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Abstract

To validate the quality of software, test cases are
used. These test cases are often manually-written,
which is labor-intensive. To avoid this problem,
automated software testing was invented. Search-
based software testing is a useful tool for develop-
ers to automatically generate test cases. However,
improvements are still needed to create test cases
that compete with manually-written ones.

EvoMaster is a tool that generates system-level test
cases for RESTful APIs using the MIO algorithm.
An important aspect of this algorithm is sampling
new test cases. Currently, EvoMaster employs ran-
dom and smart sampling to achieve this goal. This
paper aims to improve the coverage of the gener-
ated tests by expanding the sampling methods with
seeded sampling. This method consists of extract-
ing sequences of HTTP requests from manually-
written tests and using these to sample new test
cases.

Seeded sampling is evaluated on two RESTful APIs
with 7 different parameter sets. We show that the
addition of seeded sampling can improve the cover-
age achieved by EvoMaster compared to the current
combination of sampling techniques. Nonetheless,
this paper has some limitations. It only takes two
RESTful APIs into account and has a small amount
of benchmark runs to back its findings.
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1 Introduction

Software developers generally see testing as labor-intensive,
tedious work. It is, however, of great importance that it is
done since it measures and ensures software quality [8]. To
support developers and reduce testing time and effort, there
exist techniques to automate this. Search-based software test-
ing (SBST) is such a technique. It uses search algorithms to
automatically generate test suites. EvoMaster [1] is an SBST
tool that generates test suites for RESTful APIs. RESTful

APIs are services that provide interoperability between com-
puter systems online. They use the Hypertext Transfer Proto-
col (HTTP) for communication, enabling a requesting system
to access or manipulate resources. Testing a RESTful API is
challenging since their inputs and outputs are HTTP requests
and responses. EvoMaster automates this process by trying to
improve code coverage and fault detection by using the Many
Independent Object (MIO) algorithm [2] as the core search
algorithm. Arcuri [1] has shown that this method can suc-
cessfully generate system-level test cases for RESTful APIs.
However, there are cases where it cannot generate a higher
coverage than manual testing [1].

In SBST, test cases are evolved to achieve certain objec-
tives, for instance, high coverage. Before these test cases can
be evolved however, they must be initialized (sampling). Typ-
ically this is done randomly (random sampling), but EvoMas-
ter has an option to do it differently: smart sampling [1]. This
method ensures that HTTP requests are called in a meaning-
ful order, rather than a completely random one. This paper fo-
cusses on improving the current sampling method by adding
a new option: Seeded sampling.

Seeding loosely refers to any technique that exploits previ-
ous, related knowledge to help solve a search problem [13].
EvoMaster uses a form of seeding by using the schema of the
system under test (SUT) to create meaningful HTTP requests
[1]. However, EvoMaster does not use existing test cases
as seeds. Previous studies [4, 13] describe using existing,
manually-written tests to improve the sampling of new test
cases. While these studies showed the effectiveness of sam-
pling from existing tests, they focused on unit testing. There-
fore, it is still unclear to what extend seeding with manually-
written tests can improve the performance of system-level test
generation tools like EvoMaster.

In this paper, we design a system that uses manually-
written test cases to improve test case sampling for EvoMas-
ter. The following questions are taken into account when de-
signing this new system:

RQ 1: What model can be used to extract useful information
from manually-written test cases effectively?

RQ 2: How can the extracted model be used to generate new
test cases?

RQ 3: To what extent can the extracted model improve cov-
erage compared to the current combination of sampling



techniques used by EvoMaster?

The first and second questions are about designing a model
that uses manually-written tests to seed the generation of new
test cases. The third question strives to verify whether the
new sampling technique improves upon the existing one im-
plemented in EvoMaster.

More background information concerning RESTful APIs
and EvoMaster are discussed in section 2. Section 3.1 con-
tains a description of the problem. Section 3 covers the de-
sign of the new seeded sampling technique. In section 4 we
describe our experimental setup, the gathered results, and the
threats to validity. Section 5 contains the ethical aspects and
reproducibility of our methods. The conclusion can be found
in section 6.

2 Background

This section will cover relevant background information and
other related work. First, basic knowledge of RESTful APIs
will be discussed. Then EvoMaster and its current sampling
methods will be introduced. Lastly, seeding methods using
existing test cases will get explained.

2.1 RESTful APIs

RESTful APIs are a common sight in enterprise applications
[1], especially when using a microservice architecture. A mi-
croservice architecture is a type of architecture where a large
and complex application is split into individual components
which are easier to develop and maintain [9]. Amongst big
companies like Netflix, Airbnb, Amazon, and eBay it is com-
mon practice to use microservices [12].

REST stands for Representational State Transfer and was
coined in 2000 by Roy Fielding [5]. It is an architectural style
for distributed hypermedia systems that adheres to a set of ar-
chitectural constraints. These constraints emphasize scalabil-
ity, generality of interfaces, and independent deployment of
components [5]. These characteristics make RESTful APIs
ideal for use in systems with a microservice architecture.

REST often uses HTTP, the main protocol of communica-
tion on the internet [1]. An HTTP client sends a request to a
server which will then send a response back to the client. An
HTTP request consists of four main components:

Operation: The operation to perform, such as posting or
deleting a resource.

Path: The location of the resource on which the operation
should be performed.

Headers: Metadata about the request, such as the format in
which the response is expected.

Body: The payload of the message.

This paper will mostly focus on the operation and path of
a request since the headers and body are often application-
specific and therefore not necessary to use in this explanation.
Hence, the examples of HTTP requests in this paper will omit
those components and only show the operation and path.

To get familiar with HTTP requests a couple of examples
have been laid out here. Suppose we have a RESTful API of
a supermarket.

GET /products

The first element (GET) is the operation of the request and
the second element(/products) is the path. This request tells
the server that the client wants to receive the resource located
at /products. This would be a list of the products available in
the store. If the client wants to receive a specific product the
request would look like this:

GET /products/milk

This request would result in the client receiving the available
information on milk. If a client is only interested in the price
of milk, he could send the following request:

GET /products/milk/price

Now suppose that the store wants to add a new product. That
should be done using the POST operation.

POST /products/yoghurt

The body of the request should contain the resource holding
the information on yoghurt. This resource will be returned
to any client that tries to use the GET operation on the same
path.

There is much more to HTTP than these brief examples,
but they should suffice to form a basic understanding of the
HTTP protocol. A good summary of HTTP can be found in
section 2 of "RESTful API Automated Test Case Generation
with EvoMaster” [1].

A client does not know what the internal structure of a
RESTful API is. How does a client know it should re-

quest

GET /products/milk/price
instead of

GET /products/milk/cost

when it wants to know how expensive milk is? This, among
other things, can be found in the schema of the API. The
schema contains a list of endpoints. An endpoint is an pair
consisting of an operation and a path. The list of endpoints
for the example API would contain the following three end-
points:

GET /products/{productName }
POST /products/{productName }
GET /products/{productName }/price

Note the path elements in between the curly brackets . These
are called path parameters, which represent variables in the
path. This means that both

GET /products /milk
and
GET /products/yoghurt

match the same endpoint, but with different parameters. The
response sent by the server will differ based on the given pa-
rameter. The schema also shows that

GET /products/milk/cost



is not a valid request, since it does not match any of the listed
endpoints.

2.2 EvoMaster and MIO

Testing RESTful APIs is challenging, time-consuming work.
EvoMaster is a tool that tries to ease this process. It au-
tomatically generates system-level test cases for these ser-
vices. Various studies discuss black-box testing of RESTful
APIs. Black-box testing means that the tool creating the tests
has no knowledge of the internals of the system under test
(SUT) [10]. EvoMaster sets itself apart by focussing primar-
ily on white-box testing, which means that the internals of
the SUT are known [10]. The reason for choosing white-box
testing over black-box testing is that white-box testing has
potentially better results in terms of coverage [7], because of
the extra knowledge it has access to. This, in turn, means that
EvoMaster is meant for developers or operators since access
to the source code of the application is necessary.

EvoMaster makes use of an evolutionary algorithm called
MIO as its main search algorithm [1]. Other algorithms such
as Whole Test Suite (WTS) [6] and Many-Objective Sorting
Algorithm (MOSA) [11] are implemented as well, but will
not be used for this work. MIO is a multi objective search
algorithm. This means that it aims to achieve multiple objec-
tives at the same time, e.g. different branches to cover. To
do this, MIO maintains an archive of tests. In this archive it
keeps a population of tests of size n for each objective. Thus,
given m objectives, the archive can contain up to m * n test
cases.

When starting the search, MIO will sample a test case.
From then on, it will iterative choose to either sample a new
test case (with probabiity Pggmpie, OF pick an existing test
from the archive and mutate it (with probability 1 — Psgmpic)-
Each sampled or mutated test is then evaluated with a fitness
function. The fitness reflects how good the test is in achieving
an objective. A test may be saved to 0 or more of the m popu-
lations in the archive if its fitness for that target is higher than
some other test in that population [2]. Thus, after running the
algorithm for a certain time ¢, an archive filled with tests that
cover as many targets as possible remains.

This is a simplified description of the MIO algorithm devel-
oped by Andrea Arcuri [2]. MIO has more interesting quirks,
like controlling the balance between exploration and exploita-
tion of the search space, but that is outside of the scope of this
paper. This paper focusses on the way tests are initially sam-
pled in MIO.

2.3 Sampling in EvoMaster

Sampling new test cases happens in two distinct ways in
EvoMaster [1]. These are random sampling and smart sam-
pling. Both techniques have their advantages and disadvan-
tages, which is why they are both used. When a new test
case needs to be generated, the system chooses either random
sampling (with probability P, q0m Or smart sampling (with
probability 1 — Pyqndom.-

Random Sampling
Random sampling works in a straight forward manner. Evo-
Master does not just generate a random stream of bits to

send to the SUT, since the chance that that would result in
a meaningful HTTP request is extremely small. Instead it
picks a random endpoint based on information available in
the schema of the SUT. This ensures that the request is, at the
very least, something the application can handle. Random
sampling is quick and easy, but there is a problem: testing
some endpoints requires setting the state of the application
beforehand. Consider the following example:

GET

This endpoint needs a product with called milk to exist, oth-
erwise the response will be a 404 “not found”, A randomly
generated test is unlikely to generate the correct sequence of
HTTP requests to create a matching resource. This is where
smart sampling comes in.

/products/milk

Smart Sampling

Smart sampling uses predefined test templates when certain
types of requests are encountered. It starts similar to random
sampling by picking a random endpoint of the API. Consider
the same example as before:

GET /products/milk

Then, EvoMaster checks whether that endpoint needs a pre-
existing resource associated with it. It does this by checking
the operation (GET in this case), and checking whether that
operation needs a pre-existing resource. The operations that
need such a resource are GET, PUT, PATCH and DELETE.
In this example a product called milk is necessary. It will
then add a request to the test which creates this resource. The
sequence of requests will then be as follows:

POST
GET

/products /milk
/products/milk

The resulting sequence will depend on the endpoints available
in the SUT’s schema. This technique cannot be used if the
SUT has no endpoints with a POST operation.

This is a basic example showing the main idea behind
smart sampling. However, it does more than defining tem-
plates for each HTTP operation such that it becomes mean-
ingful. When the API has elements such as collections, smart
sampling ensures that the collection is created and its ID re-
membered before an item is created for that collection. Fur-
thermore, during the search, tests are mutated. This could
potentially break the carefully crafted properties of a smart
sampled test. Therefore, EvoMaster blocks some mutations
that can break these properties. For instance, mutations that
change the structure of the test case (i.e. the order of HTTP
requests). A more in depth explanation can be found in sec-
tion 5 of "RESTful API Automated Test Case Generation
with EvoMaster” [1].

2.4 Seeding with existing test cases

Seeding refers to the use of information about the SUT during
the search process [4]. This paper will use information in
the form of existing, manually-written test cases to seed with.
Previous studies have used this form of seeding [4, 13]. Two
methods have demonstrated good results for unit testing and
will be discussed here: cloning and carving.



Cloning

Suppose there exists a set of parsed test cases 7. Cloning
refers to the reuse of one of those test cases to sample a new
one. Generally, for SBST tools, this means that given a prob-
ability P,one, a test is not sampled randomly but copied from
T'. This in itself does not improve anything since it produces
an exact copy of an already existing test. Therefore, a ran-
dom amount of mutations between 0 and NV are applied to the
cloned test. This promotes diversity in the test suite, which
could expand the reachable search space.

Carving

Suppose there exists a set of parsed tests 7. Carving refers
to the reuse of initialized objects that can be found in exist-
ing tests. Some objects in a SUT require a specific sequence
of method calls to reach the state that should be tested. Ran-
domly sampled tests are unlikely to generate this sequence of
method calls. Therefore, it can be useful to reuse these ob-
jects for other tests. A carved object is then defined as the
initialization of the object together with this sequence of spe-
cific method calls on it. Carved objects can be used for ran-
dom sampling, by randomly picking it instead of some other
method call, or as a mutation.

3 Seeded sampling

This section states the problem and describes the method used
for solving this problem. Then the three main elements of the
seeded sampling technique are covered. These elements are
parsing, cloning and carving.

3.1 Problem description

The goal of this paper is to further improve sampling by using
existing, manually-written test data of a SUT. The idea behind
this approach is that a developer knows the specifics of what
needs to be tested. Therefore, harvesting this knowledge and
reusing it can potentially improve the coverage performance
of EvoMaster. To do this the following two research questions
are answered:

RQ 1: What model can be used to extract useful information
from manually-written test cases effectively?

RQ 2: How can the extracted model be used to generate new
test cases?

These questions are answered by applying the cloning and
carving techniques discussed in section 2.4 to test case gen-
eration for RESTful APIs.

3.2 General approach

The main idea of this paper is to use manually-written test
cases to improve the achieved coverage of EvoMaster. The
first thing that is required for achieving this goal is finding a
way to interpret these test.

The test cases are parsed to the internal representation used
in EvoMaster and put into an archive. Each test in the archive
is then further analysed to retreive any Resource Generating
Sequences (RGS). An RGS is a sequence of POST and/or
PUT requests. These can set the state of a RESTful API and
are therefore useful parts of the test case. This process reflects

Manually
written test
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written test

Manually
written test

|

Archive of RGSs

|

Pick random

Add random Sampled test

RGS elements

Figure 1: A diagram representing the general approach to seeded
sampling. It shows the main flow from the manually-written test
cases to the two archives from which new test cases can be sampled.

carving, which is mentioned in section 2.4. Carved RGSs are
also put into an archive.

The two archives are used when performing seeded sam-
pling. Each time the system randomly picks whether to copy
a test from the test archive, or to take an RGS from the RGS
archive. When an RGS is picked some random elements are
added to it. The former reflects cloning, which also men-
tioned in section 2.4.

Seeded sampling is not meant to replace either random or
smart sampling. The idea is to make them work alongside
each other. That way the search space is widened which can
lead to greater coverage of the generated test suites.

The final control flow is visualized in figure 1. In natural
language the sampler looks as follows:

* The system randomly picks either random, smart or
seeded sampling given probabilities Pyqndom, Psmart
and Pseeded’ where Prandom + Psmart + Pseeded =1
and Prandorru Psmarta Pseeded S [07 1]

¢ When random or smart sampling are chosen they are ex-
ecuted as described by Arcuri [1].

* When seeded sampling is chosen, then the system ran-
domly chooses to either clone a test or carve use
a carved RGS given probabilities P.jone and Prgrye,
where Pclone + Pcar’ue = land Pclonea Pcm‘ve S [07 1}
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Figure 2: An activity diagram for the parser. The two parts of the
parser are shown as well as the control flow of the system.

* Then cloning or carving is performed as described in
sections 3.4 and 3.5 respectively.

3.3 Parsing

Parsing test cases might be the most important part of seeded
sampling. Manually-written test cases for RESTful APIs
come in many different forms since each developer has his
or her own style for writing test cases. Therefore, the parser
made for this paper is not designed to handle every single way
one can write tests cases, but it should be sufficient to serve
as a proof of concept.

The parser, visualized in figure 2, takes as input the paths of
the test suites and it outputs the two archives: the test archive
and the RGS archive. Creating these archives is done in two
steps. First, the test archive is generated by extracting the
sequences of HTTP requests from each test case. Only this
sequence is necessary information, since EvoMaster can gen-
erate the assertions on each response by itself. This sequence
is then put into the test archive. When all tests have been
archived, the system loops over each test in the archive to ex-
tract RGSs from each test case. Each RGS is then put into the
RGS archive.

After parsing the test cases we are left with two archives:

The test archive: This contains the complete sequences of
HTTP request of the manually-written test cases.

v

Input RGS archive

v v

Choose random RGS
from the archive

Input test archive

v

Choose random test Add random requests
) to the test using
from the archive

¢ random sampling

Output a copy of the
chosen test

o o

(a) cloning

Output carved test

(b) carving

Figure 3: Activity diagrams for cloning and carving

The RGS archive: This contains sequences of POST and/or
PUT requests found in the manually-written test cases.

3.4 Cloning

Cloning, together with carving, are part of the actual sam-
pler of the system. It is a simple method, which can been
seen in figure 3a. When a test case is sampled using seeded
sampling, it randomly chooses (given a probability Pjone) to
copy a random test case from the test archive. This test is
then directly fed to the evolutionary algorithm that EvoMas-
ter uses, wherein it will be evaluated and mutated. The cloned
test case will not be mutated before being sampled, as is done
in other literature [4, 13].

3.5 Carving

Carving is the more difficult of the two seeded sampling tech-
niques used in this paper. Its workings are shown in figure 3b.
The first part is fairly similar to cloning. When sampling, a
random RGS is chosen from the RGS archive. To make this
test case valuable some extra random request are added to the
sequence which can act on the resources created by the RGS.
Then the test is ready to be used in the evolutionary algorithm.

An RGS is similar to the initialisation of a particular object
in unit testing. Just like the state of an object is set by a series
of method calls, the state of a RESTful API is set by a series
of POST and/or PUT requests. Therefore an RGS can be seen
as an object initialisation, which is why they are carved from
the existing test cases.

4 Empirical evaluation

This section describes the empirical evaluation method used
to evaluate whether seeded sampling can improve coverage
achieved by the generated test suite. First, the setup used for
this evaluation is covered. Second, the results are presented
with statistical analysis. Third, threats to the validity of the
evaluation are discussed.



4.1 Experimental setup

The impact of seeded sampling will be evaluated by testing
it on two RESTful APIs: features-service! and rest-news?.
These APIs are chosen primarily because they have been
used for benchmarks for earlier versions of EvoMaster. This
means that the necessary drivers to run EvoMaster in white-
box mode have already been written and are available in the
EvoMaster Benchmark repository®. The second reason for
using these two APIs is that they have test cases that are writ-
ten using the REST-assured library*. This is the same library
that EvoMaster used to generate its tests with, which makes
parsing the tests easier. The parser developed for this paper
is unable to parse all possible test cases. Therefore, some test
cases had to be rewritten to be usable. All endpoints are of
each API are considered in the evaluation.

The empirical evaluation is meant to answer RQ 3: To
what extent can the extracted model improve coverage com-
pared to the current combination of sampling techniques used
by EvoMaster? This question is answered by running Evo-
Master with a search budget of five minutes for ten times for
different sets of parameters. Ten repetitions are chosen since
that filters out the worst outliers, while keeping the overall
computing time low. The parameters which are changed be-
tween runs are the probabilities that each form of sampling
will occur: Prandom» Psmarts Pseeded» Petone and Pegrye-
Henceforth, these parameters will be referred to as a 5-tuple
(Prandm‘m Psmart; Pseededa Pclone; Pcarve)~ All other param-
eters are set to the defaults set by EvoMaster.

A baseline will be set using (0.5,0.5,0.0, —, —). This is
chosen as a baseline because Arcuri recommends using a
middle value for P,qpndom and Psp,qr¢ [1]. The other param-
eter sets are determined by increasing the seeded sampling
rate at the cost of the random and smart sampling rate with
each consecutive run. This results in the following sets of
parameters:

Po = (0.5,0.5,0.0, —, —)

Py = (0.4,0.4,0.2,0.5,0.5)
Py = (0.3,0.3,0.4,0.5,0.5)
Py = (0.2,0.2,0.6,0.5,0.5)
P, = (0.1,0.1,0.8,0.5,0.5)

Ps = (0.0,0.0,1.0,0.5,0.5)

These parameter sets provide insight into the influence of
seeded sampling as a whole, but it is also interesting to see
the impacts of cloning and carving individually. Therefore,
two more parameter sets are added:

Ps = (0.4,0.4,0.2,1.0,0.0)
P; = (0.4,0.4,0.2,0.0,1.0)
In the first set, only cloning will be performed when the

sampler chooses seeded sampling, and in the second only
carving. These will be tested against a different baseline,

"https://github.com/JavierMF/features-service

2https://github.com/arcuri82/testing_security_development_
enterprise_systems

3https://github.com/EMResearch/EMB

*http://rest-assured.io/

Table 1: Covered targets and coverage percentage results for Py to
‘Ps with corresponding p-values. The results for the news and the
feature-service API are shown.

\ covered targets  p-value \ coverage p-value
News
Po 293.8 - 46.9% -
P1 308.0 0.010 48.9% 0.038
Po 305.1 0.075 47.9% 0.336
P3 304.4 0.121 48.4% 0.196
P4 300.6 0.150 48.2% 0.218
Ps 94.2 <0.001 16.8% <0.001
Feature-service
Po 3994 - 35.8% -
P1 404.9 0.003 36.8% 0.001
Po 400.3 0.003 36.3% 0.004
P3 403.6 0.006 36.7% 0.001
Pa 408.0 0.343 36.9% 0.088
Ps 86.0 <0.001 8.2% <0.001

Covered targets and coverage are shown as the average over
ten runs. Coverage is measured as bytecode line coverage.

namely P;. This shows whether cloning, carving or a mix
of both performs best. P; is chosen as a baseline because it
is expected to perform the best of all the parameter sets.

Two measures are used to evaluate the performance of
each parameter set: The amount of covered test targets and
the percentage of bytecode line coverage. Test targets in-
clude bytecode statements, branches, call methods executions
and HTTP return statuses [1]. Bytecode line coverage is the
amount of lines of bytecode that is covered by the resulting
test suite. Both these measures are included since only look-
ing at coverage can be misleading. Therefore, the covered
test targets are added to paint a more complete picture.

The results will be subjected to the Mann-Whitney-
Wilcoxon U-test [3] to show whether they are significant.
P1 — Ps will be compared to Py, and Pg and P7 will be
compared to P;. This setup provides enough insight to val-
idate or reject whether or not seeded sampling improves the
coverage achieved by the generated test suite.

4.2 Results

Table 1 shows the end results of running EvoMaster with
parameter sets Py to Ps on both SUTs. From this table it
becomes evident that all parameter sets, except for Ps, per-
form on average better on both SUTs. However, the average
amount of covered increases by a no more than 15 and the
coverage by a no more than 2 percent points. The signifi-
cance of the results, especially for the news API, are debat-
able. For the news API, only P; and P5 show significant
results (p-value lower than 0.05). The feature-service API
has no significant results for Ps (only on covered targets) and
Ps. Ps deviates the most from the baseline. This is likely
because it only uses seeded sampling, and no other method.
This results in very narrow exploration of the search space,
since only the pre-existing tests can be used as a springboard
for exploration.

Figure 4 shows how many test targets are covered on aver-
age over time for different parameter sets. P5 has been omit-
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Figure 4: Graphs showing the average amount of covered targets over time for Py to P4. The parameter sets are written as a 5-tuple. (a) and
(b) show the results for the news and the feature-service API respectively.

ted from the graphs because the amount of targets it covers
are low compared to the other parameter sets. The graphs
would become unreadable if P5 was included. These graph
are shown because they give insight into the speed at which
the test suites evolve. It is clear that even after just five min-
utes the search seem to converge. This reinforces the as-
sumption that a runtime of five minutes is enough time to
produce meaningful results. Furthermore, the graphs show
that the parameter sets with a high value for Ps¢egeq, namely
Ps3 (blue) and P, (purple), have a slower start compared to
the other sets. The explored search space with seeded sam-
pling is narrow, because the test are sampled from a limited
source. Therefore, it can hinder the evolution speed of the
test suite. Py, P; and P, have a similar evolution speed, but
P1 and P, end with more targets covered on average. Some
dips or spikes in the amount of covered targets can be spot-
ted in the graphs. This should not happen since the MIO
algorithm never replaces tests in the archive with tests that
achieve a lower coverage. These dips are artefacts created by
missing values in the dataset used to create the graphs. Evo-
Master pauses sometimes, not outputting any data for some
time. These missing values are omitted when calculating the
average of the runs. This can result in sudden dips or spikes
in the graph.

Table 2 shows the end results of running EvoMaster with
parameter sets P;, Pg and Pr. P; is added to make the com-
parison easier. From the high p-values it becomes clear that
these parameter sets show no significant difference between
each other. Therefore, nothing can be said about the influ-
ence of either cloning or carving on the outcome of seeded
sampling. Although Pg shows higher amount of covered tar-
gets for the feature-service API, this is probably due to an

Table 2: Covered targets and coverage percentage results for P1, Ps,
and P with corresponding p-values. The results for the news and
the feature-service API are shown.

| covered targets p-value | coverage p-value
News
P 308.0 - 48.9% -
Ps 308.2 0.405 48.7% 0.784
P~ 303.0 0.307 48.4% 0.430
Feature-service
P 404.9 - 36.8% -
Ps 420.4 0.732 38.0% 0.816
P~ 4124 0.676 37.4% 0.625

Covered targets and coverage are shown as the average over
ten runs. Coverage is measured as bytecode line coverage.

anomaly in the data. A parameter set with a higher seeded
sampling rate might have given more insight into the influ-
ences of cloning and carving on their own.

The covered targets over time graph in figure 5a shows that
the different parameter sets evolve similarly, reinforcing the
inconclusiveness of the experiment. In figure Sb the higher
amount of covered targets for Pg (brown) can be seen clearly.
Apart from that, the parameter sets seem to evolve at the same
speed for the feature service APL

To summarize, RQ 3 is answered. The seeded sam-
pling technique can improve coverage compared to the cur-
rent combination of sampling techniques used by EvoMaster.
Low seeded sampling rates (0.2 — 0.4) perform best on the
evaluated SUTs, while higher seeded sampling rate can be
detrimental to the performance. The individual influence of
the to components of the model, cloning and carving are un-
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Figure 5: Graphs showing the average amount of covered targets over time for P1, Ps and P7. The parameter sets are written as a 5-tuple.
(a) and (b) show the results for the news and the feature-service API respectively.

determined.

4.3 Threats to validity

Threats to internal validity stem mostly from the fact that the
algorithm is based on randomness. To mitigate the impact of
this randomness, each run is repeated 10 times. Doing more
runs would give the results more confidence, but due to time
constraints this was not possible. Furthermore, the parser im-
plemented for seeded sampling is by no means a complete
implementation. Some existing tests had to be omitted be-
cause they were not able to be parsed correctly. This limits
overall performance of seeded sampling. Another threat to
internal validity arises from the fact that EvoMaster is not a
bug-free software package. Numerous benchmark runs had
to be rerun because the system crashed in a way that seemed
unrelated to the implementations made for this paper.

Threats to external validity stem for the fact that the results
are gathered on only two RESTful APIs. This means that
there is not much assurance that seeded sampling performs
similarly on other APIs in the industry. Only two APIs were
tested for similar time constraints as mentioned before, and
because of the difficulty of finding open source RESTful APIs
using the rest assured library. On top of that, to be able to run
EvoMaster in white-box mode, a driver needs to be written,
which is a time consuming effort as well.

5 Responsible research

This section briefly covers the integrity of the performed re-
search as well as the reproducibility of the empirical evalua-
tion.

5.1 Research integrity

There is assumed to be no breach of scientific integrity. All
data gathered in the empirical evaluation is used for comput-
ing the results and no artificial data has been added. There is
no conflict of interest since the authors of this paper have no
financial stake in the succes or failure of EvoMaster. Further-
more, much effort has been put into preventing pagiarism as
much as possible by carefully keeping track of the informa-
tion presented and giving credit to other authors where credit
is due.

5.2 Reproducibility

This research is based on a randomized algorithm. This ran-
domness inherently threatens the reproducibility of the empir-
ical evaluation. To combat this, multiple runs were performed
for each set of parameters such that an average could be taken.
When reproducing this research, it is improbable that the re-
sults will be exactly the same. However, the averages of the
result should be similar if the results are reproduced correctly,
assuming that enough runs were executed.

Aside from the inherit randomness of the system, the ex-
periments should be fully reproducible. The EvoMaster tool
is open source, as well as the additions this paper presents.
Therefore, the code written for this paper can be easily ac-
cessed and used to reproduce our results.

6 Conclusion and future work

Microservice architectures are increasingly popular with big
companies [12], and RESTful APIs are a great way to imple-
ment them. To ensure the quality of these APIs, they need to
be tested properly. This, however, is challenging.



SBST solves this problem by automatically generating test
cases for certain types of software. EvoMaster is a tool that
can generate system-level test cases for RESTful APIs [1]. It
uses the MIO algorithm as its main search algorithm.

This paper focusses on improving a specific aspect of this
algorithm, namely the method used for sampling new test
cases. EvoMaster currently employs two ways to sample test
cases: Random sampling and smart sampling. We add a third
technique called seeded sampling. It uses manually-written
test cases written by developers. The tests are first parsed
to an internal representation and put in an archive. Then,
when seeded sampling is invoked, it either clones or carves
a test case from this archive. Cloning means that a random
parsed test is directly copied from the archive and put into
the search algorithm. When a test is carved from the archive
it means that a resource generating sequence (a sequence of
POST and/or PUT requests) is randomly taken from a test, to
which a random number of other requests is then added.

Seeded sampling has shown that it can improve the cov-
erage achieved by EvoMaster. An empirical evaluation on
two RESTful APIs was performed. This study provides sig-
nificant evidence in support of using seeded sampling when
proper parameters are set.

However, further improvements can be made. Future work
could focus on developing a parser that can be used for a
wider range of test cases. The first step is to investigate dy-
namic instead of static analysis when parsing the test cases.
Furthermore, this paper covers only a small number of pa-
rameter sets. More sets should be tested to optimize the gen-
eration of test cases. Additionally, parameters that were not
considered in this research should be examined. Lastly, a big-
ger variety of APIs should be evaluated with EvoMaster to
increase the validity and reliability of seeded sampling. With
these improvements, seeded sampling could be better applied
by companies and these results would be more relevant for a
wider range of purposes.
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