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Waste of Electronic and Electrical Equipment (WEEE) is a growing waste stream where overall circularity is low, which 

causes the leaching of hazardous material and loss of valuable resources. Governments aim to increase material recovery 

from WEEE and focus mainly on the material recovery when a product reaches the End-of-Life stage. The dynamic Material 

Flow Analysis (MFA) method has been successfully used to account the national (W)EEE stocks and flows, where the results 

are used to assess the circularity performance based on weight of recovered material. For companies, there are other more 

interesting circular loops to explore besides material recovery, such as repair, reuse, refurbishment and remanufacturing. In 

Supply Chain Management, the incorporation of these circular loops is managed through Reversed Logistics. This research 

project will aim to incorporate Reverse Logistics management concepts into the dynamic MFA method to render the method 

more useful to companies. Therefore, the main research assignment for this project is to develop a dynamic MFA model 
for EEE companies to increase transparency of downstream product flows and provide insight on the impacts of Reverse Logistics 
strategies. The assignment is carried out by firstly conducting a theoretical analysis on the incorporation of Reverse Logistic 

management concepts into the dynamic MFA method. Secondly, the findings from the theoretical analysis are assessed on 

data availability through an empirical analysis with a case study. The main scope of the project is to build a model on product-

level for Royal Philips’ small household appliances sold in the Netherlands. 

The main outcome of the theoretical analysis is that the incorporation of Reverse Logistics management concepts can 

improve the reliability and insightfulness of dynamic MFA modelling for companies. Dynamic MFA approaches cluster 

product mainly on functionality, whereas stock and flow accounting methods in Reverse Logistics management, like the 

Installed Base Forecasting method proposed by Kim et al. (2016), cluster products on the monetary value of the product. The 

different perspectives from the two fields could complement each other for stock and flow accounting. The Reverse Logistics 

stock and flow accounting models serve the spare parts demand forecasting rather than the quantification of the product 

stocks and flows, which is likely the main reason that the stock and flow accounting in the two fields have not been connected 

before. In the empirical analysis, the different configurations of the stock and flow accounting methods with dynamic MFA 

and Reverse Logistics management are assessed on data availability within the context of the case study. Based on the data 

availability, Sales-Lifespan Distribution model is proven to be a suitable dynamic MFA approach, which will provide insights 

on the downstream products stocks and flows in the current production-consumption system. 

To create Reverse Logistics scenarios, several Reverse Logistics concepts are considered in modelling the dynamic MFA 

model; 1) reverse flows are returned end-of-lease products (which is the only predictable return flow), 2) leasing the more 

durable and therefore relatively expensive (i.e. high-end) products, and 3) a marginal reuse rate is applied in the form of 

reduction in production demand for new products or spare parts due to returned products. The three Reverse Logistics 

scenarios that are defined for this project are;

 Scenario 1- leasing products once

 Scenario 2- leasing products, refurbishing the returned products and leasing the refurbished products 

 Scenario 3- leasing products, refurbishing the returned products and selling the refurbished products

To assess the performance of the three Reverse Logistics scenarios, the scenarios must satisfy the same performance 

requirement, which is to satisfy the same in-use stock level of high-end products produced in the BAU simulation. The main 

user entry variable for modelling the scenarios is the lease duration of the products. Since the stock size is the same for all 

three scenarios, the high-level environmental performance indicators are based on the size of the inflow and outflow by 1) 

assessing the decrease of input from new products, 2) the decrease of WEEE generation, and 3) the change of the collection 

and recycling rate. Lastly, financial information can be added to the associated stock and flow data, which enables the analysis 

on the fourth performance indicator; profitability. 

SUMMARY
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First, it was found that the case study outputs for recent years under the Business-as-Usual condition with the Sales-

Lifespan Distribution model are consistent with real-world collection and recycling weight reports and stock data. Secondly, 

regarding the Reverse Logistics scenarios, increasing the lease duration boosts the positive effects for all performance 

indicators. Furthermore, the difference in output from a conservative and optimistic sales projection input is insignificant 

for the environmental indicators and therefore the outcomes for the environmental indicators are not sensitive to large 

differences in sales. However, the profitability outcomes do seems to be sensitive to the input.

The general conclusions for the performance of the three Reverse Logistics scenarios compared to the Business-as-Usual 

baseline in the context of the case study are as follows;

Scenario 1- With a relatively short lease duration, this Reverse Logistics scenario will require more input and decreases the 

WEEE generation insignificantly, however all WEEE is scrapped responsibly. Increasing the lease duration can negate the 

negative effect on the input.

Scenario 2- Both input and WEEE generation are decreased considerably and all WEEE is scrapped responsibly, although the 

scenario might be the least profitable of all. The lease fee for a refurbished product is expected to be lower than that of a new 

product and therefore the costs for logistics and maintenance are high compared to the revenue from fees. Furthermore, 

(some) products might not guarantee acceptable product survival rates suitable for 2 lease cycles. 

Scenario 3- The impact on the input of high-end products is the same as in scenario 1. However, in this scenario the input 

from new low-end products decreases due to the replacement effect, since the refurbished product prices compete with the 

low-end market prices. WEEE generation is delayed considerably, although the WEEE flows will not be entirely end up at the 

recycling scheme. Furthermore, this scenario is likely the most profitable compared to the other scenarios.

While all scenarios contain trade-offs, the third scenario is recommended as the most strategic Reverse Logistics scenario 

based on the lowest financial risk while decreasing the WEEE generation significantly. Based on a general influence of longer 

lease durations seen in all three scenarios, it can also be recommended that efforts increasing product lifespans by design will 

pay off when shifting towards a more circular production-consumption system. 

From the evaluation with the target audience it was found that the stock and flow insights provided for the current 

downstream product flow has been evaluated as potentially useful. Regarding the RL scenario modelling, Philips would 

be more interested in leasing the products for a similar duration to the warranty period, which is 2-4 years. This is mainly 

because the products are more likely to be replaced than repaired after the warranty period. Additionally, the profitability 

analysis has to be compared with similar in-house economic models to determine the reliability of the results. If it is the case 

that the results for the Reverse Logistics scenarios are reliable, the model could play a role in strategic decision making with 

regards to Reversed Logistics. 

The limitations of the model regarding data are (in)availability of data, outdated sources and the relatively high sensitivity of 

the UNU product lifespans. Other major limitations are the lack of testing the model on more case studies for other countries 

and companies and the lack of consumer behavior influences considered in the model. Recommendations are made on 

improving the accuracy by initiating data collection for a more complete and modern data. Furthermore, recommendations 

are made on improving the reliability of the model by applying the model to multiple countries and companies and, lastly, to 

explore the effects of leased and refurbished products on consumer demand and behavior. 
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ACRONYMS

C&R  Collection and Recycling

CBA  Cost Benefit Analysis

CE   Circular Economy

CLSC  Closed Loop Supply Chain

CSV  Comma Separated Value

EEE  Electronic and Electrical Equipment

EMF  Ellen MacArthur Foundation

EPR  Extended Producer Responsibility

EoL  End-of-Life

FAEM  Fully Automatic Espresso Machine

IB  Installed Base

IBE  Economic Installed Base

IBL  Lifetime Installed Base

IBW  Warranty Installed Base

L  Lease scenario

LCA  Life Cycle Analysis

LCC  Life Cycle Costing

LRL  Lease-Refurbish-Lease scenario

LRS  Lease-Refurbish-Sell scenario

LD  Lease Duration

MFA  Material Flow Analysis

POM  Put On Market

PPP  Purchasing Power Parity

RBP  Retail Buying Price

RL  Reverse Logistics

S&OF  Stock and Outflow

SCM  Supply Chain Management

TC  Transfer Coefficient

VAT  Value Added Tax

WEEE  Waste of Electronic and Electrical Equipment

WG  WEEE Generation

WORKING DEFINITIONS

2016-level sales projection  Sales projection where the sales unit quantity for 2016 is duplicated

High-end   Relatively durable and expensive products

Installed Base   Term in supply chain management for In-use stock

Philips    Royal Philips N.V.

Philips lifespan   The minimum expected average timespan for the use phase according to Philips 

POM quantity   Unit sales quantity

Replacement effect  Intended cannibalization of own products and parts

Scrapping   Recovery where parts are harvested and the residual is recycled

Trendline sales projection  Sales projecion where the trendline for earlier sales figures is followed 

GLOSSARY
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The first chapter introduces the problem based on the provided background information. The problem definition 
is followed by the research objectives, consisting of the research goal and scope, and lastly, the research process. 

1.1  Circular Economy and (W)EEE

As a more sustainable alternative to the traditional take-

make-dispose ‘linear’ economy, the Circular Economy 

(CE) implies that materials in our economy should be kept 

at their highest value for as long as possible in pursuit of 

a more sustainable economy (Bakker et al., 2015). While 

waste production and raw material input is expected to be 

inevitable, it is strived to be minimized (EMF, 2013).  The CE 

approaches material flows as loops in which one process’  

output can serve as the input for another process. The Ellen 

MacArthur Foundation (EMF) developed a system diagram 

illustrating what the loops for the biological and technical 

nutrients flows are in a CE (see figure 1). When considering 

the technical material flows only, the diagram in figure 1 

communicates operations that can be applied to a product, 

its components and its materials. The value of a product can 

be exploited to its full potential by circular product design, 

increasing utility, extending product and component 

lifetimes, and material recovery (EMF, 2013). Increasing the 

utility of the product can be facilitated by sharing platforms 

and new access models (EMF, 2013). Increasing the lifetime 

of a product and its components can be organized through 

reversed flows like maintenance, reuse, refurbishment, 

remanufacturing, and finally, the value of the material can 

be recovered through recycling (EMF, 2013).  The size of 

the loops and the number of intermediate steps to get a 

product to the user, as illustrated in figure 1, indicate the 

difference in intrinsic value destruction and energy input; 

the closer the activity is to direct reuse, the higher the 

residual value extraction (EMF, 2013).

A CE implies that the supply chain of the future will not 

end after the point of sale. End-of-Life (EoL) products, can 

now be seen as an environmental liability and an economic 

opportunity (Geyer & Jackson, 2004). The environmental 

liability can be analyzed with Life Cycle Assessments (LCA) 

and Life Cycle Costing (LCC) and other environmental risk 

assessment methods, whereas economic opportunities 

can be explored with Reversed Logistics (RL) concepts 

and Closed Loop Supply Chain (CLSC) concepts (Geyer 

& Jackson, 2004). The environmental liability can play a 

significant role in the transition to a sustainable supply chain 

because there is a growing demand from stakeholders, 

policy makers and customers for partial responsibility of the 

End-of-Life (EoL) products to alleviate the environmental 

burden from society (Geyer & Jackson, 2004). This can 

be enforced through environmental legislation based on 

Extended Producer Responsibility (EPR) and ‘polluter 

1. INTRODUCTION

Figure 1:  the  EMF Circular Economy system diagram (EMF, 2013)
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pays’-principles (Geyer & Jackson, 2004). Economic 

opportunities through increased RL and organizing a CLSC 

have been proven to increase revenues, which leads to the 

assumption that EoL-product management can lead to an 

economic-environmental win-win (EMF, 2013). 

From all the anthropogenic materials in the economy, 

a transition towards a CE for Electronic and Electrical 

Equipment (EEE) is particularly valuable. WEEE (Waste 

of Electronic and Electrical Equipment) is a very complex, 

mobile and heterogenous waste stream (Baldé et al., 

2015b). Furthermore, the stream of WEEE is rapidly 

growing due to technological innovations, which makes 

the products cheaper and more accessible to a growing 

consumer market and, furthermore, causes products to 

become obsolete faster (Baldé et al., 2015b).  Currently, the 

overall circularity for EEE is rather low for most countries. 

In 2012, the WEEE collection through official recycling 

channels for China was around 20% of all domestic 

generated WEEE weight and for the EU the size was around 

35% of all generated WEEE weight (EMF, 2014; Huisman 

et al., 2015). Extensive studies have been done to explain 

this gap, such as a study done by Huisman et al. (2012) for 

WEEE flows in the Netherlands. In the study, the authors 

have been able to document the WEEE flows for up to 80% 

in a system where only 30% of all generated WEEE ended 

up in the official Collection and Recycling (C&R) schemes. 

The other identified WEEE destinations are unofficial 

recycling, residual waste streams and possibly export. 

The focus in these national (W)EEE studies is on exposing 

illegal export, addressing the risks for public health and 

environment of bad disposal practices (the “toxic mine”) 

and exposing the lost valuable secondary resources (the 

“urban mine”) (Huisman et al., 2015; Baldé et al., 2015b; 

Wang et al., 2012). The studies describe only the material 

recovery, or lack thereof. For example, in the Netherlands 

in 2012 alone, 27 million euros worth of gold embedded in 

WEEE ended up in the residual recycling stream and is thus 

lost to incineration (CBS, 2015). 

In order to stimulate an increase for the Collection 

and Recycling (C&R) rate to recover more valuable and 

hazardous materials, the EU is tightening its national  

WEEE collection target for all member states. The new 

WEEE directive, Directive 2012/19/EU, sets a weight-

based collection target of 45% of all EEE sold, effective from 

2016, and raises the target for 2019 to 65% collected of 

the average of all EEE sold in the previous three years - or-  

a collection rate of 85% of all WEEE generated. To ensure 

proper collection and recycling practices, the target is only 

valid for processing through official recycling schemes, 

not through complementary recycling schemes (which 

are generally much less transparent in their practices with 

respect to the environment) (Council Directive 2012/19/

EU, 2012). Given the fact that the EU had only collected 

on average 35% of all generated WEEE weight in 2012, the 

target of 85% for 2019 will undoubtedly pose challenges 

for some of the member states. This challenge faced by 

the national government could result in the tightening 

of EPR policies, which leads to increased liability for 

companies with regards to EoL product management. This  

development can either pose as a risk for a company or 

serve as a competitive advantage. 

When it comes to WEEE, national and international 

governments are largely focusing on increasing the  

material recovery. However, according to the CE principles, 

this is the least favorable loop from an environmental 

perspective (least energy efficient) and the least favorable 

loop from a company perspective (lowest value extraction). 

Also, because material recovery is generally organized in 

an open loop supply chain configuration, it is impossible to 

create a CLSC where the recovered material  returns to the 

source company. Furthermore, because WEEE recycling 

management practices generally do not trace the source 

of the products, it is highly unlikely for a company to know 

how many of their EoL products are retrieved through 

C&R. To conclude, there is overall a lack of incentive for 

a company to increase the material recovery from their 

products due to the collective nature of WEEE recycling 

management and the lowest value extraction compared to 

other CE loops. It will be more valuable for a company to 

also explore the effects of circular loops of CLSC practices  

other than open-loop material recovery, such as repair, 

reuse. refurbishment and remanufacturing. 

Material Flow Analysis (MFA) is a method used in Industrial 

Ecology to quantify stocks and flows of materials or 

substances for a certain system (Brunner and Rechberger, 

2004). In a dynamic MFA, the change in stocks and flows 

are defined over time. A dynamic MFA is frequently applied 

in national and EU wide WEEE studies (Magalini et al., 

2015) to assess the current movement of the (W)EEE flows. 

However, it is also possible with a dynamic MFA to  estimate 

the influence of new implementations. In the context of 

a dynamic MFA for a company, it would be interesting to 

examine the influence of RL operations within a CLSC on 

the circularity of the production-consumption system. 

Quantifying product stocks and flows, along with their 

associated environmental and financial dimensions, will 

provide support for building business models with reversed 

flows.  

1.2  Problem definition

It is suggested that a CE for (W)EEE can be beneficial for 

both company and public, yet present-day studies on (W)

EEE stocks and flows have been only applied to a country 

or region. These national and regional(W)EEE studies 
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are done with a different objective that a company might 

have and do not explore any other RL activity other than 

recycling through material recovery. However, a company’s 

focus will more likely be on reversed loops such as reuse, 

refurbishment and remanufacturing, which are also more 

economic and environmentally preferable reversed flows 

according to the CE principles and, furthermore, more 

applicable in a CLSC. 

To the researcher’s knowledge, there is no such dynamic 

MFA model developed for companies to quantify and 

analyze their current and possible future (W)EEE stocks 

and flows with the main intention of exploring different 

reversed logistic activities. Such a model can lead to insights 

for new business practices that are both economically and 

environmentally attractive, thereby benefitting both the 

company and the public.

1.3  Research objectives

1.3.1  Research goal
From the problem definition, one can derive that  a dynamic 

MFA to quantify and analyze (W)EEE stocks and flows 

can be useful for companies. A dynamic MFA could cover 

the stocks and flows of downstream products. This could 

provide the company insight on the current situation, i.e. 

the “Business As Usual” (BAU) situation. However, to bring 

more useful insights to companies, a dynamic MFA model 

should be developed to also explore various reversed flows 

for the future. This prospective dynamic MFA model should 

also allow for extension with economic and environmental 

dimensions, so it can be more suitable support for strategic 

decision making. The research will be done by exploring the 

possibilities of incorporating RL concepts into the dynamic 

MFA method and develop a prospective model that will suit 

the needs of a company as much as possible to develop into 

a useful support tool in business modelling and decision 

making. To  summarize, the research assignment is for this 

thesis  is:

 to develop a prospective dynamic MFA model for EEE 
companies to increase transparency of downstream product 
flows and provide insight on the impacts of RL strategies.

The thesis project will successfully satisfy the research 

assignment when the following research questions can be 

answered; 

Research question 1 - How can RL management concepts 
and/or methods be incorporated into dynamic MFA methods; 
both theoretically and empirically? 
Research question 2 - How can the dynamic MFA model  with 
incorporated relevant reversed flows assess the environmental 
and economic impacts of RL strategies? 
Research question 3 - What strategic recommendations can 
be made to the company based on the built model?

Research question 4 - How can this model be further developed  
for increased reliability, accuracy and added features?  
1.3.2  Research scope
Given the restricted time for the research project, it 

is necessary to set main scope limitations.  Firstly, the 

modelling will only focus on mapping the stocks and flows 

of entire products and not on tracking subassemblies, 

components or materials. Reversed flows on the component 

level, such as parts harvesting, will not be quantified, but its 

possibilities will be considered.

The second main scope limitations will be the number of 

case studies. To gain the best results for bridging theory to 

practice in this research project, it would be advised to do 

several case studies to ensure increased usefulness for any 

company within the field . This study will focus on a case 

study with one company only, but intends to communicate 

each step enough for new studies to be carried out for 

different companies.

Lastly, there is no aim for a perfect model from the start, 

but rather there is the aim to explore the possibilities to run 

a model with the current data availability. The modelling 

can present the fundamental building principles that can 

be further built upon. Additionally, the model might already 

produce several interesting insights that can incentivize 

the further development of the model.

1.3.3   Research process 
The research is set out to be executed both on theoretical 

and empirical ground (in chapter 2 and 3 respectively) and 

should provide insights for BAU modelling and prospective 

modelling with RL loops. The report structure is visualized 

in figure 2.

To gain insight on modelling the current situation, literature 

is reviewed on dynamic MFA approaches applied in (W)

EEE stocks and flows studies (section 2.1). Section 2.2 

consists of a literature review on RL management theories 

for stocks and flows analysis. In section 2.3, the insights 

from section 2.2 and 2.3 will be synthesized to lay out the 

theoretical possibilities of incorporating RL into MFA of 

(W)EEE.

In chapter 3, the theoretical research is followed up by 

empirical research through a case study. Section 3.1 

introduces the company for the case study and it elaborates 

on the goal and scope for this specific case study. This 

step of the case study describes the intended use, system 

boundaries and scenario definitions. Following, section 

3.2 will cover the building the model. First, in section 

3.2.1, the data requirements of the theoretical methods 

and models will be compared with the data availability of 

private and public data. Since a MFA is purely data driven, 
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the model is designed around the current data availability. 

The modelling steps and approaches for all scenarios 

will be covered in section 3.2.2. To make the model more 

tangible, wireframing concepts are presented in section 

3.2.3. These concept should show the model’s options and 

manual entries would it be developed into an in-house 

application. Section 3.2 and 3.3 together will provide 

answers for research questions 3 and 4. The case study will 

be completed with an evaluation by the target audience. All 

prior research will provide insights for answering research 

question 1 and 2. 

Chapter 4 covers the discussion about the quantitative 

results of the model and the model as a result itself, its 

limitations and the implications. The discussion will 

cover answers for research question 3 and 4. In chapter 

5, conclusions are drawn about the research project and 

recommendations on further research on the topic and 

development of the model will be provided.

1. Introduction

2. Methodology - theoretical research

2.1 (W)EEE MFA 2.2 RL management

2.3 incorporating RL 
management into MFA

3. Case study - bridging theory to practice gap

3.1 Goal & Scope
- BAU scenario
-     RL scenario

3.2 Modeling

3.2.1 inventory analysis

3.2.2 operational steps

3.3 Results

3.4 Evaluation

4. Discussion - 5. Conclusion

Figure 2:  visualized report structure

3.2.3 wireframes
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2.1  Material Flow Analysis and (W)EEE

2.1.1  Fundamentals of MFA
A method for analyzing and quantifying material stocks 

and flows is a Material Flow Analysis (MFA). A MFA is 

an analytical tool used to analyze the input, throughput 

and output of substances and goods in a system. A MFA 

is suitable to use for decision-making in policy, public 

and private strategy, and can be applied on a global level,  

regional-level, economy-wide level, a company-level and 

on a household-level (OECD, 2008). An MFA can be used 

to track specific substances, materials, aggregated mass 

(bulk) and products. Since the material flows are accounted 

in mass, it is possible to identify the origins, stocks and 

leakages (Laner and Rechberger, 2016). 

A MFA can be modeled statically or dynamically. A static 

MFA provides a “snapshot” of the material flows in a system 

to gain an overall understanding of the current situation. 

A dynamic MFA defines the movement of flows within 

the system over a certain time span. The advantage of a 

dynamic MFA over a static MFA is the possibility to study 

different scenarios. Dynamic MFAs are mostly carried out 

study the stock buildup and material dissipation over time, 

Dynamic MFAs can be approached in a top-down or 

bottom-up fashion. With a top-down approach, the stock 

is quantified by calculating the difference between the 

input and the output of a material. In the case of a MFA for 

a country, the input would be the imports and domestic 

extraction, and the output would be the export and 

recovered materials from recycling. (Graedel et al., 2010). 

The bottom-up approach aims to represent the quantity of 

the stock by aggregating all the weight of the bulk material 

that is considered in-use or hibernating. The two different 

approaches can also be used to validate one another 

and indicate the shortcoming of one versus the other. In 

practice, it is often seen that a combination of the top-down 

and bottom-up approach is used to complement each other 

by filling data gaps and by exposing uncertainties.

The discarding and recycling of a material are considered 

the outflow of the material (Laner and Rechberger, 2016). 

To estimate the outflow of the materials with a bottom-up 

approach, the composition of the stock must be modelled 

first. Modelling the stock composition can be done by input-

driven models or stock-driven models. Input-driven models 

commonly use historical data (e.g. the number of shipments 

for previous  years), whereas stock-driven models use  

product diffusion data (e.g. 0.8 cars per capita for a certain 

country) (Vásquez et al., 2016). The outflow from the stock 

can be modelled by applying a delay to the materials in the 

stock. This delay dictates the stock and outflow dynamics 

and is referred to as a delay model. 

In order to compute the material outflow from products 

that are put on the market, product lifespan functions 

are used as the delay model (Elshkaki et al., 2005; Laner 

and Rechberger, 2016). A comprehensive overview of 

all different product lifespan definitions is illustrated in 

Marakami et al. (2010) in figure 3. Since product lifespans 

are difficult to observe, they have to be estimated. To 

estimate the lifespan distribution, reliability engineers 

prefer a statistical distribution (parametrical approach), 

such as often is found in literature. These distributions 

are often based on product failure rates and result in a 

survival distribution function (Murakami et al., 2010). 

Non-parametric approaches are more convenient when 

the reason for discarding a product can also be something 

else besides failure, e.g. discarding an outdated product 

or discarding products to follow trends (Murakami et al., 

2010). Non-parametric approaches in this context are data 

intensive and require close observance and reporting. A 

statistical distribution of the lifespan needs fewer input 

information and is modeled with a function such as the 

normal distribution, log-normal distribution or Weibull 

distribution (Oguchi, 2010). 

By subtracting the observed outflows from the estimated 

outflow through modelling, the invisible and unobservable 

outflow can be estimated (Murakami et al., 2010). The 

This chapter will cover the study of methods for modelling stocks and flows in Industrial Ecology, i.e. 
MFA, and in Supply Chain Management, i.e. RL management.  The first part of the chapter will be on 
the MFA method. First, the fundamentals of MFA will be laid out. Then, the different MFA approaches 
and several prospective modelling techniques for (W)EEE will be explored. The second part of the 
chapter will include the fundamentals of RL and examines stock and flow modelling techniques used in 
RL management. The chapter finishes with a synthesis of the stock and flow modelling techniques for 
(W)EEE from RL and MFAs to outline the possibilities for modelling RL flows into a MFA.

2. METHODOLOGY
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invisible or unidentified flow can then be uncovered 

by further research into e.g. stock dynamics, consumer 

discarding behavior and/or undocumented flows

Regarding the general usefulness of the MFA method, a 

relevant shortcoming has been recognized. The actors who 

have control over the material flows cannot be derived 

from current state-of-the-art MFAs, although this is crucial 

information for material flow management (Hinterberger 

et al., 1996).  For a company, it is also of vital importance 

to know which material flows it could start managing and 

which actor is exerting control in the current situation. 

Without the extra dimension of the responsible actors, the 

MFA model cannot be used as a useful policy or strategy 

tool (Hinterberger et al., 2003). 

2.1.2  Studies on (W)EEE stocks and flows
2.1.2.1  Stock and flow modelling approaches
WEEE Generation (WG) and WEEE collection and recycling 

are a growing concern globally. As described in the 

introduction, this waste stream is predicted to grow quickly 

in the coming years, growing along with the concerns about 

the environmental hazards and lost valuable resources. 

With the updated WEEE directive (Directive 2012/19/

EU), the national C&R targets is set to to either 65% of the 

average of Put On Market (POM) weight of the previous 

last year - or - to 85% of all WEEE Generated. For the latter, 

it is necessary to make domestic WG estimates to support 

the assessment of the targets. However, it is generally 

difficult to estimate the WG quantity due to lack of useful 

data and lack of transparency in consumer behavior. As 

laid out by Wang et al. (2013), there is a variety of WG 

estimation methods, which can be categorized into four 

groups; disposal related analyses, time-series analyses, 

factor models and input-output analyses. 

The first method, the disposal related analysis method, uses 

empirical data from C&R channels and other disposal 

channels. Secondly, the time series analysis uses historical 

WG data to forecast the expected WG for future years. 

The factor model takes WG samples from a significant 

number of cities and searches for potential correlation 

with socio-economic indicators. For example, the study by 

Beigl et al. (2003) showed that of all the socio-economic 

indicators, the infant mortality rate seemed be the most 

correlated with WG. This correlation coefficient could the 

theoretically be applied to other cities for calculating the 

WG based on the infant mortality rate.

The fourth method, the Input-Output Analysis (IOA), models 

the WG flow by creating mathematical relationships 

between EEE sales, stock and/or lifespan (Magalini et al., 

2015). Dynamic MFA and IOA can be used interchangeably 

regarding mass balances. Since the dynamic MFA method 

is more adopted in WG studies, 7 different approaches 

have emerged over time that can be further classified in 

five groups. These approaches use the link between two or 

three of the following variables to calculate the WG (Wang 

et al., 2013);

 - weight of product sales (POM) 

 - weight of stock (S)

 - domestic lifespan of products (L)

Figure 3: Processes included in various lifespan terminologies for consumer durables (Murakami et al., 2010)
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The main outlines of the approaches are the following;

Group A: Time step models (POM + S)
In the time step model, the WG is calculated through 

subtracting the product sales for the current year by 

the change of the stock size compared to the previous 

year in relation to. Equation 1 shows the mathematical 

relationship (with years in n). This approach can be highly 

accurate when using high quality data for product sales and 

stocks (Wang et al., 2013).

Group B: Market Supply models (POM + L)
The first market supply model is the Sales-Average Lifespan 
(simple delay) model. Equation 2 shows the relationship of 

product sales and the average lifetime (L(av.)) over n years. In 

the simple delay model, the average lifespan of the product 

is considered the moment the product becomes WEEE. 

This method can only provide useful results for saturated 

markets with a stable population.

The second market supply model is the Sales-Distributed 
Lifespan model. This approach uses sales data in combination 

with their respective obsolescence rate for the evaluation 

year. In equation 3, t
0
 is the initial year that the product has 

been placed on the market and L(p)(t,n) is the probabilistic 

distribution profile for the discarding of the product for 

evaluation year n.

The last market supply model is the Carnegie Mellon 
model(also referred to as the End-of-Life model). The Carnegie 

Mellon model uses lifespan averages in its calculations, but 

applies the lifespan average to different corresponding 

lifecycle stages, thereby also taking lifespans into account 

for reuse and storage. Transfer coefficients are used to 

estimate how many products flow from one lifecycle stage 

to the other. This model requires extensive data collection, 

but will deliver a more comprehensive result for the stocks 

by regarding different life cycle stages. Figure 4 showcases 

an example of such a model used in a study by Steubing et 

al (2010).

Group C: Stock& Lifespan distribution model (S + L) 
A stock and lifespan distribution model combines the historical 

stock data with lifespan distributions of the products. With 

this model, it is possible to derive the historical sales data, 

which then can be used to calculate the WEEE with a time 

step model or sales-distributed lifespan model (see eq. 4). 

Group D: Leaching model (S + L)
The leaching model can be useful to calculate WG in cases 

with very little data availability, but is only applicable to 

saturated markets and for products with relatively low 

lifespans. WG is calculated by dividing the stock with the 

average lifespan of the products (see equation 5).

Group E: Multivariate (POM + S + L)
This method consolidates the previously described 

mathematical relationships when data is available for all 

three variables. The method proves that using multiple 

data sources for all three pillars will improve data quality 

and enhance the reliability of the WG estimates.

Having laid out the 5 groups with different data 

requirements, now the focus will be on the groups that use 

data that should be generally available. In the EU, producers 

should already report the POM weight to comply with the 

WEEE directive article 16. The POM weight data is also 

used to measure the performance of the member states for 

the new WEEE targets (Magalini et al., 2015). Furthermore, 

stock data on EEE appliances in businesses and households 

are also generally unavailable or not easily convertible to 

an absolute stock amount (Magalini et al., 2015). Generally 

speaking, for the EU at least, the Market Supply Model is 

the group with the most suitable approaches to estimate 

WG. The approaches in the group and its applicability will 

be examined further. 

The Sales-Average Lifespan approach

One of the Market Supply Models is the Sales-Average 

Lifespan models. While the data requirements for this 

model can be satisfied relatively easy, the model is only 

supposed to be applicable in a market with an EEE stock 

saturation and stable population. This goes against general 

global trends, where population growth is expected and 

the number of EEE products per households is expected to 

rise. By way of illustration, the ownership of EEE in Dutch 

households has shown an increase of 26% from 2000 to 

2010 (Huisman et al., 2012). With current trends, it is 

highly unlikely to find a saturated EEE market with a stable 

population.   

The Carnegie Mellon approach

Another market supply model, the Carnegie Mellon model, 

models not only the disposal, but also the different stock 

Eq. 1) 

Eq. 2) 

Eq. 3) 

Eq. 4) 

Eq. 5) 
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phases using the average lifespan for each phase. It is 

initially developed to model the EoL product flows for 

discarding of PCs in the USA by Matthews et al. (1997). 

This study models the four available destinations for 

products that are deemed obsolete to the owner (in the 

case for the USA; reuse, store, recycle and landfilling). 

This method elaborates on the different stock options 

(storage and reuse), whereas other lifespan methods only 

speak of in-stock products, which include all non-discarded 

products, whether they are in-use or not. With this model, 

it is possible to forecast how many of the products are in 

use, reuse, storage (hibernation), recycling, landfilling or 

incineration in the year of evaluation after the initial year. 

The application of the Carnegie Mellon model has so far 

only been done for a specific set of products, i.e. computer 

equipment or household appliances such as TVs, air 

conditioners and washing machines (Matthews et al., 1997; 

Dwivedy and Mittal, 2009; Peralta and Fontanos, 2005; 

Steubing et al., 2010). In theory, the Carnegie Mellon model 

could provide very detailed insight to the stocks and flows 

of products in different life cycle stages after the point of 

sale. Quantifying the hibernating stock can be very valuable 

to companies and governments, since it can be considered 

an untapped readily available resource for C&R or product 

returns. Furthermore, this type of model allows for the 

introduction of other circular flows like refurbishment.  

Since the transfer coefficients for the flows in the system 

can vary between customers, the B2G, B2B and B2C sales 

have been modelled differently in the study by Steubing 

et al. (2010), seen in figure 4. The study by Huisman et al. 

(2012) describes how in the Netherlands WEEE originating 

from businesses generally end up 100% in recycling, while 

this is not the case for the consumer segment. Modelling 

the product flows separately based on their customer 

market can therefore lead to more accurate estimation for 

the C&R flows.

Limitations to the applicability of the Carnegie Mellon 

method relate to data requirements of the transfer 

coefficients and the average lifespans for the different life 

cycle stages. These figures require intensive observations 

and therefore have been assumed and have not been 

properly backed by consumer studies and surveys. 

Furthermore, the use of average lifetimes is highly 

simplified, resulting in less reliable results. 

The Sales-Lifespan Distribution approach

The Sales-Lifespan Distribution model is the last and most 

frequently applied market supply model that needs to be 

covered. This model has been used in studies to support the 

updated WEEE directive targets. The studies disclose most 

of the used variables and inputs in the model and the data 

collection is clearly communicated. This model has been 

deemed most appropriate for calculating the WG for each 

EU member state over all other WG estimation methods 

because of its relative high-quality data availability, 

simplicity and the relative high compatibility of the model 

with all countries (Magalini et al., 2016).

 

As mentioned before, the Sales-Lifespan Distribution 

model requires two sets of input: 1) historical POM data 

and 2) the lifespan distribution function for the product 

(type). The lifespan distribution projects how much of the 

POM batch will be discarded in the years following the 

original sales. Since the product does not necessarily have 

to be broken to be discarded in today’s society, one must not 

confuse the lifespan distribution function with the survival 

function discussed in section 2.1.1. A product lifespan 

distribution is based on the discarding rate, whereas the 

survival distribution is based on the failure rate. 

Figure 4: The processes and transfer coefficients in a study using the Carnegie Mellon model (Steubing et al., 2010)
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Probabilistic lifespan distributions shapes can differ 

between product types, individual owners and groups of 

populations (Wang et al., 2013).  The lifespan distribution 

function can be derived from consumer surveys and 

through observing and sampling WEEE at C&R facilities 

to determine the age profile (Magalini et al., 2016; Wang 

et al., 2013). The results from these studies appeared to 

have the best fit with a Weibull distribution function out 

of all other probabilistic distribution functions (Wang et al., 

2013). A Weibull distribution is defined by two parameters; 

the scale parameter (β) and the shape parameter (α). As 

one might derive from the names of the variables, the 

shape parameter dictates the shape of the distribution 

and the scale parameter dictates the stretching of the 

distribution shape. By way of illustration, the difference in 

shape and scale parameters of the distribution functions 

can be seen in the graph in figure 5.  Equation 6 shows the 

Weibull distribution function applied in lifespan modelling 

(L(p)(t,n)=discarding probability, t =initial year, n = year of 

evaluation)

Some lifespan distributions can change shape over time 

due to social and technical developments. (Magalini et 

al., 2016). In the case of time-varying shape and scale 

parameters, the Weibull distribution function is formulated 

as equation 7. However, data on time-varying parameters 

is difficult to obtain (Magalini et al., 2016).

 The scale parameter is related to the average lifespan of 

the product and can be calculated with use of the shape 

parameter and the Gamma function, see equation 8. 

The United Nations University (UNU) carried out consumer 

surveys in several EU member states in order to obtain the 

shape and scale parameter for as many WEEE products as 

possible. The shape and scale functions have been assigned 

on a UNU-key level. Products that fall under the same 

UNU-key share roughly the same product functionality, 

legislative relevancy and recycling aspects- by similar 

weight, material composition, average lifespan (Baldé 

et al., 2015a). This UNU-key classification, consisting of 

54 categories, has been useful in building national WG 

models, which serves as a harmonizing categorization of 

many worldwide and European classification systems, such 

as the collection categories according to the EU WEEE 

directive. The link between the different classification 

systems are made available, as are the (current and historic) 

average weight, shape and scale parameters for each UNU 

key for some EU member states (Wang et al., 2012; Baldé 

et al., 2015a). In the study by Magalini et al. (2016) on 

WG estimates for all EU member states, the uncertainty 

in the lifespan was tested through a sensitivity analysis 

based on two extreme scenarios; 30% shorter and 30% 

longer average lifespans for all 54 UNU-key categories. By 

computing these different configurations for all member 

states of the EU28, the lowest margin of error for the 

WG estimates was 5% and the highest 31%. The lack of 

accurate national data has been assigned as the main cause 

of the margin of error

Once the WG is estimated, it is then compared with 

reported data from national recycling schemes to identify 

the size of the flows that did not enter the official take 

back systems. WEEE destinations can be split by transfer 

coefficient into four groups i.e. official recycling scheme, 

waste bin, local complementary recycling (by traders 

and brokers) and illegal trading and export to developing 

countries (Baldé et al., 2015b).

The Sales-Lifespan Distribution model is a widely used 

WG estimation model for countries and can provide high 

accuracy estimations when using highly accurate POM 

data, product weight data and lifespan data. However, the 

limitations of this model are due to the lifespan distribution 

function for some all-encompassing product groups. 

Furthermore, little insight on the stock is created with this 

model, since it makes no distinctions for different lifecycle 

Figure 5:  Example of Weibull product lifespan 
distributions , Baldé et al. (2015b)

Eq. 6) 

Eq. 8) 

Eq. 7) 
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stages within the domestic service lifespan (for reference, 

see figure 3). 

2.1.2.2   Prospective stock and flow modelling
With using a market supply model to assess future 

scenarios, it is necessary to forecast the POM EEE for the 

future years. In the study by Magalini et al. (2016), the EEE 

POM were forecasted based on the apparent correlation 

of Purchasing Power Parity (PPP) and the historical EEE 

POM data. This apparent correlation has been explored in 

the study by Huisman et al. (2008). For each UNU-key, the 

growth of the EEE POM has been linked to the growth rate 

of the PPP in scenarios for economic downturn, economic 

growth and for the PPP growth trendline based on previous 

years.

Although the EEE POM-PPP correlation method is 

accepted for future WG modelling, this calculation 

ignores the link to more realistic situations for the EEE 

stock in households. The method does not consider any 

appliance saturation within the market. Within the field 

of forecasting residential electricity for households, 

the focus is on building EEE stock models in units per 

household, which can be considered a stock-driven stock 

modelling approach (although with different modelling 

intentions). The appliance ownership rate, also referred 

to as the diffusion and saturation-level function, has three 

macroeconomic parameters; 1) the domestic household 

expenditure data (i.e. PPP), 2) the number of households 

for the country and 3) the saturation rate of a certain 

product in a household. The basis of this function is that 

when households have more expendable income, the 

number of appliances in households tend to rise, until the 

point of saturation (Daioglou, 2010). The saturation rate is 

something to be observed from consumer research and can 

be assumed to some extent. For example, the saturation 

level for dishwashers in a Dutch household can be assumed 

to be close to 1, while the number of televisions in Dutch 

households can be more than one.  

The diffusion and saturation rate is expected to reflect the 

curve of a Gompertz function, see equation 9 (Diaoglou, 

2010). Phi
1
 represents the saturation level, Phi

3
 represents 

the PPP/capita growth rate and Y represents the PPP/

capita year. Phi
2
 can be extracted by fitting the curve to real 

data with a regression analysis. 

Other functions using the basis of the Gompertz function 

have also integrated saturation level dynamics and 

diffusion rates dynamics that could be caused by product 

price development or income based delay (Diaoglou, 2010). 

To conclude, when using a market supply model, the stock 

development should be examined for realism to assess the 

validity for modelling future scenarios. 

2.1.3  Summary and Conclusion
Material Flow Analysis is a method used in the field 

Industrial Ecology to analyze stocks and flows within a 

defined system. Executing a MFA concerns main modelling 

choices as static vs dynamically modelling, taking a top-down 
or bottom-up approach and (in the case of a dynamic MFA) 

taking a stock-driven or input-driven approach. Most studies 

on (W)EEE stocks and flows conduct dynamic MFAs on 

are usually done on a national level. 7 different dynamic 

MFA approaches can be clusered in 5 groups according 

to the necessary input for running the model. From these 

groups, the Market Supply model group is most practicle, 

given the fact that stock data is generally unavailable. 

This group contains the Sales-Average Lifespan approach, 

the Carnegie Mellon modelling approach and the Sales-

Lifespan Distribution approach. The Sales-Average 

Lifespan approach requires a saturated and stable market, 

which goes against current global market trends and is 

therefore not suitable. The other two approaches are 

deemed suitable for addressing the research assignment, 

both have their limitations and potentials, although it 

has to be notes that the Sales-Lifespan Distribution has 

been the most frequently applied dynamic MFA model 

and therefore there are many resources available for this 

approach. These studies have also included prospective 

modelling, for which often the POM is extrapolated 

according to the apparent correlation with the PPP trends. 

However, the EEE stock modelling approach in a different 

field, i.e. residential electricity forecasting, calculate the 

stock through a diffusion and saturation-level function 

instead. This function can be used to provide a more 

realistic picture for future demand for EEE by taking into 

account, besides the PPP, also the growth of households in 

the country, saturation levels for products.

Eq. 9) 



18

2.2  Reversed logistics 

2.2.1  Reversed logistics fundamentals
With an increase of pressure on companies from policy 

makers, investors and other stakeholders on taking more 

responsibility for the EoL-products due to the growth of 

awareness on environmental sustainability, strategies for 

EoL-product management had to be developed. Industrial 

Ecology and LCAs focus mostly on the environmental 

performance of these strategies, whereas RL and CLSC 

are solely focused on the economic performance of 

strategy (Geyer and Jackson, 2004). Traditional supply 

chains have always been regarded as the forward supply 

chain only, where generally the “chain” ends at the point 

of consumption (for reference, see figure 6). RL involves 

interventions to collect used products from the consumer 

either for value recovery or to ensure proper disposal. The 

most universally accepted definition for RL is “the process 
of planning, implementing, and controlling the efficient, cost 
effective flow of raw materials, in-process inventory, finished 
goods and related information from the point of origin to the 
point of consumption for the purpose of recapturing value or 
proper disposal.” (Rogers and Tibben-Lembke, 1998). 

A supply loop can be defined “closed” if the recovered 

resource comes from the original company’s product, 

whereas a loop is “open” when the secondary resources 

come from products from different companies (Geyer and 

Jackson, 2004). Together, the forward supply chain and the 

reversed supply chain form the CLSC. CLSC management 

has been defined by Guide and van Wassenhove et al. 

reuse

repair

refurbishing

remanufacturing

parts harvesting

recycling

 DISASSEMBLY- LEVEL

arbitrary

to product level

to part/sub-assembly 
level

to part level

selective part retrieval

to material level

QUALITY REQUIREMENTS

check for functioning product

restore product to working order

inspect all critical modules and 
upgrade to specified quality level

inspect all modules/parts and 
upgrade to good-as-new quality

depends on process in which 
parts are reused

high for production of original 
parts, less for other parts 

RESULTING PRODUCTS

no intervention

some parts fixed or replaced by spares

some modules repaired/replaced; 
potential upgrade

used and new modules/parts combined 
into a new product; potential upgrade

some parts reused; remaining product 
recycled/disposed

materials reused to produce new parts

Fig 6: The integrated supply chain (Thierry et al., 1995)

Table 1: Product recovery options (adapted from Thierry et al., 1995)
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(2009) as the “design, control and operations (of a system) to 
maximize value creation over the entire life cycle of a product 
with dynamic recovery of value from different types and 
volumes of return over time”. This definition of CLSC implies a 

shift from an environmental and societal objective of the RL 

interventions to an economic objective, where integrating 

a reversed supply chain can also be economically attractive 

(Govindan et al., 2015).  EoL-product management 

interventions are in line with the CE recovery loops with 

reuse, repair, refurbishing, remanufacturing and recycling 

(see fig 6). The disassembly level, quality requirements 

and resulting products from these different EoL-product 

management interventions are laid out in table 1.

Product return flows are considered a supply in a CLSC 

and is therefore a driver in CLSC management. There are 

several different kinds of product return flows for which 

Thierry et al. (1995) identified the following four types:

 - product returns as required take-back by law or contract 

(i.e. responsibility of disposal)

 - product returns from ending leases and rental contracts 

 - product returns from technical failures within the time of 

service contract or warranty

 - buy-backs of used products

Geyer and Jackson (2004) identified three main supply 

constraints for CLSC management, illustrated in figure 7. 

The first constraint is the inaccessibility of EoL-products. 

The second constraint covers the technical or economic 

limitations to EoL-product reprocessing. The third 

constraint is the lack of market demand for reprocessed 

products. Thierry et al. (1995) proposed interventions 

for companies to overcome these three constraints. 

Controlling and accurately predicting the return flows can 

overcome the constraint of EoL-product inaccessibility. 

Redesign of the products through modular design, design 

for recycling or design for disassembly can greatly benefit 

the feasibility of reprocessing the EoL-products. Lastly, 

to overcome the last constraint, it will be necessary to 

generate market demand for reprocessed products and, 

furthermore, quality control for such products will be 

crucial. Other more general essentials to successful CLSC 

management are good collaboration with RL partners, 

adequate information technology support systems and the 

setting of an internal recovery target (Thierry et al.,1995).

According to Janse et al. (2009), the consumer electronics 

industry is a perfect candidate for RL practices. Firstly, it is 

because of the large WEEE volumes worldwide. Secondly, 

there is pressure backed by legislation to take-back 

products in the EU (i.e. the EU WEEE directive) and several 

other countries. Thirdly, the positive environmental impact 

of RL in the consumer electronics sector can be significant 

because, as described before in the introduction, the WEEE 

flows can cause great harm to the environment when not 

disposed properly. Through several case studies, Janse et 

al. (2009) discovered that the principles of RL were already 

embraced to some degree in the consumer electronics 

industry in the four following ways; 1) there is already 

more strategic focus on reversed logistics, 2) there is closer 

cooperation between forward and reverse supply chain 

partners, 3) there is more use of swapping of products 

and components in the repair process, 4) sustainability is 

viewed as a competitive advantage.

2.2.2  RL stocks and flows modelling
2.2.2.1  Stock modelling
Also for systems and companies that have not  implemented 

CLSC concepts there is a vested interest in knowing the 

EEE stock size and characteristics and/or the WEEE flows 

size and characteristics. One of the main contributors for 

this is the ‘service part end-of-life inventory’ problem for 

goods being manufactured in the final phase of its product 

life cycle (here referring to product sales introduction, 

growth, maturity and decline) (Pourakbar et al., 2014). 

Manufacturers are often legally required to repair products 

or provide parts for failed products within the warranty 

time or service contract. Some manufacturers also choose 

to supply spare parts to customers who want to repair their 

products themselves after the expiration of the warranty 

or service contract. Another challenge within spare part 

inventory management is the continuous shortening of the 

products and parts lifespan due to technological innovation, 

which results in a larger obsolescence risk for the spare 

parts (Pourakbar et al., 2014). Spare parts shortage costs 

can get very high if they cannot be supplied timely to the 

customer when needed (Dekker et al., 2013). So, with the 

final stage of production of a certain product, the final 

Figure 7: The three main supply constraints in CLSC managements (Geyer and Jackson, 2004)



20

order quantity for the spare parts needs to be based on a 

reliable forecast on future product failures; in other words, 

forecasts on when and how many products are expected to 

need repair or part replacement in the upcoming years. 

Spare parts inventory control is generally important to 

guarantee the availability of spare parts for in-use products 

that would require service. Spare part demand models are 

usually based on the Installed Base (IB) information. IB is a 

term in SCM that refers to information (e.g. location, size 

and age) on products that are in-use by customers. When 

drawing a parallel to the MFA method, the IB essentially is 

the same as in-use stock. Jin and Liao (2008) modelled the 

spare part demand for a stochastically growing IB, as there 

was no research before on forecasting the growth of the 

IB otherwise. A few years later, the study by Dekker et al. 

(2013) introduced IB forecasting. The IB growth is based 

on the product life cycle; modelling the growth and decay 

of the market demand for a specific product.  In figure 8, 

you can see the input (new product sales), stock size (size 

installed base) and the interrelated spare parts demand 

and product returns as sketched by Dekker et al. (2013). 

The demand of spare parts will follow the demand for new 

product with a delay and, furthermore, the demand for 

spare parts will be linked to product failure and wear and 

tear. To be able to model or estimate the future IB size, the 

following information is needed according to Dekker et al. 

(2013);

- From the sales phase: the expected product life and failure 

rates of the products/parts 

- From the use phase: location of the system, usage of the 

system and maintenance information

- From the EoL phase: information about the abandonment 

of a system when they are no longer needed by the 

customer. Not only does this provide information on the 

IB, but a returned obsolete product can also be a source of 

useful recoverable spare parts.

Information on the IB is generally more available for B2B 

products sold with a service contract, which is rarely 

the case for B2C products in today’s time. Generally, 

manufacturers of B2C goods have a good knowledge of 

sales, but do not know how many of those products are 

still in use and whether they already entered the EoL 

stage; all of which is essential input for IB forecasting and, 

consequently, spare part demand forecasting (Kim et al., 

2016).  Given the lack of information on the IB for B2C 

products, Kim et al. (2016) developed a new method for 

spare part demand forecasting method based on consumer 

behavior. The study proposes four different IB concepts 

related to the perceived value of the product and repair 

costs;

 - Lifetime IB (IBL) - covers products that are expected to 

stay in-use during their expected lifetime, even when the 

warranty for covering repair costs has expire. This is usually 

the case for relatively expensive, high-end products.

 - Warranty IB (IBW) - covers products that will be repaired 

during the years covered by the legal warranty, but will not 

be repaired in case of failure after the warranty expires. 

This is the case for most low to mid-end consumer products

 - Economic IB (IBE) - covers products that will be repaired 

during the years covered by the legal warranty, and might 

be repaired only when economically attractive. This is the 

case for mid to high-end consumer products

 - Mixed IB (IBM) - is similar to the IBE, however,  consumers 

do not all show the same evaluation to the costs of repair. 

The consumer base should therefore be split up by product 

adoption (i.e. innovators, early adapters, early majority, 

late majority and laggards).

Regarding the IBL and IBW, all products sold in the initial 

year would be still in use until reaching the expected lifetime 

or warranty respectively. After reaching that turning point, 

the IB size graph will follow the curve of the product’s 

survival function. For the IBE and IBM, the turning point 

will be determined by the product price, repair costs and 

depreciation rate (perceived by consumer). Figure 9 shows 

the relationship between these factors and indicates 

until when the product would still get repaired in case of 

failure. The IB modelling is done with a econometric model 

incorporating reliability statistics for the four IB types. The 

result of such a model for consumer electronics in a case 

study on fridges by Kim et al. (2016) is seen in figure 10.  

The notion that the sole motivation for product repair is 

the relation of the repair costs to the original product costs 

is supported by consumer product replacement models 

(McCollough, 2010). These consumer product replacement 

models, used both by consumers and by company, to assess 

whether it is economically attractive to replace a product 

rather than repair it. Other reasons for not repairing 

or abandoming a product are fashion obsolescence or 

obsolescence by technological innovation and are rather 

Fig 8: A sketch of the relationships between sales, installed base, 
spare parts demand and EoL  returns (Dekker et al., 2013)
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difficult to model (McCollough, 2010).

2.2.2.2  Reversed flow modelling 

IB modelling is about estimating the in-use stock size, 

thereby focusing on the repair through spare part demand 

forecasting for the final order quantity for spare parts 

once the product will be phased out. Reuse of parts from 

returning products is a more environmentally sound 

alternative to the production of spare parts and can 

complement the spare parts inventory. Together with 

costs, remaining lifetime and quality, understanding the 

supply-demand dynamics of reusable parts is critical for 

successful implementation in RL (Umeda et al., 2006). 

The study by Umeda et al. (2006) analyzed the reusability 

of EoL-products parts by applying a ‘marginal reuse rate’. 

As represented in figure 11, the marginal reuse rate is 

the overlap of the production distribution curve and the 

disposal distribution curve for a certain product. Only when 

both production and disposal occurs, reuse is possible. The 

marginal reuse rate can be increased by designing new 

products to be compatible with the components from older 

products, thereby shifting the production distribution 

curve to the right, resulting in a bigger overlap with the 

disposal distribution. This overlap represents the fewer 

production input needed from new produced parts. In 

order to model the marginal reuse rate, the distribution 

functions for the production and disposal should be known.

Overall, forecasting product returns is a subject with early 

on-going development. Forecasting returns is also used 

to estimate how many products can be re-introduced 

to the market as refurbished or second hand. The main 

issues in forecasting the returns for this objective are the 

uncertainty in return timing and unpredictable consumer 

behavior (Potdar, 2009). For this reason, many of the 

earlier research done on modelling the CLSC are basing 

the return flows on stochastic modelling (Fleischman, 

2000). However, more recent research has aimed for more 

accurate estimation modelling. Studies on quantifying 

reversed flows are mostly done on forecasting  returning 

products due to (claimed) product failure or dissatisfaction 

within the warranty period (Potdar, 2009; Plewa and 

Jodejko-Pietruczuk, 2012; Calmon, 2015). This research 

is undeniably important for the producers within the 

industry, but this modelling approach leaves out the value 

recovery of all other products that survived the warranty 

period without being returned. To forecast product returns 

after the warranty expired, only controlled, forecastable 

product returns can only be organized through leasing the 

product (Pourakbar et al., 2014).

2.2.3  Short summary and conclusion
The forward loops and reverse loops managed by a company 

together form the CLSC. While organizing a CLSC can face 

major contstrains, the EEE industry serves as a candidate 

with a lot of potential for it. Product stock and (reverse) 

flow modelling is done to ultimately forecast spare part 

demand. The IB forecasting method is used to forecast 

future need for repair for in-use stock size and the marginal 

reuse rate is applied to calculate how harvested parts from 

returned products can decrease production for new spare 

parts. Regarding reversed flows through product returns, 

only returns from lease can be accurately forecasted. There 

are many studies on quantifying reversed flows from other 

types of product returns, however, these studies focus only 

on the return within the warranty period, which is not the 

aim in this research. 

Fig 9: A sketch of the relationships between product value and 
repair costs over time (Kim et al., 2016)

Fig 10: Outcome of case study on the Installed Base  for 
refrigerators (Kim et al., 2016)

Fig 11 : Marginal reuse rate of components from 
returning products (Umeda et al., 2006)
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2.3  Synthesis

2.3.1  Main methodology findings

In the previous sections in this chapter, the stock and flow 

estimation methods used in MFA and CLSC management 

have been explained and reviewed. In the synthesis, it is 

strived to provide an overview of the methods found in 

both disciplines and how they could be used to complement 

each other or harmonize with one another.  

Firstly, the existing MFA approaches for stock and flow 

modelling of (W)EEE have been explored. From all methods, 

it was concluded that there are two approaches that are 

generally applicable to a company, i.e. the Sales-Lifespan 

Distribution model and the Carnegie Mellon method.  

Both methods have potentials and limitations. Earlier 

studies with the Sales-Lifespan Distribution model provide 

exhaustive data and is already an accepted method for 

nation-wide (W)EEE stock and flows accounting. However, 

the method does not provide any information on the 

dynamics within the stock. On the contrary, the Carnegie 

Mellon model does provide more insight into the dynamics 

within the stock and acknowledges differences between 

B2B and B2C product-user behavior, but requires much 

more data (for which intensive observation is required). 

In addition, it was found that stock modelling for (W)

EEE does not only occur in the field of Industrial Ecology. 

For instance, for national residential electricity demand 

forecasting, an EEE stock model is provided using a diffusion 

and saturation model (ownership rate) for households in a 

specific country. This is especially useful for assessing the 

realism for prospective MFA models, as the stock levels 

should not surpass the saturation rate. 

Also, stock and flow methods also been developed in  the 

field of SCM. Studies on RL have created methodologies 

for companies to be able to forecast the size of the IB (i.e. 

the in-use stock), which is used for spare part demand 

forecasting for repair. For building RL scenarios, some 

studies are devoted to quantifying the usefulness of 

return flows as a secondary source of spare parts for CLSC 

management (e.g. the marginal reuse rate).  Most of the 

other studies on reversed flows are on returns within the 

warranty period, be it from product failures or disssatisfied 

customers. These models are highly complex and are 

limited to predicting the product return flows within the 

warranty time. Therefore, these product return models will 

not be considered in the synthesis. Furthermore, from the 

four type of product returns that are identified by Thierry 

et al. (1995), only products from ending leases and rental 

contracts can be predicted with certainty. 

Table 2 provides an overview of all reviewed and 

theoretically suitable methods and their data requirements. 

An interesting thing to note is that the grouping of 

products to calculate the stock size with the Sales Lifespan 

Distribution method is done based on mainly functionality 

whereas in the Installed Base method, the products are 

grouped based on retail price.  

2.3.2  Synthesis results

To see how the methods from the two different disciplines 

will complement each other, their usefulness was explored 

Table 2: Overview of the different stock and flow estimation models  and the corresponding the data requirements
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per product lifecycle stage, seen simplified in table 3. It 

suggests the configurations that can be made to calculate 

certain stock and flow sizes. The information can either be 

used to validate one another or to replace one configuration 

with the other in the case of data inavailability.

Theoretically, MFA appproaches and stock and flow 

modelling methods in CLSC management can be 

complementary to one another in stock and flow size 

estimations.  However, when it comes to predicting the 

reversed flows, no suitable method has been discovered 

from CLSC management that can predict the closed loop 

return flows after the warranty period has expired when 

the product have originally been sold to the customer. 

Therefore, more accurate modelling of closed loop 

product return flows can only be done through lease or 

rental product services.  Leasing products to customers 

will overcome the first of three main constraints in CLSC 

management as identified by Geyer and Jackson (2004). 

With accurate product return estimations, the marginal 

reuse rate can be used to calculate how many spare parts 

can be saved from production by using harvested part from 

returning EoL products. It could alo be used to predict 

the savings from new product production if the returning 

products were sold as refurbished or second hand, although 

it would still need to be acknowledged that spare parts will 

be needed in these processes as well. 

2.3.3  Conclusion

To conclude, the stock and flow modelling techniques from 

the SCM field can theoretically complement the stock and 

flow modelling with a dynamic MFA. Incorporating the RL 

modelling methods into the dynamic MFA method could 

lead to more elaborate insights on the stock dynamics and 

will likely also increase the reliability and accuracy for stock 

and flow size estimations. It is likely that the connection 

between the two modelling approaches from the different 

fields has never been explored due to the different 

objectives of the dynamic MFA  method and IB forecasting 

method. Dynamic MFAs for (W)EEE are used to estimate 

flow sizes in order to connect with real-world weight data 

for evaluating the performance of e.g. the recycling rate, 

whereas the RL stock and flow estimation methods are 

focused on predicting the spare part production demand.

Table 3: Overview of the different configurations for calculating the stock/flow size of the lifecycle stages for a given year
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3.1  Goal and Scope
3.1.1  Royal Philips
This case study will be done for Royal Philips N.V., that 

will henceforth be referred to as Philips. Philips is a Dutch 

technology company operating in consumer electronics 

(division Personal Health) and healthcare equipment 

(division Health Systems). Philips is one of the largest 

electronic concerns worldwide and is the 8th biggest public 

company of the Netherlands (Forbes, 2017). From 2012, 

Philips has incorporated CE principles in its strategic vision 

and mission. The main circular activities Philips is currently 

practicing are refurbishment of large medical equipment 

and using recycled materials in consumer products. 

In the Health Systems division, the large hospital equipment 

is sold to B2B/B2G customers under service contracts, 

which makes it possible to monitor whether the products 

are still in use and when the products are replaced for 

another system. With the motto “No customer left behind, no 
machine left behind”, the stocks and flows of the healthcare 

products that operate under a service contract are well 

documented where possible and processed in an IB 

database. The use of such a database facilitates customer 

retention methods and facilitates the possibility for Philips 

to buy back their products at the end of the initial use stage 

for refurbishment within the Diamond Select program. 

With regards to disposal practices outside Philips’ control, 

it is expected that most of the healthcare equipment will be 

scrapped for its highly valuable components and materials.  

On the consumer electronics division Personal Health, 

besides using recycled plastics, Philips is encouraging 

consumers to consciously discard products through official 

recycling schemes (Fleming and Zils, 2014). However, 

Philips’ Small Household Appliances (SHA) are sold to the 

consumer under the legally obliged warranty that usually 

does not cover the expected average lifetime for the 

products. B2C customer relationships are weak compared 

to the B2B/B2G customer relationship, which makes it 

nearly impossible to track products after the point of sale. 

CEO Frans van Houten stated in a panel discussion with 

fellow CE100 partners: “Our wish is to track material 
consumption all the way” (The Guardian, 2014). This case 

study aims to set the first steps to do so.

 

3.1.2  Goal
The research assignment for this project is, as stated 

before in the introduction, to develop a dynamic MFA model 
for EEE companies to increase transparency of downstream 
product flows and provide prospective insight on the impacts 
of RL strategies. In the empirical part of the research (i.e. 

the case study), it is not only the goal to make the model 

feasible regarding data availability, but also to make it as 

useful as possible for the company.

From the company’s background description, one can 

derive that a focus on SHA is much more impactful than 

focusing the model on medical devices. Firstly, since Philips’ 

Health Systems has IB monitoring systems in place (which 

is easier to manage in a B2B/B2G customer relationship) 

and, secondly, the healthcare products are more likely to be 

scrapped for its valuable materials. With the downstream 

SHA product flow, there is little idea of what the in-use stock 

is and what happens with the products once they reach the 

EoL stage. The only feedback the company gets from the 

EoL product stream is a weight-based C&R resultsreported 

by their national WEEE recycling partner. The company 

indicated that it seeks the connection between the POM  

quantity and the weight-based C&R data to be able to track 

the C&R performance over time. Therefore, the deliverable 

for this case study needs also to create that insight. Since 

After the theoretical methodological research done in the previous chapter, the applicability of the findings 
will be tested with an empirical analysis through a case study. The ultimate aim of the case study is to deliver a 
dynamic MFA model with incorporated RL loops. After a brief background description about company on which 
the case study will be based, the goal and scope are laid out. Additionally to examining the applicability of the 
theoretical findings, it is also strived to consider other wishes from the company to increase the usefulness of 
the deliverable. The goal and scope is followed by defining the scenarios that will be simulated in the model. 
An important part of the modelling process is the inventory analysis, where the data requirements from the 
theoretically suitable models will be tested on the data availability. The model will be built based on results from 
the inventory analysis and will be communicated through flowcharts. The suggested interaction with the final 
model will be presented through wireframes. Both the model and its outputs will be checked on its sensitivity 
and consistency with real life data where possible. The chapter ends with an evaluation of the model by the case 
study target audience. 

3. CASE STUDY
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the feedback from the C&R partners is based on the bulk 

of all SHAs (WEEE category 2), the case study will also 

cover all Philips SHA products to be able to make a proper 

connection.

Furthermore, with the invested interest of becoming more 

circular, it is interesting for the company to see how RL 

activities will affect the circularity performance of the 

company compared to the current system However, in a 

business context, the profitability of the implementations 

of such activities is essential. For that reason, the model will 

be paired with financial data to make both an environmental 

assessments and economic assessments. Another reason 

to add the financial information to the model is because 

that will allow the MFA model to be comparable and 

possibly adjusted with the econometric models currently 

used in SCM for RL management. 

 

Another requirement from the model by the company is to 

provide insight on as many aggregated and disaggregated 

levels as possible; thereby being able to filter products 

based on any kind of product characteristic. business unit, 

etc., down to the level of analyzing the results for one 

product specifically. This will make the model more useful 

for a larger audience throughout different layers in the 

company.  

In summary, from the business perspective, the model 

can be useful and impactful when the link can be made 

between the SHA POM sales and the SHA C&R results, 

when financial data can be incorporated into the model 

to compare profitability of different strategies and when 

the model results can be analyzed on different levels of 

aggregation. This can guarantee successful use of the model 

for strategic decision making for the implementation of RL 

activities. 

3.1.3  Scope
In the introduction, the following three general research 

scopes were presented; 1) the research would be done on 

product level, not on part or material level, 2) the empirical 

research would be based on only one case study, and 3) the 

model will not aim for a perfect representation of reality, 

but will rather show what is possible with the currently 

available resources. In this section, the scope will be more 

specific towards the case study. The scope will be set on the 

following aspects to make the research feasible within the 

restricted time.

3.1.3.1  System boundaries

Philips sells SHA globally, but this case study research 

will focus only on the product downstream flows for SHA 

in the Netherlands. The most advanced (W)EEE stocks 

and flows studies have been applied to the Netherlands, 

which is something that has been made possible through 

well documented and detailed public data. (J. Huisman, 

personal communication, March 2017)

3.1.3.2  Circumventing CLSC constraints

In the Methodology chapter, three main constraints in 

CLSC management have been identified by Geyer and 

Jackson (2004). The three constraints will be circumvented 

by the following scope conditions:

1) Inaccessibility of EoL product

From the four types of product returns identified by 

Thierry et al (1995), i.e. buy-backs, failed products under 

warranty, products with producer responsibility of disposal 

and lease/rental returns, the products return from ending 

lease contracts are the only return flows for which can be 

accurately predicted (Pourakbar et al., 2014). This case 

study will therefore only model reversed flows from leased 

products.

2) Technical and economical infeasibility of reprocessing 

the returned products

This constraint will be strived to overcome by focusing only 

on modelling the reversed flows for high-end products for 

the following reason. Most companies use replacement 

models for making capital budgeting decisions, including 

whether a product/part should be repaired or replaced 

within the legal warranty period (McCollough et al., 2010). 

The replacement model often uses the discount rate, repair 

price and replacement rate as its variables (McCollough et 

al., 2010). The case study company also works with such a 

replacement model. In practice, the decision on whether a 

product will be replaced or repaired in case of failure often 

can differ per product. So, if the model would aim to be as 

accurate as possible, it would be necessary to find the repair-

replace strategy for each product separately. Instead, 

this model will focus on high-end (relatively expensive) 

products, because it will be more likely that replacing the 

high-end product would be much less economical than 

repair. Repair costs are often more or less fixed costs (labor 

cost), so the more expensive the product, the smaller the 

repair to replacement cost ratio. Furthermore, by assuming 

that high-end models will be repaired rather than replaced 

in case of failure within the legal warranty period, it is also 

assumed that the high-end product are made repairable 

to avoid replacement. By this notion, it is assumed that a 

focus on RL for high-end products will be economically and 

technically feasible.  

Another way of increasing successful technical and 

economical processing of returned products is by applying 

similar procedures that are used in the successful 

Diamond Select program. In this program, products are 

only refurbished once, as it will be both economically and 
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technically unattractive to refurbish an earlier refurbished 

product for an additional cycle. So, by replication of the 

same concept onto SHA products, SHA products will only 

be refurbished once in its entire lifetime.

3) Lack of market demand for secondary output

By reviewing RL networks models, Fleischman (2000) found 

that models either use ‘push’ or ‘pull’ reuse market drivers. 

A ‘push’ reuse market driver implies that all recovered 

products will be put back on the market, whereas the ‘pull’ 

reuse market driver will only deliver recovered products 

for which there is a market demand. In this case study, 

the ‘push’ strategy will be applied, thereby implying that 

all recovered products will be purchased or leased. There 

is market research on the topic of consumer acceptance 

of recovered products, both company internal studies 

and public studies, although no study is useful within the 

scope for making quantified estimations what the market 

demand for a recovered product will be. 

3.1.3.3  Prospective modelling approach

Regarding prospective MFA modelling of EEE stocks and 

flows, the Methodology chapter covered two different 

methods; 1) taking an input-driven approach by using the 

historical POM data to make projections for the future 

under certain economic scenarios, and 2) taking a stock-

driven approach by calculating the future stock with 

the diffusion and saturation-level function. The second 

approach will require a significant amount of data collection 

and modelling and will not be suitable without product 

market share data. Although the diffusion and saturation-

level function could be more accurate compared to the first 

prospective modelling approach, it is decided to use the 

first approach due to time restrictions. However, the main 

concept of the diffusion and saturation-level function can 

still be applied to assess the realism of the produced stock 

from the projected future input. 

Overall, it is rather impossible to be able to predict what 

the future sales of a certain product will be. The company’s 

market share can increase or decrease completely, 

technological innovation might render certain products 

obsolete within a short time and economic booms or 

crises can influence sales significantly.  In this case study, 

it is assumed that the outside influences (e.g. competitor 

landscape, disruptive innovations and macroeconomic 

fluctuations) are balanced and have insignificant influences 

on the sales projections. 

3.1.3.4  Comparative performance requirement

The model aims to compute the stocks and flows for the 

current situation and then compare the performances 

of RL strategies with the current situation as a baseline, 

which can be referred to as the Business as Usual (BAU). To 

make the current situation and RL scenarios comparable, 

all scenarios must be filling the same performance 

requirement. This performance requirement will be:

 to satisfy the same in-use stock level of high-end 
products under BAU conditions

With this performance requirement, it is assumed 

that households in the Netherlands will require the 

same number of in-use products in their households 

with whichever business model. However, it must be 

acknowledged that the overall product diffusion and 

saturation rate might increase (thus overall stock increase) 

by offering of high-end products through lease (by making 

it more financially accessible to the market) and through 

selling/leasing recovered products (with generally lower 

prices/costs also accessible to a larger market). However, 

the latter factors will not be considered.

3.1.3.5  Environmental performance indicators

It is not within the scope to compute environmental 

emissions and their associated environmental impacts 

through combining the MFA with a LCA. The combination 

of MFA with a LCA would be much more suitable when 

applying the model to one specific product given the 

modelling and data requirements to achieve accuracy 

and reliability. However, this study is focused on the bulk 

of many products. Instead of focusing on environmental 

impact midpoints or endpoints, which cannot be assessed 

through a MFA alone, the environmental assessment is 

approached high-level without any backing of associated 

environmental emissions. Since the performance 

requirement for all scenarios is based on producing the 

same in-use stock, the focus will lie on the change of the 

size of the inflow and outflow. The following three high-

level environmental performance indicators for the RL 

scenarios can be derived from the inflow and outflow and 

will be assessed by the percental change compared to the 

BAU scenario within a given time frame;

-  Decrease of input from new products

The concept of the marginal reuse rate is applied. The basis 

of this indicator is that, with recovering returned products, 

the need for new products to satisfy the same stock levels 

might decrease. By reintroducing the recovered product 

to the market, the production of new products and the 

associated environmental impacts, might be avoided.

-  Decrease of WEEE generation

Another CE principle is the longer circulation of products 

and therefore an overall delay and/or decrease in waste 

generation. This will be measured by comparing the 

EoL product outflow for the scenarios within the given 

time span. It is necessary that upon further analysis the 

distinction must be made for delaying WG or decreasing 

WG. 
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-  C&R rate

This third environmental indicator is used to assess how 

much the loop of the production and consumption is 

closed by assessing the change in C&R rate. The C&R 

rate is expected to change with different RL management 

strategies when different actors are exerting control over 

the (waste) stream.

3.1.3.6 Economic performance indicator

To this day, quantifying the profitability of RL strategyies 

has been done through econometric modelling.  To check 

the developed model with existing econometric models, 

it is necessary to introduce financial information to 

the model. However, the researcher of this project has 

little knowledge with economics associated with the 

production and supply chain management, so a rather 

simplified version will be applied. The model will allow for 

incorporating more accurate financial information, so the 

model can be compared and tweaked according to the 

existing econometric models. Furthermore, the economic 

performance indicator will not considering external costs.

3.1.3.7  Consistency check

Since the goal of the project is partly to deliver insight to 

the current  situation of the downstream product flows, it 

is necessary to be able to check the computed stock and/

or flow with real world data. For companies that have 

partnered with official recycling schemes, the estimated 

mass recycled on behalf of the company is reported yearly.  

In the case of data availability, the consistency check could 

also be done for the stock size.

Unfortunately, the only way to check the consistency of the 

future scenarios are through comparison of the financial 

results of the MFA model with existing RL econometric 

models. However, this is out of scope for this research 

project. 

3.1.3.8  Tools

In this case study, modelling will be done with programming 

language Python (v2.7). The Pandas library is used 

exhaustively, which allows for easy and powerful data 

manipulation and data analysis. Similar programming 

languages that can be used for this case study can be R 

or MATLAB. The output of the model will be exported in 

a CSV or MS Office Excel file and are then visualized in 

Tableau, a data visualization software. However, the last 

two intermediate steps can also all be done within Python 

using a data visualization library such as Bokeh. 

3.1.3.9  Confidentiality

In the case of use of sensitive company data, the results 

will be presented on an aggregated level and/or will be 

reported in weight instead of quantity where necessary.

      

      In short, the scope delimitations of the case study for modelling a dynamic MFA with incorporating RL are;

      Regarding system boundaries;

  - Modelling SHA products in the Netherlands on product-level

      Circumventing CLSC constraints by;

 - Modelling for RL strategies for high-end products

 - Modelling reversed flows from lease only

        - Considering the reuse market driver to be a ‘push‘ reuse market driver

 - Refurbishing products only once 

      For the prospective modelling approach;

        - Projecting future sales based on historical POM sales quantity data

      For the comparative performance requirement;

        - All scenarios should satisfy the same in-use stock level as would be computed for BAU conditions

      For the environmental performance indicators, 

       The impacts of the RL strategies will be assessed on;

  - The (negative) growth of new product input, 

  - The (negative) growth of WG 

  - The change in the overall C&R rate 

      For the economic performance indicator;

        - Profitability will be assessed on estimated cost and revenue elements associated with the stocks and flows

      For the consistency check;

        - Comparing the C&R performance computed by the model with the report by the C&R recycling partners

 - Comparing the market share computed by the model with the market share estimated by the company

      Regarding tools;

        - Modelling and data analysis is done in Python v2.7 andTableau is used for data visualization.

      Regarding confidentiality; 

        -Results will be brought to an aggregated level or reported in weight metrics to cover sensitive information. 
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3.1.4  Scenario definitions
With the delimitations stated in the scope, it is possible to 

define the scenarios that will be simulated in the model. 

Since the performance requirement is determined by the 

model outcomes under BAU conditions, it is necessary to 

simulate the BAU first. Before having done the inventory 

analysis (which will be covered in the next section), it 

is already clear from basic business practices and legal 

requirements that we have the following information 

available: 

   - product sales in units, reffered to as POM quantity, for a 

set of consecutive years until 2016

   - corresponding weights to the sold products

 -reported recycled weight from the official recycling 

scheme partners

3.1.4.1  Simulating the BAU
Retrospective POM extrapolation
First, the aim is to extrapolate the yearly aggregated POM 

quantity to the point where the POM quantity for a given 

year is 0 by following a retrospective trendline. For the 

year where POM quantity is zero, the stock size is also 

zero. Since the model is done in a bottom-up fashion, the 

model reliability can then be checked with the following 

top-down equation provided in Equation 10:

In Equation 10, t is time, T
0 is the initial time step, S0 is the 

stock at the initial time step, T is the current time step and 

St is the stock at the current time step (Graedel et al., 2010). 

There is no way of knowing the stock size for the year of 

the last recorded POM quantity, therefore it is necessary 

to set the stock size at zero in order to check the results 

with the top-down method. Having the POM quantity 

historically extrapolated to zero makes possible to check 

the bottom-up approach with the top-down approach. 

Obviously, products can have been sold before the given 

point where S0=0, but this case study only considers the 

product portfolio for which historical sales quantities are 

available. The same approach (i.e. finding the stock age 

start) has also been applied in the Dutch WEEE flow study 

by Huisman et al. (2012).

A sensitivity check is required to determine the effects 

of this historical extrapolation. This is done by comparing 

the stock and flow results with the retrospective trendline 

extrapolation for the stock with 2 extreme historical 

scenario extrapolations. The first extreme historical 

sales scenario would be to have zero sales before the last 

recorded POM quantity. The second extreme historical 

sales scenario would be to have the POM quantity for the 

last recorded year duplicated to preceding years. Besides 

the sensitivity analysis on the outcomes of the different 

historical inputs, the outcomes of the two extreme 

scenarios will also undergo the consistency check to show 

if the retrospective extrapolation has an effect on the real-

world consistency of the model.

Prospective POM extrapolation
If the modelling results are deemed consistent with 

real-world data, the modelling approach can be further 

extended for future stock and outflow estimations.  This 

case study will build a future scenario for stocks and 

flows from 2016 to 2030. The extension is 14 years and 

the final year is arbitrarily set to the first year of a new 

decennium. Modelling the stock and flow further beyond 

2030 comes with an increasingly greater uncertainty by 

each successive year. Figure 12 demonstrates how many 

products that were sold in 2016 are still in stock by 2030. 

This is done by applying the Weibull distribution discarding 

function (Eq. 6) to the SHA UNU-key with the largest scale 

(thereby implying the largest average lifespan) to calculate 

the stock size (i.e. not-discarded products) over the years 

until 2030. The UNU-key shape and scale parameters can 

be found in Appendix A and are retrieved from Baldé et 

al. (2015a). From the stock development of a UNU-key 

202 product in figure 12, it is estimated to be 31% of the 

stock for the initial year will remain in Dutch households. 

Although it is clear from this graph that the stock for the 

products sold in 2016 will not reach zero, it still is reduced 

in size significantly. For the other SHA UNU-key products, 

the remaining stock for products sold in 2016 will be lower 

than 31%. 

Unfortunately, there is no simple way of projecting future 

sales accurately. Instead, the future sales projections will 

be using the most recent reported data for a complete 

Eq. 10) 

stock size in unit quantity

100% 

31% 

year

Figure 12: The stock development of UNU-key 202 product 
sold in 2016 according to UNU scale and scale parameters
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year, which is the sales data for 2016, and duplicate the 

POM quantity for the successive years until 2030. This 

projection of zero growth is a conservative projection, and 

therefore a sensitivity analysis will be done by comparing 

the results with that of a highy optimistic sales projection.

3.1.4.2  RL scenarios
To reiterate, the RL scenarios will only be applied to 

high-end products from 2016 until 2030, with product 

returns from lease as the only source of predictable closed 

loop return flows. Reflecting to the raison d’être of this 

project, RL strategies will be implemented to increase the 

circularity of the downstream product flows. According 

to the EMF, the enabling activities to increase the overall 

circularity of a production-consumption system are (see 

figure 1 for reference);

 - maintenance/repair

 - reuse/redistribution

 - refurbishment/remanufacturing

 - recycling (material recovery)

The following step is to go over all four circular activities in 

order to come to RL scenarios;

Increase maintenance/repair - With adequate maintenance 

and repair, products are guaranteed to survive at least 

their minimal expected lifetime. In the case of selling 

EEE, there is an EU minimum of 2 years of warranty to 

guarantee repair in case of product failure. However, 

in the Netherlands consumer laws protect the Dutch 

consumers more generously. In the Netherlands, either the 

manufacturer or the retailer must cover the costs of repair 

for failed products within the minimal expected lifetime 

(ConsuWijzer, 2017). Increasing repair claims can be done 

through spreading awareness on the consumer rights. 

Other than that, companies that sell products can do little 

to make consumers apply for repair of failed products. In 

the case of a lease contract, the consumer pays a fee for 

using a functional product while Philips keeps ultimate the 

ownership of the product, so repair of the product within 

the lease duration is implied (when economically viable). 

Besides providing service constracts at purchase, the main 

way to guarantee repair of a failed SHA product during its 

expected lifetime, is through leasing the product rather 

than selling.

Increase reuse/redistribution - Reuse amongst 

consumers is something that is happening increasingly. 

The phenomenon is hard to model and prove, but one 

indication is that revenue of thrift shops has doubled in the 

last 10 years (CSB, 2016). Also, with the widespread use of 

websites such as Marktplaats and Facebook, it has become 

rather easy for Dutch consumers to sell the products that 

the owner considers obsolete. It is likely redundant for 

the company of the product to play a role in facilitation 

of reuse. One way to control the reuse/redistribution of 

the products is through leases. Once a product become 

obsolete to one consumer, Philips can redistribute the 

product to another consumer until the acceptable lifetime 

has reached.

Reintroducing EoL products by refurbishment or 

remanufacturing - Refurbishing and remanufacturing 

are ways for a company to extract further value out of 

an existing product. Remanufacturing is the extensive 

process of restoring a product to an ‘as good as new‘ 

condition through disassembly, cleaning, repairing and 

replacing parts and reassembly (Hauser and Lund, 2003). 

Since remanufacturing includes complete disassembly 

and reassembly, it does not fit within the scope of building 

the model on a product level. Modelling remanufacturing 

would be more feasible when considering a model built on 

part or subassembly level.

Refurbishment requires less work than remanufacturing, 

but requires more work than simply repairing a product 

or redistributing the a used product. The difference 

between a used product and a refurbished product is that 

the product has been tested and has been brought back 

to an optimal state to ensure proper functioning for the 

years to come. Since the obligatory minimum period of 2 

years in the EU and the minimum expected lifetime in the 

Netherlands applies to not only new products, but also 

to recovered products, it is sensible for the company or 

retailer to test and restore the product before, rather than 

selling it directly as second hand.

In order to refurbish a product, the EoL-product must find 

its way back to the company. In the Philips Health Systems 

division (B2G and B2B), products return from buy-backs. 

It is made possible to buy-back the products due to the 

IB monitoring system and the relatively long service 

contracts. It is rather complex to model the return from 

buy-backs, since it involves many economic considerations 

by the customer to sell it back to the company. In the 

Health Systems division, a product will only be refurbished 

once and the refurbished product’s lifespan is on average 

around 50% - 70% of the original product.  Buy-backs are 

easier with B2B customers, since companies generally 

have closer relationships with B2B customers than B2C 

customers (Kim et al., 2016). As stated before, controlled, 

forecastable EoL-product returns can only be organized 

through leasing the products. 

 Increase recycling through C&R - The material 

recovery loop is part of an open loop supply chain through 

recycling by the national compliance schemes. In the BAU 

system, Philips can only steer or stimulate consumers to 
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assumed that the stock size remains 100% of the input 

until the final day of the lease period. With the ending of 

the lease, products will return to the company and will 

all be sent to the official C&R scheme or will be properly 

scrapped in-house. The implications of leasing products 

instead of selling are, firstly, that there is no build-up of 

unused stock. Once the still functional product is deemed 

obsolete to the first owner, it can be transferred to the 

next owner. Secondly, the company will keep ownership 

all products will still be owned by the company, so all 

products can be properly recycled. Thirdly, since the lease 

construction makes it possible to do maintenance when 

needed, the product could have a longer lifespan. The 

products can then possibly be leased for a longer time than 

the minimum expected lifespan or average lifespan

The possible high-level environmental benefits could be:

a) less need for production of new products due the 

inability to create hibernating stock

b) less input and waste production when products are 

redistributed in case of obsolescence to the first owner(s)

c) 100% C&R rate for high-end products, so a higher 

(overall) C&R rate

d) less need for spare part production, since the returned 

products can be scrapped for useful parts.

RL scenario 2  - leasing high-end - leasing refurbished

In this scenario, where the refurbished product is 

considered high-end, the returned products from ending 

leases will be refurbished and lease again. The lease 

duration for the refurbished products will likely not as 

long as the original product lease duration. Returned 

products will be mostly scrapped and parts that are not too 

old or worn already can be harvested, since it is expeced 

that the spare part marginal reuse rate will likely yield 

lower compared to RL scenario 1. The implications of this 

scenario are the same as RL scenarion 1 with the addition 

that products will have two separate use lifestages by 

having two consecutive lease periods.

The possible high-level environmental benefits could be:

a) b) c) from RL scenario 1

e) by circulating the product for two separate use stages, 

less input from new high-end product is necessary and also 

WG is decreased and delayed.

RL scenario 3 - leasing high-end - selling refurbished

In this scenario, where the refurbished product is 

considered low-end, the returned products from ending 

leases are refurbished and sold. The refurbished products 

prices will compete with new low-end products prices for 

similar products. Therefore, also the replacement of new 

low-end products by refurbished products, also known 

as cannibalization, will be considered to see how selling 

properly discard their products. One interesting way to 

do so from a business point of view would be to reward 

returned Philips products at retailers with a discount 

voucher for a new Philips product. This would likely 

increase consumer retention, while the retailer potentially 

has more customers. Unfortunately, it is still impossible to 

accurately forecast how much affects the C&R rates. Only 

when the companies are directly responsible for discarding 

the products, such as is the case for product returns from 

leases, a 100% C&R rate can be guaranteed.

The scope delimitations and the exploration of the 

different circular activities within the scope has brought 

the following three RL scenarios:

1) Leasing high(er)-end products - returning EoL-products 

will be scrapped

2) Leasing high(er)-end products - returning EoL products 

will be refurbished and leased once more - returning EoL 

refurbished products will be scrapped  

3) Leasing high(er)-end products  - returning EoL products 

will be refurbished and sold as refurbished products

The case for having two different scenarios that include 

refurbishment, one where the refurbished product is sold 

and one where the refurbished product is leased, is due to 

the perceived definition of high-end. It is stated in the scope 

to only lease high-end products, and it is unclear whether 

refurbished high-end product will still be considered 

high-end or not is up to the company. In the case of SHA, 

the definition of high-end in the traditional sense is often 

defined by the price and the durability. Given the Dutch 

consumer laws regarding EEE, warranty is based on the 

minimal expected lifetime. UNETO-VNI, a technological 

retailer organization, divides products on retail prices in 

order to suggest the minimal expected lifetime for new 

products (UNETO-VNI, 2014). However, it is unclear how 

this will apply to refurbished products, since it is assumed 

that the original product is made with high quality material, 

is built to last and probably also built for repair - and all 

these features would still apply to the refurbished high-

end product except for it is probably sold for a significantly 

lower price. It is up to the company to define whether the 

refurbished high-end product can be perceived as high-end 

or low-end. 

The last step of the goal and scope section will be the 

description of the three RL scenarios. on what the 

implications are and what the expected effect is. 

RL scenario 1 - leasing high-end 

 In this scenario, high-end products will be leased 

for their decided maximum lease period. The product can 

change owner over time, but will only be used within the 

maximum lease period. With the lease construction, it is 
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refurbished products can affect the low-end market. This 

scenario implies that products will receive two separate 

use cycles and therefore will reduce input and WG, but 

this is only the case when the refurbished products will 

replace new low-end products. However, the company has 

no control over the sold product stream, and therefore has 

no influence on the C&R rate.

The possible high-level environmental benefits could be:

a) b) from RL scenario 1 and 2

f) the decrease of input from new low-end products by 

substitution with refurbished products.

3.1.4.2  Economic performance indicator
As described in the scope, the economic model is applied 

in the case study to make the model outcomes comparable 

to that of econometric RL models. However, the main aim 

for now is to set up the structure to add in the economic 

information and not to model the economic dimension into 

great detail to make an accurate cost benefit analysis. The 

economic information that is suggested to be added to the 

MFA model for the different scenarios is shown in table 4.

3.1.4.3  Summary
For building the BAU simulation model - To allow for a top-

down check of the bottom-up MFA model, the historical 

data will be extrapolated to the year where POM quantity 

is zero, which means that the stock size at that point is 

zero as well. A sensitivity analysis will be applied on the 

model outputs with two extreme historical sales scenarios. 

Once the results for the BAU simulation are deemed 

consistent with real-world data, the POM quantity will be 

further extrapolated towards 2030. Considering the time 

restriction of the project, since there is no simple way to 

accurately predict future POM quantity. Therefore, it is 

chosen to duplicate the last known sales for all successive 

years until 2030. This is likely a rather conservative sales 

projection, and therefore the influence of sales projection 

will undergo a sensitivity analysis with a positive projection.

Defining scenarios - Through the analysis of the different 

circular activities, it becomess clear that lease is an suitable 

way to increase maintenance, repair and redistribution 

and, most importantly, will enable product returns with 

certainty, which will additionally allow for recovery of 

the returns through refurbishment, remanufacturing and 

material recycling. Within the scope of the case study, only 

high-end prodcts will be leased, and refurbishment will 

only take place once. Remanufacturing is left out of scope 

because the model will be built on product-level. Due to the 

uncertainty of the position of companies on refurbished 

high-end products (whether they are considered high-end 

or low-end), two scenarios involving refurbished products 

are made.

RL scenarios - 

Scenario 1) Leasing high(er)-end products - returning EoL-

products will be scrapped; 

Scenario 2) Leasing high(er)-end products - returning 

EoL products will be refurbished and leased once more 

- returning EoL refurbished products will be scrapped; 

Scenario 3) Leasing high(er)-end products  - returning 

EoL products will be refurbished and sold as refurbished 

products

To enable the profitabilty analysis, financial information 

can be added to the stocks and flows according to table 4.

Table 4: Overview of the scenarios and suggested associated 
costs and revenues
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3.2  Modelling

Table 5: Comprehensive overview of the methods and techniques and their respective data requirements and data availability (both public and company data) 
Abbreviations:  N/A = not available; confid. = confidential; TC = Transfer Coefficient; cat. = category; min. = minimal; distr. = distribution; 

func. = function; HH= household; CBA= Cost Benefit Analysis; pcs= pieces; % pcs = share of total pieces; yr= year;  
* -       data are possibly available within the organization of the company, but requires extensive data collection and thus left out of scope
** -     as a share of total stock
*** -   considered data for one product only considering time restrictions
**** - this data is available, but the CBA consistency check is out of scope in this research

3.2.1  Inventory analysis
3.2.1.1 Data availability
All methods and techniques discussed in the methodology 

and the goal and scope description are examined on data 

availability in this section. Table 5 shows the breakdown 

for all methods and techniques earlier discussed; whether 

data is available, and, if yes, what the source, unit, year and 

geography of the data is. 

In the theoretical analysis, it is established that the model 

will be input-driven dynamic MFA with the POM quantity 

as input. The procedure of preparing POM quantity data 

will be described as follows. Philips is a large organization 

with a diverse product portfolio and therefore products 

will be categorized under certain (sub) groups. Within the 

Personal Health cluster, there are a set of Business Groups 

(BG); Coffee, Domestic Appliances, Health&Wellness, 

Personal Care and Sleep & Respiratory Care. Only the first 

four BGs will be considered in the case study, since the 

products in Sleep & Respiratory Care not fall under WEEE 

category 2 (which is the category that covers SHA). The 

BGs can be further broken down in Business Units (BU), 

MAG (Main Article Group) and is presented on a product-

level as Article Group (AG). The break-down of the BGs to 

MAGs is presented in the first three columns in the table in 

appendix K. For the scope of the project, the focus is on EEE 

on a product-level, so non-EEE, accessories, parts need to 

be filtered out. Furthermore, the available POM quantity 

data is for the years 2005-2016. However, this timespan 

does not represent all years that the products might have 

been on the market.
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To proceed, all methods and techniques shown in the 

overview in table 5 will be examined on applicability. 

Regarding the theoretical methods, the gaps between 

theory and practice will become clear. Furthermore, the 

data requirements for the case study specific approaches 

will be matched with available data where possible. The 

result of this inventory analysis is to provide the final 

modelling options for the deliverable.

3.2.1.1.1 Theoretical methods
Carnegie-Mellon model

The Carnegie-Mellon model is based on product unit 

quantity and requires a lot of data relative to the other 

methods. One of the considerations in the Carnegie-Mellon 

model is that it regards the product flows for the B2B and 

B2C market differently. According to Huisman et al. (2012), 

it can be assumed that around 100% of EoL products in 

the B2B market will go into official scheme recycling or 

complementary scheme recycling. In the B2C market, 

the flows are less predictable and have ‘lost‘ flows, such 

as EoL products ending up in the residual waste stream. 

Unfortunately, when collecting data in this case study, 

there was no central database accessible with market 

information on the sold products. This information could 

be added in future research, but within the time scope of 

this project, it will be assumed that all products will be sold 

to the B2C market. 

Furthermore, the Carnegie-Mellon model will provide 

more insight to more product life stages than other 

methods, such as storage and reuse. The model requires 

the average 1st use lifespan, average reuse lifespan and 

average storage lifespan. Thus far, suitable data have not 

been found to cover the requirement on lifespan data 

for the Carnegie Mellon model. However, the study by 

Hendriksen et al. (2009) provides information on the 

required transfer coefficients. The sources to derive the 

transfer coefficients used for reuse and EoL destinations 

can be found in appendix B and D respectively. Determining 

the size for storage is not derived from modelling the 

product flow, but by applying the stored products’ share to 

the total stock (see appendix C). The study by Hendriksen 

et al. (2009) applies the parameters on SHA in three groups; 

Kitchen, Personal Care and Other (e.g. vacuum cleaners 

and air conditioners. How the three groups apply to Philips’ 

products can be seen in the table in appendix K. 

The gathered data for the Carnegie-Mellon model displays 

many data gaps that need to be filled in order to make the 

model run. However, the search for the average lifespan and 

transfer coefficients have lead to interesting findings, such 

as the share of stored products. Nevertheless, one must 

keep in mind that the data is from 2006 and will likely be 

outdated. Unfortunately, there is no more modern survey 

available that is as rich in data as the study by Hendriksen 

(2009). 

Sales lifespan distribution model

All data requirements for this method can be met. As stated 

before in the Methodology chapter, the United Nations 

University (UNU) provides Weibull distribution function 

parameters to create probability discarding distribution 

functions. The UNU-keys are structured by WEEE category, 

and for WEEE category 2 there are 5 UNU-keys; 202-Food, 

203-Hot Water, 204-Vacuum Cleaners, 205-Personal 

Care and 201-Other. How the categories correspond with 

the Philips portfolio can be seen in appendix K. The UNU-

keys and the corresponding scale and shape parameter 

suitable for the Netherlands, Belgium and France is shown 

in Appendix A. According to Magalini et al. (2016), there is 

a  relatively high margin of error of +/- 33% to +/-37% for 

WG weight in the Netherlands for a sensitivity analysis 

with 30% shorter and 30% longer average lifespans for all 

54 UNU-key categories. 

There are two different sources found that can be used to 

calculate the size of the C&R weight. As mentioned in the 

description of the Carnegie-Mellon model, the study by 

Hendriksen (2009) provides unit quantity based transfer 

coefficients for different EoL destinations based on 3 

different SHA groups. Once the size of the outflows to the 

different destinations are calculated, the products can be 

converted into weight to make a weight-based C&R rate 

assessment. The study by Huisman et al. (2012) provides 

insight to the WEEE category 2 group and its weight-

based performance on recycling. The C&R rate found for 

2010 could be applied to 2016. Both sources can be used, 

but this case study will work focus on the data provided 

by Hendriksen (2009) because this study elaborates 

on consumer behavior on discarding different product 

types within the SHA category (e.g. electric toothbrushes 

are more likely to end up in residual waste than a larger, 

heavier vacuum cleaner). With the use of the data from the 

study by Huisman et al. (2012) the product composition 

would be the same for each waste stream for lack of more 

disaggregated information.

Installed Base forecasting

The IB forecasting method relies solely on in-house 

data. The products are grouped on monetary value and 

therefore can be categorized using the retail price of the 

products. In this case study, the company’s sales database 

provides  POM quantity data coupled with the total 

revenue made from the sold products. The revenue made 

by sales from the products is based on the retailers’ buying 

price. The price for the products were assumed to be the 

((total revenue/unit quantity) + 50% (retail margin) + 21% 
VAT). Also, the minimum expected average timespan for 
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the use phase (referred to as Philips lifespan from now on) 

is available within the company, which is also used in the 

Lives Improved calculations (Royal Philips, 2016). Due to 

the Dutch consumer laws for EEE warranty, it is expected 

that similar figures are also available in other companies in 

the same sector. 

The survival distribution function parameters (based on 

the failure rate) and the average repair costs are likely to be 

retrieved from the reliability engineering department(s). 

However, there was no centralized database containing 

this information found within the researcher’s reach. 

Instead, it would require manual collection of that data, 

which the time restriction did not allow.  So overall, the data 

requirement for the IB forecasting method can be met, but 

the data should be organized centrally for retrieving the 

data within the scope of this case study. 

Marginal Reuse rate

While the Marginal Reuse rate incorporates the 

concept of calculating the reduction of input from new 

products or parts, its application is unrealistic. Firstly, 

the sales distribution function (i.e. the representation of 

‘introduction‘, ‘growth‘, maturity‘ and ‘decline‘ of sales) 

is not easily applied to the real world. Sales of a product 

is often cut abruptly or milked for a longer time than 

predicted by the product lifecycle curve. Furthermore, 

the discarding distribution function and its parameters 

are provided by Baldé et al. (2015a), but these would 

only apply to an open loop chain where the products do 

not return to the company. Return from leases will not be 

calculated through a probability distribution function, but 

rather from a predictive algorithm. Although the Marginal 

Reuse rate as presented by Umeda et al. (2006) cannot be 

applied is described in the study, the concept of calculating 

the number of reused products and decline in new products 

by comparing the return flow with the original BAU input 

flows can still be applied in the case study.

3.2.1.1.2 Case study specific
Now, the modelling decisions and techniques derived 

from the goal and scope of this case study and the data 

availability will be explored. 

Lease stock and return flows modelling

When calculating the stock and return flows for leased 

products, it is assumed that the 100% of the products will 

stay in use within the set lease duration. Once the lease 

duration has expired, the products will return immediately. 

The only data needed to model this, is the lease duration 

of the product. The source could be the expected average 

lifetime set by the company. However, the averages set 

by the company are conservative and can be assumed as 

minimum expected average lifetimes, simply because the 

company cannot prove to auditors the actual average time 

their product are used in households. What the company 

data on average lifetime does reflect more accurately is the 

difference in lifetimes for more expensive, higher quality 

products versus cheaper products. Public data on average 

product lifespans based on product functionality groups 

can be derived from the study by Baldé et al. (2015a), by 

calculating the average lifespan from the scale parameter 

(see appendix A), and from the study by Hendriksen (2009) 

- see appendix F. These average lifespans are longer than 

the ones set by the company, but are also set on a more 

aggregated level and accounts for other companies’ 

products and therefor are not accurate. Instead, the 

modelling will focus on the Philips lifespan and add an 

appropriate number of years to represent a more realistic 

average lifespan. 

Separation of high-end and low-end products

As discussed before in the RL scenario definitions, the 

RL modelling will only focus on RL strategies for high-

end products. The UNETO-VNI released a sheet with the 

suggested years of warranty based on the retail price of 

the consumer electronics to give consumers a method 

to assess whether they are in the rights of receiving full 

repair coverage under the Dutch consumer law. Two 

product categories apply to Philips; the Full Automatic 

Espresso Machine (FAEM) group, further divided into 3 

price categories, and the SHA group, further divided into 2 

price categories (see appendix J). This case study will focus 

on the high-priced category for the SHA group and the 2 

high-er priced (assumed mid-end and high-end) categories 

for the FAEM group. 

Consistency check - C&R outflow size

One of the main goals of the research project is to create 

insight on what currently happens after the point of sale 

of SHA in the Netherlands by finding out how to relate 

the historical sales data to the real-world C&R data. At 

the end of each year, WeCycle reports how much WEEE 

weight is collected and recycled on behalf of Philips 

(see the certificate in appendix G). Since WEEE will not 

be separated by brand prior to processing, a top-down 

method is used for calculating the share of Philips C&R 

weight. WeCycle combines the entire yearly C&R weight by 

WeCycle and WEEE NL (the other official recycling scheme 

in the Netherlands) as the starting point of the calculation. 

In 2015, WeCycle and WEEE NL both collected and 

recycled 6,839 T of WEEE. Additionally, WeCycle’s partner 

companies, which are major EEE producers that are active 

in the Netherlands, report their EEE POM weight for 2015 

(whole products - no accessories or parts). From all EEE 

POM weight by all producers Philips’ share  is calculated 

and this share is applied to the C&R weight. This calculation 

is based on the current sales and not based on the ‘source 
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years‘ of the WEEE that end up in the C&R stream in 2015. 

Therefore, the C&R weight processed on behalf of Philips 

is not an accurate representation of reality. However, the 

WeCycle report does provide an upper limit (i.e. the 6,839 

T of total C&R weight) and provides an amount which the 

C&R weight calculations from the BAU simulation model 

should approach. In order to pass this consistency check, 

the C&R weight results computed by the model should be 

lower than the physical upper limit of 6,839 T.

Consistency check - stock size

Besides checking the consistency of the model with real 

world data on C&R, it would also be possible to check the 

stock size with real world data. The consumer survey study 

by Hendriksen (2009) provides the total amount of SHA 

products currently in stock on a relatively disaggregated 

level (see appendix H). With this data, it is possible to 

get the household diffusion figures for the products 

when dividing the stock quantities with the number of 

households (resulting in the product diffusion). The stock 

quantity by Hendriksen (2009) accounts for 2006, so the 

figures have to be divided by the number of households 

in the Netherlands in 2016 (provided by CBS Statline, see 

appendix I for the overview of historical and projected 

number of households). When assuming that the product 

diffusion in 2006 is roughly the same as the product 

diffusion in 2016, it is possible to derive the market share 

of the products when comparing the product diffusion 

with the stock quantities computed by the model.  Firstly, 

the stock size for the products cannot be higher than the 

product diffusion numbers. Secondly, the market share data 

can then be checked with those that are knowledgeable 

about product market shares. In the case that in-house 

market share knowledge is available, the model can be 

deemed consistent when the computed market shares are 

similar to the real market shares. However, in the case of 

this case study, the model is deemed consistent when the 

average number of Philips products per household does 

not surpass the product diffusion numbers provided by 

Hendriksen (2009).

Unfortunately, there is no more recent study with detailed 

stock information available as is presented in Hendriksen 

(2009). It is likely that the product diffusion numbers have 

changed in the last 10 years, so for some product types 

the market share might be off and will need some extra 

research to explain the discrepancy. 

Consistency check - Cost Benefit Analysis

ln the scope, it is stated that a consistency check through 

CBA will not be executed in this research. However, the 

model will provide the opportunity to do so. Financial 

information on lease business model has only been provided 

for one product; the GranBaristo, a FAEM that falls under 

the high-end category under the UNETO-VNI guidelines 

(see appendix Q.1). So, when applying financial information 

to the MFA to make a CBA possible with econometric RL 

models, it will be only done for one product and will serve 

as an example. The data provided for the lease business 

models are not based on the same RL scenario and do need 

tweaking, but the data provide figures on which this case 

study’s RL scenario costs and revenues can be based (see 

appendix Q.2 for the assumptions for costs and revenues). 

3.2.1.2  Conclusion
The inventory analysis is used to bridge theory with 

practice by delving into the data requirement needed for 

the theoretical methods. This conclusion of the inventory 

analysis will go over the current possibilities of calculating 

stocks and flows and what could be the future possibilities 

for the non-applicable options. 

Reflecting on table 3, it is possible to make the method 

configuration from the empirical analysis. Table 6 shows 

which methods will be used for the model based on the 

data availability. The Sales Lifespan Distribution method 

will be applied as the method for calculating stock and 

outflow size. Although the IB forecasting method will not 

be applied in this model, one of the main principles of the 

IB forecasting method will be integrated in another way. 

That is by providing the opportunity to make distinctions 

between the more durable products and less durable 

products by creating the option of using scale parameters 

with Philips lifespans. A more realistic average lifespan for 

a Philips product could be calculated easily by e.g. adding 

2 years or 30% of the Philips lifetime. Although this is not 

proven yet, the option will be included in the model to make 

the model more versatile nonetheless. 

The IB forecasting method runs on data that could be made 

available in-house. The organization could choose to start 

collecting and centrally report the data so this method 

could be applied in the future, but for now this method 
Table 6:  Overview of the applicable methods calculations

SLS = Sales Lifespan distribution function 



36

is left out of scope. As for the Carnegie-Mellon model, it 

cannot be applied since it lacks the average lifetime for the 

different lifecycle stages. This method will require years 

of extensive consumer observation, so this method is not 

considered applicable soon. However, the principles of 

the Carnegie-Mellon method, i.e. providing insight to the 

size of the stock and flows for different in-stock lifecycle 

stages, will be included by using the share of unused and 

defect products that are in-stock to calculate the size of 

hibernating stock from the total stock. 

Regarding the Marginal Reuse rate, using sales and 

discarding probability distribution functions will not be 

considered, but the main concept will be applied in the 

model to calculate how many fewer new products are 

needed as input in a RL scenario compared to the BAU 

simulation.  

Considering the lease return modelling, it is most logical to 

base the lease duration on the expected minimum lifespan. 

Since the expected minimum lifespan are generally a lot 

lower (3-7 years) than the other found average lifespan 

resources (roughly 8-12 years), it should be possible to 

increase the Philips lifespan data.  

For the stock size and C&R outflow consistency checks 

for the BAU simulation model it is not necessary to 

approach the real-world data to a single digit. However, 

the real-world data do provide physical upper limits and 

can ultimately give an indication whether the outcome 

is realistic or not. Regarding the CBA consistency check, 

financial information will be added to one product, but it 

is assumed that the financial information could be applied 

proportionally to other products as well.

How all this data will be processed in the model, will 

become clear in the next section; the operational steps. 
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B- modelling S&OF BAU 1995-2016

A- preparing POM data

 D- modelling BAU 1995-2030

E- RL modelling preparation

F -modelling 
RL scenario L

G-modelling RL 
scenario LRL

H-modelling RL 
scenario LRS 

I- consolidating data for assessment

J- assessments on indicators

B- sensitivity 
analysis

J-sensitivity 
analysis

Figure 12: Stages of the model

C- pass 
consistency check?

yes

no

3.2.2  Operational steps 

This section will cover the build-up of the model, which is 

broken down in sequential operational steps. This section 

will describe the model by going through the different 

so-called stages of the model, shown in figure 12. It is 

recommended to read this section as a two-page spread 

rather than individual pages, because for each stage the 

flowchart and the description will be displayed separately 

on facing pages. Each stages is broken down in  so-called 

blocks, which are clusters of operational steps that 

together produce an intermediate output. Lastly, all blocks 

are further broken down in sequential operational steps 

using flowcharts shapes as the means of illustration. The 

functions of the different shapes of the flowcharts can be 

looked up in appendix L.

Seen in figure 12, the consistency check is incorporated 

as a “go-no go” step rather than an evaluation step after 

building the entire model. When the BAU simulation model 

outcomes have been evaluated the for consistency with the 

real world for existing data, the projections for 2030 can 

be considered useful. If the outcome from the consistency 

checks are not considered consistent with real-world data, 

the used parameters and/or input need to be revised. 

The results from the assessments, consistency checks and 

sensitivity analyses will be presented and discussed in 

section 3.3 Result interpretations. 
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3.2.2.1  Stage A - Preparing POM data
This stage of the model will prepare different data sets that 

will be used as input in the stock and outflow modelling 

stage. The flowchart can be seen on the page on the right. 

In favor of a clearer description of the flowchart, the 

processes, inputs and outputs are divided into 5 blocks. 

Block A.1 - Filtering POM data

The Personal Health POM quantity is extracted from the 

database on product-level (AG) with the corresponding 

years, the corresponding revenue for the product, the 

country and the associated in-house categories (i.e. MAG, 

BU and BG) from the company database. This will be 

followed up by filtering out the non-SHA category Sleep & 

Respiratory Care, accessories, parts and non-categorized 

products and finally also by filtering out non-EEE.  

Block A.2 - Adding dimensions

The basics of building the model is to add dimensions 

(columns) to the product on the AG-level. Based on these 

dimensions, which are characteristics, categorizations 

and parameters related to the categories, measurements 

can be made and also allows for filtering products on 

these dimensions. In this case study, the list contains 186 

different AG-level products. Based on the outcome in the 

inventory analysis, the following dimensions are added 

to each product; product weights, Philips lifespan, B2B/

B2C info (if available), corresponding UNU categories 

and their scale and shape, corresponding SHA categories 

used in Hendriksen (2009) and their EoL channel 

transfer coefficients and, lastly, the high-end/low-end 

categorization according to the UNETO-VNI chart. 

 

Block A.3 - preparing 3 historical sales scenarios

The POM quantity data have only been provided for 2005-

2016. As discussed in the scope, the POM quantity data will 

be retrospectively extrapolated to the year where POM 

quantity=0 and, furthermore, the two extreme historical 

sales extrapolations (i.e. ‘no sales before 2005’ and 

‘2005-level sales‘ scenarios) will be used for the sensitivity 

analysis. The output from block A.1 can be directly used 

as the ‘no sales before 2005’-scenario POM data. This 

data is then also used to find the trendline function for the 

retrospective extrapolation with a trend analysis. Tableau 

was used for the regression analysis. According to the 

trend analysis, POM quantity=0 around 1995. Because the 

assumed stock start is now known, it is possible to prepare 

the second historical sales scenario. This extreme scenario 

duplicates the sales of 2005 for all years back until 1995. 

Then lastly, to build the retrospective sales according to 

the trendline, the trendline function is applied for the 

aggregated POM quantity. Since the time series data is 

based on whole years, the year for which POM quantity=0 

was added manually for 1995. In appendix M, you will find 

the graphs for the different sales extrapolations and how it 

breaks down on the BU-level

Block A.4 - Merging sales figures with product labels

The product labels will be added to the POM quantity 

outputs by merging the outputs from block A.3 with the 

output from block A.2.

Block A.5 - Option to use different source for scale 

As discussed in the inventory analysis, the model will 

include an option to use (a configuration of) the Philips 

average lifetime data to base the discarding probability 

distribution function on. The use of a scale derived from the 

Philips lifetime recognizes that more high-end products 

will likely have a longer average product lifetime. The shape 

of the distribution function is more related to the type of 

product and therefore can be kept according to the UNU-

keys. The use of this option will not be examined for the 

time being for reasons explained in the inventory analysis 

(section 3.2.1.2). 
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POM quantity 
and revenue

filter for NL
filter out S&RC

make list of 
product portfolio

add product 
weights

filter for EEE

filter out..
- accessories
- unallocated

- undivided
- other

product 
weights

add B2C/B2B 
info

Wang et al., 
2013

add UNU-key to 
products

add UNU-key 
shape and scale

Wang et al., 
2013

Hendriksen, 
2009

add report 
categorization

Hendriksen, 
2009

add EoL channel 
transfer coef.

look-up file

lookup file

add Philips 
lifespan

Philips min. ave
-rage lifespan

merge labels with 
historical POM 

scenarios

add retail price= 
(revenue/unit

+ 50% retail margin)
 + 21 % VAT 

‘no sales before 
2005’-scenario

duplicate sales for earliest 
recorded sales year - attribute  

to previous years until the 
retrospective trendline hits 0

execute aggregated 
retrospective trendline to 
all products for the added 

historical years

fit sales quantity to trendline - 
find year where retrospective 

trendline hits 0 

trend analysis 
(Tableau)

historical 
‘2005-level 

sales’-scenario

historical 
‘2005-level 

sales’-scenario

‘retrospective 
sales trendline‘-

scenario

Scale based 
on UNU-key or Philips 

lifespan?

Philips 
lifespan

UNU-key

A

categorize products 
according to UNETO-

VNI product and 
corresponding price 

categories

UNETO-VNI, 
2014
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3.2.2.2  Stage B - Modelling S&OF BAU 1995-2016
This stage involves the calculation of the stock and 

flow sizes in quantity and weight for the three different 

retrospective POM quantity extrapolation. The last step of 

the stage is doing a sensitive analysis on all outcomes.  

Block B.1 - Computing stock and outflow (S&OF)

This block contains an iterative feature based on counter 

n. Since the POM quantity data starts a 1995, there is a 

need to make at least (2016-1995=) 21 computations to 

calculate the stock and outflow in 2016 from products 

sold in 1995. Every computation n stands for the stock 

and outflow for year POM+n from product sold in year 

POM. For example, when n=3, the S&OF size is calculated 

for 1998 for products sold in 1995, the S&OF size is 

calculated for 2013 for products sold in 2010, and so on. 

The calculations for the stock and outflow is based on the 

Weibull distribution function and calculated with the shape 

and scale parameters connected to the product. The stock 

size is calculated with a Cumulative Distribution Function 

(CDF) by inverting the CDF for the outflow distribution 

function (equation 10).

The outflow from the Probability Distribution Function 

(PDF) can be calculated with using the PDF as described in 

equation 6 or it can also be calculated with the difference 

in stock size compared to the previous year. The latter 

method is applied in the model.

For computation n=0 to n=21, the results will be exported 

to a Comma-Separated-Values (CSV) file. All 22 CSV files 

will then be merged into one file. This output contains the 

S&OF size in unit quantity. However, for the sensitivity 

analysis and consistency check, it is necessary to include 

the conversion of the S&OF in weight. So, the stock and 

outdflow is converted into weight with the corresponding 

product weights.

Block B.2 - Sensitivity analysis historical POM

A sensitivity analysis can be done here based on the stock 

and flow results for the retrospective extrapolations by 

having fed all three retrospective POM extrapolations 

into block B.1. The two extreme historical projections will 

reveal the uncertainty field for the S&OF quantity and 

weight. Furthermore, the deviation for the S&OF quantity 

and weight compared to the trendline extrapolation will be 

calculated.  

Eq. 10) 
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is n<= # times to 
compute?

# times to compute =
newest input year - oldest input year 

(=2016 - 1995)

n=0 (counter)

false

true

year = year POM + n

calculate stock:

Stock = input qty * CDF stock

calculate outflow

PDF outflow = CDF stock(n) - CDF stock(n-1)
outflow = input qty * PDF outflow

n=n+1

break loop

write results into 
csv file year-POM+n.csv

‘no sales before 
2005’-scenario

historical 
‘2005-level 

sales’-scenario

‘retrospective 
sales trendline‘-

scenario

year-POM+(n+3).csv

year-POM+(n+3).csv

year-POM+(n+2).csv

year-POM+(n+1).csv

year-POM+n.csv

join all csv 
files

Stock weight = 
stock * product weight

outflow weight= 
outflow * product weight

Outflow weight per disposal channel =
outflow* TC * product weight

S&OF  from ‘no sales 
before 2005’-input

sensitivity analysis for three 
historical scenarios

S&OF  from ‘2005 
level sales’ -input

S&OF from 
retrospective 

trendline input

S&OF uncertainty field 
and S&OF deviations 

compared to trendline input 
for year of evaluation

A

B
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3.2.2.3  Stage C - Consistency checks

In this stage, the output from stage B will be checked on 

the consistency with real-world data. Block C.1 covers the 

consistency check on the C&R weight outflow and block 

C.2 covers the stock size consistency check. The outcome 

of the consistency checks must be evaluated on the criteria 

in order to decide to continue building for future scenarios. 

Block C.1 - C&R outflow consistency check

There are two sources available on which the C&R outflow 

size can be based. The first source is the national weight-

based SHA WEEE C&R rate calculated for 2010 by 

Huisman et al. (2012) (see appendix E). The outflow weight 

calculated in the previous stage will be multiplied with the 

C&R rate. Since we assume all products to be sold to the 

B2C market, we have a weight-based C&R rate of 1.6 [kg/

hh]/(6.20 [kg/HH]-0.23 [kg/HH])= 26.8%.  

The second and more insightful source are the Transfer 

Coefficients (TC) for the EoL channels for the three 

different SHA product types according to Hendriksen 

(2009)  (see appendix D). From all 5 EoL-channels (i.e. ‘WEEE 

pick-up service’, ‘WEEE collection point’, ‘return to retailer’, 

‘household waste’ and ‘other’), it is agreeable that most 

of the products through the ‘WEEE pick-up service’ and 

‘WEEE collection point’ will end up at the official recycling 

scheme, since these two EoL-channels are mostly directed 

by municipalities. For the ‘return to retailer‘-channel it 

is unclear whether most/all partners are partnered with 

WeCycle or WEEE NL. However, this stream is relatively 

small, so it will be considered a C&R channel regardless. 

Next, the outflow size for the 3 EoL channels must be 

converted to weight by using the product weights. 

Depending on preferences of the user, the C&R outflow 

weight can be checked by using one of the two C&R rate 

sources. The C&R outflow for 2015 can then be compared 

with the reported C&R weight by WeCycle for 2015. 

Block C.2 - Stock size consistency check

The study by Hendriksen (2009) provides detailed stock 

information (see appendix H). The results are accounted 

as total units in-stock in the Netherlands in 2006. To make 

the data comparable to the stock size calculated by this 

project’s model, it is necessary to conform both stock data 

to the number of households (i.e. the product diffusion) 

for the corresponding years. The market share of Philips’ 

products can then be calculated by dividing the Philips’ 

product diffusion figure by the product diffusion figure  for 

EEE of all brands, 

Block C.3 - Consistency check evaluation 

The model and the further future projections of the model 

can only be useful if both the stock and flow are considered 

consistent with reality. The criteria within the scope of the 

case study is that the results computed by the model must 

fall within the physical limits of the real-world data for the 

C&R outflow and product diffusion. Should the outcomes 

be deemed inconsistent with real world data, it is advised 

to revisit the input, parameters and/or change the source 

for calculating the scales and run entire model again until 

the result at the consistency check will be satisfactory. 
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source for 
C&R rate

disposal TCs 
(Hendriksen, 

2009)

national SHA 
C&R rate

(Huisman et 
al, 2012)

outflow weight * C&R rateHuisman et al., 
2012

Hendriksen, 
2009, appx H

CBS HH 
data

convert C&R outflow size 
into weight

Reported by 
official recycling 
scheme

compare calcula- 
ted C&R outflow 

to WeCycle 
reporting

divide stock with # of 
HH for 2016

# of products in hh  
divided by # hh 2006

# of Philips pro-
ducts per dutch 
HH in 2016

CBS HH 
data

# of EEE per 
dutch hh in 2006

#Philips products 
per HH in NL in 

2016

# of EEE  per 
HH in NL in 

2006

Philips’ market share for dutch HH= 
calculated Philips products/

reported EEE products

check and adjust 
parameters and 
compute again 
from block A.1

Within physical limit? no

yes

S&OF from 
retrospective 

trendline input

isolate for 2015

combine outflow size
for C&R channels

B

C
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3.2.2.4  Stage D - Modelling S&OF BAU 1995-2030
This stage involves the preparation of the future sales until 

2030 for the BAU simulation and the calculation of the 

stock and outflow from the simulation. 

Block D.1 -  Prospective extrapolation of POM data

As described in the case study scope, the model will 

initially provide the outcomes for the conservative‘2016-

level‘ sales projection, but the outcomes are going to be 

checked with the optimistic ‘trendline‘ sales projection. 

The extrapolation for the two sales projections are made 

in the same fashion as the retrospective extrapolation in 

block A.3. The main sales projection, the ‘future 2016-level 

sales’-input, is made through duplicating the 2016 POM 

quantity for the years 2017-2030. The scenario for the 

sensitivity analysis, the ‘future sales trendline‘-input, uses 

the same trendline as used in block A.3 to calculate the 

future POM quantity for 2017-2030. For both scenarios, 

it is assumed that no products will be discontinued after 

2016, although this is unlikely to happen in reality. The 

results of the prospective extrapolations can be seen in 

appendix M.4 and M.5

Block D.2 - Computing stock and outflow (S&OF)

With the same operations used in block B.1, the S&OF sizes 

(in weight and unit quantity) will be calculated for 1995-

2030.

3.2.2.5  Stage E - RL modelling preparation
This stage involves the preparation of the input data and 

S&OF data that will be used for the 3 RL scenario modelling.  

Block E.1 - Calculating aggregated stock size for lease

First, the BAU S&OF will be filtered for high-end products 

sold from 2016 on. Second, when leasing products, it is 

in theory not possible to produce hibernating stock (i.e. 

unused products or defect stored products). Therefore, the 

share of stored and defect products (see appendix C) have 

to be subtracted from the calculated aggregated stock for 

the high-end products for BAU (demonstrated in figure 

13). This is the stock size (in unit quantity) that needs to be 

satisfied with leased products.

Block E.2 - Preparing input for lease

In this block, the initial input for the RL scenarios is 

prepared. The BAU input is filtered for high-end products 

and for year POM=2016. We will need only the 2016 input, 

as the lease inputs for following years will be calculated 

with the stock size in the RL modelling. Lastly, the lease 

duration will be determined by the Philips lifespan times 

x,  x being a variable that can be determined by the user. 

For example, when the products will be leased, the lease 

duration will be 130% of the Philips lifespan. The 130% 

will then be used as the input for x. Since the time series 

is based on whole years, the lease durations will always be 

rounded down to a whole number. 

Figure 13: Illustration of the aggregated stock size for BAU (left) and the aggregated stock size for leased products, 
where the share of hibernating products is removed
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# computations =
newest input year - oldest input year 

(=2030 - 1995)
n=0 (counter)

S&OF unit qty & weight 
calculcations (see block B.1)

E.1 E.2

x (by user)

take out share of defect 
and unused products from 

aggregated stock size
Hendriksen, 2009

Appx. C

lease stock size

lease duration= 
Philips lifespan * x

BAU 1995 - 2030 S&OF

 S&OF from future 
‘2016-level sales’-input

S&OF from ‘future sales 
trendline‘-input

BAU 1995 - 2030 S&OF

filter for year POM = 2016
filter for high-end products

2016 RL input

BAU 1995 - 2030 inputs

duplicate sales for 2016  for 
years 2017-2030 

execute aggregated prospective 
trendline to all products for 

2017-2030

trend analysis 
(Tableau)

‘retrospective 
sales trendline‘-

scenario

BAU 1995 - 2030 inputs

 future 
‘2016-level’ 

sales-input

future sales 
‘trendline‘-input

C

D

D

E

filter for year POM >= 2016
filter for high-end products
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3.2.2.6  Stage F - RL scenario 1 - lease once (L)
This stage will cover the RL scenario where the products 

are leased for the provided lease duration with the goal of 

satisfying the BAU in-use stock size through a stock-driven 

input model (illustrated in figure 14). Block F.1 is the input 

driven sub-model, that, similar to block B.1, calculates 

the stock and outflow of the lease products. In block F.2, 

the new lease input for the following year is calculated by 

comparing the BAU in-use stock size with the lease stock 

size until 2030 is reached. The output of this stage will be 

the lease inputs for 2016-2030 and the lease S&OF for 

2016-2030.

Block F.1 - lease S&OF computations

Block F.1 is similar to block B.1 from the BAU S&OF 

modelling stage. Instead of calculating the S&OF based on 

the discarding PDF, the size of the S&OF will be calculated 

based on the assigned Lease Duration (LD). According to 

the model, all products will stay in use (stock =100% size of 

POM input) until the lease duration end (=LD) is reached. 

In the year the lease duration ends, the products will be 

returned (outflow = 100% size of POM input). The years 

after the end of the lease duration, the products will be 

neither in the stock, neither in the outflow. The initial input 

used for block F.1 is the ‘2016 RL input’ prepared in block 

E.2. After the initial input (2016 RL input), the ‘lease input‘ 

(the output of block F.2) will be used. 

Block F.2 - calculating lease input for following year

The output from block F.1 will be used to calculate the new 

input required for the following year. Per illustration, the 

lease stock for 2017 produced from the ‘2016 RL input’ will 

not satisfy the BAU in-use stock for 2017 (see figure 14). 

The gap between the stock for 2017 produced from the 

leased input of 2016 and the in-use BAU stock for 2017 

must be filled by additional lease input for 2017. This 2017 

lease input will be added to the ‘2016 RL input‘ as the ‘lease 

input‘, and will be fed as an input to block F.1. The 2018 

stock of lease input of 2016+2017 will then be compared 

with the 2018 in-use BAU stock to get to the additional 

lease input for 2018, and so on. This process is stopped 

when the input is calculated for 2030.

Figure 14: Illutration of the progression of the stock driven input model. The outline of the in-use stock size is provided in black, 
which needs to be filled with stock from leased products. For each year, the gap between the stock produced by leased products 
and the required BAU in-use stock needs to be filled with new leased inputs (blue arrows; see 1-3). Figure 4 shows a simplified 

illustration of how the stocks from lease can satisfy the 2016-2030 BAU in-use stock size.

1 2

3 4
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2016 RL input

is n<= # 
computations?

false

true

n=n+1

break loop

write results into 
csv file year POM+n.csv

join all csv 
files

year-POM+(n=4).csv

year-POM+(n=3).csv

year-POM+(n=2).csv

year-POM+(n=1).csv

year-POM+(n=0).csv

S&OF of leasing 
[2016+..+(2016+m)] - input

filter for year 
[2016+(m+1)]

filter the lease stock 
size for [2016+(m+1)]

lease stock size

aggregate stock on 
AG level

aggregate stock by 
AG level

[2016+(m+1)]
stock per AG

Calculate necessary additional input to satisfy stock levels:
[2016+(m+1)]-lease stock level -[2016+(m+1)] S&OF of lease [2016+m]-input

new lease input for 
[2016+(m+1)]

n<LD n>LD

n=LD

stock=0% input
outflow= 100% input

stock=0% input
outflow= 0% input

stock=100% input
outflow= 0% input

# computations = newest input year - oldest input year (=2030 - 2016)
n=0 (counter)
m=0 (counter)

2016+m>2030?false

break loop

true

n 
compared to 

LD

lease S&OF

lease input

add input[2016+(m+1)] 
to input[2016+(m=0)]+..+ 

input[2016+(m=m)]

lease input

m=m+1

E

F
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3.2.2.7  Stage G - RL scenario 2 - lease-refurbish-lease (LRL)
This stage will cover the RL scenario where the products 

are leased for the given lease duration, then refurbished 

and leased again, with the goal of satisfying the BAU in-use 

stock size with a stock-driven input model (as illustrated 

in figure 14). Block G.1 sets conditions specific to this RL 

scenario. Block G.2 is the input driven sub-model, similar to 

block F.1, that calculates the stock and outflow of the new 

and refurbished lease products. In block G.3, the new lease 

input for the following year is calculated by comparing the 

BAU in-use stock size with the lease stock size until 2030 is 

reached. The output of this stage will be the LRL inputs for 

2016-2030 and the LRL S&OF for 2016-2030.

Block G.1 - LRL scenario conditions

New products and refurbished products can get different 

values for certain variables (e.g. lease durations, costs and 

revenues), and therefore the ‘state‘-dimension is added 

to label the product as new or refurbished. Furthermore, 

similar to block E.2, the user will determine what the 

lease duration for refurbished products (LD_refurb) are 

compared to new product lease durations (LD_new). For 

example, the lease duration will be (x =)70% of the new 

product leases. Again, since the time series is based on 

whole years, the lease durations for refurbished products 

will be rounded down to a whole number. 

Block G.2 - lease and refurbished lease S&OF computations

In block G.2, the same S&OF modelling technique is 

applied, but adds the lease duration of the refurbished 

products (LD_refurb). According to the model, all products 

will stay in use as a new product(stock =100% size of 

POM input) until the maximum lease duration end (=LD_

new) is reached. Then, the product is reintroduced as 

‘state=refurbished‘ and leased again for the given lease 

duration for refurbished products (=LD_refurb). When 

the lease duration for refurbished products expires, the 

products will be returned once again, but now the outflow 

is considered WEEE (outflow = 100% size of POM input). 

The initial input used for block G.2 is the ‘2016 RL input’ 

prepared in block G.1 After this initial input, the ‘LRL input‘, 

the output of block G.3, will be used. 

Block G.3 - calculating lease input for following year

Block G.3 incorporates the same operational steps as block 

F.3 and produces the ‘LRL input‘.
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state=new

is n<= # 
computations

false

n=n+1

break loop

write results into 
csv file

year-POM+n.csv

join all csv 
files

year-POM+(n=4).csv

year-POM+(n=3).csv

year-POM+(n=2).csv

year-POM+(n=1).csv

year-POM+(n=0).csv

S&OF from lease input 
year POM+(0+..+n)

filter for year 
[2016+(m+1)]

filter the lease stock 
size for [2016+(m+1)]

lease stock size

aggregate stock by 
AG level

aggregate stock by 
AG level

[2016+(m+1)]
stock per AG

Calculate necessary additional input to satisfy stock levels:
[2016+(m+1)]-lease stock level  -  [2016+(m+1)] S&OF of lease [2016+m]-input

new lease input 
for [2016+(m+1)]

n 
compared to 

LD_new
n<LD_new

n=LS_new

stock=100% input
outflow= 0% input
state=refurbished

stock=100% input
outflow= 0% input

computations = newest input year - oldest input year (=2030 - 2016)
n=0 (counter)
m=0 (counter)

false

break loop

true

2016+m
>2030?

true

n
 compared to 

LD_new+LD_refurb

n>LD_new

n<(LD_new
+LD_refurb)

n>(LD_new
+LD_refurb)

n=(LD_new+LD_refurb)stock=100% input
outflow= 0% input

stock=0% input
outflow= 100% input

stock= 0% input
outflow= 0% input

LRL input
add input[2016+(m+1)] to 

input[2016+(m=0)]+..
+ input[2016+(m=m)]

LRL input

2016 RL input

LD_refurb= 
x* LD_new 

x (by user)

m=m+1

LRL S&OF

E

G
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is n<= 
#computations? false

true

n=n+1

break loop

write results into 
csv file year-POM+n.csv

join all csv 
files

year-POM+(n=4).csv

year-POM+(n=3).csv

year-POM+(n=2).csv

year-POM+(n=1).csv

year-POM+(n=0).csv

filter for year 
[2016+(m+1)]

filter the lease stock 
size for [2016+(m+1)]

lease stock size

aggregate stock by 
AG level

aggregate stock by 
AG level

[2016+(m+1)]
stock per AG

Calculate necessary additional input to satisfy stock levels:
[2016+(m+1)]-lease stock level -[2016+(m+1)] S&OF of lease [2016+m]-input

new lease input 
for [2016(m+1)]

n<LD n>LD

n=LD

stock=0% input
outflow=0% input
state=refurbished

stock=0% input
outflow= 0% input

stock=100% input
outflow= 0% input

# times to compute =
newest input year - oldest input year (=2030 - 2016)

n=0 (counter)
m=0 (counter)

false

break loop

true

n 
compared to 

LD

LRS S&OF 1/2

LRS input 1/3

add input[2016+(m+1)] 
to input[2016+(m=0)]+..+ 

input[2016+(m=n)]

LRS input 1/3

S&OF of leasing 
[2016+..+(2016+m)] - input

2016+m
>2030?

m=m+1

2016 RL input

E

p.49
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3.2.2.8  Stage H -RL scenario 3 - lease-refurbish-sell (LRS)
This stage involves operational steps for leasing the 

products once, refurbishing the returned product and 

selling as refurbished on the low-end market, while 

considering the replacement effect that might happen for 

some low-end products. Since this model considers both 

the high-end market and the low-end market, separate 

steps need to be made to calculate the input and S&OF 

from leasing high-end products (‘LRS input 1/3’ and ‘S&OF 

LRS 1/2’ respectively). The refurbished input for the low-

end market (‘LRS input 2/3’) will compete with some new 

products on the low-end market, resulting into partly 

replaced new low-end input (‘LRS input 3/3’). ‘LRS input 

2/3’ and ‘LRS input 3/3‘ will be used to calculate ‘S&OF LRS 
2/2’ with BAU modelling.

Block H.1 - Lease S&OF computations

Similar to block F.1, according to these operational steps, all 

products will stay in use until the maximum lease duration 

(LD). However, when the lease duration is reached, the 

stock becomes 0% of the original input and no outflow is 

produced; instead, the product gets the label ’refurbished.’   

Block H.2 - calculating lease input for following year

Block H.2 incorporates the same operational steps as block 

F.2 and produces ‘LRS input 1/3’, which is fed back to H.1.

Block H.3 - Preparing lease returns as refurbished input

The  lease returns are refurbished and are put on the 

market again. Since the refurbished products might not 

have the same Weibull distribution shape as their newly 

produced counterpart, the option is given for the user to 

lower the scale by x.

Block H.4 - Retrieving possible competing low-end market

The BAU input for 1995-2030 will be filtered for low-end 

product POM from 2016.

Block H.5 -  Low-end replacement

The refurbished products will take out similar new low-end 

products sold in the same year by comparing the output 

from block H3 and block H.4. This step requires manual 

intervention for deciding which refurbished products can 

replace the low-end products based on functionality. Block 

H.5 produces the input of refurbished products and partly 

replace sales of low-end products.

Block H.6 -  S&OF computation for all low-end products

The S&OF from the refurbished products input and the 

partly replaced new product input will be calculated based 

on the discarding PDF - in the same fashion as block B.1. 

Finally, the S&OF from the leased high-end products and 

sold low-end (new and refurbished) products sold after 

2016 will be combined to form the ‘LRS S&OF‘.

S&OF LRS scenario 1/2

refurbished input for sales = 
100% input when [n= LD] & 

[state=refurbished] 

 year POM =  year POM (original) + LD  

# computations =
newest input year - oldest input year 

(=2030 - 2016)
n=0 (counter)

Block B.1- BAU computations
 for refurbished products

LRS input 2/3
(refurbished products)

LRS S&OF 2/2

take out similar low-end versions of the 
refurbished products with the same year 

POM
low-end input >= 2016

BAU input 
1995 - 2030

filter for low-end products
filter for year POM >= 2016

LRS input 3/3
(partly replaced 

low-end input)

LRS input 2/3
(refurbished products)

combine S&OF 
from lease and sales

LRS S&OF

LRS S&OF scenario 1/2

x
UNU-key scale for refurb. =

 x * scale_new 

combine refurbished inputs and 
remaining low-end inputs

H

p.48
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3.2.2.9  Stage I - Consolidating data for assessment
The simulations for the BAU and 3 RL scenarios have 

provided us with the S&OF and input for the high-end 

products sold from 2016 on. However, we have seen that 

in the LRS scenario also the low-end products sold after 

2016 is impacted. To allow proper comparison  of all four 

scenarios, the S&OF and input from the low-end products 

sold from 2016 on are added to the other three scenarios 

as well. In block I.1, the S&OF and input from the BAU 

simulation are filtered on year POM and low-end/high-

end. The high-end S&OF and inputs are used to compare 

the BAU simulation outputs to those of the other scenarios 

on high-end products only. These filtered low-end S&OF 

and input are added to the computed S&OF and inputs for 

the lease and LRL scenario in block I.2. Block 1.3 shows the 

collection of S&OF and inputs for all 4 simulations divided 

in 4 categories. This grouping is made to make the flowchart 

for the last stage, the assessment, less convoluted. 

3.2.2.10  Stage J - Assessments on performance indicators
This is the final stage of the model. The S&OF and inputs 

computed for the BAU and the 3 RL scenarios will be 

assessed on the necessary input from new products (in unit 

quantity), the waste generated (in weight), the C&R rate (in 

weight) and profitability. The performances from the RL 

scenarios will be compared to BAU simulation results as a 

baseline for 2016 to 2030.

Block J.1 - New product input growth

In this block, the 3 scenarios will be compared to the BAU 

simulation on the size of the new input and displayed in 

relative change of the unit quantity. The bigger the negative 

growth, the better the scenario performs.

Block J.2 - WG growth

In this block, the EoL-product, outflow for the 3 scenarios 

will be compared to the BAU simulation on the size of the 

total outflow (i.e. WG) and displayed in relative change of 

the WG weight. The bigger the negative growth, the better 

the scenario performs.

Block J.3 - C&R rate change

In this block, the overall C&R rate will be calculated for all 

four simulations, which can be done either on the weight-

based national SHA C&R rate by Huisman et al. (2012), or 

according to the TCs for the C&R channels by Hendriksen 

(2009). Then, the RL scenarios C&R rate will be compared 

with the C&R rate for the BAU simulation. The bigger the 

positive C&R rate change, the better the scenario performs.

Block J.4 - Profitability growth 

In this block, all costs and revenues associated with the 

input, stocks and flows will be added to all the scenario 

inputs and S&OF data. With the incorporation of this data, 

it is possible to compare the RL scenarios with the BAU 

simulation for profitability on relative change. The bigger 

the positive growth, the better the scenario performs.

Block J.5 -  Sensitivity analysis

In the sensitivity analysis, the differences in the assessment 

outcomes under the two different sales projections 

(‘2016-level’ sales and ‘trendline‘ sales) will be calculated 

and displayed.

BAU S&OF

BAU input

filter for year POM >= 2016

high-end BAU 
S&OF 

high-end BAU 
input

filter for high-end

>=2016  BAU 
S&OF 

>=2016  BAU 
input

low-end BAU 
S&OF 

lowe-nd BAU 
input

lease S&OF

LRL S&OF

lowend BAU 
S&OF join files

lease S&OF
all product

LRL S&OF
all products

lease input

LRL input

lowend BAU 
input join files

lease input
all product

LRL input
all products

high-end 
input

 

lease input

LRL input

LRS input

high end BAU 
input

entire portfolio
input

>=2016  BAU 
input

lease input
all product

LRL input
all product

LRS input

high-end 
S&OF

 

lease S&OF

LRL S&OF

LRS S&OF

high end BAU 
S&OF 

entire portfolio
S&OF

>=2016  BAU 
S&OF 

lease S&OF
all product

LRL S&OF
all product

LRS S&OF

filter for low-end



J.1

J.2

J.3

J.4

J.5
sensitivity analysis for
LD_new and LD_refurb 

and sales projections

uncertainty for 
assessment PIs 53

entire portfolio 
input

entire portfolio 
S&OF

high end
input

high end 
S&OF

non-leased EoL product:
C&R = C&R rate * WG

leased EoL: 
C&R = 100%

source for 
C&R rate

disposal 
transf. coef.

WEEE 
documented 

vs. WEEE 
generated

calculate 
[total new input RL scenario]/

[total new input BAU]

WG=outflow * 
product weight

entire portfolio 
input

high end
input

display new input growth
(high end only + entire portfolio)

entire portfolio 
S&OF

high end
S&OF

calculate 
[total WG RL scenario]/

[total WG BAU]

non-leased EoL product:
C&R = C&R TCs * WG

leased EoL: 
C&R = 100%

compare RL scenario C&R 
rate to BAU C&R rate

calculate C&R/WG to get 
overall C&R rate

entire portfolio 
S&OF

high end
S&OF

entire portfolio 
S&OF

high end
S&OF

display WG growth
(high end only + entire portfolio)

display change of C&R rate
(high end only + entire portfolio)

find/determine costs and revenues 
breakdown involved in BAU and RL 

scenarios

cost & revenue 
breakdown

entire portfolio 
input

entire portfolio 
S&OF

high end
input

high end 
S&OF

add where applicable:
 Revenue

- retail buyer price (new)
- retail buyer price (refurb.)

Costs
- manufacturing costs

- refurbishing costs

add where applicable for stock per year:
 Revenue

- 12*monthly lease fee (new) excl VAT
- 12*monthly lease fee (refurb.) excl VAT

Costs
- 12*monthly mainenance costs

- 12*monthly logistical costs
- 12*monthly spare parts costs

compile costs 
and revenues

display profit growth
(high end only + entire portfolio)

I
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3.2.3 Wireframe concepts 

Two wireframes are made to suggest the options 

that can be incorporated in the user interface 

of the pilot tool. All options, sliders, toggles and 

dropdown menus (except for ‘country‘) can already 

be built upon the data output from the built  model.

Description wireframe left (p.54):
This wireframe displays the options for the analysis 

of the input, stock and outflow of the downstream 

product flows for the current situation (i..e BAU 

simulation). This wireframe also suggests the 

option to choose different sales projections and 

calculate the C&R weight according to 2 or more 

methods. Dashboarding can be done for weight or 

for unit quantity.

Description wireframe right (p.55):
This wireframe gives an idea of what a pilot tool 

regarding the RL strategic decision making tool 

could look like with the currently built model. 

This wireframe focuses on the environmental and 

economic assessment of one product on AG level. 

The user must enter the lease duration information 

(for new products and refurbished products) or 

will be set to a default to the Philips lifespan. Other 

entries are the revenues and costs associated with 

the different selected scenarios. This way this tool 

can be also used as a pricing tool. This wireframe 

also suggests the option to choose different sales 

projections and can display the results in weight 

and unit quantity,

  Netherlands

   Downstream product flow analyzer

COUNTRY

weight quantity

MEASURE BY

  selection

COLOR

  selection

SALES PROJECTION

on off

  selection

C&R CALCULATION

  year

1995 2030

SHOW FOR YEARS
1995 2030

FILTER FOR YEAR PUT ON MARKET 

    

FILTER FOR PICKS / RANGES

€5 €2000

FILTER FOR RETAIL PRICE

  INPUT

  STOCK

  OUTFLOW

  C&R weight  C&R rate

             ______tonnes        _______%

 BG  BU

 MAG  AG

 UNU  B2X

 LS

 BG  MAG

 B2X
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  Reversed logistics impact analysis support tool

  Netherlands

 COUNTRY

  GranBaristo

 AG NAME

weight quantity

  SHOW GRAPHS IN

  selection

 SALES PROJECTION

Lease Duration  INFO

Lifespan        +

Ref. lifespan 
compared to 
new product

%

%

REVENUE COSTS

retail buying price-new

 €

retail buying price-refurb.

 €

monthly lease fee - new

 €

monthly lease fee - refurb

 €

manufacturing cost

 €

refurbishing cost

 €

monthly logistical cost

 €

monthly maintenance cost

 €

monthly spare parts cost

 €

1995 2030

SHOW / CALCULATE FOR  FOR YEARS
1995 2030

FILTER FOR YEAR PUT ON MARKET 

  I
N

P
U

T
  S

TO
C

K
  O

U
T

F
LO

W
  P

R
O

F
IT

A
B

IL
IT

Y

Lease-refurb.-sellLease-refurb.-leaseLease onceBAU

BAU

Lease

Lease-refurbish-lease

Lease-refurbish-sell

X

X

X

X

ANALYZE FOR
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3.3  Results

In this section, the output for the model will be described 

and analyzed. First, the output for the BAU simulation for 

1995-2016 will be described, followed by the output from 

the 2016-2030 RL scenarios comparison model for all 

high-end products and for one product specifically. After 

the describing and analyzing the simulation result, the BAU 

simulation will be checked for consistency with real-world 

data and the sales extrapolations undergo a sensitivity 

analysis.

3.3.1 Simulation results
3.3.1.1 1995-2016 - BAU stock and outflow
The sizes of the stock and outflow from the BAU simulation 

can be seen in figure 15. The results are presented in unit 

quantity on the left and in weight on the right, where the 

top graphs show the accumulated stock and the bottom 

graphs show the yearly outflow. The blue field in the graph 

is the size of the extrapolated data. As can be seen from the 

graphs, the extrapolated input will have a relatively small 

share of the stock and outflow in 2016. The share of the 

Figure 15: graphs of the stock (top) and outflow (bottom) in unit quantity (left) and weight (right), broken down on the 
sales data source; extrapolated (blue) and reported (orange). Qty=unit quantity

Figure 17: Overview of the input weight per year, accumulated stock weight and outflow weight per year for 1995-2016
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extrapolated data for the stock in 2016 is 5.2% in quantity 

and 4.3% in weight. The share of the extrapolated data 

for the outflow in 2016 is 10.1% in quantity and 9.4% in 

weight. The share of the results for the extrapolated data 

input is bigger for the outflow than the stock due to the 

delay model. 

Figure 16 provides the insight to the EoL destinations of 

the product (left) and how this relates to weight (right). 

As can be seen from the graphs. Personal Care products 

are more likely to be unable to recover (in the ‘residual 

waste’ or ‘other’ channel), probably due to the small size 

of the products in the Personal Care portfolio, which 

are e.g. electrical toothbrushes and grooming devices. 

However, these types of products have a relatively small 

mass and are therefore not the biggest contributors to 

the unrecoverable waste stream in weight. Based on the 

weight-based stream to the 3 C&R channels (i.e. recycling 

scheme, pick-up and retailer) it is calculated that the C&R 

rate for 2016 is 64.2%.

Figure 17 shows the relation of the yearly input, 

accumulated stock and yearly outflow in weight. As a top-

down mass balance check, the total input for 1995-2016 

minus the total outflow for 1995-2016 should equal the 

stock weight for 2016.

More visualized breakdowns are provided in appendix N 

for the input, stock and outflow for quantity and weight.

Figure 16: Outflow sizes to the different EoL destinations in unit quantity (left) and weight (right), broken down on Business Group.
EoL channels (from top to bottom): other, residual waste, return to retailer, pick-up service, recycling scheme. Qty=quantity
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3.3.1.2 1995-2030 - BAU stock and outflow
The extension of the stock and outflow calculations of the 

BAU simulation towards 2030 has two main functions. 

First, it provides insight on how the products recently put 

on the market influence the stock and outflow beyond 

2017. Secondly, it provides the base to build the RL 

scenarios on and, furthermore, serves as the baseline for 

the RL scenario comparisons.

BAU stock and outflow development
The top graphs in figure 18 show the development of the 

stock until 2030 for the 2016-level sales projection. With 

this sales projection, the stock from input before 2017 

account for a share of 11.6% in unit quantity and 8.4% in 

weight in 2030.  The bottom two graphs in figure 18 show 

the development of the outflow. The results for the outflow 

indicate that in 2030 the share from products sold before 

2017 is 17.3% in unit quantity and 14.8% in weight. The size 

of the outflow from products sold before 2017 will peak in 

2018 and will remain the major outflow source until 2024. 

Figure 19 shows the relation between the input per year, 

accumulated stock and outflow per year over time. While 

the input data is stable from 2016, it is expected that 

the stock level will stabilize around 2033 and that the 

outflow is stabilized around  2039 (23 years after the input 

stabilization).   

Additional breakdowns of the input, stock and outflow for 

different product categories can be found in appendix O.

High-end products in BAU
The share of high-end products in the input from 2016 on 

are 5.7% in unit quantity and 15.2% in weight (see graph 

in appendix O.1). This discrepancy between unit quantity 

and weight is likely due to the fact that a large portion of 

the high-end products are FAEM that are rather heavy. The 

total input produces a stock of which the high-end products 

account for roughly 6% in unit quantity and 15% in weight 

throughout the years (see figure 20).

From the statistics provided by Hendrikson (2009) on SHA 

storage in Dutch households (appendix C), it was found that 

the shares for hibernating products are the following:  8.3% 

for kitchen appliances, 10.9% for personal care product 

and 8.6% for others. Figure 21 shows the calculated share 

of the hibernating stock for the high-end products, which is 

roughly 9% througout the years.

Figure 18: Graphs of the stock (top) and outflow (bottom) in unit quantity (left) and weight (right), broken down on the 
sales data source; retrospective extrapolated (blue), reported (orange) and prospective extrapolation (red). Qty=quantity.
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Figure 19: Overview of the input weight per year, accumulated stock weight and outflow weight per year for 1995-2030

Figure 20: break down of the high-end (IBL+IBE) products and the low-end (IBW) for products sold from 2016

Figure 21: the high-end stock in quantity broken down for the 
hibernating stock (orange) and in-use products (blue)
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3.3.1.3  RL modelling - results for high-end portfolio
This section will present the results for the performance 

throughout 2016-2030 of the RL scenarios compared to 

the BAU simulation for high-end products sold from 2016.

The products that fall under the high-end category are 

shown in the table in appendix P. Since the main input 

variable for this model is the lease duration, the model is 

run for two conditions; the lease duration for new products 

is 1) 100% Philips lifespan and 2) 130% Philips lifespan. 

The lease durations will be rounded down, because model 

is built on yearly time series steps. Since most lifetimes 

are set to on 4,5 and 7, the second condition increases 

the lifetimes to 5, 6 and 9 respectively. In addition, for this 

assessment, the refurbished lifespan and scale parameter 

is set as 70% of the new product lifespan and scale 

parameter, corresponding to the value used in the Health 

System refurbishment program.

In appendix R, you can find the graphs for the yearly 

developments of the input, stock and outflow for the BAU 

and the three RL scenarios for lease duration=100% Philips 

lifespan (appendix R.1) and for lease duration=130% Philips 

lifespan (appendix R.2), provided in unit quantity. 

The impact on the three performance indicators for the 

period 2016-2030 are shown in figure 22 for condition 

lease duration=100% Philips lifespan and in figure 23 for 

condition lease duration=130% Philips lifespan. For the 

input quantity (left) and WG weight (middle), it shows 

the relative change compared to the BAU input and stock 

size. The chart on the right shows the C&R rates for all 

simulations. The input quantity, WG and the C&R rate 

results are provided for high-end products (when only 

considering the impact on the high-end products) and for 

all products (when considering the impact on the entire 

Philips portfolio).

Figure 22: Results for the performance indicators compared to the BAU simulation for high-end products for lease duration=100% 
Philips lifespan. ‘[high-end]’ and ‘[new]‘ refer to the impact on the high-end and entire portfolio respectively; WG=WEEE generation; 

C&R=Collection&Recycling rate; L= lease scenario; LRL=lease - refurbish - lease scenario; LRS = lease - refurbish - sell scenario.  

Figure 23: Results for the performance indicators compared to the BAU simulation for high-end products for lease duration=130% 
Philips lifespan. ‘[high-end]’ and ‘[new]‘ refer to the impact on the high-end and entire portfolio respectively; WG=WEEE generation; 

C&R=Collection&Recycling rate; L= lease scenario; LRL=lease - refurbish - lease scenario; LRS = lease - refurbish - sell scenario.  

Figure 22.1 Figure 22.2 Figure 22.3

Figure 23.1 Figure 23.2 Figure 23.3
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Results for input quantity - in figure 22.1, it is seen that 

leasing products once can have a negative effect on the 

required input. Leasing the products for the current Philips 

lifespan would result in a negative impact (fig. 22.1), but can 

be negated by increasing the lease duration (fig 23.1). In the 

LRS scenario, the impact for the entire portfolio is positive 

because a significant number of the leased products, which 

will be refurbished and sold, will replace new low-end 

products. When considering both the high-end products 

and the entire portfolio, the LRL scenario has the most 

positive high-level environmental impact. 

Results for WG - Figure 22.2 and 23.2 show the weight-

based results for the WG delay and/or decrease. There are 

positive results accross the board for both lease duration 

conditions. Regarding the WG for the LRS scenario when 

considering only the high-end portfolio, there is no waste 

generated since the products will not be considered high-

end when the lease duration ends. The effect of the LRS 

scenario on WG should therefore be reviewed for the 

entire portfolio. Thusly, when considering WG for the 

entire portfolio for 2016-2030; 1) the condition lease 

duration = 100% Philips lifespan, the LRS performs the 

best, and 2) for the condition lease duration=130% Philips 

lifespan, the LRL scenario performs the best. 

Results for C&R - Figure 22.3 and 23.3 show the average 

C&R rate for the years 2016-2030. The C&R rate for high-

end products is 64.1% in the BAU simulation, is 100% in 

both the L and LRL scenarios (since all returned products 

are scrapped) and does not apply to the LRS scenario. When 

considering the C&R rate for the entire portfolio, the RL 

scenarios generally has  little effect due to the much larger 

waste streams from the low-end segment. The L scenario 

scores the highest C&R rate, but this is due to the faster 

circulation of products and thereby producing relatively 

more WEEE than the other two scenarios. For the LRL 

and LRS scenario, the increase of the C&R rate is likely low 

due to the small share of high-end product of the entire 

portfolio and for which even fewer WEEE is generated 

due to the RL strategies. The C&R rates for the lower lease 

duration condition are higher than for the higher lease 

duration conditions for the same reason of having fewer 

WEEE generated.

For the LRS scenario, the replacement of new low-end 

product sales with refurbished products has an positive 

effect on input quantity. Figure 24 shows  graphs for the 

replacement effect for the condition lease duration=100% 

Philips lifespan; figure 24.1 shows the total size of the 

input quantities over the year, figure 24.2 shows the input 

quantity for BU Coffee and 24.3 shows the input for BU Air.

Figure 24.1 shows an overall increase of low-end products, 

although, the ‘new‘ share of the low-end products slightly 

decrease after the introduction of refurbished products. 

For some product categories, complete replacement 

takes place, such as can be seen in 24.2; for this BU, the 

refurbished FAEM compete with cheaper coffee machines. 

Figure 24.3 illustrates another effect of the introduction of 

refurbished products, using ‘Air‘ products as an example. 

The low-end products in ‘Air‘ are  humidifiers only, whereas 

the high-end products in ‘Air‘ are air cleaners. There is no 

direct substitute for the humidifiers as the air cleaners 

fulfill a different need, so the introduction of refurbished 

air cleaners will add to the low-end market rather than 

replace the sales of low-end products.

Figure 24.1 Figure 24.2 Figure 24.3

Figure 24: Demonstration of the effects of the replacement effect  in unit quantity (measures 
not included for confidential reasons) for certain BUs for the 2016-level sales projection
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Philips lifespan. The Phlips lifespan for the GranBaristo is 

7 years, so the lease duration for the second condition will 

be 9 years rounded down. Just like the high-end product 

assessment, the refurbished lifespan and scale parameter 

is set as 70% of that of the new product. In appendix S, 

one can find the graphs for the development of the input, 

stock and outflow for the BAU simulation and the three RL 

scenarios for lease duration=7 (appendix S.1) and for lease 

duration=9 (appendix S.2), provided in unit quantity. 

The impact on the four performance indicators for 2016 to 

2030 are shown in figure 25 for the lease duration=7 and 

in figure 26 for lease duration=9. For the input quantity, 

and WG weight and the profitability, the charts show the 

relative change compared to the BAU simulation results 

for 2016-2030. The C&R chart shows the C&R rates for all 

four simulations. 

3.3.1.4  RL modelling - results GranBaristo
This section contains the results for the performance 

indicators for the RL scenarios compared to the BAU 

simulation for the GranBaristo specifically. Additionally to 

the 3 high-level environmental indicators, this assessment 

also provides the results for a profitability analysis. To 

reiterate, the financial data is not backed by experts (apart 

for the BAU), and is used as an illustration for future 

development and use with accurate data. A limitation of 

the single product assessment is that the sales replacement 

of similar low-end products is not considered for the LRS 

scenario.

Equal to the assessment done for the high-end portfolio in 

the previous section, the stocks and flows are computed 

for 2016-2030 for two conditions where the lease duration  

for new products is; 1) 100% Philips lifespan and 2) 130% 

Figure 25: Results for the performance indicators compared to the BAU simulation for the GranBaristo for lease duration= 100% 
Philips lifespan. ‘[high-end]’ and ‘[new]‘ refer to the impact on the high-end and entire portfolio respectively; WG=WEEE generation; 

C&R=Collection&Recycling rate; L= lease scenario; LRL=lease - refurbish - lease scenario; LRS = lease - refurbish - sell scenario.  
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Figure 25.4 Figure 25.5
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Results for input quantity - Since the GranBaristo has a 

relatively high Philips lifespan, all scenarios have a positive 

impact on the total input (see figure 25.1). The 2-year 

increase of the lease duration roughly doubles the decrease 

rate for the input (see figure 26.1). Similar to the high-end 

portfolio assessment, the preferable scenario regarding 

the input performance indicator is the LRL scenario. 

Results for WG - The WG is reduced in all scenarios for 

condition lease duration=7 (see figure 25.2) and even 

delayed beyond 2030 for the LRL scenario when the lease 

duration=9 (see figure 26.2). With a relatively short lease 

duration, the LRS scenario can outperform the otherwise 

better performing LRL scenario. Although the L scenario 

reduces the WG significantly, it falls far behind the results 

of the other RL scenarios

Results for C&R - The results for the LRS scenario and BAU 

are the same because the products are all discarded by the 

consumer in the same fashion  (see figure 25.3 and 26.3)

Results for profitability - The charts in 25.4 and 26.4 show 

the comparative growth compared to the BAU simulation 

results and the charts in 25.5 and 26.5 shows the 

proportional cost breakdown for all simulations (no units 

for confidentiality). The most notable result is that the LRL 

is the least economically attractive concept, especially for 

a relatively low lease duration, since the low lease fees for 

the refurbished products do not make up much for the RL 

network costs. Furthermore, the most financially attractive 

scenario is the LRS scenario (not taking the replacement 

effect into consideration). 

Figure 26: Results for the performance indicators compared to the BAU simulation for the GranBaristo for lease duration= 130% 
Philips lifespan. ‘[high-end]’ and ‘[new]‘ refer to the impact on the high-end and entire portfolio respectively; WG=WEEE generation; 

C&R=Collection&Recycling rate; L= lease scenario; LRL=lease - refurbish - lease scenario; LRS = lease - refurbish - sell scenario.  

Figure 26.1 Figure 26.2 Figure 26.3
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3.3.2  Consistency check
In this section, the results for the stock and outflow 

modelling of the BAU is compared with real-world data. 

3.3.2.1  C&R outflow
As can be seen in appendix G, WeCycle has collected 

and recycled 6,839 T of WEEE in 2015. Philips’ weight-

based market share for 2015 (18.2%) dictates WeCycle 

recycled 1,244 T on behalf of Philips. According to the 

transfer coefficients to EoL disposal channels provided by 

Hendriksen (2009), 1929 T goes to C&R in 2015 (28.2% 

of total WEEE). This is 55% more than WeCycle reported, 

while remaining in the physical limit. 

According to the SHA national C&R rate by the official C&R 

schemes by Huisman et al. (2012), which was 26.8% for 

2010, 805 T goes to C&R in 2015; 35 % less than WeCycle 

reported. It is likely that the complementary recycling for 

SHA is nowadays more overtaken by WeCycle and WEEE 

NL and that therefore the C&R rate for 2010 is lower.

Overall, the results for both  C&R calculations do not 

exactly match the 1,244T reported by WeCycle. However, 

since WeCycle also uses a calculation on the current 

weight-based market share rather than using observed 

data, rendering it also an uncertain measurement. Within 

the scope of this project, the C&R outcomes of the model 

are deemed satisfactory. 

3.3.2.1  Stock size 
The quantified results are found in the appendix due to 

the confidential nature of the data. The data on consumer 

EEE  in stock in Dutch households in 2006, provided by 

Hendriksen (2009), see appendix H, is processed into a 

table in appendix T.1, showing the diffusion of products 

per households. Where relevant, the Philips BU has been 

attributed to the product types. When aggregating the 

product diffusion per household data on the BU, it can be 

more easily compared with the computed stock data. In 

appendix T.2 you can find the results for the aggregated 

Hendriksen (2009) data per BU (‘per hh stock‘. In the column 

‘per hh‘, you will find the aggregated Philips stock data for 

2016 divided by the number of Dutch households in 2016. 

It is chosen to work with 2016 data due to the highest stock 

size certainty from reported data (see figure 15). With the 

data of Philips stock diffusion and all SHA stock diffusion, it 

is possible to calculate the Philips market share of in-stock 

products.  All market shares are realistically below 100%, 

therefore not crossing the physical limit (although the 

comparable data is outdated).Therefore, all market shares 

fall within an acceptable range according to the criteria and 

thus the results for the stock modelling are satisfactory.

3.3.3  Sensitivity analysis
The uncertainties propogated by the sales quantity 

extrapolations are analyzed in this section. First, the  

retrospective sales extrapolation is examined and, second, 

the prospective sales extrapolation is examined. 

3.3.3.1  Retrospective extrapolation 1995-2004
The retrospectve extrapolation follows the sales quantity 

trendline, but is compared to a scenario where no sales 

happen before 2005 and where the level of sales of 2005 

is applied to all years towards 1995. In table 7 you will 

find the deviation for the stock and outflow on weight and 

quantity from the trendline anaysis when compared with 

the two extreme other scenarios. 

The deviation for the outflow  weight for 2015, i.e. -12.1% 

and +9.5%, results in C&R weight changes to; 1) 1,695 T 

and 2,112 T respectively when using Hendriksen (2009) 

data, and 2) 707 T and 882 T respectively using Huisman 

et al. (2012) data. Regarding the consistency check of the 

results for extreme scenarios, the C&R size does not hit a 

physical limit or grows too far out of proportion. Therefore 

the uncertainty from the historical extrapolation has no 

detrimental effect on the outflow sizes for 2015.

The effect of the extreme historical scenarios on the stock 

data can be tested by applying the deviations for 2016 on 

the stock unit quantity, i.e. -5.7% and 4.3% to the results of 

the stock size consistency check. The deviations are too low 

to make a significant impact on the Philips market share, 

which is roughly a +/-1% change for the smallest market 

share and  a +/- 4% change for the largest market share. 

Therefore, the uncertainty of the historical extrapolation 

also has no detrimental effect on the stock size for 2016.

3.3.3.2  Prospective extrapolation 2017-2030
For the sensitivity analysis of the prospective extrapolation, 

the modelling results for the 2016-level sales extrapolation 

will be compared to the results from the continues trendline 

extrapolation. The results for increase of the stock and flow 

sizes compared to the 2016-level in 2030 in unit quantity 

and weight are laid out in table 9, which shows a significant 

increase for the stock and a lower, yet significant increase, 

for the outflow. The share of the stock and outflow for 

product sold before 2017 will therefore also decrease by 

a similar ratio. For any sales eventuality between the two 

extreme projections, the share of the stock and outflow 

from input before 2017 of the total will be ranging between 

7.2%-11.6% in unit quantity and 5.8%-8.4% in weight for 

the stock, and 12.8%-17.3% in unit quantity and 11.0%-

14.8% in weight for the outflow. 

Table 10 (for the high-end portfolio) and table 11 (for 

the GranBaristo) show the percentage points (i.e. the 
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3.3.3  Summary and conclusions
The BAU simulation for 1995-2016 provides the insight 

that there is a steady growth for the inflow, outflow and 

the stock size. Furthermore, it can be extracted that a 

large number of products that are unrecoverable due 

to undesirable discarding behavior are Personal Health 

products. However, due to the relatively low weight of 

these products, the weight-based impact from Personal 

Health products is rather low. Instead, the overall heavier 

products in the Domestic Appliances BG are responsible 

for the majority of the unrecovered WEEE.

The BAU simulation results for 1995-2016 have passed the 

consistency criteria on the C&R outflow for 2015 and the 

product diffusion outcomes for 2016. Therefore, the model 

is deemed consistent with the real-world for this case study. 

The results for the BAU simulation show that the stock and 

outflow for the retrospectively extrapolated input has a 

relatively small share of the results for the entire input. It is 

also the case that the uncertainty in the stock and flow size 

due to extrapolation is decreasing with each year closer 

to 2016. Furthermore, the uncertainty for the outflow is 

larger than for the uncertainty for the stock size for a given 

year due to the delay effect of the discarding probability 

distribution function. From the sensitivity analysis of the 

historical projection, it is also  found that share of the stock 

and flow size from the extrapolated input is too small to 

affect the verdict for the consistency check. 

From the results for the BAU simulation extended towards 

2030, the main things that can be deduced are, firstly, that 

the output from sales before 2017 will peak at 2018. And 

secondly, the effect of the stabilization of the input at 2016 

will only be reflected in the output around roughly 2039 

with using the current parameters. This determines that 

finishing one entire cycle in the BAU simulation (i.e. all 

products in the same POM year have all been discarded) 

for this product portfolio takes roughly 23 years. The 

BAU extension also serves as the basis for building the 

RL scenarios. The high-end products account for a 6% 

share in unit quantity and accounts for 15% of the average 

stock weight (due to heavier products) for the upcoming 

years. 9% of the stock produced by high-end products is 

hibernating and therefore is subtracted from the total stock 

to generate the stock size as the performance requirement 

for the product leases. 

The main take-aways from the results for the performance 

indicators are, firstly, that all scenarios consist of 

trade-off when considering all performance indicators. 

Secondly, it shows an overall increase in positive impacts 

on all performance indicators when increasing the lease 

duration. Thirdly, it shows that the replacement effect 

takes place to generate a netto postive environmental 

Table 7: The deviations of the stock and outflow sizes for 2015 and 2016 
with the output from the trendline sales input as baseline

Table 9: The share of the products sold before 2017 for 2030 for the 
two sales projections. 

Table 10: Percentage point difference between the 2016-level and 
trendline sales input results for the high-end products. LS= lifespan. 

Table 11: Percentage point difference between the 2016-level and 
trendline sales input results for the GranBaristo. LS= lifespan.

differences between the two percentages) when comparing 

results for the performance indicators based on the 

trendline input to the results of the performance indicators 

based on the 2016-level input. Considering the 2 compared 

inputs are  very conservative and very optimistic, it can be 

concluded that the sales projections only slightly affect 

the output for the high-level environmental performance 

indicators. In table 11, the results for the economic 

calculation show much higher uncertainties. With the 

correct financial data, the sensitivity analysis has to be 

applied once more to determine whether the uncertainty 

remains equally high. Lastly. it shows that a more optimistic 

sales projection leads to a relatively lower profitability for 

all three scenarios for both lease duration conditions. 

The full comparisons can be found in appendix U. 

Furthermore, a set of graphs on the results for the trendline 

input is provided in appendix  V to appendix X.

Table 9: Increase of the stock and outflow size of the trendline sales 
projection compared to the 2016-level sales projection
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3.4.2  Recommendations
Incorporate the replacement rate - Within the innovation 

groups for the different businesses within Philips, there 

is ongoing research on the replacement rate of products. 

This replacement rate is used to indicate when or how 

often businesses should start putting new products on 

the market. It could be interesting to incorporate this 

replacement rate into the model, since it will probably 

be more accurate for the company than using the UNU-

key parameters (that are based on all brands and all price 

categories).

Include dynamic manufacturing costs - Since the model 

provides information on how many fewer products need 

to be produced, it can be argued that it could possibly 

save money on (the number of) manufacturing tools and 

manufacturing sites. The economy of scale still has to be 

considered with such an claim. 

Consistency check with economic models - Although the 

data that is currently used is not correct, with the right 

underlying data this financial modelling approach can 

become very interesting. First of all, it would be necessary 

to compare the results with other RL financial models 

when using the same variables to check for the consistency 

and/or accuracy. It needs to be mentioned that the RL 

econometric models are also not be-all and end-all models 

and also deal with considerable uncertainties. When the 

outcomes of this model is in a comparable range to the 

outcomes of the existing RL models, the model would be 

likely to be developed further.

3.4.3  Conclusions
From the evaluation, it can be concluded that a more 

realistic simulation for the BAU conditions would include 

a market presence of the products for maximum 4-5 years 

instead of the retrospective extrapolation of sales in  2005 

to 1995. Furthermore, the high-end product selection 

should exclude products that could also be categorized as 

mid-range products. Also, the products selected for lease 

would be leased for the 2-4 year warranty time according 

to the UNETO-VNI chart. For enhancing the accuracy 

of the results, the replacement rate (available in-house) 

could be incorporated in the model, as well as dynamic 

manufacturing costs. The consistency check for the BAU 

simulation on the market share will need to be improved 

on more modern and disaggregated stock data to check the 

accuracy of the stock data by Hendriksen (2009). Lastly, 

the model deliverable can be interesting for the company, 

but needs to be compared for reliability with existing in-

house econometric models.

impact.. The results for the performance indicators will be 

further discussed in section 4.1 ‘Interpretation of results‘.  

The outcome of the sensitivity analysis for the prospective 

sales extrapolation demonstrates that there is a low 

sensitivity for the environmental performance indicators. 

However, the outcome for the profitability analysis reveals 

a  considerable sensitivity. The profitability will need to 

be assessed on sensitivity again in future research when 

applying the correct underlying financial data.  

3.4  Evaluation

The model and the modelling results have been presented 

to the target group, which consisted of staff members that 

are involved with the CE developments for SHA appliances. 

The evaluation resulted in the following feedback on 

the modelling decisions and recommendations for 

improvement.

3.4.1  Feedback
Regarding the sales  extrapolation - It is unlikely that a large 

share of products on AG-level that were sold in 2005, were 

also sold from 1995 on. From an innovation perspective, 

Philips strives to replace the sales of a product with a new 

products every 4-5 years or so.

Regarding the high-end selection - Currently, it would only 

be likely that the products with with the highest price range 

according to the UNETO-VNI chart (appendix J) would be 

considered for lease. A large share of the current ‘high-end‘ 

product selection contains FAEM products with mid-range 

prices, although they would not be financially interesting at 

this point for lease.  

Regarding the lease duration - It is rather unlikely for 

products to be repaired after the initial warranty period 

according to the UNETO-VNI chart (appendix J). For 

occuring failure after the 2-4 year warranty time, the 

product will likely be replaced and the same would 

probably happen to leased products as well. The only 

consumer appliance that would get repaired long after the 

initial warranty time has passed would be large domestic 

appliances, such as refrigerators. Overall, Philips is 

currently more interested in leasing the products within 

the 2-4 years of warranty for the lower technical and 

financial risk.

Regarding the consistency check - The approach towards 

the consistency check on the calculated C&R outflow 

weight was accepted, however doubt was cast on the 

stock consistency check. Although the market shares did 

not cross any physical limit (i.e. >100%), some outcomes 

are still deemed rather improbable. This can be due due 

to the the probably outdated consumer survey data by 

Hendriksen (2009), the aggregated nature of the UNU-key 

parameters or the fact that there could be a rather high 

hibernation rate for Philips products sold in a time with a 

relatively higher market share. 
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This chapter will lay out the new insights from the simulation results and evaluation. Furthermore, the data 
and the modelling approach will be critically reflected on, thereby acknowledging the limitations. Based on the  
limitations, recommendations are provided to further developing the model, along with recommended research 
topics for future work that arose from this research.

4.1  Interpretation of results

Through the consistency check and sensitivity check, it 

is acknowledged that the BAU model simulates the real 

world to an satisfactory degree according to the predefined 

criteria and can therefore be used to provide insight on the 

current downstream product flows.

The accuracy for the RL scenario outcomes still needs 

to be tested for correct financial data, however, with the 

current set-up of the model, it is possible to make longterm 

RL strategic recommendations. The suggested strategies 

applied in the 3 scenarios (L, LRL, LRS) all have negative and 

positive aspects and will be discussed in this section.

First, the L scenario is a rather safe option from a consumer 

acceptance perspective and does not require design for 

refurbishment or the set-up of a refurbishment program. 

However, from the results it is inferred that leasing 

products for the Philips lifetime can result in a higher 

required input compared to BAU conditions. Furthermore, 

the L scenario scores the lowest on WG decrease, although 

all WEEE ends up in C&R. 

Second, the LRL scenario performs the best on the input 

performance indicator by far, reduces WG significantly 

and will account for 100% C&R of the WG. However, 

this scenario will be technically challenging for a product 

to guarantee full functionality for 2 consecutive lease 

durations. Furthermore, it is likely to perform poorly on 

profitability, since the fixed costs of the lease (maintenance, 

logistics) will likely be close to the revenue from lease fees 

for a refurbished product (lease fees which will be lower 

compared to those of a new product).

Thirdly, the LRS scenario performs well on the WG 

indicator and can perform well on the input performance 

indicators for relatively long lease durations and/or when 

the refurbished products substitute low-end products.  The 

LRS scenario is technically less risky than the LRL scenario 

while still decreasing WG significantly. Most importantly, 

the scenario will likely outperform the other scenarios on 

profitability. However, the C&R rate is dictated by consumer 

discarding behavior in the LRS scenario, which means that 

the LRS scenario cannot to close the loop entirely.

From the analysis of the results for the RL scenarios, it can 

be deduced that all suggested RL scenarios have trade- offs 

for the four performance indicator. Based on the RL model 

outputs for the variablr entries used in the assessments, the 

researcher recommends the implementation the strategy 

used in the LRS scenario. This strategy is recommended 

based on the high decrease of WG and high likelyhood of 

being profitable, and is therefore generally less risky for 

the business.

In the evaluation, it was learned that currently there 

is a focus on leasing products for a shorter period than 

is applied in the simulation.  The simulation results for 

the Philips lifetime as lease duration and a longer lease 

duration, it can be inferred that a shorter lease duration will 

score poorer on the input and WG performance indicators. 

It needs to be assessed whether it is actually worth setting 

up a RL network when little environmental benefits can be 

reaped. This conflict can be avoided by designing products 

for a longer lifespan. Increasing the products lifespan 

through design will lead to more succesfull and fruitful 

implementation of RL strategies. Design strategies that can 

be applied for a generating longer lifespan in a CLSC can 

include 1) design for durability, 2) design for maintenance 

and repair, 3) design for adaptability and upgradability and  

finally, 4) design for disassembly and reassembly (Bakker et 

al., 2015).  

4.2  Limitations

This research project holds several limitations. First, the 

main limitations are laid out and are followed by a list of 

other limitations faced in this project. 

 

4.2.1 Main limitations
Single case study - The model is based on only a case study 

on one company for one country. No exploration is done on 

whether the model can be used to assess the stocks and 

flows for other companies or another country.  
Outdated data use - The data regarding consumer 

behaviour for the UNU lifespan distribution and 

Hendriksen (2009) might be already outdated since 

the data apply to 2010 and 2006 respectively. The data 

provided by Hendriksen is used exhaustively modelling this 

case study and the outdated nature of the data will likely 

4. DISCUSSION
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cause inaccuracy for simulating for modern times.

Consumer behavior - The decisions on from the 

performance requirement of the same in-use stock size of 

the BAU simulation does not take in consideration that the 

new consumer interaction construction might increase or 

decrease the stock demand. Since a lease contract can make 

a product more financially accessible to a larger audience 

and generally lowers the threshold for  consumers by 

taking out the barrier of a high initial investment. This could 

also possibly lead to a negative effect, where the demand 

of expensive SHA products for the average households 

increases due to its increased financial accessibility. 

Similarly, the use of the ‘push‘ model for introducing the 

refurbished products to the market is not supported by any 

data. It might as well be the case that consumer acceptance 

for refurbished SHA is lower than needed. In addition to 

regarding the consumer behavior, during the research 

process, other new insights were made that questions 

the validity or up-to-date status of the current discarding 

PDF used in for modelling. According to this model, it is 

likely that a significant share of the initial products POM 

are discarded withing the first 2-3 years. After having 

acquired knowledge of the current second-hand market 

trend and the strong Dutch consumer protection laws, it is 

rather unlikely a product is discarded within the first 2-3 

years due to consumer perceived obsolescence. In the case 

of product failure, consumers have the right to repair or 

replacement and, furthermore, in the case of an obsolete 

functional product, the consumer can sell the product on 

the second hand markets. 

CBA/profitabilty consistency check - While the BAU 

simulation output for 2015 and 2016 have been checked 

for consistency with real-world data, this is not done 

for the CBA in modelling the future scenarios. From all 

performance indicators, the profitability is the most 

importance in a business context, although it still needs to 

be checked with existing econometric models. So,  whether 

MFA modelling can complement economic or econometric 

models is still unexplored

4.2.2 Other limitations
Regarding the uncertainty of data
Uncertainty in UNU-key lifespan data - The sensitivity 

analysis for the WG calculations for the Netherlands using 

UNU-key Weibull parameters by Magalini et al. (2016) 

show that there is a +/- 33-37% margin of error for the 

WEEE flow for +/- 30% longer and shorter average lifespan. 

In fact, the Netherlands ranks the 6th place of the EU28 for 

the margin of error size.  Althought two extreme scenarios 

were taken to calculate the uncertainty, it indicates that the 

weight-based WEEE flow faces significant uncertainties 

regarding the used UNU-key average lifespan. 

B2X market data inavailability - There is no sales 

information available regarding the customer market, i.e. 

B2B or B2C, while the lifespan and C&R rate can differ 

greatly. According to the outcome to Huisman et al. (2012), 

the weight-based size of the share of B2B SHA WEEE was 

around (0.23[kg/HH]/6.20[kg/HH]=) 3.7% (see appendix 

E). This implies that the around 3.7% of the WEEE outflow 

in this model would go to 100% to C&R, thereby increasing 

the overall C&R rate with a few percentage points.

Hibernating stock calculation  - Due to lack of better data, 

removing the share of hibernating products from the stock 

produced by high-end products sold from 2016 on the 

basis of a figure for the share of hibernating data for the 

entire stock is somewhat simplistic. Unfortunately there 

is no data available on how far into the product lifespan 

the product will go into hibernation. Also hibernation rate 

is disproportional to the year-POM stock. This method 

implies that in 2017 the share of hibernating products from 

2016 and 2017 is equal to the hibernating share in 2030 

from a stock produced by products sold in 2016-2030. 

Regarding modelling decisions
Unrealistic sales extrapolations - The retrospective and 

prospective extrapolation is done on an aggregated level. 

The use of this method implies that all products sold in 

2005 have been told in the years back to 1995 and that all 

product sold in 2016 will be sold throughout 2017-2030. A 

more accurate model will extrapolate the data for based on 

the trendline for each products. This way, the products that 

are introduced later or that are declining in sales are not 

included for all years in either 1995-2004 or 2017-2030.

Static discarding PDF - The model uses the simplest form 

for the discarding PDF (eq. 6) for the BAU simulation for 

1995 to 2030, while a more accurate result could be 

produced with the more dynamic discarding PDF (eq. 7).

High-end durability assumption - The fact that all high-end 

SHA products are repaired instead of replaced in case of 

failures (and therefore are in general more repairable) is an 

assumption and might not actually be the case.

Qualification for lease - From the evaluation, it is 

understood that many products considered high-end in 

the definition of this project are not considered eligible 

for leasing in reality. Instead, the project must have only 

focused on the upper price ranges according to the UNETO-

VNI chart (appendix J). However, looking at appendix 6, the 

highest product categories (‘IBL’) make up an neglectible 

share of the total product input, both in weight and in 

quantity.  

Isolated replacement effect - The replacement effect in 

the low-end market by the refurbished high-end products 

is an extreme scenario. It does not factor in  other 

competing brands and therefore might experience much 

less replacement than expected in this model.

Other considerations
High-level environmental indicators - The environmental 

performance indicators in this project are not based on 
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actual mid-points impact categories (e.g. climate change, 

ozone layer depletion, acidification, etc) or end-point 

impact categories (i.e. environmental impacts, resource 

depletion and health impact). Working with a more high-

level way whether a strategy is less/more impactful than 

the other needs to still be proven with the mid-point or 

end-points with data of the associated emissions.

4.3  Recommendations

The recommendations made in this section are largely built 

on overcoming the limitations discussed in the previous 

section. First, the main recommendations, which are most 

interesting and actionable, are laid out and are followed 

by a list of additional recommendations. The additional 

recommendations are grouped on suggestions for the model 

(increasing accuracy and adding features), suggestions 

for future research work and recommendations for the 

company more specifically.

4.3.1  Main recommendations
Increasing reliability through reproducability - The 

reliability of the model can be tested on the reproducability 

of the model by applying it to similar  domestic EEE 

(preferably SHA ) companies, such as Braun, De’Longhi, 

Princess and Magimix. In addition, the reliability of the 

model can also be tested for multiple countries. For 

starters, it might be interesting to check the model for the 

current case study company for a country with a lowest 

sensitivity to lifespan changes, such as  Macedonia, Turkey, 

Montenegro or Serbia (Magalini et al., 2016). Lastly, in order 

to examine the reliability of the MFA-based profitability 

analysis, the results for a scenario with certain parameters 

have to be compared to the results from an in-house RL 

econometric model

Carry out IB forecasting method - The accuracy of the 

MFA model can be tested by comparing the results with the 

stock and flows calculation results for the IB forecasting 

model proposal, as is shown in Table 3. It will require data 

collection on the survival distribution function parameters, 

repair costs for common failures and the depreciation rate. 

These are data that are expected to be found in-house, 

albeit dispersed over various departments. The accuracy 

could also be tested by comparing the results with the 

Carnegie-Mellon model, but this model requires data from 

close observation from possibly more than a decade. 

Find discarding PDF based on price categories - Because 

in this research it was discovered that for stock and flow 

accounting in RL management products are primarily 

grouped in price categories rather than product type/

functionality, it could be interesting to determine the 

discarding PDF parameters based on price categories. 

This can be done as an alternative to IB forecasting, while 

applying the same grouping concept.

Finding technical optimum for lease duration - More 

in-house research is needed on the technically optimal 

lease duration for the products and how this optimal lease 

duration relates to the current minimum expected average 

lifetime. On the one hand, in a lease scenario there is more 

maintenance done and repair when needed, implying that 

a product will last longer. On the other hand, the utility 

the product might increase significantly through the 

redistribution of the product, which might decrease the 

technical lifespan. Furthermore, since the consumer does 

not bear ownership of the product, the product might not 

be handled with as much care and thereby also decreasing 

the technical lifespan.

4.3.2  Additional recommendations
Increased accuracy of the model
Add B2X market information - It is recommended to 

include B2B/B2C market information on the sales of the 

products to primarily increase the C&R projection more 

accurate. Secondly, the difference in lifespan for the same 

product in a B2B or B2C environment can be taken into 

consideration, although that information is currently still 

lacking. 

Replace outdated data - The BAU model and all the EoL 

destination modelling is based upon data that is likely to 

be quite outdated. It is advised to update the data on the 

consumer behavior for SHA in the Netherlands once more 

recent data becomes available. 

Include dynamic discarding PDF - Instead of using the 

static discarding PDF according to equation 6, pair the 

trend data on decreasing EEE lifetimes, which can be found 

in Bakker et al. (2014), and incorporate it into equation 7 

for a more accurate representation of the stock and flows 

over the many years. 

Include diffusion and saturation-level function - To 

make a more accurate extrapolation for future sales, the 

simple Gompertz function (as shown in equation 9) can be 

introduced.  This will require PPP/capita projections for 

the Netherlands, the saturation rates for the products and 

lastly, the projection for the number of households in the 

Netherlands (the latter is provided in appendix I.2). Also, 

the other Gompertz functions described in the study by 

Diaoglou (2010) can also be explored as a potentially more 

suitable product diffusion and saturation rate. 

Added features to the model
Incorporating replacement rates- As is suggested in the 

evaluation session, it would be interesting to explore 

the opportunities to incorporate the replacement rates 

that are available within the different business groups to 

develop a more accurate Philips-specific discarding PDF. 

Coupling LCA data - If there are LCA data available for 

one or more SHA products, it can be coupled with the 

MFA. For an easy integration, the data has to be provided 

in a similar way as the financial data. With regard to the 
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BAU simulation, the total CO2-eq. for manufacturing has 

to be provided, together with the yearly average CO2-eq 

emissions related to the use of the product and finally the 

CO2-eq. impacts for a product per different EoL channel. 

In addition, for the RL scenarios, the total CO2-eq for 

refurbishing and (internal) scrapping is needed  together 

with the potential emissions associated with maintenance 

and (spare part) logistics. The same concept applies to LCC 

data, which can be a helpful tool to calculate the external 

costs for all scenarios.

Possible spin-off research projects 
Single product MFA - One suggestion as a spin-off project 

is to build a MFA just for one specific product only. This 

makes it easier to collect more exact data and negates the 

effects of the generalizations made in this current MFA. 

The only downside to this approach is the lack of C&R data 

on such a disaggregated level and thus a consistency check 

on the outflow might not be possible.

High/low-end in the CE - During the step of defining 

the different RL scenarios, it was brought up that the 

original definition of high-end and low-end might need a 

revision in the context of the CE. A follow-up discussion 

on whether recovered products can be viewed as high-end 

will probably lead to interesting positions on one practical 

issue in the CE.

Trend in reuse and repair claims - The effects of the Dutch 

consumer protection laws and the emerging consumer-

run second-hand markets on the discarding PDF could be 

investigated. As is stated in the limitations, it is unlikely for 

a significant share of products to be discarded within the 

first 2-3 years and therefore the validity of the currently 

used Weibull distribution parameters can be questioned. 

Replacement effect - Considering this research examined 

the replacement effect for new low-end products by 

similar refurbished products, it could also be an interesting 

business proposition to explore how a company can go in 

the direction where the low-end market can be entirely 

satisfied by refurbished high-end products. It would be 

a thought-provoking experiment to explore how many 

products must be initially produced for lease as high-end 

to satisfy the low-end demand and how could this system 

be gradually introduced. It could be a financially attractive 

proposition when the refurbishing and the costs of the RL 

network are overall smaller than the manufacturing of new 

products.

4.3.2  Recommendations for (companies like) Philips
Building the applications - It is suggested to Philips 

that two internal applications can be build; the first one 

providing insight on the current downstream product flows 

and the second one providing insight on the impact of the 

different RL scenarios compared to the BAU simulation. 

When the applications are built on the company-server, it 

can be easily used by whoever has access. The use of the 

applications can generate ample feedback and possibly 

ideas for a follow-up project. First, it is possible to build a 

rather simple model for the BAU simulation based on the 

data output. Since there are no specific modelling entries 

involved for the stock and flow output of this data, the 

application can just be a data visualizer. The application 

user interface could look like the wireframe presented on 

page 54. The second application, a BAU-RL ‘comparison‘ 

tool requires modelling parameters entered by the user. 

Therefore, this tool will also have to compute the stocks 

and flows within the program and will require a more 

elaborate back-end. The user interface would require a 

similar data visualizer as the BAU simulation tool and could 

look like the wireframe presented on page 55. 

Long-term focus - Although Philips embraces the CE 

principles on a high level, there is still a short term focus 

closer to the operational level. The introduction of RL 

into a business requires initial investments, such as the 

RL network, and will also require several years before 

before turning profitable. As is the case for most ‘radical‘ 

transitions and changes, it will pay off in the long-term 

rather than in the short-term. In addition, the long-term 

benefits of reduced environmental impact will in turn also 

reduce risks through reduced environmental liability and 

can be a competitive advantage due to the greener image. 
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The thesis research project was set out to incorporate 

Reverse Logistics into the dynamic Material Flow Analysis 

(MFA) method to make it more useful to companies and was 

carried out through theoretical analysis and a case study. 

Currently, dynamic MFAs have been successfully applied 

to track Waste of Electronic and Electrical Equipment 

((W)EEE) on a national level. Within the case study, it is 

discovered that the current state-of-the-art dynamic 

MFA can also be applied to provide insight on the product 

stocks and flows for a company in the current production-

consumption system. Additionally, it was found that 

Reverse Logistics stock and flow accounting methods can 

strengthen the accuracy and reliability of the dynamic MFA 

method. However, the stock and flow accounting methods 

from the different fields, i.e. Industrial Ecology and 

Supply Chain Management, have never been connected 

before. This is likely due to the fact that the objectives 

of the methods in the two fields are different. While the 

dynamic MFA is used to track products to make an overall 

mass balance and to eventually calculate the weight-

based recycling rate, the Reverse Logistics stock and flow 

accounting methods focus solely on predicting the spare 

part production demand.  Due to the time restriction of 

the project, it has not been possible to satisfy the data 

requirements for the Reverse Logistic stock and flow 

modelling, and therefore it was not possible to compare the 

outcome of the two different methods. It is recommended 

that this option will be explored in future research.

The shift towards a Circular Economy is achieved within 

companies through Reverse Logistics management within 

a Closed Loop Supply Chain. This project presents the first 

attempt to apply concepts from the Reverse Logistics field 

to the dynamic MFA method to build circular loops for 

assessing the impacts from the Reverse Logistics strategies 

on the stocks and flows. The concepts that are incorporated 

to make the Reverse Logistics modelling viable are focused 

on overcoming the three main supply constraints in Closed 

Loop Supply Chain management according to Geyer & 

Jackson (2004). This is done by creating scenarios where 

only high-end products are leased (assuming high-end 

are more durable and repairable) and where recovered 

products from lease returns are sold with a ‘push‘ reuse 

market driver. By building the Reverse Logistics scenarios 

according to these conditions, while excluding any external 

influence, it was found that the main modelling variable is 

the lease duration. An increase of the lease duration will 

considerably change the outcomes for the performance 

indicators, while the sales projection has little effect on the 

outcomes. Additionally, financial information associated 

with the stocks and flows can be added, which enables a 

profitability analysis. Due to time restriction of the project, 

the profitability analysis has only been made possible 

for one product. However, it is assumed that products in 

similar price ranges will produce comparable results.

Based on the results for the RL scenarios for this case 

study, it can be deduced that introducing the circular loops 

within a Closed Loop Supply chain can be environmentally 

and economically attractive for a company from a certain 

minimum lease duration onward. From the several Reverse 

Logistics scenarios presented in this case study, the 

recommended strategy would be to refurbish the returned 

end-of-lease products and sell it to the low-end market. 

This strategy will likely be the most financially attractive 

and is not the most technically demanding, while decreasing 

WEEE production significantly. Furthermore, based on 

the results, it can be recommended to focus on designing 

products to last longer to guarantee a more successful 

implementation of Reversed Logistics strategies.  

For the downstream product flow modelling of the current 

situation, a visualization tool can be made based on the 

stock and flow output. To test the current Reverse Logistics 

modelling, the model has to be tested with accurate 

financial data and compare it to existing in-house economic 

Supply Chain models for similar scenarios. Additionally, 

to make the model more generally applicable, the model 

needs to be applied to more companies and countries.

While the stock and outflow model results for the case 

study reflects real-world data in an accurate way for recent 

years, the model faces limitations for accurate predictions 

for the coming years, especially when introducing reversed 

flows to the MFA model. The model results can be used 

to provide the insights to the stocks and flow sizes of 

recent years when considering the current production-

consumption system and thereby be able to e.g. connect 

reported collection and recycling data to the actual product 

flow sizes. For the future stock and flow size predictions, 

however, it can be concluded that the model is more useful 

for thought experiments. It will likely not be useful for 

accurately predicting stocks and flow sizes for RL scenarios, 

but it will provide insight on the underlying processes and 

the overall influence of changing a variable or parameter in 

the system. The outcomes of this thought experiment can 

likely be useful for making strategic decisions.

5. CONCLUSION
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7. APPENDICES
Appendix A
 Weibull distribution parameters for UNU-keys in the NL, FR and BE (Balde et al, 2015a)
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Appendix B

 Transfer coeficcients for reuse or discarding of obsolete product -  p. 41 (Hendriksen, 2009)

Appendix C

 Statistics on (W)EEE storage in Dutch households in 2006 (Hendriksen , 2009)

 Appendix C.2 -The share of unused products of all working products in the households  - p..36 (Hendriksen , 2009)

 Appendix C.1 - The share of defect products of all products in the households - p..35 ;
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Appendix D

 Statistics on WEEE EoL destination transfer coefficients (Hendriksen , 2009)

Appendix E

 Statistics on EEE POM and WEEE generation in 2010 in the Netherlands(Huisman et al. , 2012)
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Appendix G

 Reported C&R weight recycled by WeCycle on behalf of Philips for WEEE category 2 (=SHA) in 2015

Appendix F

 Average in-stock product age in Dutch households in 2009 (Hendriksen, 2009)
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Appendix H

          Number of SHA products found in Dutch households in 2006 (Hendriksen, 2009)

PERSONAL CARE APPLIANCES

OTHER SHA APPLIANCES

KITCHEN APPLIANCES



80

Appendix I

         Number of Dutch households per year -CSB StatLine

 Appendix I.1 -  recorded households 2000-2016

 Appendix I.2 -  projected households 2017 - 2040



81
UNETO-VNI Bredewater 20 - 2715 CA Zoetermeer - Postbus 188 - 2700 AD Zoetermeer
T 079 325 06 50 - F 079 325 06 66 - E info@uneto-vni.nl - W www.uneto-vni.nl

©
 U

N
ET

O
-V

N
I, 

no
ve

m
be

r 
20

14
, a

rt
.n

r.
47

70
1

  Televisies

Aankoopprijs In jaren In maanden

€ 0 - 299 3 36

€ 300 - 499 4 48

€ 500 - 999 5 60

≥ € 1000 6 72

Randapparatuur televisies

Aankoopprijs In jaren In maanden

€ 0 - 199 2 24

≥ € 200 3 36

Audio

Aankoopprijs In jaren In maanden

€ 0 - 199 2 24

€ 200 - 399 3 36

€ 400 - 999 4 48

≥ € 1000 5 60

Groot huishoudelijk (witgoed)

Aankoopprijs In jaren In maanden

€ 0 - 199 2 24

€ 200 - 299 3 36

€ 300 - 399 4 48

€ 400 - 499 5 60

€ 500 - 599 6 72

€ 600 - 699 7 84

≥ € 700 8 96

Klein huishoudelijk

Aankoopprijs In jaren In maanden

€ 0 - 199 2 24

≥ € 200 3 36

Koffiemachines (volautomatisch)

Aankoopprijs In jaren In maanden

€ 0 - 199 2 24

€ 200 - 499 3 36

≥ € 500 4 48

Computer (pc, notebooks, tablets, gameconsoles)

Aankoopprijs In jaren In maanden

€ 0 - 299 2 24

≥ € 300 3 36

Foto en video

Aankoopprijs In jaren In maanden

€ 0 - 199 2 24

€ 200 - 399 3 36

≥ € 400 4 48

Portable (smartphones, smartwatches, audiospelers, navigatie)

Aankoopprijs In jaren In maanden

≥ € 0 2 24

Accessoires

Aankoopprijs In jaren In maanden

≥ € 0 2 24

Appendix J

         Minimally expected covered warranty in years for consumer electronic retail prices in the NL (UNETO-VNI, 2014)



82

Appendix K

        MAG-level categorization of Philips Personal Health products within the organization and in relation to outside categorizations
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Appendix L

        Explanation of flowchart symbols (retrieved from:  http://www.conceptdraw.com/How-To-Guide/flow-chart-symbols )
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Appendix M

         Retrospective and prospective extrapolation of the 2005-2016 POM data

         M.1 - Retrospective extrapolation of the 2005-2016 POM data

         M.2 -  Historical extrapolation of the 2005-2016 POM data

         M.3 - Historical extrapolation of the 2005-2016 POM data

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL



85

         M.4 - Prospective extrapolation of the 1995-2030 POM data for ‘2016-level‘

         M.5 - Prospective extrapolation of the 1995-2030 POM data for ‘trendline‘

CONFIDENTIAL

CONFIDENTIAL



86

Appendix N

         Breakdown of input, stock and outflow on different dimensions for 1995-2016 data

         N.1 - breakdown of input on BG and UNU-key, shown in quantity (left) and weight (right)
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         N.2 - breakdown of stock size on BG, UNU-key and year POM, shown in quantity (left) and weight (right)

         N.3 - breakdown ofoutflow on year POM, shown in quantity (left) and weight (right)
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Appendix O

         Breakdown of input, stock and outflow on different dimensions for 1995-2030 data for ‘2016-level‘ future sales

         O.1  breakdown of input on BG, UNU-key and on high/low-end (IBL+IBE= high-end, IBW=low-end)

 shown in quantity (left) and weight (right)
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         O.2 - breakdown of stock size on BG and UNU-key, shown in quantity (left) and weight (right)

         O.3  breakdown of  stock size (top) and outflow (bottom) on year POM, shown in quantity (left) and weight (right)
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Appendix P - CONFIDENTIAL(?)

         Overview of all high-end to mid-end products (“IBL“ and “IBE“ respectively) according to 

 the UNETO-VNI chart in appendix J.

CONFIDENTIAL
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Appendix Q - Costs and revenue breakdown for the GranBaristo

         Appendix W.1 - screenshot of a RSM student assignment deliverable on pricing for lease models for a product in

 the same price range as the GranBaristo

         Appendix Q.2 - cost and revenue entries for the GranBaristo used in model (not validated by expert), 

 partially modeled after the values provided in Appendix W.1

CONFIDENTIAL

CONFIDENTIAL
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BAU Lease once Lease-refurbish-lease Lease refurbish sell
   INPUT

BAU Lease once Lease-refurbish-lease Lease refurbish sell
   STOCK

BAU Lease once Lease-refurbish-lease Lease refurbish sell
   OUTFLOW

Appendix R

 Input, stock and outflow results for high-end products for the four scenarios shown in quantity for a future

 ‘2016-level‘ sales projection for 2016-2030

         Appendix R.1 - Results for Philips lifespan=100% of the original set lifespan
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BAU Lease once Lease-refurbish-lease Lease refurbish sell
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         Appendix R.2 - Results for Philips lifespan=130% of the original set lifespan
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Appendix S

 Input, stock and outflow results for the GranBaristo for the four scenarios shown in quantity for a future

 ‘2016-level‘ sales projection for 2016-2030

         Appendix S.1 - Results for Philips lifespan=100% of the original set lifespan
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         Appendix S.2 - Results for Philips lifespan=130% of the original set lifespan
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 Appendix T.1 

         The figures of Appendix H are processed into a spreadsheet and the quantities are divided by the number of 

 households for 2006 to get the number of appliances per household. Furthermore, the Philips BU is added to each

 product type.

 Appendix - T.2 CONFIDENTIAL(?)

         The outcome of the stock size consistency check by checking the realism of the marketshare for Philips categorized

 by BU. ‘Per hh‘ is the amount of Philips products per household; ‘per hh stock‘ is the total amounts of products found

 in households for whatever brand according to Hendriksen (2009).

Appendix T - CONFIDENTIAL (?)

CON-
FIDEN-
TIAL

CON-
FIDEN-
TIAL
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Appendix U.1 

The upper two tables show the results for the 2016-level input (left) and the trendline input (right) for the highend 

products. The lower table show the percentage point differences for the results between the trendline input and 

2016-level input.

Appendix - U.2

The upper two tables show the results for the 2016-level input (left) and the trendline input (right) for the GranBaristo.

The lower table show the percentage point differences for the results between the trendline input and 2016-level 

input.

Appendix U 
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Appendix V

         Breakdown of input, stock and outflow on different dimensions for 1995-2030 data for ‘trendline future sales
         V.1  breakdown of input on BG and UNU-key and high/low end, shown in quantity (left) and weight (right)
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         V.2 -  breakdown of  stock size (top) and outflow (bottom) on year POM, shown in quantity (left) and weight (right)

         V.3 - Breakdown of outflow based on the EoL desinations, shown in quantity (left) and weight (right)
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         V.4 -Graphs of the stock (top) and outflow (bottom) in unit quantity (left) and weight (right), broken down on
  the sales data source; retrospective extrapolated (blue), reported (orange) and prospective extrapolation (red)

         V.5 -Overview of the input weight per year, accumulated stock weight and outflow weight per year for 1995-2030
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Appendix W

 Input, stock and outflow results for high-end products for the four scenarios shown in quantity for a future

 trendline sales projection for 2016-2030

         Appendix W.1 - Results for Philips lifespan=100% of the original set lifespan
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         Appendix W.2 - Results for Philips lifespan=130% of the original set lifespan
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Appendix X

 Input, stock and outflow results for the GranBaristo for the four scenarios shown in quantity for a future

 trendline sales projection for 2016-2030

         Appendix X.1 - Results for Philips lifespan=100% of the original set lifespan
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         Appendix X.2 - Results for Philips lifespan=130% of the original set lifespan


