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A R T I C L E I N F O

Keywords:
Space robots
Active debris removal
Motion planning
Manipulator

A B S T R A C T

This paper introduces a motion planning method for capture of tumbling objects using a free-floating space
robot. The proposed approach incorporates an improved Rapidly Exploring Random Tree Star (RRT*) algorithm
enabling obstacle avoidance and generating desired trajectories for the robot’s end-effectors. Additionally, a
multi-layer optimization process and a greedy policy are proposed to achieve singularity avoidance, joint
velocity, and acceleration optimization by leveraging the robot arm’s joint energy distribution, torque, and
manipulability. By adopting this motion planning strategy, the space robotic system demonstrates improved
performance in obstacle and singularity avoidance, without the need for inverse Jacobian matrix calculations.
Furthermore, the multi-layer optimization process enhances trajectory smoothness and reduces end-effector
vibration through energy and torque optimization. This research contributes to advancing space robotic systems
by enhancing the entire energy and torque consumption on motion planning to make the end-effector move
smooth and reduce the vibration.
1. Introduction

With the increasing demand for space applications, the number of
spacecraft has tremendously grown in the past decades. As a conse-
quence, space debris, including malfunctioning satellites, upper stages,
and many other objects, are posing threats to space operations. To ad-
dress this threat, space robots, show great potential ability to solve this
problem. Over the past two decades, a number of enabling technologies
have been developed and several technology demonstration missions
have been successfully completed to support this [1].

Before initiating the capture process, the space robot performs a
fly-around observation of the debris to measure its rotational angular
velocity, axis of rotation, and other relevant parameters. The challenges
in this phase primarily arise from the tumbling motion of the debris,
which requires precise trajectory planning. These challenges include
accurately predicting the debris’ motion based on observed data, avoid-
ing obstacles during manipulator movement, ensuring a smooth and
precise trajectory for the robotic arm, and minimizing end-effector
jitter to achieve stable and reliable capture. Addressing these factors
introduces significant complexity to the optimization process, and this
paper focuses on tackling these specific issues.

After space robots perform close-range rendezvous with debris, the
capturing process begins with four phases: observation and planning,
manipulator movement, debris capture, and stabilization (pose cap-
ture). Before initiating the capture process, the space robot performs

∗ Corresponding author.
E-mail address: j.guo@tudelft.nl (J. Guo).

a fly-around observation of the debris to measure its rotational angular
velocity, axis of rotation, gap point and other relevant parameters.
In the second phase, the challenges include accurately predicting the
debris’ trajectory, avoiding obstacles, ensuring a smooth and precise
trajectory for the robotic arm, and minimizing end-effector jitter to
ensure stable and reliable capture, The primary focus of this paper is
optimizing the motion of the robot arm to approach the target opti-
mally. Key optimization problems include avoiding obstacles, ensuring
a smooth trajectory, and minimizing end-effector. The optimization
process involves energy and torque optimization, avoiding robot arm
singularity, and ensuring obstacle clearance, presenting a complex
multi-objective optimization problem. Space mission motion planning
for robotic systems differs significantly from ground-based systems
due to specific working conditions, introducing numerous challenges.
Researchers have proposed various methodologies and strategies to
address these issues.

The singularity working point of robot arms is a primary challenge
that needs to be addressed. It often leads to the loss of one or more
degrees of freedom (DOFs) in the robot’s motion. Various methodolo-
gies have been proposed to tackle this issue. Jin et al. [2] introduced
a method that combines Damped Least Squares (DLS) and feedback
compensation to avoid singularities for high DOF space robots in the
Cartesian space. Wang et al. [3] implemented a constrained particle
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swarm optimization (PSO) scheme with adaptive inertia weight to
vercome dynamics singularities in free-floating space robots, utilizing
ézier curves to simplify the calculations. Xu et al. [4] proposed the

singularity separation plus damped reciprocal (SSPDR) method, which
eliminates the need for Singular Value Decomposition (SVD), singu-
larity value, and Jacobian matrix in the system. Yoshihiko et al. [5]
ntroduced the singularity robust inverse (SR-inverse) as an alternative
o the pseudoinverse of the Jacobian matrix for robot arm on the
round, providing an approximate solution when the inverse kinematic
olution is not feasible at singular points.

The second challenge in a capturing mission is the problem of
ree-floating systems, where the base is not fixed. These systems are

particularly relevant in space robotics, where both the manipulator
and its base (e.g., a satellite) are subject to dynamic interactions.
Research in this area addresses the complexities of planning trajec-
tories and handling the coupled dynamics of the manipulator and
its free-floating base, taking into account obstacles and differential
constraints (nonholonomic and kinodynamic). Such studies are crucial
for advancing autonomous robotic motion planning in space applica-
tions. Benevides et al. [6] developed a collision-avoidance path planner
for a free-floating planar manipulator, utilizing a dynamically equiv-
alent model and Rapidly-Exploring Random Trees framework, with
simulations demonstrating the approach’s effectiveness and suggesting
promising directions for future work. Rybus et al. [7] applied the RRT
algorithm to trajectory planning for free-floating satellite-manipulator
systems, demonstrating its effectiveness in managing high-dimensional
states and constraints through simulation. Serrantola et al. [8] us-
ng the RRT Control algorithm for trajectory planning of a Dual-Arm
lanar Free-Floating Manipulator (FFSM) with static obstacle avoid-
nce, showing promising results through simulations. Rybus et al. [9]
resents a new path planning method for robotic arms on free-floating
pacecraft, using spline functions in joint space and an active-set algo-
ithm to generate a paths without collision. Zhang et al. [10] present
 novel motion planning algorithm for free-floating space robots, uti-
izing RRTs to address challenges like nonholonomic systems and base
ttitude constraints. Yu et al. [11] present a coordinated path planning

framework for a dual-arm free-floating space robot, using a novel
oordinated RRT*-based approach to generate initial paths and quartic
plines for smooth execution.

The third challenge for motion planning is the obstacle clearance
problem. The potential collision with obstacles will cause the mission
o fail and may create secondary debris. Qian et al. [12] proposed a
ollision prediction method including collision against the environment

and the robot itself, and they improved Lazy Theta* algorithm with the
ability to adjust itself to accommodate different planning environments.
A robust decentralized control strategy is proposed by Liu, et al. [13]
ased on signal compensation and back-stepping, which ensures the

system automatically avoids collision with good robust performance.
S. Liu et al. [14] solve the collision-free motion planning problem for
pace manipulators by improving the artificial potential field method
nd combining the algorithms with the Generalized Jacobian Matrix
ith inverse kinematics. The nonholonomic redundancy is discussed

n [15], and a path-planning scheme using Lyapunov functions in the
hierarchy is proposed. Researchers also applied the multi-resolution
potential-field-based iterations for an experiment based on PUMA 560

anipulator [16]. Besides, the optimization method is also an ef-
fective way for space robot collision avoidance. Based on nonlinear
optimization the end-effort collision avoidance planning problem is
solved in [17]. In [18] the robustness and also the actuation energy
problem of the motion planning process are solved by the selected cost
functions. In [19] the obstacle-moving problem is solved by applying
the Chebyshev-pseudospectral method to the non-linear optimization
problem. Huang et al. [20] performed the planning problem by utilizing
he genetic approach to determine the trajectory in the joint space.

Another challenge of space robots is the energy optimization and
he motion control problem. The approaching and the grasping quality
941 
of space robots is determined by the velocity and the acceleration of
he end-effectors, These two elements correspond to the energy and
he torque of robot arms. The purpose of minimizing the velocity is
o reduce the contact force between end-effectors and targets and at

the same time minimizing the acceleration is to reduce the vibrations
of the end-effector. Umetani et al. [21] resolved the motion rate control
problem for space manipulators by means of introducing the momen-
tum conservation law in their method and deriving a new Jacobian
matrix in generalized form. In [22] a method based on the trapezoidal
velocity profile is proposed, this method takes the moving stability
and the constraints into consideration simultaneously and provides full
joint driving performances. Huang et al. [20] minimized the maximum
jerk of the joint by applying the genetic algorithm to search the joint
inter-knot space and determining the optimal trajectory. In another
paper [23] considering the limited energy supply Huang et al. present a
minimum-torque path-planning scheme for space robots, a genetic ap-
proach is used to optimize joint angle, velocity, acceleration, and torque
constraints. In [24], Lei et al. analyzed the dynamic characteristics of
free-floating space robots and proposed an optimal control algorithm by
employing the driving torque in joint space as the objective function.

To meet the demands of active debris removal missions, which may
require capturing of tumbling targets, autonomous motion planning for
robot arm is a crucial component of these missions Moreover, during
the approaching and capture process, safety is always one of the most
significant factors. Thus, not only the trajectory planning problem but
also obstacle avoidance, angular velocity, robot arm manipulability,
and singularity must be taken into account at the same time. Therefore
the main motivation of this paper is to obtain a motion planning
methodology for space robots that can realize collision avoidance,
velocity, and acceleration optimization.

The literature highlights several challenges in autonomous motion
planning for free-floating space robots. While algorithms like RRT*
offer asymptotic optimality, their computational complexity increases
with iterations, limiting real-time applicability. Dynamic uncertainties,
including variations in base attitude and nonholonomic constraints,
pose ongoing challenges. Effective handling of singularities is critical
for maintaining manipulator flexibility. Balancing objectives such as en-
ergy efficiency, torque minimization, and obstacle avoidance presents
complex optimization trade-offs. Despite these challenges, advance-
ments in collision avoidance and trajectory optimization strategies
improve operational safety and efficiency.

The original contribution of this paper comprise of 3 parts: (1)
mproved the RRT* algorithm is proposed to realize collision clearance
nd path searching, when compared with the original algorithm, the
roposed algorithm greatly decreases the computation workload, but
till maintains the same solution level as the original RRT*. (2) The
ulti-layer planning method was proposed to establish the connection

etween the kinetic and dynamic layers. In the kinetic layer, the
ethod focus on arm manipulability to avoid singularity, while in

he dynamic layer, it aims to achieve energy-optimal distribution for
otion execution. (3) Proposed a greedy policy for the velocity and

cceleration joint planning for the robot arm.
This paper is organized as follows. Section 2 presents the dynamics

model of the space robotic system as the basis for the subsequent sec-
tions. Section 3 introduces the improved RRT*-based algorithm, three
improvements based on the basic RRT* algorithm are developed to
make this algorithm better for the planning model. Section 4 introduced
he multi-layer optimization method and the greedy policy to deal with

the energy and torque joint planning problem simultaneously. Finally,
the simulation results are given in Section 5. Summary and conclusion
are made in Section 6.

2. Dynamic model

A schematic diagram of a space robotic system is depicted in Fig. 1.
The system consists of a base spacecraft equipped with one or more
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Fig. 1. Schematic diagram of space robotic system.
multi-jointed robotic arms. The robot arm studied in this paper, as-
sumed as a 3-joint, 2 degrees of freedom (DOF) robot arm which are
𝑗1 to 𝑗3, the center of the mass(COM) of the base is 𝑢0, the attitude of
the base is 𝑅0 position of arm center of mass are 𝑟1, 𝑟2, 𝑟3, from joint
1 to joint 3, and all the joints being rotation joints, the angle of joint
are 𝑞1, 𝑞2, 𝑞3, attitude of arm are 𝑅1, 𝑅2, 𝑅3. The coordinate reference
system developed as ∑

0, centered at the base of the space robot arm,
the position of the end-effector is 𝑟𝑒, all vectors and coordinates given
in this paper are referring under ∑0,

∑

𝐼 is the inertial reference system.
The position vector of the center of mass of each robot arm joint can
be expressed as follows(𝑖 from 1–3, 𝑖 = 0 is for the base):

𝑟𝑖 =
[

𝑟𝑥𝑖, 𝑟𝑦𝑖
]𝑇 (1)

And for the position of end effector,it can be express as:

𝑟𝑒 = 𝑇 3
2 𝑇

2
1 𝑇

1
0 𝑟0 (2)

Where 𝑇 𝑖
𝑖−1 is the transformation matrix from link 𝑖 − 1 to link 𝑖.

Due to the free floating system being enacted upon by any external
forces, the position of the system’s center of mass remains unchanged.
𝑛
∑

𝑖=0
𝑚𝑖𝑟𝑟 = 𝑀 𝑟𝑔 (3)

Where 𝑚𝑖 and 𝑟𝑖 is the mass and position of the base spacecraft and
links, (𝑖 from 0–3), 𝑚0 and 𝑟0 is for the base, 𝑚1−3 and 𝑟1−3 are for
links.
[

𝑣𝑒
𝑤𝑒

]

= 𝐽𝑏

[

𝑣0
𝑤0

]

+ 𝐽𝑚
⎡

⎢

⎢

⎣

̇𝑞1
̇𝑞2
̇𝑞3

⎤

⎥

⎥

⎦

(4)

𝐽𝑏 is the Jacobi matrix associated with the motion of the base, and
𝐽𝑚 is the Jacobi matrix for the links, 𝑣𝑒 and 𝑤𝑒 are the velocity and
angular velocity of the end effector, 𝑣0 =

[

̇𝑟𝑥0, ̇𝑟𝑦0
]𝑇 , is the velocity

of the base spacecraft, 𝑤0 = 𝑤𝑧0. The dynamic equation of a space robot
system can be expressed as follows:
𝐻 �̇� + 𝐶 𝑢 = 𝜏 (5)

942 
Where, 𝐻 is a symmetric, positive-definite Generalized Inertia Matrix
(GIM), 𝐶 represents the Convective Inertia Matrix (CIM), and 𝜏 de-
notes the generalized forces (joint-space forces). When formulating the
equations of motion, it is possible to explicitly delineate the respective
influences of the base-link and the manipulator.
[

𝐻0 𝐻0𝑚
𝐻𝑇

0𝑚 𝐻𝑚

] [
̇𝑢0
̇𝑢𝑚

]

+
[

𝐶0 𝐶0𝑚
𝐶𝑇
0𝑚 𝐶𝑚

] [
𝑢0
𝑢𝑚

]

=
[

𝜏0
𝜏𝑚

]

(6)

Where 𝑢0 is the base angular velocity and velocity, 𝑢0 =
[

𝑤0 ̇𝑟0
]𝑇 , 𝑢𝑚

is the angular velocity of joints, 𝑢𝑚 =
[

̇𝑞1 ̇𝑞2 ̇𝑞3
]𝑇 , and 𝜏0 is the

torque on the base and 𝜏𝑚 is the torque on each joints. It is needs to
be note that, for the sake of simplicity, the simulation environment is
a 2D environment, so the third dimension in this part of the model is
set to 0.

3. Motion planning based on the improved RRT*-based algorithm

In this section, the motion planning optimization problem will be
formulated. The sampling based motion planning algorithm is also
introduced in this chapter to give a brief overview of the method-
ology used in this paper. Normally optimization is a process that
minimizes one or more functions under one or more constraints. For
the space robots motion planning problem, the optimization is usually
under Eq. (4).

To optimize the trajectory of a robot arm, the vector 𝑣𝑒 and 𝑤𝑒 need
to be calculated or acquired in the operation space, and then through
the inverse of the matrix 𝐽−1

𝑚 , the configuration and the angular velocity
of the robot arm can be acquired in the joint space. One problem
involved in this process is that the inverse of the Jacobian matrix is
uninvertible if the number of joints are more than 3, due to the fact that
the Jacobian matrix is a 6*3 matrix. In addition, we also need to solve
the multiple solutions problem. However this problem can be avoided
through the method we proposed in this paper, which does not need
to calculate the inverse of the Jacobian matrix but optimizes the linear
velocity in operation space.
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3.1. Improvement of RRT*-based algorithm

In this section, we will introduce the improved RRT* algorithm.
RT* serves as both a data storage structure and an algorithm. It
fficiently explores non-convex, high-dimensional spaces by randomly
onstructing a space-filling tree [25,26]. This algorithm is an asymptot-

ically optimal algorithm that offers several advantages, including obsta-
cle avoidance and the ability to address nonholonomic and kinematic
constraints, more detailed information can be found in appendix. How-
ever, due to the computational complexity and limitations in search
theory of this algorithm, we have made improvements to the algorithm,
enhancing its efficiency in searching and avoiding obstacles.

3.1.1. Improved RRT* algorithm
RRT* is an asymptotically optimal algorithm suitable for motion

planning problems, but it faces significant challenges: high computa-
tional workload, slow growth even without obstacles, and excessive
computational demands far from the goal. To address these issues,
we improved RRT* from the three aspects: a probabilistic sampling
strategy, an obstacle avoidance strategy, and a variable step size growth
strategy.

Probabilistic sampling strategy
Although researchers proposed many extensions of the basic RRT

algorithms [25,27], most previous studies focus on dispersion and
iscrepancy of sampling, such as applying Halton sequence, linear con-
ruential method, or other sampling strategies [26,28,29]. However,

when considering the space robot motion planning problem, which
needs to accommodate the context. Algorithm needs to focus more on
he space highly relevant to the goal state, rather than searching the

entire space. At the same time, we also need the algorithm to have the
ability to search more space when meet obstacles, so the probabilistic
sampling strategy is proposed.

Definition 1 (Probabilistic Sampling). There is a triplet
{

𝑥𝑖𝑛𝑖𝑡, 𝑥𝑜𝑏𝑠, 𝑥𝑔 𝑜𝑎𝑙
}

,
n the planning space, where 𝑥𝑖𝑛𝑖𝑡 is initial state, 𝑥𝑔 𝑜𝑎𝑙 is goal state, and
𝑜𝑏𝑠 are the obstacles. The algorithm explores the space by growing
he branch randomly in the planning space(sampling). According to the
tatus of the system, the sampling and growth strategy are designed as
ollows:

𝑥𝑛𝑒𝑤 = 𝑥𝑠𝑎𝑚𝑝𝑙 𝑒
𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒

𝜌(𝑥𝑠𝑎𝑚𝑝𝑙 𝑒, 𝑎𝑟𝑔 𝑚𝑖𝑛 𝜌(𝑥𝑠𝑎𝑚𝑝𝑙 𝑒, 𝑥𝑖))
+ 𝑎𝑟𝑔 𝑚𝑖𝑛 𝜌(𝑥𝑠𝑎𝑚𝑝𝑙 𝑒, 𝑥𝑖) (7)

where, 𝑥𝑛𝑒𝑤 is the new branch that will be added to the tree, 𝑥𝑠𝑎𝑚𝑝𝑙 𝑒 is
the sample point used to get the 𝑥𝑛𝑒𝑤.

where, 𝑥𝑠𝑎𝑚𝑝𝑙 𝑒 =

{

𝑥𝑔 𝑜𝑎𝑙 𝑖𝑓 > 𝜀
𝑟𝑎𝑛𝑑 𝑜𝑚 𝑖𝑓 < 𝜀 𝑝 ∈ [0, 1] subject to the

uniform distribution, 𝜀 is a number set up the user used to make a trade-
ff between growth to the goal or exploring. 𝜌(A,B) is the Euclidean
istance between A and B.
Obstacles avoidance strategy
The obstacles avoidance strategy is crucial for all sample-based

lanning problems. An advanced obstacles avoidance strategy needs
o have low computational complexity, and low repetition times in
he entire planning process. However, unlike analytic problems, those
spects pose weakness of the sample-based optimization algorithms. In

convention methods, the algorithm often attempts many times in the
ame unfeasible direction. Thus wastes lots of computational resources
nd slow in obstacle avoidance problem. As a result, we modify the
teering strategy to address the issue of high obstacles avoidance repe-
ition times for the same obstacle. As the branch grows into an obstacles
pace, the steer function is activated.
Fast-growing strategy
The step size represents the distance that an algorithm traverses

within the search space. The selection of an appropriate step size
holds paramount importance in planning algorithms, as it significantly
impacts both the convergence speed of the algorithm and the quality of
 s

943 
the final solution. When the step size is excessively small, the algorithm
may exhibit slow convergence, requiring a larger number of iterations
to reach the optimal solution. Conversely, if the step size is overly
large, the algorithm runs the risk of overlooking the optimal solution
or failing to converge entirely.

In the RRT* algorithm this implies the distance for each growing.
his character exerts an important role in motion planning because the
ame step size means the same time period if the object is moving at a
onstant velocity, which is convenient for discrete control on a robotic
otion planning system.

However during our studies, we found that this character can also
xert negative impacts. The constant stepsize, limited convergence

speed, difficulty in balancing exploration and exploitation, and fixed
step size typically relies on the characteristics and experience of the
problem, which can vary among different problems and their search
space structures.

Definition 2 (Growing Function). As shown in Fig. 2, in order to over-
ome these effects and improve the algorithm with both of convergence
peed and exploration, we propose an exploring and growth strategy.
n each iteration, a parent node is equipped with three exploring nodes.
hese exploring nodes expand in the planning space much farther than
ormal branches, following the easy feasible checking, the algorithm
ill choose the farthest one as the new node. Otherwise, if the one
r more exploring nodes failed in the easy feasible checking, there are
bstacles around the parent node. In that case the algorithm will swap
o the detailed exploring model. This model employs a smaller step size
o explore the path around obstacles. As a result, which is designed as
 triple:

{𝑥𝑝𝑎𝑟𝑡𝑒𝑛𝑠𝑡, 𝑥𝑒𝑥𝑝𝑙 𝑜𝑟𝑒𝑖 , 𝑥𝑛𝑒𝑤}, (𝑖 = 1, 2, 3) (8)

where, 𝑥𝑒𝑥𝑝𝑙 𝑜𝑟𝑒𝑖 is the 𝑖th exploring node, 𝑥𝑒𝑥𝑝𝑙 𝑜𝑟𝑒𝑖 = 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 + 𝑖 ⋅
𝑡𝑒𝑝𝑠𝑖𝑧𝑒, (𝑖 = 1, 2, 3), 𝑥𝑛𝑒𝑤 is the new node will be add on the tree, where
𝑛𝑒𝑤 = 𝑥𝑒𝑥𝑝𝑙 𝑜𝑟𝑒𝑖 if 𝑥𝑒𝑥𝑝𝑙 𝑜𝑟𝑒𝑖 ∉ 𝑜𝑏𝑠𝑡𝑎𝑐 𝑙 𝑒𝑠.

Definition 3 (Steer Function). As shown in Fig. 3 a branch will be
runed when it grows into the obstacle space. After pruned, the father
ode of this branch becomes the terminal node. From this terminal
ode, a new branch will grow according to the following strategy: First,
he algorithm sets the goal direction as the direction of a new branch.
t then grows this branch and checks if it enters the obstacle space.
ot only is the end effector considered for obstacle avoidance, but
ach joint and link of the manipulator as well. If the branch is feasible
e.g., it does not intersect with any obstacles), it is added to the tree.

Furthermore, the allowable end effector altitude range at each node in
the tree is marked. However, if the branch is infeasible, a live update
direction library is created, containing directions for new branches.

This process is referred to as the ‘‘first trying’’, as shown in Fig. 2
Subsequently, when the ‘‘first trying’’ fails, the algorithm will select
a new direction for the branch in the next iteration from the live
direction library. The live direction library is updated using a uniform
distribution ranging from [0 − 2𝜋]. If the chosen direction is not feasible,
a group of elements will be removed from the library. The live direction
library is defined as follows:

𝑑 𝑖𝑟𝑒𝑐 𝑡𝑖𝑜𝑛𝑙 𝑖𝑏𝑖 = 𝑈 (0, 2𝜋), (𝑖 = 1) (9)

where, 𝑑 𝑖𝑟𝑒𝑐 𝑡𝑖𝑜𝑛𝑙 𝑖𝑏𝑖 is a 𝑁 elements set with discrete uniform distribu-
ion from [0 − 2𝜋].
𝑑 𝑖𝑟𝑒𝑐 𝑡𝑖𝑜𝑛𝑙 𝑖𝑏𝑖+1 = 𝑑 𝑖𝑟𝑒𝑐 𝑡𝑖𝑜𝑛𝑙 𝑖𝑏𝑖 −𝐷 𝑖𝑟𝑖−𝑑 𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, (𝑖 > 1) (10)

where, 𝑑 𝑖𝑟𝑒𝑐 𝑡𝑖𝑜𝑛𝑙 𝑖𝑏𝑖+1 is a 𝑀 elements discrete Gaussian distribution,
which mean and variance, set by the user to control cut off zone in live
pdate library.

𝐷 𝑖𝑟𝑖−𝑑 𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓 (𝑥) = 1
√

2𝜋 𝜎
𝑒𝑥𝑝(−

(𝑥 − 𝑑 𝑖𝑟𝑖−1)2
2𝜎2

) (11)

where, 𝑑 𝑖𝑟𝑖−1 is the mean of the Gaussian distribution, also the unfea-
ible direction in the last iteration.
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Fig. 2. First trying of improved RRT* algorithm.
Fig. 3. Strategy Of steer function from live update direction library.
3.2. Simulation of improved RRT* algorithm

In this section, the simulation is conducted solely to better illustrate
the advantages and disadvantages of the improved RRT* algorithm.
Therefore, a standard test scenario is used for comparison instead of
directly applying it to a space robotic arm, a comparative simula-
tion is conducted among the classical RRT algorithm, classical RRT*
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algorithm, RRT-lazy, and RRT-connect algorithm.
In the first simulation, a virtual environment is set up. This virtual

environment does not have units assigned to it. The units in this simu-
lation range from 0 to 100 and can be mapped to a real environment
based on users. The end-effector of the robot arm is initially positioned
at (5,5) and commanded to grasp a target satellite located on the
opposite side of the search space. Multiple obstacles are present in this
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Fig. 4. (a-f) Comparison of different rrt algorithm with improved rrt algorithm.
area. The target coordinates are set to (95,95). The simulation results
are presented in Fig. 4.

The numerical simulations reveal that among the five tested algo-
rithms in Fig. 4, the RRT* algorithm excels in trajectory smoothness,
distance optimization, and obstacle avoidance, thoroughly exploring
the search space after 1000 iterations. Our improved RRT* algorithm
ranks second, efficiently focusing on the path to the destination. RRT-
Connect performs the worst in these aspects due to its bidirectional
strategy.

In terms of computational efficiency, RRT-Connect is the best, fol-
lowed by Lazy RRT, which only considers obstacles after reaching
the goal. Our improved algorithm, more efficient than Lazy RRT,
classic RRT, and RRT-Connect, modifies RRT*’s approach to enhance
efficiency.

RRT*’s extensive space coverage results in superior solutions. While
classical RRT and Lazy RRT explore broadly, their suboptimal node
linkages yield less smooth trajectories. Our improved algorithm con-
centrates on the path between start and goal, outperforming the other
three algorithms but not matching RRT*’s optimality.

Based on the numerical simulations shown in Fig. 5(a-d), we observe
that while the RRT* algorithm produces the best trajectory, it has an
extremely high computational cost, nearly 10 times that of the other
algorithms. Our improved algorithm, though slightly higher in com-
putational load than the others, delivers significantly better planning
results, approaching those of RRT*. This is achieved by focusing com-
putational efforts on relevant spaces during exploration and avoiding
unnecessary computations in large, unimportant areas. Additionally,
our algorithm excels at finding optimal collision avoidance paths when
encountering obstacles.

The improved algorithm incorporates a steer function and a growing
function, resulting in the fewest number of states in the planning
result. It also shows better stability in mean value and data distribution
compared to the other algorithms. This improved performance is due to
a more efficient exploration strategy, distinguishing it from the classical
RRT algorithm.
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4. Multi-layer optimization process

In this section, we propose a motion planning optimization method-
ology for the space robot arm. Our goal is to generate a desired
trajectory that enables the end-effector to safely and efficiently ap-
proach the capture position. To achieve this, we begin by generating
a trajectory from a random initial position.

In order to optimize the approaching process to the target and
minimize the interaction between the base satellite and target, the end-
effector of the robot arm needs to be gradually approaching the grasp
point with the minimum torque and kinetic energy.

The motion planning problem is not complicated if we only have
one or two optimization indexes. However for a space robots capture
mission, several problems have to be considered simultaneously, which
are obstacle avoidance, redundant robotics system multiple solution,
kinematics and dynamic problem, this makes the optimization problem
complicated. In light of these objectives, the multi-layer optimization
process is proposed.

4.1. Multi-layer optimization

As portrayed in Fig. 6, the multi-layer optimization process com-
prises 5 layers in total. The first layer is the tree-expanding layer. The
rest layers are optimization layers, which include the obstacle clearance
layer, kinematics layer, dynamic layer(energy and torque layer).

Tree expanding layer
The RRT* algorithm, introduced in the previous chapter, plays a

crucial role in the multi-layer optimization system as the exploration
algorithm employed to search the planning space between different
indices. To support the multi-layer optimization process, we employ
the enhanced RRT* optimization algorithm presented in the previous
chapter. This algorithm is responsible for exploring the space within
this layer and interacts with other layers by extending branches in
specific directions.

In Eqs. (7) to (8) the RRT* tree grows in the tree extending layer,
which is more like a base layer, growing without any restriction or
requirements, just exploring the space. As portrayed in Fig. 7.



R. Liu et al. Acta Astronautica 228 (2025) 940–956 
Fig. 5. (a-d) Algorithm operation statistics for different algorithm.
Fig. 6. Multi-layer optimization process.
Obstacles clearance layer
For all sample-based planning algorithms, obstacle avoidance is a

major function, which enables the algorithms to solve the problem
under constraints quickly, unlike RRT-lazy [30]. Avoiding obstacles
alone is not enough for optimizing a space robot arm. Collision risk
varies with distance, impacting energy consumption, manipulability,
and safety. The end effector must stay safely away from obstacles with-
out excessive detours. This method balances safety and optimization by
946 
using a repulsive force strategy instead of traditional collision checking.
The repulsive force, defined below, ensures adequate obstacle clearance
while maintaining efficient movement.

𝐹 = 𝑘

𝑒𝑥𝑝(𝑙 𝑜𝑔𝑑 𝑖𝑠∕𝑑𝑠𝑎𝑓 𝑒𝑎 )
(12)

Where 𝑑𝑠𝑎𝑓 𝑒 is the minimum safety distance between the end effec-
tor and obstacles, 𝑑 𝑖𝑠 is the distance between the end effector and
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Fig. 7. Tree expanding layer.
Fig. 8. Feasible solution zone search in the kinetic layer.
obstacles, and 𝑘 is a user-set parameter to fine-tune the force 𝐹 .
Kinetic layer
In the kinetic layer, the problem of multiple solutions will be

addressed. In the kinetic layer, the problem of multiple solutions will be
addressed. In the tree expanding layer, the trajectory of the end-effector
is determined in the Cartesian space while obtaining the configuration
and angular velocity of the robot arm in the joint space. In prac-
tical robotics systems, redundancy often leads to multiple solutions
from the Cartesian space to the joint space. Two key considerations
arise: Firstly, ensuring that neither the arm nor the joints come into
contact with obstacles, not just the end-effector. Secondly, not only
must the end-effector’s position consider obstacle avoidance, but also
the positions of each joint and link. As shown in Fig. 8, feasible
configurations of the manipulator at each path point are calculated (the
green configurations), and configurations that would result in collisions
are eliminated (the red ones). Based on the usable configurations in the
green configuration space, a feasible solution space is generated.

Energy layer
The initial two layers, the kinetic and obstacle clearance layers,

focus on constraint satisfaction. In the following energy and torque
layers, optimization problems related to joint velocity and acceleration
are addressed. These dynamic layers correspond to the kinetic layer.
Once the end-effector’s position is determined in joint space, angular
velocity and acceleration are calculated to optimize the robot arm’s
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movement. The main objective here is to optimize the robot arm’s
angular velocity using energy considerations. Based on the position of
the robot arm, the energy distribution is proposed as follows:

𝑇 =
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(13)

where, 𝑇 is the energy of the robotics system, 𝑚𝑖, 𝑣𝑖, 𝑤𝑖, 𝐼𝑖 are the
robot arm mass, linear velocity, angular velocity, inertia tensor of the
𝑖th robot arm respectively. According to Eq. (13), the energy can be
calculated.

As shown in Fig. 9, around every new node of the tree, the optimiza-
tion process is based on the distribution of the energy, which is a kind of
local optimization. Four steps are included in this optimization process:
Sample, Pickup, Replace, Replace. When the iteration begins, Sample is
the first step, here, normally a circular region with radius, is defined
around a new position of the end-effector. In this circular region several
nodes are randomly sampled as backup nodes. Replace is the second
step, according to the gradient of the energy field where nodes are
located. Every node offsets a certain distance. The offset function is set
as:

�⃗� =
|

|

𝑘𝑖|| �⃗� 𝑆 (14)
𝑜𝑓 𝑓 𝑠𝑒𝑡
|

|

𝑘𝑚𝑎𝑥||
𝑖
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Fig. 9. (a-d) The energy distribution around a new RRT node.
Where 𝑘𝑖 is the gradient of the energy distribution at i-the node, 𝑘𝑚𝑎𝑥 is
the maximum gradient in this region, 𝑆 is the distance from the node to
the edge of this square alone the direction of the gradient of this node.
Pickup is the third step, in case of the algorithm stuck in to the local
optimal. In this step, a node with the lowest energy is selected with a
probability of ‘‘p’’ Alternatively, with a probability of ‘‘1-p’’, a node is
randomly chosen from the Replace nodes, which is 𝜒𝑛𝑒𝑤. This approach
aims to diversify the search and increase the algorithm’s chances of
escaping local optima. Replace is the last step of this process which
marks 𝜒𝑛𝑒𝑤 as a new node. This iteration will repeat a certain number
of times set by the user or iterate until the energy of 𝜒𝑛𝑒𝑤 converged.

Energy and Torque layer with greedy policy
In the energy layer, the angular velocity, in the form of energy,

is optimized, but the torque of each joint is also needed to optimize
the angular acceleration. To address this, the torque layer is proposed,
which is similar to the energy layer. According to Eq. (6) the dis-
tribution of torque of joint can be calculated. The torque layer also
employs the four-mode iterative optimization process. However, unlike
the energy layer, velocity information is required at each step prior
to acceleration optimization. Therefore, a proposed approach called
the Greedy Policy Energy & Torque is utilized. As shown in Fig. 10,
in each iteration, when waypoint 1 is optimized from the energy
layer, the velocity of this waypoint is generated which is 𝜃1. Then,
the acceleration for this waypoint 𝜃1 can be optimized as well, the
difference between velocity and acceleration optimization is that the
velocity of the next waypoint is needed for the torque optimization.

According to the Energy & Torque greedy Policy the optimal the
acceleration (𝜃1) is computed, and via this acceleration and the velocity
of the next waypoint (𝜃2), the acceleration of waypoint 2 (𝜃2) is
computed. In this optimization process, only the minimum value of
velocity and acceleration is as follows.

̇𝑖+1 = 𝑎𝑟𝑔 𝑚𝑎𝑥
�̇�𝑖+1∈�̇�𝑓 𝑒𝑎𝑠 𝑇𝑖+1(𝑞𝑖+1, �̇�𝑖+1) − 𝑇𝑖(𝑞𝑖, �̇�𝑖) (15)

̈𝑞𝑖+1 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑞𝑖+1∈𝑞𝑓 𝑒𝑎𝑠 𝜏𝑖+1(𝑞𝑖+1, �̇�𝑖+1, 𝑞𝑖+1) (16)

where the �̇�𝑓 𝑒𝑎𝑠 and 𝑞𝑓 𝑒𝑎𝑠 indicate the feasible solution space for angular
velocity and acceleration, �̇� and 𝑞 are the joint angular velocity
𝑖+1 𝑖+1
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and acceleration, 𝑇𝑖 is the energy distribution off the 𝑖th waypoint, 𝜏𝑖+1
is the torque distribution in the 𝑖th waypoint. This process is repeated
from the initial waypoint to the final one. During this repetition, the
angular velocity and acceleration are optimized, ultimately converging
to an optimal value within this region.

4.2. Simulation of multi-layer optimization

In this section, we will validate the process of a base-free-floating
space manipulator capturing a fixed space debris through simulations.
The simulation is divided into 2 parts:

(1) Multi-Layer Optimization Process.
∙ The tree expending & obstacle clearance layer.
∙ The kinetic layer.
∙ The Dynamic layer.
(2) Manipulator’s Motion Before and After Applying Multi-Layer

Optimization.

4.2.1. Multi-layer optimization process
The tree expending & obstacle clearance layer
The provided simulation results illustrate the use of the improved

RRT* algorithm for trajectory planning of a robotic arm’s end-effector
in Cartesian space, corresponding to the tree expansion layers of the
multi-layer algorithm.

Fig. 11 illustrates the RRT* algorithm’s iterative path optimization.
In the initial iteration (a), the tree is sparse with many non-optimal
paths avoiding red obstacles. The mid-iteration (b) shows a denser
tree with more paths navigating around obstacles toward the goal.
By the late iteration (c), the tree expansion is detailed, with many
paths avoiding obstacles and some connecting to the goal. In the
final iteration (d), the tree is densely expanded, with multiple green
paths reaching the goal, and the algorithm identifies the shortest path.
This process ensures the robotic arm’s end-effector finds an efficient,
obstacle-free trajectory.

The kinetic layer
In the kinetic layer, the following factors are primarily considered.



R. Liu et al. Acta Astronautica 228 (2025) 940–956 
Fig. 10. Energy & Torque greedy policy.
Fig. 11. (a-d) Tree expanding of improved RRT* algorithm.
(1) Flexibility of the Robotic Arm:
The ability to allow more poses at specific points without the arm

contacting any obstacles. This indicates higher flexibility and is visually
represented by the color gradient in the simulation, with warmer colors
indicating greater pose variability.

(2) Manipulability:
Based on the manipulability of the robotic arm, calculated using

the Jacobian matrix as described in Eq. (4). This metric evaluates how
effectively the arm can move and exert forces in different directions,
which is crucial for optimizing the trajectory planning. By integrating
these factors into the kinetic layer, the algorithm ensures that the
planned paths not only avoid obstacles but also maximize the arm’s
operational efficiency and effectiveness in complex environments.

In Fig. 12, we can observe that the end-effector of the robotic
arm can have different attitudes at the same position. Depending on
the allowable range of attitudes (flexibility), the flexibility weight is
assigned to nodes during the growth of RRT* branches. The warmer
colors indicate higher flexibility, which translates to a higher sampling
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weight under equivalent conditions.
Also in the kinetic layer, from Fig. 13, another function is the delete

the node from the tree with low flexibility(magenta) which at the end
of the tree or the back side of the keep out zone, also the node which
entered the keep out zone(red).

In Fig. 14, illustrates the distribution of the robotic arm’s ma-
nipulability within Cartesian space, based on the Jacobian matrix.
Since the end-effector can assume various orientations at each point,
the manipulability varies accordingly. The variations in manipulability
distribution across different points highlight the impact of orientation
on the arm’s maneuverability at each location.

Fig. 14 depicts the manipulability distribution at each point with
different orientations, ranging from 0◦ to 360◦, using box plots. These
box plots show the statistical distribution of the robot arm’s manip-
ulability, including the mean, maximum, minimum, and interquartile
range (25%–75%). Key features highlighted in the Figure include sin-
gularity points (blue circles), where values are close to zero and must
be avoided.
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Fig. 12. The flexibility of the robot arm in the same position (allowing the end effector to have more attitude).
Fig. 13. Eliminate nodes in inaccessible areas(red) and nodes with poor flexibility (magenta).
The path planning of the robotic arm in the kinetic layer takes
into account manipulability while simultaneously achieving singularity
avoidance.

The Fig. 15, illustrates the trajectory planning results after con-
sidering manipulability and flexibility in the kinetic layer. After this
layer, the planned path shows some differences. The robotic arm avoids
singularity while navigating through regions of high manipulability,
ultimately reaching the target. This demonstrates that by integrating
both flexibility and manipulability into the kinetic layer, the arm’s tra-
jectory becomes more efficient and effective(More detailed simulations
and quantitative calculations will be presented in the next chapter).

The Dynamic layer
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In the Dynamic layer, we primarily consider the energy distribution
of the robotic arm. Based on Eq. (13), lower energy implies that the
robotic arm can achieve the desired end-effector position and velocity
with lower joint angular velocities and accelerations. This optimization
ensures that the arm reaches its target efficiently while minimizing
energy consumption. The optimization of the mechanical arm’s speed
and acceleration has further reduced the impact on the spatial robot’s
body during motion. This enhancement is crucial for ensuring the
overall stability and efficiency of the robotic system.

Similar to the distribution in Fig. 14, Fig. 16 illustrates the energy
distribution of the robotic arm’s end-effector at various points. At each
point, the end-effector can assume different poses, and for each pose, it
can have different directions of velocity. The position and pose affect
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Fig. 14. Manipulation distribution of the robot arm (based on the Jacobian matrix).
Fig. 15. Planning result based on the kinetic layer.
the link inertias, while the velocity direction influences the angular
and linear velocities. These factors lead to variations in the energy
distribution of the robotic arm.

The Fig. 16 shows the energy distribution based on different poses
and velocity directions at each point. As a result, the planning results
derived from this distribution allow the robotic arm to achieve the
desired positions and velocities with lower joint angular velocities,
as well as reduced end-effector cartesian space linear and angular
velocities. Consequently, this reduces the required torques, making the
arm’s movements smoother and more gentle.

We can observe in Fig. 17 that the energy distribution of the robotic
arm also demonstrates the singularity avoidance. Compared to the
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results in the kinetic layer, there are slight differences to meet the en-
ergy optimization requirements. This ensures that the arm’s movements
remain efficient while avoiding singularities and optimizing for lower
energy consumption.

5. Numerical simulation

In this section, numerical simulations are set up to verify the perfor-
mance of the motion planning results using the multi-layer optimization
method. The space robotic system comprises a base spacecraft and a 3-
DOF kinematically redundant manipulator. Fig. 18 illustrates the robot
arm, which consists of 3 joints, the yellow rectangle is a debris that
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Fig. 16. Distribution of robotic arm energy in the operable space.
Fig. 17. Planning result based on the dynamic layer.
Table 1
DH parameters of the space robot arm.

Link Offsets Joint Angles Length Lengths Twist Angles
[𝑚]𝑑𝑖 [𝑟𝑎𝑑]𝜃𝑖 [𝑚]𝑎𝑖 [𝑟𝑎𝑑]𝛼𝑖
𝑑1 = 0 𝜃1 = 0 𝑎1 = 0.5 𝛼1 = 0
𝑑2 = 0 𝜃2 = 0 𝑎2 = 0.5 𝛼2 = 0
𝑑3 = 0 𝜃3 = 0 𝑎3 = 0.5 𝛼3 = 0

need to be captured. The DH parameter table is also provided below
(see Table 1).
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5.1. Manipulator’s motion before and after applying multi-layer optimiza-
tion

This section verifies the optimization results obtained from both
the kinematic and dynamic layers through simulation. It examines the
mechanical arm’s joint angles, angular velocities, and accelerations,
as well as the motion of the spatial robot’s base, and the torque
requirements, before and after optimization.

Based on same end-effector trajectories, velocities, and angular
velocity requirements, this simulation is designed to verify the differ-
ences in joint angular velocity, angular acceleration, and torque when
applying the proposed optimization method. The results demonstrate
that the optimization significantly improves the smoothness of joint
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Fig. 18. Space robot arm used in the simulation.
movements while reducing angular velocity, angular acceleration, and
torque compared to pre-optimization values. Additionally, disturbances
in the base are diminished, with both the magnitude and frequency
of fluctuations reduced. Moreover, building upon these, there is a
considerable reduction in the mechanical arm’s torque requirements.

Based on the simulation results in Figs. 19–21, we can observe that
the multi-layer optimization significantly improves the performance of
the robotic arm. The angular velocity and acceleration of the joints
have noticeably decreased, as evidenced by the comparison between
the ‘‘Before’’ and ‘‘After’’ graphs. Additionally, the torque applied to
the joints has also been reduced, reflecting lower energy consump-
tion and improved control precision and smoothness. Furthermore,
the amplitude of vibrations has been considerably diminished, indi-
cating a smoother and more stable operation of the robotic arm after
optimization.

(a). Angular Velocity:
In Figs. 19, the ‘‘Before’’ and ‘‘After’’ graphs show a significant

reduction in angular velocity for all joints. The blue lines represent
the initial state, while the red lines indicate the optimized state. This
reduction suggests that the robotic arm’s movements have become
more controlled and less abrupt, contributing to overall stability.

(b). Angular Acceleration:
In Figs. 20, similar improvements are seen in the angular acceler-

ation graphs. The optimized state shows a marked decrease in peaks
and overall acceleration values. This indicates a reduction in sudden
changes in velocity, which can enhance the precision and smoothness
of the arm’s movements.

(c). Torque:
In Figs. 21, the torque graphs reveal a substantial decrease in the

torque applied to each joint after optimization. This not only means
reduced mechanical stress and potential wear on the joints but also
reflects lower energy consumption and improved control precision and
smoothness.

It is worth noting that after optimization, although the velocity and
acceleration of joint 2 have increased, its torque has still decreased.
This is mainly due to the systematic design of the optimization strategy.
By adjusting joint angles and velocities, the optimization method im-
proves the force distribution within the mechanical structure, thereby
reducing torque. Even with an increase in acceleration, the balancing
effect of the dynamic optimization layer ensures a reduction in the
torque of joint 2.
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From Fig. 22, it is evident that the optimized joint movements
significantly reduce the angular velocity and linear velocity of the
base spacecraft. Specifically, the first graph shows the variation of the
angular velocity of the base spacecraft over time, with the blue curve
representing the pre-optimization state and the red curve representing
the post-optimization state. The comparison indicates that the ampli-
tude of the angular velocity decreases significantly after optimization,
especially within the first 0 to 50 ms. This suggests that the optimized
joint movements effectively reduce the attitude disturbances of the
base spacecraft. The second and third graphs display the changes in
the linear velocity of the base spacecraft. The comparison between
the pre-optimization (blue curve) and post-optimization (red curve)
states shows that the amplitude of the linear velocity fluctuations is
smaller after optimization. This further demonstrates the effectiveness
of the optimized joint movements. The reduction in linear velocity
implies that the position disturbances of the base spacecraft are also
correspondingly reduced. These results indicate that the optimization of
the joint movements effectively controls both the attitude and position
disturbances of the base spacecraft. By optimizing the joint movements,
not only are the fluctuations in the angular and linear velocities of the
base spacecraft reduced, but the disturbances affecting the spacecraft
are also significantly decreased, enhancing the overall stability and
precision of the spacecraft.

Fig. 23 illustrates the motion planning results with and without
obstacle avoidance strategies, and further analyzes the impact of the
lack of obstacle avoidance on joint movement. In this part, we utilized
the SPART[31] toolkit to setup the simulation scenario. Sub-figure (a)
shows the results of applying a multi-layer path planning algorithm.
The manipulator starts from the initial position (lower-left corner) and
successfully avoids the obstacle areas marked as ‘‘1’’ and ‘‘2’’ along
the planned path. During this process, due to the conservation of
linear and angular momentum, the motion of the manipulator causes a
corresponding drift of the base. Despite this base drift, the manipulator
is able to accurately reach the target position (upper-right corner). This
result demonstrates that the multi-layer path planning algorithm effec-
tively combines obstacle avoidance requirements with motion control,
achieving safe and reliable path planning under the dynamic conditions
of a free-floating base.

In contrast, sub-figure (b) shows the motion planning results with-
out obstacle avoidance strategies. Although the end-effector’s trajectory
manages to avoid the obstacle areas to some extent, the planning
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Fig. 19. Angular velocity before and after multi-layer optimization.
Fig. 20. Angular acceleration before and after multi-layer optimization.
process does not account for joint-level obstacle avoidance. The path
is generated using randomly sampled joint configurations, where the
constraints are applied only to the position of the end-effector, without
considering the overall posture or joint safety of the manipulator.
Consequently, certain joints of the manipulator may pass through
the obstacle areas ‘‘1’’ and ‘‘2’’, leading to potential collision risks.
Moreover, the lack of optimization in the random joint configurations
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further undermines the safety and stability of the planned path. The
comparison between sub-figures (a) and (b) highlights the significant
advantages of the multi-layer path planning algorithm. It not only en-
sures obstacle avoidance for the end-effector but also takes into account
the overall posture and joint motion of the manipulator, achieving
precise and safe path planning under dynamic base conditions.
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Fig. 21. Torque requirements on joins before and after multi-layer optimization.
Fig. 22. Disturbance to the base, base angular velocity, linear velocity.
6. Conclusion

In this study, we presented a motion planning method for ac-
tive debris removal using a free-floating space robot. The proposed
approach use an improved version of the RRT* algorithm, enabling
obstacle avoidance and generating desired trajectories for the robot’s
end-effectors. The proposed multi-layer optimization process and a
greedy policy contributed to achieving singularity avoidance, joint
velocity, and acceleration optimization by utilizing the robot arm’s joint
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energy distribution, torque, and manipulability. The adoption of this
motion planning strategy has demonstrated improvements in trajectory
smoothness, reduced end-effector vibration, lower energy consumption.
The improved RRT* algorithm effectively ensures the robot’s trajectory
avoids obstacles, while multi-layer optimization eliminates trajectory
fluctuations, resulting in smoother paths. The reduction in angular
velocity and acceleration peaks has led to more controlled and pre-
cise movements, improving the robot’s stability. These contributions
enhance the motion planning process, making the trajectory smoother
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Fig. 23. Planning results demonstration.
and reducing torque consumption. Furthermore, this paper lays a solid
foundation for our future research on the removal of tumbling debris,
which providing a framework for further research.
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