

Evaluating an RCPSP Implementation of

Quantum Program Scheduling

by

Hana Jirovská

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended on the 22nd of June 2023.

Student number: 4863135
Project duration: November 1, 2022 – June 22, 2023
Thesis committee: Prof. dr. S. D. C. Wehner, TU Delft, supervisor

Dr. ir. M. Veldhorst, TU Delft
Dr. E. Demirović, TU Delft

Daily supervisor: PhD candidate Bart van der Vecht, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl.

http://repository.tudelft.nl

Abstract

The goal of quantum application scheduling is to enable the execution of appli-
cations on a quantum network. As the final step in the application scheduling
process, program scheduling locally schedules execution of blocks of instruc-
tions on each node by defining so-called node schedules. In this thesis, we
present a formal definition of program scheduling and propose success metrics
to evaluate the quality of node schedules. We implement program scheduling
using the framework of Resource-Constrained Project Scheduling Problem
(RCPSP) and simulate the execution of node schedules. By evaluating the
performance of program scheduling on datasets with diverse quantum appli-
cations including quantum key distribution and blind quantum computing,
we observe that heuristic-driven approaches achieve comparable results to op-
timal program scheduling while requiring fewer computational resources. Our
work offers valuable insights into the translation of classical scheduling prob-
lems into the quantum domain, contributing to the advancement of quantum
application scheduling.

i

Acknowledgments

This thesis would not look the same if it were not for the support of many people around me.
Here I would like to express my sincerest gratitude to them.

First and foremost, I would like to thank my supervisor, Prof. Stephanie Wehner, for the
opportunity to do my thesis in her group. You have taught me a great deal and always pushed
me to become a better researcher. I would like to give special thanks to Dr. Veldhorst and Dr.
Demirović for kindly accepting the invitation to join my thesis committee and for taking the
time to read this thesis.

To my daily supervisor, Bart, thank you for your valuable feedback and calm support. The
often-too-long meetings in the “secret” meeting room we found always motivated me to keep try-
ing. Thomas, thank you for embarking on the scheduling journey with me, I so appreciate how
entertaining our brainstorming sessions were. I feel deeply grateful for the amazing environment
in the Wehner group — you all played an instrumental part in celebrating the ups and managing
the downs of my project, thank you so much. Many other people from QuTech played a role in
making the past months exciting and I am very thankful for that.

To my family, I could not imagine doing this without you. Mami a tati, děkuju za všechnu
vaši lásku a podporu. Jake, you have always had my back and I could not wish for a more
amazing big brother.

Somewhere in the past few months, Delft truly started feeling like home. I would very much
like to thank everyone who contributed to that. There are no words for how grateful I feel for
all the coffee breaks, ice cream outings, Ted Lasso (& beach) mid-distance runs, and escapes to
French campsites. The time spent together with the wonderful people around me always filled
me with joy and made me feel at peace. Thank you from the bottom of my heart.

This thesis has been financially supported by the QuTech Academy Scholarship 2021-2023. I
would like to conclude with my gratitude towards QuTech.

ii

Contents

1 Introduction 1

2 Background 4
2.1 Quantum Networks . 4
2.2 Applications for Quantum Networks . 5
2.3 Quantum Application Scheduling for Quantum Networks 8
2.4 Resource-Constrained Project Scheduling Problem 10

2.4.1 Risk-aware RCPSP . 11

3 Formal Definition of Program Scheduling 13
3.1 Inputs to Program Scheduling . 13
3.2 Outputs of Program Scheduling . 14

4 Evaluating Node Schedule Quality 17
4.1 Classical Success Metrics . 18
4.2 Quantum Success Metrics . 19

5 Network Schedule Generation 20
5.1 Randomly Assigning Network Schedule Timeslots 20
5.2 Scheduling Exactly the Required Number of Timeslots 21
5.3 Careful Consideration of Timing Constraints . 21
5.4 Final Implementation . 23

6 Implementation 26
6.1 Existing Tools . 26
6.2 Input Data . 27
6.3 General Code Workflow . 29
6.4 RCPSP Model . 30

6.4.1 Model Specification . 30
6.4.2 Finding a Node Schedule . 31
6.4.3 Risk-aware RCPSP Extension . 32
6.4.4 Limitations of PyCSP3 . 33

6.5 Evaluating Quantum Success Metrics . 33

7 Results 36
7.1 Effect of Asynchronous Classical Communication 36
7.2 Heuristic-Driven and Optimal Program Scheduling 38
7.3 Node Schedules Without Network Schedule Constraints 44

8 Conclusion 47
8.1 Discussion . 47
8.2 Future Research . 48
8.3 Summary . 49

References 50

iii

1 Introduction

Quantum networks allow for execution of quantum applications that are impossible to achieve
classically [1, 2]. Quantum applications rely on a unique property of quantum systems called
entanglement. Generation of entanglement generation between two nodes in a network must be
synchronised, which means there are real-time requirements on the scheduling of entanglement
generation. This is why we consider the problem of executing quantum applications on quantum
networks as a scheduling problem.

The goal of quantum application scheduling is to support the execution of quantum applica-
tions on a quantum network [3]. This scheduling workflow describes the steps leading from two
users wishing to execute an application to the individual nodes in the quantum network knowing
which instructions they should execute at a given time. An important part of this workflow is
called network scheduling : this process constructs a network schedule which determines when
can specific pairs of nodes in a quantum network attempt to generate entanglement.

We specify the structure of a quantum application such that an application consists of one
or more sessions. Sessions are independent runs of the application. A session describes what
needs to happen on all involved nodes; the part of a session that happens locally on one node is
called a program. Each program then consists of blocks of classical or quantum instructions. We
assume that a quantum application is executed between two nodes in a quantum network.

In this project, we focus on so-called program scheduling. This is the last part of the quantum
application scheduling workflow. Program scheduling is undertaken locally on each node in the
quantum network. It focuses on scheduling blocks of instructions which are executed either on the
classical processing unit (CPU) or the quantum processing unit (QPU). We provide a high-level
summary of program scheduling here and refer to Section 3 for the full formal definition.

Definition 1.1 (Program scheduling). Given a network schedule defining when can entanglement
generation be attempted with other nodes in the network and a set of programs that should be
executed on a particular node, define the order in which individual blocks of instructions should
be executed on the classical processing unit (CPU) and the quantum processing unit (QPU).

The output of program scheduling is called a node schedule and it specifies when should each
block be executed on a given node. We give a very simple illustration of how a node schedule
looks like in Figure 1. We define the first research question of this project to investigate how to
judge the quality of a node schedule. Knowing the answer to this question will help us evaluate
different approaches to program scheduling.

Research Question 1. How can we evaluate the quality of a node schedule?

Finding a suitable node schedule can be described by having to satisfy multiple types of
constraints. There are resource constraints based on the availability of the processing units,
precedence constraints based on the order of blocks within a program that should be respected,
network schedule constraints for generating entanglement imposed by the network schedule, and
timing constraints resulting from the nature of qubits that have a limited lifetime. Furthermore,
there can be deadlines imposed on particular applications given by the users of the quantum
network.

Therefore, the problem of problem scheduling can be taken as a constraint scheduling prob-
lem. We propose a solution to finding node schedules using the Resource Constrained Project
Scheduling Problem (RCPSP) [4] framework. It is important to note that while there might be
an optimal node schedule in terms of some success metrics, finding this one optimal schedule is
NP-Hard [5, 6]. The complexity of this problem motivates the use of heuristics which is why we
investigate the performance of heuristic-driven program scheduling.

1

b11 b12 b13 b14 b15Program 1:

b21 b22 b23 b24 b25Program 2:

Network
Schedule:

b12 b22

0 1 2 3 4 5 6 7 8 9

CPU:

Node Schedule

QPU:

b11

b12 b13

b14 b15b21

b22 b23

b24 b25

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Figure 1: A simple node schedule based on two programs and a network schedule. Two programs
define blocks bsi where s ∈ {1, 2} and i is the index of the block. Blue squares correspond to
classical blocks of instructions, orange squares represent blocks with quantum instructions, and
orange rectangles represent blocks in which entanglement generation happens.

Next to heuristic-driven program scheduling, we also define optimal program scheduling which
looks for a node schedule with a minimised value of an objective function. Furthermore, we
introduce naive program scheduling in which blocks are scheduled consecutively without any
interleaving between sessions. Note that naive program scheduling is not compatible with the
constraints imposed by the network schedule, which is why we define the following two research
questions:

Research Question 2. How does the performance of heuristic-driven and optimal program
scheduling differ when there are network schedule constraints?

Research Question 3. How does the performance of heuristic-driven and naive program
scheduling differ in the absence of network schedule constraints?

Execution of quantum applications between nodes in a network inevitably requires both
classical and quantum communication. The scheduling of quantum communication operations
is constrained by the network schedule given by a prior scheduling workflow [3]. The duration
of classical communication has some inherent uncertainty because messages can get delayed in
transmission. Entanglement generation (result of quantum communication) or message reception
(result of classical communication) might happen earlier or later than expected. There is an
extension of RCPSP called risk-aware RCPSP which attempts to deal with uncertainty in the
duration of scheduled activities and we use it to define the last research question:

Research Question 4. How can risk-aware RCPSP be used to account for the uncertainty in
duration of classical and quantum communication?

To put this thesis into the context of related work, we briefly summarise the existing work re-
garding scheduling of application execution on quantum networks. Quantum application schedul-
ing has been defined in [3]. Program scheduling directly depends on the outputs of network
scheduling. While network scheduling considers scheduling operations for distributing entangle-
ment across a quantum network, its focus is not on scheduling blocks of instructions that are
related to specific quantum applications.

Scheduling of network resources has been investigated in [7, 8]. This project focuses on
scheduling entanglement delivery in a network. It considers heuristic-driven scheduling ap-
proaches to construct time-division multiple access schedules, so while the scheduling approach

2

shows some similarities to this project, the granularity and type of scheduled operations are
different. For example, scheduling of classical instructions is not considered at all. In terms of
goals, it is much closer to the problem of network scheduling.

Individual instructions for a quantum application have been scheduled using RCPSP in [9].
Here, constraint programming models were used to investigate scheduling of instructions for a
blind quantum computing application. Similarly to our project, there was an entity similar to
the network schedule and success metrics such as makespan and success probability were used
to evaluate assignment of start times to a set of tasks. Instead of being focused solely on the
blind quantum computing application with a variable number of clients, our project proposes a
solution to program scheduling for an arbitrary quantum application. We furthermore investigate
the use of heuristics in the RCPSP implementation and include a more realistic representation
of resource constraints by including capacities for the processing units.

In this thesis, we make the following contributions:

• We formally define program scheduling. This definition is compatible with the framework
of network scheduling being developed within the quantum application scheduling [3] and
allows for developing alternative approaches to program scheduling.

• We formalise several classical and quantum success metrics to evaluate the quality of a node
schedule. This in turn allows us to evaluate different approaches to program scheduling.

• We develop a method to generate random network schedules satisfying the demands of
sessions to be scheduled. We describe the insights gained during development of this
method which can be useful in the domain of network scheduling [3]. This random network
schedule generation can serve as a baseline for evaluation of network schedule construction.

• We implement program scheduling using the RCPSP framework and the execution of node
schedules using a simulator for quantum applications. This allows us to evaluate program
scheduling using the proposed classical and quantum success metrics.

• We evaluate the performance of the heuristic-driven and optimal approaches to program
scheduling based on randomly generated network schedules. We compare the constructed
node schedules and conclude there is no significant difference in the performance of the
two scheduling approaches. The heuristic-driven approach, however, requires fewer com-
putational resources. This is a novel contribution to the field of quantum application
scheduling.

• We compare the performance of naive and heuristic-driven approaches to program schedul-
ing in the absence of network schedule constraints. We additionally investigate whether
heuristic-driven program scheduling performs better with or without network schedule con-
straints. We motivate the need for network schedules in larger quantum networks.

• We provide insights into how risk-aware extensions of RCPSP can be applied to the do-
main of quantum program scheduling and suggest concrete steps how this can be further
investigated.

The rest of this document is structured as follows: we describe the relevant background for
this project in Section 2, we give a formal definition of program scheduling in Section 3, we
propose how to evaluate the quality of a node schedule in Section 4, and we explain our method
of generating random network schedules in Section 5. We present our implementation of program
scheduling in Section 6. The results of our investigation are presented in Section 7 and discussion,
further research directions, and summary can be found in Section 8.

3

2 Background

In this section, we introduce the necessary background to understand the work presented in
this thesis. This means explaining what are the building blocks of quantum networks and how
is quantum information represented and manipulated. We describe the structure of quantum
applications as defined for the purposes of quantum application scheduling. We define the three
quantum applications used in this project and how they work. The architecture of quantum
program scheduling is explained to illustrate the context of program scheduling. Lastly, we pro-
vide background information about the framework of Resource-Constrained Project Scheduling
Problem (RCPSP).

2.1 Quantum Networks

To be able to explain quantum networks, we must first establish an understanding of the rudi-
mentary unit of quantum information - the qubit. A qubit is a quantum counterpart to a classical
bit. In comparison to the classical bit which has a value of either 0 or 1, a qubit can take on
the states |0⟩, |1⟩, or any linear combination (a superposition) of these two. A very useful visual
representation of a qubit state is the so-called Bloch sphere depicted in Figure 2 where the qubit
state can be envisioned anywhere on this sphere.

|ψ⟩
|0⟩

|1⟩

Figure 2: Bloch sphere representation of a qubit with an arbitrary quantum state |ψ⟩.

The ultimate objective of a quantum state is to read out information from it. This extraction,
or readout, can only yield the binary results of 0 or 1, leading to the collapse of the quantum
information. This concept can be visualised using the Bloch sphere, where regardless of the initial
state of the qubit, upon measurement, it invariably points to either the north or south pole. The
likelihood to which one of the two poles the state collapses is determined by the quantum state,
while the axis on which the states collapse is defined by the measurement basis.

However, the capacity of quantum states to assume a superposition is not the only property
making them unique. Another uniquely quantum mechanical property is known as entangle-
ment. When two quantum states are entangled, the measurement result of one of the states is
intrinsically (anti-)correlated with the other state’s measurement outcome. This property holds
even across large distances, rendering it instrumental in various quantum applications.

The status of a qubit can be manipulated through the application of gates. In general terms,
these gates modulate the state of a qubit; for single-qubit gates, one can conceptualise a gate
as a rotation on the Bloch sphere. There are also multi-qubit gates, which act on the target
qubit depending on the state of the control qubit. For the purposes of this thesis, it is important

4

to understand that gates are local operations that modify the state of qubits, require a finite
time for execution, and their functionality is not always flawless. More specifically, in relation
to tangible quantum hardware, gate operations may not always succeed in their intended effect
on the quantum state. We can measure the quality of a quantum state using a metric called
fidelity which defines how indistinguishable two quantum states are: higher fidelity means that
the actual state is very similar to the ideal desired state.

A quantum node is essentially a piece of quantum hardware facilitating the storage and ma-
nipulation of qubits. Generally, we differentiate between communication qubits, which facilitate
quantum communication over distances, and storage or memory qubits, which are used to store
quantum states. The characteristics of qubits can be delineated by two parameters, T1 and T2,
signifying the influence of time on the quality of quantum states. Generally, quantum states lose
information over time which is called decoherence. For more details, see Nielsen and Chaung [10]
for a comprehensive overview of the field of quantum information and quantum computation.

A quantum network is a network of interconnected nodes; each node has access to a classical
processing unit (CPU) and a quantum processing unit (QPU) which operates on qubits. Users
of this network can implement quantum applications across nodes. Further discussion about
quantum applications will be covered in the following section.

2.2 Applications for Quantum Networks

Before we delve into specific applications for quantum networks, we describe the structure of a
quantum application. We assume all applications require interaction of two nodes in the quantum
network. This definition is also used in the context of the entire quantum application scheduling
workflow [3] defined below.

To explain the structure of an application, we start by looking at the smallest building block.
This smallest building unit of an application is an instruction. An instruction is an order given
to the processing unit of a computer — in the context of this project, the processing unit can
be either the classical processing unit (CPU) or the quantum processing unit (QPU). There
are four types of instructions: classical local (CL), classical communication (CC), quantum
local (QL), and quantum communication (QC). Some examples of instructions are arithmetic
operations (CL), receiving a classical message (CC), executing a gate on a quantum state (QL),
or generating entanglement with another node (QC). The classical instructions are executed on
the CPU and the quantum instructions are executed on the QPU.

In summary, a list of instructions is called a block. A list of blocks to be executed on a
particular node is called a program. Corresponding programs on two nodes form a session. A
session is an independent run of a quantum application; one or more sessions therefore comprise
a quantum application. The formal definitions are given below and a visual representation of
this structure is given in Figure 3.

Definition 2.1 (Block). A block is a series of instructions which are executed sequentially
without an interruption once they are initialised. The instructions can be either quantum or
classical and either communication or local–a block consists of a grouped list of instructions of
one type. It is parameterised as B = (node,instr,M)B where node is the node on which the
list of instructions instr are executed and M is metadata about the block.

Definition 2.2 (Program). A program is a set of blocks on a particular node. This set is either
strictly ordered or represented as a directed acyclic graph. It is defined as a tuple P = (B,M)P
where B is the list of blocks, and M is the program metadata.

Definition 2.3 (Session). A session is a pair of programs being executed on different nodes; these
programs include communication between the nodes. A session is defined as S = (SID, PA, PB)S

5

Node A Node B

B2B1 B3 B2B1 B3

B2B1 B3 B2B1 B3

Program 1 Program 2

Program 1 Program 2

Session 1

Session 2

Application

Figure 3: An overview of the structure of an application.

where SID is the session identifier, and PA, PB are the two programs residing on nodes involved
in this session. A session is a construct used by the network scheduler but the individual nodes
are not aware of the program details of other nodes. Note that exactly one program is being
executed on each node.

Definition 2.4 (Application). An application consists of the programs to be executed on dif-
ferent nodes. From the perspective of the network scheduler, an application forms an individual
session or it can be split up into multiple sessions if those sessions can be executed independently.

Before we give concrete examples of these constructs, we introduce the three applications we
consider for program scheduling: quantum key distribution (QKD), blind quantum computing
(BQC), and the so-called ping-pong (PP) application consisting of two teleportation operations.
There are two main approaches to measuring a quantum state — the measure directly paradigm
in which a quantum state is measured shortly after its creation to mitigate the effects of deco-
herence, and the create and keep paradigm in which the quantum state is kept in memory before
it is measured. BQC and PP are examples of create-and-keep applications, whereas QKD can
be implemented as either of the two; in our project we implement QKD as a measure-directly
application. The difference between BQC and PP is the demand on entanglement generation.
Together, these three applications encompass structure of most known quantum applications.

Quantum Key Distribution. A secret key shared between two parties is often required if
these two parties wish to privately communicate over a network. The goal of quantum key dis-
tribution is to distribute a shared secret key between two parties. A possible way to implement
QKD is to repeatedly generate entanglement between Alice and Bob such that each of them has
one half of the entangled pair, and then let Alice and Bob measure their entangled state in a
randomly chosen measurement basis. Alice and Bob can afterwards publicly communicate which
measurement bases they used without revealing the actual measurement outcomes. Whenever
Alice and Bob measure in the same basis, they get correlated measurement outcomes and can use
this to create a shared secret key. The most well-known protocols for implementing QKD are the
BB84 [11] and the E91 [12] protocols. A commonly used metric of evaluating the performance
of a QKD implementation is the rate at which bits of secret key can be generated between Alice

6

and Bob (called the secret key rate).

Blind Quantum Computing. It is to be expected that the availability of advanced quantum
hardware will be limited in the near-term future. This means that different nodes in a quantum
network will likely have different computational powers. Blind quantum computing allows a
server node to perform computations on behalf of a client node. A client with limited quantum
resources can therefore delegate the computation to a server with access to more resources. An
important consideration in this application is that the server is not aware of which computa-
tion it is performing (hence the blind quantum computing). The application usually starts with
generating multiple entangled pairs between the client and the server. The client then measures
their halves of the entangled pairs and becomes aware of what quantum states there are at the
server’s side. The client can then instruct the server on what kind of computation should be
performed using classical communication. To ensure the server is honest (and performing the
computations it should be), the client can execute test rounds in which it knows what kind of
results to expect [13]. A single test round can then be said to be either successful or not. For
more details about BQC, see for example [14].

Ping-pong: Quantum teleportation is a crucial ingredient in applications for quantum net-
works [15, 16]. Quantum states cannot be copied [10, p. 532], but it is possible to reconstruct a
quantum state at a distance (provided the original copy is destroyed) using quantum teleporta-
tion. Assume that Alice has a quantum state she wants to send to Bob; quantum teleportation
then consists of entanglement generation between Alice and Bob, Alice making some local op-
erations on her two quantum states, and sending her measurement outcomes to Bob who can
then use it to reconstruct Alice’s original state. We define an application in which two telepor-
tation operations send a qubit back and forth between Alice and Bob. This “ping-pong test”
has been formulated to test the ability of a quantum network to execute multi-round quantum
protocols [17]. The goal of the ping-pong application is that Alice reconstructs the same state
she initially teleported to Bob.

An important consideration when scheduling quantum applications is that any unnecessary
delays between generating entanglement, performing local operations, and measuring the quan-
tum state decrease the fidelity of the state as well as the likelihood of getting useful information.
By considering these three applications within program scheduling, we hope to gather insight
applicable to other applications as well.

To refer back to the structure of quantum applications we defined earlier, we give examples
of what programs and sessions correspond to. One session can be for example one round of
computation in BQC or generating x bits of secret shared key in QKD. A program would then
be what each of the participating nodes needs to execute. An application can comprise of one
or more of these sessions.

Note that while the details presented here offer some information about the quantum applica-
tions, understanding how these applications achieve their goal is not necessary for understanding
the rest of the thesis. The crucial concept for the rest of this project is that entanglement gener-
ation (a necessary part of a quantum application) needs to be synchronised and scheduling of the
surrounding classical and quantum operations can greatly influence the usefulness of executing
quantum applications.

7

2.3 Quantum Application Scheduling for Quantum Networks

Having explained how quantum applications look like, we now turn to describing the process of
executing applications on quantum networks. This process starts by two users of the quantum
network deciding they want to execute an application and ends when the nodes are aware when
do they need to execute the blocks of instructions pertaining to that application. This quantum
application scheduling workflow consists of several steps and was designed at the start of this
project in collaboration with other researchers [3]. In this section, we summarise quantum
application scheduling to give more context for program scheduling and to be aware of where are
the inputs to program scheduling coming from.

The goal of application scheduling is to support the execution of quantum applications on
quantum networks. To achieve this, we propose an architecture which is summarised in Figure 4.
In the rest of this section, we will look at the detail at the processes depicted in this diagram.

Node

Node

CC

Network
Capabilities
Update

req F,R
pairs

Application
dependent

Application
independent

Capability
Negotiation

Demand
Registration

D

A

C

C

E

P

T Network
Schedule

Computation Relevant parts of
network schedule

Program
Scheduling

Program
Scheduling

Figure 4: The architecture of quantum application scheduling. This shows the interaction be-
tween two nodes that want to execute a quantum application and the central controller (CC)
which has an overview of the entire quantum network.

First, it is important to describe all the relevant parties participating in application schedul-
ing. We have a quantum network which consists of interconnected nodes. When there are two
users on two different nodes in the network that want to execute an application, we call these
nodes end nodes. These nodes do not have to be neighbouring nodes and the other nodes in
the network can serve as intermediary repeater nodes. Each node in a quantum network only
has information about itself, its capabilities, and which application(s) it wants to execute. For
the purposes of application scheduling, we also require an entity which has an overview of the

8

entire network. We call this entity the central controller. The central controller makes scheduling
decisions based on aggregated data from all nodes in the network.

Application scheduling starts with the network capabilities update. This update is es-
sentially a round of communication between a pair of nodes and the central controller, and is
entirely application independent (i.e. no information about the application which the nodes
wish to execute is required at this stage). As soon as two nodes realise they wish to execute
any quantum application, they send a request to the central controller. The central controller
in turn evaluates the state of the quantum network and sends back information on what kind
of entanglement generation possibilities there are for this particular pair of nodes. At the end
of the network capabilities update, the two nodes are aware of what kind of performance they
can expect from the network. In particular, the performance refers to the fidelity of entangle-
ment that can be generated and the rate at which this can be done; generally there are different
fidelity-rate pairs that be achieved.

At this point, the workflow of application scheduling becomes application dependent. This
means that all following steps need to be executed for each application that is being scheduled
on the network.

When two users of a quantum network make a decision on which quantum application they
want to execute, the nodes at which the users reside engage in capability negotiation. The
goal of capability negotiation is to define a single demand for the quantum network. A very
general form of this demand (taken from [3]) is

D = (k, (p, R)j , T) (1)

where k is the number of entangled pairs required, pj describes the properties of entanglement
required at a rate Rj for each acceptable path through the network j, and T is a set of timing
constraints between attempts to generate the entanglement, in conjunction with an expiry time
for the demand. The structure of the packet pj could be in the format (w,F)j where w is the
maximum time between the first and last of the k pairs, or it may be some description of the
fidelity requirements for each individual pair. Both nodes have possibly different parameters
of available resources and they have to agree on what they require of the network. The way
capability negotiation is performed is not specified as this can be different for each application;
it would for example look different in peer-to-peer applications (such as QKD) and client-server
applications (such as BQC).

The demand that the two nodes construct is then submitted to the central controller during
demand registration. The central controller reserves the right to reject submitted demands;
it sends back an ACCEPT message only if it agrees to consider this demand in the next iteration
of network schedule computation.

After a sufficient number of demands has been registered at the central controller, it begins
the process of network schedule computation. The goal of this task is to compute a network
schedule that satisfies the demands submitted to the central controller by the different users of
the network. The central controller computes the network schedule at two different levels of gran-
ularity: the high-level network schedule only specifies the timeslots during which entanglement
generation can be attempted between pairs of nodes in the network, and the low-level network
schedule also specifies which operations needs to be performed at the intermediary nodes in the
network. From the perspective of program scheduling, it is the high-level network schedule that
is crucial; we provide its formal definition below.

Definition 2.5 (Network Schedule). A network schedule is a list of timeslots (defined as start
times and durations) with information about which specified pair(s) of nodes can attempt en-
tanglement generation.

9

The computation of network schedules is an open problem, currently under investigation [3].
Having a defined network schedule is, however, necessary for program scheduling, which is why
we propose a method to generate random network schedules in Section 5.

When the network schedule is computed, the relevant parts are then communicated to the
nodes. By relevant part of the network schedule, we mean a list of timeslots in which the
particular node is involved; this means each node finds out when it can schedule entanglement
generation with other nodes in the network.

The final stage of application scheduling is program scheduling performed by a scheduling
entity called the local scheduler. At this point, each of the nodes has a list of programs it needs
to execute and a part of the network schedule pertaining to this list of programs. Note here
the distinction between programs and sessions: while we talk about a network schedule being
constructed for a set of sessions (because it considers both nodes), the local scheduler on a single
node is only aware of the programs it will be executing. The goal of program scheduling is
therefore to come up with a way to schedule all the blocks the particular node needs to execute
in a way that conforms to the constraints imposed by the network schedule. Program scheduling
is defined in detail in Section 3.

2.4 Resource-Constrained Project Scheduling Problem

In this section, we give context to scheduling problems by explaining what are the frameworks
used to solve them. Before we look at the framework of the Resource-Constrained Project
Scheduling Problem (RCPSP for short), it is important to highlight the difference between con-
straint satisfaction and optimisation problems. A constraint satisfaction problem (CSP) is de-
fined by (adapted from [6]):

• a finite set of variables X = x1, ..., xn,

• a finite domain Di for each of the variables xi, and

• a finite set of constraints restricting the values for variables.

The objective of CSP is to find a solution in which a value ai ∈ Di is assigned to each
variable xi and all the constraints are satisfied. The constraint optimisation problem (COP)
additionally introduces an objective function; the solution to COP is therefore a solution with
either a minimal or maximal objective value.

The resource-constrained project scheduling problem can be taken as a particular instance
of the constraint optimisation problem put into the context of project scheduling. There is a lot
of research on project scheduling problems because they often pose interesting computational
challenges; the first unified notation for RCPSP was proposed by Brucker in 1999 [4]. Simply put,
RCPSP is the “problem of determining start times of activities which need to satisfy precedence
and resource constraints” [18, p. 714].

RCPSP is defined in terms of activities which need to be scheduled, precedence constraints
between these activities, and a set of resources on which the activities are executed. Each activ-
ity consumes a subset of the resources for given time; the resources can be either renewable or
non-renewable. Precedence constraints can be for example defined as a set of immediate prede-
cessors for each activity [18]. Parameters are assumed to be integer-valued [4], and interruption
(preemption) of an activity while it is being executed is not allowed. Optionally, modes with
processing alternatives for each activity can be defined (this is called multi-mode RCPSP), but
that is not considered within this project.

The solution to an RCPSP instance is a list of start times S = [S1, ..., Sn] for all the activities
{1, ..., n} which satisfies the precedence constraints and the constraints imposed by the availability

10

of resources. The vector S = (Si)
n
i=1 defines a schedule for the project and it is called feasible if

all constraints are fulfilled [6]. RCPSP is often posed as a makespan minimisation problem [6,
18] where the makespan is the schedule completion time. For a more detailed mathematical
formulation, see for example [4] or [18].

Note that two modes of schedule execution can be distinguished [19]: a static execution where
the construction of a schedule is done separately from the execution, and a dynamic execution
where the scheduling actually modifies an existing schedule; the construction and execution of
the schedule are in a sense interleaved. The static mode is only applicable when there is a
sufficient backlog of activities to be scheduled — we assume this to be the case in the context of
quantum application scheduling.

The general RCPSP framework can be extended to include more expressive timing constraints.
There is the general precedence constraint i → j between two activities i and j for start times
Si, Sj and a processing time pi defined as Si + pi ≤ Sj . This can be generalised to a start-start
relation of the form Si+dij ≤ Sj with an arbitrary integer dij ∈ Z [6]. We say dij is the time-lag
between two activities i and j, and it can be further specified into the minimum allowed time-lag
dmin
ij and the maximum allowed time-lag dmax

ij .
RCPSP belong to NP-hard problems [5, 6]. When the minimum and maximum time-lags

are added, it can result in problem instances that cannot be solved — this moves the RCPSP
into a class of NP-complete problems [5, 20, 21]. Small instances of RCPSP can still be solved
optimally (using an objective function that e.g. minimises the makespan), but the complexity
also motivates use of heuristics when solving scheduling problems.

2.4.1 Risk-aware RCPSP

Whenever we want to execute the constructed schedules in real-life, it is inevitable that some
uncertainties will occur. There can be a sudden change in the availability of resources or activities
can take shorter or longer than expected. With this in mind, the risk-aware extension of RCPSP
has been investigated. The risk-aware RCPSP attempts to deal with uncertainty in the scheduling
environment.

There are several general approaches that one can take when tackling uncertainty [22]: reac-
tive scheduling which revises the initial schedule during execution when an unexpected event
occurs, stochastic scheduling which models activity durations using stochastic variables and
uses scheduling policies to make decisions during the execution, proactive scheduling which
creates robust schedules with built-in flexibility, and scheduling under fuzziness which uses
fuzzy numbers (rather than stochastic variables) for modelling activity durations. In the rest
of this section, we explain the reactive and proactive approach to scheduling in a more detailed
fashion. This will be later used to address how uncertainty in program scheduling could be
addressed.

Reactive scheduling, as the name suggests, is based on the idea of reacting to unforeseen
changes in the scheduling environment. A baseline schedule is constructed the usual way, but
upon execution schedule repair actions can be taken to restore its consistency [22]. The simplest
schedule repair action is called the right-shift rule and consists of postponing execution of sched-
uled activities if the activity currently being executed takes longer than anticipated. Reactive
scheduling covers any schedule repairs which can either perturb the schedule as little as possible
or can mean full rescheduling.

On the other hand, proactive scheduling focuses on creating robust baseline schedules that
can deal with the stochastic nature of activity durations [21]. A robust schedule is defined as
a“schedule that is able to absorb some level of unexpected events without rescheduling” [23]. In
a sense, this means creating a fault tolerant schedule — this can be achieved if redundancy in

11

the schedule is introduced, such as including time buffers which prevents propagation of delays
or disruptions.

In the context of quantum application scheduling, uncertainty concerns mainly blocks with
communication instructions. Whenever nodes send classical information around the network or
try to generate entanglement, some degree of uncertainty is inevitable involved in the execution
of these tasks. We describe in Section 6.4.3 how risk-aware RCPSP can be used to mitigate the
risks associated with unpredictable changes to activity execution.

12

3 Formal Definition of Program Scheduling

Program scheduling refers to the process in which the local scheduler considers all the blocks
which are to be executed on a particular node and creates a node schedule. To formally define
program scheduling, we present the definition of inputs and outputs of the entire process. This
definition is a “black-box” definition in that it does not describe the internal mechanism of the
scheduling process; rather it only provides a high-level overview of the overall process. The
implementation of the proposed scheduling algorithm is presented in Section 6. The information
and definitions presented here are aligned with the entire architecture for quantum application
scheduling [3].

3.1 Inputs to Program Scheduling

Program scheduling works with blocks (see Definition 2.1); the inputs to the scheduling process
should therefore describe all the relevant information about each of the blocks to be scheduled.
Some of the blocks perform so-called quantum communication, i.e. they attempt to generate
entanglement. These are operations that need to be scheduled and executed by each of the
involved nodes at the same time. The times at which the blocks containing quantum communi-
cation operations (QC blocks) can be scheduled are given by the network schedule.

The information required in program scheduling comes from multiple sources: for each pro-
gram to be scheduled, the local scheduler is given a list of blocks involved in the program, block
metadata for each of the blocks, and program metadata for the overall program. Next to this,
the local scheduler also makes use of information about the node itself which is retrievable from
the node lookup table and a network schedule defined for a set of sessions to be scheduled. Note
that although the local scheduler is scheduling execution of programs on the local node, the
network schedule is constructed for a set of sessions.

More formally, each block B = instr is simply a list of instructions instr to be executed on
a particular node. The block metadata is defined by the compiler and takes the form

MB =
(
#Q{C,S}, k,#I{QC,QL,CC,CL}, remote_node, CSB

)
(2)

where:

• #Q{C,S} is the number of communication (C) and storage (S) qubits required by the
quantum operations,

• k is the number of entangled pairs required,

• #I{QC,QL,CC,CL} is the number of quantum (Q) or classical (C), communication (C) or
local (L) instructions,

• remote_node is the other node in a given application, and

• CSB is an identifier for the critical section to which a given block belongs to.

Handling quantum states requires careful consideration of timing constraints because qubits
lose information with time. For example, it is important that after entanglement is generated,
any local operations and a measurement of the qubit are performed as soon as possible. Until
now, we defined a program as simply a list of blocks, but this does not allow for specifying any
time dependencies. To this end, we introduce the notion of critical sections. If two blocks are
in the same critical section (i.e. the critical section field in the block metadata holds the same

13

identifier), they need to be executed sequentially without any delays. In this way, the scheduler
becomes aware of some timing dependencies between individual blocks.

Next to the information about the particular block, there is some information the scheduler
needs to know about the entire program. Note that in Definition 2.2, we define a program as a
list of blocks and the program metadata. The order of blocks within that list defines the order
in which the blocks should be executed. Program metadata for a program P is defined as

MP =
(
(MBi

)
|P |
i=1, F,DA, SID

)
(3)

where:

• (MBi
)
|P |
i=1 is a list of block metadata from all blocks corresponding to the program,

• F is a fidelity requirement,

• R is a rate requirement, and

• DA is a deadline for the entire application (i.e. all programs belonging to the application
needs to be executed by this time), and

• SID is an identifier for the session to which this program belongs to.

Because the block metadata is included in the definition of the program metadata, the local
scheduler needs to get a list of the blocks and the program metadata for each program it is
supposed to schedule. Furthermore, the local scheduler also needs to be aware of the local
parameters. This is given in the form of a lookup table residing on each of the nodes. The
contents of this lookup table are depicted in Table 1.

Parameter Description Units or range
#QC Number of available communication qubits ∈ N
#QS Number of available storage qubits ∈ N

[T1, T2] Maximum lifetime of quantum memory s
FG Minimum gate fidelity ∈ (0, 1]
TG Minimum gate duration s
TCC Expected maximum communication time be-

tween the two involved nodes
s

Table 1: Contents of a lookup table of an end node in the network.

The last necessary input for the local scheduler to be able to perform program scheduling is
the network schedule, an outcome of a prior scheduling workflow [3]. The network schedule that
each node receives is only a subset of the entire network schedule, and contains a list of timeslots
in which a given node can participate in entanglement generation.

In summary, the input to program scheduling is therefore a list of programs that need to
be scheduled, the node’s lookup table, and the network schedule for a given set of sessions
corresponding to the programs. Each program defines a list of blocks to be executed and the
program metadata. This is summarised in Table 2.

3.2 Outputs of Program Scheduling

The output of program scheduling is a so-called node schedule. Both nodes involved in executing
some sessions of possibly multiple different applications have their own node schedules. That

14

Source Parameter Description

Block
metadata

#Q{C,S}
the number of communication (C) and storage (S)
qubits required by the quantum operations

#I{QC,QL,CC,CL}
the number of quantum (Q) or classical (C), commu-
nication (C) or local (L) instructions

remote_node the other node in a given application

CSB an identifier for the critical section of given block

k the number of entangled pairs required

Node
lookup
table

[T1, T2] the worst-case lifetime of a node’s quantum memories

TG the worst-case time duration of gates

FG the worst-case fidelity of gates

TCC
the worst-case classical communication time between
the two involved nodes

Program
metadata

SID session ID this program belongs to

DA deadline for the entire application

Table 2: Information available about each block which needs to be scheduled.

is because it is possible that what Alice and Bob need to do in order to execute the session
are different things and they might be scheduling different blocks. However, both Alice and Bob
receive the same network schedule to construct their nodes schedules, so the times at which Alice
and Bob perform entanglement generation is synchronised.

Both the network schedule and the constructed node schedules work by assigning timestamps
for operations. These timestamps are defined on a scale of nanoseconds. It is important that
this is unified across the scheduling workflows in application scheduling.

A node schedule is a mapping of blocks to their scheduled start times. Assume there is a set
of blocks B = {1, ..., n} that should be executed on a particular node (these blocks can belong
to [1, n] sessions) and are either classical (i.e. consume the Classical Processing Unit (CPU)
resource) or quantum (i.e. consume the Quantum Processing Unit (QPU) resource). The node
schedule is then defined as follows:

Definition 3.1 (Node Schedule). A node schedule is a set of start times S = {s1, ..., sn} satis-
fying the following constraints:

1) resource constraints: no two blocks i, j consume the same resource k concurrently where
k can be either the CPU or the QPU of a node,

2) precedence constraints: the order of blocks within a session is respected. That is, if
i < j for any two blocks i, j in the same session, the start times si and sj are assigned such
that si < sj ,

3) network schedule constraints: blocks with quantum communication operations respect
the network schedule. That is, the network schedule defines a timeslot for entanglement
generation starting at tSn,i for each QC block i belonging to a session Sn, the start time
si of each QC block to be scheduled is then set such that si = tSn,i,

4) critical section constraints: if blocks belong to the same critical section, they are sched-
uled consecutively. That is, for blocks i, j with CSi = CSj and i < j, given an execution

15

time pi for block i, the start time sj is set such that sj = si + pi. Note that this constraint
must be relaxed for QC blocks as the above network schedule constraint has a higher pri-
ority; instead of being scheduled immediately, a QC block in a critical section must be
scheduled at the first possible opportunity,

5) application deadline constraints: if an application deadline DA is defined, any block i
associated with application A will finish executing before the deadline. That is, if pi is the
execution time of block i, si + pi ≤ DA.

16

4 Evaluating Node Schedule Quality

In this section, we propose a method of evaluating the quality of a node schedule. This is
necessary in order to evaluate the performance of program scheduling. Node schedule quality can
be evaluated using classical and quantum success metrics. We delve deeper into their definitions
in the following two subsections. By doing so, we answer the first research question of this
project.

By definition, the form of a node schedule highly depends on the network schedule which is
used to construct it. The problem of finding an “optimal” network schedule is outside the scope
of this project, and so we use a set of randomly generated network schedules to see how the
success metrics behave. For more details about the network schedule generation, see Section 5.

For illustrations of how the success metrics would be calculated, we use two example node
schedules created based on the same input, as defined in Figure 5. Note that in this section,
we abstract away the network schedule constraints and specific timing issues and consider two
simplified node schedules.

b11 b12 b13 b14 b15Program 1:

b21 b22 b23 b24 b25Program 2:

(a) Input for program scheduling. Two programs define blocks bsi where s ∈ {1, 2} and i is the
index of the block. Blue squares correspond to blocks of classical instructions and orange rectangles
to blocks of quantum instructions.

CPU

QPU

b11

b12 b13

b14 b15 b21

b22 b23

b24 b25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) An example of a naive node schedule. The blocks are scheduled according to their strict order
within a session and the sessions are not overlapping.

CPU

QPU

b11

b12 b13

b14 b15b21

b22 b23

b24 b25

12 13 140 1 2 3 4 5 6 7 8 9 10 11

12 13 140 1 2 3 4 5 6 7 8 9 10 11

(c) An example of an optimal node schedule. Here, classical instructions are executed along quantum
instructions and execution of blocks from different sessions is overlapping.

Figure 5: Two possible node schedules given input from two programs. Note that that construc-
tion of these node schedules corresponds to a scenario without network schedule constraints.

17

4.1 Classical Success Metrics

To evaluate a node schedule using classical success metrics, it is sufficient to consider a given
node schedule without executing it. Classical success metrics depend purely on the static form
of the schedule. As such, we can evaluate a single node schedule with these classical metrics. In
this section, we define two main metrics one can look at when evaluating a quality of a schedule:
makespan and processor utilization factor (PUF). We further illustrate how these are calculated
using the example node schedules given in Figure 5.

Scheduling problems are often posed as makespan-minimization problems [20, 21] because it
is a good reflection of the quality of schedules in the classical context. Makespan refers to the
total time it takes to execute a given schedule. If a node schedule defines start times s0, ..., sn
for blocks b0, ..., bn with durations d0, ..., dn, the makespan is given by

makespan = max
0≤i≤n

(si + di)− min
0≤j≤n

sj

The processor utilisation factor (PUF) is defined as the fraction of time spent executing a
given set of tasks compared to the makespan. It has been used as a success metric for evaluating
scheduling in the quantum domain [7]. Generally, a higher value of PUF means a more efficient
schedule. For our project, we distinguish between two different processor utilisation factors: (1)
PUF of the CPU in which the set of tasks are all the classical blocks, (2) PUF of the QPU in
which the set of tasks are all the quantum blocks. Given the above definition of a node schedule
with the addition of t0, ..., tn being types of blocks, we define the two metrics as:

PUFCPU =
∑

0≤i≤n
ti∈{CC,CL}

di
makespan

PUFQPU =
∑

0≤i≤n
ti∈{QC,QL}

di
makespan

Table 3 shows calculations of all three metrics for the example node schedules from Figure 5.
While the values of the processor utilisation factors depend on the makespan, distinguishing
between PUF for the CPU and the QPU allows us to to see possible differences between the
utilisation of the different processing units. Having a success metric which is focused solely on
the QPU allows for optimisations focused on the quantum side of program scheduling. Note
that generally we cannot expect the PUF values to reach the upper threshold of 1 — this is
because there are some dependencies between the classical and quantum blocks, but also because
consideration of network schedule constraints will inevitably introduce some additional delays in
the node schedules.

Schedule makespan PUFCPU PUFQPU

Example naive schedule (Fig. 5b) 14 6/14 ≈ 0.43 8/14 ≈ 0.57

Example optimal schedule (Fig. 5c) 11 6/11 ≈ 0.55 8/11 ≈ 0.73

Table 3: Calculation of classical success metrics using example node schedules from Figure 5.

There are also several common success metrics that depend on defined deadlines for the
individual activities being scheduled, such as the maximum lateness, the total tardiness or the
number of late activities [6]. In the context of program scheduling, we can define deadlines for

18

applications and therefore programs, but not for the individual blocks of instructions, and so we
do not consider success metrics related to deadlines in this project.

None of the classical success metrics mentioned here fully capture the subtleties of quantum
systems — quantum states lose information over time and while having a higher value of PUFQPU

can mean there is not a lot of delay between quantum operations, it does not track individual
quantum states. This gives us the motivation to also look at quantum success metrics which can
hopefully reflect more accurately the intricacies of working with quantum states. Lastly, it is
worth mentioning that since the PUF metrics correlate with makespan, makespan can be taken
as the primary classical success metric.

4.2 Quantum Success Metrics

To fully evaluate the quality of a node schedule, it is also vital to consider the quantum per-
spective. This means using a success metric that takes into account the effect of the unique
properties of quantum systems. One such metric is the success probability of sessions executed
according to the node schedule. In this project, we use simulations to execute sessions on a pair
of nodes. While there have been many developments on the side of quantum hardware, it is not
yet possible to run experiments on a scale which this project requires.

For the sake of generality, we explain how to obtain a success metric using a general simulation-
based approach. We specify which tool for simulating quantum networks is used in this project
in the section on implementation (see Section 6.5). We assume that the simulator can simulate
execution of both classical and quantum instructions, and that one can define the input in terms
of blocks of instructions that need to be executed and the order in which this should be done. We
can then use the order given by a node schedule to evaluate how a particular schedule performs
in terms of whether the sessions are executed successfully.

Assuming a minimal quantum network of two nodes, the simulator is given a node schedule
created for each of the nodes and executes the instructions. The success probability of one node
schedule is then taken as the number of sessions successfully executed compared to the total
number of sessions scheduled in the node schedule, i.e.

success probability =
of successful sessions

of scheduled sessions

The behaviour of quantum simulations is not deterministic, and the simulated execution of a
node schedule must be repeated many times to obtain an average success probability. Note that
this parameter will be the same for both node schedules inputted to the simulator; the average
success probability is evaluated for both nodes schedules at once because their execution depends
on each other.

We need to define what a “successful execution of a session” means. This looks different for
each application. We define how we evaluate success of the applications being considered in this
project in Section 6.5.

Having defined how a success is evaluated for each of the applications we consider in this
project, we can obtain the value for the average success probability of a pair of node schedules
using simulations. Unlike the classical metrics which can be evaluated for a single schedule,
the average success probability depends on the interplay of both node schedules. This quantum
success metric allows us to observe an effect of the quantum properties which cannot be easily
captured using classical success metrics.

19

5 Network Schedule Generation

In this section, we describe the iterations of generating random network schedules we have
gone through in hopes of providing some insight into future work done on network schedules.
The program scheduling in this project depends on network schedules, an outcome of a prior
scheduling workflow called network scheduling [3]. The problem of network scheduling has not
been solved yet, thus we instead come up with a method to generate random network schedules.

While the form of a network schedule is defined and followed, in this project we include a
few minor adjustments to the requirements of how a quantum application is structured. In the
formally defined network scheduling, each session of an application contains only one block with
quantum communication but can pose different requirements for entanglement generation, i.e.
the timeslots in a network schedule do not have to have the same length. Instead of such a setup,
in this project we allow for multiple QC blocks within a session with the caveat that they always
require one entangled pair and therefore the timeslots in a network schedule are of a constant
length. Note that these two approaches are essentially equivalent and one can easily translate
between them.

Before we start generating network schedules, we need to answer two questions: (1) how long
is the network schedule and (2) how long is one timeslot in the network schedule? The length of
a network schedule clearly depends on the sessions being scheduled, and so we start with setting
the length of the network schedule to twice the duration of all blocks that are being scheduled.
We later elaborate on how this decision affects generating network schedules. Furthermore, the
length of a network schedule timeslot should correspond to some realistic parameters achievable
on current hardware. We pick a length of 2 ms (milliseconds) based on the results of entanglement
delivery experiments [24, Figure 3b]. Note that we keep the same order of magnitude as presented
in this work, but due to computational time we decrease the number of entanglement generation
attempts this time allows for. While implementing the solution, these values are not hard-coded
and can be easily modified in future investigations.

5.1 Randomly Assigning Network Schedule Timeslots

When the network schedule length and the length of the timeslots are fixed, we can determine the
number of timeslots in the network schedule. Our first idea was to randomly assign each of these
timeslots to the sessions that are being scheduled where each timeslot corresponds to fulfilling
the entanglement generation for one quantum communication block. We begin by calculating a
probability with which a timeslot should be assigned to a given session.

This can for example be done by defining a probability of assigning any timeslot in the
network schedule to session Si such as

pSi
=

of QC blocks in Si ·# of scheduled sessions Si

of timeslots in the network schedule

Then for each of the timeslots in the network schedule, that timeslot is assigned to session
Si with a probability of pSi . This can then be naturally extended to network schedules with
multiple session types by scaling the probabilities according to the number of session types being
scheduled. This was our initial implementation of the random network schedule generation. In
theory, this results in random network schedules that on average schedule the required number
of timeslots for each of the sessions.

Let us define a feasible network schedule as a network schedule that allows for construction
of feasible node schedules, i.e. all the blocks can be scheduled according to the constraints given.
The caveat of this initial implementation comes with the fact that it ”on average” results in

20

feasible network schedules. There are, however, a lot of network schedules being generated that
do not contain enough timeslot assignments to fulfil the demand of the sessions. This means that
the entire program scheduling is attempted for a lot of network schedules that are not feasible
and that is very computationally intensive.

We gain one insight from this initial implementation. Even though we are attempting to
generate network schedules randomly, we need to make sure we schedule the requested number
of timeslots. There are some conditions that make network schedules infeasible if they are not
being met. It is computationally easier to check for these conditions rather than to attempt to
construct node schedules based on an infeasible network schedule.

5.2 Scheduling Exactly the Required Number of Timeslots

The decision to schedule precisely the required number of timeslots for each session also agrees
with the direction of current investigation of network scheduling [3]. It would of course also be
possible to schedule more timeslots than required in the hopes that if a session is not executed
successfully, it can be retried. However, this approach is not scalable because this will not be
possible when the demand on the network is higher, e.g. when multiple pairs of nodes request
timeslots. Therefore, fulfilling the demand and not over-delivering agrees with how network
scheduling will be implemented.

To schedule the required number of timeslots, we can take several different approaches. One
could formulate it as a constraint optimisation problem (as is currently being done [3]); this
seems like an overly complicated approach to generating network schedules randomly. It is
not the objective of this project to come up with the most optimal way of generating network
schedules.

Therefore, we stick to randomly assigning timeslots but make sure that the required number
of timeslots is always delivered. To do this, we first generate a list of all the timeslots in the
network schedule and randomly pick a subset of these. Note that whenever we refer to a timeslot,
we mean the combination of a start time of the timeslot and to which session type it belongs to.
(The duration of the timeslot is fixed by the duration of quantum communication as motivated
above.) Generating a list of all the possible timeslots is therefore trivial whenever only one
session type is being scheduled because all the timeslots are assigned to that session type. The
starting times of the timeslots are multiples of the length of quantum communication.

Whenever multiple session types are being scheduled, we iterate through the possible start
times and for each one randomly pick which session type will be assigned. This allows us to
define different probabilities and ensure that session types which contain more quantum commu-
nication blocks will have a bigger pool of available timeslots. This provides the first dimension
of randomness.

Upon implementing this approach, we again find out that many of the randomly generated
network schedules are not feasible. Closer investigation reveals that this is because this approach
does consider any timing constraints. We include this in the next iteration of the random network
schedule generation.

5.3 Careful Consideration of Timing Constraints

There are several timing considerations we need to take into account when generating network
schedules. We categorise them based on an example session presented in Figure 6. This example
session does not represent any particular quantum application and is meant to capture all possible
timing constraints that need to be considered when constructing network schedules. This is a
useful insight for network scheduling.

21

Before we categorise all the different timing dependencies and how they translate to con-
straints for network schedules, we need to re-introduce the notion of critical sections. Critical
sections are defined for each program individually where one program can include one or more
critical sections and each critical section can contain one or more blocks with quantum communi-
cation. It is important that the QC blocks within the same critical section are scheduled close to
each other in the network schedule. As we previously mentioned, network schedule is generated
based on sessions — the information about critical sections of each program therefore has to be
aggregated by the central controller to arrive at the information presented in Figure 6.

Session:

critical section

QC QC QC

tpre tCS tsep tpost

Figure 6: An example of a session which illustrates the four possible types of time variables tpre,
tCS , tsep, and tpost that need to be considered when generating network schedules. The orange
rectangles correspond to QC blocks, while the green rectangles can be either classical or quantum
local blocks. The red highlight denotes blocks in a critical section.

We therefore define four time variables that need to be taken into account: pre-processing
time tpre, separation time between QC blocks within a critical section tCS , separation time
between critical sections tsep (QC block which is not in a critical section is taken as its own
separate critical section), and post-processing time tpost. If we take si,j to be a start time of a
timeslot for the j-th QC block in session Si, these time variables impose the following constraints
on the network schedule (from the perspective of a node):

• The order of scheduled QC blocks for a session is preserved: for any two QC blocks in a
session with indexes j and k where j < k, it holds that si,j < si,k.

• No timeslot is scheduled sooner than the first entanglement generation can be attempted.
Therefore for session Si and any QC block j, it holds that tpre < si,j .

• If two timeslots are assigned to QC blocks belonging to the same critical section, any
timeslots inbetween these two timeslots cannot belong to a different critical section. Assume
that CS(i, j) returns an identifier of the critical section the j-th QC block in session Si

belongs to. Therefore if we have si,j < sx,y < si,k where CS(i, j) = CS(i, k), then x = i
and CS(i, j) = CS(x, y).

• Two timeslots for the same session are scheduled at least tCS or tsep apart, depending on
whether they belong to the same or different critical sections respectively. More specifically,
for any two QC blocks with indexes j and k belonging to session Si where j < k, we have
si,k − si,j ≥ tCS if CS(i, j) = CS(i, k) and si,k − si,j ≥ tsep if CS(i, j) ̸= CS(i, k).

• For any two timeslots from two different sessions where the pre-processing time of session
Sm is tmpre and the post-processing time of session Sn is tnpost, we have that sm,k − sn,j ≥
(tnpost + tmpre) for any QC block indexes k, j.

These constraints can in theory be used to define a constraint satisfaction problem. However,
a more trivial implementation can include a feasibility check. We pick a subset of timeslots from

22

all the available timeslots that fulfils the demand for number of timeslot assignments. Then
we execute the feasibility check: if the proposed network schedule passes, we found a random
network schedule, if it does not pass, we simply move on to picking a different subset of the
timeslots.

The feasibility check depends on the actual sessions being scheduled. However, because of
the classification of all timing considerations that need to be taken into account, this is easily
adaptable to any session with an arbitrary internal structure. Our proposed final implementation
method outputs feasible network schedules and is summarised in the next subsection.

5.4 Final Implementation

We present the method used for generating random network schedules in this section. The
complexity of this approach is motivated by the need to create network schedules that result
in feasible node schedules; a trivial implementation of random network schedule generation is
possible but computationally ineffective because more resources are then required to check the
feasibility of the network schedule through construction of node schedules.

An overview of the proposed approach can be seen in Figure 7. An input to the generation
of random network schedules consists of the network schedule length (defined in nanoseconds)
and a set of the sessions which need to be scheduled. Each of the sessions has a number of QC
blocks for which timeslots need to be assigned and some timing constraints as defined previously.
An additional remark about the network schedule length will follow after an explanation of the
network schedule generation.

The implementation presented here makes use of the numpy.random module. For repro-
ducibility purposes, one can define a seed used in the module to ensure it is possible to arrive at
the same “random” outcomes. Whenever we make a probabilistic choice in the implementation,
we use a seed which then defines the identifier of a network schedule. A network schedule with
ID x therefore used seed=x in all its random choices. In this way, we enable intuitive iteration
through the probabilistic choices and an easy reproducibility of our results.

The first step in the network schedule generation is to create a random domain for all possible
timeslots. Given the length of the network schedule and the duration of entanglement generation,
we can easily define start times for all the timeslots. Then we iterate through these timeslots and
randomly assign them to the sessions — the probabilities of assigning a timeslot to a particular
session are scaled depending on how many QC blocks there are in that session. We arrive at a
completely filled network schedule. (As another optimisation step, for sessions with very specific
timing constraints, we already further restrict the domain of all possible timeslots. For example,
for a QKD session, no two timeslots can be scheduled directly after one another. Therefore we
already restrict the initial domain to either even or odd timeslots. This speeds up the process of
picking a feasible subset of these timeslots.)

The next step is then to pick a subset of these timeslots to satisfy the exact required number
of timeslots for each of the sessions. Note that instead of picking a number of timeslots corre-
sponding to the number of QC blocks, we pick a number of timeslots that is equal to the number
of critical sections. This allows us to always schedule the subsequent QC blocks in a critical
section at the earlier possible time according to tCS .

Feasibility check is then executed on the suggested network schedule. This feasibility check
checks that are the timing constraints defined above are satisfied. In Figure 7, an example of
a suggested network schedule that would not pass the feasibility check is if a timeslot for S2 is
picked directly after a timeslot for S1 because the second QC block for session S1 could not be
scheduled. If a suggested network schedule does not pass the feasibility check, we increase the
seed and make a new random choice of a subset of the timeslots.

23

Get random domain for timeslots

0 1 2 3 4 5 6 7 8 9

Empty network schedule
S1

S2

critical section

QC QC

QC

0 1 2 3 4 5 6 7 8 9

S1 S1 S2 S2 S1 S2 S1 S1 S1

Pick a random subset of timeslots

seed += 1

0 1 2 3 4 5 6 7 8 9

S1 S2

Feasibility check

Add remaining timeslots for critical sections

Fail

Pass

0 1 2 3 4 5 6 7 8 9

S1 S2S1

Figure 7: Overview of the implementation of random network schedule generation. The input to
the random network schedule generation is a set of sessions for which entanglement generation
needs to be scheduled; these are shown in the top right corner where the green squares correspond
to quantum local or classical blocks and the orange squares represent QC blocks. In this toy
example, we generate a network schedule for one session S1 and one session S2.

24

Once a feasible network schedule is found, we add timeslots for the remaining QC blocks in
the critical sections. By scheduling the timeslots for subsequent QC blocks in critical sections
like this, we make it impossible to interleave different critical sections. The form of a network
schedule does impose constraints on how the node schedules can look like, but in this case, the
restriction already exists due to the definition of critical sections which prohibits interleaving.
We have now arrived at a randomly generated network schedule that is guaranteed to create
feasible node schedules.

At the beginning of this section, we mention that a length of the network schedule is one
of the inputs to the random network schedule generation. This length has a great effect on
the performance of generating random network schedules. If the length of a network schedule
is too short, it is very improbable that a chosen subset of timeslots will satisfy all the timing
constraints. This increases the need for regenerating the subset of timeslots and increases the
computational time. On the other hand, if the network schedule is too long, the problem size for
program scheduling increases because the network schedule length determines the length of the
relevant node schedules (more details about the limitations of program scheduling are mentioned
in Section 6.4.4). We define a network schedule length factor which results in a network schedule
length lNS of

lNS = network schedule length factor×
N∑
i=1

di

where the particular network schedule schedules N blocks and di is a duration of each of the
block being scheduled. We then pick a length factor that allows us to generate a 100 random
network schedules for each of the datasets within 5 minutes. For datasets with 6 sessions, we
find that this condition is satisfied by a length factor of 3, whereas for datasets with 12 sessions,
we need a length factor of 5.

25

6 Implementation

In this section, we present our proposed solution to the problem of program scheduling as de-
fined in Section 3. We implement program scheduling using the Resource-Constrained Project
Scheduling Problem (RCPSP) framework. To evaluate the quantum success metrics, we provide
a script that executes the constructed node schedules and evaluates their performance. First,
we motivate the choice of software tools used for the implementation, we describe the input
data used in this project and the general code flow of program scheduling. Then we explain
in detail how both the program scheduling and the simulations of node schedule execution are
implemented.

6.1 Existing Tools

We need to both construct and execute node schedules. Here we summarise the available software
tools and motivate the choice of software used in this project. For the program scheduling, a
software library that allows for RCPSP problem formulation is required; we look at the RCPSP
implementation of ”Link Scheduling” used in [7, 8], the MiniZinc constraint programming lan-
guage used in [9], and the PyCSP3 Python library for modelling constrained problems. (For
clarity, we will refer to PyCSP3 as PyCSP3 for the rest of this document to prevent any confu-
sion with footnotes.)

Link Scheduling [25]. The software used for investigating allocation of links in a quantum
network in [7, 8] implements a block extension to RCPSP [18]. This scheduling problem works
with network resources rather than resources on quantum nodes (and as such is perhaps closer
to network scheduling rather than program scheduling). Even though it implements RCPSP,
it was implemented with link allocation in mind and would need to be heavily rewritten to be
suitable for program scheduling.

MiniZinc [26]. MiniZinc is a constraint modelling language used to specify constraint opti-
misation and decision problems. It is designed to interface with different back-end solvers. It
provides a Python interface, but the documentation also states that this interface is still in its
early development stage.

PyCSP3 [27]. PyCSP3 is a Python library for modelling “combinatorial constrained problems”.
It supports modelling of constraint satisfaction problems and constraint optimisation problems,
providing the same range of functionality as MiniZinc. The RCPSP framework has been imple-
mented as one of the example uses of this library.

Before making any decision on the software used for implementing program scheduling, we
investigate available tools that can be used to simulate the execution of node schedules. We
look at several quantum simulators to see which one fits our needs best; we consider NetSquid,
SquidASM, QuNetSim, and Qoala. To be able to simulate execution of node schedules, the tool
needs to provide control over both classical and quantum instructions.

NetSquid [28]. NetSquid is a discrete-event quantum simulator and allows for modeling and
simulation of scalable quantum networks. Its main aim is to accurately model the effects of time
on quantum systems. While this is exactly what is needed for evaluation of node schedules using
the quantum success metrics, NetSquid is too low-level and using purely NetSquid would require
writing a lot of abstractions on top of it.

26

SquidASM [29]. SquidASM is a simulator built specifically for execution of quantum applica-
tions. It is build on top of the NetSquid simulator and abstracts away some of the unnecessary
details. It is written in Python. This seems to be more suitable for the execution of node sched-
ules, but a key functionality of having control over the timing of (both classical and quantum)
instructions is lacking.

QuNetSim [30]. QuNetSim is a Python-based framework for simulating applications on quan-
tum networks. It is similar to SquidASM in the sense that its focus lies on high-level quantum
applications, but it lacks the guarantees of precise modeling of the effects of time. Furthermore,
it does not provide any classical control and focuses on the execution of quantum instructions.

Qoala [31]. Qoala is a comprehensive software library allowing the simulation of both the soft-
ware and hardware of nodes in a quantum network. It is written in Python and internally makes
use of the NetSquid simulator. This simulator allows for specification of instructions for the soft-
ware of quantum nodes, enabling to evaluate classical control as well as quantum performance.

In the end, we implement the software for this project using PyCSP3 and the Qoala simulator.
Both of these are written in Python and therefore their interface should be easily implementable.
The choice between MiniZinc and PyCSP3 boiled down to the programming language they are
written in. The Qoala simulator was the only software tool allowing for scheduling of both
classical and quantum operations.

6.2 Input Data

There are three different applications we consider for program scheduling within this project.
These are blind quantum computation (BQC), the so-called ping-pong test (PP) implementing
two consecutive teleportation operations, and quantum key distribution (QKD). Each of these is
defined through a qoala program (see folder configs in [32]). For illustration, Figure 8 below
shows one session of each of these applications, which blocks they consists of and how we define
critical sections.

Note that each of these sessions has a fairly different structure. Both BQC and PP have
one longer critical section while QKD contains three shorter critical sections. This means that
it is for example easier to interleave QKD sessions with other sessions, rather than to interleave
either BQC or PP. This can affect how program scheduling performs and it is to be expected
that program scheduling heavily depends on the programs to be scheduled.

The actual structure of these sessions is limited by the number of available communication
and storage qubits. For this project, we choose to limit the number of communication qubits
to one while the number of storage qubits is not limited. This corresponds to the hardware of
qubits implemented with color centers in diamonds [33]. This means that if a session needs two
entangled pairs, a move operation needs to be performed to move the first generated entangled
state onto a storage qubit.

We define seven different datasets for all the possible combinations of sessions; this is depicted
in Table 4. We run program scheduling and Qoala simulations with datasets that have either 6
or 12 sessions, to observe whether any trends we see in the results hold across different sizes of
input.

27

Alice Bob

CPU QPU CPUQPU

< / >

< / >

< / >

< / >

< / >

< / >

(a) A BQC session defined in
terms of blocks, their types,
and critical sections. Alice has
the role of the client and Bob
of the server.

Alice Bob

CPU QPU CPUQPU

< / >

< / >

< / >

< / >

< / >

(b) A Ping-pong session defined
in terms of blocks, their types,
and critical sections.

Alice Bob

CPU QPU CPUQPU

< / >

< / >

< / >

< / >

< / >

< / >

(c) A QKD session defined in
terms of blocks, their types,
and critical sections. Note that
this session has three separate
critical sections for both Alice
and Bob.

< / > CL block

CC block

< / > CL block sending a message

QL block with measurement

QC block

QL block

Figure 8: Illustration of how sessions are structured with regards to block types and critical
sections. Blue rectangles are classical blocks, orange rectangles are quantum blocks. Critical
sections are highlighted in red. Corresponding iqoala and yaml configuration files can be found
in the configs folder in the project repository [32]. Note that the length of the different types
of blocks presented in this figure is not proportional to the actual duration of blocks.

28

Dataset Shorthand name
Number of sessions of

BQC PP QKD

0 BQC N

1 PP N

2 QKD N

3 BQC & PP N/2 N/2

4 BQC & QKD N/2 N/2

5 PP & QKD N/2 N/2

6 BQC & PP & QKD N/3 N/3 N/3

Table 4: Combinations of sessions in a dataset if a given dataset consists of N sessions in total.
The abbreviations refer to the three applications considered in this project: blind quantum
computing (BQC), the ping-pong test (PP), and quantum key distribution (QKD).

6.3 General Code Workflow

In this subsection, we present a high-level overview of all the code logic involved in implementing
program scheduling and evaluating the quality of constructed node schedules. There are four
main steps which are in detail described below. The implemented code is available in a GitHub
repository [32].

Step 1: Data preparation. Using Qoala programs defining program configuration (specific
for each application and for each node), we create YAML configuration files used for program
scheduling. For this, we use the setup configs.py script. Note that after using this script,
the critical sections must be manually defined and an application deadline can be optionally
specified. We furthermore prepare datasets (a specific combination of session types and a given
number of total sessions, defined in Table 4) using the methods in datasets.py.

Step 2: Network schedule generation. Given a dataset, a random network schedule is gen-
erated using the NetworkSchedule.generate random network schedule() method. The exact
implementation of randomly generating network schedules is explained in Section 5.

Step 3: Node schedule construction. A pair of coupled node schedules (one for each of
the involved nodes) is constructed for each combination of dataset and network schedule using
the create schedules.py script. The construction of a node schedule automatically saves the
resulting classical success metrics. Details on the RCPSP model used for the program scheduling
can be found in Section 6.4.

Step 4: Node schedule execution. Given two coupled node schedules, the dataset, and
the relevant Qoala programs, the node schedules are executed using the Qoala simulator with
the execute schedules.py script. Here, we evaluate the quantum success metric of the node
schedule execution. Further details on this step are given in Section 6.5.

29

6.4 RCPSP Model

The framework of Resource Constrained Project Scheduling Problem (RCPSP) is used when a
list of activities with precedence relations and resource constraints need to be scheduled. In the
case of application scheduling, the activities are blocks and the goal is to schedule their execution
on either the classical processing unit (CPU) or quantum processing unit (QPU) depending on
the nature of the instructions contained in the block. The processing units are then the renewable
resources. Precedence constraints for this problem arise from the block ordering within a session,
though there is no order defined between different sessions. There are further timing constraints
based on the deadlines for application execution as well as the nature of quantum states which
lose information over time.

To fully define the RCPSP model used in this project, we describe inputs to the model and
the implemented constraints, and explain the three possible approaches to constructing a node
schedule. We then investigate how the risk-aware extension could be implemented to deal with
uncertainty in activity durations, and we comment upon the limitations of PyCSP3.

6.4.1 Model Specification

In this section, we describe how the inputs for the RCPSP model implemented in PyCSP3 are
defined. First, we consider what kind of information about the blocks is directly used by program
scheduling. We also describe in detail all the constraints used in the model and how they relate
to the constraints defined for a feasible node schedule in Definition 3.1.

As mentioned earlier in Section 6.3, instead of manually defining all the information about
each block as outlined in Table 2, we make use of the Qoala simulator to pre-process the input
data. For the Qoala simulator, we define the programs to be executed on each of the nodes
including specific instructions for both the CPU and QPU (these can be found in the configs

folder in the project repository [32]). Using the setup configs.py script, we automate extracting
the type and duration of each of the blocks being scheduled. This is exported into a YAML file:
after this step it is necessary to manually define the critical sections and the session ID, and
optionally include an application dealine. In this way, we do not make use of the parameters
defined in Table 2 coming from either the block metadata or the node lookup table; this would
be different if another simulator was used.

An input to the PyCSP3 model for program scheduling is therefore a list of blocks, a list of
their types, a list of their durations. For the RCPSP implementation, we also define a list of
successors, resource requirements, and maximum time lags. PyCSP3 works with lists because it
creates a variable array for start times of all the blocks which it continuously fills in. Instead of
working with blocks as objects, the model works with a list of each of the parameters.

Having the input data, the PyCSP3 model requires a definition of all the constraints that
must be satisfied. The constraints used in our implementation are as follows:

• Resource constraints: each block defines the resources which it is using; through the
use of the Cumulative constraint, we restrict that the capacity of the available resources
(the CPU and the QPU) is not exceeded at any point. Note that this implementation
easily allows to extensions where we allow parallel executions on the CPU or even the
QPU, but in this project we keep a capacity of a single CPU and a single QPU without
”multi-threading”. See Section 8.2 for more details on how this could be used.

• Precedence constraints: if a block j belongs to a set of successors of block i, we constrain
its starting time sj by si + di ≤ sj where di is the processing time of block i. The set of
successors for each block is constructed based on the order of blocks in a program. Because

30

there is no specific order defined for the programs, the set of successors for the last block
in a program is always empty.

• Maximum time-lag constraints: whenever a maximum time-lag constraint dmax
ij is

defined between blocks i and j, the difference in the start times is restricted by sj − (si +
di) ≤ dmax

ij . The maximum time-lags are used to enforce the critical section constraints;
whenever a block i and j belong to the same critical section and block i must be executed
before block j, we define dmax

ij = 0. Note that when a network schedule is defined, we do
not consider any maximum time-lags for QC blocks because the start time defined by the
network schedule takes precedence.

• Network schedule constraints: a j-th QC block of a program i must be scheduled at
the start of its respective timeslot t(i,j) defined by the network schedule. We guarantee
this by two constraints in the PyCSP3 code: we constrain that each QC block of program i
starts on a timeslot assigned to session i and each j-th QC block within any session starts
on a timeslot assigned to a j-th QC block. In conjunction, these two constraints guarantee
the desired condition.

6.4.2 Finding a Node Schedule

We consider three different approaches to constructing a node schedule: naive scheduling in
which programs are simply scheduled in a consecutive manner, heuristic-driven scheduling which
relies on the use of heuristics to find a node schedule satisfying the constraints, and optimal
scheduling which makes use of an objective function and guarantees optimality.

For constructing naive schedules, we add another constraint to the RCPSP model. This
constraint states that if i < j for any two blocks i, j, the start times si, sj are assigned such
that si < sj . Notice the difference to the precedence constraint defined in Section 3.2: in that
constraint we enforce the order of blocks within a session, while here we impose an order for all
the blocks to be scheduled. This constraint guarantees no blocks will be scheduled in parallel on
the CPU and the QPU, therefore constructing a naive node schedule.

By default, PyCSP3 uses the ACE solver [34, 35]. This solver comes with a default set of
settings as defined in its Control.java1 class. There are two heuristics the solver makes use of:
a variable ordering heuristic and a value ordering heuristic. The default for the variable ordering
heuristic is the dom/wdeg heuristic that selects variables based on constraint weighting [36]. The
default heuristic for ordering values is the min heuristic which selects the minimal value in the
domain of the currently selected variable. PyCSP3 allows the user to specify more detailed
settings for the solvers, including which heuristics to use [37]. We start out by using the default
heuristics to see how they perform and later reflect on whether other heuristics would be more
suitable.

Lastly, PyCSP3 allows for specification of objective functions. Whenever an objective func-
tion is specified, the solver iterates through all possible solutions to find the optimal one. We use
this to construct an optimal node schedule where we define optimality as minimised makespan.
It is not possible to define an objective function based on the average success probability, because
that is a metric we obtain only after executing the node schedule. Note that finding the optimal
node schedule using an objective function is computationally more expensive because it means
solving a constraint optimisation problem instead of a constraint satisfaction problem.

1https://github.com/xcsp3team/ace/blob/main/src/main/java/dashboard/Control.java

31

https://github.com/xcsp3team/ace/blob/main/src/main/java/dashboard/Control.java

6.4.3 Risk-aware RCPSP Extension

There are two sources of uncertainties in the schedule that is being created with the RCPSP
workflow. These are the blocks with quantum communication operations and blocks with classical
communication (in the case of classical communication, the uncertainty only applies to receiving
messages). Uncertainty in activity duration can be mitigated by extending the RCPSP framework
to be so-called ”risk-aware”. We describe the two main approaches to risk-aware RCPSP in
Section 2.4.1.

Throughout the research into risk-aware RCPSP, it became obvious that the domain of clas-
sical systems makes some underlying assumptions about the context of the schedules and this
might not directly translate to the quantum domain. Firstly, it is note-worthy that due to the
inevitable randomness of quantum applications, a failure in execution of one session is not highly-
critical — it is very common that it would need to be rerun until successful execution. Secondly,
we assume that the current implementation of quantum hardware and the interface with classi-
cal control means the time scale of quantum operations is much lower than the communication
delay between the quantum hardware and the classical control unit. This limits the possibility
of reactive behaviour during the schedule execution.

Reactive scheduling as an approach to risk-aware RCPSP is not applicable to program
scheduling precisely because of this communication delay between quantum hardware and the
classical control unit. It might not be feasible to make ad-hoc decisions whenever an activity
duration deviates from the schedule; the use of the static mode of node schedule execution (in
which we first construct the schedule and then execute) means reactive scheduling is not suitable
due to the interactions between the CPU and the QPU.

Proactive scheduling and the construction of robust schedules relies on including time buffers.
In classical systems, the guaranteed robustness may outweigh the extra cost of delays due to these
buffers, but in the domain of quantum program scheduling, an introduction of any unnecessary
delays might have a detrimental effect on the quality of quantum states due to the effects of
decoherence. For this reason, proactive scheduling is not suitable for mitigating the consequences
of uncertainty in program scheduling.

It seems that neither reactive or proactive scheduling lends itself to be useful in program
scheduling. However, as our project also introduces a way of executing node schedules, we do
propose a ”risk-aware” addition to the Qoala simulator. Note that this very much depends on
the actual implementation of the simulator and we cannot guarantee this will be possible on
actual quantum hardware.

The proposed solution is to implement a left-shift rule for the schedule execution. An im-
plementation of the left shift rule means that whenever a block executes earlier than expected
(i.e. entanglement is generated faster than expected or a classical message arrives earlier than
expected), any blocks scheduled to execute in the future are moved to execute earlier. (Note that
there is no guarantee this will always be possible due to other constraints, such as the resource
constraints.)

To be able to investigate this risk-aware extension, we need to be able to adjust the duration
of individual blocks with classical or quantum communication in the Qoala simulations. Unfor-
tunately, while the current version of the Qoala simulator (0.2.2) provides a way to do this for
quantum communication blocks (by adjusting the prob success for the Link configuration), it
is not implemented for blocks with classical communication. Nonetheless, if this is implemented
in the future, the investigation of a risk-aware extension to execution of node schedules should
be fairly straightforward. We elaborate on this as part of the possible future research directions
in Section 8.2.

32

6.4.4 Limitations of PyCSP3

It is important to mention that PyCSP3 and its solvers have limited computational capabilities.
With problem instances that are large enough, the solver cannot find a solution even though the
problem is feasible to solve. The documentation of PyCSP3 does not offer any official information
on where these limits reside, so the limits were being continuously explored during this project.

To increase the domain of problems PyCSP3 could solve, we implemented an additional step
to program scheduling. When we formulate program scheduling within the RCPSP framework,
the solver is solving a problem of assigning a start time to each of the block. Each assignment
of a start time has a domain that is as long as the node schedule. This means that the longer
the node schedule, the more possible values there are for each start time and the more complex
the problem becomes.

Each of the blocks to be scheduled has a certain duration on a time scale of nanoseconds.
There is no block that only takes 1 nanosecond — in fact, the shortest block our implementation
works with is a classical local block which takes 100000 ns (0.1 ms). We therefore implement
scaling of all the variables in the RCPSP formulation by the greatest common divisor of all
the block durations. This greatest common divisor is usually of the order of magnitude of
100000 nanoseconds, and therefore this additional step in our implementation helps us reduce
the problem size by several orders of magnitude.

Despite this optimisation, the computational powers of PyCSP3 are still a limiting factor in
some of our design decisions. For example, when deciding on the number of programs that should
be scheduled, we found out that 18 programs were already not feasible to solve by PyCSP3. Fur-
thermore, the difference in orders of magnitude between the shortest and longest block determine
how much is the above-mentioned optimisation useful — therefore the choice of some hardware
parameters mentioned in the next subsection was also motivated by the limits of PyCSP3.

6.5 Evaluating Quantum Success Metrics

As mentioned in Section 4, some of the success metrics of program scheduling can only be
evaluated after an execution of the constructed node schedules. Because of that, we include
simulations of the node schedule execution in the workflow of program scheduling. To simulate
how the node schedules would perform, we use the Qoala simulator [31]. In this section, we
describe how the simulations in Qoala are set up and what kind of data is necessary to run them.

To run the Qoala simulations, it is necessary to provide the Qoala programs describing the
blocks of instructions both nodes need to execute, as well as the constructed node schedules for
Alice and Bob. The node schedules are then used to create what Qoala calls a TaskSchedule —
a schedule of when are the particular blocks executed. In the Qoala simulations, it is possible to
define an entry in the TaskSchedule only using its predecessors in which case Qoala automatically
executes it as soon as possible. To ensure the node schedule execution satisfies the constraints
imposed by the network schedule, we use both the order and the start times of the blocks in the
constructed node schedules. Because quantum simulations are probabilistic, an execution of the
coupled node schedules is then run many times to get an average of the quantum success metrics.

It is also important to note that the behaviour of the Qoala simulations depends on the
parameters one sets for the hardware of the nodes and of the links in the quantum network. For
this project, we chose a set of parameters that corresponds to realistic hardware parameters for
colour centres in diamonds [24]. The choice of some of the software parameters was motivated by
discussions with engineers at QuTech [38] but also by the limitations of PyCSP3 mentioned in
the previous section. An overview of all the parameters defined in Qoala can be seen in Table 5.

The average success probability depends on the result of execution of every individual session.
To evaluate this quantum success metric, we need to be able to determine whether a session has

33

Group Parameter Value Description

Node
parameters

Communication T1 1 s [39] T1 time of communication qubits

Communication T2 1 s [39] T2 time of communication qubits

Storage T1 1 s [39] T1 time of storage qubits

Storage T2 1 s [39] T2 time of storage qubits

Single-qubit duration 20 µs [24] Duration of single-qubit gates

Single-qubit noise 0.013 [39] Noise in single-qubit gates

Multi-qubit duration 500 µs [39] Duration of multi-qubit gates

Multi-qubit noise 0.04 [39] Noise in multi-qubit gates

Link
parameters

cycle time 20 ms [24] Duration of a QC block

prob success 1 Probability of successful entanglement generation

prob max mixed 0.33 Probability of generating a mixed state

state delay 0 Delay of delivering states

Software
parameters

HOST INSTR TIME 100 µs [38] Duration of a classical instruction

HOST PEER LATENCY 10 ms [38] Duration of a classical communication block

QNOS INSTR TIME 100 µs [38] Duration of a classical instruction in a QL block

Table 5: An overview of all the parameters necessary to set up Qoala simulations. The hardware
parameters related to nodes are set in the qoala topology config.yaml file, the parameters
related to the quantum link are specified in the qoala link config.yaml file, and the software
parameters are defined as global variables in the execute schedules.py script [32].

executed successfully or not. We therefore define the success/fail metric for each application
separately:

BQC: One session of the BQC application corresponds to one round of computation that
the server (Bob) performs on behalf of the client (Alice). In the BQC sessions executed within
this project, we can set all the input parameters the client is using and therefore we are aware of
the expected measurement outcome the server should obtain. The success condition for a BQC
session is therefore whether the server gets the expected measurement outcome.

Ping-pong: One session of the ping-pong application consists of two teleportation opera-
tions: Alice prepares a state (randomly chosen between |0⟩ and |1⟩) and then two teleportation
operations move the state to Bob and back to Alice. We evaluate whether this happened suc-
cessfully by a measurement of Alice’s state. Note that a better evaluation method would be to
inspect the state Alice ends up with and calculate its fidelity compared to the state she meant
to prepare. However, this is not possible because we cannot examine the quantum state while
the simulation is running.

QKD: Execution of quantum key distribution can be evaluated based on the number of bits
of secret key shared between the two involved parties. For the purposes of this project, we define
a QKD session as generation of a shared key of length 3. Using simulations, we can set the mea-
surement bases in which Alice and Bob measure and therefore we know the expected number of
bits of key Alice and Bob should share. A QKD session is successful if Alice and Bob indeed

34

retrieve a key with the expected number of bits.

In this section, we have described what kind of data we use in this project and how is the
program scheduling and execution of node schedules implemented. The entire implementation
can be found in the GitHub repository for this project [32]. In the next section, we look at the
results from our simulations and answer the research questions posed in Section 1.

35

7 Results

In this section, we show and discuss the results of evaluating the RCPSP implementation of
program scheduling. Firstly, we comment on the consequences of classical communication not
being synchronised (unlike the quantum communication based on the network schedule) and
what this means for the evaluation of program scheduling using the proposed success metrics.
Then we compare the performance of heuristic-driven and optimal program scheduling. Lastly,
we consider a scenario in which there are no network schedules and compare the performance of
naive and heuristic-driven approaches to program scheduling.

The entirety of the code used to obtain these results is available on GitHub [32]. This
repository also contains all network and node schedules derived during this investigation, as well
as all the processed data and scripts used to create plots shown in this section.

7.1 Effect of Asynchronous Classical Communication

Before we show the results of different approaches to program scheduling, it is necessary to
mention a limitation of the simulations and of program scheduling as a whole. One of the
key assumptions in program scheduling is that nodes have no information about the programs
the other nodes in the network are executing. This ensures the security guarantees of certain
applications are not compromised. It is also the motivation for having the network schedule
— a central controller must decide when entanglement generation can be attempted using the
aggregated data from all the nodes. The network schedule constraints ensure that quantum
communication is scheduled at the same time. However, no such equivalent concept exists for
classical communication.

This means that nodes cannot know when to expect classical messages from other nodes.
Program scheduling is by its definition limited to schedule receiving of a classical message at a
point in time when the message might not have been sent yet. To illustrate this point, in Figure 9
we contrast how a BQC session looks (taken from Figure 8a) with how such a session would be
scheduled locally for Alice and Bob.

This has several consequences for program scheduling: it limits the possibility to optimise
construction of node schedules and renders classical success metrics retrieved from static node
schedules potentially inaccurate. Upon execution of the node schedule, receiving a classical
message becomes a blocking operation — if the local scheduler knew when it could expect
the classical message to arrive, it could have scheduled other blocks in the meantime. The
makespan of a static node schedule does not necessarily correspond to a makespan of the node
schedule execution because some delays might be caused by a classical message arriving later
than expected. It is therefore anticipated that the makespan retrieved from Qoala simulations
will be lower bounded by the makespan of static node schedules.

In Figure 10, we compare the static and dynamic makespan for node schedules constructed
based on one random network schedule per each dataset. The static makespan is retrieved from
the constructed node schedules, whereas the dynamic makespan is retrieved from executing the
node schedules using the Qoala simulator. We can observe that indeed the dynamic makespan is
at least as large as the static one, and in some cases it is larger. This is caused by the unforeseen
delays in classical communication. It is important to highlight that it is expected that the node
schedules of Alice and Bob have different makespan values because they might be executing
different programs.

We do not have precise information about how long each of the classical communication
blocks take — this information is only available during the runtime of Qoala. It is therefore
difficult to evaluate the total duration of all blocks executed on the CPU and the QPU; for that

36

Alice Bob

CPU QPU CPUQPU

< / >

< / >

< / >

< / >

< / >

< / >

(a) A BQC session defined in terms of
blocks, their types, and critical sections
(copied from Figure 8a).

Alice

CPU QPU

< / >

< / >

< / >

(b) How a BQC program
would be scheduled in Al-
ice’s node schedule.

Bob

CPUQPU

< / >

< / >

< / >

(c) How a BQC program
would be scheduled in
Bob’s node schedule.

< / > CL block

CC block

< / > CL block sending a message

QL block with measurement

QC block

QL block

Figure 9: Illustration of asynchronous classical communication. Note that the quantum com-
munication blocks are restricted by the network schedule and are therefore always scheduled at
the same time. The green rectangles highlight where the local scheduler schedules receiving a
classical message earlier.

37

Figure 10: Comparison of makespan retrieved from static node schedules and from the executed
pair of node schedules using the Qoala simulator. The node schedules are constructed using
the heuristic-driven approach based on datasets with 6 sessions (see which datasets the short-
hand notation corresponds to in Table 4). For each of the dataset, we pick one random network
schedule and show the makespan values for node schedules constructed based on this network
schedule; this means that all the static makespan values that are shown are from a single data
point and therefore do not have any error bars. The dynamic makespan is the average makespan
retrieved from 200 simulation runs — here we can see some standard deviation for a few of the
datasets. It is not clear where precisely this deviation comes from, but we attribute it to how the
Qoala simulator resolves execution of instructions. If there is no error bar shown on the dynamic
makespan, it means it is the same in all the Qoala simulations.

reason we do not report on the values of the processor utilisation factors defined in Section 4.
Note that the PUF values are directly dependent on the values of makespan, and since we show
results for the values of makespan, these results should also be representative of the trends in
the PUF values.

The question of how to mitigate the unpredictability of classical communication is left as
an open question. It is not immediately obvious whether there is anything that can be done
to synchronise classical communication without introducing unnecessary delays in the schedules.
Based on the results shown in Figure 10, the difference in static and dynamic makespan values
is not significant, but it is nevertheless an interesting insight into the capabilities of program
scheduling given its current definition.

7.2 Heuristic-Driven and Optimal Program Scheduling

In this section, we look into comparing the performance of heuristic-driven and optimal program
scheduling. We first explain how we represent uncertainty in the data based on an example with
6 sessions of BQC. Then, we compare the classical success metric (makespan) and the quantum
success metric (average success probability) for all the datasets. Lastly, we look at the time it
takes to construct node schedules using the heuristic-driven and optimal approaches to compare

38

their computational requirements.
To answer the research question on heuristic-driven and optimal program scheduling, we first

generate a 100 random network schedules for all datasets with 6 and 12 sessions using the method
described in Section 5. These random network schedules are used in place of network schedules
that would otherwise be constructed by network scheduling. The form of a network schedule
can greatly influence what kind of node schedules can be constructed, which is why we generate
numerous network schedules and evaluate the averages of the success metrics. For the plots
shown in this section, we use the short-hand notation introduced in Table 4 to describe which
sessions the datasets consist of. Note that when we say a node schedule is constructed for a given
dataset, we mean the dataset to consist of programs and not sessions.

First, we show a comparison of the average success probability for dataset consisting of 6
BQC sessions based on one randomly generated network schedule in Figure 11a. The value of
the average success probability is an average over 200 runs of the Qoala simulations (this is the
default for any node schedule execution in this project). The error bars shown in this figure
represent the standard deviation of the success probability. The standard deviation is quite high
— that is because when scheduling 6 sessions, the success probability of executing a pair of
coupled node schedules can only take on 6 discrete values (multiples of 16.6 %). The variance
in this data is intrinsically large and running the simulation more times would not decrease the
size of the error bars.

Next we consider the average success probability for one dataset but averaged over a 100
randomly generated network schedules. In Figure 11b, we show the average success probability
for the dataset with 6 BQC sessions. We show two kinds of error bars: the larger red error bars
show the standard deviation over all the data points (i.e. each individual simulation run), while
the smaller black error bars show the standard deviation of the average success probabilities
for each random network schedule (i.e. we first calculate the average success probability for
each network schedule separately, and then calculate the standard deviation of these averages).
While we cannot remove the intrinsic variance in the data, the smaller error bars should be
representative of the program scheduling performance.

For each of the seven datasets with either 6 or 12 sessions, we generate a 100 random network
schedules (that is in total 14 000 different network schedules). Based on each of these network
schedules, we construct a pair of node schedules for Alice and Bob using both heuristic-driven
and optimal program scheduling (in total, we have 28 000 pairs of node schedules, i.e. 56 000
node schedules). Afterwards we execute each pair of node schedules 200 times using the Qoala
simulations. We calculate the average success probability for each dataset of length 6 or 12 and
show the results in Figure 12. This allows us to investigate the performance of heuristic-driven
and optimal program scheduling.

To compare the performance of heuristic-driven and optimal program scheduling, we can
observe whether the achieved success metrics are any different for the two approaches. First,
let us comment on the obtained values of makespan: we find that the dynamic makespan values
are very similar for the heuristic-driven and optimal approaches. For each of the datasets, we
calculate the average makespan over all the random network schedules run 200 times and we
report the relative difference in Table 6. The relative difference is very small. Interestingly
enough, in a few cases when the relative difference is positive, the makespan of the heuristic-
driven node schedules is actually shorter than the optimal node schedules; this might be due to
some uncertainty in the data because this is averaged out over many random network schedules.

Next we investigate the behaviour of the average success probability and whether it differs for
heuristic-driven and optimal program scheduling. Figure 12a shows that the success probability
is statistically similar for both the heuristic-driven and optimal approach. Unfortunately, the
large intrinsic variance in the data prohibits us from making any stronger claims about the

39

(a) Average success probability for node schedules constructed for dataset with 6 BQC sessions based on
one randomly generated network schedule (with ID 8). The values shown are averaged from 200 runs
of the Qoala simulations, and the error bars show standard deviation of these values. The variance of
the data is intrinsically high due to the discrete values for the average success probability.

(b) Average success probability for node schedules constructed for dataset with 6 BQC sessions based
on a 100 randomly generated network schedules. The values shown are averaged from 200 runs of the
Qoala simulations. The red error bars show standard deviation of all the individual success probabilities,
while the black error bars show the standard deviation of averaged success probabilities per individual
network schedules.

Figure 11: Comparison of the average success probability for node schedules constructed for a
dataset with 6 BQC sessions (dataset 0), based on one random network schedule (11a) and a
100 randomly generated network schedules (11b.

40

Number of
sessions

Dataset

BQC PP QKD BQC & PP BQC & PP PP & QKD BQC & PP & QKD

6 0.0 −1.5 · 10−7 0.0 1.2 · 10−7 0.0 −2.2 · 10−9 −5.3 · 10−8

12 0.0 1.4 · 10−9 0.0 −4.0 · 10−8 0.0 −8.5 · 10−9 −1.0 · 10−8

Table 6: Comparison of the makespan values for heuristic-driven and optimal program scheduling
for datasets with 6 and 12 sessions. The relative difference shown in this table is calculated
as (µOPT − µHEU)/µOPT between the average makespan values µHEU and µOPT for heuristic-
driven and optimal program scheduling respectively. If the value shown is negative, it means the
heuristic-driven makespan is higher.

differences. Nevertheless, it is reasonable to say that we can achieve comparable performance
with the heuristic-driven approach compared to creating optimal node schedules.

This is supported by the fact that the dataset with 12 sessions in Figure 12b show the same
trends. Note that the total standard deviation (the red error bars) is smaller for the datasets with
12 sessions because then there are in fact 12 distinct possible values for the resulting average
success probability. Nonetheless, the average success probability does not seem statistically
different for the heuristic-driven and optimal program scheduling even for the datasets with
12 sessions. The relative differences in the achievable average success probabilities also behave
similarly across the datasets with 6 and 12 sessions. In conclusion, neither the makespan nor the
average success probability show that heuristic-driven program scheduling performs worse than
the optimal approach.

A noticeable difference between the heuristic-driven and optimal program scheduling can be
seen in its computational time. In Figure 13 we show the average time taken to construct a node
schedule for the different scheduling approaches and different numbers of sessions in a dataset.
We can see that a node schedule for a dataset with more sessions takes longer to construct.
We can also see a statistically significant difference between the heuristic-driven and optimal
approach: heuristic-driven approach performs better.

To investigate the trends more closely, we define an improvement factor of the average time
taken to construct a node schedule as

Improvement Factor =
Average computational time using heuristics

Average computational time using optimal approach

This is plotted in Figure 14. The lower the value in the figure, the less time it takes for the
heuristics to construct a node schedule compared to the optimal approach. We can see all
data points except for one are below the value of 1, therefore showing heuristic-driven program
scheduling is faster than optimal scheduling. We also observe a greater improvement with larger
datasets; use of heuristics is more beneficial with larger problem instances.

To summarise our investigation into heuristic-driven and optimal program scheduling based
on randomly generated network schedules, we can conclude that while performance of both
approaches does not seem to differ in terms of the makespan or the average success probability,
heuristic-driven program scheduling has lower computational time. This is a useful result for
any future investigations into program scheduling using RCPSP as computational resources can
be saved by using heuristics. Because we achieved comparable performance to optimal program
scheduling using the default heuristic in PyCSP3, we do not investigate using different heuristics
in this project.

41

(a) Average success probability for all datasets with 6 sessions based on a 100 randomly generated
network schedules and 200 runs of Qoala simulations.

(b) Average success probability for all datasets with 12 sessions based on a 100 randomly generated
network schedules and 200 runs of Qoala simulations.

Figure 12: Comparison of the average success probability for heuristic-driven and optimal pro-
gram scheduling based on datasets with 6 and 12 sessions. The red error bars show standard
deviation of all the individual success probabilities, while the black error bars show the standard
deviation of averaged success probabilities per individual network schedules.

42

Figure 13: Comparison of the time it takes to construct a node schedule using either the heuristic-
driven or optimal program scheduling based on datasets with 6 or 12 sessions. This is averaged
across the construction of 100 pairs of node schedules for each combination of dataset size and
scheduling approach. The error bars show the standard deviation of the computational time.

Figure 14: Improvement factor of time taken to construct a node schedule between the heuristic-
driven approach and optimal approach. The error bars shown here represent the maximal and
minimal improvement factor calculated based on the average solve time µ and its standard
deviation σ (shown in Figure 13). More specifically, the minimum and maximum improvement
factors are calculated as IFmin = µHEU−σHEU/µOPT+σOPT and IFmax = µHEU+σHEU/µOPT−σOPT.

43

7.3 Node Schedules Without Network Schedule Constraints

The RCPSP implementation allows for construction of node schedules without network schedule
constraints. This scenario does not represent a situation that would be aligned with the quantum
application scheduling workflow [3], but offers insights into a case where nodes in a network
have access to some on-demand entanglement generation device. In this section, we analyse
the performance of node schedules constructed without any network schedule constraints and
evaluate whether such an approach results in better values for the success metrics.

We introduce a new approach to program scheduling called naive. This approach schedules
programs sequentially without any interleaving. The likelihood that our proposed method of
generating random network schedules (see Section 5) creates a network schedule which allows for
naive scheduling is very low. In this section, we therefore investigate the performance of naive
and heuristic-driven program scheduling in the absence of network schedule constraints.

If there is no network schedule dictating precise timeslots for entanglement generation, the
local scheduler is free to choose any start time for its QC blocks. Note that nodes cannot be
aware of any scheduling decision undertaken by the other nodes for security reasons (e.g. being
aware of the other node’s expected computation time in the context of a BQC application can
compromise the security guarantees). However, the structure of programs being scheduled on two
nodes might be different and it is possible that both nodes will schedule entanglement generation
to start at different times. The Qoala simulator only simulates entanglement generation once a
request for generating entanglement is submitted by both nodes; this is a blocking operation and
whichever node request the entanglement generation sooner cannot execute anything else on the
QPU in the meantime.

Now that there are no network schedule constraints, there is a unique pair of node schedules
for each combination of a dataset and scheduling approach. When we compare the average
success probability for naive and heuristic-driven program scheduling in the absence of network
schedule constraints in Figure 15, we cannot conclude any statistically significant results because
of the large intrinsic variance in the data. This is again a consequence of having only a limited
number of discrete values for the success probability. Additionally, there is not a clear trend in
the time it takes to construct a node schedule using either of these scheduling approaches nor
any clear difference in the obtained makespan values.

Lastly, we want to consider whether a comparison of performance of program scheduling with
and without network schedule constraints provides any insights into the usefulness of network
schedules. To that end, we compare the success metrics of heuristic-driven program scheduling
based on either randomly generated or no network schedules in Figure 16. In Figure 16a, we see
that the average success probability is sometimes lower for the node schedules constructed with
network schedule constraints, however, the size of the error bars prevents us from making any
statistically significant conclusions.

It is in fact possible that node schedules constructed in the absence of network schedule
constraints might perform better. The reason for that might be the values of the makespan:
for node schedules without network schedule constraints, the makespan values are around three
times smaller than for node schedules based on random network schedules (see Figure 16b).
Nonetheless, having no network schedules is not a feasible solution for when different pairs of
nodes want to execute quantum applications on a quantum network and the resources to generate
entanglement must be shared. We conclude that network schedules bring a guarantee of utility
of the network resources and do not cause an observable decrease in the performance of program
scheduling.

44

Figure 15: Comparison of the average success probability of node schedules constructed using
naive and heuristic-driven node schedules in the absence of network schedule constraints. This
is averaged over 200 runs of Qoala simulations, and the error bars show the standard deviation.

45

(a) Comparison of the average success probability for heuristic-driven program scheduling run with and
without network schedule constraints. The average success probability is calculated based on 200 runs
of Qoala simulations, and the error bars show the standard deviation.

(b) Comparison of the makespan for heuristic-driven program scheduling run with and without network
schedule constraints. The makespan values are averaged over 200 runs of Qoala simulations. Note that
in the case of no network schedule constraints, we only have one pair of node schedules and so some of
the datasets show no deviation in the obtained makespan. The small error bars for datasets with PP
and BQC & PP arise from the Qoala simulator. The error bars for node schedules based on network
schedules reflect the fact that different network schedules result in different makespan values.

Figure 16: Comparison of success metrics for heuristic-driven program scheduling run with
(“With NS”) and without (“No NS”) network schedule constraints.

46

8 Conclusion

In this section, we discuss the limitations of results shown in this thesis and propose directions
in which a future research into program scheduling could venture in. We conclude this thesis by
a high-level summary of the findings obtained in this project.

8.1 Discussion

Firstly, it is insightful to question the motivation for investigating program scheduling in the
first place. The current state of quantum networks and quantum hardware does not require
program scheduling yet. However, since program scheduling and the entire architecture for
running applications on a quantum network can be developed in parallel to quantum networks
through the use of simulations, there is value in investigating this even though it is not yet
practically realisable.

Program scheduling is highly dependent on the previous outputs of network scheduling. Be-
cause network scheduling is still under development, it is hard to design a realistic input. In this
project, we circumvented this by generating random network schedules. Unfortunately, using
random network schedules introduces an extra layer of uncertainty in the evaluation of perfor-
mance of program scheduling. While we can compare how the different approaches to program
scheduling behave based on different inputs, it is not possible to reach any absolute conclusions.
The problem of finding optimal network schedules is non-trivial to solve because the quality
of network schedules can only be evaluated through program scheduling. The evaluation of
both network and program scheduling is therefore closely intertwined and must be undertaken
simultaneously.

The actual implementation of program scheduling using RCPSP as proposed in this project
has several limitations. The scheduling algorithm is fairly complex and its implementation in
PyCSP3 imposes strict limits on the size of problems that can be solved. The complexity of
RCPSP also affects the computational time — in fact, generating a node schedule takes longer
than its subsequent execution. This can still be acceptable if a node schedule is executed multiple
times in succession. Nevertheless, in order to mitigate these limitations, it might be worthwhile
to consider investigation of other and perhaps simpler scheduling algorithms. We elaborate on
this in the next section.

The evaluation of program scheduling and constructed node schedules is also limited by the
large intrinsic variance of obtained values for the average success probability. This mainly stems
from the small problem instances and a small number of discrete values for the quantum success
metric. We can see that the standard deviation is smaller for larger datasets. Unfortunately, it
was not computationally feasible to increase the datasets in order to have more precise values
of the average success probability. Perhaps looking into a different scheduling approach will
allow for larger problem instances for program scheduling, which will in turn allow us to more
effectively evaluate the performance.

The last identified limitation to program scheduling is the asynchronous classical communica-
tion. As previously remarked upon, the fact that nodes are unaware of what operations are being
executed at other nodes means that the classical communication is not synchronised. We do not
see a clear way how to circumvent this issue. The consequence of asynchronous classical com-
munication is that program scheduling can only be evaluated by executing the constructed node
schedules because only during execution will the effects of asynchronous classical communication
become visible.

47

8.2 Future Research

In this subsection, we outline potential directions for future research. Throughout the course
of this project, we encountered many interesting questions that were beyond the scope of our
investigation. Here, we provide a summary and insights into each of these questions on each of
them, with the hope of inspiring further study of program scheduling scheduling.

Soft deadlines. Hard deadlines are often used in classical problems, but within the quantum
field, the use of soft deadlines might be more suitable because the quality of a quantum state
decreases with time. Soft deadlines could be implemented by defining a time-utility function
such that e.g. a depolarising noise is applied after a certain deadline (or perhaps since the state
preparation instructions).

Unordered blocks. For now, we work with the assumption that the list of blocks to be
scheduled is ordered. However, the case when such a list would be only partially ordered is more
realistic as some blocks can be in theory happening in parallel (i.e. the order of execution does
not matter). The question then becomes: how does the application scheduler deal with programs
that do not have a clearly defined order of blocks? (Note that if one wants to stay in the realm
of RCPSP, it might require some extension such as multi-mode, because “Several heuristic pro-
cedures for (approximately) solving project scheduling problems require a strict order ≺ in node
set V .” [4, p. 20].)

Increasing capacity of CPU and QPU. In this thesis, we make the assumption that
neither the CPU nor the QPU can run two different instructions simultaneously. The limit on
CPU does not reflect any realistic scenario because we could assume much larger classical compu-
tational power. Furthermore, an on-going research into concurrent execution of programs on the
QPU [40] suggests that it could be possible to eliminate the concept of critical sections: assum-
ing sufficient number of storage qubits, it is possible to interleave execution of different critical
sections, although it is not evident how much this would affect the average success probability.
The capacity of CPU and QPU is therefore another line of direction that can be investigated; in
our code, the capacities are given by a parameter and can be very easily adjusted, we therefore
make it possible to further investigate this using our proposed implementation. (Note that for im-
plementing swap operations as suggested in [40], some extensions to the code would be required.)

Investigating the left-shift rule. We suggest how to investigate the risk-aware extension
to node schedule execution in Section 6.4.3. To be able to do this, the Qoala simulator must
be extended to allow for variable durations of blocks with classical communication. A suitable
setup of duration of classical communication blocks then becomes crucial. We ideally arrive at
a scenario where a delay in classical communication regardless means a very low success proba-
bility of a correct execution and as such, the execution can be aborted. This means setting up
the durations of blocks for a “worst-case” scenario and using the left-shift rule for improvements
during execution.

Different scheduling paradigm. The RCPSP framework provides a lot of flexibility in
defining constraints, but it might be too complex for the domain of program scheduling. One
could look into utility accrual scheduling methods [41, 42] or simply the earliest deadline first
scheduling approach [43] (including a time-dependent utility function as suggested above). Such
a simpler method could potentially generate similarly performing node schedules at a lower com-
putational cost.

48

8.3 Summary

In this thesis, we have investigated an RCPSP implementation of program scheduling. Program
scheduling was formally defined within the architecture designed to support execution of quan-
tum applications on quantum networks, and several classical and quantum success metrics were
devised to allow for evaluation of the performance of program scheduling.

Our implementation of program scheduling makes use of the Resource-Constrained Project
Scheduling Problem (RCPSP) framework. We furthermore provide a way of executing the con-
structed node schedules using a quantum simulator. Both of these contributions enable an
investigation of different approaches to program scheduling: we find that heuristic-driven ap-
proaches show no decrease in performance but have the advantage of lower computational costs.
Having no network schedule constraints results in having shorter node schedules and potentially
a better performance, nevertheless the need for network schedules is motivated by the need to
allocate resources between all the users of a quantum network.

Besides its quantitative results, this work provides valuable insights into translating schedul-
ing problems onto the quantum domain. We establish the limits of program scheduling due
to the asynchronous nature of classical communication, and clarify some subtleties of timing
considerations within the context of network scheduling. We furthermore provide a method of
randomly generating network schedules which can be a useful baseline for the on-going research
into network scheduling.

This work delivers novel contributions to the area of scheduling quantum applications by
contributing to the definition of an architecture for running applications on quantum networks
and establishing the first comprehensive implementation of program scheduling. By making the
proposed solution open-source and emphasising the possible future research directions, we pave
the way for future investigations into quantum program scheduling.

49

References

[1] Stephanie Wehner, David Elkouss, and Ronald Hanson. “Quantum internet: A vision for
the road ahead”. en. In: Science 362.6412 (Oct. 2018), eaam9288. issn: 0036-8075, 1095-
9203. doi: 10.1126/science.aam9288.

[2] H. J. Kimble. “The quantum internet”. en. In: Nature 453.7198 (June 2008), pp. 1023–
1030. issn: 0028-0836, 1476-4687. doi: 10.1038/nature07127.

[3] Thomas Beauchamp and Hana Jirovská. “An Architecture for Running Applications on
Quantum Networks. In preparation”. 2023.

[4] Peter Brucker et al. “Resource-constrained project scheduling: Notation, classification,
models, and methods”. en. In: European Journal of Operational Research 112.1 (Jan. 1999),
pp. 3–41. issn: 03772217. doi: 10.1016/S0377-2217(98)00204-5.

[5] Sönke Hartmann and Dirk Briskorn. “A survey of variants and extensions of the resource-
constrained project scheduling problem”. en. In: European Journal of Operational Research
207.1 (Nov. 2010), pp. 1–14. issn: 03772217. doi: 10.1016/j.ejor.2009.11.005.

[6] Peter Brucker and Sigrid Knust. Complex Scheduling. en. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012. isbn: 978-3-642-23928-1. doi: 10.1007/978-3-642-23929-8.
url: https://link.springer.com/10.1007/978-3-642-23929-8.

[7] Matthew Skrzypczyk. “Dynamic Time-Division Multiple Access in Noisy Intermediate-
Scale Quantum Device Networks”. EN. Master. TU Delft, 2020.

[8] Matthew Skrzypczyk and Stephanie Wehner.An Architecture for Meeting Quality-of-Service
Requirements in Multi-User Quantum Networks. arXiv:2111.13124 [quant-ph]. Nov. 2021.
url: http://arxiv.org/abs/2111.13124 (visited on 11/07/2022).

[9] Bob Dorland. “Instruction Scheduling for Blind Quantum Computing”. EN. Master. TU
Delft, 2023.

[10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion. 10th anniversary ed. Cambridge; New York: Cambridge University Press, 2010. isbn:
978-1-107-00217-3.

[11] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key distribution
and coin tossing”. In: Theoretical Computer Science 560 (Dec. 2014). arXiv:2003.06557
[quant-ph], pp. 7–11. issn: 03043975. doi: 10.1016/j.tcs.2014.05.025.

[12] Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. en. In: Physical Review
Letters 67.6 (Aug. 1991), pp. 661–663. issn: 0031-9007. doi: 10.1103/PhysRevLett.67.
661.

[13] Dominik Leichtle et al. “Verifying BQP Computations on Noisy Devices with Minimal
Overhead”. In: arXiv:2109.04042 (Sept. 2021). arXiv:2109.04042 [quant-ph]. url: http:
//arxiv.org/abs/2109.04042.

[14] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. “Universal Blind Quantum Com-
putation”. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
Atlanta, GA, USA: IEEE, Oct. 2009, pp. 517–526. isbn: 978-1-4244-5116-6. doi: 10.1109/
FOCS.2009.36. url: http://ieeexplore.ieee.org/document/5438603/.

[15] Charles H Bennett et al. “Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels”. In: Physical review letters 70.13 (1993), p. 1895.

[16] Dik Bouwmeester et al. “Experimental quantum teleportation”. en. In: Nature 390.6660
(Dec. 1997), pp. 575–579. issn: 0028-0836, 1476-4687. doi: 10.1038/37539.

50

https://doi.org/10.1126/science.aam9288
https://doi.org/10.1038/nature07127
https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/10.1016/j.ejor.2009.11.005
https://doi.org/10.1007/978-3-642-23929-8
https://link.springer.com/10.1007/978-3-642-23929-8
http://arxiv.org/abs/2111.13124
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
http://arxiv.org/abs/2109.04042
http://arxiv.org/abs/2109.04042
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1109/FOCS.2009.36
http://ieeexplore.ieee.org/document/5438603/
https://doi.org/10.1038/37539

[17] Victoria Lipinska et al. “Certification of a functionality in a quantum network stage”.
In: Quantum Science and Technology 5.3 (July 2020), p. 035008. issn: 2058-9565. doi:
10.1088/2058-9565/ab8c51.

[18] Aristide Mingozzi et al. “An Exact Algorithm for the Resource-Constrained Project Schedul-
ing Problem Based on a New Mathematical Formulation”. en. In:Management Science 44.5
(May 1998), pp. 714–729. issn: 0025-1909, 1526-5501. doi: 10.1287/mnsc.44.5.714.

[19] E. F. Codd. “Multiprogram scheduling: parts 1 and 2. introduction and theory”. en. In:
Communications of the ACM 3.6 (June 1960), pp. 347–350. issn: 0001-0782, 1557-7317.
doi: 10.1145/367297.367317.

[20] Klaus Neumann and Jürgen Zimmermann. “Methods for Resource-Constrained Project
Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent
Time Windows”. en. In: Project Scheduling. Ed. by Jan Weglarz. Vol. 14. International
Series in Operations Research Management Science. Boston, MA: Springer US, 1999,
pp. 261–287. isbn: 978-1-4613-7529-6. doi: 10.1007/978- 1- 4615- 5533- 9_12. url:
http://link.springer.com/10.1007/978-1-4615-5533-9_12.

[21] Resource-constrained project scheduling: models, algorithms, extensions and applications.
eng. Control systems, robotics and manufacturing series. London: ISTE [u.a.], 2008. isbn:
978-1-84821-034-9.

[22] Willy Herroelen and Roel Leus. “Project scheduling under uncertainty: Survey and research
potentials”. en. In: European Journal of Operational Research 165.2 (Sept. 2005), pp. 289–
306. issn: 03772217. doi: 10.1016/j.ejor.2004.04.002.

[23] Andrew J Davenport, Christophe Gefflot, J Christopher Beck, et al. “Slack-based tech-
niques for robust schedules”. In: Proceedings of the Sixth European Conference on Planning
(ECP-2001). 2001, pp. 7–18.

[24] Matteo Pompili et al. “Experimental demonstration of entanglement delivery using a
quantum network stack”. In: npj Quantum Information 8.1 (Oct. 2022). arXiv:2111.11332
[quant-ph], p. 121. issn: 2056-6387. doi: 10.1038/s41534-022-00631-2.

[25] Matthew Skrzypczyk.An Architecture for Meeting Quality-of-Service Requirements in Multi-
User Quantum Networks. Version 1. Nov. 2021. url: https://github.com/mdskrzypczyk/
LinkScheduling.

[26] MiniZinc. url: https://www.minizinc.org (visited on 01/24/2023).

[27] Gilles Audemard, Christophe Lecoutre, and Nicolas Szcepanski. PyCSP3. Version 2.1. 2022.
url: https://github.com/xcsp3team/pycsp3.

[28] Tim Coopmans et al. “NetSquid, a NETwork Simulator for QUantum Information using
Discrete events”. en. In: Communications Physics 4.1 (July 2021), p. 164. issn: 2399-3650.
doi: 10.1038/s42005-021-00647-8.

[29] QuTech. SquidASM. Version 0.11.0. 2023. url: https://github.com/QuTech-Delft/
squidasm.

[30] Stephen DiAdamo et al. “QuNetSim: A Software Framework for Quantum Networks”. In:
IEEE Transactions on Quantum Engineering (2021). doi: 10.1109/TQE.2021.3092395.

[31] Bart van der Vecht. Qoala Simulator. Version 0.2.2. 2023. url: https://pypi.org/
project/qoala/.

[32] Hana Jirovská. Program Scheduling. June 2023. url: https : / / github . com / hjir /

program-scheduling.

51

https://doi.org/10.1088/2058-9565/ab8c51
https://doi.org/10.1287/mnsc.44.5.714
https://doi.org/10.1145/367297.367317
https://doi.org/10.1007/978-1-4615-5533-9_12
http://link.springer.com/10.1007/978-1-4615-5533-9_12
https://doi.org/10.1016/j.ejor.2004.04.002
https://doi.org/10.1038/s41534-022-00631-2
https://github.com/mdskrzypczyk/LinkScheduling
https://github.com/mdskrzypczyk/LinkScheduling
https://www.minizinc.org
https://github.com/xcsp3team/pycsp3
https://doi.org/10.1038/s42005-021-00647-8
https://github.com/QuTech-Delft/squidasm
https://github.com/QuTech-Delft/squidasm
https://doi.org/10.1109/TQE.2021.3092395
https://pypi.org/project/qoala/
https://pypi.org/project/qoala/
https://github.com/hjir/program-scheduling
https://github.com/hjir/program-scheduling

[33] Maximilian Ruf et al. “Quantum networks based on color centers in diamond”. en. In:
Journal of Applied Physics 130.7 (Aug. 2021), p. 070901. issn: 0021-8979, 1089-7550. doi:
10.1063/5.0056534.

[34] Christophe Lecoutre and Nicolas Szczepanski. PyCSP3: Modeling Combinatorial Con-
strained Problems in Python. 2022. arXiv: 2009.00326.

[35] Christophe Lecoutre. ACE 2.0: A generic constraint solver. Version 2.1. 2022. url: https:
//github.com/xcsp3team/ace.

[36] Frédéric Boussemart et al. “Boosting systematic search by weighting constraints”. In:
ECAI. Vol. 16. 2004, p. 146. isbn: 9781586034528.

[37] Christophe Lecoutre and Charles Prud’homme. Piloting PyCSP3 Solvers with General
Options. 2022. url: https://github.com/xcsp3team/pycsp3/blob/master/docs/
optionsSolvers.pdf.

[38] Ingmar te Raa-Derckx. Personal Communication. May 2023.

[39] Guus Avis et al. “Requirements for a processing-node quantum repeater on a real-world
fiber grid”. In: (2022). doi: 10.48550/ARXIV.2207.10579. url: https://arxiv.org/
abs/2207.10579.

[40] Anabel Ovide González. Personal Communication. June 2023.

[41] E Douglas Jensen, C Douglass Locke, and Hideyuki Tokuda. “A time-driven scheduling
model for real-time operating systems.” In: Proc. IEEE Real-Time Systems Symp. Vol. 85.
1985, pp. 112–122.

[42] Peng Li et al. “A utility accrual scheduling algorithm for real-time activities with mutual
exclusion resource constraints”. In: IEEE Transactions on Computers 55.4 (2006), pp. 454–
469.

[43] Laurent George, Paul Mühlethaler, and Nicolas Rivierre. “Optimality and non-preemptive
real-time scheduling revisited”. PhD thesis. INRIA, 1995.

52

https://doi.org/10.1063/5.0056534
https://arxiv.org/abs/2009.00326
https://github.com/xcsp3team/ace
https://github.com/xcsp3team/ace
https://github.com/xcsp3team/pycsp3/blob/master/docs/optionsSolvers.pdf
https://github.com/xcsp3team/pycsp3/blob/master/docs/optionsSolvers.pdf
https://doi.org/10.48550/ARXIV.2207.10579
https://arxiv.org/abs/2207.10579
https://arxiv.org/abs/2207.10579

	Introduction
	Background
	Quantum Networks
	Applications for Quantum Networks
	Quantum Application Scheduling for Quantum Networks
	Resource-Constrained Project Scheduling Problem
	Risk-aware RCPSP

	Formal Definition of Program Scheduling
	Inputs to Program Scheduling
	Outputs of Program Scheduling

	Evaluating Node Schedule Quality
	Classical Success Metrics
	Quantum Success Metrics

	Network Schedule Generation
	Randomly Assigning Network Schedule Timeslots
	Scheduling Exactly the Required Number of Timeslots
	Careful Consideration of Timing Constraints
	Final Implementation

	Implementation
	Existing Tools
	Input Data
	General Code Workflow
	RCPSP Model
	Model Specification
	Finding a Node Schedule
	Risk-aware RCPSP Extension
	Limitations of PyCSP3

	Evaluating Quantum Success Metrics

	Results
	Effect of Asynchronous Classical Communication
	Heuristic-Driven and Optimal Program Scheduling
	Node Schedules Without Network Schedule Constraints

	Conclusion
	Discussion
	Future Research
	Summary

	References

