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Chapter 1

Abstract

Because of the growing demand for more advanced electric devices, an exponential growth of the
number of transistors are supposed to be integrated into a single chip. To manufacture devices
in the scale of nanometer cost-effectively, an accurate measurement for lithography process cali-
brating is necessary. Ptychography is a computational imaging technique which has the potential
to serve as a metrology solution for semiconductor devices. It can reconstruct complex-valued
permittivity function of an object from an extensive set of measured intensities of the diffraction
patterns in the far field. It should be noted that also 2D and 3D a-periodic objects can be mea-
sured with this technique. Currently, this technique has been widely used in reconstructing thin
and weakly scattering (satisfying the first Born approximation) objects in a transmission geome-
try (detectors and sources are placed on different sides of the objects).We propose an accurate 3D
ptychography multi-layer Born model, and apply it to reconstruct refractive index distributions
of semi-conductors. This model slices the sample into thin layers and first Born approximations
are applied to each layer sequentially. For a transmission geometry, this model considers both
forward scattering effects and backward scattering effects [1], as opposed to normal beam prop-
agation models. For reflection geometry (detectors and sources are placed on the same side of
the object), this model collects reflected fields on each layer of the sample and these fields will
interact with the object again later together with other upwards fields. This procedure enables
detectors arranged in a reflection geometry to gather complete information about the object. We
implement the model on the existing ptychography platform based on the auto-differentiation
(AD) solvers and manage to reconstruct high-resolution images of 3D objects.
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Chapter 2

Introduction

2.1 Wafer metrology

From the mid of the 20th century, the developments of electronic circuit progressed at a rapid
rate. With the growing demands for high performance computing, the vast numbers of discrete
components and connecting wires inside the electronic devices can no longer suit the portable
requirements in modern society. One way to cope with the problem is to integrate multiple
components inside a single package. Gordon Moore has predicted that the number of transistors
incorporated within a single chip would double every two year [2, 3]. While originally intended
as a rule of thumb in 1965, it has become the guiding principle for the industry to deliver
ever-more-powerful semiconductor chips. To enable cost-effective lithographic production of
such number of high-performance chips„ several key parameters have to be closely monitored
during the production process, e.g. critical dimensions (CD) and overlay (OV). Therefore, fast
measurements of the structural profile of the nanostructures on the chips is extremely important.
By continuing monitoring the quality of the products, lithography machines can calibrate errors
dynamically for each wafer. Several measurement techniques have been performed nowadays in
nanometer-precision instruments.

• Optical critical dimension metrology (OCD) [4]. Manufacturers now rely on scatterometry
for OCD measurements. Scatterometry measures small periodic structures on a wafer or
mask. It illuminates the sample with light and collects and analyzes the scattered light to
obtain both geometry and material optical properties of the structures. Because it is not
image based, scatterometry is not constrained by the so-called diffraction limit, which is
caused by imperfections in the lenses or misalignment, but it needs prior information about
the structural geometry that is to be measured.

• Scanning electron microscope (SEM) [5]. This is one of the most common used technique for
in-line integrated circuit measurements. It uses a finely focused electron beam to scan over
the sample. The beam-sample interaction produces secondary and backscattered electrons
which are captured by detectors, to determine feature and size information of the object
with sub-nanometer-scale resolution.

• Atomic force microscopy (AFM) [6]. AFM is a very-high-resolution type of scanning probe
microscopy, with demonstrated resolution on the order of fractions of a nanometer, which is
more than 1000 times better than the optical diffraction limit. However, this method suffers
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from low throughput and it can hardly satisfy the requirements of the fast manufacturing
line.

2.2 Research questions
Apart from these advanced technologies for semi-conductor metrology, there are other more
disruptive technologies, e.g. ptychography. Ptychography is a lensless imaging technique for 2D
or 3D reconstruction of the image of nanoscale structures. It generates images by processing many
coherent interference patterns that have been scattered from an object of interest. Ptychography
does not image the object directly but rather indirectly through the solution of an inverse problem
via an optimization procedure which compares the measured diffraction patterns and predicted
diffraction patterns to find a best fit to be retrieved object and the real object. Fig. 2.1 may help
further to illustrate this idea. When an incident wave illuminates an object, the corresponding
scattered wave at the far field is collected by a detector. Meanwhile, an arbitrary guess of the
object is input to a model, which is capable of simulating the interactions of the field and the
object. The output of the model is the corresponding diffraction pattern of the input object. In
order to realize the real object, we update the input object iteratively by optimization algorithms.
In ptychography, multiple diffraction patterns are measured for different positions of the incident
probe, so that neighboring probe positions on the object of interest are partially overlapping.
Because the diffraction patterns are unique for any given object, when the differences between
the measured patterns and the calculated patterns are small enough so that they can be ignored,
we may say that the real object has been successfully reconstructed and in this way, we have
measured the key structural features of the chips. The purpose of this thesis is to build both the
encoding model, which is supposed to predict the field-material interactions, and the decoding
model, which contains the optimization algorithms to update the to be retrieved object.

Figure 2.1: Encoding and decoding model in computational imaging

Traditional ptychography is only valid for thin objects, normally not thicker than a few wave-
lengths of visible lights. This restricts the application of ptychography in many fields. In order
to extend the 2D ptychography technique to 3D ptychography, people have come up with some
methods [7, 8, 9, 10, 11, 12, 13, 14]. The encoding model which is developed in my thesis in my
thesis is the multi-layer first Born (MLB) model. Similar to the multi-slice model, the object will
be sliced into thin layers along the incident wave propagation direction and the whole object is
obtained by stacking each layer sequentially. However, instead of considering free space propa-

3



gation between two adjacent layers, the MLB model solves volume integrals to find out the total
field at each layer. This method is more rigorous as compared to the multi-slice model and, in
addition, it takes backward scattering into account.

As for decoding models, there is a big family of ptychography decoding algorithms. These
algorithms are built on iterative optimization methods. By feeding an arbitrary initial complex-
valued guess of the object to the algorithm, the algorithm will correct the modulus and phase
information of the object with the measured data. The first ptychographic iterative engine (PIE)
algorithm became available in 2004 [15], after that, a growing list of alternative algorithms have
been demonstrated. Maiden has improved the PIE to ePIE [16], making the algorithm able
to reconstruct not only the object function but also the probe function. Later on, ePIE has
been demonstrated to work well for X-ray beam [17] and electrons [18]. Unlike the previous
PIE family, [19] has demonstrated an optimization framework of ptychography based on auto-
matic differentiation (AD). This AD-based framework is implemented on Tensorflow, a machine
learning library. Instead of finding an analytical expression for the gradient of the object and
probe functions, AD executes functions as a sequence of elementary arithmetic operations with
known derivations, and hence the gradients can be computed automatically by back-propagation
following the chain rule. With the benefit from this efficient open-source algorithms, we were
able to test the MLB model within the timeframe of this project.

2.3 Thesis outline
In section 3.1, the electromagnetic scattering problem will be formulated. This section derives
the important Lippman-Schwinger equation which describes the interactions between the light
from the source and the object. By solving this Lippman-Schwinger equation, one may find the
total field everywhere both inside and outside of the object. However, due to the unknown total
field which is present at both sides of the volume integral equation, it is difficult to solve the
equation analytically. Thus we apply the first Born approximation to the Lippman-Schwinger
equation to replace the unknown total field inside the integral with the given incident field and
by doing so the simplified version of Lippman-Schwinger equation can be solved analytically.
Then, based on the first Born approximation applied on theLippman-Schwinger equation, we
introduce the multi-layer Born model in section ??, and then give the theoretical foundation
of this model in section 3.3. Also, some tricks have been demonstrated in this section to show
how we deal with the computational complexity of these formulas. Things could get more
complicated when the background medium is stratified, thus we consider the situation for a
multi-layered medium in section 3.4. Then, we verify the multi-layer Born model by comparing
the model result with a trustworthy Maxwell solver provided by the Eindhoven University of
Technology in section 3.5. The relative errors between these two solvers at each layer are well
contained within 0.1. Note that the simulated scatterer has a relative permittivity contrast of
0.066666. This is because the first Born approximation we have applied to the MLB model.
It requires the scatterer to has a low relative permittivity contrast χ =

n2
r

n2
b
− 1 much smaller

than 1 and for any larger relative permittivity contrast situations, the solver may lead to poor
convergence. To prevent this kind of poor convergence, one may reformulate the scattering
problem using normal vector fields. However, this requires prior information of the scatterers
and the improvement of the results accuracy is limited based on extensive researches. Thus we
leave the normal vector fields method to further improvement. Till now, only single wavelength
and single sample/probe mode are involved in our MLB model. But in reality, the light source
is partially coherent and for high-power EUV source the spectral has a relative large range.
Thus multiple wavelength may exit at the same time and influence the scattered field at far
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fields. Also, researches have shown that multiple sample/probes are essential to obtain accurate
reconstructions. In chapter 4, we improve the model by introducing multi-modes for both samples
and probes and multiple wavelengths to make the results more robust. The decoding model will
be introduced in Chapter 5. In this chapter, we formulate the reconstruction as an optimization
problem. It minimize the difference between the measurements and the MLB model predictions
by iteratively updating the scatterer. And by implementing the multi-layer Born model on an
open-source automatic differentiation (AD) framework, the derivatives required will be calculated
autonomously by the back propagation algorithm. Also, because of the non-linearity of the object
function, regularization terms are expected to adjust the model complexity and to prevent the
model form overfitting or underfitting. The influence of L1 regularization and total variation (TV)
regularization terms on reconstruction will be discussed on this section. Finally, in chapter 6, we
use the experimental data provided by the Utrecht university to verify the entire 3D reflection
ptychography model, which consists of both the multi-layer Born model and the optimization
algorithm. The results are promising when only 4 or less layers are involved. When the number
of layers increased, the number of variables also increased. It brings us higher complexities and
demands more data to accurately reconstruct the scatterer.
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Chapter 3

Multi-layer Born model for 3D
ptychography

3.1 Scattering problem formulation
By illuminating the object with a probe, the information of the object is encoded into the wave
field. To decode the information, one should first find out the wave field associated with the
object. Here we formulate the general model of electromagnetic scattering problem following the
procedure in [20] (note that this formulation is more or less the same in all related references): an
object is placed in a homogeneous isotropic medium, with a constant relative electric permittivity
of ϵb. Let Ω represents the space occupied by the object in which the relative permittivity is a
function of position, denoted as ϵ(r). Assume both medium and objects are non-magnetic, so
that the relative permeability µ of the whole space is constant. Without loss of generality, we
assume it is equals to 1. Now the object is illuminated by a given incident wave, this incident
wave will be scattered by the object to all directions. Thus, the total field in this area consists
of the known incident wave and unknown scattered field, see Fig. 3.1.

Figure 3.1: General model of electromagnetic scattering problem

Given both incident field and total field satisfy the Maxwell equation, one can derive the expres-
sion for scattered field by substracting the incident field from the total field

∇× Esct = iωµ0Hsct, (3.1.1)
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∇× Hsct = −iωϵ0ϵbEsct − iωϵ0(ϵ(r)− ϵb)Etot, (3.1.2)

where Esct, Hsct are scattered electric field and magnetic field, Etot is the total field. It is
obvious that the scattered field satisfies Maxwell’s equation when we see −iωϵ0(ϵ(r)− ϵb)Etot as
an effective current density, Jsct, caused by the induced motions of the bound and free electrons
in objects

Jsct(r) = −iωϵ0(ϵ(r)− ϵb)Etot. (3.1.3)

To determine the scattered field, one need to solve the Maxwell equations. Eliminate the magnetic
field will lead to:

∇(∇ · Esct)−∇2Esct = ω2µ0ϵ0ϵbEsct + ω2µ0ϵ0[ϵ(r)− ϵb]Etot. (3.1.4)

For weakly scattering objects, the first term on left-hand side may be discarded, thus we obtain
the inhomogeneous Helmholtz equation for the scattered field

∇2Esct + ω2µ0ϵ0ϵbEsct = −iωµ0Jsct(r). (3.1.5)

The solution to this equation can be written as a convolution of Green’s function and source
term, which yields:

Esct(r) = −k20

∫∫∫
Ω

[ϵ(r0)− ϵb]Etot(r0)G(r − r0)d3r0. (3.1.6)

With the expression of the scattered field and the given incident field, we can derive the expression
of the total field, which is called the Lippmann-Schwinger equation

Etot(r) = −k20

∫∫∫
Ω

G(r − r0)(ϵ(r0)− ϵb)Etot(r0)d3r0 + Einc(r). (3.1.7)

In Cartesian coordinates, components of the electric field do not mix. Each component of the
electric field satisfies an inhomogeneous Helmholtz equation. Therefore we derive the scalar
form of the Lippmann-Schwinger equation (in [20], the author sticks to the vector expression
of electromagnetic fields and uses the Green tensor in his later derivation. For the sake of
simplification, we change to the scalar expression from here onwards.)

Utot(r) = −k20

∫∫∫
Ω

G(r − r0)(ϵ(r0)− ϵb)Utot(r0)d3r0 + Uinc(r), (3.1.8)

where Green’s function is given by

G(r − r0) = − eik|r−r0|

4π|r − r0|
. (3.1.9)

To simplify the total field expression further, here we define the scattering potential V (r0) as

V (r0) = −k20(ϵ(r0)− ϵb). (3.1.10)

Rewriting Eq. 3.1.8 with Eq. 3.1.10 yields:

Utot(r) =
∫∫∫

Ω

G(r − r0)V (r0)Utot(r0)d3r0 + Uinc(r). (3.1.11)

By solving Eq. 3.1.11, one can obtain the total electric field both inside and outside of the object.
However, note that the unknown total field exist both in left- and right-hand side of the equation,
the analytical solution to this integral may be difficult to obtain. To solve this equation, one may
replace the total field on the right-hand side of Eq. 3.1.11 with a suitable approximation which
could decouple the nonlinear relationship between the scattering potential and the total field.
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3.2 Apply Born approximation to solve Lippmann-Schwinger
equation

One popular approach to solve the Lippmann-Schwinger equation is to expand the total field on
the right-hand side into a Born series

Utot(r) =
∞∑

m=0

Um(r), (3.2.1)

where

U0(r) = Uinc(r),

U1(r) =
∫∫∫

Ω

G(r − r0)V (r0)U0(r0)d3r0,

Um(r) =
∫∫∫

Ω

G(r − r0)V (r0)Um−1(r0)d3r0,m = 1, 2, 3...

(3.2.2)

Normally, people use the First Born approximation (up to m = 1) to approximate the total field.
The computation of higher orders is not worthwhile because for normal optical contrast higher
order Born series often diverge [20]. The total field is then given by

Utot(r) =
∫∫∫

Ω

G(r − r0)V (r0)Uinc(r0)d3r0 + Uinc(r). (3.2.3)

By replacing the total field with the incident field on the right-hand side of Eq. 3.1.11, the
relation between the scattering potential and the total field is linear, which means this integral is
solvable. Electric fields both inside and outside of Ω can be obtained. However, given that only
the first two terms contribute to the total field, higher order information is ignored. Thus this
approximation is only valid for weakly scattering objects. If the total amount of absorption and
phase shift is large, the validity of the first Born approximation is broken down. Recognizing
that the first Born approximation only considers single scattering inside the object, one may
describe the multiple scattering field-material interactions more accurately by applying the first
Born approximation multiple times. In order to do so, the thick object first needs to be divided
into many thin layers and each layer is so thin that inside each layer a single scattering model is
accurate enough. Thus, one can apply the first Born approximations sequentially at each layer
of the object, and by combining all these layers, the multiple scattering effect can then be taken
care of. This model is referred to as the multi-layer Born model and was first introduced in [1]
by Laura Waller. Similar to the multi-slice method introduced by Maiden et al, they all slice the
thick scattering objects into many thin layers along the direction of the incident wave. However,
the multi-slice formalism for a thick sample comprises a sequence of phase-gratings and free-space
propagators. If a first order Taylor expansion is applied on the phase-grating, a first order Born
approximation is obtained. While in the multi-layer Born, one can analytically integrate along
the layer thickness in order to get a better analytical result.

Fig. 3.2 describes the geometry of the multi-layer Born model. The lateral cross-section of the
object is parallel to the xy plane and the depth of the object expands along the z direction. The
permittivity distribution of each thin layer varies in the xy plane, but remains constant along
the z direction.
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Figure 3.2: The object geometry of the multi-layer Born scattering model [21]

Compared with the multi-slice method which considers only a 2-dimensional transmission/reflec-
tion function and a uniform space propagation in the layer, the multi-layer Born model deals with
a 3-dimensional object that is constant along the axial direction but varies in the lateral plane.
As a result, a volumetric scattering integral, i.e. the Lippmann-Schwinger equation, needs to be
used for computing the scattered field. Although we take only the first order approximation of
this equation (the first Born approximation), the result of the multi-layer Born model should
still be more accurate than that of the multi-slice method when the variation of the scattering
potential along the z direction relative to that of the scattering potential in the xy plane is large
for the same layer thickness situations.

Given this 3D permittivity distribution which acts as a scattering potential, the scattered field
can no longer be obtained by field-material multiplications. Mathematically, a Green’s function is
the impulse response of an inhomogeneous linear differential operator defined on a domain with
specified initial conditions or boundary conditions. This can be understood by the following
reasoning: the waves at the top of a layer can be considered as a set of point sources. These
point sources interact with the object and propagate forward. The waves at the bottom of
the layer is the superposition of all these waves in between. Thus one may find the scattered
field analytically by convolving the incident source term and the Green function at each layer.
Specifically, the Green’s function for finding electromagnetic fields is given by

G(r) =
1

4πr
δ(r). (3.2.4)

Given the convolution between two functions in real space is the multiplication in Fourier space,
the calculation will be handled in Fourier space in our codes to decrease the computational load.
But similar to the multi-slice method, this multi-layer model is still in the general category of
beam propagation methods. As depicted by Fig. 3.2, the incident wave comes from region I and
will first interact with the top of the object. Part of the incident wave will be reflected and the
other part will be transmitted into the first layer (assume no absorption) and scattered by this
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layer. The wave reaches the bottom of the first layer and will further serve as the source wave
of the second layer. Similar to the incident wave at the top of the object, it will be divided into
two parts, e.g. reflected and transmitted waves. The same process will repeat for every layer
and thus in the end, part of the wave will enter region II. In conclusion, one may collect the
information of the object from the scattered waves both from region I and region II. To be more
specific, if the detector is placed on the same side with the light source (region I in this case),
we call it the reflection configuration. And if the detector is placed on the opposite side of the
light source( region II in this case), we call it the transmission configuration.

We first take the multi-layer Born transmission model as an example to explain the wave prop-
agation inside the object. Fig. 3.3 demonstrates the xz cross-section of Fig. 3.2 and displays
the process of beam propagation and field-material interactions within a three-layer sample of
the multi-layer first Born transmission model. The incident field Uinc first illuminates the top
surface of the object and only part of the field will transmit through the interface and enter
the first layer. The fraction of the field that is transmitted at this first interface (at the top
of the sample) into the object is determined by the Snell’s law and the Fresnel equations. The
transmitted field U0

inc will scatter once at the first layer, and the scattered field at the bottom
of the layer may be calculated by the convolution of the total field and the sample scattering
potential V (r). Also, because the total field U0

tot at the bottom of the first layer is the sum of the
incident field and the scattered field, one needs to find out the incident field at the bottom of the
first layer. The incident field at the bottom of the first layer may be understood as the incident
field at the top of the layer U0

inc propagating in a uniform background medium. Summing up
the scattered field and the propagated incident field, the total field U0

tot at the end of the first
layer is obtained. By repeating the process all over again for the sequence of consecutive layers
till the end of the sample, one is able to obtain the exit field and the diffraction pattern from
the wave at the bottom of the sample.

Figure 3.3: Field-material interactions of a three-layer sample in the multi-layer transmission
first Born approximation model

In the previous section, we have introduced the physical interpretation of the multi-layer Born
model, and now we will give here the mathematical representations of the model. As we have
mentioned before, the transmitted fraction of the total field at the bottom of each layer is
considered as the incident field at the top of the next layer,

Un+1
inc (r, 0) = Un

tot(r, z) ∗ t, (3.2.5)
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where Un+1
inc and Un

tot are the incident field at the top of the (n + 1)th layer and the total
transmitted field at the bottom of the nth layer, respectively. r is the lateral 2D coordinate
in real space. Note that z is a local coordinate. It equals 0 at the top of each layer. t is the
transmission Fresnel coefficient which indicates that when the background medium changes from
one side to the other side of the given interface, only part of the field will be transmitted to the
next medium and the other part of the field will be reflected. The transmission and reflection
coefficients are determined by the Fresnel equations. By applying the Fresnel equations, it implies
that the tangential components of the electric field are continuous at the interface. In this model,
the refractive indices of all background media are real constants as we assume that there is no
energy absorption inside the object. And thus the reflectance and the transmittance are supposed
to be summing up to one due to the energy conservation law.

The incident field at layer n+ 1 will scatter once, so the total field at this layer may be calculated
as the sum of the incident field, which propagates in the uniform background medium, and the
scattered field, which is scattered by the permittivity contrast (related to spatial variations in
refractive indices), as described by the Lippmann-Schwinger equation:

Un+1
tot (r,∆z) = F−1

{
F
{
Un+1
inc (r, 0)

}
∗ P (r,∆z)

}
+ Un+1

sct (r,∆z), (3.2.6)

where F and F−1 represent the Fourier transform and its inverse, respectively. P (r,∆z) is the
angular spectrum propagator which indicates how a field propagates from the top of the layer to
the bottom of the layer over a distance of the layer thickness ∆z. To reduce the number of Fourier
transforms performed in the program to accelerate the codes, all calculations are performed in
the spatial frequency domain. Therefore, Eq. 3.2.6 becomes:

Ũtot(u, z) = Ũsct(u, z) + Ũinc(u, z), (3.2.7)

where Ũ is a short notation for Fourier transforms of fields and u is a two dimensional spatial
frequency coordinate. The incident field at position z0 +∆z in Fourier domain is relatively easy
to find as shown in Eq. 3.2.8

Ũinc(u, z0 +∆z) = Ũinc(u, z0)P̃ (u,∆z). (3.2.8)

However, the expression of the scattered field in the Fourier domain requires some heavy deriva-
tions (will be demonstrated in Chapter 3.3) and here we only give the final expression of the
scattered field at the end of the layer

Ũsct(u,∆z) = G̃(u,
∆z

2
)∆zF

{
V (r)F−1

{
P̃ (u′,

∆z

2
)Ũtot(u′, 0)

}}
, (3.2.9)

where G̃(u, z) is the Green kernel in the Fourier domain and r is a two dimensional spatial
coordinate in real space. By obtaining total fields at each layer, one may find the total field
distribution within the whole thick object.

Our description gets more complicated in the multi-layer Born reflection model, as shown in
Fig. 3.4. The whole process may be separated into two parts, a downwards process and an
upwards process. In the former, with the fields going downwards, the field-material interactions
are similar to those of the transmission model, except that the reflection fields at each layer
will be used in later calculations and need to be saved. Also, different from the transmission
model where the total field exits the object at the bottom and propagates to the detector, it is
the reflected field that needs to be focused on. Given that the detector is on the same side as
the light source, the total field has to go back to the top of the sample and then propagate to
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the detector in order to obtain the complete information reflected from the object. During the
fields going upwards, the major difference between the downwards process is that the incident
field of each layer contains both the (upwards) transmitted total field from the last layer and the
reflected field saved when the field is going downwards. The Fourier transform of the incident
field for each layer during the upwards propagating is given by:

Ũn
inc(u, z0) = Ũ

2nrlayer−n−1
r (u, z0) + Ũn

t (u, z0), (3.2.10)

where nrlayer is the number of total layers of the object. The other material-field interactions
are similar to that of the downwards interactions.

Figure 3.4: Reflection multi-layer Born model field-material interactions in a three-layer
sample. The left sub-figure represents the downwards propagation of the total incident field

and the right sub-figure indicates the process of waves propagating upwards.

3.3 Multi-layer Born model derivation
The overview picture of the multi-layer first Born model is given in the previous section. Here
we will give the theoretical proof of this model.

Suppose that the object is divided into a series of layers along the z direction with the top surface
of the object coinciding with the plane at z = 0. In each layer, we assume a non-uniform isotropic
permittivity distribution ϵ(r), where r is the coordinate in the plane perpendicular to the z axis,
and a uniform background permittivity ϵb. We consider only objects consisting of non-magnetic
materials and hence the permeability µ is a constant which equal the permeability of free-space
µ0 = 1. The scattering potential in each layer is given by

V (r) = k20(n
2
b − n2(r)), (3.3.1)

where n2(r) = ϵ(r)µ and n2
b = ϵbµ are the permittivity contrast of the object and the background,

and k0 = 2π/λ is the wave number in free-space. Eq. 3.3.1 indicates that the scattering potential
varies only in the lateral plane perpendicular to z but remains constant along z. This implies
that any variation of the scattering potential along the z axis that is present in the sample, is
effectively averaged out along the z-axis within the considered layer.
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Now consider a layer with thickness ∆z. Recall the Lippmann-Schwinger equation

Utot(r, z) = Uinc(r, z) +
∫ ∆z

0

[∫∫
G(r − r′, z − z′)V (r′)Utot(r′, z′)dr′

]
dz′, (3.3.2)

where Uinc and Utot are the incident field and the total field, respectively, and G(r− r′, z− z′) is
the Green’s function that represents the impulse response at (r, z) from a point source at (r′, z′).
Notice that in Eq. 3.3.2, we use a local z coordinate with z = 0 at the top surface of the layer,
instead of using a global z coordinate with z = 0 at the top surface of the object.

Solving Eq. 3.3.2 is usually a challenging task because the unknown total field occurs on both
sides of the equation. Considering that everywhere in space, the total field Utot is the sum of the
incident field Uinc and the scattered field Usct:

Utot(r, z) = Uinc(r, z) + Usct(r, z), (3.3.3)

we can apply the first Born approximation to Eq. 3.3.2 by neglecting the scattered field Usct in
the integral of Eq. 3.3.2. The result yields the expression for the scattered field:

Usct(r, z) =
∫ ∆z

0

[∫∫
G(r − r′, z − z′)V (r′)Uinc(r′, z′)dr′

]
dz′. (3.3.4)

In Eq. 3.3.4, the incident field Uinc(r′, z′) at distance z = z′ with respect to the top surface can
be obtained by propagating the incident field at the top surface Uinc(r′, 0) numerically by using
the angular spectrum (AS) method as follows:

Uinc(r′, z′) =
∫∫

Uinc(r′, 0)P (r′ − r, z′)dr, (3.3.5)

where P (r, z) is the AS kernel for a propagation distance of z. By Fourier transforming both
sides of Eq. 3.3.4, we obtain

Ũinc(ρρρ, z
′) = Ũinc(ρρρ, 0)P̃ (ρρρ, z′), (3.3.6)

where ρρρ = (u, v) is the spatial frequency coordinate of the spatial coordinate r = (x, y), and
P̃ (ρρρ, z′) is the AS propagator for z′. Eq. 3.3.6 indicates that in the spatial frequency domain, the
Fourier transformed incident fields at z′ with respect to the top surface and at the top surface
are related to each other by a multiplication by the propagator in Fourier space. In the following
derivation, "̃ " denotes the Fourier transformed variable.

In order to simplify Eq. 3.3.4, we Fourier transform its both sides and we obtain

Ũsct(ρρρ, z) =

∫ ∆z

0

G̃(ρρρ, z − z′)F {V (r)Uinc(r, z′)} (ρρρ)dz′, (3.3.7)

where F represents the Fourier transform. Noticing that a multiplication in the spatial domain
becomes a convolution in the spatial frequency domain, we can derive that

F {V (r)Uinc(r, z′)} (ρρρ) =
∫∫

Ṽ (ρρρ− ρρρ′)Ũinc(ρρρ
′, z′)dρρρ′

=

∫∫
Ṽ (ρρρ− ρρρ′)P̃ (ρρρ′, z′)Ũinc(ρρρ

′, 0)dρρρ′. (3.3.8)
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Substituting Eq. 3.3.8 into Eq. 3.3.7 yields that

Ũsct(r, z) =

∫ ∆z

0

G̃(ρρρ, z − z′)

[∫∫
Ṽ (ρρρ− ρρρ′)P̃ (ρρρ′, z′)Ũinc(ρρρ

′, 0)dρρρ′
]
dz′,

=

∫∫ [∫ ∆z

0

G̃(ρρρ, z − z′)P̃ (ρρρ′, z′)dz′

]
Ũinc(ρρρ

′, 0)Ṽ (ρρρ− ρρρ′)dρρρ′. (3.3.9)

In Eq. 3.3.9, we define the integration over z′ to be a function of not only the spatial frequency
coordinates ρρρ and ρρρ′, but also of the z coordinate:

F (ρρρ,ρρρ′, z) =

∫ ∆z

0

G̃(ρρρ, z − z′)P̃ (ρρρ′, z′)dz′. (3.3.10)

Now our task is to discuss the computation of F (ρρρ,ρρρ′, z) which contains only one integral. If it
can be written in such a form that the functional dependence on ρρρ and ρρρ′ can be separated in
F , the rest of Eq. 3.3.9, although containing a double integral, can be computed efficiently by
using the fast Fourier transform algorithm.

3.3.1 Computation of function F (ρρρ,ρρρ′, z)

Recall that the AS propagator in the spatial frequency domain is given by

P̃ (ρρρ, z) = exp

(
i2π

√
n2
b

λ2
− |ρρρ|2 z

)
,

= exp
(
i
√
k20,b − |kkk⊥|2 z

)
= exp [ikz(ρρρ)z] ,

(3.3.11)

where k0,b = nb2π/λ is the wave number in the background medium where the field propa-
gates, kkk⊥(ρρρ) = 2πρρρ is the wave vector in the plane perpendicular to the z axis, and kz(ρρρ) =√
k20,b − |kkk⊥|2 is the component of the wave vector along the z axis, which is a function of ρρρ.

The Fourier transform of the Green’s function is given by the Weyl expansion or the angular
spectrum expansion:

G̃(ρρρ, z) =

∫∫
G(r, z) exp (−i2πr · ρρρ) dr,

=

−i exp

(
i

√
n2
b

λ2 − |ρρρ|2 z

)
4π

√
n2
b

λ2 − |ρρρ|2
,

=
−i exp [ikz(ρρρ)z]

2kz(ρρρ)
.

(3.3.12)

By substituting Eq. 3.3.11 and Eq. 3.3.12 into Eq. 3.3.10, for z = ∆z we can derive that

F (ρρρ,ρρρ′,∆z) =

∫ ∆z

0

G̃(ρρρ,∆z − z′)P̃ (ρρρ′, z′)dz′,

=

∫ ∆z

0

−i exp [ikz(ρρρ)|∆z − z′|]
2kz(ρρρ)

exp [ikz(ρρρ
′)z′] dz′,

=
−i exp (ikz∆z)

2kz

∫ ∆z

0

exp [i (k′z − kz) z
′] dz′,

(3.3.13)

14



where we have neglected the spatial frequency coordinate ρρρ and ρρρ′ in kz = kz(ρρρ) and k′z = kz(ρρρ
′),

respectively, and used the condition that |∆z − z′| = ∆z − z′ for z′ ∈ [0,∆z]. Now the result of
the integral over z′ can be derived analytically as:∫ ∆z

0

exp [i (k′z − kz) z
′] dz′ =

1

i (k′z − kz)
exp [i (k′z − kz) z

′]

∣∣∣∣∆z

0

,

=
1

i (k′z − kz)
{exp [i (k′z − kz)∆z]− 1} ,

= exp

[
i (k′z − kz)

∆z

2

]
2
sin
[
(k′z − kz)

∆z
2

]
(k′z − kz)

,

= exp

[
i (k′z − kz)

∆z

2

]
sinc

[
(k′z − kz)

∆z

2

]
∆z,

(3.3.14)

where we used the following identities in the derivation:

sin

[
(k′z − kz)

∆z

2

]
=

exp
[
i (k′z − kz)

∆z
2

]
− exp

[
−i (k′z − kz)

∆z
2

]
2i

,

sinc

[
(k′z − kz)

∆z

2

]
=

sin
[
(k′z − kz)

∆z
2

]
(k′z − kz)

∆z
2

.

(3.3.15)

Finally, by substituting Eq. 3.3.14 into Eq. 3.3.13, we can derive that

F (ρρρ,ρρρ′,∆z) =
−i exp (ikz∆z)

2kz
exp

[
i (k′z − kz)

∆z

2

]
sinc

[
(k′z − kz)

∆z

2

]
∆z,

=
−i exp

[
i (k′z + kz)

∆z
2

]
2kz

sinc

[
(k′z − kz)

∆z

2

]
∆z.

(3.3.16)

Recalling that the wave vector k represents the direction of plane wave propagation, we can thus
regard the sinc function in Eq. 3.3.16 as a weighting that depends on the difference between
the propagation direction of the plane wave component of the incident field and the scattered
field. Consider that any plane wave component of the incident field will be scattered and will
be transferred into plane wave propagating in all possible directions. The sinc function indicates
that the scattered plane wave that propagates in the same direction of the incident plane wave
has the maximum weight 1, and the weight decreases as the difference between the directions of
propagation increases following the trend of the sinc function.

Because this sinc function is a 4-dimensional function that depends on the wave vectors of both
the incident field and the scattered field, it needs to be simplified such that the dependency on
the wave vectors can be separated, e.g. by using the singular value decomposition method (SVD),
or it needs to be approximated by a constant 1 provided that either the difference between the
wave vectors k′z − kz or the layer thickness ∆z is sufficiently small. Both approaches will be
discussed in the following sections.

Substituting Eq. 3.3.16 into Eq. 3.3.9, we obtain a concrete spatial frequency domain expression
for calculating the scattered field at the bottom of a layer given the incident field at the top:

Ũsct(r, z) =

∫∫
F (ρρρ,ρρρ′,∆z)Ũinc(ρρρ

′, 0)Ṽ (ρρρ− ρρρ′)dρρρ′,

=
−i∆z

2kz
exp

(
ikz

∆z

2

)∫∫
exp

(
ik′z

∆z

2

)
sinc

[
(k′z − kz)

∆z

2

]
Ũinc(ρρρ

′, 0)Ṽ (ρρρ− ρρρ′)dρρρ′.

(3.3.17)
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We shall remember that the z component of the wave vector is given by

kz(ρρρ) =
√

k20,b − |kkk⊥|2 = 2π

√(nb

λ

)2
− |ρρρ|2, (3.3.18)

where ρρρ = (u, v) is the spatial frequency coordinate that is related to the spatial coordinate
r = (x, y) by the Fourier transform. Substitute Eq. 3.3.11 and Eq. 3.3.12 into Eq. 3.3.17 to get
rid of the exponential term,

Ũsct(ρρρ, z) =

∫∫
F (ρρρ,ρρρ′, z)Ṽ (ρρρ− ρρρ′)Ũinc(ρρρ

′, 0)dρρρ′

=

∫∫
−i∆z

2

exp
[
i(k′

z(ρρρ
′) + kz(ρρρ))

∆z
2

]
kz(ρρρ)

sinc

[
(k′

z(ρρρ
′)− kz(ρρρ))

∆z

2

]
Ṽ (ρρρ− ρρρ′)Ũinc(ρρρ

′, 0)dρρρ′

=
−i∆z

2

exp
[
ikz(ρρρ)

∆z
2

]
kz(ρρρ)

∫∫
sinc

[
(k′

z(ρρρ
′)− kz(ρρρ))

∆z

2

]
Ṽ (ρρρ− ρρρ′) exp

[
ik′

z(ρρρ
′)
∆z

2

]
Ũinc(ρρρ

′, 0)dρρρ′

= G̃(ρρρ,
∆z

2
)∆z

∫∫
sinc

[
(k′

z(ρρρ
′)− kz(ρρρ))

∆z

2

]
Ṽ (ρρρ− ρρρ′)P̃ (ρρρ′,

∆z

2
)Ũinc(ρρρ

′, 0)dρρρ′,

(3.3.19)
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3.3.2 Apply singular value decomposition to sinc
[
(k′

z − kz)
∆z
2

]
The expression of the sinc term in Eq. 3.3.17 is given by

S(ρρρ′, ρρρ) = sinc

[
(k′

z(ρρρ
′)− kz(ρρρ))

∆z

2

]
. (3.3.20)

The scattering potential V (r) exhibits 2D information of the object (averaged out along the
z direction within the layer at hand) that varies in the lateral plane while remaining constant
in the axial direction, thus it can be represented by a 2D matrix. The number of elements
inside the matrix depends on the sampling grid. Suppose that the scattering potential V(r) is
a Ny × Nx matrix, then the corresponding S(ρρρ,ρρρ′) needs to be computed for N2

y × N2
x times

for the integration. This calculation requires large computational efforts. However, if we can
separate the variables ρρρ and ρρρ′ from S(ρρρ,ρρρ′), and write Eq. 3.3.20 as a series of the product of
two separate factorized functions each dependent on only one of the coordinates, like:

S(ρρρ′, ρρρ) =
∑
n

γnDn(ρρρ
′)Qn(ρρρ), (3.3.21)

where γ is a singular-value vector of S and γ1 ≥ ... ≥ γn. Qn, Dn are the right and left singular-
vectors of the corresponding singular-value, respectively. The computational complexity of the
scattered field has decreased to the scale of N logN . Substitute Eq. 3.3.21 into Eq. 3.3.17 to find
out the expression of the SVD-based scattered field,

Ũsct(ρρρ, z) = G̃(ρρρ,
∆z

2
)∆z

∫∫
sinc

[
(k′

z(ρρρ
′)− kz(ρρρ)

∆z

2

]
Ṽ (ρρρ− ρρρ′)P̃ (ρρρ′,

∆z

2
)Ũinc(ρρρ

′, 0)dρρρ′

= G̃(ρρρ,
∆z

2
)∆z

∑
n

γnQn(ρρρ)

∫∫
Ṽ (ρρρ− ρρρ′)Dn(ρρρ

′)P̃ (ρρρ′,
∆z

2
)Ũinc(ρρρ

′, 0)dρρρ′.

(3.3.22)
We can write this formula as a summation of Fourier transform and hence compute by using the
FFT algorithm,

Ũsct(ρρρ, z) =
∑
n

G̃(ρρρ,
∆z

2
)∆zγnQn(ρρρ)F

{
V (r)F−1

{
P̃ (ρρρ′,

∆z

2
)Dn(ρρρ

′)Ũinc(ρρρ
′, 0)

}}
. (3.3.23)

The computational complexity can be further reduced to nmaxN logN by truncating the series
in Eq. 3.3.23 to the first nmax terms. For those singular values that below a certain threshold
value, they are too small so that they can be ignored. Extensive literature studies have been
executed on methods to truncate high-dimension data to a lower rank [22, 23, 24, 25, 26].In my
graduation project, I have tried the energy accumulation truncation method to reduce the size
of S(ρρρ′, ρρρ).

Energy accumulation method. In this method, I truncate S(ρρρ′, ρρρ) at rank n which captures
95% energy of it, as shown in Fig. 3.5. The singular values of S(ρρρ′, ρρρ) are sorted in such order
that γ1 ≥ γ2 ≥ ...γj ≥ ... and plot these singular values in terms of index. The first n terms
contain 95% energy of S(ρρρ′, ρρρ). For those singular values smaller than γn are truncated. This
is a traditional and convenient way of truncating data. The main purpose of this method is to
contain the most information of the data while saving the most of the computing time.
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Figure 3.5: Truncated SVD determined by cumulative energy. γ is the singular value vector of
S(ρρρ′, ρρρ). Sort the vector elements in such order that γ1 ≥ γ2 ≥ ...γj ≥ ... and plot the vector

elements, the first n elements contains 95% energy of the vector γ.

Here we use Fig. 3.6 as the permittivity contrast of the object and the background example to
show the effect of energy accumulation SVD truncation. Note that the permittivity contrast of
the object and the background only has 64× 64 pixels, so it looks blurry. The reason for using
a low resolution image is that my personal computer(11th Gen Inter Core i7-11800H, NVIDIA
GeForce GTX 1650 Ti) does not have enough memory to perform singular value decomposition on
a large sized matrix. If the CPU/GPU memory allowed, there are various high-performance SVD
solvers available for big data, e.g. PRIMME’s GKD basic method [27], fast frequent directions
method (FFD) [28]. Also, the magnitudes of Fig. 3.6 are modified to be between -0.1 and 0.1 to
represent the low contrast situations given that the multi-layer first Born model is only suitable
for weakly scattered objects.

Figure 3.6: Permittivity contrast of the object and the background.

Worth mentioning that the number of modes required to capture 95% energy of S(ρρρ′, ρρρ) depends
on the choices of the lateral plane and the z direction samplings. When the variables are close
to zero, the patterns of S(ρρρ′, ρρρ) will be close to 1 everywhere and the number of modes required
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to estimate the S(ρρρ′, ρρρ) distribution will decrease. Fig. 3.7 shows this trend clearly that with
the same lateral plane sampling (dx = dy = 550 nm), the number of modes demanded to capture
95% energy of the S(ρρρ′, ρρρ) increase when the value of ∆z increase. This is because S(ρρρ′, ρρρ) has
a wider range of value distributions and when the variables are away from zero, S(ρρρ′, ρρρ) may
oscillate rapidly around zero. To retain all these features, more modes are demanded.

Figure 3.7: The number of modes required to capture 95% energy of the S(ρρρ′, ρρρ) under different
z samplings

In this particular example, ∆z is chosen the same as the wavelength, e.g. 550 nm and the lateral
sampling interval is equal to dx = dy = 550 nm.

Since the scattering potential is a 2D matrix with 64 × 64 elements, the corresponding S(ρρρ′, ρρρ)
has 4096× 4096 pixels.

Figure 3.8: S(ρρρ′, ρρρ) distribution. It depends both on the 2D sampling in the lateral plane, and
on the sampling along z. In this example, ∆z = dx = dy = 550 nm.
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Execution of an SVD on the matrix S(ρρρ′, ρρρ), reveals Fig. 3.9 which depicts the accumulative
energy distribution of the function S(ρρρ′, ρρρ). It is clear that from the third component onwards,
they have little contributions to the final result and thus they can be ignored without influencing
the accuracy of the calculation result.

Figure 3.9: Suppose the complete set of modes represents full energy of S(ρρρ′, ρρρ), the number of
modes required to capture 98% energy of S(ρρρ′, ρρρ) is five.

Fig. 3.9 demonstrates the S(ρρρ′, ρρρ) distribution with only the first two modes retained.

Figure 3.10: The approximated S(ρρρ′, ρρρ) with only the first two modes.

The scattered field calculated by the first two components of S(ρρρ′, ρρρ) is shown in Fig. 3.11. When
compared with the field computed by complete SVD modes (Fig. 3.12), the magnitude of the
truncated SVD version is slightly smaller than that of the full modes. But they are almost the
same.
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Figure 3.11: Scattered field calculated by the first two modes of S(ρρρ′, ρρρ)

Figure 3.12: Scattered field with the full modes of S(ρρρ′, ρρρ)

To quantify the degree of visual and semantic similarity of a pair of matrices (or images), struc-
tural similar index measure (SSIM) has been applied. SSIM quantifies image quality degradation
caused by processing, such as compression, or by losses in data transmission [29]. In our case
specifically, we would like to compare the scattered fields calculated with and without S(ρρρ′, ρρρ) full
SVD modes. The SSIM value is between -1 to 1 with 1 indicating perfect structural similarity.
The measure between two matrices x and y is given below:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
xµ

2
y + c1)(σ2

x + σ2
y + c2)

, (3.3.24)

c1 = (k1L)
2, (3.3.25)
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c2 = (k2L)
2. (3.3.26)

In the above equations, µx is the average of x, µy is the average of y, σx, σy are the variances
of x and y, respectively, and σxy is the covariance of x and y. c1 and c2 are two variables
that stabilize the division with a weak denominator, L is the dynamic range of the pixel values.
Normally, k1 = 0.01, k2 = 0.02 by default. In our example, the SSIM value between the full
modes calculation and the first two mode calculation is almost 1, which means the structural
differences between these two scattered fields are small enough to ignore. Fig. 3.13 shows the
SSIM map between the two calculated scattered fields.

Figure 3.13: SSIM Map with Global SSIM Value: 0.99992

According to the SSIM map, one may find that the low contrast area has SSIM values very close
to 1 and the high contrast information has been partially lost. This result may be interpreted in
terms of the fact that the detail information is contained in smaller singular value components of
S(ρρρ′, ρρρ). After truncating the data dimensions, the minor or less important features are discarded
to decrease the computational load. Due to the similarity of the scattered fields, the truncated
results are reliable.
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3.3.3 Approximate S(ρρρ′, ρρρ) to 1 under proper conditions
Although SVD manages to separate the variables ρρρ′ and ρρρ from the sinc function, and speed up
the Green function convolutions using fast Fourier transforms(FFTs), the process of the SVD
itself is still computationally intensive. If we can find a way to get rid of the sinc function, the
remaining terms inside the integral can be calculated directly by FFTs. Alternatively, we can
expand the sinc function in terms of a Taylor series,

sinc(x) = 1− x2

3!
+

x4

5!
− x6

7!
+ ... (3.3.27)

It shows that as long as the variable x is small enough, the sinc function may be approximated
to 1. Notice that the difference between kz vectors and the depth between each layer ∆z are
small, there might be chances that we can simply approximate the complicated sinc function to
1. By approximating S(ρρρ′, ρρρ) to 1, we can save time because we don’t need to perform the SVD
and we also need to apply only once the FFT to the computation of the integral in Eq. 3.3.22.
The formula for calculating the Fourier transform of the scattered field is then given by

Ũsct(ρρρ, z) = G̃(ρρρ,
∆z

2
)∆zF

{
V (r)F−1

{
P̃ (ρρρ′,

∆z

2
)Ũinc(ρρρ

′, 0)

}}
. (3.3.28)

Recall Eq. 3.3.20 which contains two factors that can effect the values of S(ρρρ′, ρρρ), namely the
sampling in the lateral plane and the layer thickness in the axial direction. Now we investigate
under which circumstance the sinc function can be approximated as 1.

Lateral plane sampling analysis. According to Eq. 3.3.20, the values of S(ρρρ′, ρρρ) are dependent
on the lateral sampling grid in the spatial frequency domain, which is determined by the sampling
in the lateral plane in the spatial domain,

Nu = Nx, (3.3.29)

Nv = Ny, (3.3.30)

du =
1

Nxdx
, (3.3.31)

dv =
1

Nydy
, (3.3.32)

where N(x,y,u,v) and d(x,y,u,v) represent the number of sampling points and the sampling interval
along the corresponding directions. A smaller sampling interval in the spatial domain leads to
higher spatial frequencies in Fourier space so that larger differences between kz components can
occur. Recall Eq. 3.3.20, larger differences between kz vectors may lead to a faster drop of
S(ρρρ′, ρρρ). To visualize the influence of spatial domain lateral plane sampling on the sinc function,
we compare the values of the sinc function for various sampling intervals in Fig. 3.14. Because
of the central symmetry property of S(ρρρ′, ρρρ) in the lateral plane sampling, we may only consider
sampling along the x-direction for the analysis of this question. Within each subfigure, five
different ∆z have been demonstrated. We first focus on one ∆z, e.g. ∆z = 1 wavelength, the
blue line in each subfigure. It is obvious that a smaller spatial domain sampling interval may lead
to a faster decrease of the sinc values on the edge of the sampling grid. This is consistent with our
analysis that a smaller sampling interval in the spatial domain demands higher spatial frequency
components. Although using a coarse grid is beneficial for the approximation of the sinc function,
the disadvantage is the poor resolution. In a real experiment, given the illumination source and
the camera sensor, the sampling grid is fixed and the only variable free to modify is the layer
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thickness ∆z. Thus we are supposed to find the proper ∆z for a fixed spatial domain sampling
grid.

i dx = 1 wavelength ii dx = 2 wavelength

iii dx = 6 wavelength

Figure 3.14: S(ρρρ′, ρρρ) distributions with fixed layer thickness for different spatial domain
sampling densities.

z sampling analysis. As we have mentioned before, it is more practical to discuss the selection
of ∆z when approximating the sinc function to 1. The impact of ∆z on the sinc function is
straightforward. The larger the ∆z, the faster the decrease of the sinc function, as in confirmed
by Fig. 3.14. To further investigate the effect of ∆z, we plot a 3D figure of the sinc function in
Fig. 3.15. It shows the distribution of the sinc function with the same spatial domain sampling
interval but with different layer thickness ∆z. When dx = dy = 2 wavelength and ∆z = 100
wave length, the function oscillates around zero near the edge of the sampling grid. Under this
circumstance, the sinc function cannot be approximated as a constant. However, when ∆z = 1
wave length, all values of the sinc function are larger than 0.94 so it is sufficiently close to 1. Thus
we can draw a conclusion that with a proper ∆z, one may approximate S(ρρρ′, ρρρ) to 1 without
losing much of accuracy. Normally, the approximation is closer to the real distribution when
∆z becomes smaller. However, for a given object, a smaller ∆z represents a larger number
of layers and the requirement for computer memories is also increasing. One needs to find a
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i dz = 100 wavelength ii dz = 20 wavelength

iii dz = 1 wavelength

Figure 3.15: S(ρρρ′, ρρρ) distributions with spatial domain sampling interval equal to 2 wavelength

reasonable value which takes both accuracy and computational efforts into account. Thus we
have built an optimization algorithm based on the given spatial domain sampling interval and
all other related information, such as the background medium refractive index distribution, etc,
to determine the maximum ∆z when the minimal values of the sinc function are supposed to
be larger than a desired threshold. Take the threshold equal to 0.9 and the relative background
refractive index equal to 1 as an example, Fig. 3.16 demonstrates the maximum ∆z required
to make the smallest value of sinc function to be larger than 0.9 for different spatial domain
sampling intervals. Table 3.2 provides more accurate values of ∆z for several spatial domain
sampling intervals.

Benchmarking. To check the validity of the sinc function approximation method, we have
taken Fig. 3.6 as an example to calculate the scattered field. In this example, dx and dy are both
equal to 1 wavelength and the layer thickness ∆z is chosen to be 0.2 wavelength. Fig. 3.17i-3.17ii
illustrate the scattered fields with the full SVD modes and a unit constant S(ρρρ′, ρρρ), respectively.
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Table 3.1: Maximum ∆z required to have a minimal value of 0.9 of S(ρρρ′, ρρρ)
under different xy plane samplings.

minimal S(ρρρ′, ρρρ) dx/ wavelength dy/wavelength dz/wavelength

0.9

1 1 0.27213897
2 2 1.23413879
3 3 2.82905247
4 4 5.06112009

Figure 3.16: Maximum ∆z required to have a minimal value of 0.9 of S(ρρρ′, ρρρ)
under different xy plane sampling densities in the spatial domain (with dx the sampling

interval).

i Scattered field calculated by full SVD modes ii Scattered field calculated by a unit constantS(ρρρ′, ρρρ)

Figure 3.17: Scattered field calculated by full SVD modes and a unit constant S(ρρρ′, ρρρ),
respectively.

According to this figure, we may see that with a unit constant S(ρρρ′, ρρρ), the amplitude of the
scattered field is slightly larger than the amplitude of the accurate field, but the major informa-
tion of the scattering potential is contained. The SSIM value between these two methods is 1
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which indicates that the scattered fields calculated by these two models are structurally similar.
Fig. 3.18 displays the SSIM map for the two calculated scattered fields. The lower contrast
information is contained to a higher level and the high contrast information is kept in a lower
but acceptable range of levels.

Figure 3.18: SSIM Map with global SSIM value: 1

As long as we have chosen a proper sampling density, the differences of the scattered fields
calculated by the SVD truncation method and the unit constant method can be extremely
small. Thus we choose to find a small ∆z and approximate the sinc function to 1 in the later
programming, and this at the low cost of taking thinner layers with smaller ∆z.
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3.4 Fields in the multi-layered medium

In semiconductor industry, chips are always fabricated in multiple-layered media. Each layer is
made of a different material which has different properties in terms of light. Thus an optical
wavefront originating from a light source may change its amplitude and phase at the interface
between two media. We use the wave vector k to represent any plane waves. According to
Fig 3.19, the relation between the in-plane (xy) wave vector and the incident angle is given by

kx = nk0 sin (θ) cos(ϕ), (3.4.1)
ky = nk0 sin (θ) sin(ϕ) (3.4.2)

where θ and ϕ are the angles with respect to the z axis and the angle in the xy plane, respectively,
nk0 = 2π/λ is the wave number and n is the background refractive index.

Figure 3.19: The relation between the in-plane (xy) wave vector and the incident angle [21]

For an object consisting of a layered medium, the components kx and ky are determined by the
incident angle and will not change throughout the entire object due to the Snell’s law (since
n sin(θ) is constant across interfaces). However, the kz component is different at each layer of
the medium. To compute kz in the ith layer, the dispersion relation in that layer is applied,

kz,i =
√
(nk0)2 − k2x − k2y. (3.4.3)

The change of the wave vector k through the object is illustrated in Fig. 3.20.
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Figure 3.20: ky, ky are continuous throughout the object [21]

In the Fourier space, the component of the incident field at each spatial frequency represents
a plane wave at a particular angle. To perform the calculation fully in the Fourier space, one
needs to find the transmission and the reflection Fresnel coefficients for every plane wave at all
possible angles. First of all, we need to relate the spatial frequencies to the incident angles at
the interface using the following formula:

cos θ =
kz
|k|

= λ

√
(
n

λ
)2 − |ρ|2, (3.4.4)

where ρρρ = (u, v) is the spatial frequency coordinate of the spatial coordinate r = (rx, ry) in the
lateral plane perpendicular to the z axis. kz can be written as a function of spatial frequency ρρρ

kz(ρρρ) = 2π

√
(
n

λ
)2 − |ρρρ|2. (3.4.5)

When (nλ )
2−|ρρρ|2 is larger than 0, the field will have real kz, which corresponds to a propagating

wave. However, kz becomes imaginary when the term in the square root is smaller than 0 and
the field now corresponds to an evanescent wave that propagates only along the interface. As
a result, for these spatial frequencies, the angle with respect to the z axis θ will be set to be
zero. Fig. 3.21 visualizes the propagating wave and evanescent waves for both reflection and
transmission waves. Each arrow at Fig. 3.21 represents a plane wave at a particular direction.
Only those waves represented by red or blue arrows are able to propagate in the space. Those
waves represented by the gray arrows are with large angles and hence with imaginary kz.

29



i Visualization of the reflected wave spectrum

ii Visualization of the transmitted wave spectrum

Figure 3.21: Visualization of the waves spectrum [21]

After determining the incident angles at the interface, one needs to calculate the transmission
and the reflection coefficients. To compute these coefficients, the polarization effect needs to
be considered. Polarization is a property of the electromagnetic wave describing the oscillation
direction of the electric field vector.

E(r) = P exp(−ik · r), (3.4.6)

where P is the polarization vector. Different polarization may behave differently in a device.
The polarization can be decomposed into two orthogonal directions, e.g. s and p. Fig. 3.19 also
indicates the information about the relation between incident wave vectors and s, p polariza-
tion. Both s and p polarization are perpendicular to wave vectors, but s(TE) polarization is
orthogonal to the incident plane while p(TM) polarization is inside the incident plane. Due to
the different oscillation directions of the electromagnetic fields, the reflection and the transmis-
sion properties may change accordingly. Fresnel equations provide the formula to calculate the
respective reflection coefficients and transmission coefficients for different polarizations:

rs =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

, (3.4.7)

rp =
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

, (3.4.8)

ts =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
. (3.4.9)

tp =
2n1 cos θ1

n2 cos θ1 + n1 cos θ2
. (3.4.10)

30



To calculate the scattered waves accurately inside the object, one may write the incident elec-
tromagnetic wave as the superposition of the two waves polarized in orthogonal directions and
compute the reflection and the transmission coefficients, respectively.

E(r) = (Ess + Ep exp(iδ)p) exp(iθ) exp(−ik · r), (3.4.11)

where δ is the phase difference between the two orthogonally polarized waves. Before calculating
the scattering problem, one needs to identify the polarization of the incident wave and compute
the two waves in orthogonal directions separately. However, this might double the computational
load and slow down our program. To simplify the problem, we assume all illumination sources
are in the same polarization state and the users are supposed to initialize the state before running
the codes.
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3.5 Multi-layer Born model verification

To benchmark the MLB model, we first compare the simulation results of a brick sample using
both the MLB model and the Maxwell solver provided by the Eindhoven University of Technol-
ogy(TU/e) [30]. The author of the solver has confirmed the accuracy of the their brick simulation
result, so it is safe to consider their result as a ground truth in this case. Given the result pro-
vided by the TU/e solver is a three-dimensional matrix consisting of total fields within the whole
thick sample, the total field at the top and the bottom will be used to assess the accuracy of the
reflection modes and the transmission modes of the MLB model, respectively. The simulated
brick has a length of 10µm in both x and y directions and a thickness of 100nm in z direction.
It has a relative permittivity contrast

χ(r) =
ϵr(r)
ϵb

− 1 = 0.066666, (3.5.1)

where ϵr is the permittivity of the sample and ϵb is the permittivity of the background medium.
Note that this contrast function is only nonzero within the sample. The lateral cross-section of
the contrast function is depicted in Fig. 3.22

Figure 3.22: Lateral cross-section of the contrast function. The brick is placed at the central
area of the sampling area where the relative permittivity contrast is nonzero.

In our simulation, the brick is placed in a stratified space which has relative permittivity contrasts
of 0, 2 and 1 respectively. The background medium extends to infinity in the lateral plane. The
middle medium has a thickness of 200nm in the z direction and the upper and the lower spaces
uniformly extend to the whole space along the z direction. The incident wave illuminates the
sample at normal incidence. The amplitude and phase information of the incident wave is
illustrated as Fig. 3.23. Other parameters used in the simulations are specified in Table 3.2.

Table 3.2: Parameters used in simulation domain

wavelength dx dy dz Nx Ny

425nm 382.5nm 382.5nm 5nm 110 110
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Figure 3.23: Incident field with a normal incident angle. Only the central part where the
incident field is nonzero is the simulation domain. The number of pixels in the simulation

domain is 110 ×110.

3.5.1 MLB model transmission mode
Before comparing the results with the TU/e solvers, we first check the energy conservation of
the transmission model. Fig. 3.24 depicts the total energy divided by the incident energy layer
by layer inside the object. According to the figure, the energy is well conserved and contained
to be 1 all over the place.

Figure 3.24: The total energy inside the object divided by the incident energy is well contained
to be 1 everywhere inside the object. There’s no major loss or gain in the materials.

Then we verify the MLB by the TU/e solver. By applying the TU/e Maxwell solver, the total
field at the bottom of the brick is depicted in Fig. 3.25. Due to the periodicity in the Fourier
domain and properties of the Gabor frame, the electric field outside of the central part is not
valid, one may simply ignore the strange pattern around the edge of the figure. Compared with
the incident field in Fig. 3.23, it is obvious that the total field is only slightly different from
the incident wave after scattering. Because of the weakly scattering property of the brick, the
scattered field is much smaller than the incident field and one may hardly observe the scattered
field from the total field. In order to observe the scattered field more easily, we crop the central
part of the total field at the bottom of the brick and display it in Fig. 3.26. Now that the
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Figure 3.25: Total field at the bottom of the brick

Figure 3.26: Central area of the total field at the bottom of the brick

colourbar has been modified to a smaller scale, the effect due to scattering can be observed more
clearly. Due to the usage of the Gabor frames, only central areas of the simulated domain are
valid. Thus the simulation grids of the MLB model are equal to the cropped grids of the TU/e
solver’s. Fig. 3.27 shows the simulation result of the MLB model and as one may observe, the
difference between the two models is minor. Both simulations show fluctuations at the edge of the
brick and their amplitudes reach its highest value at almost the same locations. This is because
of the sudden change of permittivity distributions. Gibb’s phenomena may be applied to explain
the spikes at the edge of the brick. As is known to all, the total field is the superposition of
many plane waves. These plane waves are continuous sine or cosine basis function. When these
basis function are used to represent discontinuous functions, e.g. at a material interface, "spikes"
appear around each discontinuity. Note that the magnitude of the spikes remains constant no
matter how many harmonics are used and it is proportional to the severity of the discontinuity.
Thus Fourier space analysis is most efficient for structures with low to moderate index contrast.
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Figure 3.27: Total field at the bottom of the brick MLB model

To quantify the difference between the two models, we apply a root mean square error(RMSE)
analysis to the results, which measures the amount of change per pixel. RMSE has non-negative
values and a smaller value indicates the greater similarities. Mathematical representation of the
RMSE is given as below,

RMSE =

√∑M
i=1

∑N
j=1[A(i, j)−B(i, j)]2

M ×N
. (3.5.2)

Where M and N are the size of sampling grids and i, j indicate the pixel locations of the fields
A, B. The RMSE value of the total field at the bottom of the brick between the two models
is 0.0744. For two fields with this small value scales, 0.0744 may assume to be a really small
number and the difference between them is acceptable. Fig. 3.28 also gives the RMSE values
at each layer for the transmission mode, all RMSEs are well limited within 0.1. Considering
that we have ignored the polarization effect in our algorithms, the differences between RMSEs
are reasonable. Also, for metrics values in such small scales, we calculate the relative errors to
evaluate the prediction performance, as shown in Fig. 3.29.

Figure 3.28: Total fields RMSE layer by layer.
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Figure 3.29: Total fields relative errors layer by layer.

3.5.2 MLB model reflection mode

Similar to the MLB model transmission mode, we first check the energy conservation of the
reflection mode. The wave power flow of the reflection mode is complicated, we take a two-layer
object as an example to explain the energy flow as Fig. 3.30 depicted. One may see from the
figure that not only the downwards propagating waves but also the upwards propagating waves
are taken into account. Thus to simply the energy conservation verification, we regards the
multi-layered object as the whole and only check the wave power exit the object, both from the
bottom and the top of the object. If the wave power exit the object summed up to 1, we can
believe that this model obey the energy conservation law.

Figure 3.30: Wave energy flow of the incident wave inside the object

According to Fig. 3.30, the incident wave will first be reflected at the top of the object, the wave
which enters into the object will interact with the object and part of them will exit the object
from the bottom of the object. Remember that there are still waves reflected backwards inside
the object and will propagate to the top of the object. Thus there are waves exit the object from
the top. To verify the energy conservation law, we check if the following formula stands:

|U−1
r |2

|uin|2
+

|U2
t |2

|uin|2
+

|U−1
t |2

|uin|2
= 1 (3.5.3)

In our simulation, the verified result is 1.0056, which is close to 1. Thus we may conclude that

36



Figure 3.31: Central area of the total field at the top of the brick

Figure 3.32: Total field at the top of the brick MLB model

the reflection mode does not violate the energy conservation law. Then we check our reflection
mode predictions by comparing the total field with the Maxwell solver provided by TU/e.

One may obtain the total field at the top of the sample as well from the TU/e Maxwell solver.
With the same sample and the same input field, the total fields at the top of the brick from
both models are shown in Fig. 3.31-3.32. The RMSE value between two models is 0.0601, which
suggests the results are similar to each other in a high level. As compare with the result of
MLB model as shown in Fig. 3.32, both electric fields exhibit a distribution of larger values. The
result is reasonable due to the energy conservation law. Only a small part of the waves will be
able to penetrate towards the end of the object and large amounts of them are staying at the
first several layers. Here we give the RMSEs between the TU/e solver and the MLB reflection
mode at all layers. Similar to the transmission mode, the RMSEs are well contained under 0.1
and the relative errors are depicted in Fig. 3.34. A striking difference with the the transmission
mode is that the errors at the bottom of the object experience a trend of becoming smaller.
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Figure 3.33: Total fields RMSE layer by layer.

Figure 3.34: Total fields relative errors layer by layer.

The electric field computed by the MLB model is slightly smaller than that of the TU/e solver’s,
this might result from the choice of ∆z. In the MLB model, the ∆z term has been taken out
of the exponential term and thus has a relative large impact on the final result. A larger ∆z
will lead to a larger scattered field. The scattered near field is approximately π∆z

λ [n(r)2 − n2
b ]

times of the incident field. This estimation may be easily derived by observing Eq. 3.3.28. The
modulation of the Green kernel is about in the order of λ

4π and the modulation of the terms inside
the Fourier operator is approximately in the order of ( 2πλ )2. Thus the estimated modulation of
Eq. 3.3.28 is about π

λ∆z[n(r)2 − n2
b ]. It is obvious that the selection of ∆z may influence the

final result a lot. What is worse is that the impact to the final results may be greater when the
number of layers doubles in the reflection model (take into account both downwards and upwards
propagation), given the errors may be accumulated. Another approach to derive the estimated
relation between the incident field and the scattered field is to apply the first Born approximation
and thin object approximation to the scattered field. We start from the Helmholtz equation for
the total field U and the incident field Ui

k2n(r)2U(r) +∇U = 0, (3.5.4)
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k2nbUi +∇Ui = 0, (3.5.5)

where n(r) is the refractive index as a function of the position and nb is the refractive index of
the background medium. The scattered field Us = U − Ui satisfies

k2Us +∇Us = k2(n(r)2 − n2
b)U. (3.5.6)

Hence,

Us(r) = −k2
∫∫∫

(n(r)2 − n2
b)U(r0)G(r, r0)d3r0, (3.5.7)

with
G(r, r0) = −exp(ik|r − r0|)

4π|r − r0|
. (3.5.8)

We calculate the field far from the object, the Green function G(r, r0) may be approximated as

G(r, r0) ≈
exp(ikr)

4πr
exp(−ik · r). (3.5.9)

Substituting Eq. 3.5.9 back into Eq. 3.5.7, we get

Us(r) ≈ −k2 exp(ikr)

4πr

∫∫∫
(n(r)2 − n2

b)U(r0) exp(−ik · r)d3r0. (3.5.10)

Now we apply the first Born approximation to Eq. 3.5.10,

Us(r) ≈ −k2 exp(ikr)

4πr

∫∫∫
(n(r)2 − n2

b)Ui(r0) exp(−ik · r)d3r0, (3.5.11)

and then we apply the thin object approximation to Eq. 3.5.11

Us(r) ≈ −k2 exp(ikr)

4πr
∆z

∫∫
[n(x0, y0)

2 − n2
b ]Ui(x0, y0, 0) exp(−ik(

x

r
x0 +

y

r
y0))dx0y0

= −k2 exp(ikr)

4πr
∆zF

{
[n(x0, y0)

2 − n2
b)]Ui(x0, y0, 0)

}
(
x

λr

y

λr
).

(3.5.12)

In this approximation, we simplify the 3D integral into a 2D integral by taking a small ∆z out
of the integral. The scattered far field is the Fraunhofer scattered far field of the sample near
field. By comparing Eq. 3.5.12 with the Fraunhofer diffraction integral

U(x0, y0, z0) =
exp(ikz0) exp(

ik
2z0

(x2
0 + y20)

iλz0

∫∫
U(x, y, 0) exp[−2πi

λz0
(xx0 + yy0)]dxdy, (3.5.13)

we found that the scattered field at the far field is the Fraunhofer field of

− iπ
∆z

λ
[n(x0, y0)

2 − n2
b)]Ui(x0, y0). (3.5.14)

Hence, the near field of the object may be written as a multiplication of the incident field by a
transmission function t:

t(x, y) = −iπ
∆z

λ
[n(x0, y0)

2 − n2
b)]. (3.5.15)

This result is approximately the same as the MLB model insofar that both models have a factor
of ∆z

λ in front of the incident field. Thus the order of ∆z needs to be carefully determined.
Normally, scattered fields are only a tenth of the total field and we may chose ∆z = λ/10. Also,
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this decision of ∆z satisfies the requirement for the sinc function when one approximates the
sinc function to 1. But stil, the choice of ∆z might be tricky and needs to be paid attention to.

Another reason which might cause the difference between these two models is the polarization
effect. As mentioned before, the Fresnel coefficients depend on the polarization and the total field
is a superposition of p and s polarization. To calculate the electric field accurately, one needs to
determine the components of the illuminating source before calculating. The TU/e solver has
considered the influence of the polarization while ours model does not for the sake of simplicity.
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Chapter 4

Multi-layer Born model
improvements

In the previous simulations, only a single wavelength and a single probe/sample mode is calcu-
lated for each scanning position, as depicted by Fig. 4.1. However, in reality, the light source is

Figure 4.1: Normal workflow of ptychography for each scanning position.

partially coherent and for high-power EUV source the spectral bandwidth has a relative large
range [31]. Thus multiple wavelengths may exist at the same time and influence the scattered
field at far fields [32]. According to [33], the transverse and longitudinal partially coherent X-rays
can be generally formulated by the superposition of multiple modes in both spatial and spectral
regimes. Also, [34] indicates that sufficient constraints are required in order to obtain accurate re-
constructions due to the mathematical inseparability of multiple sample modes and probe modes
which are superimposed to a single set of intensity patterns. Based on these research papers,
we increase the complexity of the model by considering multiple wavelengths in the illumination
source and multiple modes for both sample and probe thus, making the model more robust to
uncertainties. Fig. 4.2 is the flow chart of the model dealing with multi-wavelength and multi-
modes. Assume the illumination source contains 2 wavelengths, and the sample and the probe
have 2 modes, separately. Each time before field-material interactions, the sample needs to be
shifted according to the scanning positions. The shifted sample is then cropped into the same
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Figure 4.2: Ptychographic workflow of multiple modes and wavelengths

size as the probe size for preparations of the later interactions. Because of the independency of
each shifted sample, this parallel process might be designed to run at the same time in GPU to
increase the computational speed as long as the computational capacity of the device allows to
do so. After that, the high dimensional samples and probes are supposed to lower the dimensions
to 2D data, together with the corresponding layer thickness and wavelength entering the MLB
model. Note that when considering field-material interactions, all possible wavelengths are cal-
culated one by one and do not mix with each other. However, in the later propagation process,
different wavelengths will be assigned to weights and influence the predictions altogether. [35]
has illustrated the detail procedure of this polychromatic ptychography technique.

42



Chapter 5

Inverse model for 3D ptychography

After demonstrating the use of the MLB model, we incorporate it as the forward model of
an iterative inverse problem that uses intensity-only images to reconstruct 3D refractive index
information. Given the uniqueness of the diffraction patterns of a given incident field and object
pair, one may formulate the 3D intensity-only scattering potential reconstruction problem as a
optimization problem with an object function O(V ):

min
V

O(V ) =

N∑
j

∥|Uj(V )| −
√

Imeas,j∥2 + τR(V ), (5.0.1)

where Uj(V ) is the current prediction of the MLB model,
√

Imeas,j is the square root of the
measured intensity. When feeding the algorithm with an arbitrary initial guess of V to the
optimizer (Adam), it will gradually converge to a solution that has the minimum difference
between measurements and the predicted model. To solve a minimization problem, one needs to
calculate the gradient with respect to the object function to direct the search algorithm. One may
compute the gradients of diffraction patterns with respect to objects manually for every specific
scattering problems, but it is better to generalize the problem and mitigate the unnecessary
excessive laboring. An optimizer based on the frame work of automatic differentiation(AD) in
some deep learning API can help solving the nonlinear inverse scattering problem. By using
the optimizer based on AD, one can update the object and probe functions without having the
analytical expressions of them. The validity and robustness of this AD technique have been
proven by extensive number of research papers, e.g. [19, 36, 37]. Thus we built our MLB
model under the environment of TensorFlow, an open-source AD framework, to reconstruct the
refractive index of the samples. In this inverse algorithm, the scattering potential V is updated
sequentially over different sample locations, as opposed to finding averaging values of all gradients
from different locations and then refining V . In [38], it has been shown that this approach may
not only benefit from a faster convergent speed but also a more accurate result. τR(V ) is the
regularization term used to adjust the model complexity, preventing the model from overfitting or
underfitting. Fig. 5.1 is the workflow of the MLB model embedded in the Tensorflow framework.
Based on the flow chart, we can see that wavelength, propagation distance, the complex valued
sample function, the complex valued probe function are all to be retrieved variables in the process
flow. With a large number of variables, more than enough measured data are required to obtain
an accurate and unique solution. The essence of this requirement will be well demonstrated in
later reconstructions with multiple layers. Too many variables at once might result in a break
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down of the inverse solver or a pair of probe and sample reconstruction far from the truth.
Such a pair of probe and sample functions does satisfy the low loss function requirement, but do
significantly deviate from the real situation. Also, this flow chart indicates the order of derivative
chain rules applied in this model. The error will back propagate via CameraLayer, PropLayer,
InteractLayer, IlluminateLayer, SourceLayer and SelectLayer sequentially.

Figure 5.1: MLB model embedded in TensorFlow automatic differentiation framework

What’s more, given the multiple wavelengths, sample modes and probe modes settings in the
MLB model, several parallel lines of derivations exist in InteractLayer. It increases the compu-
tational load but enables the reconstructions to become more robust under circumstances where
the current high-power EUV light source has broadband characteristics both in spectral and
spatial regimes.

Besides the loss function, regularization term τR(V ) is also crucial in the reconstruction process.
research paper [39] has demonstrated that the regularization term might improve the quality
of reconstructions significantly. If one ignores the regularization term, the model might be
too complex and overfit or too simple and underfit, either way giving poor predictions of the
scattering potential V . Due to the nonlinearity of the model in this particular case, the regularizer
is applied to avoid overfitting. Two kinds of regularizers are applied in this inverse solver, L1
regularization and total variation(TV) regularization. In the L1 regularization technique,

Cost = Loss+ λ

M∑
j

|Wj |, (5.0.2)

it adds absolute the value of magnitude of coefficient as penalty term to the loss function. This
technique shrinks the less important feature coefficients to even zero thus, removing some features
completely. Given this property, L1 regularization is good for feature selection and denoising.
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For the experimental data provided by Utrecht University, the L1 constraint does suppress the
background noise well. Fig. 5.2i demonstrates the reconstruction pattern with the L1 regularizer
set to 0 and Fig. 5.2ii shows the pattern with a weight term of 10 of the L1 regularization. The
only different setting between these two reconstructions is the L1 regularization. The value of
the L1 term weight is obtained by trial and error. When we increase the weighted value gradu-
ally from 0 to 10, the background noise slowly disappeared. The background edge noise can be
observed clearly in Fig. 5.2i while most of the background edge features have been weakened by
the L1 regularizer. The contrast between the major features and the less important features are
augmented. Also, for a 3D model, the number of features is large, and L1 helps in eliminating
the less important ones. However, when we keep increasing the L1 weighting term, the differ-
ences between the reconstruction results are too small to observe. As for total variation (TV)

i Reconstruction without L1 regularization
term

ii L1 regularization equals to 10

Figure 5.2: Reconstructed pattern with different L1 regularizations

regularization,

R(y) =
∑
i,j

√
|yi+1,j − yi,j |2 + |yi,j+1 − yi,j |2, (5.0.3)

where y is a 2D signal, e.g. an image or a 2D complex-valued object field or probe. TV
regularization plays a significant role in the denoising process. It based on the principle that
signals with excessive details have high total variation, that is, the integral of the absolute loss
function is high. According to this fact, reducing the total variation of the signal is capable of
removing undesired detail whilst preserving essential structural details [40]. Fig. 5.3 illustrates
the importance of TV regularization in that the quality of the reconstructed samples has been
improved by removing the speckle noise everywhere behind the major pattern. To arrive the
weigh of 20 for the TV regularization term, we have gradually change the weighted values for
the TV term from 0 to 30 and see how it influences the reconstructions. With the increasement
of the TV term, the speckles behind the major pattern area has been removed to certain extend.
However, The differences become minor when we continue increasing the TV term. Thus we
choose to display the reconstruction result with a weight of 20 for the TV regularization term.
Ref. [41] also points out that in view of better denoising, one needs to identify different noise
models including the Gaussian, Impulse, Poisson, Speckle (Gamma), and the mixed Gaussian
and impulse noise models. Each noise model may require a specifically tailored TV regularization
algorithm in order to get out the best results.
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Figure 5.3: Reconstructed pattern with a weight for the TV regularization term equal to 20.
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Chapter 6

Results and discussion

To further validate the combination of the encoding model and the decoding model, we use
the measurement data from Utrecht University to reconstruct the sample. The sample is a
2mm thick glass with a light absorbing material on the top and only on the central area with
a character "3" that can transmit the light. At the bottom of the glass there are some dust
particles randomly spread out over the place. Between the pattern 3 and the dust particles is
uniform glass. To simulate this thick object, we will slice the sample along the light propagation
direction and perform the first Born approximation method at each layer. By reconstructing
the refractive index distributions at each of the layer, the total object is obtained. However, as
the number of optimization variables increases with the number of layers composing the sample,
the accuracy of reconstruction drops down rapidly due to the lack of information. Thus we at
first only simulate single-layer objects in section 6.1. Note that our code has been programmed
based on the assumption that the sinc function may be approximated to 1, which means the
choices of ∆z are strict. Thus for a 2 mm sample, there is no way we can simulate it with a
single layer only. The purpose here is to demonstrate that even within the safe range of ∆z, the
selection of ∆z can still have large impact on the results. Thus we compare the reconstructions
with different ∆z in this section. Then we reconstruct the object with multiple layers in section
6.2. Because of the inclusion of the object layers, the number of variables also increased. To
successfully reconstruct the object, it requires a higher level of data redundancy and some prior
knowledge of the object. Our MLB model works well when the number of layers is below 4 layers,
and when more layers involved, the model can become really complicated and the reconstruction
may be blurred. One way to improve the bad convergence is to formulate a normal vector field
approach. This could be a possible solution given the prior knowledge of nanostructures in ICs
that is available since all structures are generated through lithographic imaging of many wafers
from the same patterned mask.
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6.1 Single layer reconstruction

Fig. 6.1i illustrates a single layer reconstruction result with a ∆z of 60nm and Fig. 6.1ii displays
the reconstruction which has a ∆z of 600nm. Recall Eq. 3.5.15, the magnitude of the scattered
field is proportionate to ∆z. The larger the ∆z, the larger the scattered field is. Comparing
these two reconstructions, it is obvious that a larger scattered field provides more details than a
smaller one. For a smaller portion of scattered field, there is a huge impact of illumination source
on the diffraction patterns. Fig. 6.2 displays the measured diffraction pattern at the first scan
position, in comparison to Fig. 6.3i-6.3ii, which demonstrate the predicted diffraction patterns
with different layer thickness at scanning position 1. To make the report more compact, the full
diffraction patterns are attached in Appendix (B-C). In Fig. 6.3i, the shape of probe is clear
to see and the details of the sample are hidden behind the probe pattern. But results can be
improved with more optimization iterations. Fig. 6.4i-6.4ii show the reconstruction result with a
60nm ∆z after 30 epochs and 100epochs optimizations, respectively. The influence of the probe
gets smaller and the image becomes sharper.

i Reconstructed sample with a 60nm ∆z, 10
epoch optimizations

ii Reconstructed sample with a 600nm ∆z,
10 epoch optimizations

Figure 6.1: Reconstructed pattern with different layer thickness

Figure 6.2: Measured diffraction pattern at location 1
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i diffraction pattern prediction at location 1 with
a 60nm ∆z

ii diffraction pattern prediction at location 1 with
a 600nm ∆z

Figure 6.3: Diffraction pattern predictions at location 1 with 10 epochs optimizations

i Reconstructed sample with 30 epoch opti-
mizations

ii Reconstructed sample with 100 epoch op-
timizations

Figure 6.4: Reconstructed pattern with different epochs. Sample has a thickness of 60nm.

49



6.2 Reconstruction for Multiple Layers
To successfully reconstruct a 3D object, we are supposed to recover the 3D information from
2D measurements. Thus we increase the number of layer composing the object and reconstruct
each layer of the object. When the number of layers is large enough, one may safely conclude
that the whole 3D object is reconstructed. However, there is a balance between the model
complexity and the model accuracy. More layers might be able to better describe the object but
it also represents more variables and higher complexity. For the requirement of redundancy in
ptychography, a more complex model usually requires more measurement data, which demands
a higher level of the experimental setup. What is more, more layers sometimes may bring us
accumulated errors and the final result may be far from the truth. For a weakly scattering object,
the energy of illumination source is larger than the scattered wave, once the predictions of the
probe go offtrack, the sample predictions will change correspondingly. Fig. 6.5i-6.5iv show the
object reconstruction with four layers (each layer has a thickness of 60nm).

i First layer of the reconstructed sample ii Second layer of the reconstructed sample

iii Third layer of the reconstructed sample iv Fourth layer of the reconstructed sample

Figure 6.5: Reconstructed pattern of a 4-layers object. Each layer has thickness of 60nm and
the patterns are obtained after 100 epochs of optimization

Unlike the single layer reconstruction, all patterns are projected to a 2D plane and one can not
tell the spatial information from a 2D projection. But the spatial permittivity distribution can
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demonstrated clearly on a four-layers sample reconstruction. On the first layer, the pattern 3
is almost dust free comparing with the later slices and the edges of the pattern 3 has larger
values due to the high contrast permittivity distributions of the object on the top of the sample.
For the second and the third layers, the contrasts become lower given the uniform permittivity
distributions on the middle of the sample. However, due to the existence of dust particles on the
bottom of the sample, some dot patterns have shown on the third layer reconstruction. As for
the fourth layer, the pattern 3 almost fades away and only patterns inside are clear. Although
the patterns are being separated to some extent and very close to the real situations, one has to
realize that the process of simulation cannot fully represent the real field-material interactions,
given the thickness of the sample is far thicker than our simulation object, which is approximately
2mm. Thus we perform the simulation with a 10-layers sample (each layer has a thickness of
60nm). The reason why we did not perform simulations with hundreds of layers is on the one
hand the reconstruction process is time and memory consuming and on the other hand there are
already some apparent mistakes appearing with ten layers due to the large number of variables.
Fig. 6.6i-6.6x shows the refractive index distributions of the ten-layers sample of each layer.The
contrast of the permittivity is relatively low compared with the previous simulations with less
layers and the patterns are difficult to recognize.
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i The first layer reconstruction of
the ten-layer sample

ii The second layer reconstruc-
tion of the ten-layer sample

iii The third layer reconstruction
of the ten-layer sample

iv The fourth layer reconstruc-
tion of the ten-layer sample

v The fifth layer reconstruction of
the ten-layer sample

vi The sixth layer reconstruction
of the ten-layer sample

vii The seventh layer reconstruc-
tion of the ten-layer sample

viii The eighth layer reconstruc-
tion of the ten-layer sample

ix The ninth layer reconstruction
of the ten-layer sample

x The tenth layer reconstruction
of the ten-layer sample

Figure 6.6: Reconstructed pattern of a 10-layer object. Each layer has a thickness of 60nm and
the patterns are obtained after 25 epochs of optimizations.

52



Worth mentioning that not only the sample reconstruction but also the probe reconstruction is
far from the real situation. The inaccuracy of the reconstructions partly result from the large
amounts of variables and partly because of the limited number of optimization epochs due to
restriction in GPU memory. Fig. 6.7i exhibits the reconstructed probe coupled with a ten-layers
sample.

i Probe prediction, 25 epochs ii Probe prediction with a single-layer sam-
ple

Figure 6.7: Probe predictions

Different from the previous standard circular probe reconstruction (Fig. 6.7ii), this time an
irregular probe has been reconstructed. However, even with the wrong probe, the total loss is
still low. We may guess that the probe accounts for a large proportion of the total field, the
sample will change according to the probe and the coupled changes of the probe and sample
lead to a small loss function. This might also imply that lacking of redundancy in ptychography
algorithms may lead to multiple solutions. To validate our guess, we have performed a simulation
which has a well reconstructed probe (as depicted in Fig. 6.7ii) and the probe variables are set to
be untrainable. The corresponding sample reconstruction results are displayed in Fig. 6.8i-6.8x.
Although the patterns are still blurry, the sense of layering has been revealed. What is more, the
dim patterns in the middle of the layers might arise because that the sample itself has a pure
glass in the middle. If we increase the number of iterations, the reconstruction results might be
even better. Apart from the number of variables which influences the reconstruction result, the
probe size might effect the results as well. To obtain the diffraction patterns, the illumination
sources are required to be coherent. If the probe size is too large, there will be only partial
interference between exterior parts of the probe.
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i The first layer reconstruction of
the ten-slices sample

ii The second layer reconstruc-
tion of the ten-slices sample

iii The third layer reconstruction
of the ten-slices sample

iv The fourth layer reconstruc-
tion of the ten-slices sample

v The fifth layer reconstruction of
the ten-slices sample

vi The sixth layer reconstruction
of the ten-slices sample

vii The seventh layer reconstruc-
tion of the ten-slices sample

viii The eighth layer reconstruc-
tion of the ten-slices sample

ix The ninth layer reconstruction
of the ten-slices sample

x The tenth layer reconstruction
of the ten-slices sample

Figure 6.8: Reconstructed pattern of a 10-layer object with a untrainable fine probe. Each layer
has a thickness of 60nm and the reconstructions are obtained after 25 epochs of optimizations.
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Chapter 7

Conclusion and outlook

7.1 Conclusions

We have built the model of the multi-layer Born approach (MLB). In order to build the model,
we derive the formulas. A crucial step is to simplify a sinc function which is responsible for
the propagation and the impact of the scattering event in a layer. We have investigated two
approaches of simplification in section 3.3: 1. Applying SVD to the sinc function for variable
separation. 2. Approximating the sinc function to be 1. The conditions under which the above
two simplifications are valid are analyzed. We found that for approach 1, the limitation is the
speed of SVD, while for approach 2 is limited by the sampling selection.We further proposed
a strategy to build the model by concatenating layers together such that the transmitted and
the reflected field becomes the incident field of the next layer in section 3.4. In this process,
when the background refractive index differs from one side of the interface to the other side
of the interface, we also need to consider the transmission and the reflection at the interface
by calculating the Fresnel coefficients. Finally, the model is validated with both simulated and
experimental data. It shows that this model demonstrates a high level of accuracy for solving
multiple-scattering problem with low or moderate refractive index contrast. Compared with the
results of a trust worthy Maxwell solver provided by TU/e, the relative errors at each layer
are well limited below 0.12. Also, thanks to the automatic differentiation framework provided
by TensorFlow, the process of obtaining the gradient of the refractive index of each layer with
respect to a user customized error function is fast and accurate. For any random initial guess,
one may expect the result to converge well within 3 iterations. For now, all our reconstructions
are based on experiments using visible light, for wavelengths in the EUV and soft X-ray regime,
both the lateral and the axial resolution can be further improved.

7.2 Outlook

Encoding model verification. In section 3.5, we only verify the model by a Maxwell solver
provided by TU/e. To more rigorously test the model, we are supposed to test the model against
more methods, e.g. FEM and RCWA. A good agreement between all these methods may further
imply the reliability of the MLB model. Another approach for better validation would be to
compare it against canonical objects for which analytical results are available, such as a sphere
embedded in a homogeneous medium.
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Parameter selection. Recall the formulation of the MLB model, the selection of parameters,
e.g. ∆z, has huge impact on our final result. Obtaining good results from the algorithm often
includes some trial-and-error experiments to find simulation parameters that yield good results.
It would be very beneficial to derive a rule of thumb by experimental data and automate the
choice of parameters in our algorithm.

Normal vector implementation. Due to the Gibb’s phenomena, high contrast problem may
not be handled properly in Fourier analysis. The spikes around the discontinuity will not disap-
pear no matter how many spatial harmonics are applied and it is highly related to the severity of
the discontinuity. To mitigate the Gibb’s phenomena, normal vector field may be a solution to it.
But it requires prior knowledge of the object and might be very difficult to calculate. A vector
function must be constructed throughout the grid that is normal to all the material interface
of the geometry in each layer, which is a priori not known. What is more, the discontinuity of
the permittivity distribution prevent us from getting more accurate result in less optimization
iterations. In our current algorithm, the reconstruction normally converges after 3 iterations for
weakly scattering and thin objects. To improve the speed of convergence, build up a normal
vector field by FFF is worthwhile. This implementation of normal vector field can be set as an
option in our algorithm. It may be turned on when the contrast is relatively high.

Speed up the program. The computation and memory costs are relatively high as compared to
the common used multi-slice (MS) model but lower than finite element (FE) or finite difference
time domain (FDTD) methods. To further speed up the program, one needs to decrease the
number of Fourier transforms or simplify some calculating process. For instance, when the
refractive index does not change between adjacent slices, there is no need to calculate the Fresnel
coefficients again.

Automatic differentiation algorithm. In my thesis, the MLB model has been implemented
on an open source automatic differentiation framework, TensorFlow. This framework helps to
calculate the derivatives by chain rules, thus we do not need to obtain the analytical expressions
for object functions in terms of parameters, e.g. samples, probes... The application of this
framework may be extended to more electromagnetic models, e.g. RCWA [42, 43]. For further
research, one may implement models like RCWA to this framework, the computational speed
may increase.

Variable normalization. In MLB model, there are several variables that need to be recon-
structed, e.g. samples, probes, propagation distance and more. These variables may have differ-
ent units and different scales. As we have seen before, for weakly scattering objects, the scattered
field is much smaller than the incident field and thus the probe might steer model performance
in one direction. Variable normalization might help prevent this situation. Normalization is a
data pre-processing tool used to bring the numerical data to a common scale without distorting
its shape. It gives equal weights to each variable so that no single variable contributes to most
of the model. It is worth to include a normalization process to the program.
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Appendix A

Optimal truncation method

Optimal truncation method. Here we present the optimal truncation method which works
well for noisy data. Suppose the measured noisy matrix Y obeying

Y = X + σZ, (A.0.1)

where the noise matrix Z has an independent, zero-mean distribution with a noise level of σ
and the matrix X is the noise-free data. Matan Gavish [44] has found that a Gaussian zero-
mean distributed noise matrix usually has singular values showed as red line in Fig. A.1 and its
corresponding noisy measurement has a singular values distribution as the green line in Fig. A.1.
As long as we truncate the singular values smaller than the maximum singular value of noise
matrix, only signal information will be contained.

Figure A.1: optimal SVD truncation. Plot the singular value vectors of both noise data (red
line) and noisy measurement (green line). Truncate the singular values of the measurements

data smaller than the largest singular value of noise data, only signal information will be
contained.

60



% add no i s e to the o r i g i n a l data
dz = lambda ;
sigma = 1 ;
y = s i n c (dk∗dz /2) ;
Xnoisy = y + sigma ∗ randn ( s i z e ( y ) ) ;
N = s i z e ( Xnoisy , 1) ;
c u t o f f = (4/ sq r t (3 ) ) ∗ s q r t (N) ∗ sigma ; % Hard thre sho ld
r = max( f i nd ( diag ( S_noisy ) > cu t o f f ) ) ; % keep modes w/ s i g > cu t o f f
% no i s e data SVD
[ U_noisy , S_noisy , V_noisy ] = svd ( Xnoisy ) ;
Xclean = U_noisy ( : , 1 : r ) ∗ S_noisy ( 1 : r , 1 : r ) ∗ V_noisy ( : , 1 : r ) ’ ;

Listing A.1: Matlab code for the optimal truncation method

Add a Gaussian zero-mean distributed noise to S(ρρρ′, ρρρ), the noise level σ adding to the origi-
nal clean data is 1. Fig.(A.2i - A.2ii) show the original clean S(ρρρ′, ρρρ) and the noisy S(ρρρ′, ρρρ),
respectively. One can hardly tell the basic pattern from the noisy data and discontinuities are
introduced due to the noise. Also, the magnitude difference between the clean and noisy data
cannot be ignored.

i Original clean data ii Noisy data

Figure A.2: Add noise to S(ρρρ′, ρρρ). The left subfigure demonstrates the distribution of original
clean data and the right subfigure shows the pattern of the noisy data. The sinc function

pattern can hardly be teller from the figure.

Then we apply optimal truncation code to reconstruct the clean data by performing optimal
singular value decomposition. Fig.(A.3) depicts the reconstructed clean S(ρρρ′, ρρρ). It’s obvious
that the reconstructed clean data has better quality than the noisy data. The basic pattern is
recognizable and the magnitude difference with the real pattern is within an acceptable range.



Figure A.3: Reconstructed clean S(ρρρ′, ρρρ)

To reconstruct the clean S(ρρρ′, ρρρ) as shown in Fig. A.3, only the first two singular modes have been
applied, which is identical to the result obtained by the energy accumulation method. To check
the reliability of the optimal truncation method, we here calculate the scattered field by using
the reconstructed clean data and the noisy data as depicted in Fig. A.4i - A.4ii, respectively.

i Scattered field with full noisy data components ii Scattered field with the optimal truncation

iii Scattered field with the energy accumulation
truncation

Figure A.4



One may see clearly from the figures that the first singular mode of S(ρρρ′, ρρρ) only is capable
of estimating the scattered waves for weakly scattering objects. Also, one may notice that
the estimated scattered field is smooth and almost all the speckles and discontinuous area are
disappeared. Thus we may guess that the information of the sudden changes of the contrast
permittivity distributions are contained in the small singular value modes. To further verify
our ideas, we calculate the scattered field with the noisy S(ρρρ′, ρρρ) term and perform the energy
accumulation SVD truncation method to it. According to Fig.(A.5), it requires 3137 modes
to capture 95% of the sinc term energy. And Fig. A.4iii shows that the energy accumulation
truncation method keeps most of the large permittivity contrast information.

Figure A.5: Black line represents how singular-modes contribute to the total energy of noisy
S(ρρρ′, ρρρ). Blue line indicates the modes required to capture 95% energy of noisy S(ρρρ′, ρρρ).
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Appendix B

Diffraction pattern measurements
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Figure B.0: Measurement diffraction patterns at different scan locations
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Appendix C

Diffraction pattern predictions
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Figure C.0: Diffraction pattern predictions at different scan locations with ∆z = 600nm
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