
A Heuristic Algorithm for the Flexible Job Shop Problem with Changeover Times

Tiamo van Eijmeren
Supervisor(s): Dr. Mathijs de Weerdt, Kim van den Houten
EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

24-6-2022



Abstract
In this paper a heuristic algorithm is described that
can constructively produce solutions to a variant of
the Flexible Job Shop Problem (FJSP) that intro-
duces changeover times between each pair of two
operations consecutively performed on a machine.
The performance of the heuristic algorithm is com-
pared to the performance of an exact solver. Seven
heuristics are compared for the FJSP variant with
changeovers. The main objective function used is
the makespan of the created schedules. The differ-
ence that occurs in the quality of the seven heuris-
tics is examined also when instead the total late-
ness across all jobs is chosen as objective func-
tion. It concludes that a heuristic algorithm allows
for the creation of good feasible solutions to com-
plex problem instances for the FJSP variation with
changeover times in under 30 seconds and that it
outperforms an exact algorithm for the FJSP with
changeover for use cases where efficiency is impor-
tant and runtime is limited.

1 Introduction
The schedule for a production line in a manufacturing plant
has a direct impact on its efficiency. An inefficient schedule
will lead to an inefficient production line. One problem often
used to describe the scheduling process for a manufacturing
plant is the strongly NP-hard Job-Shop Problem (JSP) [1].
In the JSP, the goal is to create a schedule for a set of jobs
given a set of machines. Each job consists of multiple opera-
tions, which have to be performed on a specific machine out
of the set of machines. The time needed for each operation is
known.

The Flexible Job-Shop Problem (FJSP) is a more complex
generalisation of the Job-Shop Problem. In the FJSP every
operation can be performed on a subset of all existing ma-
chines, rather than on only one specific machine. This adds
complexity, since now rather than only the problem of se-
quencing all operations, there is also the subproblem of as-
signing every operation to a machine from the set of machines
on which this operation can be performed. It was first intro-
duced by Brucker and Schlie [2] in 1990.

Mapping the reality of a complex production plant to a
problem instance for the FJSP often requires simplifications
or abstractions to be made. Many real life use cases that could
be translated to the FJSP have transport times, cleaning times
or setup times for machines. The inability to easily express
these in the regular FJSP means that algorithms that can solve
the FJSP cannot be used at all in certain fields.

A variation on the FJSP can be made however that can in-
clude these cases and thus be useful for many real life scenar-
ios which the regular FJSP can not sufficiently map. We call
this variation the changeover variation. In this variation we
introduce changeover times. For each machine and combi-
nation of products of two sequentially scheduled operations
on the same machine a specific time is reserved that has to
be scheduled after the first of the two operations finishes and
before the next operation can start.

The scheduling problem of the enzyme manufacturing line
of a DSM plant is an example of this changeover variation
of the FJSP. In this plant machines have to be cleaned be-
tween every two operations with the time needed for cleaning
dependent on both the machine and the products used in the
two operations. In this paper the situation of this DSM en-
zyme manufacturing line will be used as an example of the
FJSP variation with changeovers.

An exact algorithm exists that can solve the changeover
variation of the FJSP. It aims to find the optimal solution, and
works on any problem instance for this problem. Due to this
algorithm aiming to find the optimal solution, as the size of
the instances increases, the runtime increases rapidly. This
makes it infeasible for many real-life use cases where effi-
ciency is important and only a limited runtime is available to
create schedules.

A heuristic algorithm could be a good solution in such
cases, where both the quality of the created schedules and
the time taken to create the schedules are important. Heuris-
tic algorithms have been shown to allow for the creation of
reasonably good and feasible solutions to the regular FJSP in
almost non-zero time [3] and the hypothesis is that this will
also be the case for the changeover variation of the FJSP

Creating a heuristic algorithm for this variation of the FJSP
with changeover times will be useful in the first place to deter-
mine whether heuristic approaches to this variant on the FJSP
have any merit, and whether further research is worthwhile.

A successful heuristic algorithm is also an essential contri-
bution to more complex algorithms. Most of the state of the
art approaches to solving the FJSP are meta-heuristic algo-
rithms, for which a good heuristic is necessary. A success-
ful meta-heuristic algorithm could thus potentially be devel-
oped using the heuristic algorithm or some of its underlying
heuristics. The resulting algorithm would likely be less time-
efficient but with a higher quality of resulting schedules.

The main goal of this paper is to propose a heuristic al-
gorithm that can solve the changeover variation on the FJSP
and to determine how this heuristic algorithm performs com-
pared to an exact algorithm. A secondary goal is to compare
the use of different heuristics and determine which are the
most useful for effectively creating schedules for this prob-
lem. Another secondary goal is to determine how a change in
objective function will impact the usefulness of heuristics.

The rest of the paper is structured as follows: Section 2 ex-
plains in-depth the FJSP with changeover times and gives a
background of other research done into the FJSP and varia-
tions on it. Section 3 explains the heuristic algorithm for the
FJSP with changeover times. Section 4 describes the exper-
iments performed and the results of these experiments. Sec-
tion 5 discusses and reflects on the way in which the research
has been performed and how responsibly this has been done.
Section 6 discusses and reflects on the results taken from the
experiments. Section 7 describes the conclusions that this re-
search has led to and potential future work that can be done.



2 The Flexible Job-Shop Problem with
Changeover Times

In this section first the problem will be defined in further de-
tail. Afterwards, related literature and the gap in this literature
that this paper aims to fill will be discussed.

2.1 Formal Problem Description
A formal description of the FJSP variant with changeover
times can be given as:

1. There is a set of jobs J = {J1, J2, ..., Jn} with size
n that has to be performed on a set of machines M =
{M1,M2, ...,Mm} with size m

2. Each job Ji consists of a sequence of operations
(Oi,1, Oi,2, ..., Oi,li) of length li

3. Each operation j of a job i has to be completed on one
machine out of a set Mi,j of available machine for this
specific operation.

4. Completing operation Oi,j on machine Mk takes Pi,j,k

5. Between the completion time of operation Oi,j on ma-
chine Mk and the starting time of the next scheduled op-
eration Ox,y on machine Mk has to be a gap of at least
the cleaning time for machine k and jobs i and x given
by Ci,x,k

Throughout this paper the following assumptions are also
made:

1. All machines and jobs are available at time t = 0

2. Operation Oi,j can only start being processed when all
operations Oi,x where x ≤ j have been completed.

3. A machine can only process one operation at a time.
4. Once started the processing of an operation cannot be

paused.
5. Transportation times are assumed to be included in the

processing time, such that if operation Oi,j finishes at
time t, it is possible for the processing of operation
Oi,j+1 to start at time t.

An exact algorithm to solve the scheduling problem for the
enzyme manufacturing in a DSM plant, which is an exam-
ple of the FJSP variation with changeover times, has already
been created. For this the formal definition of the FJSP with
changeover variation has been turned into an exact mathe-
matical formulation [4]. This mathematical formulation can
be given to a Mixed-Integer Linear Programming (MILP)
solver and this MILP solver can thus be used to then solve
the scheduling problem for the DSM plant. The MILP solver
is an exact solver, that takes as input a mathematical formu-
lation of the problem and a problem instance and then uses a
linear-programming based Branch & Bound algorithm to find
the optimal solution [5].

2.2 Related Literature
Much research has been done into the FJSP and variations
on the FJSP [6]. The algorithms created to solve the FJSP
can mainly be divided into three categories: exact algorithms,
heuristic algorithms and meta-heuristic algorithms [7].

Research has been done into meta-heuristic approaches to
the FJSP by Fattahi et al. [8] who created both hierarchi-
cal and integrated algorithms for solving the FJSP that use
all possible combinations of simulated annealing and tabu
search. As well as by Gao et al. [9] who created a hybrid
genetic algorithm with a variable neighborhood descent strat-
egy for the FJSP that uses two vectors as a representation.
Buddala and Mahaptra [10] proposed an integrated algorithm
using a teaching-learning based optimization method to solve
the FJSP.

A heuristic algorithm was created by Ziaee [3] that man-
aged to obtain effective solutions to the FJSP with a near
zero runtime and performance comparable to certain meta-
heuristic approaches. Sotskov and Gholami [11] created five
heuristic algorithms for the FJSP using a mixed-graph repre-
sentation. Their proposed heuristic algorithms use two differ-
ent objective functions: the makespan of a schedule and the
sum of completion times of all operations. A heuristic dis-
patching algorithm for the FJSP has been created and applied
to a real use-case to show its practical applicability by Ortı́z
et al. [12]. Research into multi-objective flexible job-shop
problems has been done by Pérez and Raupp [13], who pro-
posed a hierarchical heuristic algorithm based on the New-
ton’s method for optimization problems with multiple objec-
tives.

The general FJSP is well researched and many algorithms
for it have been proposed, mainly consisting of exact, heuris-
tic and meta-heuristic approaches. Not much research how-
ever has been done into the changeover variation on the FJSP,
although an exact algorithm for it has been created. The
changeover variation on the FSJP allows real life use-cases
that are not expressible as a regular flexible job shop problem
to now be expressed with this variant of the FJSP. Creating a
heuristic algorithm for the changeover variation on the FJSP
and testing its efficiency compared to that of an existing exact
algorithm for this variation is important to develop an under-
standing of the potential for heuristic approaches to this varia-
tion on the FJSP, as well as to provide information necessary
for the creation of successful meta-heuristic approaches for
this variant.

3 The Heuristic Algorithm
The heuristic algorithm uses a weighted combination of sev-
eral heuristics. It is based on the heuristic algorithm for solv-
ing the regular FJSP proposed by Ziaee [3], but with changes
meant for the changeover variation on this FJSP.

An algorithm that uses a weighted combination of heuris-
tics allows for the use of multiple heuristics to constructively
create a schedule. Assuming the weights used for combin-
bing the heuristics are chosen properly it will perform better
then any of the used heuristics would independently.

Further, an algorithm using a weighted combination of
heuristics allows for easy comparison between these heuris-
tics. By setting the weight of a heuristic to zero, the perfor-
mance of the algorithm without the impact of this particular
heuristic can be tested. This, combined with the information
of which weights result in the best solutions, is helpful for
determining how important and essential each heuristic is for



the creation of high quality schedules.
The main objective function used to judge the quality of

the schedules created by the algorithms is the total makespan.
The reason for using this objective function is that it is the
most widely used objective function in research on the FJSP
[6]. The total makespan is defined as the maximum comple-
tion time between all operations and the aim is to minimize
this value. Another objective function that is used is that of
lateness, which in real life scenarios where orders have dif-
ferent due dates is often of a higher importance than the total
time taken for the schedule as a whole. Lateness in this case
is defined as

∑n
i=1 max(0, te,i,li).

Some notation used in the heuristic algorithm:

sx
The sum of all Pi,j,k where i = x and
where k ∈Mi,j

cy The sum of all Ci,x,k where y = k
lmax The maximum value of all li
L A large number
wx The weight used for heuristic x

hx,i,j,k
The value of heuristic x for operation Oi,j

and machine Mk

kmax
The maximal current completion time of
all operations that are scheduled on Mk

ts,i,j The starting time of operation j of job i
te,i,j The ending time of operation j of job i
Htotal The weighted sum of the heuristics
di The due date of job i

Algorithm 1 Heuristic algorithm for FJSP with changeover

i sort← list of jobs sorted on increasing si
k sort← list of machines sorted on increasing ck
for j := 0 to lmax do

while the jth operation of some job is not yet scheduled
do
H∗

total ← L
for i∗ := n to 0 do
i← i sorti∗
if j ≤ li and Oi,j not yet scheduled then

for k∗ := 0 to m do
k ← k sortk∗

if k ∈Mi,j then
Htotal ←

∑5
x=1 wx · hx,i,j,k

if Htotal ≤ H∗
total then

H∗
total ← Htotal

z ← i
y ← k

ts,z,j ← ymax + Cy,z,prev

te,z,j ← ts,z,j + yz,j
Schedule operation j of job z on machine y with start-
ing time ts,z,j and ending time te,z,j

The pseudocode for the heuristic algorithm is shown in Al-
gorithm 1. The heuristic algorithm considers combinations
of operations and machines. It initially only considers com-
binations for the first operation of every job. The order in
which operations are considered is such that operations of
jobs which have a large total processing time are consid-

ered before those of jobs with a smaller total processing time.
Once the firsts operation for every job has been scheduled,
the algorithm then considers the operation and machine com-
binations for the second operation of each job which has 2 or
more operations. This process continues until all operations
of all jobs have been scheduled.

For each operation and machine combination that the algo-
rithm considers, it calculates the values of several heuristics.
It then calculates a final heuristic value, which is a weighted
combination of those separate heuristics. Using these final
heuristic value, it determines the next job and machine com-
bination to schedule by picking the minimum. The weights
used to combine the heuristics into one final value are not
static, the algorithm considers multiple weight values for each
heuristic and uses the values that give the best results. The
weight values for each heuristic are bounded by both a lower
and an upper bound, which are given to the algorithm as
hyper-parameters.

The six heuristics that are used in the algorithm are:
h1,i,j,k = max(kmax, te,i,j−1) + Pi,j,k

h2,i,j,k = max(0, (te,i,j−1 − kmax))
h3,i,j,k = max(0, (kmax − te,i,j−1))
h4,i,j,k = Pi,j,k

h5,i,j,k = si
h6,i,j,k = Ck,i,prev

h7,i,j,k = di

The first heuristic calculates the expected completion time
of operation Oi,j if it were to be scheduled on machine Mk.
In other words, it calculates an estimate for the new kmax of
machine Mk if operation Oi,j were to be scheduled on it. We
aim to minimize the final value of kmax for each machine,
since the total makespan is equal to the maximum kmax.

The second heuristic calculates the expected idle time of
machine Mk if operation Oi,j were to be scheduled on it next.
The higher the idle time throughout the schedule, the longer
the total completion time of all operations and thus the higher
the makespan, which is why we also want to minimize this
value.

The third heuristic calculates the expected waiting time be-
tween the previous operation of job j, Oi,j−1 and the current
operation of job j, Oi,j if it were to be scheduled on ma-
chine Mk, The longer the wait times, the longer we expect
the makespan of the total schedule to be, so this value should
also be minimized.

The fourth heuristic is the expected time taken for this ma-
chine and job combined. Taking a longer time per operation
could lead to a longer total time taken across all operations
which can lead to a higher makespan. A lower value for this
heuristic would thus be expected to lead to lower makespan.

The fifth heuristic is the total combined expected time of all
operations of job Jj . This heuristic will ensure that operations
part of longer total jobs will be prioritized. This is useful
when we are attempting to minimize the makespan, because
we want the maximum completion time between all jobs to be
as low as possible, and thus it makes sense to prioritize longer
jobs. If we were to prioritize shorter tasks, we would expect
the differences between the maximum completion times of
jobs to be larger and the maximum value of completing any



job to thus be larger as well.
The sixth heuristic is the expected changeover time that

will be necessary when scheduling Oi,j on machine Mk tak-
ing into account the previously scheduled operation on ma-
chine Mk. Minimizing the total amount of time spent on
changeovers will minimize the total amount spent and with
that also be helpful to lowering the makespan.

The seventh heuristic is the due date of the job for which
the operation is to be scheduled. This heuristic will allow
the algorithm to take into account the due dates of each job.
When the objective function is the makespan we would not
expect this to be helpful and only to have a random effect.
When the objective function is to minimize the lateness, it
would be preferential to first schedule jobs with an earlier
due date, for which this heuristic would be helpful.

4 Experimental Setup and Results
4.1 Experimental Setup
The heuristic algorithm is coded in python and the MILP is
also coded in python using the Gurobi [14] package. All ex-
periments ran on an Intel I7, 2.80GHz and 16GB ram ma-
chine.

Set N instances Min size Max size Mean size
1 13 6 78 42
2 100 76 81 78
3 130 6 78 42

Table 1: An overview of the instance sets used for the experiments.

Multiple sets of instances have been used to run experi-
ments on. An overview of the instance sets can be seen in Ta-
ble 1. The size of an instance is expressed by the amount of
jobs in the instance. For all instances the amount of machines
is equal to nine. Set 1 is a benchmark set originally created for
the MILP. It consists of thirteen instances of linearly increas-
ing sizes. Benchmark Set 2 and Set 3 have been specifically
created for this research. Set 2 consists of 100 instances of
similar size. The average size of the instances of Set 2 are
equal to the size of the largest instance in Benchmark Set 1.
Set 3 consists of thirteen groups of ten instances with equal
size, with the size linearly increasing between the groups sim-
ilarly to the individual instances in Set 1. Set 1 has been
used to compare the MILP with a long runtime limit, to the
Heuristic Algorithm with a short runtime limit, to determine
whether even with a fraction of the runtime it can still gen-
erate better results. Instance set 2 has been used to compare
the different heuristics, finetune the hyper-parameters and to
determine how the choice of heuristics and hyper-parameters
could be impacted by the choice of bjective function.

The hyper-parameters for the heuristic algorithm are the
lower and upper bounds for the weight of each heuristic and
the step sizes with which the weights for each heuristic should

Heuristic Lower bound Upper bound Step size
1 6 8 2
2 0 3 3
3 -4 0 4
4 -3 3 3
5 -1 -1 0
6 0 5 5
7 0 0 0

Table 2: The hyper-parameters for the heuristic algorithm with the
makespan as objective function that have been determined using
finetuning.

Heuristic Lower bound Upper bound Step size
1 4 8 4
2 0 3 3
3 -4 0 4
4 -3 3 3
5 -1 -1 0
6 10 20 10
7 0 6 2

Table 3: The hyper-parameters for the heuristic algorithm with the
lateness as objective function that have been determined using fine-
tuning.

be changed. This means that there are three hyper-parameters
per heuristic, for a total of fifteen hyper-parameters. The
choices for these three hyper-parameters per heuristic impact
both the runtime as well as the quality of results for the al-
gorithm and properly finetuning them is thus of utmost im-
portance. The hyper-parameters tuning was first done with
the makespan as objective function. The initial values used
in this finetuning process were based on the values used by
Ziaee [3]. The values for each hyper-parameter were then in-
dividually refined experimentally. For the lower bounds and
upper bounds of each heuristic this was done by changing the
hyper-parameter values in both the positive and negative di-
rections and using the quality of the schedules created by the
heuristic algorithm with these hyper-parameters to determine
if the hyper-parameters should be changed in this direction
and if further changes in this direction should be tested. The
step sizes have been chosen with a balance of efficiency and
schedule quality in mind. The aim for this was to find the
largest possible step size which does not cause a substantial
decrease in the average schedule quality. These values were
found by using an iterative increase of the step sizes for each
heuristic. This has led to the final values shown in Table 2.

For the heuristic algorithm in the case where the lateness
is used as objective function, the hyper-parameters have been
finetuned in a seperate process. For this process the initial
values used were the values found in the hyper-tuning pro-
cess for the heuristic algorithm with the makespan as objec-
tive function, which can be found in Table 1. The further
process of the finetuning was not changed from the process
for the case where the makespan was used as objective func-
tion, described in the previous paragraph. This led to the final
hyper-parameter values shown in Table 3.



The hyper-parameter finetuning for the heuristic algorithm
has been done on Set 2 of instances. This set is not used for
any of the experiments. The choice for using a separate set of
instances from the sets of instances used in the further exper-
iments has been made to ensure that the hyper-parameters do
not get tuned specifically to the instances in the comparison
set, which could lead to unfairness in the experiments.

The feasibility of all the schedules created by the heuristic
algorithm as well as the schedules created by the exact MILP
solver during all the performed experiments was verified us-
ing the following method. The method firstly checks if all
operations of all jobs have been scheduled in the proposed
schedule by the algorithm. It then checks if there is enough
time in between each pair of two operations on each machine
for the needed cleaning time for this particular machine and
pair of operations. It further checks if the time taken to sched-
ule operation is indeed the time needed for that operation on
that machine. Lastly it also checks that the operations of a
certain job are correctly ordered, and that multiple operations
of the same job can thus not be performed simultaneously.
All of these checks combined should ensure that the solutions
created by the algorithms are indeed feasible solutions to the
problem instances.

4.2 Results
In order to determine whether the heuristic algorithm is more
efficient than the exact algorithm we compare the perfor-
mance of the heuristic algorithm to that of the exact MILP
solver in two experiments.

The aim of the first experiment is to determine how well the
heuristic algorithm performs compared to the MILP solver in
cases where more runtime is available. For this experiment
the MILP solver has been ran with a runtime limit of 2700
seconds which corresponds to 45 minutes. The heuristic al-
gorithm has been ran with a 30 second runtime limit and using
the hyper-parameter values shown in Table 2. The objective
function used is the makespan.

For this experiment both of the algorithms ran on Set 1 of
instances. This set contains problem instances of different
sizes and the results therefore allow us to compare the per-
formances of the two algorithms across the range of instance
sizes. The reason for choosing a set which contains a lower
amount of instances has been made with the feasibility of the
experiment in mind, considering the relatively long runtime
limit for the MILP solver.

Figure 1 graphically shows the differences in the minimal
makespan found by both the MILP and the heuristic algo-
rithm (HA). The exact numerical results of this experiment
can be found in Table 3. For the lower instances with smaller
sizes, the MILP manages to find an optimal solution within
the time limit, and performs therefore performs or equal to
the heuristic algorithm. We do see that in these cases the
heuristic algorithm is still quite close to the MILP when com-
paring the quality of the schedules. As the sizes of the in-
stance increase, we see that the heuristic algorithm starts to
increasingly outperform the MILP solver. From instance 5
onward the heuristic algorithm outperforms the MILP and
starting from instance 7 the difference in schedule quality be-
comes especially significant. Even though the time taken by

Figure 1: Results of running the heuristic algorithm with a 30 second
runtime limit and the MILP solver with a 2700 second runtime limit
on instance Set 1 with the makespan of created schedules used as
objective function.

the heuristic algorithm is only a fraction of the time taken by
the MILP solver, it still significantly outperforms the MILP
solver for the larger instances.

We can conlude that the heuristic algorithm outperforms
the MILP solver for larger size instances when runtime is lim-
ited to 45 minutes or less and that for small instances although
not performing as well as the MILP it still manages to create
good feasible results.

The aim of the second experiment is to further compare the
MILP solver and the heuristic algorithm in cases where the
runtime limit is much lower. For this experiment the MILP
solver and heuristic algorithm ran with a runtime limit of 30
seconds. The heurstic algorithm used the hyper-parameter
values shown in Table 2 and the objective function used was
the makespan.

For this experiment Set 3 of instances has been used.
Once again using a range of instance sizes allows for a
better comparison between the two algorithms. Unlike in
the first experiment, it is now feasible to use an instance set
containing a larger amount of instances which will make the
results of the experiment more convincing.

Figure 2 compares the average minimal makespans found
by the two algorithms per group of instances of the same size
in the second experiment. With this runtime the MILP solver
did not manage to find a solution for each problem instance.
For problem instances where no solution was found a value of
388 was taken as makespan found by the MILP solver. This is
the highest makespan found by either of the algorithms across
all instances.

Figure 3 shows the minimal makespans found by the two
algorithms for each instance individually. In this case the in-
stances for which no solution has been found have been given
a value of 400, to ensure that these values are higher than any
of the found values.



Figure 2: Average result per group of instances of the same size
when running the heuristic algorithm with a 30 second runtime limit
and the MILP solver with a 30 second runtime limit on instance Set
3 with the makespan of created schedules used as objective function.
If no solution was found by either of the algorithms a value of 388
was used for the makespan.

Figure 2 shows that asin experiment one, for the first few
instance sizes the MILP once again outperforms the heuris-
tic algorithm slightly. For the larger instances we once again
see the heuristic algorithm increasingly outperform the MILP.
The difference in schedule quality found by the MILP and the
heuristic algorithm for the larger instances are much larger
than the differences in the first experiment, not only due to
the cases when the heuristic algorithm could not find any so-
lution as can be seen in Figure 3. This is to be expected due
to the heuristic algorithm having the same runtime in both ex-
periments while the MILP solver has a lower runtime in the
second.

From the second experiment we can conclude that when
the runtime is very limited, the heuristic algorithm can con-
sistently outperform the MILP solver on a large number of
instances across a different range of instance sizes when the
instance contains 36 or more jobs. For the instances with a
lower size, the MILP outperforms the heuristic algorithm, but
the heuristic algorithm still manages to create schedules of a
quality very close to those created by the MILP.

The aim of the third experiment is to determine the impor-
tance of each of the six heuristics used within the heuristic
algorithm for creating schedules of a high quality. This has
been examined by running the heuristic algorithm on Set 3
once for each heuristic and setting the weight of this heuris-
tic to zero for this run of the algorithm. When the weight is
set to zero for a certain heuristic this heuristic has no impact
on the final schedule created by the algorithm. This allows a
comparison between the results for all of these runs of the al-
gorithm to determine how big the impact of certain heuristics
is on the final resulting schedules. This experiment has been
done using the makespan as objective function.

Figure 4 and 5 graphically show the decrease in perfor-
mance caused when switching of the different heuristics. It

Figure 3: Results of running the heuristic algorithm with a 30 second
runtime limit and the MILP solver with a 30 second runtime limit
on instance Set 3 with the makespan of created schedules used as
objective function. If no solution was found a value of 400 was used
for the makespan.

displays the difference between the results created by the al-
gorithm without the heuristic and the full heuristic algorithm,
such that the heuristic algorithm with all heuristics turned on
would get a value of zero for each instance.

In Figure 4 we see that when heuristic 1 is removed the
makespan found increases majorly. Without the use of heuris-
tic 1, the heuristic algorithm is not able to find good and fea-
sible solutions anymore. We also see that the impact of the
other five heuristics is much lower than that of the first heuris-
tic. This shows that the first heuristic is the most essential for
the heuristic algorithm.

In Figure 5 we see that out of the other heuristics heuristic
five has the biggest impact on the results since removing it
leads to the biggest difference for every group of instances
besides the first. We also see that heuristic 2 has the lowest
impact on the final results create by the algorithm. Further
we can see that excluding heuristic 6 or heuristic 4 leads to a
bigger decrease in schedule quality than excluding heuristic 2
and heuristic 3. We can also note that the impact of heuristic
6 for the smaller instances is larger than its impact on the
bigger instances, where removing the impact of heuristic 6
leads to a much less significant decrease than for the smaller
sized instances.

From this experiment we can conclude that heuristic 1 is
by far the most important heuristic used in the heuristic al-
gorithm when the makespan is used as objective function.
Heuristic 5 is the second most important heuristic, although
its impact is only a fraction of that of heuristic 1. The im-
portance of heuristic 4, 6, 3 and 2 can be concluded to be in
that order for this particular set of instances. It is important to
note that the instance set used is based on the case in the DSM
enzyme manufacturing line. Instance sets with different fea-
tures could be assumed to lead to a different importance per
heuristic.



Figure 4: Differences between the lowest makespans found when
running the heuristic algorithm with certain heuristics turned off.
The graph includes all heuristics. The makespan found by the algo-
rithm with all heuristics turned on is used as zero value. The objec-
tive function used is the makespan.

The aim of the fourth experiment is to examine the re-
sult of changing the objective function used on the impact
of the heuristics on the quality of the created schedules by the
heuristic algorithm. This experiment has, like the previous
experiment, been ran on Set 3 of instances. The method used
for this experiment follows the method used for the previous
experiment, with the only difference being the objective func-
tion used. In this case the objective function which was used
was the total lateness across all jobs.

In figure 6 we see that, as in Figure 4, the importance of
heuristic 1 is still bigger than that of the other heuristics by
another margin. We see that heuristic 7, which is specifi-
cally aimed to decrease lateness has a big impact in this case,
which is to be expected. A surprising result is that the impact
of heuristic 6 has increased drastically compared to its im-
pact when the objective function used is the makespan. The
importance of heuristic 6 for this objective function is com-
parable to that of heuristic 7. We can also note that the impact
of heuristic 2, 3, 4 and 5 is minimal and that excluding any
of these heuristics only leads to a minor decrease in schedule
quality.

From this experiment we can conclude that when using
lateness as an objective function heuristic 1 is the most im-
portant heuristic for the heuristic algorithm. Heuristic 6 and 7
have a roughly equal impact which is much lower than that of
heuristic 1, but much higher than that of all the other heuris-
tics. The other 4 heuristics only have a minor impact on
the quality of the created schedules. We can also conclude
that although the importance for most of the heuristics stayed
the same when using two different objective functions, there
were two heuristics which had a much higher impact when
using lateness as an objective function compared to using the
makespan.

Figure 5: Differences between the lowest makespans found on av-
erage per instance group when running the heuristic algorithm with
certain heuristics turned off. The graph excludes the first heuristic.
The makespan found by the algorithm with all heuristics turned on
is used as zero value. The objective function used is the makespan.

5 Responsible Research
One way in which we have ensured that research was done
responsibly, was by not strictly aiming for a positive result.
The goal was therefore to determine whether a heuristic algo-
rithm had any merit for this problem, rather than to create a
successful heuristic algorithm for it. Even a negative result,
where for example the heuristic algorithm would not perform
well or be able to create good solutions to the FJSP variations
with a short runtime, would have been useful in this regard.

Very important when performing responsible research is
reproducibility. Research has to be reproducible in order to be
able to confirm results and to be able to minimize the chance
of misconduct, whether intentional or unintentional.

In order to ensure that this research is reproducible the
pseudocode used for the algorithm has been shown and ex-
plained. The machines on which all experiments have been
run have been described, to allow for similar experiments to
be ran. For running the exact MILP solver the Gurobi pack-
age has been used, which is publicly available and thus good
for reproducability.

Data about the instance sets used to run experiments on
has also been shared, such that similar instances can be used
to reproduce the experiments.

The inclusion of as much data and information about the
methods and set-ups for the experiments has thus been given,
all with the aim of allowing the experiments from this paper
to be correctly replicated and the results to be correctly inter-
preted.

Data from all the experiments ran has been shared, without
any distinguishment made based on the potential meaning or
implications of these results. Even without malicious intent,
leaving out data of certain experiments can lead to unexpected
changes or the wrong conclusions being taken.

No outside data from other sources has been used, so po-



Figure 6: Differences between the lowest makespans found on av-
erage per instance group when running the heuristic algorithm with
certain heuristics turned off when the objective value used is the late-
ness across all jobs. The makespan found by the algorithm with all
heuristics turned on is used as zero value.

tential issues with secondary data are not applicable.

6 Discussion
The experiments done have shown that the proposed heuristic
algorithm is capable of producing good feasible results to the
FJSP variation with changeovers with a runtime much lower
than that of an exact algorithm when the makespan is used as
objective function.

For the instances with a smaller size, the MILP solver man-
aged to find optimal solutions within its runtime limit, while
the heuristic algorithm could not. Because of this, the MILP
solver slightly outperformed the heuristic algorithm for these
instance. We can explain this with the fact that the heuristic
algorithm does not attempt to find an optimal solution, but
rather a good feasible solution based on the chosen heuristics
and it therefore makes sense that the MILP, when it does find
the optimal solutions, outperforms the heuristic algorithm.

For the larger instances we see that the heuristic algorithm
outperforms the MILP solver with a big margin, even with
a much lower runtime. The MILP solvers main goal is to
find an optimal solution to the problem, while the heuristic
algorithm simply wants to find a good and feasible solution.
Because of this the big difference can be explained by the
MILP solver being working towards a final optimal solution,
and when this cannot be reached within the runtime limit used
in the experiments, it will not have solutions of a high quality,
since the creation of solutions of as high quality as possible
within a certain limit is not the main of this algorithm. The
heuristic algorithm on the other hand has this exactly as it’s
aim, which could likely explain the much better performance
on the larger instances.

The hyper-parameter finetuning process could be improved
by changing the values for all the hyper-parameters collec-
tively in all possible directions and experimentally determin-

ing which combination of hyper-parameters leads to the high-
est possible schedule quality. This was not feasible in this
case, which is why instead the method of determining each
hyper-parameter individually was chosen.

A shortcoming of the chosen algorithm is that it only con-
siders the first operation of every job, until all of those first
operations have been scheduled. This is something that in the
instances used in this paper did not lead to issues, due to all
jobs in the DSM case having between 1 and 3 operations. In
cases where the differences in amount of operations per job
is much larger this could however lead to issues, especially
when using lateness as an objective function.

A possible extension of the algorithm could be to consider
all currently possible operations. Initially this would be the
first operation of every job, but once an operation is sched-
uled, the algorithm would then include the next operation of
this job, if one is available, in the set of operations to consider
for the next iteration of the loop.

7 Conclusions and Future Work
The main aim of this paper was to propose a heuristic algo-
rithm for the FJSP variation with changeover times and de-
termine how it performs compared to an existing exact solver
for the same problem.

The algorithms have been compared on a set of instances
with varying sizes, and we can conclude that with a fraction of
the time, the heuristic algorithm manages to create solutions
close in size to the optimal solutions created for the smaller
and less complex instances, while creating solution of signifi-
cantly higher quality then the exact solver for the larger, more
complex, and more realistically sized instances.

Furthermore, the aim for this paper was to determine how
certain heuristics perform compared to others and which
heuristics had the highest impact on the result of our algo-
rithm when using the makespan of schedules as objective
function. By far the most essential heuristic is the one that
computes the expected finish time of a certain operation on
a certain machine before scheduling this operation machine
combination. The heuristics that take into account the idle
times of machines and the wait times between multiple opera-
tions of a job had only minor impacts on the final results. The
heuristics calculating the changeover times and the expected
total time of a job had average impacts on the decisions made
by the algorithm.

Another aim for this paper was to examine how the com-
parative performance of the heuristics changed when chang-
ing the objective function used. We have showed that when
using lateness as an objective function the heuristic comput-
ing the expected finish time of an operation and machine com-
bination is still the most essential. Other heuristics that have
a major impact on the final schedule quality for this objective
function are the heuristic calculating the expected changeover
time and the heuristic taking into account the due date of a
job.

The heuristic algorithm created and the comparison be-
tween the heuristics should be helpful when attempting to
create a meta-heuristic solution for this variation on the FJSP
in the future. The heuristic algorithm as a whole could



potentially be used either to initialize a schedule that can
then be improved upon further using a meta-heuristic algo-
rithm. Some or all of the heuristics described could also
be used inside meta-heuristic algorithms to judge qualities
of in-between solutions or rank certain options for potential
changes to a schedule.

For use-cases where the aim is not simply to get a schedule
of as high of a quality as possible, but where the time to create
such a schedule is highly limited, a heuristic algorithm could
be of great value for this variation on the FJSP and certainly
has merit. Further research could prove worthwhile.

A suggestion for future work to improve on the heuristic
algorithm proposed in this paper is to consider all operations
currently possible, rather than only sequentially considering
a certain operation of each job until all of those have been
scheduled. This could especially be important in cases where
there is a high variance between the amount of operations per
job, which is not the case for the DSM enzyme production
plant.

Another suggestion would be to examine the performance
of the heuristics for a wider range of objective functions, as
well as also comparing the performance of the heuristic al-
gorithm to that of an exact algorithm for different objective
functions.

References
[1] M. R. Garey, D. S. Johnson, and R. Sethi, “Complexity

of flowshop and jobshop scheduling.” Mathematics of
Operations Research, vol. 1, pp. 117–129, 1976.

[2] P. Brucker and R. Schlie, “Computing job-shop schedul-
ing with multi-purpose machines,” Computing, vol. 45,
pp. 369–375, 1990.

[3] M. Ziaee, “A heuristic algorithm for solving flexible job
shop scheduling problem,” International Journal of Ad-
vanced Manufacturing Technology, vol. 71, pp. 519–
528, 3 2014.

[4] K. van den Houten, “Algorithms for smart
scheduling of a dsm enzyme production line
problem formulation,” 2022. [Online]. Avail-
able: https://gitlab.ewi.tudelft.nl/kvandenhouten/
cse3000-research-project-dsm-smart-scheduling/-/
blob/master/documents/problem formulation.pdf

[5] H. M. Wagner, “An integer linear-programming model
for machine scheduling,” Naval Research Logistics
Quarterly, vol. 6, pp. 131–140, 6 1959.

[6] I. A. Chaudhry and A. A. Khan, “A research survey: Re-
view of flexible job shop scheduling techniques,” Inter-
national Transactions in Operational Research, vol. 23,
pp. 551–591, 5 2016.

[7] J. Xie, L. Gao, K. Peng, X. Li, and H. Li, “Review on
flexible job shop scheduling,” IET Collaborative Intelli-
gent Manufacturing, vol. 1, pp. 67–77, 2019.

[8] P. Fattahi, M. S. Mehrabad, and F. Jolai, “Mathematical
modeling and heuristic approaches to flexible job shop
scheduling problems,” Journal of Intelligent Manufac-
turing, vol. 18, pp. 331–342, 6 2007.

[9] J. Gao, L. Sun, and M. Gen, “A hybrid genetic and
variable neighborhood descent algorithm for flexible job
shop scheduling problems,” Computers and Operations
Research, vol. 35, pp. 2892–2907, 9 2008.

[10] R. Buddala and S. S. Mahapatra, “An integrated ap-
proach for scheduling flexible job-shop using teaching-
learning-based optimization method,” Journal of Indus-
trial Engineering International, vol. 15, 2018. [Online].
Available: https://doi.org/10.1007/s40092-018-0280-8

[11] Y. N. Sotskov and O. Gholami, “Mixed graph model
and algorithms for parallel-machine job-shop schedul-
ing problems,” International Journal of Production Re-
search, vol. 55, pp. 1549–1564, 2017.

[12] M. A. Ortı́z, L. E. Betancourt, K. P. Negrete, F. D. Fe-
lice, and A. Petrillo, “Dispatching algorithm for produc-
tion programming of flexible job-shop systems in the
smart factory industry,” Ann Oper Res, vol. 264, pp.
409–433, 2018.

[13] M. A. F. Pérez and F. M. P. Raupp, “A newton-based
heuristic algorithm for multi-objective flexible job-shop
scheduling problem,” Journal of Intelligent Manufac-
turing, vol. 27, pp. 409–416, 2016.

[14] Gurobi Optimization, LLC, “Gurobi Optimizer
Reference Manual,” 2022. [Online]. Available:
https://www.gurobi.com

https://gitlab.ewi.tudelft.nl/kvandenhouten/cse3000-research-project-dsm-smart-scheduling/-/blob/master/documents/problem_formulation.pdf
https://gitlab.ewi.tudelft.nl/kvandenhouten/cse3000-research-project-dsm-smart-scheduling/-/blob/master/documents/problem_formulation.pdf
https://gitlab.ewi.tudelft.nl/kvandenhouten/cse3000-research-project-dsm-smart-scheduling/-/blob/master/documents/problem_formulation.pdf
https://doi.org/10.1007/s40092-018-0280-8
https://www.gurobi.com

	Introduction
	The Flexible Job-Shop Problem with Changeover Times
	Formal Problem Description
	Related Literature

	The Heuristic Algorithm
	Experimental Setup and Results
	Experimental Setup
	Results

	Responsible Research
	Discussion
	Conclusions and Future Work

