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Abstract

Maritime traffic has to deal with the risk of collision on a daily basis. Currently, Ves-
sel Traffic Services Operators are provided with short-term prediction methods, used to
resolve potential collisions. Research is done to predict collision risk at a larger time
horizon, which is expected to provide a Vessel Traffic Services Operator (VTSO) with
more time and information to anticipate upon and prevent situations with high risk of
collision from developing. This thesis focusses on forming the basis for the prediction
component of this goal. The objective is to provide a basic understanding of the process
of medium-term behaviour of vessels. This is done by performing a data analysis of a
case study of the vessel traffic off the coast of Rotterdam, investigating which variables
can be used to predict the intent of a vessel.
Two aspects of the intent of a vessel are considered: where the vessel intends to end
(within the scope of the scene), and which intermediate waypoints it plans to follow.
Entry points, exit points and waypoints are clustered using the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) clustering tech-
nique. Waypoints are derived by detecting change-points in the course of vessels using
binary segmentation (Scott and Knott, 1974). Variables from the dataset are selected
and it is investigated which variables can distinguish between different intents, given the
entry point of the vessel.
The results are that the variables ’course’ and ’destination’ can distinguish between
routes sufficiently enough to investigate them further. This further investigation for the
course variable is due to its dependence on vessel position, among other variables. Other
variables may add value also, but then in combination with these two variables. The
waypoint determination has not yet been successfully implemented, but it is regarded
as a promising means to describe and predict vessel intent in more detail, partially due
to the conclusions drawn regarding the course variable.
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Chapter 1

Introduction

The transport sector is a major component of the economy and so also of society, and
within the transport sector, the largest group by far is sea traffic. Day and night, many
forms of cargo are being transported from one country to another. It is a quiet phe-
nomenon that runs far away in the background of our everyday lives, but an essential
component nevertheless. In the traffic sector, the main goal is efficiency, but a more
crucial factor is safety - more specifically safety in terms of minimizing the risk of colli-
sions. Traffic inherently has a degree of collision risk, and vessel traffic at sea is not an
exception. This thesis takes its place within this area, contributing to the decrease of
collision risk at sea.

1



2 Introduction

1.1 Objective

Vessel traffic involves many types of risk. One risk is that a vessel can collide with
another vessel or object. This risk is higher in areas where more ships come together,
such as near ports and in choke-points. This risk may be decreased by anticipating what
will happen, in order to take preventive actions. For this reason, Vessel Traffic Service
Operators (VTSO) are appointed to maintain an overview of traffic scenes, which they
use to inform and advise the involved parties. Each VTSO has responsibility for a part
of the map. Several VTSO ’s operate together from one control centre to manage the
traffic. Support is provided by the V3000 system, which gives a visual representation of
the map and the locations of all vessels.
One yet unexplored area of risk assessment considered promising is that of medium term
prediction of collision risk. It is seen as promising because it may provide a VTSO more
time to anticipate and prevent situations with high risk of collision from developing.
The medium-term time horizon (15 minutes or more) is a primary area to which this
research contributes. Currently, collision (risk) prediction is restricted to approximately
3-5 minutes in advance. Much research has been done with respect to this short time
frame for the sake of conflict resolution and collision avoidance. However, when pre-
dictions are extended over a longer amount of time, the uncertainties increase, and the
regular models used for short term prediction are inadequate.
This brings up the larger research, which this thesis is part of. This larger research has
the following objective: To enable VTSO ’s to prevent vessel collision risk from devel-
oping by designing a method to predict future collision at a medium-term time horizon.
This thesis forms the basis for the prediction component of this objective. It focuses
on understanding the medium-term behaviour of vessels, for the purpose of prediction.
Therefore, the objective of this thesis is formulated as:
To provide a basic understanding of the process of medium-term behaviour of vessels.

1.2 Research Question

For a larger prediction time horizon, the dynamic model of a vessel becomes less impor-
tant, while the intent of the vessel (overall aim or planned path) becomes more important
(Lancia et al., 2014). Every vessel captain has a plan in mind: where he/she wants to
go, when he/she plans to arrive and how to get there. Unfortunately, this information
is not (directly) available. There is no ’sail plan’ mandate similar to the ’flight plan’
regulations in air traffic. This research studies the traffic off the coast of Rotterdam
harbour, controlled by the Hook of Holland Vessel Traffic Services Centre. Here, only
the vessels that plan to enter the harbour within 24 hours are obliged to provide their
destination (e.g. the name of a dock within the harbour) and Estimated Time of Arrival
(ETA). Other vessels are free to provide such information, which is not commonly done
(reliably). This is an incentive to derive the intent of a vessel based on the data that is
available. Therefore, the main research question of this thesis is:
Which variables can be used to predict the intent of a vessel?
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1.3 Report Structure

In section 1.4 the case study used in this thesis is described, after which section 1.5
gives an explanation of important definitions and concepts, to facilitate the reader.
Then chapter 2 starts off with an extensive literature survey, which is especially useful
for the larger research within which this thesis takes place. It is intended to give an
understanding of the current state of related research, to state possible contributions, and
in general to provide background to the problem and the domain. Chapter 3 describes
the dataset used in this research. Chapter 4 then zooms in on the aim of the thesis, and
discusses the research question, its sub-questions and the overall approach taken. This
is followed by chapter 5, which explains how the dataset was prepared in order to be
used for the research. The next step is the exploration of the data, which is discussed in
chapter 6. Chapter 7 builds upon that, giving extensive details to the approach of the
data analysis performed. It can be seen as the core of this thesis. This is then followed
by results and their discussion in chapter 8. A small validation of a component of the
results is performed in chapter 9. The thesis concludes in chapter 10, and sends the
reader into the future again with recommendations in chapter 11.

1.4 Case Study

This thesis works with data on the vessel traffic at sea, off the coast of Rotterdam. This
area is controlled by the Hook of Holland Vessel Traffic Services Centre. Figure 1.1
shows a map of this area, with the structure of the Traffic Separation Scheme (TSS)
included. A TSS is a network of lanes in the sea, to regulate the flow of traffic in a
similar fashion as road traffic lanes. The black lines indicate the structure of the TSS ,
the large black arrows indicate the regulated direction of travel, and the enclosed anchor
symbols indicate the anchorage areas. Between the main East-going and West-going
lanes there is a deep draught channel through which vessels with deep draught must
travel, with buffer zones around it to separate the deep channel from general traffic.
Vessels that are not constrained by draught may not pass through the deep channel, but
they may cross it. In the figure, also key places are indicated to understand the map.
The most important is Hook of Holland, which is the origin or destination of most traffic
coming through this TSS , since the TSS is built around the traffic going in and out of
Rotterdam harbour However, other traffic does also cross this Rotterdam-traffic at the
junctions. Also in this figure, the border is given of the area considered, based on the
coverage area of the Automatic Identification System (AIS) - a transponder system to
send positional, identification and other data.

1.5 Definitions

In order to facilitate the reader in the rest of this thesis, this section gives an overview
of the definitions used in this thesis, with the help of an illustration. In fig. 1.2, an
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Figure 1.1: A map of the area considered as case study in this thesis. The lines show the
structure of the TSS .

illustration is a zoomed in, simplified view of the TSS . The black lines indicate the
structure, and the large black arrows indicate the regulated direction of travel. The deep
draught channel and its buffer zones are also depicted for context.
To explain the definitions used, the focus is first on the blue ship ( ). Generally
speaking, vessels are on their way to a specific ’destination’. This could for example be
a dock in the Port of Rotterdam. To get there, a path is planned by the captain of the
ship, mostly based on efficiency. This ’planned path’ is indicated in the figure with a
dashed line ( ). The last point of this planned path within the scope of the map and
the time frame is called the ’goal’ of a ship: . This can also be an area in the middle
of the map, such as the anchoring area (the goal of the red ship). Vessels generally go
from waypoint to waypoint on their way to their destination. The waypoints within the
scope of the map and time frame are referred to as ’sub-goals’ ( ). All the components
(destination, goal, sub-goals, planned path) together are referred to as the ’intent’ of the
vessel, which is the plan that is principally in the mind of the vessel captain.
When another vessel (or object), such as the red ship, affects the behaviour of a vessel,
this is called an ’interaction’. Interactions, as well as environmental conditions, cause
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a vessel to deviate from the planned path, resulting in an ’adapted plan’ ( ). If
the red ship communicates its plan to the blue ship, the blue ship can adapt its plan
in a better way. Finally, the execution of the adapted plan results in an ’actual path’
( ), which depends on the skills of the crew, the vessels, and the environment.
All the above definitions have been explained in terms of positions. Please note that
intent and paths also contain other components such as time, velocities and rudder
setting. An overview of these basic definitions is given in table 1.1; further definitions
will be stated where necessary.

Figure 1.2: An illustration of several concepts and definitions as used in this document
(see section 1.5 for explanation)
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Term Definition Mark (fig. 1.2)

Destination Final aim of vessel -

Planned path Path planned to destination by captain of ship

Goal Last point of planned path within map scope

Sub-goal Waypoint on the planned path

Intent Plan in mind of captain (includes above terms) -

Interaction When a vessel plan is affected by another vessel or object -

Adapted plan Intended deviation from planned path

Actual path Result of executing the adapted plan

Table 1.1: Definitions used in this thesis.



Chapter 2

Literature Survey

In this chapter, various approaches and concepts from literature are detailed and their
contributions to the research are assessed. Section 2.1 describes the literature that is
mostly related to risk, followed by section 2.2 which describes literature that is mostly
related to prediction. Finally, section 2.3 brings all the literature together in a discussion.
The aspects of prediction and risk are interlinked in many ways. For example, the
prediction uncertainty can be an indicator of risk, while the other way around the level
of risk can influence behaviours or interactions which influence future states. In this
chapter, risk and prediction are principally treated as separate concepts, but the relevant
linkages between them will also be highlighted.

7



8 Literature Survey

2.1 Risk

The occurrence of a collision, and so also the risk of a collision occurring, has multiple
components. This section starts with literature that is strictly related to spatio-temporal
factors, and ends with comprehensive measures of collision risk.

2.1.1 Spatio-temporal overlap

One aspect of collision risk is (near-) spatio-temporal overlap of two or more objects, or
the probability thereof. In the field of collision detection, this is very closely related to
spatio-temporal prediction, since the risk is measured based on the amount of overlap
(expected). Classic measures in this field are the Closest Point of Approach (CPA) and
the ship domain. The CPA is the point where the distance between two moving objects
will be the closest. Distance to Closest Point of Approach (DCPA) is the distance to that
point, while Time to Closest Point of Approach (TCPA) is the time before the objects
will be at CPA . The formulae for these parameters are detailed in Lenart (1999) A ship
domain (originally introduced by Fujii et al. (1974)) is a geographical region around a
vessel; when entered by another vessel, it is considered a (near-) collision.

Montewka et al

Montewka et al. (2010) model the probability of vessel collisions in a certain area using a
simulator and a novel measure of risk. This measure of risk is called the Medium Distance
To Collision (MDTC), which is defined as the distance below which two vessels cannot
perform any manoeuvre to avoid collision. The value of this distance was determined
experimentally using a hydrodynamic model of the vessels and a Monte Carlo simulation,
simulating many different encounters between ships by varying the velocity, position, and
course. For every meeting an evasion manoeuvre was performed. If it resulted in a close
shave, it was stored as the MDTC for that initialized setting. The application chosen
by the authors (detecting collisions in a simulator) is not directly relevant for this thesis,
but the risk measure is: it can be used as a component of how much risk an encounter
has. The smaller the MDTC , the safer an encounter between two ships. This is only
dependent on the length of the ships, their type, and their relative speeds, positions and
courses.

Li and Pang

Li and Pang (2013) assess the risk of collision using a Dempster-Shafer theory approach.
They define three membership functions -dependent risk indicators- which depend on
DCPA , TCPA and relative distance. The uncertainty of these input parameters is
then used to ultimately derive the joint basic probability assignment as a measure of
collision risk. The relevance of this approach is that the uncertainty of measurements and
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Figure 2.1: Approach factor f in an elliptical ship domain with dimensions a and b

Szlapczynski (2006).

parameters are explicitly included in the degree of risk. Unfortunately, the parameters
used to assess the risk ( DCPA and TCPA ) are strongly related to a close encounter,
and not directly related to a longer time horizon risk assessment. Nevertheless, the
principles applied can possibly be adapted to account for measurement and prediction
uncertainty in the assessment of a future traffic state.

Szlapczynski

The concept of a ship domain, which is the area around a vessel that is not to be intruded
by another object, is commonly applied in the maritime collision detection field. It is
commonly used to define an encounter or a collision. Szlapczynski (2006) proposes an
alternative to the DCPA risk measure, by adapting the ship domain into a measure
of risk. He defines an approach factor, which indicates how far a ship domain must be
scaled up from a baseline size in order to touch another ship. The larger the approach
factor, the further away the other vessel is. In the case of a circle-shaped ship domain,
the approach factor is simply directly proportional to the range (relative to the domain
radius). However in the case of any other shape, the approach factor depends on the
constrained parameter. In fig. 2.1 an elliptical ship domain with parameters a and b is
scaled up to touch another ship. In this case, parameter a is constrained. There are
many shapes of ship domains (Wang et al., 2009) but this approach factor can account
for any of them.
The promising part of this risk measure is that it is not restricted to close encounters,
and the concept is quite simple to apply. Unfortunately this risk measure only takes into
account relative distance, not relative speed, bearing or orientation. However, it may be
possible to expand this measure by including the time change of the measure (for speed
or change in bearing). That would leave relative orientation still unaccounted for.

Kuwata et al

A common risk measure method in collision avoidance for robots is that of velocity
obstacles. However, this approach is not very common in the maritime field. Kuwata



10 Literature Survey

et al. (2014) have applied this concept in order to plan collision avoiding paths for
autonomous vessels. The basic idea of a velocity obstacle is that it contains all the
possible velocity vectors that will (likely) result in a collision with a target object. This
concept is a potential risk indicator, that can also take into account velocity obstacles
from multiple vessels. Consider the physically feasible velocity space of a single vessel.
If a large part of this space is occupied by velocity obstacles, the options of a vessel
are limited. If its speed lies within a velocity obstacle, there is a risk of collision. This
concept can also be used to predict vessel behaviour, assuming that the ship-master has
knowledge of his options.

2.1.1.1 Expert-based Approaches

Several approaches use expert opinion to define a measure for collision risk. This is
implicitly related to conflict complexity, since the measure of risk is defined by the
judgement of experts. This thus includes their estimation of the level of difficulty of
conflict resolution. The general disadvantage of these methods is that they are especially
suitable for close encounters. If a future traffic state contains much uncertainty, the
values for these risk indicators may be difficult to determine.

Zhang et al

Zhang et al. (2015) designed a Vessel Conflict Ranking Operator (VCRO), which includes
the factors distance, rate of distance change, and relative orientation. It is defined
by a custom function (which depends on the previously mentioned factors), of which
the parameters are estimated based on expert assessment of a set of typical two-vessel
encounter scenarios. The value of the VCRO is a conflict severity rank indicator, so it
only indicates if one encounter is more severe than another. It does not indicate a real
value of risk.

Bukhari et al

Bukhari et al. (2013) have devised a method that does have a real value of risk as an
output. Using DCPA , TCPA and rate of bearing change as inputs, they built a
fuzzy inference system which links the risk of these parameters together. Each of the
parameters was given a set of linguistic values (e.g. from ’Positive big’ to ’Negative
big’), from which membership functions were built with expert opinion. Subsequently
the combinations of the variables were used as scenarios, each of which was given a
linguistic value for risk. For this degree of risk also a membership function was built.
This method can be very promising if expert opinion can be used properly. It can be
expanded further to include factors such as weather, environment and crew skill, because
experts can also evaluate the influence of these factors on scenarios using linguistic terms.
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Goerlandt et al

Goerlandt et al. (2015) take it one step further than Bukhari et al. (2013). They start by
investigating which parameters are commonly used to assess an encounter situation, and
how relevant each of these measures are. They also introduce their own parameters. In
determining the relevance, they distinguish between different COLREG classifications
of an encounter: overtaking, crossing, and head-on, and a new classification: unexpected
turn. By expert elicitation the relevance of each measure is determined. The resulting
parameters included are seven proximity indicators (e.g. range and orientation), pro-
jected positions (e.g. DCPA ), booleans (e.g. if a ship is turning), static parameters
(e.g. ship length), and environment (visibility and time of day). Interestingly the wave
conditions and ship type were discarded due to the low relative importance (as assessed
by the consulted experts). The greater advantage of this method is that it also includes
environmental factors, and again can be expanded to include human factors. The paper
also includes an extensive analysis on which factors are truly relevant.

2.1.2 Traffic Complexity

Traffic complexity is an aspect of risk that is correlated to the workload of a VTSO
and his/her capability to understand and resolve a situation. Therefore this covers a
relevant aspect of risk. Consider the following cases. An evolving situation that has a
high risk of collision, but is not complex, can be easily recognized and resolved by the
VTSO , given that the VTSO can influence the situation. However an evolving situation
with yet a low risk of collision, but is complex, has potential to develop risk, because the
VTSO (and other parties) have more difficulty to evaluate and resolve the situation.
In the maritime field this appears to be a novel concept, but in the air traffic field this
concept is currently being studied extensively.

Wen et al

Wen et al. (2015) aim to evaluate a maritime traffic situation using a traffic complexity
method. They are the first to introduce the concept of traffic complexity to the maritime
domain. The authors define traffic complexity as an indicator of the degree of crowding
and the risk of collision in a specific area. It includes two types of complexity: density
complexity and conflict complexity. Density complexity is a function of relative distance
between ships, the geographical environment, and the ship type. Conflict complexity
consists of two components: angle complexity (function of relative angle) and the con-
vergence complexity (function of relative motion). The angle complexity is determined
based on research done by Montewka et al. (2010), which relates the MDTC risk mea-
sure to encounter angles (among others).
Though the authors include a ship type component in their density measure, in this
paper all vessels are considered to be of the same type. Distinguishing between vessel
types is considered future work by the authors. The added value of this paper in the



12 Literature Survey

traffic complexity area, is that it already has incorporated much domain knowledge from
the maritime traffic domain, which the following papers lack (as they originate from the
air traffic domain).

Delahaye and Puechmorel

Delahaye and Puechmorel (2000) propose two measures for traffic complexity: a geomet-
rical indicator and ’topological entropy’. The geometrical indicator comprises density,
degree of convergence, and sensitivity. These three aspects are depicted as dimensions
in a ’complexity’ coordinate system. The definitions set in this paper for density and
convergence have been adapted by Wen et al. (2015). The sensitivity component is a
measure of how sensitive the relative distance between two aircraft is to small changes
in speed or heading. Topological entropy is a traffic complexity measure that addresses
overall flow complexity. This measure is aimed at traffic flows and is thus especially suit-
able for evaluation of the complexity of a traffic scheme, not for medium-term prediction.
However, the geometrical indicator is, and hence may prove useful. The sensitivity com-
plexity can potentially be used to account for uncertainties in prediction.

Rahman et al

A different kind of traffic complexity measure by Rahman et al. (2012) is the solution-
space based measure. When an aircraft encounters (one or more) other aircraft, there is
a limited number of safe manoeuvre possibilities to avoid collision. Complexity is defined
as the number of safe manoeuvre possibilities divided by the total number of manoeuvre
possibilities. This is depicted in fig. 2.2 by a ring of speed and heading combinations,
where the unsafe combinations are shaded grey. The complexity is then the non-shaded
area divided by the total area. The contribution of this complexity measure is that it
closely captures the conflict resolution aspect of complexity, and accounts for multiple
aircraft simultaneously. Note that this approach has similarities with Kuwata et al.
(2014) (discussed in section 2.1.1).

Wang et al

Wang et al. (2015) developed a graph-based framework for traffic complexity. In a
traffic scene, each aircraft is modelled as a node, and two nodes are connected by an
edge, if their relative distance is lower than a set threshold value. From this framework,
based on how the graph evolves, different measures of complexity are derived. ’Degree’
signifies the amount of edges connected to a node, ’connection rate’ is the amount of
edges that appear or disappear over time, ’clustering coefficient’ sums the degrees of
the nodes connected to a node, the ’importance’ of a node is its degree relative to the
average degree, and finally the ’network structure entropy’ indicates the homogeneity of
the degrees of the nodes. This last measure is based on the fact that if a set of aircraft
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Figure 2.2: Ring of possible speed and heading combinations (between Vmin and Vmax).
Vobs is the observed speed vector of another aircraft, which induces the grey
area indicates unsafe possibilities. Adapted from Rahman et al. (2012).

is clearly more important, it is easier for a controller to understand which aircraft needs
the most attention.
The value of this approach is that it can present a generic traffic situation in a simple
manner, can assess the complexity at a local scale and a macro-scale. Unfortunately the
method only considers proximity of aircraft, implicitly including speed by the evolving
connection rate. However, there is potential to build on this framework to include
different measures such as velocity, and possibly weighting factors.

2.1.3 Socio-Technical Systems

Another viewpoint of risk is to approach the system as a whole, i.e. a socio-technical
system. Here, the different players (humans, environment and objects) are commonly
called ’agents’ if they can influence the environment or other agents. The risk emerges
from the interactions between these agents. A large portion of these interactions involves
the observing or sharing of information from one agent to another.

Vanek et al

Vaněk et al. (2013) deploy an agent-based model to capture the complex dynamics of
the maritime transportation system in the Indian Ocean. Their focus is on modelling
the effects and risks of piracy in that region. In order to do this, they devise individual-
ship models for three types of vessels: merchants, pirates, and military. In each of
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these models, a vessel switches between different activities, depending on the parame-
ters, interactions with the environment and other agents. For example, a merchant ship
switches between ’docking’, ’route-planning’, and ’cruising’ depending on the time, and
subsequently may switch to ’hijacked’ following a sequence of events (such as not ob-
serving a pirate vessel, or not requesting help from a military vessel, or a military vessel
being out of range or too late). Though the piracy aspects of this approach may not be
relevant for this thesis, the modelling approach may prove useful, since it may capture
the interactions between vessels and other agents, and the risk that emerges from that.
Also it could be used to explicitly model the element of risk that environmental factors
bring (such as non-communication).

Lefèvre et al

Lefèvre et al. (2012) link into part of a social-technical system, by comparing the expected
behaviour of a driver to the inferred intent of that driver. This is done at a road
intersection. Based on observations of the states of a car in discrete time, the manoeuvre
intention (adapted plan), and expected behaviour (to stop or not) of its driver are
estimated using a Dynamic Bayesian Network. This means that the probabilities of arcs
change over time and are influenced by other drivers. This model captures effects such
as a driver intending a manoeuvre based on the states of other drivers, which may or
may not be an objectively expected manoeuvre, and which may or may not be executed
correctly. This type of approach blends the line between risk and prediction by finding a
probability that an object will not perform the expected behaviour The context, however,
lacks overlap with the maritime domain, since the manoeuvre intention is discretised into
four options (the four possible directions from an intersection). A maritime TSS is
much closer to a continuous space.

Blom and Sharpanskykh

Blom and Sharpanskykh (2015) have developed a mathematical framework to model
Situation Awareness (SA) in socio-technical systems. Every agent is represented by a
state vector. This state vector comprises three main state types. These are the actual
state of the own agent, self-awareness (the state of the own agent according to the own
agent), and situation awareness (the state of another agent according to the own agent).
This can be done recursively: an agent A can be aware of the situation awareness of
agent B about the state of agent C. The situation awareness states are updated by
observation, messaging, and interpretation events.
The relevance of this model is that it can be used for the human and environmental
causes to collision risk. Since human factors such as communication have been identified
as a common cause for developing collision risk, modelling this may prove useful in both
prediction as well as risk assessment. However, direct information about these states
will likely not be available, they will need to be inferred from the data, perhaps in a
manner like Lefèvre et al. (2012).
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Bouarfa et al

Bouarfa et al. (2013) deploy an agent-based model to simulate a specific socio-technical
system, in order to identify emergent behaviour affecting the safety of the system. The
case studied is an area on an airport where a taxiing route crosses a runway. The human
actors -agents- involved are pilots in the involved aircraft and a runway traffic controller.
The technical agents considered are the two aircraft and the Air Traffic Control (ATC)
system. The remaining ’agent’ is operational conditions, which includes the runway con-
figuration and visibility conditions. After defining the simulation model, Monte Carlo
simulations have been performed to obtain the emergent system behaviour, from which
a safety assessment is made.
The all-encompassing approach of this piece is of interest in this research. The technical
aspects (e.g. aircraft models) as well as the human cognition aspects and the environ-
mental conditions are all taken into account. This is done not only per component, but
rather also includes the interactions between the components and so the behaviour of
the system as a whole is modelled This is its major advantage. An important require-
ment for such an approach, however, is to have detailed sub-models and knowledge of
the individual behaviours of the agents considered. This requirement may be fulfilled
further down the line in maritime research.

2.2 Prediction

In traffic literature, prediction is generally done based on a model for vehicle dynamics
or a planned path, or based on historical data. Depending on the amount and the
kind of information available, different methods are used. This chapter focuses on the
approaches found that contribute to this thesis. Goal, intent (sub-goals), trajectories and
future states (position/velocity) are spatio-temporal information types that generally are
predicted.

2.2.1 Model-based Prediction

Model-based prediction methods are -unlike data-driven methods- not directly dependent
on (historical) data. They are built based on knowledge and assumptions about reality,
not depending on historical data.

2.2.1.1 Medium Term Conflict Detection

Medium Term Conflict Detection (MTCD) -not to be confused with Minimum Distance
To Collision (MDTC) - is a large field in the air traffic management domain that has
some similarity with the problem at hand. It is aimed at detecting spatio-temporal
overlap by predicting the future states of aircraft. This links one risk aspect (spatio-
temporal overlap) and prediction into one approach. However the general disadvantage
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is that these methods are based on knowledge of a flight plan, which is information that
is not available in the maritime domain. A vessel generally does have a planned path
(e.g. sailing plan), but this information is not shared.

Prandini and Hu

Prandini and Hu (2016) define air traffic complexity as the limitation of manoeuvrability
of an aircraft. This complexity is said to increase as aircraft come within a certain
range of each other, thus their definition is closely related to the density of the traffic.
They predict this complexity on a mid-term time horizon. Their approach is quite
similar to many MTCD methods applied in the air traffic domain. Each aircraft has
a flight plan, and will deviate from it due to pilot error, wind and preventive avoidance
manoeuvres by the pilot. This paper contributes by linking mid-term prediction to
complexity evaluation, even though the definition of complexity may not be very useful.

Althoff et al

A concept commonly applied in this area is ’reachable sets’. This is the total set of
possible states that an object can reach within a given amount of time. Althoff et al.
(2009) evaluate the safety of a planned path of an autonomous car by estimating the
stochastically reachable sets of the own car and other traffic participants in a discrete
state space. This discrete state space is the basis for a Markov chain model, where
transition probabilities between cells are determined based on the current acceleration,
speed, and position of an object. The future position is then simulated multiple times
to obtain a picture of the stochastically reachable sets. It is taken into account that it is
unknown what turn another traffic participant will make at an intersection, though road
geometry is used as a constraint. The relevance of this method is in its simple approach
in modelling the vehicles: only the acceleration, speed and position are modelled Also,
it does not assume a planned path of another vehicle to be known.

2.2.1.2 Maneuver Recognition

Houenou et al

Houenou et al. (2013) predict the trajectories of cars in an area, based on movement
measurements. This method is three-fold: first the type of manoeuvre that the car is
making is determined, then the possible future trajectories are determined, from which
the most likely trajectory is selected. The latter parts of this approach are not relevant
for this thesis due to their short-term nature, and road traffic related dynamics. However,
the first part is interesting, because detecting what type of manoeuvre a vessel is making
can be of value for the prediction of its trajectory. For example, if one can detect that
the blue ship in fig. 1.2 is initiating an overtaking manoeuvre, or even that the next
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Figure 2.3: Hierarchical intent model by Lowe and How (2015)

manoeuvre is a right turn, it would be helpful in inferring the adapted plan or planned
path. The authors here derive the manoeuvre mode (maintain lane, change lane, or
turn) by detecting the deviation from the centreline

Lowe and How

Lowe and How (2015) focus on prediction of aircraft in the uncontrolled airspace, like
Lancia et al. (2014). However, these authors focus on short-term prediction, and espe-
cially concentrate on inferring the intent of a pilot. They have designed a hierarchical
intent model shown in fig. 2.3. Here the observation consists of the measurements made,
the state is the actual state, the manoeuvre mode is a single mode (e.g. constant velocity
or coordinated turn). Then, navigation intent is the sequence of navigation states the
pilot intends to take to reach its goal state - the final state the pilot intends to reach.
Finally the behaviour is classified as complying or non-complying (i.e. manoeuvring as
expected towards a goal or not).
For all layers of the hierarchical intent model, estimations are made by predicting the
next time step using the current estimation of layers above and below, and subsequently
evaluating the previous prediction, in order to adjust the estimation. The value of this
hierarchical intent model is that it addresses all the layers of the problem: from the
most unknown behaviour classification, to the observation state. It explicitly models the
relationships between these layers.
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2.2.2 Data-driven Prediction

There is a lack of information when it comes to a planned path. Vessels do not have
the obligation of declaring a sailing plan, like aircraft pilots have to file a flight plan.
This difficulty in modelling a ship’s intended path can possibly be solved with the use of
historical data. An important thing to note is that these methods implicitly include envi-
ronmental and behavioural effects through the historical patterns, though these elements
may not be explicitly taken into account.

2.2.2.1 Trajectory Prediction

Trajectory prediction predicts the planned path of an object, with the use of historical
data, focusing on the trajectory that the object will take, as opposed to predicting where
the object is headed in the end.

Lancia et al

A research area that has received much less attention is that of general aviation. Lancia
et al. (2014) venture to predict the future trajectories of light aircraft in the uncontrolled
airspace. However, different from the common field of MTCD (section 2.2.1.1), in
general aviation the availability of a flight plan is generally low. This aspect makes
the problem closer to the prediction problem in the maritime domain. The authors use
historical data to predict the trajectory of an aircraft. These historical trajectories are
first broken up into line segments and ’turning points’. These turning points are then
clustered, to obtain nominal trajectories. Based on the entire registered historical path
of an aircraft, its future trajectory is estimated using a Particle Filter (PF). This kind of
approach is typical for motion pattern prediction. This approach also takes into account
the possibility that a pilot may change plans during flight.

Pallotta et al

Pallotta et al. (2013) propose an unsupervised and incremental learning methodology
for vessel motion pattern prediction, which they have named Traffic Route Extraction
and Anomaly Detection (TREAD). They apply a ‘vectorial’ representation of traffic:
trajectories are a collection of waypoints with straight paths in between for the sake of
computational cost. They use the Density Based Spatial Clustering of Applications with
Noise (DBSCAN) methodology (Ester et al., 1996) to cluster waypoints, because it does
not require the number of clusters a priori, can find arbitrarily shaped clusters, and can
filter outliers. Special clusters are stationary waypoints (typical anchorage/harbours),
and track initiation or termination, called entry/exit points respectively (e.g. map edge,
harbour). Routes are defined as a pair of an entry point and an exit point.
Every new ship entering the scene is compared with the existing set of routes, and
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if matching, is added to a list of vessels for a route, and to lists of vessels for each
waypoint it passes. If it does not match, a new route is created. If enough ships
transit a route, the route is activated (usable for prediction). Kernel Density Estimation
(KDE) (non-parametric) is used to estimate the Probability Density Function (PDF) of
routes. These PDF ’s are used to classify routes. Route prediction is done based on the
transited trajectory of the ship, in a similar manner to Hidden Markov Models (HMMs),
distinguishing between actual states and observations. The prediction is expressed as
probabilities that the vessel will follow an activated route. An illustration of what this
looks like is given in fig. 2.4.
The advantages of this approach are: the context is the maritime environment, the
environment is represented in a semi-continuous manner (since waypoints and routes are
added as necessary), and the planned path and goal/destination are explicitly derived.
The method does not include time or seasonality, however, and neither can it adapt to
changing patterns by, for example, removing routes.

Figure 2.4: Illustration of trajectory prediction by Pallotta et al. (2013). Prediction is
expressed as the probability that the vessel will follow a certain route. Plot a
summarizes the following three plots. The plots b,c,d follow chronologically,
indicating time. The colours indicate different routes, and the red dots indicate
a series of measurements of a vessel.
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Ristic et al

Ristic et al. (2008) take a statistical approach: they model vessel motion patterns as
(Gaussian) PDF ’s per location, not by path. These PDF ’s are estimated with
an Adaptive Kernel Density Estimator (A-KDE) based on a historical dataset. Subse-
quently prediction is performed by using a Particle Filter (PF) on the possible proceeding
sequences of positions from the current position. Interestingly, this method only uses
recorded position to predict future positions. Perhaps it is expandable to other states.
If the assumption of Gaussian distributions is valid, then this becomes a very simple but
effective way of estimating the future position of a vessel. In case the distributions are
not Gaussian, another distribution or even another estimator may be possible.

Zandipour et al

The series of papers (Zandipour et al., 2008; Rhodes et al., 2007; Bomberger et al., 2006)
aim to predict the future position of a vessel by learning historical data incrementally
using the Neural Associative Incremental Learning (NAIL) algorithm (Rhodes, 2007),
which is built to learn taxonomic relationships between concepts or objects. The corre-
lation learned is between the current vessel state (position and velocity) and its future
position at a single time horizon.
Promising aspects of this approach are that it learns the frequent patterns quickly, and
has the capacity to unlearn less frequent patterns through weight decay. This means
that it will adapt to changes in the environment or the paths, and different learning sets
can be adapted for data sets of different seasons.
One lacking point is that the prediction is done for a single time horizon. The method
would have to be expanded to predict a trajectory. Also, the method only relates the
current state vector (position and velocity) with the future position. Previous states are
not taken into account. Also future speed is not predicted, and other factors such as
environment, time or vessel type are not taken into account. Maybe the method can be
expanded to include these factors as well.

2.2.2.2 Goal and Route Prediction

Another type of approach to predicting the planned path is by first estimating the goal
of a vessel, to subsequently use this estimate to derive the planned path from it.

Simmons et al & Krumm et al

Simmons et al. (2006) predict the goal of a driver using a Hidden Markov Model (HMM)
on the historical trajectories of that driver. The map is represented by a graph, where
each vertex is an intersection, and each (direction dependent) edge is a road. The hidden
states are the current position and additional factors such as time or day of the week.
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Every observation is used to estimate the hidden transitions between states. Travelling
time is also measured but not applied further.
Krumm and Horvitz (2006) developed the so-called ’predestination’ approach. It uses
a grid representation of a city, each cell possibly the goal of a driver. Based on the
dominant ground type of a cell (e.g. pasture, industry, or water) and a user survey, an
initial probability -of being a goal- is assigned to the cell. Then, as a driver travels from
cell to cell, the probability of all the cells are updated based on how likely it is that
the driver will end in a cell. This is based on the assumption that a driver will take an
efficient route (distance-wise), and that the driver will complete his travels in a ’normal’
amount of time (based on a distribution).
In (Krumm et al., 2013) the research is continued by deriving the planned path from the
goal. However, in this research the same graph representation as in Simmons et al. (2006)
is used, so a driver goal becomes the last road intersection that it will pass. Subsequently,
the planned path is quite simply derived by assigning each road segment the probability
of being traversed: the sum of the probabilities of all the nodes downstream from the
road segment. An illustration of this is given in fig. 2.5.
A promising aspect of these approaches is that they can be extended with many states.
The disadvantage is that they are built on the simplistic, discrete representation of a road
network (while the marine environment is much more continuous). The ’predestination’
method is more detailed than Simmons et al.’ method, and presents all probabilities of
candidate goals for each time step, while Simmons et al.’ method may be more simple
to expand.

Best and Fitch

Best and Fitch (2015) estimate the goal and planned path for pedestrians in a continuous
environment. The authors basically take the same approach as Krumm et al. (2013),
except that initially all goals are assumed to have equal probability (a priori knowledge
not needed). However, due to the continuous nature of the environment, simple summa-
tion of downstream goal probabilities is not possible, which is why the authors perform
a number of Monte Carlo simulations of goals. For each sampled goal a trajectory is
drawn with random perturbations for each time step ahead (i.e. a ’random walk’ biased
towards the sampled goal). The benefit of this method lies in that it does not require
any a priori knowledge of the area, and that it is applicable in a continuous environment.
So though the method performs the same task, it is actually not a data driven approach,
since it only depends on the historical trajectory of an object only, not on historical
trajectory database.

Vasquez et al

Vasquez et al. (2009) learn the motion patterns of pedestrians and vehicles using a Grow-
ing Hidden Markov Model (GHMM) approach in combination with an Instantaneous
Topological Map (ITM). The ITM approach is promising because it can represent a
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Figure 2.5: The probability of each road segment (edges) is the sum of the probabilities
of the downstream destinations (nodes). (Krumm et al., 2013)

continuous state space of a model based on motion patterns in a semi-continuous manner
since nodes of the graph are added and removed based on incrementally added trajecto-
ries. Areas with heavy traffic will have more nodes than areas with scarce traffic. This
is similar to the maritime environment. The GHMM approach links the prediction to
the ITM. It models the current state, and the intended state (goal) of an object. The
result is a directed graph (in ITM structure) with all possible ways to get from the
current state to the intended state.
This approach contributes to this thesis because the intended path can be derived from
the goal, current state and the past trajectory. Another useful property of this approach
is that the state space can be expanded (e.g. adding velocity, time, or even abstract
states such as ’manoeuvre mode’).

Ikeda et al

Ikeda et al. (2013) are a special case of goal prediction. Their method predicts long-
term pedestrian behaviour based on the ’sub-goal’ concept. A sub-goal is a point towards
which a pedestrian generally heads when it comes into view. See fig. 2.7 for an illus-
tration. It has much similarity with the waypoint concept used in path-finding. In the
light of this thesis, it is related to the sub-goal ( ) in fig. 1.2. The sub-goals are derived
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Figure 2.6: The pedestrian (orange) has walked a red trajectory. His goal (green) and
planned path (blue) are predicted. The darker the color, the higher the likeli-
hood of the goal or planned path. (Best and Fitch, 2015)

by assessing the direction in which pedestrians travel (from each grid cell), and checking
where these pedestrian flows overlap each other. Then the behaviour of a pedestrian
at each point in time can be modelled as a sequence of movements towards one of the
sub-goals In that way a sub-goal sequence is derived to describe the past trajectory of
a pedestrian. Transition probabilities are derived between these sub-goals. These tran-
sition probabilities, together with the current position, velocity, and preferred velocity
are used to predict the future trajectory.
The promising part of this approach is that it has much similarity with the behaviour of
vessels. Vessels commonly aim for waypoints (sub-goals) and seem to have a preferred ve-
locity (the most efficient velocity). Also, the behaviour is modelled in continuous space;
though the historical data is first set up in a grid layout, the sub-goals and trajectories
are defined in continuous space.

Figure 2.7: Pedestrians move from sub-goal to sub-goal, aiming for the next sub-goal as
soon as it becomes visible. (Ikeda et al., 2013)

2.2.3 Interactions

When predictions are done based on historical trajectories (section 2.2.2), more detailed
information is lost due to averaging or clustering mechanisms. Such predictions can
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at best predict the ’planned path’. In this section, methods that model interactions
between a vessel and another vessel or a vessel and the environment are discussed. This
could help in deriving the ’adapted plan’ from the planned path.

Xu et al

Xu et al. (2015) simulate vessel traffic flow in an inland waterway. A useful sub-model
of their simulator is the ’vessel behaviour model’. This model treats a vessel as an agent
with decision-making and communication capabilities, aimed to capture the collision
avoiding interactions between vessels when one vessel sails behind another with a higher
velocity. This results in an overtaking or following behaviour, depending on the risk
estimated by the agent, and the communication with the other agent. Unfortunately this
covers only one type of interaction (approach from behind), disregarding other approach
angles. However this type of model could possibly be used to model the interactions
between the vessels in a simple manner.

Chauvin and Lardjane

Chauvin and Lardjane (2008) investigate the interaction behaviour of ferries that cross
a main traffic lane in the Dover Strait. The purpose of the model is to determine
which vessel will take action first, and on which side of the other vessel it will pass.
Based on interaction statistical data, a logistic regression model is found to be the best
fitting model to the data. This model depends on the types of two interacting ships,
the behaviour of the other ship, as well as their relative encounter parameters such as
speeds, angles and CPA measures. The value of this approach is that it uses encounter
parameters to predict what will happen, rather than estimate the risk (section 2.1.1).
This captures the human aspect in how the vessels respond to an encounter.

Helbing and Molnár

Helbing and Molnár (1995) propose the social force model in order to model the be-
haviour of pedestrians. This model has since been widely applied in the prediction of
pedestrian behaviour The movement of a pedestrian is firstly determined by his goal po-
sition. To get there he/she has a planned path of straight edges, similar to the sub-goal
concept of Ikeda et al. (2013). This results in a desired direction. The pedestrian wants
to do this in a comfortable manner, resulting in a corresponding desired velocity. If not
travelling at this speed, this results in an acceleration force in the desired direction.
On the way to the goal the pedestrian encounters several repulsive and attractive forces.
Other pedestrians have a repulsive effect on the pedestrian, though some have an at-
tractive force (e.g. friends). Walls or borders act repulsively. These forces are stronger
within the line of sight of the pedestrian, and weaker behind him/her. The combination
of all these (dynamic) forces results in a pedestrian motion. This method could even be
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expanded to include weather influences by adding or adjusting forces. This approach
can possibly capture the interactions between vessels.

Elfring et al

Elfring et al. (2014) combine the GHMM prediction approach of Vasquez et al. (2009)
with the social force model (Helbing and Molnár, 1995) to predict pedestrian motion
more accurately. They first apply the former approach, and subsequently refine the
prediction using the latter model. Their motivation is the lacking social forces model
predictions, and the semi-discrete map of Vasquez et al. (2009) where a continuous
representation is desirable. This is the most promising prediction method yet found,
since it accounts for longer term prediction as well as for interactions with other objects.
However, the interaction forces in the maritime environment may not be similar, nor the
behaviour of pedestrians.

2.3 Discussion

The aim of this chapter is to summarize and interlink all of the presented literature.
There are three main points of discussion in predicting collision risk on a medium-term
time horizon within the maritime context. The first point is the causes for collision risk
and how these are taken into account. The second is that the time horizon at which
predictions need to be done. A larger time horizon causes a build-up of uncertainty.
The third point is that in the context of this research, there is a lack of information
about the intent of vessels and their communication. This section starts with the causes
for collision (section 2.3.1), and subsequently summarizes and discusses the literature
per group (sections 2.3.2 to 2.3.6) in the light of the above mentioned discussion points.
Finally, the contributions of the different pieces of literature are put in an overview in
section 2.3.7.

2.3.1 Collision Causes

The causes of a vessel collision can be roughly divided into four main groups. The
first group is spatio-temporal: if two vessels are too close and heading towards each
other, a collision may be inevitable. The second group is human factors: error, skill,
communication and behaviour The third group is environmental causes: visibility, tides,
sea state, wind and currents. The fourth group is linked to the vessel characteristics: its
dimensions, manoeuvrability, cargo and equipment. Bear in mind that these groups are
not independent but linked closely in various manners. Considering the fourth group,
these factors are taken into account by nearly all methods, by way of classification.
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2.3.2 Spatio-temporal risk factors

Methods that focus on the spatio-temporal problem treat vessels on the observed spatio-
temporal level, which is very tangible. Abstract levels such as cognition and decision are
not included. These methods are generally relatively easy to grasp and verify/validate.

2.3.2.1 Two-vessel encounter

In the case of an encounter of two vessels, several measurements for risk have been
proposed. Each of these methods use spatio-temporal measures related to proximity,
speed and orientation as an input. MDTC (Montewka et al., 2010) indicates the closest
distance that two vessels can come to each other, based on a manoeuvrability model of
the vessels. The basis of the measure is very meaningful, because it aims at the actual
resolvability of the situation. Using a manoeuvrability model makes the resulting risk
measure very accurate, but difficult to extend to all vessels, due to the large variety of
vessel characteristics, and the lacking information thereof.
Other approaches (Li and Pang, 2013; Bukhari et al., 2013) use DCPA and TCPA
, which themselves are commonly used as risk indicators, as components for their risk
measures. These methods are simple in their application, and account for uncertainty
(in)directly. However, one disadvantage of the above risk measures is that they are all
especially valid to measure the risk of close encounters, not for larger relative distances.
The approach factor proposed by Szlapczynski (2006) does not have this limitation,
and is also very simple to implement. With some additions to accommodate speed and
bearing change, this measure may become very promising.
Also the velocity obstacles method implemented by Kuwata et al. (2014) is applicable
to multi-vessel encounters, and is theoretically applicable to all distances. However, the
practicality decreases with distance, due to increase of uncertainty.
The expert-based, fuzzy method by Goerlandt et al. (2015) is also focused on close
encounters only, but includes visibility and time of day as input, which the above methods
do not. The advantage of the expert-based approaches is that they can easily include
human and environmental factors in their approach.

2.3.2.2 Traffic Complexity

Collisions, however, do not always involve two vessels only; multiple vessels can be in-
volved (and often are). To assess the risk of multi-ship encounters, the risk measures
discussed in section 2.3.2.1 are generally summed for each pair of ships. This unfortu-
nately does not capture the interdependence of the interactions of ships.
Traffic complexity measures generally do account for multi-vessel relationships. Besides
that, they also are valuable because they cover other aspects of risk, namely the workload
of the VTSO and the resolvability of encounters. Wen et al. (2015) seem to be the first to
introduce this concept into the maritime domain. They capture two-vessel interactions
by their conflict complexity (building on the concept of MDTC ), and the multi-vessel
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interactions by density complexity. Delahaye and Puechmorel (2000), besides density
complexity, contribute a measure of uncertainty by calculating how sensitive a situation
is to speed and course changes. Rahman et al. (2012) base complexity on the possi-
ble manoeuvre that each aircraft is safely capable of. Wang et al. (2015) provide a
graph-based framework to assess complexity based on the evolution of the graph.

2.3.3 Socio-technical system

Approaches aimed at the socio-technical system as a whole add another dimension to
the multi-vessel problem. The behaviours and interactions of human and environmen-
tal agents that are involved are also modelled Agent-based models (Vaněk et al., 2013;
Bouarfa et al., 2013) design a model for every agent (person, vessel/aircraft, environ-
ment) separately, as well as the relationships between them. From the network of these
sub-models a system risk emerges.
Useful for the human and environmental factors is the mathematical SA framework
by Blom and Sharpanskykh (2015). It can be used in a multi-agent system, to capture
the awareness that each agent has of other agents and of itself. Therefore the intent,
communication and interactions of the agents can be explicitly modelled
This same thinking is applied in part in Bouarfa et al. (2013), namely in the modelling
of human behaviour This approach, however, also includes models for the technical sys-
tems, and their interactions with the human agents, and the environment. In contrast
with Vaněk et al. (2013), the technical systems are detailed more. Lefèvre et al. (2012)
focus on the human interaction and error by offsetting expected behaviour to actual
behaviour of a human driver. The behaviour of a driver is predicted, and based on the
expected behaviour relative to the actual behaviour, the risk is determined.

2.3.4 Model-based prediction

Prediction can be done based on a model for vessel dynamics. However this is limited to
the short term. For the medium-term horizon, additional information on intent is nec-
essary to maintain acceptable accuracy. This additional information can be on intended
path (e.g. flight plan) or on intended manoeuvre.

2.3.4.1 Medium-Term Conflict Detection

The air traffic research field of Medium-Term Conflict Detection (MTCD) predicts the
future position of aircraft based on their flight plans. Subsequently the risk is assessed
based on spatio-temporal overlap measures which have similarities with those discussed
in section 2.3.2.1. For this thesis however, information on the intent of vessels is lacking,
so generally the models applied in MTCD cannot be used. However if the intent of a
vessel can be inferred (e.g. in section 2.3.5)to sufficient extent, then the methods from
this research field may prove valuable.
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Prandini and Hu (2016) aim to predict traffic complexity (density) on the medium-term
time horizon. This is different from most MTCD approaches, which are focused on
the spatio-temporal overlap of two aircraft. This is for example the case in an earlier
paper (Lygeros and Prandini, 2002), but this paper also includes an explicit model for
wind. This approach is typical to many MTCD approaches, which model the aircraft
behaviour and model the behaviour of the wind. These aspects may still prove useful if
the condition for the intent is met - as mentioned earlier.
The other concept commonly applied in MTCD , but also in road traffic conflict de-
tection is that of (stochastic) reachable sets (Althoff et al., 2009), which ties into the
idea of explicitly including the prediction uncertainty that comes along with predicting
spatio-temporal overlap.

2.3.4.2 Manoeuvre Recognition

Prediction can also be done based on the internal model of the human operator of a
vehicle. The methods of Houenou et al. (2013) and Lowe and How (2015) derive the
type of manoeuvre that a human operator is engaged in, based on spatial measurements.
This information is at a higher abstraction level (human cognition), which is then used
to better predict what the vehicle will do. Houenou et al. (2013) have a relatively
simple ’manoeuvre mode’ model, but Lowe and How (2015) apply multiple layers of
abstraction, predicting on each level. These methods contribute by involving the human
aspect (discussed in section 2.3.3) in spatio-temporal prediction.

2.3.5 Data-driven Prediction

Model based prediction can be done on a short-term, by straightforward propagation
of the current state forward into time. However on the medium-term time horizon this
approach becomes erroneous, and sufficient accuracy can only be achieved if the intent of
the vessel is known. The problem of lacking of information on the intent can potentially
be solved by using historical data. This section discusses the contributions of data-driven
prediction methods.
Trajectory-based prediction (Lancia et al., 2014; Pallotta et al., 2013) clusters historical
trajectories, based on which planned paths are predicted. Point-based prediction links
the current position (or state) to a single future position or state (Ristic et al., 2008;
Zandipour et al., 2008). Goal-based prediction (Simmons et al., 2006; Krumm et al.,
2013; Best and Fitch, 2015; Vasquez et al., 2009; Ikeda et al., 2013) uses the current
and/or past states of an object to predict what its goal state will be.
The maritime environment under consideration is structured in a manner similar to
road traffic, except that there is much more freedom in manoeuvring space, speed and
even direction of travel. Therefore a continuous representation of the map is preferred.
Maritime traffic patterns depend much on seasonality and environmental conditions
(visibility and weather). Therefore it is an advantage if an approach can take these
aspects into account. Also, traffic patterns change over time which requires an approach
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Type Authors Map
Seasonality

& Environ-

ment

Adapt

to

changes

Independent

of Historical

Trajectory

Trajectory
Lancia et al. (2014) Graph/Continuous No No No

Pallotta et al. (2013) Graph/Continuous Season No No

Point
Ristic et al. (2008) Continuous No No Yes

Zandipour et al. (2008) Grid Season Yes Yes

Goal

Simmons et al. (2006) Graph Season* No Yes

Krumm et al. (2013) Grid/Graph No No Yes

Best and Fitch (2015) Continuous No** Yes No

Vasquez et al. (2009) Graph (changing) No Yes No

Sub-Goal Ikeda et al. (2013) Graph/Continuous No No No

*Not included, but explicitly made possible

**Independent of both factors, can learn any new environment

Table 2.1: An overview of the data driven prediction methods and their contributions

that can adapt to these changes. Finally, dependence on the historical trajectory of an
object for prediction can be seen as a disadvantage. In table 2.1 an overview is given in
which areas each approach contributes.

2.3.6 Interactions Prediction

Methods that model interactions between vehicles are promising in that they may deduce
the adapted path. Xu et al. (2015) model the interactions between overtaking vessels.
This is done by modelling each vessel as a basic decision-making, communicating agent,
which decides to adjust his speed based on the encounter and communication. Chau-
vin and Lardjane (2008) model the interactions between crossing vessels with a logistic
regression model. It probabilistically predicts which vessel will take action first, and in
which direction that action takes place.
The social forces model (Helbing and Molnár, 1995) applies a series of forces which deter-
mine the movement of a pedestrian relative to other pedestrians and the surroundings.
Elfring et al. (2014) build on this concept, employing the GHMM approach of Vasquez
et al. (2009) to predict long-term pedestrian behaviour, and the social forces model to
predict interactions. The advantage of the combined approach is that using a more
simple, discrete model is preferable for longer-term prediction, whereas a more detailed,
continuous model is preferable for the detailed interactions. This of course includes the
adaptive benefit of the GHMM approach.
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2.3.7 Overview of contributions

In table 2.2, the contributions of each literature piece is given. The literature on ground-
ing risk is left out due to its low correlation with the rest. The first two columns indicate
if a piece of literature predicts states, assesses risk, or both. The next three columns
represent which factors of collision risk are accounted for (this can be done in risk and/or
prediction). If marked with a ‘0’, this signifies that the authors have explicitly stated the
option of including such factors, or else that the method clearly displays the potential of
including it. For example, Vaněk et al. (2013)’s agent-based approach is aimed at risk
assessment and includes spatio-temporal and human factors, they include interactions
between agents, and their model has clear potential to also include an environmental
agent.
The ’uncertainty’ column indicates if a method explicitly models uncertainty as a compo-
nent of risk (or prediction). The word ’interactions’ is set true for methods that model
interactions between agents/vehicles. This is linked to risk for some approaches, and
linked to prediction by others (1st and 2nd column). Methods that aim to infer internal
intent layers are marked in the ’internal intent’ column. Finally, in the last column,
methods that (can) be applied at a medium-term time horizon are marked positive. All
the data-driven methods are marked positive in the final column; the differentiation of
their contributions can be found in table 2.1.

2.3.8 Grounding

Grounding risk is related to collision risk since it is a ’collision’ with an underwater
object or with the seabed. In literature it is often treated alongside collision, since
vessels sometimes ground in an attempt to avoid collision. In the considered case study,
the only area under threat of grounding is that of the deep draught channel. The vessels
with a deep draught have a chance of grounding if they deviate from their planned path.
Only the channel itself is deep enough for these vessels, so straying out of the channel
would result in grounding. Grounding has been extensively studied in literature, but
since it is only a small component of this problem and because the situation is very
simple (one straight channel), it is not included in this literature survey.



Area Factors Considerations

Category Authors R
is
k

P
re
d
ic
ti
on

S
p
at
io
-T
em

p
or
al

H
u
m
an

E
n
v
ir
on

m
en
ta
l

U
n
ce
rt
ai
n
ty

In
te
ra
ct
io
n
s

In
te
rn
al

In
te
n
t

T
im

e
H
or
iz
on

Two-vessel
Encounter

Montewka et al. (2010) + +

Li and Pang (2013) + + +

Szlapczynski (2006) + + +

Kuwata et al. (2014) + 0 + 0

Zhang et al. (2015) + + 0 0

Bukhari et al. (2013) + + 0 0

Goerlandt et al. (2015) + + + +

Traffic Com-
plexity

Wen et al. (2015) + +

Delahaye and Puechmorel (2000) + + 0

Rahman et al. (2012) + 0 +

Wang et al. (2015) + + +

Socio-
technical
system

Vaněk et al. (2013) + + + 0

Lefèvre et al. (2012) + + + + + +

Blom and Sharpanskykh (2015) + + + +

Bouarfa et al. (2013) + + + + + + + +

MTCD
Prandini and Hu (2016) + + + + +

Althoff et al. (2009) + + +

Manoeuvre
recognition

Houenou et al. (2013) + + + +

Lowe and How (2015) + + + +

Data-driven
prediction

Lancia et al. (2014) + + +

Pallotta et al. (2013) + + +

Ristic et al. (2008) + + +

Zandipour et al. (2008) + + +

Simmons et al. (2006) + + +

Krumm et al. (2013) + + +

Best and Fitch (2015) + + * * 0 +

Ikeda et al. (2013) + + +

Vasquez et al. (2009) + + +

Interaction
prediction

Xu et al. (2015) + + +

Chauvin and Lardjane (2008) + + +

Helbing and Molnár (1995) + + + +

Elfring et al. (2014) + + + + +

Legend

+ yes

0 potentially

”blank” no or not applicable

* implicit or indirectly

Table 2.2: An overview of the literature and their contributions
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Chapter 3

Dataset Description

This purpose of this chapter is to provide a thorough description of the dataset used in
this research. It originates from the Vessel Traffic Services (VTS) system developed by
Saab Technologies B.V., called V3000, for the case study as discussed in section 1.4.
It provides an overview of the origin of the data, the reliability of the data, its format
and further notes that are relevant for this research.
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3.1 From source to dataset

In figure 3.1, an overview is given of the data, from source to dataset format. The data is
obtained from three sources: vessel AIS transponders, radar stations, and the harbour
database. The radar data provides time-stamped positional plots provided by the radar
data processor, which turns the raw radar data into usable radar plots (by noise filtering,
detection thresholds etc.). The harbour database provides data for most vessels going in
and out of Rotterdam. This includes data on identity, dimensions, draught, destination,
and type. The AIS transponders provide data on state, identity, dimensions, draught,
destination, ETA, type and status information. There is a discernment between static,
semi-static and state data. State data is defined as the collection of variables that
describe the state of the dynamical system of a vessel. Static data is defined as the
collection of variables that essentially does not change over time (e.g. identity). Semi-
static data is defined as the collection of variables that changes very slowly over time
(e.g. vessel draught), where the change is significant enough within the time span that
a vessel is considered.
The state data is processed using a method based on the Interacting Multiple Model Joint
Probabilistic Data Association {*Avoiding Track Coalescence} (IMMJPDA*) filter by
Blom and Bloem (2006). The word ’based’ is used because the track coalescence problem
is handled in a different manner. Within the SAAB system, the result of this process is
called a ’track’, which is an estimate of the actual state of a vessel. The (semi-) static
data from either source, is called a ’plan’ within the SAAB system. From here on, semi-
static data and static data are grouped under the term ’static data’.
Tracks are linked to plans in two different ways. Database plans are linked to vessels
manually, by a VTSO , who connects the information from the database to vessels he
sees on-screen. AIS plans are linked to their corresponding tracks based on the identity
information that is sent along.

3.2 Reliability and Accuracy

This section discusses the reliability and accuracy of the dataset (based on its sources).
First the state data is discussed, then the static data.

State data

The data obtained from the AIS transponders depends on the crew and sensor equip-
ment on board a vessel. The state data is generally measured using a Global Positioning
System (GPS) device, the accuracy of which depends on its type and make. Based on
historical values, SAAB sets the accuracy of the AIS location at 95% within 30m radius
around the given location. Some vessels carry high accuracy equipment, such as Differ-
ential GPS (DGPS); the accuracy is then estimated at a 15m radius. The speed and
course of a vessel are direct derivatives of the GPS measurements. The orientation of a
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Figure 3.1: Overview of data used (form source to dataset).
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vessel (if available) originates from a compass sensor. The frequency of AIS messages
depends on the state of a vessel. A vessel should, when underway, emit a state message
at least every 3-10 seconds (ITU, 2010) but it is often less.
The radar sensors each have an accuracy of 20m in range, and 0.3➦azimuth. This means
that at 5km range from the sensor, the azimuth accuracy is equivalent to 26m, and at
50km range it is 260m. This assumes a guaranteed detection of a vessel. The detection
chance of a vessel mostly depends on the signal strength reflected back by the vessel,
which decreases with distance.
In figure 3.2, the coverages for all the sensors are shown (overlaying the TSS). The ac-
curacy of the fused data (tracks), is not directly known, but it has been confirmed that
it is in most cases more accurate than the most accurate data source used.

Static data

The static data given by the database is governed by harbour authorities, and thus
follows strict protocol. This includes checks on the information sent, and checks on
manual entries. Therefore this data is considered very reliable. However, the static data
coming from the AIS transponders, is generally entered manually without protocol,
and therefore often contains errors. This even includes mistakes in identity information.
The static data from AIS transponders is transmitted approximately every 6 minutes
when underway (ITU, 2010).

3.3 Data Storage and Format

Tracks are distributes by the V3000 system every three (3) seconds, while plans are
updated whenever new information is received from an AIS transponder or from the
harbour database. However, all plan data is repeated -’updated’- every 60 seconds.
These updates are sent as messages to the user interface, as well as to the logging
system. There are three types of messages stored that are relevant for this research
(though many more messages are logged by the system, but they are filtered out): track
update, plan update, and plan delete. The latter is a message to announce that a plan
is terminated. For tracks, this is done in a track update message, using a status flag.
In section 3.1 the data was referred to by general category (e.g. identity) only; detailed
description on the data fields is given in appendix A.
Every track is given an identity number (trackID), and also every plan is given an
identity number (planID). Each plan is a container that can hold one AIS plan and/or
one Database plan. If a track has been linked to a plan, the corresponding planID is
registered in the ’planId’-field of the track.
A track does not necessarily have to have a plan; a vessel/object may have been detected
by radar without knowledge of its identity through AIS or Database. Also, a plan does
not necessarily have to be linked to a track. For example, the system may have registered
a vessel in the area (e.g. a planned arrival report in the database), while the vessel has
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Figure 3.2: Illustration of the sensor coverages. The cyan border displays the AIS cov-
erage. Each square indicates the location of a radar, and the border with the
corresponding colour is the coverage of that radar.
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not yet entered the radar/transponder coverage area.
In the logging system the messages are stored in binary format. Data is kept up to
three months after occurrence, after which it is discarded to make room for new logging.
The dataset used for this research is one set of approximately three months (84 days),
from 14 May 2013 16:03 until 8 August 2013 23:59. For the sake of computing resources
(time, memory and storage) and overview, the data from the three relevant messages
was first converted into CSV format before use. In appendix A the data fields, types
and availability are given. In table A, the fields actually used in this research are listed
by category. The name column indicates the name with which the variable is referred
to in text.
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Message Category Name System Name Description Unit

Track

Identification

MMSI MMSI AIS identification MMSI

plan number plan.planId Linked plan identification number

track number trackNumber Track identification number

Geodetic State
course course Geodetic Course w.r.t. North rad

speed speed Geodetic Speed m/s

Euclidean State

x position xPosition System coordinates x-position m

y position yPosition System coordinates y-position m

x velocity xVelocity System coordinates x-velocity m/s

y velocity yVelocity System coordinates y-velocity m/s

General State
turn rate turnRate Turning Rate rad/s

time stamp Timestamp (seconds since 1970) s

Static

(vessel) breadth breadth Vessel Breadth m

(vessel) length length Vessel Length m

(AIS) navigation status navigationStatus (AIS) Navigation status (e.g. Underway)

Journey Determination

anchor number anchor.anchorNumber Anchor identification

buoy number buoyData.id Buoy identification

track type classificationType Internal Track Type (e.g. stationary object)

object type objectTypes Internal Object Type List

track status status Tracking Status (e.g. lost or buoy)

Plan

Container

plan number planId Plan identification number

time (plan) stamp Timestamp (seconds since 1970) s

(vessel) length length Vessel Length m

(vessel) breadth breadth Vessel Breadth m

Database

(vessel) breadth 0.breadth Vessel Breadth m

(vessel) length 0.length Vessel Length m

(vessel) draught 0.draught Vessel Draught m

destination (database) 0.destination Database Destination

vessel type (database) 0.vesselType.vesselType Database vesselType

AIS

MMSI 2.MMSI Maritime Mobile Service Identity

IMO number 2.imoCode IMO identification

(vessel) length 2.length Vessel Length m

(vessel) breadth 2.breadth Vessel Breadth m

(vessel) draught 2.draught Vessel Draught m

(vessel) air draught 2.heightOverKeel Vessel ’Air Draught’ m

destination (AIS) 2.destination AIS Destination

(AIS) navigation status 2.navigationStatus AIS Navigation Status

UN transport mode 2.unTransportCode.mode United Nations Transport Mode

UN transport code A 2.unTransportCode.codeA United Nations Transport Code A

UN transport code B 2.unTransportCode.codeB United Nations Transport Code B

Table 3.1: Data fields used in this research, with names and description. Some fields are interlinked or double. For example, speed
is a vector product of x velocity and y velocity (but in a different reference frame).
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Chapter 4

Research Method

This chapter describes the focus of this research. With a given context and aim described
in chapter 1, and the current related advances in research described in chapter 2, and
the dataset available (chapter 3), this chapter digs deeper into the research question,
explaining its sub-questions. Subsequently, the research methodology is explained in a
nutshell.

41



42 Research Method

4.1 Research Questions

As stated in chapter 1, the main objective of the thesis is to provide a basic understand-
ing of the process of medium-term behaviour of vessels. For medium-term behaviour
the dynamic model of a vessel becomes less important, while the intent of the vessel
(destination, ETA or planned path) becomes more important (Lancia et al., 2014).
Unfortunately, information about this intent is not (directly) available, because there
is no ’sail plan’ mandate similar to the ’flight plan’ regulations in air traffic. Only the
vessels that plan to enter the harbour within 24 hours are obliged to provide their desti-
nation and in some cases their ETA . Other vessels are free to provide such information,
which is not commonly done (reliably). This is an incentive to derive the intent of a
vessel based on the data that is available. Therefore, the main research question of this
thesis is:
Which variables can be used to predict the intent of a vessel?

The data is structured for tracking purposes (monitoring the state of a vessel). To inves-
tigate intent, the data needs a structure that regards the entire trip that a vessel makes
(approximately capturing the intent of a vessel). To be able to generalize conclusions,
statistical evidence is needed. However, each trip of each vessel is unique, which is why
a form of grouping the trips is necessary. This grouping needs to be done based on
some aspect of vessel intent (e.g. planned path), in order for it to be meaningful for
the medium-term prediction of vessel behaviour. If these different groups of intent are
established, prediction can be done only if it is possible to distinguish between these
groups, using the available data. This results in the following sub-questions:

1. What is a useful way to group the data based on intent?

2. Which variables would allow distinguishing between intents?

3. To what extent can historical data provide sufficient support for a medium-term
prediction method?

4.2 Research Methodology

As a method to answer these research questions, the following steps have been taken in
this research (listed here and discussed below).

1. Preparation

(a) Formatting

(b) Cleaning
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(c) Filtering

(d) Selection

2. Exploration

3. Analysis

(a) Group journeys by route

(b) Group routes by starting point

(c) Investigate whether/which variables distinguish routes

(d) Investigate whether planned paths can be derived

4. Validation

First, the dataset needed to be prepared in terms of format, cleaning, filtering and
selection. The format of the data is based on the principle of a journey. A journey is
defined as all data belonging to a single vessel from the point that it enters the map or
starts moving, up until the point that it leaves the map or stops moving.
Second, in order to gain insight into the available data, the dataset was explored by
plotting the selected variables in multiple ways and relative to each other, outliers were
investigated and preliminary conclusions were drawn to be used further on in the thesis.
Then, the most important part of the research is the analysis. Here, the journeys in
the data were grouped by route. A route is defined as as a pair of spatial positions:
the starting point and ending point of a journey. Journeys with similar starting points
and similar ending points were grouped together into one route. This was done using
the clustering method DBSCAN . This grouping criteria captures the intent of a vessel
with minimal assumption. The path between the points is not assumed, neither is time
considered. It is only assumed that the origin and the aim of the vessel is similar within
a group.
These route clusters, in turn, were grouped by their starting points, for the purpose of
comparing routes with the same starting points to each other. For each variable it was
investigated within each of these route groups how suitable the variable is to distinguish
between the different routes of similar origin. This was done by examining distribution
plots of each variable, colour coded by route. A variable is considered distinguishing if
for most of the possible values of that variable, the likelihood that the respective vessel
will take one specific route is larger than 80%.
Then for each journey, a planned path (series of waypoints) was derived, that is, a
procedure was set out and applied, but has not yet worked. A planned path describes
the intent of a vessel in more detail than a route. Therefore it was expected to improve
the prediction at a medium-term time horizon.
Validation was done by sampling 200 journeys and predicting which route each of these
journeys would take based on their starting point and the most distinguishing variable.
This prediction was then compared to their actual route to validate how suitable the
variable is for distinguishing between routes.
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Chapter 5

Data Preparation

In this chapter all the steps that have been taken to prepare the data are explained in
detail. The steps roughly follow the CRISP-data mining methodology (Chapman et al.,
2000): formatting, processing/transformation, cleaning, filtering and selection. Context
specific steps have also been made, which are explained where needed. Note that the
steps in data preparation and steps in data exploration together form an iterative process,
not a purely sequential process. Therefore the steps do follow a logical flow, but not
necessarily a chronological/sequential flow. The chapter concludes with which variables
were selected and why.
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5.1 Timespan selection

When the number of tracks and the number of plans were plotted versus time, it was
seen that there was a 2.5 hour gap in the data, on 17-06-2013 between 10:43 and 13:15.
Since for validation purposes it was planned to split the dataset into two parts, this gap
in the data was chosen as a convenient position to split the dataset in two.
Another important cut in the data was to remove all data after UTC 01-08-2013 00:00.
This was done because the TSS was changed at this time, causing a significant change
in traffic behaviour This finally leaves the first part at a size of approximately 34 days,
and the second part at approximately 441

2
days. It is important to note that the results

shown are from the first part of the dataset.

5.2 Format

Since the analysis of the data is centred around moving objects, a suitable data format is
a time-based registry of all known vessels with all their corresponding variables. To get
the data into this format, an algorithm was written which converts the stream of stored
messages into a time-based monitoring of plans and tracks. This algorithm maintained
a set of current tracks and a set of current plans. Each time a track update message is
received, the system status flag is checked to determine if the track is still active. If it
is, its data is registered in the set of current tracks. If the track is not yet in the current
tracks, it is added. If the track update status is flagged as ’lost’, the data corresponding
to the track number is removed from the current tracks. For plan update messages,
a similar procedure is followed, except that the removal of plans is determined by a
separate plan delete message.
Since this algorithm sequentially monitors the currently active tracks and plans, it can
be used to sample the data by saving/storing the data at a regular time interval. The
time interval used in this research is 60 seconds, to decrease the processing time, and
for easy interpretation (one time sample is one minute). Each time sample contains a
number of data samples. In this research a data sample is defined as one time sample
of the data of one vessel.

5.3 Processing/Transformation

Some of the data fields need to be processed to give useful data. This section describes
how the following variables were derived: UN transport code, navigation status, vessel
type, acceleration, time of day, length, breadth and draught, and destination code. Time
of day is of interest to investigate for example the influence of visibility, and accelera-
tion is of interest because it is a basic motion model descriptor of vessel behaviour The
remaining derived variables (length, breadth, draught, UN transport code, navigation
status, and vessel type) are of interest to categorize vessels and behaviours
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The categorical data which are given as (a set of) integers/bitsets were processed using
conversion tables. These tables can be found in appendix B.
Acceleration was considered of possible interest to this research. Therefore it was cal-
culated in the Euclidean reference frame, using the Euclidean velocity fields (x-Velocity,
y-Velocity) and time field (stamp). Also, time of day is stored separately, by rounding
each time value down to the nearest hour, storing it in the field ’hour’.
For the fields of MMSI , destination, length, breadth, and draught, there sometimes
is overlap of information from the two separate sources: Database and AIS . In these
cases, the data from the database is used rather than that of AIS , due to its reliability,
and the AIS data is discarded entirely. In some cases, the V3000 system has determined
its preference, and has stored it in the track. In these cases, the information from the
track message is used.
Destinations have been grouped/coded according to a custom coding scheme (detailed
in appendix B), because the number of destinations is very large, as well as the number
of aliases per destination. If a destination is given by the database, it follows a standard
protocol and format, which defines unambiguously what the destination is. Most of these
destinations are in, around, or beyond Rotterdam harbour, implying that the vessel is
headed for the harbour, which is why they are grouped into the same destination code
’RDAM’. Most destinations received by AIS are in free text form, with no conven-
tion. Therefore only destinations which are distinct and without spelling mistakes are
coded. This implicitly increases reliability by excluding indistinct entries - which imply
unreliable manual entries - but decreases availability. Fortunately some vessels follow
the UN convention of location codes UNECE (2013), which makes it easier to identify
the destination. Also, according to expert opinion, most vessels that use this convention
follow certain protocols, making their data more reliable.

5.4 Journey Determination

A journey is defined as the entire time that an identified vessel enters the traffic scene,
up until it leaves the traffic scene. A vessel is identified if the ’track’ is linked to a ’plan’.
The geographical boundaries of the traffic scene are defined by the coverage of AIS
(see figure 3.2) and by the land boundary. Therefore a journey will start when it comes
within these boundaries, and end when it leaves these boundaries. Another way that a
journey is seen as ended is if the vessel stops moving, for example to go for anchor. The
opposite is also true; when a vessel starts moving again, a new journey has begun. A
threshold of 0.2m/s was chosen for this, There are other ways in which a journey can
end, such as if the track or its identification (plan) is lost.
Also, the system has multiple ways in which it monitors the track status, navigation
status or type of object (object type, buoy number, anchor number). In this research,
vessels that are anchored or moored are not of interest, therefore all data points are
filtered out where the navigation status indicates ’moored’ or ’anchored’ or where the
object type is not a vessel. A journey will also end if the track is identified as moored,
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anchored or an object type other than vessel.
In the following list, the conditions for a journey are summed up:

❼ the track must be identified by the system (be linked to an active plan)

❼ the track must be identified as a vessel (object type)

❼ the track must be inside the geographical boundaries ( AIS coverage area and
land)

❼ the track must have a speed larger than 0.2 m/s

❼ the track must not be identified as a buoy, ship at anchor

❼ the track must not be lost or unconfirmed (based on track status)

In short, a journey is defined as the collection of data samples of a vessel from the first
time a message with its identification meets the conditions for a usable track, up until
the point that one of these conditions is not met. Every journey is given a number for
processing purposes.

5.5 Connecting Journeys

A track may be temporarily lost, or it may go in and out of the AIS coverage area, or
it may briefly be misidentified. These are reasons for an actual journey to be broken up
into multiple journeys by the procedure described in 5.4. Therefore reconnecting these
partial journeys is a necessary step in the preparation of journey data as used in this
research.
If two partial journeys have the same identity -Maritime Mobile Service Identity (MMSI)
- it may very well be that they are of the same actual journey. If the partial journey
starts later than another partial journey, and starts with a state similar to the last state
of the earlier partial journey, both partial journeys are likely one and the same journey.
Therefore, journeys are grouped by MMSI . Within each group, the first data point
of each journey is compared with the last of each other journey that ended before the
considered journey began. Based on the difference in position and time, the connection
speed (x,y) is determined; this is the speed that would be necessary to bridge the spatio-
temporal gap between the compared points. This connection speed is compared with
both the registered final speed of the first journey, and also to the initial speed of the
second journey. If in both cases the connection speed is similar to the compared speed,
and if the time difference is less than 10 minutes (maximum allowable time gap), it is
considered to be the same journey.
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5.6 Journey Filtering

Not all journeys are suitable for analysis, because they are too long, too short, non-
moving, too fast or very unreliable. Therefore filtering entire journeys is a needed prepa-
ration step. The filtering choices made in this research are discussed in this section.
Journeys were considered immobile if the highest speed during the entire journey was
below 0.5m/s, because ocean currents can already cause a vessel to drift at this speed.
For each journey, the distance travelled was compared to the total duration of the jour-
ney, resulting in an ’average speed’. Journeys where the average speed was below 0.5m/s
and the maximum speed below 2m/s were filtered out. The combination of the condi-
tion with the maximum speed is because some journeys may for example drift around
at 0.3m/s for a very long time before starting to accelerate to normal speed.
Journeys with few data-points (< 10) or short durations (< 5 minutes) were cleaned
out because such small journeys lack meaning. The duration limit could be raised even
higher, but 5 minutes was chosen to exclude as few journeys as possible. Journeys with
large time gaps (> 10 minutes) were removed for this thesis (in future work they should
be split into multiple journeys).
Vessels that are engaged in fishing are considered to be too unpredictable in their be-
haviour, which is why all journeys with navigation status indicates ’engaged in fishing’
are removed.
Finally, journeys were removed of which it was not clear if it is a full journey, i.e. there is
no knowledge when it started or ended. Journeys which have been registered in the first
time sample are removed from the dataset, since it it not known when these journeys
have commenced. Likewise, journeys that have no known ending are also filtered out.
For each of these filtering conditions, spatial plots were made to confirm the paths of
these journeys. The vast majority of the removed journeys were on the edge of the cov-
erage area, or inside anchorage areas. After all connecting and filtering was performed,
a total number of 20,515 journeys remained.

5.7 Selection

From all the available data fields, a selection was made in consultation with expert staff,
based on relevance to the research. The selected fields are shown in table 5.1, with their
descriptions. The possible values for navigation status have been described in table 5.2,
and the possible values for vessel type can be found in table 5.3. The state of a vessel
needs to be described in a complete way, since the vessel state is an inherent part of
prediction. Therefore the fields for acceleration, speed and position were chosen, as
well as the turn rate and course of a vessel. The position was described in the system
reference frame for convenient analysis (simple distance measurements), with a small
penalty in accuracy; a more accurate investigation would use the latitude and longitude,
requiring more calculation steps. The vessel dimensions and category were regarded as
possible causes for vessel behaviour (e.g. choice of path or final destination), as well as
destination, navigation status and time of day.
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Group Name Code Description Possible values Unit

State X position POS X X-position in system reference frame -70,000 to +70,000 m

Y position POS Y Y-position in system reference frame -70,000 to +70,001 m

Acceleration ACC Absolute acceleration 0 to 2 m/s2

Speed SPEED Absolute speed 0 to 40 m/s

Course COURSE Course w.r.t. North, clockwise positive 0 to 2π rad

Turn rate TURN Turning rate, clockwise positive 0 to 0.5 rad/s

Dimensions Length L Vessel length 0 to 380 m

Width W Vessel width 0 to 50 m

Draught D Vessel draught 0 to 22.55 m

Category Type TYPE Vessel type see table 5.3

Other Destination DST CODE Destinations coded by geographical group e.g. ’RDAM’

Navigation Status STAT Navigation Status according to AIS standard see table 5.2

Hour HOUR Time of day, grouped per hour, rounded down 0-23

Table 5.1: Description of the variables used in this research.
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Codename Description

ENG Under way using engine (default)

ANCH At anchor

NUC Not under command

RM Restricted manoeuvrability

CBD Constrained by draught

MOOR Moored

GROUND Aground

FISH Engaged in fishing

SAIL Under way sailing

HSC Reserved for HSC (High Speed Craft)

WIG Reserved for WIG (Wing In Ground)

RES01 Reserved for future use

RES02 Reserved for future use

RES03 Reserved for future use

SART SART active

UNDEF default or SART under test

Table 5.2: Description of values in the navigation status variable. IMO (2001)

Letter Description

P Pilot on board indication

I Ship with IMO cargo indication

Sp Special ship indication

A Anchor ship indication

G Sea ship indication

Sv Service vessel indication

C Channel ship indication

D Dredge ship indication

R River ship indication

T Tug boat indication

B berthed ship indication

Table 5.3: Description of the values for vessel type. Multiple values can be taken, which
is by a merge of the letters (e.g. ’GIP’).
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Chapter 6

Data Exploration

In order to gain insight into the available data, several different kinds of plots were
generated (section 6.1). The data is viewed from two angles: default view - each data
sample is counted once, and journey view - each journey is counted once. In the journey
view, numeric data was averaged over the data samples belonging to the journey, and
for nominal/ordinal data the most occurring value was taken (usually the only value).
From here on in this report, when referring to a plot or a distribution the term ’default’
is only used when contrasted with the journey view.
Using these plots, outliers were investigated (section 6.2) and treated, after which pre-
liminary observations were made (section 6.3) which are to be used further on in this
research.

6.1 Plotting Variables

For each variable, the distribution was plotted for both views. For numeric data, a
histogram, a boxplot and a dot plot were created (e.g. figure 6.1). For nominal data,
bar charts were created (e.g. figure 6.2).
Each variable was also plotted against each other variable. The type of plot is shown
in table 6.1. In order to gain insight on the spread of numeric variables, boxplots were
made when plotting numeric variables against nominal variables. For the sake of viewing
distribution, trellis -or jittered- plots were generated in the opposite case. In cases where
a coloured bar plot was not sufficiently clear, a conditional plot was created. Also, spatial
plots were generated, displaying the geographic distribution of numeric variables (grid
averages).
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Figure 6.1: An example plot of the distribution of one of the numeric variables - in this
case speed.

Figure 6.2: An example plot of the distribution of one of the nominal variables - in this
case destination.
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X-axis

Numeric Nominal

Y-Axis
Numeric Scatter Box

Nominal Trellis Coloured Bar

Table 6.1: Plot type based on variable type per axis.

6.2 Outlier Investigation

Outliers were investigated starting with the single variable plots. After having filtered
all the journeys as discussed in section 5.6, the only clear remaining outliers were in
the dimensions of vessels: length, breadth and draught. These outliers were treated
in two steps. First, the values were regarded separately. Then the ratios between the
dimensions were checked for outliers.

In august 2013, the longest vessel in the world was 380m long, and the widest vessel in
the world 50m wide. Also, the maximum draught possible in the deep water channel -and
the entire area- is 22.55m. Any vessel exceeding these values is by definition considered
an outlier. These were investigated on a case by case basis due to the low number of
journey cases, in order to find an explanation for the values. Possible causes considered
were: mixed up dimensions (e.g. used width instead of length), typographical error (e.g.
decimal incorrect), unusual vessel type, and unusual behaviour. Solutions chosen were
as follows:

Dimension mix-up switch values back

Typographical undo assumed typographical error

Unusual Vessel Type leave data as is, but consider journey as outlier

Unusual Behavior leave data as is, but consider journey as outlier

Each solution was verified by the inter-dimension ratios, ship type and speed range. If no
solution was found sufficient, all dimensional variables were removed for the investigated
data point or for the entire journey in the case of many data points.

The second step was to check for outliers in terms of inter-dimension ratios. Scatter plots
of each dimension vs each of the other dimensions (as described in section 6.1 were used
to identify these outliers. Here it was also visible that on the lower side there were also
outliers: vessels with very low draught values. These outliers (low values and off-ratios)
were also treated in the manner discussed above.
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6.3 Preliminary observations

This section discusses the most relevant/notable observation made during the exploration
of the dataset. The importance of it is to gain an understanding of the behaviour of the
vessels in general. The first thing observed during data exploration is how often each
variable is available in the dataset (as shown in table 6.2). What is especially notable
is that the number of samples that contain a turn rate is very low, but that most
journeys do have an average turn rate. This is because the system does not register turn
rates below a certain detection threshold. Otherwise, the variables are mostly available,
though it must be kept in mind that combinations may not be.

6.3.1 State variables

When regarding the turn rate distribution (fig. 6.3), most turn rates are very close to
zero, having 50% of the datapoints in a span of 0.005 rad/s. This makes sense, since the
traffic is at open sea, where manoeuvring much is not necessary, and not preferred either,
since it is costly. The same goes for acceleration: a large proportion of accelerations is
around the order of 10−2 m/s2 , both for the journey averages as well as for the default
distribution. What is also interesting, is that the journey distribution generally has
higher values than the default distribution, which implies that generally longer journeys
have lower accelerations.
Both course distributions have multiple peaks (figs. 6.4 and 6.5), the most notable at
roughly 1

2
π and 11

2
π, which are associated with directions East and West, implying that

most journeys are passing through the main East-West traffic lanes of the TSS . Speed
has a very smooth default distribution.

6.3.2 Dimension variables

Draught (fig. 6.6) has a mean around 5 meters, with a notable peak at 3 meters. There
is also quite a peak at 5 meters, but this is because many draught entries are rounded
off, setting them exactly at 5 meters, which is enhanced by the bin size of the histogram.
Though draught may have quite a smooth distribution, length definitely doesn’t (see
fig. 6.7). There are multiple peaks (e.g. at 30m, 80-100m), and quite a gap around 50m
(verified with other plots). This gap seems to be an unusual length, falling between
two more common size groups. The width distribution (fig. 6.8) has a noticeable peak
at 32m, just before a clear split around 34m. Also, around 8 or 9 the same kind of
dip similar to the dip in the length distribution at 50m. These gaps or dips indicate
a possible means to distinguish between different intents (e.g. two vessels coming from
the same place, but belonging in different distinct size classes may generally go different
ways).
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Samples (%) Journey (%)

State

Acceleration ACC 100 100

Course COURSE 100 100

Speed D 88 90

Turn Rate TURN 16 87

Dimensions

Length L 98 98

Width W 98 99

Draught D 88 90

Category Vessel Type TYPE 44 30

Other

Destination (coded) DST CODE 47 40

Navigation Status STAT 85 91

Time of day HOUR 100 100

Count 1,858,756 20,515

Table 6.2: Availability of selected variables in dataset in percentage. The samples column
indicates the percentage of data samples that contain the variable, while the
journeys column shows the percentage of journeys that does. At the bottom
the total number of data samples and journeys are given (for context).

Figure 6.3: Turn rate distribution (rad/s).
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Figure 6.4: Standard course distribution (rad) with clear peaks at roughly 1

2
π and 1 1

2
π.

Figure 6.5: Journey course distribution (rad) with clear peaks at roughly 1

2
π and 1 1

2
π.
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Figure 6.6: Draught distribution (m).
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Figure 6.7: Length distribution (m).

Figure 6.8: Width distribution (m).
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6.3.3 Category variables

The vessel type (fig. 6.9) makes it clear that the vast majority of vessels is a sea ship (G)
as opposed to the river ships (R). Few vessels sail both inland and at sea. The presence
of pilots on board (P) is also quite significant. From domain knowledge it is clear that
vessels with pilots on board are either entering into the harbour, or leaving it. This gives
a limited range of possible intents for these vessels.

6.3.4 Other variables

In fig. 6.10 the most popular destination is -as expected- Rotterdam, followed by the
south of the Netherlands. This makes sense because most reliable destinations come
from the harbour database, which is mostly concerned with vessels headed toward the
harbour, not outward. However, England and (northern) Germany do have a significant
portion. Destination seems a promising variable, because it implies intent, but it also
has not one, but multiple significantly prominent values.
Traffic is not entirely evenly distributed throughout the day (fig. 6.11). The highest
peak is around noon and the lowest count is around midnight. The waving pattern is
probably not influenced by the tidal patterns. These have a 6-hour period, where the
tidal peaks shift around an hour per day, reaching a full cycle in six days. The size of the
dataset is 34 days, which includes 5 full periods, outweighing the remainder of 4 days. A
more likely cause seems to be that during the day, a higher throughput of boats can be
handled, due to more visibility and thus more safety. Unfortunately the differences are
not significant enough to be of much help when it comes to distinguish between vessels
and their intents.
The navigation status of most vessels is most of the time ’underway using engine’ (see
fig. 6.12). This does not come as a surprise, but may not be helpful when trying to
distinguish between vessels. On the other hand, especially the exceptions may prove
useful.

6.3.5 Two-dimensional distributions

Plotting the variables against each other, together with correlation calculations (ta-
ble 6.3), resulted in several additional insights. This section shortly highlights the most
striking of these insights. The two-variable relationships may prove useful in deriving
combined effects of vessel behaviour.
The dimension variables are all strongly positively (> 0.80) correlated to each other,
especially length and width. Acceleration and absolute turn rate (both manoeuvring
variables) are also positively correlated, possibly an indicator of local behaviour. All
dimensions are slightly negatively correlated with acceleration and with absolute turn
rate. Therefore the larger the ship, the less a vessel manoeuvres. However, speed is
positively correlated with the dimension variables.
In fig. 6.13, acceleration and speed are not strongly correlated, though this was expected.
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Figure 6.9: Vessel type distribution (by journey). See text and table 5.3 for details.

Figure 6.10: Destination distribution (by journey).
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Figure 6.11: Time of day distribution.

Figure 6.12: Navigation status distribution (by journey). See text and table 5.2 for details.
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Length Width Draught Speed Acceleration Turn Rate

Length - +0.96 +0.81 +0.16 -0.14 -0.18

Width +0.96 - +0.80 +0.14 -0.13 -0.17

Draught +0.81 +0.80 - +0.00 -0.16 -0.17

Speed +0.16 +0.14 +0.00 - +0.16 -0.03

Acceleration -0.14 -0.13 -0.16 +0.16 - +0.60

Turn Rate -0.18 -0.17 -0.17 -0.03 +0.60 -

Table 6.3: Pearson correlations between numeric variables. The absolute value of the turn
rate is used here.

However, there does seem to be a lower limit line increasing with speed. This suggests
a minimum acceleration for a given speed, which increases with speed.

In fig. 6.14 it seems clear that destination quite influences the course of a vessel. The gaps
are promising in terms of being able to distinguish the intent of a vessel from another.
From other plots, a few noticeable points are that vessels with destination NL NORTH
are small in size (length and draught), and those to CANADA/USA are very large. Also
the speeds of vessels headed to SCOT-WEST are very low, while to DEN-WEST travel
fast.

When comparing navigation status to vessel dimensions, vessels that are constrained
by draught (CBD) are very large in all three dimensions, vessels that are not under
command (NUC) are also relatively long and wide, but do not lie deep. High speed
crafts (HSC) and undefined ships (UNDEF) are short.
When comparing the vessel type to other variables, the sea going, piloted sea ships
(CGP/CGIP) are very large in all dimensions. The special ships (Sp) are all short in
length and not deep, but relatively wide and move very slowly. All river vessels (R) are
not wide, accelerate slowly, and have low turn rates.
To summarise, understanding the (cor-) relations between variables can prove useful. If
one variable is useful for prediction on its own, its relationship with other variables can
be used to understand the effect that the other variables have on vessel behaviour.

6.3.6 Spatial dependence

An important note on the state variables, is that they very much depend on position, as
can be seen in figs. 6.15 to 6.20, where the spatial distributions of each numeric variable
are shown. In these figures it becomes quite clear that it will be useful or even necessary
to analyse in detail the spatial dependence of these variables.
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Figure 6.13: Acceleration vs. Speed.

Figure 6.14: Destination vs. Course.



66 Data Exploration

Figure 6.15: Spatial distribution of length (m).

Figure 6.16: Spatial distribution of width (m).
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Figure 6.17: Spatial distribution of draught (m).

Figure 6.18: Spatial distribution of acceleration (log(m/s2)).
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Figure 6.19: Spatial distribution of speed (m/s).

Figure 6.20: Spatial distribution of course (rad w.r.t. North).



Chapter 7

Data Analysis

This chapter discusses the steps taken in the process of analysing the data, and the
applied methods. It also discusses the decisions made and their motivations.
Section 7.1 describes how routes (origin-destination pairs) were derived from the dataset.
This was done by clustering entry point and exit points of journeys using the DBSCAN
(Ester et al., 1996) clustering technique. Section 7.1.3 explains how the data was plotted
in order to investigate which variables can distinguish between different routes (in order
to predict which route a vessel will take).
Then section 7.2 describes the approach to derive planned paths (series of connected
waypoints) from the dataset, to describe vessel intent in more detail for better prediction.
First, waypoints were derived by detecting change-points in the course of a vessel using
binary segmentation (Scott and Knott, 1974). Then these waypoints were clustered,
after which journeys with the same sequence were grouped.

69
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7.1 Route Clustering and Analysis

Each vessel (object) goes through a different process than each other vessel, changing its
position in time and space, as well as changing other variables throughout time. This is
a different process as opposed to a spatio-temporal point process, where variables change
through space and time, according to one or more processes. In the moving object field
however, each process is unique and never repeats itself exactly. Therefore it is consid-
ered sensible to group the processes based on their trajectories. This can be as detailed
as to group them by their positions throughout time, their speed distribution, and other
parameters.
However for the purpose of the data analysis - investigating what variables are suitable
to predict vessel intent - it is desirable to perform grouping with as few assumptions
regarding vessel intent as possible at first, but still capturing the intent of a vessel.
Therefore the journeys are grouped by their routes; a route is defined as as a pair of
spatial positions: the starting point and ending point of a journey. This means that
journeys that have a similar starting point and also a similar ending point belong to the
same group. The significance of this grouping is that it roughly captures the intent of
a vessel (where it comes from and where it is going), with one single assumption that
each vessel has a route in mind to travel. This contrasts with a full trajectory based
grouping, which at least assumes a series of points intended, or even an entire path.
In this section, first the used clustering methods are discussed (section 7.1.1), then how
these methods are applied to the route clustering in section 7.1.2, and finally what plots
were generated (also section 7.1.3).

7.1.1 DBSCAN

Density Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al.,
1996) is a data clustering algorithm which clusters data based on the density of data
points (in a euclidean space). This means that data points in high density areas are
considered to belong to the same cluster as nearby points. Points that are in low density
areas are considered to be noise. The advantage of this method is that it can handle
clusters of any shape, including non-convex shapes. ”The key idea”, according to Ester
et al. (1996), ”is that for each point of a cluster the neighbourhood of a given radius has
to contain at least a minimum number of points, i.e. the density in the neighbourhood
has to exceed some threshold.”
The given radius is denoted by ǫ or eps, while the minimum number of points is denoted
by MinPts. These are the two parameters used by the algorithm. Core points are
defined as points which contain >= MinPts within their eps radius. Border points are
defined as points that lie within the eps radius of a core point, but are not a core point
themselves. This is illustrated in figure 7.1. All core points that lie within reach (eps)
of each other are considered to be of the same cluster. All border points that belong to
these core points also are part of that cluster. Points that are neither core points nor
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Figure 7.1: Illustration of the DBSCAN Ester et al. (1996) clustering principles. The left
side shows the first step of the algorithm (determining core points), and the
right side shows the second step (determining border points and noise points).
The colours are explained in the figure.

border points are considered noise points. The algorithm first determines for each data
point if it is a core point, ans subsequently determines which points (core points and
other points) lie within range of each core point, which determines the clusters.
Figure 7.1 is used as an illustration of the concepts explained here. The minimum
number of points used here is three, and the size of eps is indicated. On the left hand
of the figure the first part of the algorithm is shown, where each of the blue points is
determined to be a core point, since for each of them, there are 3 or more points within
eps radius. In the second step (right), the green point is found to be a border point,
since it is within reach of a core point. The red point, however is not within reach of
a core point, and is therefore considered noise. All core points connected to each other
are considered one cluster, together with their corresponding border points.
The now widely applied method (by Ester et al. (1996)) for determining the best eps
value when MinPts is given, is by determining the ’elbow’ in a K Nearest Neighbour
(kNN) distance plot fig. 7.2. This plot shows for each datapoint how large a radius
(eps) is necessary to have minPts number of points lie within this radius. The elbow in
the plot determines the point where an increase in radius would result in relatively less
information gain. All the data points to the left of the elbow are part of the clusters,
and all the data points to the right are considered noise (they are too far away from the
nearest neighbouring point in euclidean space).
In this research, the R package ’dbscan’ (Hahsler, 2016) was used to implement this
algorithm.
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Figure 7.2: K Nearest Neighbour distribution plot.
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7.1.2 Route Clustering

The grouping is done using the DBSCAN method described in 7.1.1. There are var-
ious methods to cluster data, but this algorithm has the advantages that it can handle
clusters of arbitrary shapes, does not need a priori knowledge of the number of clusters,
and is built for spatial data. The entry points (x and y position when a journey starts)
of the journeys were clustered separately from the exit points (x and y position when a
journey ends). The search for the best clustering parameters was done by ranging the
minPts parameter from 60 to 120 in steps of 10, and determining eps for each minPts
according to the method described in section 7.1.1. The elbow in the kNN-distance plot
was determined by finding the point in the graph where the area under the plot was
equal on either side of the point. The correctness of the value was verified visually and
so the eps value was derived from this point.
For each of these parameter combinations, clustering was performed, resulting in a num-
ber of entry point clusters and exit point clusters. These were plotted on a map (e.g.
figs. 8.1 and 8.2), to establish which parameter setting results in the most distinct entry
and exit point clusters. The two criteria used for this were the relative amount of noise
(20%) and if the points were representative of the TSS structure (thus meaningful).
To confirm the method of choosing eps, the above procedure was also performed for
other eps values. These other values were obtained by multiplying the original eps value
by 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5. From this it was concluded that within a ten percent
range of the original eps value, the TSS representation was very much the same, but
the amount of noise varied significantly.

7.1.3 Plotting for Analysis

Routes were established by combining each entry cluster with each exit cluster, and for
each route a spatial plot was created (e.g. fig. 7.3). Routes where less than 1 journey
per two days pass (so less than 17 for the 34 day dataset), were regarded as noise.
The same plots as in chapter 6 were generated, but then coloured in based on the route,
and grouped by entry point, in order to examine the differences between the routes,
variable by variable. This was done in order to determine how well each variable can
distinguish between routes, so as to be useful for the prediction of the vessel intent.

7.2 Waypoint clustering and Trajectory Analysis

After investigating the routes, the next step in the data analysis process was to dig
deeper by separating planned path within route clusters. A planned path is here defined
as a series of waypoints which a vessel has followed. Therefore, within one route (same
starting point and end point) there are multiple planned paths that can be followed.
The underlying assumption is that the traversed trajectory is a good approximation for
the planned path. Different kinds of vessels, circumstances or other variables may be
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Figure 7.3: Spatial plot of route from entry point 12 to exit point 7. The size of this route
is 164 journeys with 17,724 data samples.
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the cause of this. The reason why this sub-grouping is done, is because it describes the
intent of a vessel to more detail than that the route definition (section 7.1.2) does.
The method used to separate different trajectory groups is inspired by the approach used
in Lancia et al. (2014). It may be noted, however, that within this thesis the approach
is used solely to group data for the purpose of data analysis, not for the purpose of
building a prediction model directly. The approach is to derive waypoints from vessel
trajectories, to subsequently group trajectories by the series of waypoints they follow.
First, the method used to derive the waypoints is described (section 7.2.1), after which
its application in this research is described in section 7.2.2.

7.2.1 Change-point detection by binary segmentation

Change-point detection is an area of clustering algorithms that aims to detect be-
havioural changes in sequential data (i.e. clustering based on behavioural characteris-
tics). Often this is applied to time-series, since this is a common application of sequential
data. Changes of behaviour can be, for example, changes in mean, changes in variance,
or changes in both. The most widely applied approach in this area is that of binary
segmentation by Scott and Knott (1974).
To explain this algorithm, it is best to start at how a single change-point is determined
in a data series. Consider a series of values y1, y2, . . . , yn which may or may not have
two distinct means. Figure 7.4, for example, is a series of sequential data which seems to
have two distinct means. For one point k ∈ {1..n}, the mean µ1 and standard deviation
σ1 of the values before yk are calculated, as also for the values after yk (µ2 and σ2).
Based on these values, the likelihood L is determined that the two means (µ1, µ2) are
distinct (L increases if σ decreases and µ1 − µ2 increases). This is done for every data
point k ∈ {1..n}. Then the data point with the highest likelihood is regarded as the
change-point IF the likelihood exceeds the likelihood that there is only one mean.
In the case of multiple change-point detection, binary segmentation first applies the
above approach to the entire dataset. Then, IF it detects a change point, the dataset is
split into two parts at this point, and for both parts, the same approach is applied again.
This is done recursively until each likelihood comparison test determines that there is
no change-point. This can be seen as analogous to the well-known bisection method.
In this research, the R package ’changepoint’ (Killick and Eckley, 2014) was used to
implement this algorithm.

7.2.2 Procedure

All the journeys within one route cluster are considered. For each journey, the change-
point detection method described in section 7.2.1 is used to detect changes in the course
of a vessel. The change-points detected are considered the journey’s waypoints. The
positions of these waypoints are clustered using the DBSCAN method described in
section 7.1.1. Then, for each journey the sequence of waypoint clusters that the vessel
follows is registered. All journeys with the same sequence are considered to be of the
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Figure 7.4: Sequential dataset with (possibly) two means.

same trajectory group.
The reasons for using course change as a waypoint -change in behaviour- indicator are
twofold. First, when a ship-master plans his trip from harbour to harbour, this is done
with a series of waypoints in space, which is where he plans to change course to head
towards the next waypoint. After this he plans at what time to be at each waypoint,
from which he builds a rough speed plan. Therefore there is an assumed underlying
intent of the vessel captured in the (discrete) course profile and the speed profile of
a journey, though the former is the stronger. Second, the change in course is much
more distinct than the change in speed. Throughout journeys the change in course is
more concentrated short periods of time, while the change of speed is spread out over
longer periods of time (slow acceleration/deceleration). This can also be seen in fig. 7.5,
where the change in course is more distinct (bottom left) than the gradual change in
speed (bottom right.) The figure also displays the trajectory (top right), and the means
estimated by the change-point detection method (bottom left). Naturally, the course
variable has been treated as a continuous circular domain.
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Figure 7.5: Illustration of waypoint detection. The red points indicate the datapoint cor-
responding to the waypoint. The red lines (bottom left) indicate the mean
course estimated by the change-point detection method.
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Chapter 8

Results

In this chapter the results of the data analysis are displayed, explained and discussed.
First it is shown how well each variable can distinguish between routes, possibly in
combination with other variables. The results show that the variables ’course’ and ’des-
tination’ can distinguish between routes sufficiently enough to investigate them further.
Other variables may add value also, but then in combination with the two mentioned
variables. Then the waypoint determination (to derive planned paths) is shown to not
be successful.

79



80 Results

8.1 Route Clustering

The resulting parameters used are minPts = 80, eps = 2197m for entry points, and
eps = 2252m for exit points. The entry point clusters and exit point clusters are shown
on the map in figs. 8.1 and 8.2 respectively. Each of the clusters has been named
according to its approximate location. There are 15 entry point clusters and 14 exit point
clusters in total. It can be seen that the noise points concentrate themselves around the
edge of the map, and around anchorage areas. The reason why some anchorage areas
have not been identified as an entry/exit cluster is because of the relatively low number
of points within that area.
The routes that connect the entry points to the exit points are shown in table 8.1.
The table shows the number of journeys for each route. Each entry/exit point cluster
is numbered as obtained from the clustering algorithm. From the number of journeys
in the noise routes it can be concluded that in most groups, the noise route does not
dominate. However, it can also be seen that for some entry points the vast majority
of journeys heads towards a specific exit point. This means that if the entry point is
known, the predictability for where the vessel will exit is high. On the whole, the largest
routes account for 56% of the journeys.
The spatial plots, grouped by entry point, can be seen in figs. 8.3 to 8.18. For all these
plots, the exit point clusters are colour coded (e.g. exit point 7 (Rotterdam) is cyan).
The red journeys belong to the noise exit cluster, which is why they do not follow a clear
pattern. All other routes, however, mostly have a very clear spatial pattern (behaviour).
However, sometimes distinctly different paths are taken by different vessels.

Route relevance

Not all the found routes are as relevant to the research. Basically any route that crosses
through one of the two main intersections is of interest, since the most near-misses are
encountered there. Routes that remain at the edges of the coverage area are not of
interest, e.g. from entry point 2 (North Hinder S) to exit point 4 (Brugge/Westkapelle)
in fig. 8.4. However other routes may originate from the same entry point, which is why
such routes cannot be excluded from the analysis. Only if all the routes from the same
entry point remain on the edges of the coverage area, can they be excluded. This is the
case for entry point clusters 6 (North Hinder N, fig. 8.8), 15 (Katwijk, fig. 8.17) and
-except for one noise journey- 14 (Southwest, fig. 8.16).

8.2 Variable Suitability

For each group of routes (grouped by entry points), a plot was created for each variable,
and for each pair of variables, as described in section 7.1.2. Here, however, the datapoints
are coloured by route. For each of these plots, it was evaluated if and how well the
variable plotted made a distinction between the routes within the group. As a useful
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Figure 8.1: Resulting locations of the entry point clusters. Each dot represents the entry
point of one journey.

Figure 8.2: Resulting locations clusters of the exit points. Each dot represents the exit
point of one journey.
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# Routes # Journeys # Samples

0 Noise 2223 24 200 77 399 103 140 807 94 49 85 25 60 100 14 4386 391325

1 Rotterdam 790 863 144 129 151 912 323 1414 540 25 75 170 58 13 5594 650443

2 North Hinder S 356 39 756 154 4 1305 199641

3 Scheveningen 208 1940 29 34 4 2211 115124

4 Westkapelle 396 177 3100 76 34 40 6 3823 214781

5 Rijnveld 1 107 56 269 22 84 20 6 558 69180

6 North Hinder N 91 452 2 543 18643

7 Anker 4A 21 240 30 3 291 26264

8 Ijmuiden 174 266 86 3 526 62741

9 Brugge 55 111 2 166 11694

10 Rijnveld 2 29 21 65 194 17 5 326 31268

11 Stellendam 97 18 111 3 226 30159

12 Anker 5A 164 1 164 17724

13 Katwijk Anker 22 108 86 3 216 10868

14 Southwest 21 72 2 93 4102

15 Katwijk 70 17 2 87 4799

Table 8.1: Number of journeys per route. Entry points are per row, exit points per column.
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Figure 8.3: Spatial plot of all routes originating from entry cluster 1 (Rotterdam). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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Figure 8.4: Spatial plot of all routes originating from entry cluster 2 (North Hinder S). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in the
title above the subplots.
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Figure 8.5: Spatial plot of all routes originating from entry cluster 3 (Scheveningen). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in the
title above the subplots.
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Figure 8.6: Spatial plot of all routes originating from entry cluster 4 (Westkapelle). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in the
title above the subplots.
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Figure 8.7: Spatial plot of all routes originating from entry cluster 5 (Rijnveld 1). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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Figure 8.8: Spatial plot of all routes originating from entry cluster 6 (North Hinder N). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in the
title above the subplots.
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Figure 8.9: Spatial plot of all routes originating from entry cluster 7 (Anker 4A). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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Figure 8.10: Spatial plot of all routes originating from entry cluster 8 (Ijmuiden). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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Figure 8.11: Spatial plot of all routes originating from entry cluster 9 (Brugge). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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Figure 8.12: Spatial plot of all routes originating from entry cluster 10 (Rijnveld 2). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in
the title above the subplots.
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Figure 8.13: Spatial plot of all routes originating from entry cluster 11 (Stellendam). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in
the title above the subplots.
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Figure 8.14: Spatial plot of all routes originating from entry cluster 12 (Anker 5A). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in
the title above the subplots.
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Figure 8.15: Spatial plot of all routes originating from entry cluster 13 (Katwijk Anker).
For each route (subplot), the exit point number is shown in the top left
corner. In the bottom left corner of each subplot, the ’size’ of the route is
given (#journeys : # data samples). The total size of all the routes is shown
in the title above the subplots.
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Figure 8.16: Spatial plot of all routes originating from entry cluster 14 (Southwest). For
each route (subplot), the exit point number is shown in the top left corner.
In the bottom left corner of each subplot, the ’size’ of the route is given
(#journeys : # data samples). The total size of all the routes is shown in
the title above the subplots.
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Figure 8.17: Spatial plot of all routes originating from entry cluster 15 (Katwijk). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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Figure 8.18: Spatial plot of all routes originating from entry cluster 0 (Noise). For each
route (subplot), the exit point number is shown in the top left corner. In the
bottom left corner of each subplot, the ’size’ of the route is given (#journeys
: # data samples). The total size of all the routes is shown in the title above
the subplots.
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reference, the routes are displayed in figs. 8.3 to 8.18. In table 8.4 an overview is
displayed of how well each variable distinguished between the routes of each group. For
each group, the number of journeys, the number of samples, and number of routes is
shown, to give an indication of how significant the distinguishing is. For each variable,
the four possible values are ’None’, ’Weak’, ’Moderate’ and ’Strong’. The criteria for
these values is different for numeric variables (states and dimensions) than for nominal
variables (category and other). These values are explained using example figures in
sections 8.2.1 and 8.2.2.

8.2.1 Numeric variables

A numeric variable is classified as strongly distinguishing when most routes have very
little overlap with each other route. Unfortunately no single variable discerns strongly,
so no clear example can be given.
A numeric variable is classified as moderately distinguishing when some routes overlap
partially, or certain values can cause grouping. Causing grouping means that for one
value, it becomes likely that the vessel belongs to one of a few routes. In fig. 8.19 (entry
point 5 - Rijnveld 1), multiple values cause grouping. At a course around 0rad, only exit
points 3, 4 and noise are possible, while for a course of 1.7rad, exit points 4 and 7 are
dominant, with a small possibility of 10 and 3. Exit point 6 is limited to a very small
range of courses, barely overlapping with 10 and 7. When considering the same variable,
but then for journey averages (fig. 8.20), even more distinct bands become apparent.
These tend to being classified as strong distinction, but the overlap of 10 and 7, together
with the overlap of 4 and Noise fail the requirement.
Numeric variable is defined as weakly discerning when all routes overlap for a range of
values, but that for a certain (significant) range of values, routes with smaller ranges
can be excluded. A good example of a weak numeric variable classification is shown
in fig. 8.21, where the journey distribution of accelerations of all routes originating in
entry point 4 (Westkapelle) are depicted. Here it can be seen that all the routes overlap
significantly, which makes distinction difficult for a range of acceleration values. However,
for values below 10−3, it is very likely that the route the vessel will take is towards exit
point 4 (Brugge/Westkapelle).
If even the requirement for weakly discerning is not met, it is classified as not discerning
(’None’). Figure 8.22 shows the standard distribution of the same group and variable as
in fig. 8.21. Here it can be seen that all routes overlap for the entire range of accelerations
covered by routes 9 and 12. Excluding these smaller range groups is barely possible, and
when it is (e.g. below 10−5.5), the presence of the noise group is still high.
An overview of the classification scheme is given in table 8.2.

8.2.2 Nominal variables

A nominal variable is classified as strongly distinguishing when for each possible given
value it is quite certain (80% or more) which route is the result. In fig. 8.23 the desti-
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Figure 8.19: Route vs. course - Data sample distribution. Course distinguishes moderately
between the routes originating from entry point 5 (Rijnveld 1).

Figure 8.20: Route vs. course - Journey distribution. Course distinguishes moderately
between the routes originating from entry point 5 (Rijnveld 1).
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Figure 8.21: Route vs. acceleration - Journey distribution. Acceleration distinguishes
weakly between the routes originating from entry point 4 (Westkapelle).

Figure 8.22: Route vs. acceleration - Data sample distribution. Acceleration cannot dis-
tinguish between the routes originating from entry point 4 (Westkapelle)
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Distinction Description

Strong Most routes have little overlap with each other route.

Moderate Some routes overlap partially, or certain values cause grouping.

Weak All routes overlap, but small-range groups can be excluded for certain values.

None All routes overlap, no value can exclude any group.

Table 8.2: Summary of distinction classes of numeric variables.

Distinction Description

Strong For each (significant) value, 80% certainty of one route.

Moderate One or more (significant) values have an 80% certainty of one route.

Weak One (significant) value has an 80% collective certainty of 2-3 routes (non-noise).

None For each value 4 or more routes are possible or noise is more than 20%.

Table 8.3: Summary of distinction classes of nominal variables.

nations for each route are displayed (entry point 10 - Rijnveld 2). Here it is clear that
given value ’RDAM’, it is certain that the vessel will head for exit point 7 (Rotterdam).
Also, for ’ENG-EAST’,’NL-SOUTH’ and for ’GERMANY’, the exit point is quite clear.
The remaining destinations, however, also include much noise or several destinations.
Due to the significant portion of clear samples, the variable destination is classified as
strong in this plot.
A nominal variable is classified as moderately distinguishing when for one or more values
it is clear (80%) what route the vessel belongs to. Considering the journey values for a
different entry point (fig. 8.24), where for four destinations it is certain that the vessel is
on the way to exit point 4 (Brugge/Westkapelle). However, the other two destinations
have much noise present, which classifies the variable destination as moderately distin-
guishing for this group of routes.
A nominal variable is classified as weakly distinguishing when one value can at least
result in 2-3 routes collectively accounting for 80% certainty (non-noise). Figure 8.25
(entry point 13 - Katwijk Anker) shows for the status of ’RM’ - restricted manoeuvrabil-
ity, two routes are possible, with a small chance of noise. Since two routes are possible,
it does not distinguish moderately here, but there is some information available about
the distribution of a few groups.
If for each value 4 or more routes are possible, or there is too much noise (> 20%) then
the variable is classified as non-distinctive for the entry point. This for example is the
case in fig. 8.26 (entry point 11 - Stellendam), where ’ENG - underway using engine’
gives a larger likelihood that a vessel is heading towards exit point 13 (Stellendam), but
the presence of noise is too large. This also even goes for the other navigation status
values.
An overview of the classification scheme is given in table 8.3.
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Figure 8.23: Route vs. destination - Data sample distribution. Destination distinguishes
strongly between the routes originating from entry point 10 (Rijnveld 2).

Figure 8.24: Route vs. destination - Journey distribution. Destination distinguishes mod-
erately between the routes originating from entry point 9 (Bruggen).
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Figure 8.25: Route vs. navigation status - Journey distribution. Navigation status distin-
guishes weakly between the routes originating from entry point 13 (Katwijk
Anker).

Figure 8.26: Route vs. navigation status - Journey distribution. Navigation status cannot
distinguish between the routes originating from entry point 11 (Stellendam).
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State Dimensions Category Other

Accele-
ration

Course Speed
Turn
Rate

Length Width Draught Type
Destination
(coded)

Navigation
Status

Time of
day

Entry
Point

Name Routes Journeys Samples ACC COURSE SPEED TURN L W D TYPE DST CODE STAT HOUR

0 Noise 14 4386 391325 None Moderate Weak None Weak Weak Weak Weak Moderate None None

1 Rotterdam 13 5594 650443 Weak Moderate Weak Weak Weak Weak Weak None Moderate Weak None

2 North Hinder S 4 1305 199641 None Weak Weak None Weak Weak Weak Weak Moderate Weak Weak

3 Scheveningen 4 2211 115124 Weak None None None None None None - Weak Moderate Weak

4 Westkapelle 6 3823 214781 None Moderate Weak Weak Weak Weak Weak Weak Moderate Moderate None

5 Rijnveld 1 6 558 69180 None Moderate Weak None Weak Weak Weak Weak Moderate Weak Weak

6 North Hinder N 2 543 18643 None None None None Weak Weak Weak - None Moderate Weak

7 Anker 4A 3 291 26264 None None Weak None Weak Weak Weak Moderate Moderate Moderate Weak

8 Ijmuiden 3 526 62741 None Moderate Weak None None None None Weak Weak None Weak

9 Bruggen 2 166 11694 None None None None Weak None Weak - Moderate None None

10 Rijnveld 2 5 326 31268 None Weak Weak None None None None Moderate Strong Weak Weak

11 Stellendam 3 226 30159 None Weak None None None None Weak - None None None

12 Anker 5A 1 164 17724 - - - - - - - - - - -

13 Katwijk Anker 3 216 10868 None Weak None None None None Weak - None Weak None

14 Southwest 2 93 4102 Weak Weak None None Weak Weak Weak - Moderate Moderate Weak

15 Katwijk 2 87 4799 Weak Weak Weak None Weak Weak Weak - - Moderate Weak

Table 8.4: An overview of how well each variable distinguishes between
routes. The routes are grouped by Entry Point. The vari-
able names and codes are at the head of each column. Pos-
sible values are ’None’, ’Weak’, ’Moderate’ and ’Strong’.
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8.2.3 Discussion

This section discusses the results in table 8.4, while also including relevant remarks from
two-variable plots. As stated in section 7.1.3, each combination of two variables was
plotted for each group of routes, coloured by their exit point. Up front it may be noticed
that entry point 12 (Anker 5A) has not been evaluated, which is because the group only
contains one route, therefore knowing the entry point is already sufficient to know the
route.

8.2.3.1 Course

Of the state variables, course is apparently the most promising variable. For five entry
points, it can distinguish between routes in a moderate degree. This is especially clear
when looking at the journey plots. Specifically for exit point 8 (Ijmuiden), combining
course with other variables such as acceleration and turn rate, results in a visibly strong
distinction. For other entry points, combining course with other variables contributes to
distinguishing between routes (more than just by using course), because certain combi-
nations of the variables result in a certain route being the sole possibility. The only group
for which this does not count is entry point 3 (Scheveningen). This could be explained
by the fact that the boats coming from Scheveningen primarily return to Scheveningen
(see table 8.1), which means that each journey covers all courses. What is also noticeable
about course, is that journey course averages are often quite closely grouped within one
route.
Course can be concluded as a promising variable for intent prediction, especially because
it also can distinguish between the largest groups (entry points 0,1,4). However it must
be taken into account that the differences between courses becomes larger as a journey
progresses, and is not necessarily already distinct around the entry point. For example,
all vessels originating in Rotterdam start out with a roughly westward course.
It is important to note that these conclusions are based on the entire journey of a ves-
sel. The course of a vessel very much depends on position (see section 6.3.6). A strong
example of this is that most journeys with entry point ’Rotterdam’ start out with the
same westward course, and only part ways after having travelled approximately 10km.
This means that the usefulness of course for predicting intent also depends on space.
This will need further investigation. This finding is what has formed the incentive to
perform waypoint detection by course.

8.2.3.2 Destination

Of the nominal variables, but possibly of all the variables, destination seems to be a
promising variable. As can be seen in fig. 8.23, when a value for destination is given, the
likelihood of a certain route is high. It distinguishes moderately for most groups, includ-
ing the larger groups. When combining destination with other variables, the distinction
between routes becomes more clear. This especially is true for combinations with state
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and dimension variables. Each combination of variables contributes to separating routes
in different entry point groups. In fig. 8.27, the distribution of destination is plotted
against the course for entry point ’Noise’. Here it can be seen that several combinations
result in a clear identification of the ’route’ a vessel will take. For (a simple) example,
a vessel with destination ’DEN-EAST’ with a course of approximately 4.5 rad will very
likely be headed towards exit point 5 (Rijnveld 1). Combining the two variables has re-
sulted in isolating the noise traffic with destination ’DEN-EAST’. This accounts for less
than 20 journeys (going to DEN-EAST), but at least it becomes clear that combining
variables can even help to discern intent from the entry point group ’Noise’. For other
entry points, combinations with numeric variables result in very many more of these
isolations.
8427 journeys have an entry point for which it is 80% certain which route a vessel will
take based on the vessel’s destination. This is 41% of all journeys. This number must be
set relative to the sum of journeys that follow specific routes. Based on entry point only,
for 35% of the journeys the route which they will take is 80% certain. It can therefore
be said using the variable destination improves the capacity to predict the intended exit
point.

Figure 8.27: Destination vs. course coloured by exit point - Sample distribution of routes
originating from entry point 0 (Noise)
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8.3 Waypoint detection

The route from entry point 8 (Ijmuiden) to exit point 7 (Rotterdam) is shown in fig. 8.28.
This route has been chosen since for this entry point, because this route has a wide spread
of possible trajectories to reach the end point. When the change-point detection and
clustering was performed on this route, the best clustering unfortunately did not result
in a clear distinction of sub-routes. In fig. 8.29 the best waypoint clusters are displayed.
Though two waypoint clusters might separate the routes in the beginning (north, clusters
3 and 4), all vessels traverse both of these clusters in any case, and from there on continue
to the large waypoint cluster 1, from there on continuing to Rotterdam from there. The
hope was to discover a split in cluster 1, but this cannot be done with this approach,
since changing the parameters in favour of achieving a split results in significant growth
in the noise cluster. A probable cause for this is that the vast amount of waypoints that
is clustered in cluster 1 has a very dense, but reasonably homogeneous distribution. This
in turn may be due to the large amount of interacting traffic at this crossing, causing
local behaviour to dominate global (intent) behaviour. Due to time constraints, this has
not yet been further investigated, and is thus left for future work.
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Figure 8.28: Spatial distribution of route ’Ijmuiden(8) to Rotterdam(7)’.

Figure 8.29: Waypoint clusters discovered for route ’Ijmuiden(8) to Rotterdam(7)’. Pa-
rameters used: minPts=15, eps=865.



110 Results



Chapter 9

Validation

In this chapter, the small validation procedure that was performed is detailed and dis-
cussed. The variable ’destination’ is validated for how well it can predict the route that
a vessel will take, based on the entry point. Prediction is done solely based on the most
likely route (from the original dataset distributions). A sample of 200 journeys is taken
from the validation set to confirm these likelihoods.
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9.1 Procedure

A small validation was performed to check the results of variable usability(section 8.2).
Validation of the course variable is not straightforward, since it is very much dependent
on position. Since this research has not yet covered the positional dependence of this
variable, the conclusions are preliminary and cannot yet be validated. The destination
of a vessel, is usually already known at or near the entry point, therefore this variable
is validated. The point of the validation is to confirm the certainties of prediction based
on the entry point and destination that have been derived.
The procedure for validation started by randomly sampling 200 journeys from the val-
idation set (the second half of the data, see section 5.1). For each of these journeys,
the entry and exit point were determined by clustering them along with the original
dataset. Since the number of validation journeys is 100 times smaller than the number
of journeys in the original dataset, the effect on the clustering method is negligible. The
entry points were used as input for the validation, while the exit points were used for
validate the output.
For each entry cluster, the largest group of routes was used to predict which exit point
each validation journey would take. The same was done for the combination of entry
cluster and destination: the most likely route was used to predict the journey’s intended
route (exit point). These predictions were then compared to the actual exit points,
and the number of correctly predicted exit points was registered. The percentages of
correctly predicted exit points were then compared to the expected percentages.

9.2 Results

In table 9.1 the results of the validation process can be seen. The left half shows the
validation of the prediction by entry point, while the right half includes the destination
in the prediction. Only the entry clusters and destinations contained in the validation
samples are shown. The columns indicated with ’max. likelihood’ indicate the predicted
likelihood of the largest route in terms of journey count. Rows are marked in bold if te
number of sampled journeys is 10 or more.
For the larger entry cluster groups (clusters 0-4), the validated likelihoods are close to
that of the predicted likelihoods, considering the size of the validation sample set. Only
the noise cluster (number 0) has a large difference with the predicted value. This could
be attributed to the fact that noise in the validation set can be very different from noise
in the original set. For the smaller groups, the number of validation journeys is too small
(< 10) to draw even preliminary conclusions.
When using destination to predict the intended route, the predicted likelihoods differ
more from the validated likelihoods (up to 13% for entry point 3, destination <empty>).
It can be expected that with a larger validation set, more conclusions can be drawn.
In section 8.2.3.2 it was stated that the variable destination improves the capacity to
predict the intended exit point, relative to using the entry point only. This was based
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on the 80% confidence threshold. The validation results show no large enough groups
with a 80% likelihood, which leaves the improvement inconclusive.
The largest conclusion to be drawn from this validation is that the validation set is not
large enough to draw significant confirmation or rejection of the results. It is left to
future work to extend this validation to a larger set and possibly more variables. Also,
it would be best to say that all the results of this research are but preliminary.
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Likelihood

0 4404 51% 49 31 63%

RDAM 1099 67% 10 6 60%

NL-SOUTH 449 48% 6 2 33%

NL-NORTH 47 60% 1 1 100%

<empty> 2613 63% 32 24 75%

1 5594 25% 66 14 21%

RDAM 613 81% 6 5 83%

NL-SOUTH 183 63% 3 2 67%

FRANCE 59 85% 1 1 100%

SOUTH 44 89% 1 1 100%

GERMANY 216 67% 2 1 50%

ENG-SOUTH 341 94% 5 5 100%

ENG-EAST 294 71% 1 1 100%

<empty> 3486 25% 46 9 20%

2 1304 58% 13 8 62%
RDAM 1140 66% 12 8 67%

NL-SOUTH 46 52% 1 1 100%

3 2208 88% 21 16 76% <empty> 2174 89% 21 16 76%

4 3823 81% 26 20 77%

NL-SOUTH 1083 96% 9 9 100%

GERMANY 62 44% 1 1 100%

ENG-EAST 60 82% 1 1 100%

<empty> 2332 80% 13 9 69%

5 562 48% 4 3 75%
NL-SOUTH 171 82% 2 1 50%

<empty> 240 52% 2 2 100%

6 541 83% 4 4 100%
GERMANY 68 91% 1 1 100%

<empty> 441 83% 3 3 100%

8 526 51% 5 3 60%
RDAM 399 65% 4 3 75%

<empty> 106 88% 1 1 100%

9 166 67% 2 2 100% <empty> 134 67% 2 2 100%

10 310 63% 4 2 50%
RDAM 238 81% 2 2 100%

<empty> 57 65% 1 0 0%

11 226 49% 4 3 75% <empty> 211 50% 4 3 75%

12 164 100% 1 1 100% RDAM 158 100% 1 1 100%

14 93 76% 1 0 0% <empty> 42 79% 1 0 0%

Table 9.1: Validation Results.
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Conclusion

Which variables can be used to predict the intent of a vessel? - is the main research
question of this thesis was. This chapter ventures to answer this question through its
sub-questions, and will end with answering this main question.

What is a useful way to group the data based on intent?
In this thesis two manners of grouping have been used: by route and by planned path. A
route is an ’origin-destination’ combination of a vessel’s journey (entire set of datapoints
a vessel traverses within the scope of the area considered). A planned path is a series of
connected waypoints between and including the origin and the destination of a journey.
The route captures describes a vessel intent in a very minimalistic way. The only as-
sumption is that a vessel has a certain aim, and comes from a certain point. Therefore
analysis can be done in a very basic manner if journeys with similar routes are grouped.
One step of complexity deeper is the concept of planned path. This thesis has only
touched upon this manner of grouping, since a suitable method for finding generic way-
points has not yet been found/applied, though a start has been made. However it does
seem promising, since it can capture the intermediate aims of a vessel with a simple
description (small series of waypoints).

Which variables would allow distinguishing between intents?
The course of a vessel, as well as its destination, are at the least promising variables to
distinguish which route a vessel intends to take. The destination variable is conceptually
closely tied to the point where a journey exits the scene. For 41% of all journeys, the
intended route can be predicted with an 80% certainty using the destination variable,
with a given point of entry. This is an improvement upon the 35% of journeys for which
the intended route can be predicted based on entry point only with the same level of
certainty. Therefore the preliminary conclusion can be formed that destination is useful
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in distinguishing between possible vessel intents.
Different routes that have a common entry point can be reasonably distinguished from
each other when regarding the course variable. However, this holds for the entire set of
course values throughout the entire journey. Course also depends on spatial position,
which means that depending on the location of a vessel, it will be easier or less easy
to distinguish where the vessel intends to go, based on its course. A strong example
of this is that most journeys with entry point ’Rotterdam’ start out with the same
westward course, and only part ways after having travelled approximately 10km. Further
investigation is necessary to exploit the combination of course and position (and possibly
other factors).
The other variables that have been investigated in this research (speed, acceleration,
turn rate, length, width, draught, type, navigation status, and time of day) do not
distinguish well between routes at first sight. However, it can be said that combining
these variables with course and destination provides more distinction between routes.
Further investigation should reveal the significance of this addition. Also, the variables
speed, acceleration and turn rate are dependent on time and space in very much the
same way as course.

To what extent can historical data provide sufficient support for a medium-term predic-
tion method?
Based on the findings in this thesis only, this question cannot be answered in full. This
is mainly due to the fact that actual prediction has not yet been performed, save for a
small scale validation which was yet too small to be conclusive. However, in terms of
medium-term to long-term behaviour, it can be concluded that most vessels follow simi-
lar behavioural patterns (both route as well as planned path) in spatial terms., assuming
that the derived routes are a good approximation of vessel intent.

Which variables can be used to predict the intent of a vessel?

In summary, it can be concluded that the variable destination is useful in predicting the
intent of a vessel in terms of route. Also, the course of a variable is not directly usable
to predict a route due to its dependence on vessel position and possibly other variables,
but is at least promising in predicting vessel intent in terms of planned path. Other
variables are possibly useful in combination with destination and/or course to predict
the goal and planned path of a vessel.



Chapter 11

Recommendations

In this chapter the reader is pointed towards the future. This is done in two parts. The
first part (section 11.1) deals with necessary or potential extensions/improvements of the
analysis done in this thesis. The second part (section 11.2) discusses potential future
applications, that can build on the analyses done. This purpose is to set a step-up for
the sake of later research, but also to provide a context for the future.
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11.1 Furthering the analysis

Several improvements can be made on the analysis, and several extensions can poten-
tially provide additional information about the longer term behaviour of vessels. This
section discusses what can be done further to create a better understanding of vessel
intent, for the purpose of prediction.

11.1.1 Destination

The most immediate next step is to extend the validation volume (as described in chap-
ter 9) Since the destination variable has proven to be useful in distinguishing where
vessels are headed, it is a logical step to bring this a step further. The current coding
scheme was only a rough dividing of the wide variety of destinations that have been
coded. Also, the destinations have been coded in such a way that only the destination
entries from AIS and the harbour database that can for certain be identified unambigu-
ously are coded, leaving all others un-coded. A more scrutinous coding scheme promises
to enhance the distinguishing ability of the destination variable. Also, for the (more)
ambiguous destination entries, a system can be set up based on likelihood for example,
or based on an extensive case-based feed.

11.1.2 Exit point refinement

A minor improvement can be made upon the manner of clustering the exit points. A
few exit point clusters span a large area, making the exit point quite indistinct. This
can be solved in at least two manners. The first is to perform single-recursive clustering
on all the exit points that belong to the cluster. The second approach is to cluster exit
points only within the routes grouped by entry point cluster. The latter approach does
cause many exit point clusters to occur across the entire dataset, and may therefore
cause much work in identifying the exit points (of which many will overlap).

11.1.3 Waypoints

The potential of distinguishing waypoints is still there, not yet explored much. The fact
that the course variable has proven to be distinct and stable for many vessels is additional
grounds for furthering this investigation. As mentioned in section 8.3, distinguishing
clear waypoints was not successful with the investigated route. The first step would
be to investigate other routes (traversing less busy areas) with the same method. The
hypothesis that the lack of discerning power is due to the largely local behaviour can
be tested in this way. Then, it may be more promising to investigate other clustering
methods. Another alternative is to replace the change-point detection technique by a
technique similar to that of Ikeda et al. (2013) (see section 2.2.2.2).
If waypoints can be found and clustered well, the variable ’course’ becomes useful, since
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the spatial dependence is described (in part) by the series of waypoints that a journey
follows. Predictions can then be made regarding which value for course a vessel will take
directly after the next waypoint. This can then be properly validated.

11.1.4 Uncertainty

Another important aspect that would be a valuable addition to the investigation would
be an accompanying measure of confidence and/or reliability for all the variables. As
discussed in section 3.2, the reliability of state data depends on the distance from the
radar, as well as on the quality of on-board sensors. It may be possible to determine
a measure of how reliable this information is. This could possibly also take care of the
large amounts of clutter on the edges of the coverage. A similar measure could be used
for all the static data.

11.1.5 Human and environmental factors

Further down the line in the investigation of vessel intent, is the analysis of the human
and environmental factors. Extensive interviews and voice recordings can be used to
analyse the influence of communication, for example, or weather and tidal measurements.

11.2 Potential Uses

The ventures of this thesis have been focused on the spatio-temporal intent of a vessel,
but chapter 2 also has shown that human and environmental factors are of significant
influence on the behaviour of a vessel. In this case study, input from experts has shown
that the level of communication (skills) -between vessels and between vessels and VTSO
’s- is a major factor in the behaviour of vessels, as well as the risk of collisions. Therefore
any model that predicts medium-term collision risk will have to include these factors in
some way.
The most intuitive follow-up of the basis formed by this thesis (besides the extensions
discussed in section 11.1), is to derive (empirical) variable distributions per route, cou-
pled to position and possibly orientation. Then for a new journey (not used for the
distributions), a likelihood estimation can be made to discern which route the journey
belongs to. This can be any form of estimation, such as a particle filter.
This can be detailed even further, by determining these distributions per ’leg’ (connec-
tion between two waypoints) of a path, and using them to estimate which waypoint is
most likely next, or even to predict what will happen directly after the next waypoint.
If this type of prediction can be done well, then density/risk estimates can be made
on a medium-term or even long-term time horizon, for each relevant crossing in a TSS
scheme.
In the long run, it seems best to build a coherent system of models, which can account
for the many factors that influence the behaviour of a vessel. Isolating models, each
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treating one aspect of the problem, cannot represent the complete socio-technical sys-
tem. The relations between the components (humans, vessels, environment, long-term,
short-term) are just as important as their separate behaviours. Therefore a system of
models with carefully designed relations/interactions is more promising.
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