f1(p,k)G(0)

N (k)�1(k − p′)
] d3k

(2π )3
, (B3)
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where

G
(0)
N (k) = [−ξ (k) + iε+]−1.

The functions f1(p,p′) and f2(p,p′) are the ordinary and
Andreev scattering amplitudes, respectively, for an electron
in the normal-state incident at an impurity with an electric
potential U (r) and pairing potential �1(r). To solve Eqs. (B2)
and (B3), we assume that Andreev scattering can be taken
into account within perturbation theory. This is the case
when

kF

μ

∫
|�1(r)|dr � 1, (B4)

and |U (r)| � μ. Note that for |�1| ∼ �0 Eq. (B4) simply
means that L � ξS . Then, the last term in the right-hand
side of Eq. (B2), which is second order in �1, can be

neglected. As a result, f1 ≈ fN , where fN is the vertex part
of the normal-state Green function in the presence of a single
impurity:

fN (p,p′) = U (p − p′) +
∫

fN (p,k)G(0)
N (k)U (k − p′)

d3k
(2π )3

.

(B5)

The differential scattering cross section dσ on the potential
U (r) from momenta on the Fermi surface is

dσ

d

(p1 → p2) = m2

4π2�4
|fN (p2,p1)|2. (B6)

To solve Eq. (B3), we note that the function

�(p,p′) = δ(p − p′) + f ∗
N (p,p′)

G
(0)∗
N (p)

(2π )3
(B7)

satisfies the equation

�(p,p′) = δ(p − p′) +
∫

�(p,k)G(0)∗
N (k)U (k − p′)

d3k
(2π )3

. (B8)

Hence,

f2 ≈
∫ [

−�1(p − q) −
∫

fN (p,k)G(0)
N (k)�1(k − q)

d3k
(2π )3

]
�(q,p′)d3q

= −�1(p − p′) −
∫

fN (p,k)G(0)
N (k)�1(k − p′)

d3k
(2π )3

−
∫

�1(p − k)G(0)∗
N (k)f ∗

N (k,p′)
d3k

(2π )3

−
∫

fN (p,k)G(0)
N (k)�1(k − q)G(0)∗

N (q)f ∗
N (q,p′)

d3k
(2π )3

d3q
(2π )3

. (B9)

The normal-state single-impurity Green function is given by

GN (p,p′) = δ(p − p′)G(0)
N (p) + G

(0)
N (p)

fN (p,p′)
(2π )3

G
(0)
N (p′). (B10)

Hence,

f2(p,p′) = −
∫

G
(0)−1
N (p)GN (p,k)�1(k − q)G∗

N (q,p′)G(0)∗−1
N (p′)d3kd3q

= −
∫

eipr−ip′r′
G

(0)−1
N (p)GN (r,r1)�1(r1)G∗

N (r1,r′)G(0)∗−1
N (p′)d3rd3r1d

3r′. (B11)

Here we used that GN (−r1, − r′) = GN (r1,r′) due to inversion symmetry. The function GN (r,r′) is defined by the equation(
− �

2

2m

∂2

∂r2
− μ + U (r) − iε+

)
GN (r,r′) = −δ(r − r′). (B12)

Now we expand GN and the δ function in Legendre polynomials Pl :

GN (r,r′) =
∑

l

Pl

(
r
r

· r′

r ′

)
Gl(r,r ′)

r
, (B13)

δ(r − r′) = δ(r − r ′)
r2

∞∑
l=0

2l + 1

4π
Pl

(
r
r

· r′

r ′

)
. (B14)

Then [
−iε+ + �

2l(l + 1)

2mr2
− �

2

2m

∂2

∂r2
− μ + U (r)

]
Gl(r,r

′) = −2l + 1

4πr ′ δ(r − r ′). (B15)

Let us denote as ul0 the solution of the homogeneous equation (without the right-hand side) having the asymptotics

ul0 = exp

(
ikF r − ε+ kF r

2μ

)
(B16)

104521-13



BESPALOV, HOUZET, MEYER, AND NAZAROV PHYSICAL REVIEW B 93, 104521 (2016)

at r → ∞. It should be noted that, at r > r ′, Gl(r,r ′) is pro-
portional to ul0, since the second linearly independent solution
of the homogeneous equation diverges at r → ∞. Then, using
standard methods for solving linear inhomogeneous equations,
one can express Gl in terms of ul0 and u∗

l0:

Gl(r,r
′) =

{
s(r ′)ul0(r) − im

kF �2 ul0(r ′) 2l+1
4πr ′ u

∗
l0(r), r < r ′,[

s(r ′) − im
kF �2 u

∗
l0(r ′) 2l+1

4πr ′
]
ul0(r), r > r ′.

(B17)

Here s(r ′) is some function that will be determined from the
boundary condition at r = 0. When deriving Eq. (B17) it has
been used that the Wronskian

W =
∣∣∣∣ul0(r) u∗

l0(r)

u′
l0(r) u∗

l0
′(r)

∣∣∣∣ (B18)

is almost constant: indeed, it can be demonstrated using
Eq. (B15) (without the right-hand side) that dW/dr ∼ ε+,
and hence W (r) ≈ −2ikF for not too large r .

To determine s(r ′), we use the boundary condition
Gl(0,r ′) = 0:

s(r ′) = im

�2kF

ul0(r ′)
2l + 1

4πr ′ cl, (B19)

where

cl = lim
r→0

u∗
l0(r)

ul0(r)
.

Then

Gl(r,r
′) = im

�2kF

2l + 1

4πr ′

{
ul(r ′)ul0(r), r > r ′

ul(r)ul0(r ′), r ′ > r
, (B20)

where

ul(r) = clul0(r) − u∗
l0(r). (B21)

Now we return to Eq. (B11). For further transformations, we
will use the addition theorem

Pl

(
r
r

· r′

r ′

)
= 4π

2l + 1

m=l∑
m=−l

Ylm

(
r
r

)
Y ∗

lm

(
r′

r ′

)
, (B22)

and the expansion (see Ref. [29])

eipr =
∞∑
l=0

(2l + 1)iljl(pr)Pl

(r
r

· n
)
. (B23)

Here Ylm are the spherical harmonics and jl are the spherical
Bessel functions, which are related to ordinary Bessel func-
tions Jν via

jl(x) =
√

π

2x
Jl+1/2(x). (B24)

If one expands the Legendre polynomials in Eq. (B13) in
spherical harmonics, one can perform integration over the
directions of r, r′, and r1 in Eq. (B11):

f2(p,p′) = −G
(0)−1
N (p)G(0)∗−1

N (p′)
∞∑
l=0

Pl(n · n′)
(4π )3

2l + 1

∫
jl(pr)jl(p

′r ′)Gl(r,r1)�1(r1)G∗
l (r1,r

′)rr1r
′2drdr1dr ′. (B25)

Further simplifications are possible if we take p and p′ sufficiently close to the Fermi surface: |p − kF |L � 1 and |p′ − kF |L � 1.
At such parameters we may neglect the contribution to the integral in (B25) from the region where either r < L or r ′ < L as
compared to the contribution from the region where both r > L and r ′ > L [this statement is proved by the estimates given
below, in particular, Eq. (B28)]. Then, we may put r1 < L < r,r ′ in Eq. (B25), since at r1 > L �1(r1) is negligible:

f2(p,p′) = −G
(0)−1
N (p)G(0)∗−1

N (p′)
4πm2

�4k2
F

∞∑
l=0

(2l + 1)Pl(n · n′)
∫ ∞

L

jl(pr)ul0(r)rdr

×
∫ ∞

L

jl(p
′r ′)u∗

l0(r ′)r ′dr ′
∫ L

0
|ul(r1)|2�(r1)dr1. (B26)

The asymptotic behavior of jl(x) at x → ∞ is

jl(x) ≈ 1

x
cos

[
x − (l + 1)

π

2

]
. (B27)

Then, using Eq. (B16), we obtain∫ ∞

L

jl(pr)ul0(r)rdr ≈
∫ L′

L

jl(pr)ul0(r)rdr + il+1ei(kF −p)L′

2p

[
kF ε+

2μ
− i(kF − p)

]−1

, (B28)

where L′ is the characteristic distance at which the asymptotics (B27) can be used (if this distance is smaller than L, we take
L′ = L). To ensure that f2(p,p′) weakly depends on |p| and |p′| when ξ (p) � �0 and ξ (p′) � �0, we need to demand that the
argument of the exponent in the second line of Eq. (B28) is small, i.e., L′|kF − p| ∼ L′/ξS � 1. According to Ref. [29], the
asymptotics (B27) works at x 	 l2. Thus, L′ ∼ l2/kF , so we demand

l2 � kF ξS. (B29)

Then, we have ∫ ∞

L

jl(pr)ul0(r)rdr ≈ il+1

2p

[
kF ε+

2μ
− i(kF − p)

]−1

. (B30)
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Finally, Eqs. (B26) and (B30) yield

f2(n,n′) ≈ −π2ν0

k2
F

∞∑
l=0

(2l + 1)Pl(n · n′)
∫ ∞

0
|ul(r)|2�1(r)dr. (B31)

Note that the condition (B4) provides the smallness of the expansion coefficients: |f2l| � 1.
In the end of the Appendix we will derive some more useful relation for f̌ . It follows from Eq. (20) that

Im[f̌ (p,p′)] =
∫

Im[f̌ (p,k)]Ĝ(k)V̌imp(k − p′)
d3k

(2π )3
+ i

2

∫
f̌ ∗(p,k)[Ĝ∗(k) − Ĝ(k)]V̌imp(k − p′)

d3k
(2π )3

=
∫

Im[f̌ (p,k)]Ĝ(k)V̌imp(k − p′)
d3k

(2π )3
+ πν0

∫
f̌ ∗(p,kF n)

(−1 0
0 1

)
V̌imp(kF n − p′)

dn
4π

.

Then, using Eq. (20) it can be proven that

Im[f̌ (n,n′)] =
∫

f̌ ∗(n,n′′)
(−1 0

0 1

)
f̌ (n′′,n′)

dn′′

4π
. (B32)

Substituting Eq. (25), one finds after integration over n′′ that

Im[f1l] = −∣∣f 2
1l

∣∣ − f ∗2
2l = −∣∣f 2

1l

∣∣ − f 2
2l ,

Im[f2l] = −2if ∗
1lIm[f2l] = 2if1lIm[f2l].

Finally, we obtain the following relations for the imaginary
parts of f1l and f2l :

Im[f1l] = −det[f̌l], Im[f2l] = 0. (B33)

APPENDIX C

In this Appendix, we will derive some properties of the
bound states localized around a small (L � ξS) spherically
symmetric impurity, suppressing the pairing potential. First,
we prove that such an impurity supports bound states with
arbitrary large orbital momenta l. The energies El of such
states may be determined from the Bogoliubov–de Gennes

equations [25]

(Ĥl − El 1̌)

(
u(r)
v(r)

)
= 0, (C1)

where

Ĥl =
(

Hl(r) �(r)
�(r) −Hl(r)

)
, (C2)

Hl(r) = − �
2

2m

∂2

∂r2
+ �

2l(l + 1)

2mr2
+ U (r). (C3)

The boundary conditions at the origin are u(0) = v(0) = 0.
The energy of the ground state may be estimated using the
variational principle

E2
l �

∫ ∞
0 (u∗

T (r) v∗
T (r))Ĥ2

l

(
uT (r)
vT (r)

)
dr∫ ∞

0 [|uT (r)|2 + |vT (r)|2]dr
, (C4)

where uT (r) and vT (r) are some trial functions satisfying the
boundary conditions. Let us take uT (r) = vT (r) = ul(r)e−δr ,
where ul(r) is defined in Eq. (B21), and δ is an adjustable
parameter. According to Eq. (C4), we have

E2
l � �2

0 +
∫ ∞

0

[(
�

2δ
2m

)2∣∣ dul

dr
− δul

∣∣2 + [
�2(r) − �2

0

]|ul(r)|2]e−2δrdr∫ ∞
0 |ul(r)|2e−2δrdr

, (C5)

where �0 is the value of the gap far from the impurity. It can be
seen that if there is a region with �(r)2 < �2

0 [and everywhere
�(r)2 � �2

0], by taking a sufficiently small parameter δ one
can make the second line of Eq. (C5) negative. Thus, E2

l < �2
0,

which means that a bound subgap state exists for arbitrary l.
Now we will derive a few explicit expressions for El .

Of course, these energies can be determined by solving
the Bogoliubov–de Gennes equations (C1), but this is not
necessary: at L � ξS and l2 � kF ξS this solution will yield
Eq. (33), which will be analyzed in the following.

In the case when the electric potential U is absent or
negligible compared to the centrifugal potential, the functions
ul in Eq. (33) can be expressed in terms of the spherical Bessel
functions jl [29]:

ul = 2kF rjl(kF r) (C6)

[according to the definition (B21), ul has a complex phase
factor, but this does not matter here].

We can compare our analytical result for E0 with the
numerical result obtained by Flatté and Byers [20], who
studied the electronic structure of defects of different nature.
In particular, a local Gaussian suppression of the electron-
electron coupling constant on the scale of k−1

F has been
considered. For an analytical estimate we assume that �(r)
is proportional to the coupling constant, so that

�1(r) = −�0e
−k2

F r2
. (C7)

Such an approximation should work well when L/ξS � 1, so
that perturbations of the Green functions at imaginary energies
are small. For kF ξS = 10, using Eqs. (30), (33), and (C6) we
obtain E0 = 6 × 10−4�0. Our value for E0 appears to be one
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order of magnitude smaller than the numerical value given
in Ref. [20]. The reason for this deviation is not very clear.
The states with l �= 0 have not been detected in the mentioned
paper, so we may suppose that a higher numerical accuracy is
required to calculate the bound-state energies when they are
lying very close to the gap edge.

Let us turn to the case of relatively large defects, when
the energies El can be calculated quasiclassically. Using
Eq. (B24) and Debye’s asymptotic expansion for the Bessel
functions [30], we find that

jl(x) ≈ 1√
xz(x)

cos χ (x), (C8)

where

z(x) =
√

x2 − (
l + 1

2

)2
, (C9)

χ (x) is the quasiclassical phase, and it is required that

z(x) 	 1, z3(x) 	 (
l + 1

2

)2
. (C10)

Note that z(x) = 0 approximately corresponds to the classical
turning point, where the centrifugal potential equals the Fermi
energy. When integrating in Eq. (30), we replace cos2 χ (x) by
1/2, which is its average over an oscillation period:

f2l ≈ − kF

2μ

∫ L

k−1
F (l+1/2)

kF r�1(r)dr√
k2
F r2 − (

l + 1
2

)2
. (C11)

It can be seen that the quasiclassical approach does not allow
us to determine the energies of the impurity states with large
momenta (l � kF L − 1/2). Below we will demonstrate that
these energies are exponentially close to the gap edge.

Previously, Gunsenheimer and Hahn [26] calculated the
energies of the Andreev states on a normal sphere in a
superconducting continuum (which corresponds to a steplike
profile of �1(r): �1(r) = −�0 when r < L, and �1 = 0
when r > L). Their approach is essentially quasiclassical,
so their results should be equivalent to Eqs. (C11) and (33)
when L � ξS . Substituting a rectangular profile of �1 into
Eq. (C11), we obtain

f2l = �0

2μ

√
k2
F L2 −

(
l + 1

2

)2

. (C12)

This agrees well with the result from Ref. [26]. Taking kF L 	
l + 1/2, we obtain the estimate (31).

For smaller impurities or larger l we need to go beyond
the quasiclassical approximation. Using again a rectangular
profile of �1(r), we find that

f2l = �0

μ
I (l,kF L), (C13)

where

I (l,R) =
∫ R

0
x2j 2

l (x)dx

= R2

2

{
R

[
j 2
l (R) + j 2

l+1(R)
] − (2l + 1)jl(R)jl+1(R)

}
.

(C14)

FIG. 7. The functions I (l,R) for several values of l.

The I (l,R) vs R graphs for l = 0 . . . 4 are shown in Fig. 7.
It can be seen that on the background of linear growth these
functions exhibit oscillations with a period equal to π . These
oscillations are a consequence of the discontinuity of �1(r) at
r = L. A smooth crossover of �1 from −�0 to 0 on a length
scale larger than k−1

F will remove the oscillations.
In the limit of large l, namely

√
2(2l + 3) 	 kF L, one can

replace the Bessel functions in Eq. (C14) by the first term of
their Taylor series. This yields

I (l,R) ≈ R2l+3

(2l + 1)!!(2l + 3)!!
. (C15)

Since

(2l + 1)!! ≈ exp

[
−1 − l(1 + ln 2) + 1

2
ln

(
2 + 1

l

)

+ (2l + 1) ln(2l + 1) − l ln l

]
(C16)

(see Stirling’s formula in Ref. [29]), the energies of the
localized states approach the gap edge exponentially fast with
growing l.

APPENDIX D

In this Appendix we calculate the width of the impurity
band at a small concentration of pairing-potential impurities
in the limit of strongly suppressed anisotropy, when the Green
function satisfies Eq. (78). The calculations given below can
also be used to determine the width of the impurity band in the
case of an isotropic superconductor—see Eq. (37).

We note that in the vicinity of the energy of the bound
state E , given by Eq. (84), the parameter x = 1 − 2if20〈g1〉
becomes small: |x| � 1. Let us rewrite Eq. (78) substituting
〈g1〉 = −i(1 − x)/(2f20):

E

〈�0〉 − 1 = − c2f20

πν0〈�0〉x − 2f 2
20

(1 − x)2

− 〈�′2〉
f20�〈�0〉

(
τ−1

1 + τ−1
2
x

) (1 − x). (D1)
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Now we will expand the right-hand side in powers of x. We
assume τ−1

2 /|x| � τ−1
1 , which is valid at sufficiently small

concentrations c2, as we shall see further. Then, keeping terms
up to the order of x2, we obtain

δE′ +
[

c2f20

πν0〈�0〉 − 〈�′2〉τ 2
1

�f20〈�0〉τ2
(1 − x)

]
1

x

+
(

4f 2
20 − 〈�′2〉τ1

�f20〈�0〉
)

x + 6f 2
20x

2 ≈ 0, (D2)

where δE′ = (E − 〈�0〉 + E)/〈�0〉. Using the fact that τ−1
2 �

2c2/(�πν0), it is easy to prove that

c2f20

πν0〈�0〉 	 〈�′2〉τ 2
1

�f20〈�0〉τ2
|1 − x|,

since the inequality (83) holds, and furthermore τ−1
1 	

4
√

〈�′2〉√〈�0〉/� in the limit of suppressed anisotropy. Also, it

can be seen that the term proportional to x2 can be neglected
compared to the term proportional to x when

|x| � 1 − �

8〈�0〉f 3
20τdep

, (D3)

where τ−1
dep = 2〈�′2〉τ1/�

2. Then, we can determine x from
Eq. (D2):

x =
δE′
4f 2

20
+

√(
δE′
4f 2

20

)2
+ c2

πν0f20〈�0〉
(

�

8〈�0〉f 3
20τdep

− 1
)

2
(

�

8〈�0〉f 3
20τdep

− 1
) . (D4)

If the expression under the square root is negative at a given
value δE′, then x is complex, which means that the energy
lies within the impurity band. This observation allows us
to determine the width W of this band, which is given by
Eq. (88).
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