
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Computationally Efficient
Multi-Target Tracking for
Space Situational
Awareness:
C++ Implementation of Advanced MTT Algorithms

Boyan Kolev

Computationally
Efficient Multi-Target

Tracking for Space
Situational
Awareness:

C++ Implementation of Advanced MTT
Algorithms

by

Boyan Kolev

Supervisor: Dr. S. Gehly
Project Duration: January 2025 - October 2025
Faculty: Faculty of Aerospace Engineering, Delft
Student Track: MSc Aerospace Engineering - Space Track
Student Number: 5243416

Cover: An illustration of space debris. (Photo: EUSPA)

Acknowledgments

I would like to express my deepest gratitude to all those who have supported me throughout the journey
of writing this thesis.

First and foremost, I am sincerely thankful to my supervisor, Dr. Steve Gehly, for his invaluable guid-
ance, encouragement, and patience. His expertise, insightful feedback, and constant support have
been instrumental in shaping this research. I am particularly thankful for the weekly meetings that
were held, during which I was able to have my questions answered and after which I always felt more
confident in the next steps to undertake.

I also owe my heartfelt thanks to my parents, Maria Koleva and Ivo Kolev, whose unconditional love,
support, and belief in me have been the foundation of my academic and personal growth. Their sacri-
fices, encouragement, and constant reminders to persevere have been a source of strength throughout
this journey.

To my friends, thank you for your unwavering support, understanding, and motivation. Your encourage-
ment, companionship, and the moments of laughter we shared helped me navigate the challenges and
maintain balance during the most demanding times of this thesis.

Finally, I am grateful to everyone who, in one way or another, has influenced my academic journey.
This thesis is not only the result of my efforts but also a reflection of the support, guidance, and encour-
agement I have received from all of you.

Boyan Kolev

i

Abstract

This research aims to advance the field of Space Situational Awareness (SSA) by optimizing multi-
sensor multi-target tracking (MSMTT) algorithms within the Random Finite Set (RFS) framework. The
project focuses on addressing the computational challenges posed by the increasing number of Res-
ident Space Objects (RSOs) through the development of an efficient, scalable estimator capable of
handling dense object environments and ambiguous data. Key components of this research include
a detailed evaluation of existing RFS methods showing promise in the field of SSA, such as Labelled
Multi-Bernoulli methods (LMB). By integrating and enhancing these techniques, the project aims to
improve tracking accuracy and computational efficiency by implementing the filters using C++ source
code, thereby supporting both current space operations and future mission planning.

ii

Contents

Abstract ii

Nomenclature iv

List of Figures xi

List of Tables xii

List of Listings xiii

1 Introduction 1

2 Literature Review 3
2.1 Challenges in Space Situational Awareness . 3
2.2 Approaches Overview . 4

2.2.1 Data Fusion . 13
2.2.2 Assessment Metrics . 13

3 Research Question 15

4 Methodology 16
4.1 Finite Set Statistics . 16
4.2 Probability Hypothesis Density . 17

4.2.1 Theory . 18
4.2.2 Numerical Example . 21

4.3 Labelled Multi Bernoulli . 26
4.3.1 Theory . 26
4.3.2 Implementation Approach . 31

4.4 Poisson Labelled Multi Bernoulli . 36
4.5 Supporting Concepts and Methods . 41

4.5.1 Gaussian Mixture . 41
4.5.2 Kalman and Unscented Kalman Filter: Prediction & Update 43
4.5.3 K-Shortest Paths and Murty’s Algorithm for Hypothesis Management 46
4.5.4 Model Description . 50
4.5.5 Parameter Tables . 53

5 Results & Discussion 55
5.1 PHD/LMB comparison . 55

5.1.1 Linear Model . 55
5.1.2 Non-Linear Model . 57

5.2 LMB/PLMB comparison . 59
5.3 Time Performance . 61
5.4 Implication for SSA . 62

6 Conclusion 64

References 66

A Literature Selection Methodology 72

B Code Structures and Pseudo-Code 75

C Original Research Proposal Plan 85
C.1 Experimental Set-Up Ideal . 88

iii

Nomenclature

Abbreviations

Abbreviation Definition

AA Arithmetic Average
AR Admissible Region
CAR Constrained Admissible Region
CBMeMBer Cardinality Balanced Multi-target Multi-Bernoulli
CPHD Cardinalised Probability Hypothesis Density
DISP Distinguishable and Independent Stochastic Populations
GA Geometric Average
GEO Geosynchronous Orbit
GLMB Generalised Labelled Multi Bernoulli
GM Gaussian Mixture
GTO Geosynchronous Transfer Orbit
HISP Hypothesised and Independent Stochastic Populations
JM CBMeMBer Jump Markov Cardinality Balanced Multi-target Multi-Bernoulli
JPDA Joint Probabilistic Data Association
LEO Low Earth Orbit
MEO Medium Earth Orbit
MeMBer Multi-target Multi-Bernoulli
MHT Multi-Hypothesis Tracking
MM CBMeMBer Multi Model Cardinality Balanced Multi-target Multi-Bernoulli
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
(MS)MTT (Multi-Sensor) Multi-Target Tracking
OR Orbital Regime
OSPA Optimal Subpattern Assignment
PAR Probabilistic Admissible Region
PHD Probability Hypothesis Density
PGFL Probability Generating Functional
PMBM Poisson Multi-Bernoulli Mixture
RFS Random Finite Set
RSO Resident Space Object
SMC CBMeMBer Sequential Monte-Carlo Cardinality Balanced Multi-target Multi-Bernoulli
SSA Space Situational Awareness

iv

Contents v

Symbols
Please note that all symbols are defined in the main text, and the following nomenclature table has
been assembled as accurately as possible.

Symbol Definition Unit

a Semi-major axis length of the orbit [m]
a Assignment of a measurement to a track (can be ∅

or Oi)
[–]

amax Maximum admissible semi-major axis defining the
upper bound of the admissible region

[m]

Ai Optimal assignment (i = 1), suboptimal assign-
ments (i > 1)

[–]

Bk|k−1(ζ) RFS of targets spawned at time k from a target with
previous state ζ

[–]

BT Birth Threshold [–]
C,Cij , C

n Cost matrix [–]
d2(yk+1) Squared Mahalanobis distance of the measurement

from the predicted track
[–]

d
(c)
p (X,Y) p-th order OSPA metric with cut-off c between RFSs

X and Y
[m]

e Orbital eccentricity [–]
emax Maximum admissible orbital eccentricity [–]
fij Likelihood of associating measurementOi with track

Tj

[–]

fk|k−1(xk | ζ) Single-target transition density: probability that a tar-
get at state ζ at time k − 1 moves to xk at time k

[–]

fk+1|k+1(X|Zk+1) PDF that targets have state set X, given measure-
ment history Zk+1

[–]

G Gating threshold [–]
GX [h] PGFL of amulti-target RFSX, representing the func-

tional form of its multi-target distribution
[–]

g(·) Measurement model [–]
gk(zk | xk) Single-target measurement likelihood: probability

density of observing zk given target state xk

[–]

H Measurement matrix [–]
Hi Hypothesis i [–]
h(x) Test function used in the PGFL of an RFS, mapping

single-target state x ∈ X to [0, 1]
[–]

hX Multi-object exponential of real-valued function h;∏
x∈X h(x) for non-empty X, 1 otherwise

[–]

h Specific angular momentum vector h = r× ṙ [m2 s−1]
Hyp(n) Hypothesis n, i.e. one possible set of measurement-

to-track assignments
[–]

I Set of track labels [–]
j(n)(. . .) nth-order Janossy density [–]

Contents vi

Symbol Definition Unit

Jmax Maximum number of components in the multi-target
filter

[–]

Kk RFS of clutter received by the sensor at time k [–]
L(a) Likelihood of assignment a [–]
ℓ Label attached to a single target, defined as an or-

dered pair (k, i)
[–]

M Number of most significant hypotheses retained af-
ter truncation

[–]

mbirth Birth state mean vector [m or m/s]
ND Number of detections within the validation gate [–]
Nmax Maximum allowed number of hypotheses/compo-

nents after capping
[–]

N ∗ Set of validated measurements within the gate [–]
Oi Measurement i [–]
pD,k(xk) Probability of detection given target state xk at time

k
[–]

pf (z
(i); z̄(j), P

(j)
zz) Measurement likelihood function evaluated for z(i)

given z̄(j) and P (j)
zz

[–]

pS,k(ζ) Probability that a target survives to time k given pre-
vious state ζ

[–]

P
(j)
zz Predicted measurement covariance matrix for track

j
[–]

PD Probability of detection [–]
PS Probability of target survival [–]
Pbirth Birth state covariance matrix [m2] or rad²
pdfc Clutter intensity (false alarm density) [–]
pG Gating probability; probability that a valid measure-

ment lies within the validation gate
[–]

qD,G(x, ℓ) Joint missed-detection probability accounting for de-
tection and gating, qD,G = 1− pD(x, ℓ) pG

[–]

R Measurement noise covariance matrix [–]
r Existence probability of a Bernoulli component [–]
r Position vector of the RSO in the ECI frame [m]
ṙ Velocity vector of the RSO in the ECI frame [ms−1]
S Measurement covariance matrix [–]
Tj Track j [–]
Tp Pruning threshold for multi-target components [–]
Ts Sampling time of the motion model [s]
U Merging threshold for multi-target components [–]
v(x) Probability Hypothesis Density (PHD) of the corre-

sponding unlabelled RFS
[–]

w Weight [–]
wbirth Weight of a newborn target [–]

Contents vii

Symbol Definition Unit

X
• Bernoulli random variable, or
• Target state set

[–]

yk Measurement obtained at time step k [–]
ŷk Predicted measurement for a track at time k [–]
ỹ Measurement residual vector [–]
z(i) Measurement vector corresponding to measure-

ment i
[–]

z̄(j) Predicted measurement vector for track j [–]
x̂k+1|k Predicted state of the track at time k + 1 based on

the previous estimate at time k
[–]

ap Perturbing accelerations [ms−2]
∅ Null assignment (no measurement associated with

a track)
[–]

αi Element of the discrete label space L, uniquely iden-
tifying target i

[–]

C Indexing space of the δ-GLMB, defined as F(L)× Ξ [–]
L Discrete label space, L = {αi : i ∈ N} [–]
Lk Label space of new targets born at time tk, Lk =

{k} × N
[–]

L0:k Label space of all targets up to time tk (new births
and survivals), defined recursively as L0:k = Lk−1 ∪
Lk

[–]

N Set of natural numbers [–]
R Set of Real Numbers [–]
x Single-target state vector [–]
x̂ Estimated target state corresponding to the maxi-

mum of p(ℓ)(x)
[–]

X Single-target state space [–]
X× L Joint state–label space defining the domain of a la-

belled RFS
[–]

X̂ Set of confirmed tracks satisfying track-
management thresholds

[–]

1Y (X) Inclusion function; equals 1 if X ⊆ Y , 0 otherwise [–]
|X| Cardinality (number of elements) of the set X [–]
Y Unlabelled version of labelled RFS X [–]
F(·) Collection of all finite subsets of the space (·) [–]
F(L(i)

+) Collection of all finite subsets of the predicted label
space L(i)

+

[–]

G(i) Group (i) of tracks processed in parallel update [–]
L(X) Set of labels of a labelled RFS X [–]
L((x, ℓ)) Label transformation mapping (x, ℓ) ∈ X× L to ℓ [–]
V(X) Unlabelled version of labelled RFSX, i.e. V(X) = Y [–]

Contents viii

Symbol Definition Unit

V((x, ℓ)) State transformation mapping (x, ℓ) ∈ X× L to x [–]
B2 Process noise input matrix for non-linear motion

model
[–]

Q Process noise covariance matrix [–]
R Measurement noise covariance matrix [–]

α Spread parameter controlling the dispersion of
sigma points around the mean; typical range 10−3 ≤
α ≤ 1

[–]

α Primary scaling factor for sigma points in the Un-
scented Kalman Filter

[–]

β(·) Belief mass function [–]
β Parameter to incorporate prior knowledge of the dis-

tribution; for Gaussian, β = 2 is optimal
[–]

β Parameter to incorporate prior knowledge of the dis-
tribution in the UKF; optimal for Gaussian is 2

[–]

βk|k−1(·|ζ) Intensity of the RFS Bk|k−1(ζ) spawned at time k by
a target with previous state ζ

[–]

βbirth Birth tuning parameter [–]
Γk RFS of spontaneous birth at time k [–]
γk(·) Intensity of the birth RFS Γk at time k [–]
∆(X) Distinct-label indicator; equals 1 if all labels in la-

belled RFS X are unique
[–]

∆(X̃(i)) Distinct-label indicator ensuring all labels in group (i)
are unique

[–]

δY (X) Generalised Kronecker delta function; equals 1 if
X = Y , 0 otherwise

[–]

δI(L) Generalised Kronecker delta function; equals 1 if
L = I, 0 otherwise

[–]

ε Specific orbital energy of the RSO [J kg−1]
η
(θ)

Z(i)(ℓ) Normalising constant for updated density p(θ)(x, ℓ |
Z(i))

[–]

ΘI+ Space of association mappings θ : I+ →
{0, 1, . . . , |Z(i)|} satisfying the one-to-one constraint

[–]

θ Measurement-to-track association mapping for label
set I+

[–]

κ Secondary scaling parameter for sigma points; often
set to 0 or 3− n

[–]

κ Secondary scaling factor for sigma points in the UKF [–]
κk(·) Intensity of clutter RFS Kk at time k [–]
κ(z) Intensity of clutter (Poisson false alarm process) at

measurement z
[–]

λ False alarm density (average number of false mea-
surements per unit volume)

[–]

Contents ix

Symbol Definition Unit

λ Scaling factor for sigma point spread, defined as λ =
α2(n+ κ)− n

[–]

µ Gravitational parameter [m3/s2]
µE Gravitational parameter of the Earth [m3 s−2]
ν(·) Probability density function [–]
Ξ Discrete space representing the history of track-to-

measurement associations
[–]

ξ Realisation of the discrete association history Ξ [–]
π(X) PDF of a RFS X [–]
π(X) Multi-target posterior density of the labelled RFS X [–]
ρ(·) Cardinality of a RFS [–]
ρ(n) Cardinality distribution of the δ-GLMB RFS [–]
σw Process noise standard deviation [m/s2]
σvel Process noise standard deviation (velocity) [ms−1]
σω Process noise standard deviation (turn rate) [rad s−1]
σv Measurement noise standard deviation [m]
σα Measurement noise standard deviation (bearing) [rad]
σr Measurement noise standard deviation (range) [m]
ϑu Upper threshold on existence probability for track

confirmation
[–]

ϑl Lower threshold on existence probability for track
maintenance

[–]

χ Sigma Points [–]
ψZ(i)(x, ℓ; θ) Measurement likelihood function for track ℓ under as-

sociation θ and measurements Z(i)
[–]

Ω Arbitrary space [–]

List of Figures

2.1 Distribution of trackable space objects as a function of altitude in Earth orbit on February
27, 2013 courtesy of B.Jones et al. [35] . 4

2.2 Overview of different MTT methods (HISP conceptually related to RFS but not part of
the family) . 5

2.3 Visual representation of a validation gate for a track and its associated measurements.
T1 ≡ estimated mean state of target 1, dashed line represents an equiprobability curve
(i.e. Gate) . 6

2.4 Visual representation of the GNN with data associations conflicts 6
2.5 Assignment problem of measurements Oi, ∀i ∈ {1, 2} to tracks Ti, ∀i ∈ {1, 2} in a two

measurements two tracks scenario with overlapping gates and measurements 8
2.6 Bernoulli and Multi-Bernoulli Random Finite Set (RFS) representations in state space. . 11

4.1 PHD simplified schematic . 18
4.2 Ground truth trajectories in xy plane . 22
4.3 PHD filter estimates and true tracks in xy coordinates for single run simulation with ran-

dom seed = 0. 22
4.4 Time series of the PHD filter estimates, ground truth tracks and measurements in carte-

sian coordinates for single run simulation with random seed = 0. 23
4.5 Estimated vs. true cardinality for the PHD Filter for single run simulation with random

seed = 0. 23
4.6 OSPA metrics with parameters c = 100, p = 1 for single run simulation with timestep (k)

= 1s and random seed = 0. 24
4.7 Average estimated cardinality vs time over 1000 MC runs 25
4.8 Average OSPA metrics with parameters c = 100, p = 1, over 1000 MC runs with time

step (k) = 1s. 25
4.9 LMB filter schematic overview [65] . 32
4.10 Example of partitioning into groups, with five tracks (red squares) and nine measure-

ments (black stars), courtesy of [65] . 34
4.11 Illustrative example of the CAR/PAR approach for initialising target tacks, curtsey of Ca-

ment et al. [13]. 38
4.12 PLMB filter schematic overview . 39
4.13 One-dimensional Gaussian mixture example showing three weighted Gaussian compo-

nents (dashed lines) and their resulting mixture density (solid line). 42
4.14 Two-dimensional Gaussian mixture example showing three components with elliptical

covariance contours at 1σ and 2σ levels. Each component is represented by its mean
(coloured dot) and covariance structure (dashed ellipses). 42

4.15 Visual representation of the accuracy difference between the EKF and the UKF, figure
courtesy of MATHWORKS1 . 45

4.16 Boundary effects on sigma point representation . 46
4.17 Murty branching tree for simplified cost matrix example. 49
4.18 Ground Truth Tracks for the Coordinated-Turn (CT) model 52

5.1 Ground truth, LMB estimates and measurements for the linear model without gating (left)
and with gating (right) . 55

5.2 OSPA metric Comparison between LMB estimates (left) and PHD estimates (right) . . . 56
5.3 Visual representation of the LMB tracks over time in Cartesian coordinates for LIN-model 56
5.4 LMB (left) cardinalities compared to PHD (right) cardinalities estimates 57
5.5 LMB filter estimated cardinalities vs. true cardinalities showcasing the effect of gating

on the results on the non-linear model . 57

x

List of Figures xi

5.6 LMB filter estimated OSPA analysis showcasing the effect of gating on the results . . . 58
5.7 Visual representation of the LMB tracks over time in Cartesian coordinates for CT-model

with gating on, for the CT-model . 58
5.8 PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates

for the LIN-model (left) and estimated vs. actual cardinality plot (right) with constant birth
threshold and active measurement gating . 59

5.9 PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates
for the LIN-model (left) and estimated vs. actual cardinality plot (right) with constant birth
threshold and no measurement gating . 59

5.10 PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates
for the LIN-model (left) and estimated vs. actual cardinality plot (right) with adaptive birth
threshold and no track existence probability bounding 60

5.11 PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates
for the LIN-model (left) and estimated vs. actual cardinality plot (right) with adaptive birth
threshold and track existence probability bounding . 60

5.12 PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates
for the CT-model (left) and estimated vs. actual cardinality plot (right) with adaptive birth
threshold and no track existence probability bounding for the CT-model 61

5.13 PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates
for the CT-model (left) and estimated vs. actual cardinality plot (right) with adaptive birth
threshold and track existence probability bounding for the CT-model 61

A.1 PRISMA selection flowchart . 73
A.2 Distribution of the selected sources for the thesis by publication year 74

C.1 Thesis draft timeline for weekly hours distribution . 86

List of Tables

2.1 Murty’s Assignment Algorithm Results for Optimal/Suboptimal Assignments (5-best as-
signments) . 7

2.2 Hypothesis Table MHT, num(T) = 2, num(O) = 2 . 8

4.1 Symbol legend for full PHD recursion . 19
4.2 Simplifying Assumptions . 19
4.4 Parameters of the Gaussian Mixture used for the illustrative examples. 43
4.5 Motion Model Parameters (Linear / Non-Linear) . 53
4.6 Target Birth Parameters . 54
4.7 Algorithmic Parameters (Merging, Pruning, Capping, Detection, etc.) 54
4.8 Unscented Kalman Filter (UKF) Parameters for Non-Linear Models 54

5.1 Average CPU time performance of the LMB/PLMB filters for the non-linear coordinated
turn model over 10 runs . 62

C.2 Main objectives description per phase and category - Literature (L), Code(C), Writing(W),
Admin(A) - non-critical tasks marked with a star ⋆ . 87

C.3 Available computing resources during the project . 88

xii

Listings

A.1 Search Query Scopus/IEEE . 72
A.2 Search Query Scopus/IEEE . 72

xiii

1
Introduction

Over the past several decades, the expansion of space activities has transformed near-Earth space into
a critical global resource for various technological and scientific applications, including communication,
navigation, and Earth observation. More recently, this growth has accelerated due to the NewSpace
movement [50], which emphasises smaller, cheaper, and faster approaches to satellite development,
particularly through the use of smallsats and CubeSats, as well as the deployment of large commercial
constellations such as Starlink. This increase in space utilisation has been accompanied by significant
growth in the number of both functional satellites and non-functional debris - collectively known as Res-
ident Space Objects (RSOs), and includes over 34.000 objects larger than 10 cm, more than 900.000
objects between 1 cm and 10 cm, and over 120million objects ranging from 1mm to 1 cm [32]. Further-
more, this increasing trend is expected to continue as more satellites are launched into space [55],
which can create additional debris and increase the probability of collision. In turn, this debris poses a
significant threat to the currently operational space assets and increases cost and risk for future mis-
sions [33]. Such collisions can trigger a self-sustaining process of further fragmentation, commonly
referred to as the Kessler syndrome [37], or collisional cascade, where each collision generates debris
that increases the likelihood of subsequent collisions.

To address these issues we turn to the field of (Multi-Sensor) Multi-Target Tracking (MS)MTT, which
is a problem encountered in a wide range of disciplines including sonar/radar, computer vision, cell
biology, vehicle perception [10, 17, 1, 31, 54] and of most significant interest to this study Space Situ-
ational Awareness (SSA) [19]. SSA is fundamentally about maintaining an up-to-date catalogue that
accurately identifies the locations of objects and the associated uncertainties. This effort is crucial in
mitigating the risks posed by orbital debris and involves characterising the debris field to effectively plan
future missions and monitor current assets [28]. The common goal of multi-target tracking is estimating
the trajectories of an unknown and time-varying number of objects based on sensor data, which is in
addition corrupted by phenomena including observation noise, false alarms, missed detections, and
data association uncertainty [4]. Moreover, for SSA additional challenges arise from not fully account-
ing/understanding the nature of the physical perturbations affecting the orbital trajectory, the limited
number of sensors relative to the large number of RSOs, and the non-linearity of both the dynamical
propagation and the measurement relationships [19, 28]. As such, combining these factors results
in a highly demanding computational task, whose complexity grows exponentially with the number of
tracked objects and measurements.

A wide range of approaches to solving MTT problems exist, including Bayesian and non-Bayesian es-
timation techniques, implemented in recursive, batch, box-particle, or fixed-lag processing schemes
[59], with the most popular being the Joint Probabilistic Data Association (JPDA) filter, Multiple Hypoth-
esis Tracking (MHT), and the most recently developed Random Finite Set (RFS) framework [13, 65,
75]. MHT and JPDA are formulated via data association, referring to the partitioning of the measure-
ments into potential tracks and false alarms, followed by filtering, which refers to estimating the state
of the target given its measurement history [75]. On the other hand, the distinguishing feature of the
RFS approach is that it directly seeks both optimal and suboptimal estimates of the multitarget state,

1

2

i.e. instead of focusing on the data association problem [75], RFS methods directly try to estimate
the overall state of all the targets at once. This shift in perspective simplifies the formulation of mul-
titarget tracking and naturally accommodates scenarios in which the number of targets changes over
time, such as when new targets appear or existing ones disappear. In addition, both the MHT and
JPDA approaches have known limitations when it comes to SSA applications, respectively upscaling
the problem becomes very computationally expensive when it comes to MHT [28, 65, 75], and the
conventional JPDA filter can be error-prone, computationally expensive and requires modifications to
accommodate for unknown and time-varying number of targets [70, 48]. As such it is not surprising that
in recent years the trend has been evolving towards the use of the RFS framework approach with fil-
ters such as the (Cardinalised) Probability Hypothesis Density PHD/CPHD [28, 87], the Multi-Bernoulli
filters [81, 46, 41, 44] , the Generalised Labelled Multi Bernoulli filters (GLMB) family [60, 82, 4, 35]
and the relatively newer Poisson Multi Bernoulli Mixture (PMBM) and its derivatives [70, 86, 13, 26, 72].
Moreover, the Hypothesised and Independent Stochastic Populations (HISP) [19] filter, which follows
from stochastic population frameworks, has recently been employed in SSA and exhibits similarities to
the RFS framework. Therefore, this project aims to investigate which filters within the RFS framework
can be optimised and up-scaled into an efficient estimator. This is achieved by evaluating performance
based on accuracy and computational efficiency within the context of SSA, to facilitate the operations
of current space assets and the planning of future space missions.

The structure of this report is as follows. First, an introduction to the problem in chapter 2 summarises
the challenges, current methodologies, research, and gaps in the literature. The research questions
then follow in chapter 3. Moreover, in chapter 4 a description of the methodology is provided, includ-
ing more detailed theoretical background, implementation schemes and preliminary results. This is
followed by a discussion and presentation of the obtained results in chapter 5. Finally, the conclusion
on the progress so far and future plans for the project are provided in chapter 6.

2
Literature Review

Multi-Target Tracking is a challenge encountered across various fields, primarily aimed at tracking an
unknown and time-varying number of objects based on sensor data corrupted by observation noise [4].
MTT can be tackled using different methods, the suitability of which depends on the specific context in
which the problem is being addressed. This literature review is structured as follows: first, an in-depth
discussion of the challenges in Space Situational Awareness is provided in section 2.1. This is followed
by an overview of the main MTT methods, outlined in Figure 2.2 and discussed in section 2.2. Finally,
an overview of the metrics used for assessment is presented in subsection 2.2.2.

2.1. Challenges in Space Situational Awareness
False alarms, misdetections and data association uncertainties are the common challenges in MTT [82],
which are further accompanied by SSA specific complications including (i) the large number of RSOs
that continuously increases, (ii) sparse number of (imperfect) sensors with limited fields of view and in-
accuracies, (iii) the non-linearity of both the dynamical propagation and the measurement relationships
[28, 13, 35].

Regarding statement (i), it should be noted that the increase in the number of objects naturally results
in a greater number of potential events, i.e., observation and interaction instances such as detections,
target births/deaths, and measurement-to-track associations that the estimator must handle. However,
the primary indicator of complexity is not limited to the number of objects, but also to their density in both
spatial and temporal dimensions, resulting in concepts such as clutter density and birth/death rates [28,
4]. In practice, higher target density also increases ambiguity in data association, which often becomes
the most critical challenge in regions where many objects are closely spaced.

3

2.2. Approaches Overview 4

Figure 2.1: Distribution of trackable space objects as a function of altitude in Earth orbit on February 27, 2013 courtesy of
B.Jones et al. [35]

On the other hand, the sensor’s imperfections mentioned in statement (ii) are a source for the false
detections and misdetections in any MTT field, but the SSA-specific issue comes from the sparse
amount of sensors and their limited fields of view. This results in long gaps between measurements,
increasing propagation uncertainties, complicating the generation of new tracks in the filter, intensifying
the impact of the non-linear dynamics and affecting the validity of assumptions such as the Gaussian
state uncertainty [28]. Moreover, the length of these gaps is dependent on the orbital regime of the
RSO objects. For instance, objects in Low Earth Orbit (LEO) move quickly across the sky, which means
they are only visible to a given sensor for short periods of time, creating gaps when they are below the
horizon. In addition, because LEO objects complete many orbits per day, if each object is only observed
once per night, there can be a large number of unobserved orbits between measurements. Both effects
make measurements-to-track correlations more complex compared to higher-altitude regimes such as
GEO [35], as well as increasing the difficulty for sensor scheduling. Moreover, the non-linearity of the
dynamical propagation mentioned in statement (iii) is also dependent on the orbital regime (OR) of the
RSOs with the magnitude of the perturbing accelerations1 used to model the translational and rotational
dynamics varying with the OR. Accurately modelling these perturbations, while maintaining a balance
between sufficient accuracy and computational efficiency, is one of the challenges in SSA. Objects
along the diagonal in Figure 2.1 are in a circular orbit, which includes the Medium Earth Orbit (MEO)
and Geosynchronous Orbit (GEO) satellites, which tend to be easier to track compared to the LEO,
and Geosynchronous Transfer Orbit (GTO) satellites, for which the perturbing accelerations are more
complex to model or exhibit more significant variations in their orbit states [35]. To improve the sensor
data quality, space-born sensors are emerging as a superior approach compared to ground-based
observations since they are uninterrupted by daylight, and not affected by atmospheric phenomena
such as diffraction, aberrations, turbulence and scattering [33]. However, this also creates the need
for better sensor management schemes and multi-sensor data fusion strategies [32, 33, 87], which will
further be discussed in section 2.2.

2.2. Approaches Overview
When it comes to MTT, various approaches have been developed through the years, starting with
the Global Nearest Neighbour (GNN) [12] or efficient spatial searching algorithms associating tracks to
measurements [73], to the modern approaches applying the Random Finite Sets framework. A general
tree overview of the most relevant methods can be found in Figure 2.2. Even though they are compu-

1Including but not limited to: third body perturbations, atmospheric drag, solar radiation pressure, manoeuvres, mass distri-
bution, attitude dependent effects

2.2. Approaches Overview 5

tationally efficient, methods such as the GNN cannot be applied to SSA due to their poor performance
in situations where the clutter or target densities are high [28, 70]. On the other hand, more robust
approaches to the problem are the Multiple Hypothesis Tracker (MHT) and the Joint Probabilistic Data
Association (JPDA), both of which rely on data association, but are known to be NP-hard computation-
ally i.e. scale exponentially with the number of measurements and targets. Despite this, improvements
have been made and algorithms based on MHT have been demonstrated to handle scenarios with
thousands of objects in the fields of cell biology and wildlife tracking [15, 9], which is still orders of mag-
nitude below what is needed for SSA. Moreover, for JPDA, known limitations include computational
efficiency, the handling of birth and death of targets [70], and decreased performance in the presence
of densely spaced targets [28]. In recent years, S. Krishnaswamy [38] proposed a JPDA method via
tensor compression for GEO MTT applications, performing more efficiently at the cost of accuracy, and
even though ongoing research into JPDA methods for SSA exists, they are the exceptions. Indeed, in
recent years when it comes to large-scale multi-object tracking, the preferred approaches and leading
research occur within the RFS multi-sensor fusion algorithms framework, which is further subdivided
into the PHD/CPHD filters [28, 87, 80, 58], the multi-Bernoulli filters [81, 46, 41, 44], LMB filters [4, 25,
35, 45, 60, 69, 82], hybrid Poisson Multi-Bernoulli filters [70, 86, 13, 26, 72], and HISP [19]. Before go-
ing over the strengths and limitations of these methods, a special mention to two pillars within the fields
of RFS theory and MTT, R. Mahler [48] with the book ”Advances in statistical multisource-multitarget
information fusion” which was extensively used to understand the underlying mathematical concepts,
and the Vo brothers with their numerous publications on the problem [31, 4, 75, 65, 35, 68, 66, 3, 5].

Figure 2.2: Overview of different MTT methods (HISP conceptually related to RFS but not part of the family)

GNN
The Global Nearest Neighbour (GNN) Method is one of the oldest and most straightforward recur-
sive Bayesian multitarget filters, also known as the 2D assignment algorithm [12, 34]. It is a single-
hypothesis assignment method: for each new set of measurements, the tracker attempts to assign
each observation to an existing track or create a new track for unassigned measurements. This assign-
ment is based on minimizing a global association distance, which measures how well a measurement
matches a predicted target state, taking into account both position and uncertainty.

The term “global” distinguishes GNN from simple nearest-neighbor approaches. Instead of indepen-
dently assigning each measurement to the closest track, GNN considers all possible measurement-
to-track pairings simultaneously and selects the combination that minimizes the total association cost
across all tracks. This step is essential in high-density scenarios, as it prevents conflicting assignments
such as two tracks claiming the same measurement and ensures that the overall assignment across
all tracks is optimal.

A key preprocessing step in GNN (and for all MTT methods) is gating, which reduces the number of
candidate measurements considered for each track. Gating defines a validation region around the
predicted measurement using the track’s predicted state and its uncertainty. This region is typically

2.2. Approaches Overview 6

ellipsoidal in measurement space and is defined using the Mahalanobis distance between the actual
measurement yk+1 and the predicted measurement ŷk+1 = g(x̂k+1|k):

d2(yk+1) = ỹTS−1ỹ ≤ G, ỹ = yk+1 − ŷk+1, (2.1)

where:

• yk+1 is the actual measurement obtained at time step k + 1,
• ŷk+1 is the predicted measurement for the track at time k+1, calculated using the measurement
model g(·),

• x̂k+1|k is the predicted state of the track at time k + 1 based on the previous estimate at time k,
• ỹ is the measurement residual vector, representing the difference between the actual and pre-
dicted measurements,

• S is the predicted measurement covariance matrix, representing uncertainty in the predicted mea-
surement. In the simplest linear Kalman filter case, S is computed as S = HPHT +R, where P is
the predicted state covariancematrix,H is themeasurement matrix that maps the state space into
the measurement space, and R is the measurement noise covariance matrix. A more thorough
discussion of Kalman filters for linear and non-linear scenarios is provided in subsection 4.5.2.

• d2(yk+1) is the squared Mahalanobis distance of the measurement from the predicted track,
• G is the gating threshold, defining the boundary of the validation gate.

Only measurements satisfying d2(yk+1) ≤ G are considered for association, while measurements out-
side the gate are ignored. Increasing G enlarges the gate, allowing more candidate measurements at
the cost of potentially more ambiguous associations.

Figure 2.3: Visual representation of a validation gate for
a track and its associated measurements. T1 ≡

estimated mean state of target 1, dashed line represents
an equiprobability curve (i.e. Gate)

Figure 2.4: Visual representation of the GNN with data associations
conflicts

In low-density scenarios, if no conflicts occur between tracks, the GNN assignment is straightforward:
each track is simply assigned to its nearest neighbour within the gate. However, in high target or clutter
density, as is common in SSA, multiple measurements may fall within a track’s validation gate, or a
single measurement may lie inside multiple track gates, increasing the risk of incorrect associations
[28]. This is illustrated in Figure 2.3, where measurements Oi, ∀i ∈ {1, 2, 4} are within the validation
gate of T1, which represents the predicted mean state of target 1. Measurements outside the gate,
Oi, ∀i ∈ {3, 5, 6}, are precluded from association with T1. A visual example and pseudo-code of gating
are presented in chapter 4, although the basic approach follows the same principles described in this
section. On the other hand, in case there are multiple targets, as in Figure 2.4, it is possible for a
measurement to fall within the validation gate of multiple targets, as is the case of O3, which is inside
the validation gate of T3, T2 and O4, which is in the validation gate of all three targets. To resolve
this conflict, the tracker needs to solve a more complex data association problem by evaluating a cost
matrix Cij , which in this research is done using Murty’s algorithm [56] in combination for the Hungarian
method for optimal assignments [39] as further explained in section 4.5. Nonetheless, a simplified cost
matrix structure may consist of a generalised statistical distance between observation i and track j,

2.2. Approaches Overview 7

such as the Mahalanobis distance, to which additional penalties can be added based on factors such
as penalising tracks with larger prediction uncertainties. Using Figure 2.4 as template the following
hypothetical cost matrix C can be produced,

O1 O2 O3 O4

C =


7.1 × × 4.3

× 5.2 8.4 5.1

× × 6.6 3.2


T1

T2

T3

where × denotes when a measurement i is not considered a possible assignment for track j, as it falls
outside its validation gate. Moreover, for this example the optimal assignment
A1 = {(T1, O1), (T2, O2), (T3, O4)} with a total cost of 15.5 is highlighted in bold and can be found
using the Hungarian algorithm [39] (algorithm 6) for optimal assignments. It should be noted that for
implementation purposes× can be assigned a very large values (e.g. 1000) or set to the numerical limit
(i.e. +∞) such that the total cost of solutions with × is never the optimal assignment. Furthermore, the
GNN method will use the unassigned measurement O3 to create a new tentative track T4. On the other
hand, for more advanced MTT methods or assignment problems it is possible that suboptimal solutions
are required, i.e. the k next best possible assignment solutions. In order to compute these suboptimal
assignments the Murty algorithm [56] (algorithm 7) can be used. After the single most likely association
A1 is computed using the Hungarian algorithm (or equivalent optimal assignment algorithms), Murty’s
algorithm computes the suboptimal solution by excluding possible individual assignments from the
cost matrix one at a time and running the Hungarian algorithm for optimal assignments on the reduced
problem. This process is repeated until a set number of possible assignments have been returned. For
the simplified example the optimal/suboptimal solutions summarised in Table 2.1 are computed using
Murty’s algorithm [56] and in subsection 4.5.3 the step by step Hungarian algorithm process to compute
A1 is showcased.

Table 2.1: Murty’s Assignment Algorithm Results for Optimal/Suboptimal Assignments (5-best assignments)

Rank i Assignment A Total Cost

1 {(T1, O1), (T2, O2), (T3, O4)} 15.5
2 {(T1, O4), (T2, O2), (T3, O3)} 16.1
3 {(T1, O1), (T2, O3), (T3, O4)} 18.7
4 {(T1, O1), (T2, O4), (T3, O3)} 18.8
5 {(T1, O1), (T2, O2), (T3, O3)} 18.9

MHT
MHT offers a more exhaustive approach to solving the multitarget estimation problem by employing
all permutations of the measurement-to-track association, guaranteeing that the correct association
is found at the expense of computational load [28]. In a measurement-oriented implementation as
originally introduced by Reid [63], this computational burden originates from the creation of a new
hypothesis of object-state-updates for each permutation, while considering all possible object-to-track
associations. Furthermore, not only are all of the hypotheses propagated to the next measurement time,
but new ones are also generated, such that the procedure can become computationally demanding in
case the number of objects is large, as is the case for SSA. Nonetheless, this guarantees that one
hypothesis will contain the correct associations at all times with an optimal estimate, given that all
permutations are kept. An illustrative example of how the hypothesis table and associated probabilities
can be generated for a two-measurements, two-tracks scenario is provided in Figure 2.5 and Table 2.2.

2.2. Approaches Overview 8

Figure 2.5: Assignment problem of measurements
Oi, ∀i ∈ {1, 2} to tracks Ti, ∀i ∈ {1, 2} in a two measurements
two tracks scenario with overlapping gates and measurements

Table 2.2: Hypothesis Table MHT, num(T) = 2, num(O) = 2

Hyp T1 T2 L(Hyp)

1 ∅ ∅ (1− pD)2λ2

2 ∅ O1 f12 · pD · (1− pD)λ

3 ∅ O2 f22 · pD · (1− pD)λ

4 O1 ∅ f11 · pD · (1− pD)λ

5 O1 O2 f11 · f22 · p2D
6 O2 ∅ f21 · pD · (1− pD)λ

7 O2 O1 f21 · f12 · p2D

In Table 2.2, each row represents one hypothesis, i.e. the assignment of the measurements Oi (includ-
ing the no measurement assignment ∅) for all tracks Tj . On the other hand, each column represents
possible assignments of measurements for one track. As such, Hyp(2) : [∅ O1] assigns no measure-
ments to track 1 and assigns measurement 1 to track 2. Moreover, computing the probability that a
given hypothesis is correct is performed by first using Eqs.(2.2) - (2.3), in which the likelihood of each
assignment a of measurementOi to track Tj is determined [28], and further multiplying these likelihoods
within the same row and normalising.

L(a) =

{
(1− pD)λND if a ∈ ∅
fij · pD · λ(ND−1) if a ∈ {Oi}, i ∈ N ∗ (2.2)

fij = pf

(
z(i); z̄(j), P (j)

zz

)
(2.3)

Moreover, it can be seen that in the scenario where a ≡ ∅ i.e. no measurement is assigned to a track
j, L(∅) is a function of the probability of detection pD, the false alarm density λ and the number of
detections within the gate ND. On the other hand, in case a measurement is assigned to a track, L(a)
is in addition a function of the measurement likelihood fij , which in turn depends on measurement z(i),
predicted measurement z̄(j), and uncertainty matrix P (j)

zz .

Hence, for each hypothesis, the tracks are updated and propagated to the next epoch, where a hypoth-
esis generates a new hypothesis table, for which the probabilities are computed anew and normalised
using the hypothesis that spawned it. This generation of new hypotheses can grow exponentially with
the number of objects to be tracked, requiring significant computational resources. In practice, however,
various techniques can be employed to remove unlikely hypotheses, set thresholds, improve compu-
tational efficiency, and prevent the number of hypotheses from growing unreasonably large. Indeed,
when the number of objects is large, the measurement-oriented approach by Reid [63] can make the
problem computationally demanding, and although advances have been made to reduce the number
of hypotheses [17] or employ track-oriented MHT [34, 11], it is still estimated that for SSA and MTT,
more suitable approaches exist.

JPDA
While the GNN method makes a rigid assignment of a detection to a track, the JPDA method applies a
soft assignment so that detections within the validation gate of a track can all make weighted contribu-
tions to the track based on their probability of association [22]. Furthermore, similarly to the MHT, the
JPDA approach produces the same hypothesis table and probabilities, but further merges the hypothe-
ses for a weighted measurement update, thus propagating a single set of object states per epoch.

For instance, returning to the hypothesis Table 2.2, to perform the weighted measurement update, the
sum of probabilities of all hypotheses having a matching measurement to track association is gathered.
As such if we consider H4 and H5 which both assign O1 to T1, the total probability of this assignment

2.2. Approaches Overview 9

therefore becomes p11 = p(H4) + p(H5). Obtaining the weighted residuals used to update the tracks
in the correction step:

y
(i,j)
k = z

(i)
k − z̄

(j)
k

y
(j)
k =

m∑
i=1

pijy
(i,j)
k

Another way of understanding what is happening is considering that the JPDA requires one more step
compared to the GNN as since T2 and T1 conflict for the assignment of O1, to calculate the associated
probability p11 we must consider the joint probability that T2 is not assigned to O1 i.e. T2 is assigned
to O2 or is unassigned. As such if another measurement O3 was in the gate of T2, we would need to
consider in addition that T2 is assigned toO3, a new hypothesisH8 : [O1 O3] or simply p⋆11 = p11+p(H8).

Hence, JPDA is less resource-intensive than MHT due to its hypothesis management, which reduces
the hypothesis table to a single set of object states to propagate per epoch. Nonetheless, because
it merges information from measurements not necessarily generated by each target, JPDA produces
less accurate estimates than MHT in regions with densely spaced targets, such as in SSA [28]. Con-
sequently, conventional JPDA filters can be error-prone in such high-density scenarios [70, 48] and
may still become computationally expensive, although generally less so than MHT [70, 48]. Recent ad-
vancements by Krishnaswamy [38] use tensor compression methods to represent a low-dimensional
approximation of the measurements, achieving a speedup at the cost of some accuracy loss. How-
ever, the author noted that realistic data association scenarios for GEO MTT remain challenging due
to the ”exponential scaling of JPDA itself.” Therefore, JPDA methods are not further investigated in this
research.

PHD/CPHD
The classical Probability Hypothesis Density (PHD) method proposed by Mahler [48], and based on
RFS, estimates the intensity function (first-order moment) of the multi-target posterior distribution within
the Bayesian framework. Unlike the previously discussed data association based methods such as
GNN, MHT, or JPDA, the PHD filter simultaneously estimates both the number of targets and their
states. It represents the multi-target state as a RFS i.e. a random size set of random vectors corre-
sponding to object states, and operates on unlabelled targets, updating a spatial density rather than
producing explicit tracks. In the sameway that the Kalman filter is amoment approximation to the single-
target Bayes filter, the PHD is the first moment approximation to the multitarget Bayes filter. It effectively
addresses challenges such as sensor inaccuracies, dynamic target variations and unknown & time vary-
ing number of targets [28, 87]. Nonetheless, implementing this filter without simplifications is a difficult
and computationally complex task due to its multidimensional integrals. Two possible simplifications
were introduced by Vo et al. - approximating the PHD as a Gaussian Mixture (GM) yielding the classical
GM-PHD filter [74] or implementing the filter using the sequential Monte Carlo (SMC) method yielding
the classical SMC-PHD filter [76]. The GM-PHD method is preferred over the SMC-PHD method since
it has the advantage of lower computational cost and simpler state extraction. However, using the
classical GM-PHD approach has drawbacks, including the production of a large number of redundant,
invalid likelihood functions in dense clutter environments, and the expected number of targets varies
significantly from one epoch to the next, resulting in reduced computational efficiency [28, 48, 80].

A solution to improve the GM-PHD filter was proposed by Vo et al. [57], introducing a tracking label, ex-
tracting the target track by assigning a label to each Gaussian component. However, in a dense clutter
environment, this leads to the emergence of many Gaussian components from unidentified sources,
hence increasing the computational complexity of the label GM-PHD in the subsequent prediction and
update steps. As such, Wang et al. [80] introduced improvements to the steps for the Gaussian com-
ponents with the same label, greatly reducing the computational burden and error in dense clutter
environments. Similarly, Zhu et al. [87] observed that the classical GM-PHD filter mistakenly identifies
stars passed by targets as actual targets, further exacerbating the existing target quantity estimation
error of classical PHD filters in space-borne sensor scenarios. The authors proposed an improved
GM-PHD filtering algorithm, which removes stars and noise based on spatio-temporal pipeline filtering
techniques [79].

2.2. Approaches Overview 10

On the other hand, another solution to address the high variability in the expected number of targets
in the classical GM-PHD is to propagate and update the cardinality distribution in addition to the PHD
function, yielding the Cardinalized Probability Hypothesis Density (CPHD) filter, for which the classical
version is described in [48]. A centralised system, multi-sensor GM-CPHD with measurement-based
birth model, was implemented by Gehly [28], and was successful in tracking a small number of geo-
stationary objects in the presence of missed detections and sparse clutter. Nonetheless, one of the
identified drawbacks of the CPHD filter was the so-called ‘spooky‘ effect [23], in which missed detec-
tions cause the probability mass to shift from undetected to detected objects at a distance. Although
clustering techniques exist to alleviate the problem, it suggests that better approaches based on multi-
Bernoulli filters exist for SSA [28].

Moreover, one of the drawbacks of the centralised system assumption is that, although it is known
to provide an optimal solution, it requires partitioning the sensor measurements into disjoint subsets
to manage the combinatorial complexity of multi-target associations [28, 58, 44, 25]. In a centralised
GM-CPHD filter, each measurement could potentially originate from any target or clutter, and the fil-
ter must compute the joint likelihood over all possible associations. Without partitioning, the number
of possible measurement-to-target assignments grows combinatorially with the number of targets and
measurements, making the problem intractable. Partitioning into subsets reduces this complexity by
allowing the filter to process smaller groups of measurements independently, but even then, the total
computational cost remains high for large numbers of targets, sensors, or measurements. This com-
putational burden motivates the exploration of distributed implementations, which can achieve similar
performance with lower resource requirements [58, 43].

On the other hand, distributed systems have a lower computational load and have shown promising
results, as demonstrated by a distributed GM-CPHD filter implementation by Park et al. [58]. Similarly,
a distributed network PHD filter can be implemented using the process described in [43].

Multi Bernoulli
Before introducing the multi-Bernoulli (MB) filter, it is helpful to recall the underlying distributions. A
Bernoulli distribution models a binary random variable, representing whether a single target exists or
not, with existence probability r (i.e., target exists with probability r and does not exist with probability
1− r). Extending this to multiple independent targets yields the Multi-Bernoulli (MB) distribution, which
is a collection of independent Bernoulli components, each with its own existence probability ri and state
distribution pi(x). In tracking terms, the MB distribution provides a convenient way to approximate the
multi-target posterior by maintaining a set of Bernoulli components, each corresponding to a potential
target. Figure 2.6 illustrate the Bernoulli and Multi-Bernoulli representations with a short summary of
what is computed to get to the results below

Bernoulli distribution. A Bernoulli random variable has only two outcomes:

X =

{
1 (target exists) with probability r,
0 (no target) with probability 1− r.

Example with r = 0.7:

P (X = 1) = r = 0.7, P (X = 0) = 1− r = 0.3.

Multi-Bernoulli distribution (two targets). Consider two independent Bernoulli components with ex-
istence probabilities r1 = 0.8 and r2 = 0.4. The joint probability mass function (PMF) is obtained as the
product of the independent Bernoulli probabilities:

P (∅) = (1− r1)(1− r2) = 0.2× 0.6 = 0.12,

P ({target2}) = (1− r1)r2 = 0.2× 0.4 = 0.08,

P ({target1}) = r1(1− r2) = 0.8× 0.6 = 0.48,

P ({target1, target2}) = r1r2 = 0.8× 0.4 = 0.32.

2.2. Approaches Overview 11

These four probabilities sum to 1, as required. The expected cardinality is

E[N] = r1 + r2 = 1.2.

(a) Bernoulli RFS in state space. A single Bernoulli component represents the existence of one target with
probability r, or no target with probability 1 − r.

(b) Multi-Bernoulli RFS in state space. Several independent Bernoulli components represent different potential
targets, each with its own existence probability ri and spatial distribution pi(x).

Figure 2.6: Bernoulli and Multi-Bernoulli Random Finite Set (RFS) representations in state space.

Thus after the introduction of the PHD and CPHD filters, Mahler [48] proposed a multi-target multi-
Bernoulli (MeMBer) filter, which approximates the multi-target posterior probability density function by
calculating the updated multi-Bernoulli RFS of measurements and the missed targets, i.e. instead of
propagating moments, the MB filter propagates the parameters of an MB distribution that approximate
the posterior multi-target density by maintaining several Bernoulli components over time. Thus, it has
the same complexity as the PHD scaling linearly with the number of measurements [44]. Furthermore,
similarly to the PHD/CPHD relation, the MeMBer filter suffers from overestimating the cardinality and
as such the Cardinality Balanced MeMBer filter was introduced [48]. Wang et al. [81] implemented an
updated version of the CBMeMber based on Gaussian Mixtures and in a comparative study against
the PHD/CPHD/MeMBer found that CBMeMBer achieves a better tracking performance, but has short-
comings when it comes to measurement innovation that are neglected when the probability of missed
detections is large enough. Moreover, the missed detection target information is required when calcu-
lating the Bernoulli RFS of updated measurements. Additionally in an attempt to reduce the computa-
tional complexity, several variations of the filter’s implementation have been developed, such as the
standard jump Markov (JM) or the Rao-Blackwellized JM CMBMBer filters, which have been compared
and analysed by Li [41], attempting to reduce computational complexity. Moreover, in the classical
sense, the CBMeMBer filter is a single-sensor multi-target tracking method and has been extended to
a multi-sensor system. Liu et al. [46] introduced a track association and fusion method for multi-sensor
based on the CBMeMBer filter, and have shown that the performance is comparable to the equivalent
multi-sensor implementations of the PHD filter, but the proposed method is insensitive to the obser-
vation noise and clutter rate, and marginally affected by the probability of detection. Nonetheless, it

2.2. Approaches Overview 12

oversimplifies the problem of target birth, which in real scenarios is unknown, but was assumed as prior
knowledge.

GLMB/LMB
The Generalized Labeled Multi-Bernoulli (GLMB) filter builds on the Multi-Bernoulli concept using a con-
jugate prior for labeled RFSs. Labeled Random Finite Set (RFS) filters extend the concept of standard
RFS filters by explicitly assigning unique labels to each target, allowing the filter to maintain identity over
time. This labeling provides a natural framework for estimating target trajectories, rather than just the
number and states of targets, which is the focus of PHD, CPHD, and multi-Bernoulli filters. Thus, un-
like PHD, CPHD, and CBMeMBer filters, which only propagate target existence and state distributions,
the GLMB maintains a mixture representation, where each component corresponds to a possible data
association history. These explicit data associations are the main source of computational complexity
in the δ-GLMB filter [20]. A detailed theoretical background of Labelled RFS theory is further discussed
in subsection 4.3.1.

Reuter et al. [65] introduced the labeled Multi-Bernoulli (LMB) filter as a generalization of the multi-
Bernoulli filter, combining the advantages of formal track estimation and avoidance of the ‘spooky effect’
seen in CPHD. The LMB can also be viewed as a computationally efficient approximation to the δ-GLMB
filter. Later developments include Gibbs sampling implementations [64] and the Marginalized δ-GLMB
(Mδ-GLMB) filter [20], which reduce complexity while preserving key statistics such as cardinality and
PHD. Recent work by Beard et al. [4] extends GLMB methods to large-scale multi-object tracking
scenarios.

Hybrid Poisson Multi Bernoulli
The Poisson Multi-Bernoulli Mixture (PMBM) filter family is one of the more recently developed when it
comes to RFS filters, and represents themulti-target posterior as a union of a Poisson point process rep-
resenting all undetected targets and a multi-Bernoulli mixture which considers all the data association
hypotheses, and can be regarded as a generalised model of the δ-GLMB density [70, 86]. Furthermore,
the PMBM filter can achieve the same tracking performance as the δ-GLMB filter, but with a lower com-
putational load as it propagates significantly fewer hypotheses [86]. Fernández et al. [26] provided
the PMBM filter’s derivation and implementation and established the connection to the δ-GLMB filter.
The PMBM filter family is a good candidate to handle the needs of SSA, with Cament et al. [13] imple-
menting the Poisson Labelled Multi-Bernoulli (PLMB) filter for space-debris tracking in LEO orbit. The
PLMB filter approximates the PMBM filter, propagating a single LMB distribution, whereas the PMBM
propagates multiple MB distributions. It has been shown that the PLMB filter has similar MTT perfor-
mance compared to the LMB/PMBM filters, but with higher computational efficiency [14]. The method
introduced by Cament et al. [13] can further be developed by changing the multi-sensor strategy from
iterative multi-target update by each sensor based on the Loopy Belief Propagation (LBP) algorithm, to
a more advanced strategy such as Gibbs sampling, additional considerations could involve changing
the single state distribution to better fit the RSO distributions and introducing a more complex state
extractor. Even more recently, Zhao et al. [86] introduced a PMBM-based MTT under measurement
merging with a GM-based implementation, and Gibbs sampling for efficient data association. How-
ever, this work can extend to multi-sensor cases and robust algorithm cases with partially unknown
parameters.

HISP
The Hypothesised and Independent Stochastic Populations (HISP) filter stems from the framework of
stochastic populations, which shares similarities with the RFS framework. The HISP filter is a principled
approximation of the Distinguishable ISP (DISP) filter, maintaining linear complexity in the number
of tracks and observations by simplifying the data-update step [19]. This property makes HISP an
attractive, scalable solution for SSA. Delande et al. [19] present a practical implementation of the
algorithm with promising results, although no explicit comparison with other methods is provided.

The current implementation is sequential, but the algorithm is amenable to parallelization, which could
further improve computational efficiency. Additionally, the propagator could be enhanced by incorpo-
rating better modelling of perturbing accelerations.

2.2. Approaches Overview 13

2.2.1. Data Fusion
The main advantages of distributed networks are their increased security, redundancy and scalability.
Data fusion methods are usually separated in three levels - low level i.e. fusing raw-data from sensors,
Intermediate or feature level fusion i.e integration of features derived from multiple raw data source (or
within the same raw data) viable for RSO detection, and high level or decision fusion i.e. combination of
decisions/scores from multiple sensors [33]. A global overview of data fusion techniques can be found
in [32], but the average consensus methods have been widely used in MTT for their scalability and
flexibility [58, 44, 43, 18]. Among average consensus techniques, the linear arithmetic average (AA)
and the log-linear geometric average (GA) are the most used, and a discussion on their applicability,
pros & cons has been compiled by K. Da et al. [18], with the following observations:

• AA fusion is more effective at preventing misdetections but less capable of eliminating false
alarms, whereas GA fusion is better at suppressing false alarms, but is more susceptible to mis-
detections.

• GA fusion of Poisson/Bernoulli/Identically independent distributed cluster - multi-target probabil-
ity distributions tends to underestimate the number of targets, whereas AA fusion consistently
maintains an unbiased cardinality. Furthermore, GA has been observed to experience a delay in
detecting newborn targets.

• GA fusion is more complicated to implement and compute, and requires an approximation which
is valid only when the Gaussian components are well separated. On the other hand, AA is easier
to implement and can be done in parallel since it only requires union and re-weighting operations.

Hence, GA performs better in high clutter density and high false alarm rates, and AA performs better
in low detection probability and closely spaced targets.

Nonetheless, consensus fusion has one major drawback in the specific field of SSA. For Earth and
space-based tracking, the sensors typically only view a small portion of the target scene, with esti-
mates often coming from a single sensor at a time. In consensus data fusion, such estimates are
downweighted, as consensus-based approaches tend to favour data originating from multiple or all
sensors, as it is designed at its core for scenarios where all sensors observe all targets. In cases with a
limited field of view (FoV) or with missed detections, differences in the local posteriors can arise, result-
ing in actual objects being excluded from the fused multi-target estimate. Recently Gehly et. al. [27]
and Battistelli et. al. [42] have proposed a complementary fusion approach based on Generalised Co-
variance Intersection fusion, respectively using the labelled CPHD filter and the LMB filter for sensors
with different FoVs to counteract this issue.

2.2.2. Assessment Metrics
First, it is important to mention that for a quantity to be considered a metric (representing miss-distance)
it must fulfil four properties:

P1. Non-Negativity i.e. d(x, y) ≥ 0

P2. Symmetry i.e. d(x, y) = d(y, x)

P3. Identity i.e. d(x, y) = 0 ⇐⇒ x = y

P4. Triangle inequality i.e. d(x, y) ≤ d(x, z) + d(z, y)

As such, the first well-established, mathematically consistent and physically meaningful metric for per-
formance evaluation of multi-object filters is the Optimal Subpattern Assignment (OSPA), which Schuh-
macher introduced [68], by generalising the concept of miss-distance (i.e. error between estimated and
true state) to MTT. This metric has become standard practice and is used extensively throughout MTT
literature. Nonetheless, OSPA presents some minor drawbacks such as:

• A single parameter determines both the penalty given to cardinality errors and the threshold at
which physical distances in the state space are cut off; as such, separate control, which might
sometimes be desirable, is not possible.

• In case of an empty point pattern, OSPA is insensitive to the cardinality of the nonempty point
pattern.

• Phenomena such as track switching and fragmentation are not penalised consistently.

2.2. Approaches Overview 14

From that point onwards, many variations of OSPA have been introduced. For instance, OSPA for
tracks (OSPA-T) and a method for its approximation were introduced by Ristik [66]. OSPA-T is used
for target tracking where a metric on the space of finite sets of tracks2 (typically of unequal length
in time) is needed. However, T. Vu [78] discusses some of the limitations of the approximate OSPA-
T, such that it no longer satisfies the axioms of a metric, specifically P4, the triangle inequality. The
authors then present an alternative OSPA-MT method which alleviates these drawbacks, but the new
metric becomes computationally demanding for practical problems. One of the newer developments
when it comes to the OSPA metrics variants is the OSPA(2) method for which preliminary results were
published by Beard et al. [3, 5]. The authors then published the complete mathematical details in [4].
The differentiating factor of OSPA(2) is that it is constructed from the base ‘distance between‘ elements
of the sets, where this ‘base distance‘ itself is also constructed via OSPA, rather than from the distance
between tracks as in the OSPA method. Thus, both the OSPA and OSPA(2) metrics measure the
cardinality and precision of sets of targets. Still, only OSPA(2) is designed to take labels into account
[13], and its implementation efficiency has been shown in [4]. Finally, it is worth mentioning the GOSPA
metric introduced by Svensson et al. [62], which has the main difference from the OSPA metric in that it
penalises cardinality errors differently by not normalising with the cardinality of the largest set, enabling
the optimisation over assignments rather than permutations. This allows the introduction of penalties
for localisation errors for detected targets and errors due to missed/false targets.

On the other hand, around the same time as the original OSPA paper [68] was published, K. Bernardin
[8] introduced two methods of assessing multi-object tracking based on the CLEAR MOT heuristics -
Multiple Object Tracking Accuracy (MOTA) ‘metric‘ giving the accuracy in tracking targets by taking into
account label switching, miss detections and false alarms, and the Multiple Object Tracking Precision
(MOTP) giving the estimates target location errors when correctly detected. Even though these quan-
tities have been used to assess performance in computer vision [61] and to a lesser extent for SSA
[13], J. Bento [7] proceeds to show that MOTA is not a metric and specific conditions for MOTP need
to be imposed to ensure it is one. Furthermore, in [7], two new metrics built upon MOTA/MOTP were
introduced. However, it has been shown not to be suitable for large-scale problems, thus not applicable
to SSA.

Identified Gaps
From the literature, most of the implementations were based on MATLAB, which is not open-source,
or Python, which is computationally less efficient than compiled languages. Implementing the rele-
vant methods in C++ allows for offsetting both issues at once. Furthermore, the presented literature
implements estimators that consider using the same filter independently of the size of the RSO. Still,
implementing different filters within the same estimator tailored for different RSO sizes/types can be
an interesting approach for SSA. Finally, the Hybrid Poisson Multi-Bernoulli filters family and HISP
sections have shown promising results for SSA applications. Still, both lack either an extension of
the proposed idea to multi-sensor / distributed networks, a proper comparison analysis with more es-
tablished methods such as the PHD/CPHD/GLMB, or provide opportunities for improvements in their
implementation.

2With one track defined as a labelled temporal sequence

3
Research Question

Given the escalating complexity and computational demands of Multi-Sensor Multi-Target Tracking for
Space Situational Awareness, where the need to monitor an increasing population of satellites and
debris is critical the main research question of this thesis is:

Which methods within the Random Finite Set framework can be optimised, scaled up efficiently
and combined to handle the increased computational demands of the distributed network multi-
sensor multi-target problem for space situational awareness?

To tackle this question we further sub-divide it into the following research guiding questions:

RQ-I. Which RFS methods perform the best under the simplifying assumption of central network single-
sensor MTT problem based on OSPA and computational time metrics?

RQ-II. How do these methods perform on multi-sensor centralised/distributed network MSMTT problem
based on OSPA and computational time metrics?

RQ-III. How do the estimators perform on a simplified SSA model?

15

4
Methodology

This chapter provides a more in-depth review of the theoretical background and multi-target techniques
which will be used for this research. Additionally, some implementation techniques and code structures
are provided.

For the remainder of this chapter, the assumed equations of motion are of the form

ẋ = f(x,w, t) (4.1)

where x is the state vector and w is a zero mean white noise process. Furthermore, the measurement
relationship is given by

zk = g(xk, tk) + ϵk, xk ≡ x(tk) (4.2)

where ϵk is a zero mean measurement noise vector. Moreover, for the orbital debris problem, both the
dynamics and measurement relationships are generally non-linear.

4.1. Finite Set Statistics
The approach taken in this research places finite set statistics (FISST) at its core; as such, a broad in-
troduction to what they represent will be provided, based on the whole, in-depth derivations and discus-
sions advanced by Mahler [48]. FISST was introduced to address the main drawbacks of conventional
multitarget filters, which rely on single-target filters to propagate and update object states, resulting in
the requirement to associate individual measurements with specific targets —a data association task
that is the most computationally expensive in these methods. On the other hand, the distinguishing
feature of FISST is that it applies multitarget statistics to process a set of measurements and to update
a set of object states, directly seeking the optimal and suboptimal estimates of the multitarget state,
disregarding the data association problem [75].

The core element of FISST is the Random Finite Set, which represents an order-independent set of
random vectors used to describe sets of object states or measurement vectors. As such we can define
the targets state set X, and the measurement sets Zk+1, i.e.

X = {x1, . . . ,xn} with n ≥ 0; and (4.3)

Zk+1 : Z1, . . . , Zk+1 where Zk = {z1(tk), ..., zm(tk)} m ≥ 0 (4.4)

is the time history of measurement sets at tk+1. Thus, in place of the list of measurement-updated
association hypotheses, the RFS approach uses a Multitarget Probability Density Function (M)PDF

fk+1|k+1(X|Zk+1) (4.5)

defined on the finite sets from Eqs. (4.3) - (4.4). As such, fk+1|k+1(X|Zk+1) represents the probability
(density) that the targets have state set X, given measurement history Zk+1. Moreover, since n ∈ N

16

4.2. Probability Hypothesis Density 17

the following scenarios are possible:

X =



∅ if no targets are present
{x1} if one target with state x1 is present

{x1,x2} if two targets with states x1 ̸= x2 are present
...

...
...

(4.6)

To illustrate the three core elements of FISST i.e. the multitarget PDF, belief-mass function, and set
integral —an example based on the state RFS X is provided. First, we assume that the multitarget
PDF p(X) ≥ 0 exists. Then the belief-mass function β can be defined as the probability that X is in
some space Ω such that

βX(Ω) = Pr(X ∈ Ω) =

∫
Ω

p(X)dX (4.7)

For which we define the set integral as a sum of integrals, where each term accounts for a different
possible number of targets n. This is the case because the RFS contains a discrete, unordered number
of continuous state vectors.

∫
Ω

p(X)dX =

∞∑
n=0

1

n!

∫
Ω×...×Ω

j(n) ({x1, . . . ,xn}) dx1 · · · dxn

= p(∅) +
∫
Ω

j(1)({x1})dx1 +
1

2

∫
Ω×Ω

j(2) ({x1,x2}) dx1dx2 + . . .

(4.8)

where j(n)(. . .) represents the spatial distribution of n targets known as the n-th order Janossy density.
Thus, it can now be defined ∫

p(X)dX = 1 (4.9)

from which the cardinality distribution p(n) can be defined as

p(n) = Pr(|X| = n) =
1

n!

∫
j(n)({x1, . . . ,xn})x1 · · · dxn (4.10)

which is the probability that there are exactly n targets in X ≡ |X| = n, meaning that each term of the
set integral corresponds to the cardinality distribution for that number of targets yielding∫

p(X)dX = p(∅) + p(1) + p(2) + · · · = 1 (4.11)

Lastly, we introduce the concept of statistical moments. For single-target statistics, the first moment of
a PDF is the mean. Similarly, it is possible to extend this concept where, in the multitarget case, the
first moment is the probability hypothesis density function defined by

ν(x) =

∫
p({x} ∪X)dX (4.12)

4.2. Probability Hypothesis Density
Some general background for the PHD filter has already been provided in section 2.2. In this section,
the focus will primarily be on introducing the base formulas and methodology for the simulation and
presenting the results of a simple 2D benchmark test case.

4.2. Probability Hypothesis Density 18

4.2.1. Theory
The PHD represents a target density in some region of single target spaceΩ. It propagates the posterior
intensity, a statistical moment of the posterior multiple target state [74]. As such by integrating Eq. (4.12)
over Ω we can obtain the number of targets N in Ω, as the integral of ν over any region Ω gives the
expected number of elements of X that are in Ω.

N̂ =

∫
|X ∩ Ω |P (dX) =

∫
Ω

ν(x)dx (4.13)

In Equation 4.13, the notation P (dX) represents the probability measure over all possible realizations
of the RFS X [48]. Each realization X may contain a different number of targets with varying states,
and the measure assigns a probability to each configuration. The set integral∫

|X ∩ Ω|P (dX)

thus computes the expected number of targets in the region Ω, averaging the random variable |X ∩Ω|
over all possible sets X. Intuitively, |X ∩Ω| simply counts the number of targets from the set X that lie
within the region Ω.

When a multitarget probability density function p(X) exists, the measure can be expressed in density
form as P (dX) = p(X) dX, where dX denotes the set integral element over all finite subsets of the
single-target state space. Using this representation, the expectation can equivalently be written in
terms of the PHD ν(x) as

N̂ =

∫
Ω

ν(x) dx,

providing a practical method to compute the expected number of targets as the first-order statistical
moment of the multitarget state. Moreover, the PHD process by its nature can be summarised as a
two-step predictor/corrector as depicted in Figure 4.1 [48].

Bayes: · · · →
predictor corrector

pk (Xk | Z1:k) → · · ·pk−1 (Xk−1 | Z1:k−1) → pk|k−1 (Xk | Z1:k−1) →
↓ ↓ ↓

PHD: · · · → νk−1 (xk−1) → νk|k−1 (xk) → νk (xk) → · · ·

Figure 4.1: PHD simplified schematic

The full PHD recursion is provided in Eqs. (4.14) - (4.15), with symbol explanations in Table 4.1.

νk|k−1(x) =

∫
pS,k(ζ)fk|k−1 (xk | ζ) νk−1(ζ) dζ

+

∫
βk|k−1(xk|ζ)νk−1(ζ) dζ

+ γk(xk)

(4.14)

νk(x) = [1− pD,k (xk)] νk|k−1(x)

+
∑

zk∈Zk

pD,k (xk) gk (zk | xk) νk|k−1(x)

κk (zk) +
∫
pD,k(x)gk (zk | ζ) νk|k−1(x)dζ

(4.15)

4.2. Probability Hypothesis Density 19

Table 4.1: Symbol legend for full PHD recursion

Term Explanation Term Explanation

γk(·) Intensity of the birth RFS Γk at
time k

Γk RFS of spontaneous birth at
time k

βk|k−1(·|ζ) Intensity of the RFS Bk|k−1(ζ)
spawned at time k by a target
with previous state ζ

Bk|k−1(ζ) RFS of targets spawned at
time k from a target with previ-
ous state ζ

pS,k(ζ) Probability that a target still ex-
ists at time k given that its pre-
vious state is ζ

pD,k(xk) Probability of detection given a
state xk at time k

κk(·) Intensity of clutter RFS Kk at
time k

Kk RFS of clutter received by the
sensor at time k

fk|k−1(xk | ζ) Single-target transition density:
probability density that a target
at state ζ at time k − 1 moves
to state xk at time k

gk(zk | xk) Single-target measurement
likelihood: probability density
of observing measurement zk
given the target is at state xk

However, since the computation of the integrals necessary to implement the filter is a complicated or
even intractable task, to simplify the problem we will follow the proposed Gaussian Mixture approxima-
tion by Vo et al. [74] as well as the implementation approach outlined in [74] and [49], which comes
with an example database in MATLAB https://ba-tuong.vo-au.com/codes.html.

PHD Recursion for Linear Gaussian Models

Table 4.2: Simplifying Assumptions

Description

1 Targets follow a linear Gaussian dynamical model, and the sensor has a linear
Gaussian measurement model, i.e.

fk|k−1(x|ζ) = N (x;Fk|k−1ζ,Qk), gk(z|x) = N (z;Hkx,Rk),

whereN (·;m,P) denotes a Gaussian density with meanm and covarianceP, and
Fk|k−1, Qk,Hk, andRk are respectively the state transition matrix, process noise
covariance, observation matrix, and observation noise covariance.

2 The survival and detection probabilities are state-independent, i.e.

pS,k|k−1(x) = pS,k|k−1, pD,k(x) = pD,k.

3 The intensity of the birth RFS is a Gaussian mixture:

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
γ,k,P

(i)
γ,k),

where Jγ,k, w(i)
γ,k, m

(i)
γ,k, and P

(i)
γ,k are model parameters determining the shape of

the birth intensity.

https://ba-tuong.vo-au.com/codes.html

4.2. Probability Hypothesis Density 20

4 No target spawning is considered i.e. the spawned target RFS intensity is zero:

βk|k−1(x|ζ) = 0 ⇒ Bk|k−1 = ∅

Given the posterior PHD νk−1(x) which follows

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1,P

(i)
k−1) (4.16)

and under the assumptions summarised in Table 4.2, the predicted PHD (with no spawning model) is
given by:

vk|k−1(x) = γk(x) + pS,k|k−1

Jk−1∑
j=1

w
(j)
k−1N (x;m

(j)
S,k|k−1,P

(j)
S,k|k−1) (4.17)

where

m
(j)
S,k|k−1 = Fkm

(j)
k−1

P
(j)
S,k|k−1 = Qk + FkP

(j)
k−1F

⊤
k

Now, suppose that the predicted PHD is rewritten as

vk|k−1(x) =

Jk|k−1∑
i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1,P

(i)
k|k−1)

Then the update step of the PHD recursion, under the linear Gaussian assumptions, is given by the
posterior PHD νk(x):

vk(x) = (1− pD,k)vk|k−1(x) + pD,k

∑
z∈Zk

Jk|k−1∑
j=1

w
(j)
k|k−1q

(j)
k (z)N (x;m

(j)
k|k(z),P

(j)
k|k(z))

κk(z) + pD,k

∑Jk|k−1

ℓ=1 w
(ℓ)
k|k−1q

(ℓ)
k (z)

, (3.28)

where

q
(j)
k (z) = N (z;η

(j)
k|k−1,S

(j)
k|k−1), (4.18)

η
(j)
k|k−1 = Hkm

(j)
k|k−1, (4.19)

S
(j)
k|k−1 = HkP

(j)
k|k−1H

⊤
k +Rk, (4.20)

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k (z− η

(j)
k|k−1), (4.21)

P
(j)
k|k = P

(j)
k|k−1 −P

(j)
k|k−1H

⊤
k [S

(j)
k|k−1]

−1HkP
(j)
k|k−1, (4.22)

K
(j)
k = P

(j)
k|k−1H

⊤
k [S

(j)
k|k−1]

−1 (4.23)

After the prediction and update steps, a simple pruning, merging, and capping scheme is implemented
to manage the number of components in the mixture. Considering the posterior intensity:

4.2. Probability Hypothesis Density 21

vk(x) =

Jk∑
i=1

w
(i)
k N (x;m

(i)
k ,P

(i)
k) (4.24)

the pruning step consist of obtaining an approximation of vk(x) by truncating components with weights
w

(i)
k below a certain threshold. The number of considered components is further reduced by merging

components which have similar means and covariances. This can be done using a clustering algorithm
where the components are re-ordered from highest to lowest weight, and descending from the first to
the last component are merged if they fall within a threshold distance from the covariance of the i-th
component computed using

w
(i)
k w

(j)
k

w
(i)
k + w

(j)
k

(m
(i)
k −m

(j)
k)⊤(P

(i)
k)−1(m

(i)
k −m

(j)
k) (4.25)

The merging is then performed using:

w̃
(ℓ)
k =

∑
i∈L

w
(i)
k (4.26)

x̃
(ℓ)
k =

1

w̃
(ℓ)
k

∑
i∈L

w
(i)
k x

(i)
k (4.27)

P̃
(ℓ)
k =

1

w̃
(ℓ)
k

∑
i∈L

w
(i)
k

[
P

(i)
k + (m̃

(ℓ)
k −m

(i)
k)(m̃

(ℓ)
k −m

(i)
k)T

]
(4.28)

In case the number of components is still deemed too large, we can then impose a hard limit on the
total number of components to consider, and only retain the Jmax components with the highest weights,
also referred to as capping. A very important consideration is that for the prune/cap processes, the
weights need to be renormalised. Last, but not least, the multi-target state estimate can be extracted
by selecting the means of the Gaussians that have weights greater than some threshold.

The GM-PHD filter can be extended to non-linear target models, where the state transition and mea-
surement relationships are expressed as

xk = φk|k−1(xk−1,wk), zk = hk(xk, ϵk), (4.29)

with known non-linear functions φk|k−1 and hk, zero-mean process noise wk and measurement noise
ϵk, and covariances Qk and Rk, respectively.

In this non-linear formulation, the single-target transition density fk|k−1(xk | xk−1) and measurement
likelihood gk(zk | xk) are induced by the corresponding non-linear functions φk|k−1 and hk together
with their respective noise distributions. That is, fk|k−1 and gk retain the same role as in the linear
GM-PHD recursion, representing the probabilistic mappings from previous states to predicted states
and from states to measurements.

TheGM-PHD prediction and update steps are then applied using these densities, with Gaussianmixture
approximations propagated through the non-linear transformations using either the extended Kalman
filter (EKF) or unscented Kalman filter (UKF) approach as outlined in [28], Appendix B.1. The remaining
pruning, merging, and capping procedures remain unchanged from the linear case.

4.2.2. Numerical Example
To illustrate the functionality of the filter, a numerical example1 following the parameters set in ([49],
Chapter 3.8, p.111) is presented, in which a maximum of 10 targets over a timespan of 100 s (≡ 100
time-steps k with ∆t = 1s) are simulated in a two dimensional scenario. The ground truth tracks
can be seen in Figure 4.2 which shows objects moving in straight lines where the start/stop symbols

1All models used for the results compiled in the report have been fully describeed in subsection 4.5.4

4.2. Probability Hypothesis Density 22

i.e. circle/square represent the birth/death of targets at different times of the simulation, within the 2D
region of interest x ∈ (−1000, 1000)m, y ∈ (−1000, 1000)m.

Figure 4.2: Ground truth trajectories in xy plane

Figure 4.3: PHD filter estimates and true tracks in xy coordinates for single run simulation with random seed = 0.

4.2. Probability Hypothesis Density 23

(a) PHD filter x-coordinates estimates vs. time (b) PHD filter y-coordinates estimates vs. time

Figure 4.4: Time series of the PHD filter estimates, ground truth tracks and measurements in cartesian coordinates for single
run simulation with random seed = 0.

Figure 4.5: Estimated vs. true cardinality for the PHD Filter for single run simulation with random seed = 0.

The PHD filter estimates and performance for a single simulation run are presented in Figure 4.3 -
Figure 4.6, where in Figure 4.3 the PHD estimates are plotted in Cartesian space against the true tra-
jectories and the measurements. Figure 4.4 represents the time series plot of the same single run from
which we can observe the modelled birth/deaths of the targets as well as the qualitative PHD accuracy
performance. Furthermore, for this same run quantitative results as to the estimated cardinality per-
formance of the PHD are presented in Figure 4.5 and the OSPA metrics are presented in Figure 4.6.
Before proceeding with the analysis of the results and the introduction of Figure 4.7, representing the
average cardinality error of a Monte-Carlo simultaion of 1000 runs on the same target trajectories but
with independent measurements and clutter for each run, and Figure 4.8 representing the average
OSPA metrics of the same Monte-Carlo simulation, we need to further elaborate on the concept of
OSPA metrics.

4.2. Probability Hypothesis Density 24

Figure 4.6: OSPA metrics with parameters c = 100, p = 1 for single run simulation with timestep (k) = 1s and random seed = 0.

OSPA Metric
The Optimal Sub-Pattern Assignment (OSPA) metric is a fundamental performance measure for multi-
target tracking systems that provides a unified framework for evaluating both localization accuracy and
cardinality estimation errors simultaneously. Background on the introduction and development of this
metric is provided in subsection 2.2.2, the following discussion concerns the computation methodology
for this metric.

The OSPA distance between two finite sets X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, with |X| ≥
|Y | is defined as:

d(c)p (X,Y) =

(
1

n

[
min
π

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

])1/p

(4.30)

Where:

• c is the cut-off parameter (in meters) - maximum penalty for a localization error.
• p is the order parameter (typically p = 1 or p = 2).
• n = max(|X|, |Y |) is the cardinality of the larger set, such that if the cardinality of Y is larger than
that of X we compute d(c)p (Y,X) instead ensuring that m ≤ n.

• d(c)(x, y) = min
(
c, d
(
xi,yπ(i)

))
is the cut-off distance, where d

(
xi,yπ(i)

)
represents a distance

metric in the single target space, for instance the Euclidean distance between the points.
• π represents the optimal assignment minimizing the total cost, with π ∈

∏
n where

∏
n represents

the set of permutations on {1, . . . , n}.

Equation 4.30 is referred to as the p-th order OSPA metric with cut-off c between X and Y , or simply
OSPA distance ≡ total OSPA, and decomposes into two fundamental components - localisation and
cardinality.

4.2. Probability Hypothesis Density 25

On one hand, the localization error captures the accuracy of position estimates for correctly detected
targets:

Localization OSPA =

(
1

n
min
π

m∑
i=1

d(c)(xi, yπ(i))
p

)1/p

(4.31)

This component measures how well the filter estimates the positions of targets that are successfully
tracked. Lower values indicate better localization accuracy.

On the other hand, the cardinality error penalizes discrepancies in the number of estimated targets:

Cardinality OSPA =

(
1

n
cp(n−m)

)1/p

(4.32)

This component accounts for when the estimated cardinality is underestimated i.e. undercount targets
or when the estimated cardinality is overestimated i.e. over-count targets. The penalty is proportional
to the cardinality difference and is capped by the cut-off parameter c.

Figure 4.7: Average estimated cardinality vs time over 1000 MC runs

Figure 4.8: Average OSPA metrics with parameters c = 100, p = 1, over 1000 MC runs with time step (k) = 1s.

4.3. Labelled Multi Bernoulli 26

Discussion of the results
The first general observation is that the filter seems to manage to find all the tracks i.e. all the true
trajectories are covered, which can be seen from both Figure 4.3 and Figure 4.4. However, this is
disproven by Figure 4.5, which shows the cardinality distribution over one run. Indeed, as expected
from theory the PHD filter suffers from inaccuracies in the cardinality estimations as it tends to over and
under-estimate the cardinality at consistently over during the simulation. It is the latter that indicates
that at some times k not all tracks are found by the filter, and although it might ”re-acquire” the ”lost”
track later on this erratic behaviour is unwanted. On the other, hand from Figure 4.7 it can be seen
that on average over many runs the mean estimated cardinality of the filter is very close to the true
cardinality with one standard deviation representing the loss/gain of one existing/non-existing target.

From Figure 4.6 and Figure 4.8 we can analyse the OSPA metrics performance. The first observation
is that at the start of the simulation the OSPA cardinality error is around 60 m for both the ”one run” and
”1000 runs” simulations and is also the peak error during the entire simulation. This transient behaviour
is characteristic of multi-target filters during initialisation and as such will not be discussed further in any
subsequent result graphs. From Figure 4.6 we can observe that the localisation error is in the range
[10, 20]m, while the OSPA cardinality error is behaving erratically and is the largest contributor to the
total OSPA error (OSPA Dist). Interestingly enough when running the MC 1000 runs simulation, we can
observe distinct spikes in OSPA card at k ≈ 20, 40, 60, 80 which coincides with the appearance/death of
new/existing targets, but in between appearances/deaths the cardinality error averages out. This has
somewhat interesting implication, as this shows that by running parallel PHD filters and averaging the
results out would lead to a somewhat marginally more accurate PHD filter result. Local OSPA cardinality
peaks around the birth/death of targets can be expected from intuition and will be further demonstrated
by the more advanced MTT filters implemented in this research as discussed in chapter 5.

4.3. Labelled Multi Bernoulli
4.3.1. Theory
The LMB filter was introduced by Reuter et al. [65] and can be interpreted as an efficient approximation
of the δ-GLMB filter in [77]. However, before discussing the prediction and update components of the
LMB filter, we need to introduce several base concepts. We begin with the concept of a Bernoulli RFS,
an RFS with the property that its cardinality distribution ρ(n) is Bernoulli [67]. As such a Bernoulli RFS
can either be empty (with probability 1− r) or have one element (with probability r) distributed over the
state space X according to PDF p(x). The FISST PDF of a Bernoulli RFS X is thus given by

π(X) =

{
1− r if X = ∅
r · p(X) if X = {x}

(4.33)

By extension a multi-Bernoulli RFS Y is given by the union of theM independent Bernoulli RFSs X(i)

i.e. Y =
⋃M

i=1X
(i) and is completely defined by the parameter set {(r(i), p(i))}Mi=1. Simply put a multi-

Bernoulli RFS is a set with each of its elements being a Bernoulli RFS. Furthermore, the probability
density of a multi-Bernoulli RFS is given by ([47], p.368)

π(Y) ≡ π({x1, · · · ,xn}) =
M∏
j=1

(
1− r(j)

)
×

∑
1≤i1 ̸=..., ̸=in≤M

 n∏
j=1

(
r(ij)p(ij)(xj)

1− r(ij)

) (4.34)

Remark on the difference from the previous example.

In the earlier example in Figure 2.6, only the existence probabilities of the targets were considered,
ignoring the continuous state distributions pi(x). In that case, the Multi-Bernoulli probabilities reduce
to simple products of the Bernoulli existence probabilities:

4.3. Labelled Multi Bernoulli 27

P (∅) = (1− r1)(1− r2),

P ({target1}) = r1(1− r2),

P ({target2}) = r2(1− r1),

P ({target1, target2}) = r1r2.

In contrast, the full Multi-Bernoulli PDF in Equation 4.34 incorporates both the existence probabilities
and the continuous state distributions. Assuming a two-targets 2D example i.e. (M = 2) and Y =
{x1,x2}, the sum in Equation 4.34 goes over all combinations of i1 ̸= i2:

(i1, i2) = (1, 2) and (i1, i2) = (2, 1).

Plugging inM = 2, the Multi-Bernoulli PDF evaluates as:

π({x1,x2}) = (1− r1)(1− r2)

[
r1p1(x1)

1− r1
· r2p2(x2)

1− r2
+
r2p2(x1)

1− r2
· r1p1(x2)

1− r1

]
.

Simplifying the terms:

(1− r1)(1− r2) ·
r1p1(x1)

1− r1
· r2p2(x2)

1− r2
= r1r2p1(x1)p2(x2),

(1− r1)(1− r2) ·
r2p2(x1)

1− r2
· r1p1(x2)

1− r1
= r1r2p1(x2)p2(x1),

so that the final Multi-Bernoulli PDF for this two-target set is:

π({x1,x2}) = r1r2
(
p1(x1)p2(x2) + p1(x2)p2(x1)

)
,

which matches the expected structure of Equation 4.34.

The Multi-Bernoulli probabilities for the chosen points are then:

π(∅) = (1− r1)(1− r2),

π({x1}) = r1(1− r2)p1(x1),

π({x2}) = r2(1− r1)p2(x2),

π({x1,x2}) = r1r2
(
p1(x1)p2(x2) + p1(x2)p2(x1)

)
.

Let the existence probabilities be r1 = 0.8 and r2 = 0.4. Substituting these values (but keeping the
continuous PDFs symbolic) gives

π(∅) = 0.12,

π({x1}) = 0.48 p1(x1),

π({x2}) = 0.08 p2(x2),

π({x1,x2}) = 0.32
(
p1(x1)p2(x2) + p1(x2)p2(x1)

)
,

making it clear that the continuous state densities remain functions of x, while the existence probabilities
scale their contribution to the overall multi-target density.

In Eq. (4.34), the sum in the second term is taken over all permutations of n ≤M of all the independent
Bernoulli RFSsX(i) of Y . Moreover, the numerator of the product within the second represents the prob-
ability density that the Bernoulli components with indices i1, . . . , in generate the realisations x1, . . . ,xn.

4.3. Labelled Multi Bernoulli 28

On the other hand, the first term product is a constant that cancels out with the denominators inside the
sum to give the probability that the leftover Bernoulli components with indices {1, . . . ,M}−{i1, . . . , in}
generate null realisations i.e. ∅. In [47] it is shown that this leads to the expected result of∫

π(Y)dY = 1 (4.35)

Furthermore, by neglecting the spatial distribution term in Equation 4.34, the cardinality of a multi-
Bernoulli RFS is obtained as

ρ(n) =

M∏
j=1

(
1− r(j)

)
×

∑
1≤i1 ̸=..., ̸=in≤M

 n∏
j=1

(
r(ij)

1− r(ij)

) (4.36)

The next concept introduced is that of labelled random finite sets [65, 48].

Recall that the PHD filter maintains an unlabelled set of target estimates at each time step, meaning
it does not output trajectories or uniquely identified tracks of individual objects. Likewise, the standard
Multi-Bernoulli RFS is also unlabelled and therefore suffers the same limitation. For SSA applications,
however, maintaining continuous tracks of individual resident space objects is essential for cataloguing,
conjunction assessment, and custody maintenance. This shortcoming can be addressed by augment-
ing each target state with a unique label, resulting in a labelled RFS formulation that enables consistent
target identification over time.

Hence, to be able to estimate the trajectory of a single tracked object with state x ∈ X in a multi-target
problem, we attach to it a label ℓ ∈ L, where L = {αi : i ∈ N} is a discrete label space with distinct
elements. Thus, we can define a labelled RFS with state space X and label space L as a RFS on
X× L with distinct labels, i.e. a finite-set-valued random variable on X× L such that all realisations of
the labels are unique. Additionally, labels for individual targets are ordered pairs of integers ℓ = (k, i),
where k is the time of birth and i ∈ N is a unique index to distinguish between targets born at the same
time. The label space Lk ≡ {k} × N denotes the label space of new targets born at tk, each of which
has state x ∈ X×Lk. Therefore the label space for all targets at tk i.e. new births and survivals is L0:k

and is constructed recursively using L0:k = Lk−1 ∪ Lk.

Before proceeding further, we need to (re-)introduce some notations/abbreviations which will be used
throughout this research.

Inner Product
⟨ f, g ⟩ ≡

∫
f(x)g(x)dx

Multi-Object Exponential Notation with real valued function h

hX =

1 if X = ∅∏
x∈X

h(x) if X ̸= ∅

Generalised Kronecker delta function supporting sets, vectors and integers

δY (X) ≡

{
1 if X = Y

0 otherwise

Inclusion Function

1Y (X) ≡

{
1 if X ⊆ Y

0 otherwise

4.3. Labelled Multi Bernoulli 29

Additionally in case X is a singleton i.e. X = {x} the notation 1Y (x) is used instead of 1Y ({x}).
Moreover, when no confusion may arise, the following abbreviation can be used for the label space for
all targets L0:k ≡ L, and the cardinality of a set is denoted by | · |.

L(X) = {L(x) : x ∈ X} gives the set of labels of a labelled RFS (LRFS) X, where L : X × L → L
is the transformation defined by L((x, ℓ)) = ℓ. To ensure that the labels of each element in the LRFS
must be unique, we introduce the distinct label indicator ∆(·)

∆(X) = δ|X|(|L(X)|) = 1 (4.37)

On the other hand, V(X) = {V(x) : x ∈ X} = Y is the unlabelled version of the LRFS X, where
V : X× L → X is the transformation defined by V((x, ℓ)) = x. One of the key characteristics of LRFS
is that its cardinality distribution is equivalent to the cardinality distribution of its unlabelled version [65],
i.e. |X| = |Y |.

It then follows that similarly to a MB-RFS the LMB-RFS can be fully described using a parameter set
{(r(ζ), p(ζ)) : ζ ∈ Ψ}, with index set Ψ ∈ N, and if there exists at least one component (r(ζ), p(ζ)) which
returns a non-empty set, we can attach a label using the transformation α(ζ) defined as a general one-
to-one mapping α : Ψ → L. A procedure for sampling from a LRFS can be found in [77], and the PDF
of a labelled multi-Bernoulli RFS on the space X× L is given by

π({(x1, ℓ1), . . . , (xn, ℓn)}) = δn(|{ℓ1, . . . , ℓn}|)
∏
ζ∈Ψ

(1− r(ζ))

×
n∏

j=1

1α(Ψ)(ℓj) r
(α−1(ℓj)) p(α

−1(ℓj))(xj)

1− r(α
−1(ℓj))

(4.38)

The notation in Eq. (4.38) can be further simplified by realising that even though α is a general mapping,
we can assume it to be an identity mapping. Thus, the PDF of a LMB RFS X with set parameters
{(r(ℓ), p(ℓ))}ℓ∈L is given by

π(X) = ∆(X)w(L(X))pX (4.39)

where
w(L(X)) =

∏
i∈L

(
1− r(i)

) ∏
ℓ∈L

(
1L(ℓ)r

(ℓ)

1− r(ℓ)

)
p(x, ℓ) = p(ℓ)(x)

The LMB RFS described in Eq. (4.38) is actually a special case of the generalised labelled multi-
Bernoulli RFS (GLMB-RFS) [77]. The latter RFS can be defined as a labelled RFS with state space X
and (discrete) label space L, whose distribution is given by

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
[
p(c)
]X

(4.40)

where C is a discrete index set, and the weights and spatial distributions respectively satisfy the nor-
malisation conditions ∑

L⊆L

∑
c∈C

w(c)(L) = 1, (4.41)

∫
p(c)(x, ℓ) dx = 1. (4.42)

The index c ∈ C can be interpreted as labelling different hypotheses about the target set, in a manner
similar to Multiple Hypothesis Tracking (MHT). Each hypothesis c has an associated weight w(c)(L),

4.3. Labelled Multi Bernoulli 30

which represents the probability of that particular hypothesis given a set of labels L, and an associated
spatial distribution p(c)(x, ℓ) describing the kinematic state of each labelled target

Equation 4.41 then expresses the multi-target density π(X) as a weighted mixture over all hypotheses:

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
[
p(c)
]X

,

where ∆(X) enforces distinct labels for each target in X. The normalization condition

∑
L⊆L

∑
c∈C

w(c)(L) = 1

ensures that the total weight across all hypotheses sums to one, i.e., that the set of hypotheses forms a
valid probability distribution over all possible label sets. Similarly, the spatial distributions are individually
normalized:

∫
p(c)(x, ℓ) dx = 1,

so that each target’s state distribution is a proper probability density. In this way, the labelled multi-
target density can be seen as a probabilistic mixture over different hypotheses, with the weights and
state densities satisfying standard normalization conditions.

The LMB RFS is thus a GLMB which satisfies

p(c)(x, ℓ) = p(ℓ)(x) (4.43)

w(c)(L) =
∏
i∈L

(
1− r(i)

)∏
ℓ∈L

1L(ℓ) r
(ℓ)

1− r(ℓ)
(4.44)

for which the subscript (c) can be omitted. Hence, the fundamental difference consists in the mixture
against the single component representation, where the sum over c ∈ C facilitates the propagation of
multiple hypotheses, involving different sets of track labels, as opposed to the LMB process, where it
is only possible to propagate the uncertainty of a single set of track labels. As such, one may draw the
following analogy: the GLMB explicitly maintains multiple label-set hypotheses (analogous to MHT),
whereas the LMB provides a single-component summary that approximates those hypotheses (analo-
gous to JPDA or GNN).

Another special case of a GLMB RFS is the δ-generalised labelled multi-Bernoulli (δ-GLMB) with state
space X, (discrete) label space L and

C = F(L)× Ξ

w(c)(L) = w(I,ξ)δI(L)

p(c) = p(I,ξ) = p(ξ)

where F(·) denotes the collection of all finite subsets of the space (·), Ξ is a discrete space typically rep-
resenting the history of track to measurements associations, ξ are the realisations of Ξ, and I denotes
a set of track labels. Hence, the density of the δ-GLMB RFS is given by

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

[
w(I,ξ)δI(L(X))

[
pξ
]X] (4.45)

and its cardinality distribution by

4.3. Labelled Multi Bernoulli 31

ρ(n) =
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ) (4.46)

Additionally, the PHD of the corresponding unlabelled RFS is given by

v(x) =
∑
ℓ∈L

 ∑
(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(ℓ)p
(ξ)(x, l)

 (4.47)

where the inclusion function 1I(ℓ) makes the summand of the inner sum zero when ℓ /∈ I. Moreover,
the existence probability of r(ℓ) can be obtained using

r(ℓ) =
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(ℓ) (4.48)

where the discrete index pairs 1I(ℓ) will be referred to as hypothesis.

In summary, the LMB, GLMB, and δ-GLMB filters share a common labelled RFS structure but differ
primarily in how they represent andmanagemultiple hypotheses. The GLMB provides themost general
and expressive formulation, maintaining a full mixture of label-set hypotheses. The δ-GLMB introduces
an explicit parameterisation of these hypotheses that makes implementation more tractable but still
incurs significant computational cost. The LMB, on the other hand, collapses the hypothesis mixture
into a single labelled multi-Bernoulli component, preserving the ability to maintain object identity while
achieving higher computational efficiency. A broader background on the development and introduction
of these filters is summarised in section 2.2.

For SSA applications, characterised by large numbers of resident space objects, this trade-off is par-
ticularly important. While the GLMB and δ-GLMB filters offer the highest representational accuracy,
their hypothesis growth can render them less suitable for sustained large-scale tracking. Conversely,
the LMB retains essential track-labelling capability and consistent cardinality statistics while remaining
scalable for catalogue maintenance and multi-sensor updates. For these reasons, the LMB is selected
for implementation in this research.

4.3.2. Implementation Approach
Now that all the base concepts have been discussed, this subsection introduces the implementation
approach for the LMB filter. The general overview schematic of the approach is depicted in Figure 4.9
courtesy of [65], and is separated into three main phases: the prediction, the grouping and the updating
phases.

4.3. Labelled Multi Bernoulli 32

Figure 4.9: LMB filter schematic overview [65]

Prediction
Given the posterior LMB distribution π with state space X and label space L,

π =
{(
r(ℓ), p(ℓ)

)}
ℓ∈L

, (4.49)

the prediction to the time of next measurement follows an LMB distribution π+ with state space X and
(finite) label space L+ = L ∪ B given by

π+ =
{(
r
(ℓ)
+,S , p

(ℓ)
+,S

)}
ℓ∈L

∪
{(
r
(ℓ)
B , p

(ℓ)
B

)}
ℓ∈B

=
{(
r
(ℓ)
+ , p

(ℓ)
+

)}
ℓ∈L+

, (4.50)

where the first term is a LMB RFS representing the surviving labelled Bernoulli tracks of the previous
time step, and the second term represents the a priori LMB birth components. In the survival RFS, the
probability of survival and the probability density function are respectively given by

r
(ℓ)
+,S = ηS(ℓ) r

(ℓ), (4.51)

p
(ℓ)
+,S = ⟨pS(·, ℓ) f(x|·, ℓ), p(·, ℓ)⟩/ηS(ℓ), (4.52)

where ηS(ℓ) is the survival probability of track ℓ and f(x|·, ℓ) is the single track transition density for
track ℓ. The predicted label for the surviving tracks is the same as the previous label, while for the new
birth tracks ℓ ∈ B are new distinct labels such that L ∩ B = ∅

Gating - Grouping
In order to perform the update, it is necessary to transform the LMB to δ-GLMB, i.e. performing a full
δ-GLMB update and collapsing back to a matching LMB, which can be done using Equation 4.45 and
Equation 4.47. However, considering all permutations of track to label association can be computation-
ally expensive. To mitigate this, a gating and grouping strategy can be employed following the scheme

4.3. Labelled Multi Bernoulli 33

proposed in [65], where the gating restricts the number of measurements-to-track associations by only
considering measurements within the validation gates of the tracks, while grouping partitions the LMB
tracks and measurements into smaller, disjoint sets, which can be updated in parallel. Implementing
this scheme suggested in [65] reduces the computational complexity, while only marginally affecting
accuracy, particularly when groups are well separated spatially. It can be noted that the standard LMB
→ δ−GLMB update is analogous to the gating/grouping scheme discussed in this section, with a single
group.

The first step of the procedure consists of generating a partition of the predicted LMB parameters
PL = {L(⊮)

+ , . . . ,L(N)
+ } and received measurement set PZ = {Z(0), Z(1), . . . , Z(N)}, with the following

properties,

L+ =

N⋃
n=1

L(n)
+ , L(n)

+ ∩ L(m)
+ = ∅ ∀(n ̸= m);

Z =

N⋃
n=0

Z(n) , Z(n) ∩ Z(m) = ∅ ∀(n ̸= m);

Therefore a grouping G(n) is defined as a set of pairs

G(n) =
(
L(n)
+ , Z(n)

)
∈
{(

L(1)
+ , Z(1)

)
, . . . ,

(
L(n)
+ , Z(n)

)}
(4.53)

It should be noted that Z(0) is the set of measurements which are not assigned to any target labels.
Using this definition of grouping for generating a particular grouping for the parallel group updates, we
first generate a tentative group G̃(ℓ), i.e. a group formed with temporary/uncertain membership,

G̃(ℓ) =
(
{ℓ}, {z : dMHD(ẑ(ℓ), z) <

√
γ}
)

(4.54)

where dMHD(ẑ(ℓ) is the Mahalanobis distance between the predicted measurement for track ℓ and
the received measurement z ∈ Z, and γ is the gating distance threshold computed using Chi-squared
cumulative distribution corresponding to the desired σ-gate size for gating of measurements from tracks.
The following step consists of merging tentative groups with common measurements, i.e.

G̃(i,j) =
(
L(i)
+ ∪ L(j)

+ , Z(i) ∪ Z(j)
)
, Z(i) ∩ Z(j) ̸= ∅

and this is repeated until for all tentative groups there are no common measurements, yielding a total of
N groups G(1) . . . ,G(N) of tracks and associated measurements. A visual representation of grouping is
shown in Figure 4.10, where the black dashed rectangles represent the abstract boundary of the groups.
Intuitively this additional partitioning/approximation into groups works best when the label subsets are
well separated spatially, as determined by the gating of the measurements, such that the partitions
have negligible influence on each other during the update. This occurs when the birth distribution has
reasonably small covariances, which can be ensured by using a measurement driven birth model or
assuming static birth locations.

4.3. Labelled Multi Bernoulli 34

Figure 4.10: Example of partitioning into groups, with five tracks (red squares) and nine measurements (black stars), courtesy
of [65]

Therefore, the predicted multi-target density can be rewritten as

π+ =

N⋃
i=1

π
(i)
+ with π(i)

+ =
{(
r
(ℓ)
+ , p

(ℓ)
+

)}
ℓ∈L(i)

+

(4.55)

This concludes the grouping and gating needed for the parallel group updates, which consists of 3
sub-tasks:

1. Representation of the predicted LMB as δ-GLMB
2. Parallel δ-GLMB group updates
3. Approximation of the updated δ-GLMB as LMB

Hence, the predicted δ-GLMB for the i-th group of labels and measurements G(i) =
(
L(i)
+ , Z(i)

)
is given

by

π
(i)
+

(
X̃

(i)
+

)
= ∆

(
X̃

(i)
+

) ∑
I+∈F(L(i)

+)

[
w

(I+)
+,i δI+

(
L
(
X̃

(i)
+

))
[p+]

X̃
(i)
+

]
(4.56)

with

w
(I+)
+,i =

∏
ℓ∈L(i)

+

(
1− r

(ℓ)
+

) ∏
ℓ′ ∈ I+

1L(i)
+
(ℓ′) r

(ℓ′)
+

1− r
(ℓ′)
+

,

where X̃(i)
+ is the multi-target state for group (i). To compute this sum several methods exist, with the

most computationally heavy being the generation of all possible combinations for a set of labels L(i)
+

and cardinalities 0, 1, . . . , |L(i)
+ |. However, this results in the number of combinations for a set of track

labels being 2|L
(i)
+ | and the number of combinations for each cardinality given by the binomial coefficient

C(|L(i)
+ |, n) = |L(i)

+ |!/
(
n!
(
|L(i)

+ | − n
)
!
)
. Thus, in case the number of targets is large, computing the sum

becomes computationally unviable. In these cases it is possible to approximate the sum to its k most
significant terms by the use of k-shortest paths algorithm [52].

The next step is the parallel δ-GLMB update for each group (i) given by:

4.3. Labelled Multi Bernoulli 35

π(i)
(
X̃(i) | Z(i)

)
= ∆

(
X̃(i)

)
×

∑
(I+,θ)∈F(L(i)

+)×ΘI+

w(I+,θ)(Z(i)) δI+(L(X̃(i)))
[
p(θ)(· | Z(i))

]X̃(i)

(4.57)

for which ΘI+ is the space of mappings θ : I+ → {0, 1, . . . , |Z(i)|} | (θ(ι) = θ(ι′) > 0) =⇒ ι = ι′ and

w(I+,θ)(Z(i)) ∝ w
(I+)
+,i

[
η
(θ)

Z(i)

]I+

p(θ)(x, ℓ | Z(i)) =
p+,i(x, ℓ)ψZ(i)(x, ℓ; θ)

η
(θ)

Z(i)(ℓ)

η
(θ)

Z(i)(ℓ) = ⟨p+,i(x, ℓ), ψZ(i)(·, ℓ; θ)⟩

ψZ(i)(x, ℓ; θ) =

{
pD(x,ℓ) pG g(zθ(ℓ)|x,ℓ)

κ(zθ(ℓ))
, if θ(ℓ) > 0

qD,G(x, ℓ), if θ(ℓ) = 0

Note the dependency on the gating probability pG as smaller gates increase the probability of missed
detections qD,G(x, ℓ) = 1− pD(x, ℓ) · pG. Similarly to the gating and grouping in the update the number
of components grow exponentially with the number of track labels |L(i)

+ |. As such, one solution is
to truncate the solution space by only evaluating the M most significant hypotheses using a ranked
assignment algorithm [56].

The last step consists of approximating the updated δ-GLMB as LMB across all groups G(i) with

π(i)(· | Z(i)) ≈ π̃(i)(· | Z(i)) =
{(
r(ℓ,i), p(ℓ,i)

)}
ℓ∈L(i)

+

where r(ℓ,i), p(ℓ,i) are computed according to

r(ℓ) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z) 1I+(ℓ)

p(ℓ)(x) =
1

r(ℓ)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z) 1I+(ℓ) p
(θ)(x, ℓ)

Consequently, the LMB approximation to the multi-target posterior can be assembled analogously to
Eq. (4.55),

π(· | Z) ≈ π̃(· | Z) =
N⋃
i=1

{(
r(ℓ,i), p(ℓ,i)

)}
ℓ∈L(i)

+

and in order to further decrease the number of considered tracks, while not suppressing the output of
previously confirmed tracks due to a missed detection, the following track management scheme can
be used:

X̂ =
{
(x̂, ℓ) : r

(ℓ)
max > ϑu ∧ r(ℓ) > ϑl

}
where x̂ = argmaxx(p

(ℓ)(x)), and the track ℓ is kept if its maximum existence probability r(ℓ)max has ever
exceeded an upper threshold ϑu and its current existence probability is higher than a lower threshold
ϑl.

4.4. Poisson Labelled Multi Bernoulli 36

4.4. Poisson Labelled Multi Bernoulli
The PMBM filter provides a solution for MTT by representing the multi-target posterior as a combination
of a Poisson Point Process (PPP) for undetected targets i.e. potential births and a mixture of Multi-
Bernouli components for detected targets i.e. surviving tracks, thereby maintaining multiple hypotheses
over data associations, which can become computationally expensive in dense target scenarios, such
as SSA [26, 48, 71].

The PLMB filter provides a computationally efficient approximation of the PMBM filter by collapsing the
multiple MB hypotheses for detected targets into a single LMB component, while maintaining a PPP
for undetected targets. In this sense, a parallel can be drawn between the PMBM→PLMB relationship
and the δ-GLMB→LMB, MHT→JPDA relationships. We will first define what is a Poisson RFS, also
commenly denoted PPP [71].

A RFS X on X is said to be Poisson with a given intensity function v (defined on X) if its cardinality |X|
is Poison distributed with mean N̄ =

∫
v(x)dx, and for any finite cardinality, the elements x ∈ X are

independently and identically distributed according the probability density v(·)/N̄ [71]. The Poisson
RFS is fully characterised by its intensity function (PHD) and has probability density

π (X) = e−N̄vX

where
∀h : X → R, hX ≡

∏
x∈X

h(x)

with h∅ = 1 by convention. Poisson RFSs are used in the PMBM/PLMB filters to process the birth mod-
els, for the spontaneous appearance of new targets in the surveillance areas as well as for undetected
targets

Two different PLMB approaches can be followed. First, based on the work of Cament et al. [13] leading
to a particle filter implementation, while the second implementation approach is inspired from the work
of Fernandez et al. [26] on the PMBM filter implementation, allowing the reuse of a large portion of the
already implemented structures for the PHD and LMB filters, as this work assumes both the intensity
of the Poisson component and the predicted intensity to be Gaussian Mixtures.

The PLMB filter implementation in Cament et al. [13] is capable of processing optical observations
from multiple disparate sensors, with similar performance to the LMB filter, while outperforming the
PHD/CPHD filters. Moreover, it has the advantage of using a Poisson birth intensity, allowing for the
implementation of a Partially Uniform Birth (PUB) model [36], and the solution also employs the Prob-
abilistic Admissible Region (PAR), which is used to determine the initial orbits of the RSOs. The PUB
and PAR are the two components of the multi-RSO initialisation, with the first appearing during the
prediction step and the second providing the single RSO spatial density parameters in the update step.
However, neither PUB nor PAR are an integral feature of any PLMB filter, but rather specific approaches
proposed by Cament et al. [13]. The PUB intensity generates a uniformly distributed birth density in
the sensor FoV defined by

πB(x) = λβ · U(θ(x);B) ·
JB∑
i=1

(
w

(i)
b N

(
ϕ(x);m

(i)
ϕ ,P

(i)
ϕ

))
(4.58)

where B represents the sensor FoV, x is a target state in the ECI frame, θ(x) maps the target state
to the observable part of the state, ϕ(x) is the non-observable part of the state, λβ is the expected
number of targets of the Poisson intensity, U(θ(x);B) is the uniform density for the observable part
of the target state with boundary B, the sum term represents a Gaussian Mixture Model of the non-
observable part of the target, with JB components N

(
ϕ(x);m

(i)
ϕ ,P

(i)
ϕ

)
representing a multivariate

Gaussian PDF over ϕ(x) with mean vector m(i)
ϕ , covariance matrix P

(i)
ϕ and weights w(i)

b . The PUB
represents prior knowledge about where new targets might appear, particularly in the non-observable
state dimensions, as such it is important to carefully choose the Gaussian parameters. For instance,
the meansm(i)

ϕ can be centred on the most likely values for the unknown states in the region of interest,

4.4. Poisson Labelled Multi Bernoulli 37

such as typical velocities or orbital elements, while large covariances and large number of components
will affect the computational efficiency negatively, but respectively allow to cover more uncertainties and
for more flexibility depending on the complexity of the non-observable state distribution. Furthermore,
the weights w(i)

b determine the relative importance of each Gaussian component in the non-observable
state space, and if no prior preference exists they can be set uniformly, or non-uniformly to reflect
possible prior knowledge about the target states.

Once measurements at time tk become available, the PUB is refined using the PAR approach. The
PAR conditions the predictive PUB density on the measurements to produce a measurement-informed
Gaussian mixture over potential new target states. Specifically, the PAR multiplies the PUB with the
measurement likelihood, i.e. the new RSO distribution π′(x, z) is given by multiplying the birth intensity
Eq. (4.58) by the measurement likelihood distribution lz(z|x), approximated using

π′(x, z) = πB(x)lz(z|x) ≈ λβ · N (θ(x); z,R) ·
JB∑
i=1

(
w

(i)
b N

(
ϕ(x);m

(i)
ϕ ,P

(i)
ϕ

))
(4.59)

where, N (θ(x); z,R) is a Gaussian distribution on θ(x) modelling the resulting observable density for
a given measurement z, with sensor noise matrix R. The resulting PAR-conditioned components are
incorporated as new LMB tracks and updated together with surviving tracks in the standard multi-target
update. This approach ensures that measurements inform the placement of new tracks, while the
standard update adjusts existence probabilities and state estimates for all tracks, avoiding double-
counting.

The admissible region approach can be further improved by imposing two distinct constraints, which are
obeyed by the RSOs. One in terms of eccentricity, within a range of orbits of interest and the second in
terms energy with the orbital semi-major axis length. Both constraints can be derived from the celestial
two-body energy equation

ε =
∥ṙ∥2

2
− µE

∥r∥
(4.60)

with energy ε, gravitational constant of the Earth µE and position vector r in the ECI frame. On one
hand, the eccentricity constraint e ≤ emax is given by the angular momentum h = r× ṙ, where

ε = −µ
2(1− e2)

2∥h∥2
(4.61)

On the other hand, the semi-major axis length constraint a ≤ amax is provided by

ε = −µE

2a
(4.62)

As an illustrative example Figure 4.11 how these constraints can restrict the set of possible target states
in range and range-rate space. In this figure, the left panel depicts the basic admissible region based
on range and range-rate measurements. The middle panel shows how additional constraints, such as
a maximum orbital eccentricity and a fixed semi-major axis, further limit feasible target states. Finally,
the right panel presents the resulting constrained admissible region (CAR), which is used to condition
the PUB and generate the PAR GMM.

4.4. Poisson Labelled Multi Bernoulli 38

Figure 4.11: Illustrative example of the CAR/PAR approach for initialising target tacks, curtsey of Cament et al. [13].

For the PLMB filter, the multi-target tracking density is given by a LMB density characterised by its
Probability Generating Functional (PGFL). Before defining the PGFL form of the LMB, it is useful to
introduce what a PGFL represents in the context of Random Finite Sets. The PGFL is to random
sets what the probability generating function or moment generating function is to random variables:
it provides a compact functional representation of the entire multi-target distribution. Formally, for a
multi-target RFS X with density π(·), the PGFL is defined as

GX [h] =

∞∑
n=0

1

n!

∫ (n∏
i=1

h(xi)

)
π({x1, . . . ,xn})dx1 . . . dxn,

where h : X → [0, 1] is a test function [48].

Intuitively, the PGFL encodes the distribution of both the number of targets and their states in a single
functional. It is important to emphasize that the PGFL contains equivalent information to the probability
density functions, but is more convenient to use when deriving RFS filters. Furthermore, it is possible
to switch between PGFL and PDF formulation, which is more familiar for code implementation. Once
in PGFL form, evaluating GX [h] for different choices of h(·) allows one to extract key probabilistic
information: for example, setting h(x) = 1 recovers that the PGFL normalizes to one, while functional
derivatives ofGX [h] can be used to obtain cardinality distributions, intensity functions, and higher-order
statistics. In other words, the PGFL completely characterises the RFS and serves as the main tool by
which multi-target densities (such as Poisson, Bernoulli, or LMB) are concisely represented in closed
form [48, 65].

For example:

• A Poisson RFS with intensity v(x) has PGFL

GP [h] = exp

(∫
(h(x)− 1)v(x) dx

)
.

• A Bernoulli RFS with existence probability r and spatial density f(x) has PGFL

GB [h] = 1− r + r⟨f, h⟩.

These building blocks naturally extend to the LMB form used in the PLMB filter for which,

GLMB
X [h] =

∏
l∈L

(1− rℓ + rℓ⟨fℓ(x), h(x)⟩) (4.63)

where for the RFS X, fℓ is the single target density of a target with label l ∈ L, rℓ is the probability of
existence and h(x) is a function defined in the space of individual elements with 0 ≤ h(x) ≤ 1.

On the other hand the birth process is modelled by πB = λBfB(x), where λB is the expected number
of targets to be born with spatial distribution fB(x). Hence,

GPLMB
X [h] = GP

B [h]G
LMB
Y [h], (4.64)

4.4. Poisson Labelled Multi Bernoulli 39

represents the union of Poisson and LMB densities in PGFL form, where GLMB
Y [h] follows Eq. (4.63)

with RFS Y and GP
B [h] is a Poisson PGFL with

GP
B [h] = eπB[h−1] (4.65)

The filter consists of a multi-target prediction and multi-target update step. For a prior LMB defined by
{(rℓ, fℓ)}ℓ∈L the prediction {(r′ℓ, f ′ℓ)} is given by

r′ℓ = rℓ⟨PS , fℓ⟩ and f ′ℓ(x) =
⟨PSlx(x|·), fℓ⟩

⟨PS , fℓ⟩
, (4.66)

with the probability of survival PS(x) and the kinematic model lX(xk|xk−1). On the other hand, the up-
date for a PMB-PGFL is a LMB Mixture PGFL, which can be approximated by a LMB-PGFL, consisting
of new targets, detected targets and miss-detected targets,

G+
X|Z [h] =

∏
ℓ∈L

(
1− r+ℓ + r+ℓ ⟨f

+
ℓ , h⟩

)
(4.67)

where {(r+ℓ , f
+
ℓ)} represent the probability of existence and the PDF of the updated target identified

by label ℓ. In order to obtain r+ℓ we solve the assignment problem on the cost matrix Wn,m, which
represents the weights of different combinations of targets {ℓn : n ∈ N}, for a total of N targets and
M measurements {zm : m ∈ N}. To solve this assignment problem, three different methods can be
considered: the Loopy Belief Propagation algorithm [83], Murty’s algorithm [56] or Gibbs sampling [64].

Alternatively, there is a more direct overall implementation path for the PLMB filter, based on the work
performed so far with the LMB filter and inspired by Fernandez et al. [26] PMBM implementation. The
overall implementation schematic is found in Figure 4.12, where the left hand-side is identical to the
LMB implementation while the right hand side depicts the addition used to transform the filter into a
PLMB one.

Figure 4.12: PLMB filter schematic overview

In the PLMB scheme the undetected targets i.e. ones not yet associated with any measurements are

4.4. Poisson Labelled Multi Bernoulli 40

represented by a PPP characterised by its intensity function2 ν(x), which describes the expected den-
sity of points in state space. Although the PPP is not inherently Gaussian it is convenient to approximate
it through a Gaussian Mixture, similarly to the process described for the PHD filter. As such after the
prediction, gating, and update steps for the PPP are performed, a new element not yet discussed is
introduced - the promotion of the PPP Gaussian Mixture to LMB track structure.

Concretely, when a measurement z is received, each Gaussian component of the PPP intensity is
updated with respect to that measurement through either a linear Kalman Filter update or an Unscented
Kalman filter update depending on the assumed motion model as described in subsection 4.5.2. This
produces a set of candidate post-update meansm(z), covariances P (z), and likelihoods q(z). These are
then normalised relative to the total PPP intensity and clutter intensity, yielding the existence probability
for a potential new track [26]:

r(z) =

∑
i pD · q(z)i wi

κ(z) +
∑

i pD · q(z)i wi

, (4.68)

where pD is the detection probability, subscript i indicates the number of Gaussian components wi

are the Gaussian weights of the PPP components, and κ(z) is the clutter intensity at measurement z
[26]. We then define a Birth Threshold (BT) such that if the BT is exceeded by r(z) the corresponding
Gaussian Component is promoted to a LMB component (r̃(z), p(z)(x)). Two important remarks are to
be made at this point:

Remark 1: How to choose the Birth Threshold? Initially, a fixed constant value BT = C was used, but
this approach is suboptimal since it would require manual adjustment for every different
scenario. Instead, an adaptive Birth Threshold is computed for each measurement to ac-
count for both the clutter intensity and the total PPP intensity. Concretely, without tuning,
the adaptive threshold for a measurement z is computed as

BTadaptive(z) =
clutter weight

total likelihood+ clutter weight
, (4.69)

where the clutter weight is defined as the product of the clutter rate and the spatial density
of clutter in the measurement space, and total likelihood is the sum of all PPP component
likelihoods q(z)i . This ensures that measurements in regions of high clutter or low PPP
intensity are less likely to trigger a new track, while measurements strongly supported by
the PPP are more likely to be promoted.

To provide additional flexibility, a tuning parameter βbirth is introduced such that the final
adaptive threshold becomes

BT tuned
adaptive(z) = βbirth

clutter weight
total likelihood+ clutter weight

. (4.70)

βbirth affects the promotion of Gaussian components as follows:

• βbirth < 1: lowers the BT potentially promoting more Gaussian components to new
tracks. This increases the sensitivity to real targets but may also generate more spu-
rious tracks from clutter.

• βbirth = 1: standard adaptive threshold based purely on clutter and PPP likelihood.
• βbirth > 1 : raises the BT potentially promoting fewer components. This reduces spuri-
ous tracks but may miss real targets if the evidence is not strong enough.

Remark 2: Initially, in the implementation the Gaussian component was promoted to an LMB compo-
nent with existence probability following Equation 4.68 i.e. r̃(z) = r(z) . However, through
testing it was found that this led to large existence probabilities which would overestimate
the cardinality, as will further be shown in chapter 5. This was happening despite the BT

2PPP and Poisson RFS can be used interchangeably in this context as PPP is the general point process definition, while a
Poisson RFS is the FISST version described in [48]

4.5. Supporting Concepts and Methods 41

improvement implemented from Remark 1. As such it was decided to take inspiration from
some of the adaptive birth models proposed for LMB filters [30], and restrict the existence
probability of the newly generated track using: r̃(z) ≡ min(r(z), rmax), where rmax is a
constant chosen based on the studied scenario.

On the other hand, the Gaussian components which did not get promoted get their weights reduced
by a factor of (1 − pD) to account for missed detections, ensuring consistency of the underlying PPP
intensity representation. These components are then pruned, merged and capped as otherwise they
may grow exponentially. It should be noted that the promotion scheme described in the two remarks is
inspired by the implementations proposed in [26] and [13].

Moreover, the existence probability of the LMB surviving tracks is not impervious to changes. As such
it is possible for a formal LMB track for which the existence probability dropped too low to be recycled
back to a PPP Gaussian mixture, restarting the RHS process in Figure 4.12, using the following logic
wPPP,new

i = r̃(z) · wtrack
i , while the means and covariances of the track just get copied over to the PPP

as is.

4.5. Supporting Concepts and Methods
In this section we will provide some additional supporting theory about concepts which have been
mentioned and used in the MTT filters, but have not been fully described.

4.5.1. Gaussian Mixture
A Gaussian Mixture (GM) is a probabilistic model that represents a distribution as a weighted sum of
multiple Gaussian components. Formally, a Gaussian Mixture with J components in d-dimensional
space is written as

p(x) =

J∑
i=1

wi N (x;mi, Pi), (4.71)

where

• wi ≥ 0 are the component weights satisfying
∑J

i=1 wi = 1 (or
∑J

i=1 wi = λ in the case of PPP
intensity functions, where λ is the expected number of objects),

• N (x;mi, Pi) denotes a Gaussian distribution with mean mi ∈ Rd and covariance Pi ∈ Rd×d,
• J is the number of Gaussian components.

Gaussian Mixtures are widely used in multi-target tracking because they can approximate arbitrary
probability densities while retaining tractable analytical properties. In particular, both the PHD and
LMB families of filters use GM representations to describe either the intensity function of a Poisson
Point Process or the spatial probability density of a Bernoulli component.

Intuitively, one may view each Gaussian component as representing a hypothetical target located near
mi with uncertainty described by Pi, while the weight wi expresses its relative contribution to the overall
intensity.

Two small visual examples of what a GM represents have been provided in Figure 4.13 for a 1D case
and Figure 4.14 for a 2D case, with numerical parameters summarised in Table 4.4. The 1D example in
Figure 4.13 illustrates how multiple Gaussian bell curves combine into a multi-modal distribution, while
the 2D example in Figure 4.14 shows how Gaussian components can be interpreted as elliptical density
regions in the state space. The dashed ellipses in the 2D plot correspond to the 1σ and 2σ covariance
contours of each component, highlighting the uncertainty structure encoded in their covariancematrices.
Together, these figures demonstrate how Gaussian mixtures provide both flexibility and interpretability
in representing complex multi-target state distributions.

4.5. Supporting Concepts and Methods 42

Figure 4.13: One-dimensional Gaussian mixture example showing three weighted Gaussian components (dashed lines) and
their resulting mixture density (solid line).

Figure 4.14: Two-dimensional Gaussian mixture example showing three components with elliptical covariance contours at 1σ
and 2σ levels. Each component is represented by its mean (coloured dot) and covariance structure (dashed ellipses).

4.5. Supporting Concepts and Methods 43

Table 4.4: Parameters of the Gaussian Mixture used for the illustrative examples.

Dimension Component Weight wi Mean mi Covariance Pi

1D
1 0.30 −2.0 0.5

2 0.40 0.0 1.0

3 0.30 3.0 0.8

2D
1 0.40 [0.0, 0.0]⊤

[
1.0 0.3

0.3 1.0

]

2 0.35 [3.0, 3.0]⊤

[
1.0 −0.2

−0.2 1.5

]

3 0.25 [−3.0, 2.0]⊤

[
0.5 0.0

0.0 0.8

]

4.5.2. Kalman and Unscented Kalman Filter: Prediction & Update
The filtering process consists of two steps: prediction and update (also called correction). In the fol-
lowing sub-subsections we define these steps mathematically and the reader is invited to take a look
at their pseudo-code implementation in algorithm 9 and algorithm 10 respectively. The prediction step
propagates the state and uncertainty forward in time using the system dynamics, while the update
step incorporates new measurements to refine the state estimate. We distinguish between the linear
Kalman Filter (KF) [29] and the Unscented Kalman Filter (UKF) [29], which generalizes the update to
non-linear models.

Linear Kalman Filter
For a linear dynamical system, the model is defined as:

xk = Fxk−1 + wk, wk ∼ N (0, Q),

zk = Hxk + vk, vk ∼ N (0, R),

where:

• xk ∈ Rn is the hidden state at time step k,
• zk ∈ Rm is the measurement,
• F ∈ Rn×n is the state transition matrix,
• H ∈ Rm×n is the observation matrix,
• Q ∈ Rn×n is the process noise covariance,
• R ∈ Rm×m is the measurement noise covariance.

Prediction step:
x̂k|k−1 = Fx̂k−1|k−1,

Pk|k−1 = FPk−1|k−1F
⊤ +Q,

where x̂k|k−1 and Pk|k−1 are the predicted mean and covariance.

Update step:
yk = zk −Hx̂k|k−1 (innovation),

Sk = HPk|k−1H
⊤ +R (innovation covariance),

Kk = Pk|k−1H
⊤S−1

k (Kalman gain),

x̂k|k = x̂k|k−1 +Kkyk,

Pk|k = (I −KkH)Pk|k−1.

4.5. Supporting Concepts and Methods 44

The likelihood of the measurement zk given the state is:

p(zk|x̂k|k−1) ∝ exp
(
− 1

2y
⊤
k S

−1
k yk

)
.

Unscented Kalman Filter
The UKF [29] consists of an unscented transform (UT), used by a prediction and update step, all of
which are defined in the subsequent section. The reader is invited to go through the pseudo-code
implementation of these concepts found respectively in algorithm 11 for the UT, algorithm 12 for a
single measurement UKF prediction step and algorithm 13 for the prediction of a set of measurements,
and equivalently for the update step to read algorithm 14 and algorithm 15.

For non-linear systems, the dynamics and measurement models are:

xk = f(xk−1, wk), wk ∼ N (0, Q),

zk = h(xk, vk), vk ∼ N (0, R),

where f(·) is the (possibly non-linear) state transition function, and h(·) is the (possibly non-linear)
measurement function.

Unscented Transform. To approximate the mean and covariance of a non-linear transformation, the
UKF generates a set of sigma points. For a Gaussian distribution with mean µ ∈ Rn and covariance
P ∈ Rn×n, the sigma points are:

χ0 = µ, χi = µ+
√
(n+ λ)P i, χi+n = µ−

√
(n+ λ)P i, i = 1, . . . , n,

where
√

(n+ λ)P
i
denotes the i-th column of the matrix square root (usually the Cholesky factor).

Each sigma point has an associated weight for computing expectations:

w
(m)
0 =

λ

n+ λ
, w

(c)
0 =

λ

n+ λ
+ (1− α2 + β),

w
(m)
i = w

(c)
i =

1

2(n+ λ)
, i = 1, . . . , 2n.

Legend of parameters.

• n: state dimension.
• α: spread parameter controlling the spread of sigma points around the mean. Typical choice:
10−3 ≤ α ≤ 1.

• κ: secondary scaling parameter. Often set to 0 or 3− n.
• λ = α2(n+ κ)− n: scaling factor used to determine the spread of sigma points.
• β: parameter used to incorporate prior knowledge of the distribution (for Gaussian distributions,
β = 2 is optimal).

• w(m)
i : weight for the mean computation.

• w(c)
i : weight for the covariance computation.

Prediction step. Each sigma point is propagated through the non-linear transition:

χ
(x)
i = f(χi, 0),

and the predicted mean and covariance are:

x̂k|k−1 =

2n∑
i=0

w
(m)
i χ

(x)
i ,

Pk|k−1 =

2n∑
i=0

w
(c)
i

(
χ
(x)
i − x̂k|k−1

)(
χ
(x)
i − x̂k|k−1

)⊤
.

4.5. Supporting Concepts and Methods 45

Update step. Sigma points are propagated through the measurement function:

χ
(z)
i = h(χ

(x)
i , 0).

The predicted measurement and covariance are:

ẑk =

2n∑
i=0

w
(m)
i χ

(z)
i ,

Sk =

2n∑
i=0

w
(c)
i (χ

(z)
i − ẑk)(χ

(z)
i − ẑk)

⊤ +R,

Pxz =

2n∑
i=0

w
(c)
i (χ

(x)
i − x̂k|k−1)(χ

(z)
i − ẑk)

⊤.

Then:
Kk = PxzS

−1
k ,

x̂k|k = x̂k|k−1 +Kk(zk − ẑk),

Pk|k = Pk|k−1 −KkSkK
⊤
k .

As in the linear case, the likelihood can be evaluated as:

p(zk|x̂k|k−1) ∝ exp
(
− 1

2 (zk − ẑk)
⊤S−1

k (zk − ẑk)
)
.

In summary, the Kalman Filter provides exact inference for linear Gaussian models, while the Un-
scented Kalman Filter extends the same predict–update framework to nonlinear systems by approxi-
mating distributions via sigma points and the unscented transform. There are two additional remarks
that must be made with regards to choosing the UKF for the non-linear models :

Remark 1: It is also possible to perform a linearised propagation for the non-linear models using the
Extended Kalman Filter (EKF), which has lower computational complexity, but also lower
accuracy compared to the UKF. Figure 4.15 showcase the higher accuracy of the UKF, while
the computational complexity associated with the UKF originates from its requirement to
propagate 2n + 1 sigma points where n is the dimension of the estimated state. Another
advantage of the UKF is that there is no need for the derivation and calculation of the
Jacobian matrices needed for the EKF.

Figure 4.15: Visual representation of the accuracy difference between the EKF and the UKF, figure courtesy of MATHWORKS3

4.5. Supporting Concepts and Methods 46

Remark 2: In case of coordinated frames or boundaries which are periodic and thus cropped it is im-
portant to be mindful of the location of the sigma points especially when the mean is close
to the edge of the boundary, as can be seen visually in Figure 4.16.

Figure 4.16: Boundary effects on sigma point representation

4.5.3. K-Shortest Paths and Murty’s Algorithm for Hypothesis Management
A key difficulty in multi-target tracking is the exponential growth of possible association hypotheses:
each measurement may originate from a true target, a false alarm, or clutter, and each target may
or may not generate a detection. Exhaustively enumerating all possibilities is computationally infeasi-
ble. Instead, efficient algorithms are used to generate and rank only the most likely hypotheses. In
this work, two complementary approaches are adopted: Yen’s k-shortest paths algorithm (algorithm 3)
for hypothesis generation in the prediction stage, and Murty’s algorithm (algorithm 6, algorithm 8) for
assignment ranking in the update stage.

Yen’s K-Shortest Paths Algorithm.
Yen’s algorithm[84] is a classical method for computing the k loopless shortest paths between two
nodes in a weighted graph. In the LMB filter, the algorithm is applied when converting predicted tracks
into GLMB hypotheses (lmb2glmb). The graph is built from track existence probabilities, with edge
weights corresponding to negative log-likelihood ratios. Yen’s algorithm is then used to extract the
most probable subsets of tracks bounded by Hreq, ensuring that only the most likely global hypotheses
are retained.

DAG vs. General Graph Formulation.
The implementation of algorithm 3 supports two modes, depending on the structure of the hypothesis
graph:

• Directed Acyclic Graph (DAG) Case. When the hypothesis space is acyclic, shortest paths can
be computed efficiently using a topological sweep (algorithm 5) with linear complexity O(V +E).
In the filters considered here, the constructed graph is indeed a DAG. This is because hypotheses
are formed by sequentially including or excluding tracks in index order, and once a decision is
made, it is never revisited. Edges therefore always connect forward to higher-indexed nodes,
which prevents the formation of cycles.

The same property also holds in Space Situational Awareness (SSA) tracking problems, where
tracks evolve forward in discrete time steps. Birth processes are indexed to the current scan,
and assignment decisions do not feed back into past states. As a result, the hypothesis graph
is topologically ordered by construction, ensuring that the DAG shortest path (DAGSP) solver
(algorithm 5) is both valid and computationally advantageous.

• General Graph Case. If the graph may contain cycles or arbitrary edge directions, the Bellman–
Ford–Moore (BFM) algorithm (algorithm 4)[6, 21, 53] is used instead. BFM computes single-

3https://nl.mathworks.com/help/fusion/ug/introduction-to-estimation-filters.html - Visited (10/09/25)

https://nl.mathworks.com/help/fusion/ug/introduction-to-estimation-filters.html

4.5. Supporting Concepts and Methods 47

source shortest paths in O(V E), handles negative edge weights, and detects negative cycles.
Although slower than DAGSP, it ensures correctness in more general cases.

Thus, in the results it is expected that using DAG should increase the speed efficiency of the implemen-
tation at no cost to the accuracy.

Murty’s Algorithm for M-Best Assignments.
While Yen’s method generates candidate global hypotheses during prediction, the update stage re-
quires solving the assignment problem between tracks and measurements. Murty’s algorithm (algo-
rithm 8, algorithm 7)[56] addresses this by extending the Hungarian algorithm (algorithm 6)[39, 40] to
compute not just the optimal assignment, but the m best assignments in order of increasing cost.

Recall the simplified cost matrix example from chapter 2 for which the 5 best assignments are provided
in Table 2.1,

O1 O2 O3 O4

C =


7.1 × × 4.3

× 5.2 8.4 5.1

× × 6.6 3.2


T1

T2

T3

Using the Hungarian algorithm on the above cost matrix, we first proceed with a preparation step by
padding the matrix with dummy values to make it square and settingM ≡ × → +∞

O1 O2 O3 O4

C(0) =


7.1 M M 4.3

M 5.2 8.4 5.1

M M 6.6 3.2

0.0 0.0 0.0 0.0


T1

T2

T3

D1

Then the cost allocation problem can be summarised in 4 steps:

1. Row Reduction → C(1): Subtract the minimum value of each row from every entry of that row
2. Column Reduction → C(2): Subtract the minimum value of each column from every entry of that

column.
3. Cover zeroes with least number of lines → C(3): find the minimum number of lines (row/column)

required to cover every zero in the matrix.

• #lines = #allocations ≡: number of lines is the same as the number of allocations (i.e. the
size of the matrix) we can draw the graph i.e. finding the independent zeros, building the
assignment and mapping back to the original cost matrix (i.e. remove dummy assignments)
→ C(4).

• #lines < #allocations:

(a) Find the smallest uncovered value c
(2)
ij i.e. smallest value not part of a row/column

covered by a line.

(b) Subtract this value (c(2)ij) from every uncovered element.
(c) Add this value to every element that is covered twice i.e. intersection of row and column

covered lines.

The above is equivalent to subtracting the value c(2)ij from all uncovered rows and adding the
value c(2)ij to all columns that are covered. However doing the latter is more computationally
efficient as the number of operations is generally lower.

4.5. Supporting Concepts and Methods 48

4. Repeat Step 3.

As such, step 1 yields:

O1 O2 O3 O4 min row

C(0) =


7.1 M M 4.3

M 5.2 8.4 5.1

M M 6.6 3.2

0.0 0.0 0.0 0.0


T1

T2

T3

D1

4.3

5.1

3.2

0.0

→ C(1) =


2.8 M M 0.0

M 0.1 3.3 0.0

M M 3.4 0.0

0.0 0.0 0.0 0.0


Step 2 results in:

O1 O2 O3 O4

C(1) =


2.8 M M 0.0

M 0.1 3.3 0.0

M M 3.4 0.0

0.0 0.0 0.0 0.0


T1

T2

T3

D1

→ C(2) =


2.8 M M 0.0

M 0.1 3.3 0.0

M M 3.4 0.0

0.0 0.0 0.0 0.0


min col 0.0 0.0 0.0 0.0

For step 3 we can observe that for a minimal covering column 4 (i.e. col O4) and row 4 (i.e. row D1)
can be covered. As such the #lines = 2 < #allocations = 4 and we perform steps 3(a,b,c) with the
smallest uncovered value c(2)ij = c

(3)
22 = 0.1 as follow:

C(2) =

2.8 M M 0
M 0.1 3.3 0
M M 3.4 0
0 0 0 0


→ C(3) =


2.7 M M 0.0

M 0.0 3.2 0.0

M M 3.3 0.0

0.0 0.0 0.0 0.1


We now set the new C(2) = C(3) and repeat step 3 until #lines = 4:

C(2) =

2.7 M M 0
M 0 3.2 0
M M 3.3 0
0 0 0 0.1


→ C(3) =


0.0 M M 0.0

M 0.0 3.2 2.7

M M 0.6 0.0

0.0 0.0 0.0 2.8

 = C(2)

C(2) =

0 M M 0
M 0 3.2 2.7
M M 0.6 0
0 0 0 2.8


→ #lines = 4 → C(3) = C(2)

Thus we can now find the independent zeros i.e. exactly one zero in each column and each row and
map back to the original matrix indices i.e ignore dummy to obtain the optimal assignment A1:

C(3) =


0 M M 0

M 0 3.2 2.7

M M 0.6 0

0 0 0 2.8

 −→ A′ = {(T1, O1), (T2, O2), (T3, O4), (��ZZD1, O3)},

−→ A1 = {(T1, O1), (T2, O2), (T3, O4)}.

4.5. Supporting Concepts and Methods 49

Using the optimal assignment as root, Murty’s algorithm iteratively computes suboptimal solutions by
branching from the root solution as can be seen in Figure 4.17. Each branch corresponds to forbidding
the assignment at the given prefix position and forcing earlier prefix assignments. Furthermore, we
can continue building the tree in the same manner by branching from each new suboptimal solution in
turn. To generalise, given an optimal solution S(1) = (a1, a2, . . . , an) where ai is the column assigned
to row i in some fixed row order. For each position r = 1, 2, . . . , n we create a sub-problem where
we force a1, . . . , ar−1 and forbid ar (but do not forbidding other choices) and solve that sub-problem
optimally. Each sub-problem produces a candidate solution; we insert all candidates into a min-heap
by their costs and then extract the smallest to get the next-best solution. It is then possible to continue
the process by branching from these solutions again and re-ranking the best assignments.

A1 = [1, 2, 4]
(T1→O1, T2→O2, T3→O4)

Total Cost = 15.5

Rank 1

Branch r=1:
forbid T1→O1

[4, 2, 3]
(T1→O4, T2→O2, T3→O3)

Total Cost = 16.1

Rank 2

Branch r=2:
force T1→O1, forbid T2→O2

[1, 3, 4]
(T1→O1, T2→O3, T3→O4)

Total Cost = 18.7

Rank 3

from [1, 3, 4]:
force T1→O1, forbid T2→O3

[1, 4, 3]
(T1→O1, T2→O4, T3→O3)

Total Cost = 18.8

Rank 4

Branch r=3:
force T1→O1, T2→O2, forbid T3→O4

[1, 2, 3]
(T1→O1, T2→O2, T3→O3)

Total Cost = 18.9

Rank 5

Heap / candidates after root:
16.1: [4, 2, 3] (branch r = 1)
18.7: [1, 3, 4] (branch r = 2)
18.9: [1, 2, 3] (branch r = 3)

Figure 4.17: Murty branching tree for simplified cost matrix example.

In the LMB filter’s update step (updateGLMB), a cost matrix is formed from the likelihood of assigning
each measurement to each predicted track. Murty’s algorithm is applied through a dedicated wrapper
(algorithm 8), which pads the matrix with dummy assignments to allow for unassigned measurements,
adjusts costs to ensure non-negativity, and converts the results into the required 1-indexed format. This
produces multiple ranked assignment hypotheses. Each solution is converted into an updated GLMB

4.5. Supporting Concepts and Methods 50

hypothesis with its own probability weight, allowing the filter to maintain multiple plausible association
explanations.

Integration into the (P)LMB Filter.
Together, these two algorithms divide the computational burden of hypothesis management:

• K-shortest paths (algorithm 3) is used in the prediction step to enumerate the most likely subsets
of existing and birth tracks, relying on DAGSP (algorithm 5) in our case.

• Murty’s algorithm (algorithm 7, algorithm 8) is used in the update step to compute the best-
ranked data association hypotheses for each predicted subset.

This separation ensures that the filter remains both computationally feasible and statistically robust:
the K-shortest paths algorithm reduces the global hypothesis search space, while Murty’s algorithm
explores multiple feasible measurement assignments within each global hypothesis.

4.5.4. Model Description
When it comes to the physical modelling, we use on the one hand a continuous time model for the
dynamics of the RSOs based on the differential equation

r̈ = − µ

∥r∥
r+ ap (4.72)

with position vector r, gravitational parameter µ, and perturbing accelerations ap, which can include
(but not limited to) solar radiation pressure, drag, third-body, etc, depending on the considered orbital
regime. This model is used to demonstrate the performance of the filters. Moreover, the state vector x
consists of the position and velocity in the Earth-Centred Inertial (ECI) Frame.

x = [x y z ẋ ẏ ż]
T

(4.73)

Furthermore, to prevent the collapse of the filter covariance, causing measurements to be ignored, a
standard process noise model is implemented, in which fixed values are multiplied by∆t of propagation
before getting added along the diagonal terms of the covariance matrix. Last but not least the sensor
model which will be used for the simplified one sensor model used follows the example provided by
Gehly [28], i.e. the measurement is a topocentric right ascension and declination taken from a singular
ground station located at [xs, ys, zs] = [−5465.210, −2403.610 2242.120] km in ECEF. Furthermore, the
measurement equations are given by

α = tan−1

(
y − ysi
x− xsi

)
δ = sin−1

(
z − zsi
ρ

)
(4.74)

where ρ =
√

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 is the range and si indicate the ground station coordi-
nates in ECI.

Linear Motion Model (Constant Velocity)
The linear motion model assumes targets move with constant velocity in 2D Cartesian coordinates and
the ground truth state for this model can be observed in Figure 4.2.

State Vector:
x(k) = [x, y, ẋ, ẏ]T (4.75)

State Transition:
x(k + 1) = Fx(k) +Bw(k) (4.76)

with

F =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 (4.77)

4.5. Supporting Concepts and Methods 51

Process Noise:

Q = σ2
w


T 4
s /4 0 T 3

s /2 0

0 T 4
s /4 0 T 3

s /2

T 3
s /2 0 T 2

s 0

0 T 3
s /2 0 T 2

s

 =


6.25 0 12.5 0

0 6.25 0 12.5

12.5 0 25.0 0

0 12.5 0 25.0

 (4.78)

where σw = 5.0 and Ts = 1s.

Non-Linear Motion Model (Coordinated Turn)
The coordinated turn model includes a turn rate ω, and a visual representation of the ground truth may
be observed in Figure 4.18.

State Vector:
x(k) = [x, ẋ, y, ẏ, ω]T (4.79)

State Transition:
x(k + 1) = f(x(k)) +B2v(k) (4.80)

with transition equations for ω ̸= 0:

xk+1 = xk +
sin(ωTs)

ω
ẋk − 1− cos(ωTs)

ω
ẏk

ẋk+1 = cos(ωTs)ẋk − sin(ωTs)ẏk

yk+1 = yk +
1− cos(ωTs)

ω
ẋk +

sin(ωTs)

ω
ẏk

ẏk+1 = sin(ωTs)ẋk + cos(ωTs)ẏk

ωk+1 = ωk (4.81)

For ω ≈ 0, the model reduces to constant velocity motion.

Process Noise:

B2 =



T 2
s /2 · σvel 0 0

Ts · σvel 0 0

0 T 2
s /2 · σvel 0

0 Ts · σvel 0

0 0 Ts · σω


(4.82)

with σvel = 5.0 m/s, σω = π/180 rad/s.

4.5. Supporting Concepts and Methods 52

Figure 4.18: Ground Truth Tracks for the Coordinated-Turn (CT) model

Linear Measurement Model (Cartesian)
Measurement Equation:

z(k) = Hx(k) + n(k), (4.83)

where it should be noted that the linear model uses positions (x,y) for the measurements. Measurement
Matrix:

H =

[
1 0 0 0

0 1 0 0

]
(4D state),

[
1 0 0 0 0

0 0 1 0 0

]
(5D state) (4.84)

Measurement Noise:
R = σ2

vI2 = 100I2, σv = 10.0 (4.85)

Non-Linear Measurement Model (Radar)
Measurement Function:

z(k) = h(x(k)) + n(k) (4.86)

with
bearing = arctan

y

x
, range =

√
x2 + y2 (4.87)

Measurement Noise:

R =

[
σ2
α 0

0 σ2
r

]
=

[
(2π/180)2 0

0 102

]
≈

[
1.22× 10−3 0

0 100

]
(4.88)

with σα = 2◦, σr = 10 m.

4.5. Supporting Concepts and Methods 53

4.5.5. Parameter Tables
This section regroups all the parameters needed to reproduce the simulations. These parameters have
been chosen identical to the problem set up presented in the Vo. repository 4 which was used as a
base of comparison for the verification of the filters’ implementation.

Table 4.5: Motion Model Parameters (Linear / Non-Linear)

Parameter Symbol Value / Formula Model
Sampling time Ts 1.0 s Linear / Non-Linear
Process noise std σw 5.0 m/s² Linear
Process noise std (velocity) σvel 5.0 m/s Non-Linear
Process noise std (turn rate) σω π/180 rad/s Non-Linear

Process noise covariance Q


6.25 0 12.5 0

0 6.25 0 12.5

12.5 0 25 0

0 12.5 0 25

 Linear

Process noise matrix B2



T 2
s /2 · σvel 0 0

Ts · σvel 0 0

0 T 2
s /2 · σvel 0

0 Ts · σvel 0

0 0 Ts · σω


Non-Linear

Measurement noise std σv 10.0 m Linear
Measurement noise std (bearing) σα 2◦ = 2π/180 rad Non-Linear
Measurement noise std (range) σr 10 m Non-Linear

Measurement noise covariance R

[
100 0

0 100

]
Linear[

1.22× 10−3 0

0 100

]
Non-Linear

Clutter intensity pdfc 2.5× 10−7 Linear
1/(π · 2000) Non-Linear

4Repository Link: https://ba-tuong.vo-au.com/codes.html#

https://ba-tuong.vo-au.com/codes.html#

4.5. Supporting Concepts and Methods 54

Table 4.6: Target Birth Parameters

Parameter Symbol Value / Formula Model
Birth probability rbirth [0.03, 0.03, 0.03, 0.03] Linear

[0.02, 0.02, 0.03, 0.03] Non-Linear
Birth weight wbirth [1, 1, 1, 1] Linear / Non-Linear

Birth state mean mbirth


0 0 0 0

400 −600 0 0

−800 −200 0 0

−200 800 0 0

 Linear


−1500 0 250 0 0

−250 0 1000 0 0

250 0 750 0 0

1000 0 1500 0 0

 Non-Linear

Birth state covariance Pbirth diag([100, 100, 100, 100]) Linear
diag([502, 502, 502, 502, (6π/180)2]) Non-Linear

Table 4.7: Algorithmic Parameters (Merging, Pruning, Capping, Detection, etc.)

Parameter Symbol Value / Formula Notes
Pruning threshold Tp 10−5 Linear / Non-Linear
Capping limit Nmax 100 Linear / Non-Linear
Merging threshold U 4 Linear / Non-Linear
Detection probability PD 0.98 Linear / Non-Linear
Survival probability PS 0.99 Linear / Non-Linear
Maximum number of components Jmax 100 Linear / Non-Linear
Clutter intensity (already included in motion) pdfc see motion table Linear / Non-Linear

Table 4.8: Unscented Kalman Filter (UKF) Parameters for Non-Linear Models

Parameter Symbol Value Notes
Primary scaling factor α 1.0 Determines the spread of sigma points

around the mean. Higher values increase
spread.

Secondary scaling factor κ 2.0 Secondary scaling factor that can improve
higher-order moment matching; often set rel-
ative to state dimension.

Prior knowledge β 2.0 Incorporates prior knowledge of the distribu-
tion; optimal value for Gaussian is 2.

5
Results & Discussion

In this chapter we will discuss the results obtained from our implementation of the filters. In total three
single sensor multi-target filters were implemented: the PHD, LMB and PLMB filters, and have been
tested on the linear scenario and non-linear coordinated turn scenario described in subsection 4.5.4.
Furthermore, extrapolating from the behaviours observed in these models, some thoughts about their
performance for SSA will be provided. The filters were compared between each other but also vali-
dated and verified against a repository1 containing an LMB filter implementation in MATLAB provided
by Ba Tuong Vo. First we will compare the linear/non-linear model results obtained from the LMB imple-
mentation against the PHD implementation, and follow by a comparison between the PLMB and LMB
filter, as well as a time performance of the filters. Finally, extrapolating from what has been observed
a discussion is provided on the expected performance when applied to an SSA problem.

5.1. PHD/LMB comparison
5.1.1. Linear Model

Figure 5.1: Ground truth, LMB estimates and measurements for the linear model without gating (left) and with gating (right)

In Figure 5.1 we can observe the effect of gating on the considered measurements for the data associ-
ation problem. The largely reduced number of measurements considered for the association explains
the large speed up present when the gating is on as seen in Table 5.1. Furthermore, as expected from
theory in Figure 5.2 we can observe that the total OSPA error is more stable and reduced for the LMB

1Repository Link: https://ba-tuong.vo-au.com/codes.html#

55

https://ba-tuong.vo-au.com/codes.html#

5.1. PHD/LMB comparison 56

estimates compared to the PHD estimates, and it is largely due to a much better cardinality estima-
tion compared to the PHD filter as can be seen in Figure 5.4. Note that the spikes in the LMB OSPA
cardinality error are centred around the time of target birth/death. Furthermore, in Figure 5.3 we can
observe the labelling and tracking of the tracks that the LMB filter performs, whereas the PHD can not.
It should be noted however that the PHD filter runs much faster i.e. O(10−1) − O(100) [s] compared
to LMB O(101) [s]. All the observations above are also true for the non-linear case for which it was
decided to showcase instead the effect of gating on the errors.

Figure 5.2: OSPA metric Comparison between LMB estimates (left) and PHD estimates (right)

Figure 5.3: Visual representation of the LMB tracks over time in Cartesian coordinates for LIN-model

5.1. PHD/LMB comparison 57

Figure 5.4: LMB (left) cardinalities compared to PHD (right) cardinalities estimates

5.1.2. Non-Linear Model
From theory we expect that gating the measurements will vastly increase the speed of the implementa-
tion but at the cost of some accuracy. This is well demonstrated in Figure 5.6 where it can be observed
that the cardinality OSPA metric performs better when no gating is applied as the error peaks are re-
duced. However, on average this does not affect the total OSPA error as the values remain very similar
between the gate on and off scenarios, and the estimated cardinality plots in Figure 5.5 are virtually
indistinguishable. As such it can be said that the accuracy reduction caused by gating is insignificant
when compared to the 25% speed up observed in Table 5.1 for the LMB filters implemented with gating.
The track evolutions over time for the CT-model can be observed in Figure 5.7, where it can be seen
that all tracks get identified and tracked correctly. Moreover, unlike the linear model, for the non-linear
one the total OSPA error peaks of the LMB filter are not visibly/primarily distributed around the location
of new target births, but are much more affected by the propagation of the non-linear model through
the UKF, as can be seen from the larger OSPA localisation error, which behaviour is much less stable
than for the linear case as it is expected.

Figure 5.5: LMB filter estimated cardinalities vs. true cardinalities showcasing the effect of gating on the results on the
non-linear model

5.1. PHD/LMB comparison 58

Figure 5.6: LMB filter estimated OSPA analysis showcasing the effect of gating on the results

Figure 5.7: Visual representation of the LMB tracks over time in Cartesian coordinates for CT-model with gating on, for the
CT-model

5.2. LMB/PLMB comparison 59

5.2. LMB/PLMB comparison

Figure 5.8: PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates for the LIN-model (left)
and estimated vs. actual cardinality plot (right) with constant birth threshold and active measurement gating

Initially, the PLMB filter was run with a constant birth threshold, unchecked probability of existence value
of the undetected targets promoted to full LMB tracks, and active gating. The result are shown in Fig-
ure 5.8 and indicate poor performance in both track identification/localisation and cardinality estimate,
with some tracks identified explaining the largely underestimated cardinality estimates. The test case
is repeated with gating off turned off. As shown in Figure 5.9, this did not improve the performance, as
once again a track is not recognised and the cardinality is underestimated.

Figure 5.9: PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates for the LIN-model (left)
and estimated vs. actual cardinality plot (right) with constant birth threshold and no measurement gating

5.2. LMB/PLMB comparison 60

Figure 5.10: PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates for the LIN-model (left)
and estimated vs. actual cardinality plot (right) with adaptive birth threshold and no track existence probability bounding

This is where the idea of implementing an adaptive birth threshold based on the expected number of
target, the clutter weights, and the total likelihood of a measurement discussed in section 4.4 originated,
and the results of which implementation can be seen in Figure 5.10. Indeed, this time all tracks get
recognised, but this time around the cardinality gets overestimated. The reason for which was found
in the existence probability r of the promoted track which on occasions was very high e.g. around the
r = 1.0 mark. This was also observed for the non-linear model where only implementing an adaptive
birth threshold allowed for all tracks to be found but the cardinality overestimated as well as seen in
Figure 5.12. The solution to which was to set a maximum existence probability for any track that gets
promoted as discussed in section 4.4. The PLMB filters accuracy, although smaller than the LMB
filter accuracy, was deemed sufficient to consider it a successful implementation as can be seen from
Figure 5.11 and Figure 5.13. We especially want to highlight the result from Figure 5.13, which uses
the non-linear model, and as such is most applicable to SSA. The PLMB track promotion methodology
proposed in chapter 4 with the adaptive birth threshold, when tuned correctly, shows promising results
as can be seen from Figure 5.13.

Figure 5.11: PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates for the LIN-model (left)
and estimated vs. actual cardinality plot (right) with adaptive birth threshold and track existence probability bounding

5.3. Time Performance 61

Figure 5.12: PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates for the CT-model (left)
and estimated vs. actual cardinality plot (right) with adaptive birth threshold and no track existence probability bounding for the

CT-model

Figure 5.13: PLMB estimates, ground truth tracks, and gated measurements in Cartesian coordinates for the CT-model (left)
and estimated vs. actual cardinality plot (right) with adaptive birth threshold and track existence probability bounding for the

CT-model

5.3. Time Performance
The time performance of the filters is measured against a baseline example found in the MATLAB
repository2 of Ba Tuong Vo which considers the same non-linear CT-model as the one implemented in
this research, with gating on, a hypotheses creation process which uses Yen’s algorithm with a BFM
implementation and also uses the Murty assignment algorithm for the data association problem. The
CPU time is computed based on the average time it took over 10 runs of the filters and rounded up.
The results are compiled in Table 5.1, from which we can see that the LMB implementation in the C++
repo performs as well as the baseline for the same parameters. As already discussed deactivating
gating increases the CPU time drastically compared to similar runs with gating on. Moreover, the DAG
implementation for the hypotheses creation as expected from theory leads to an improvement in CPU
time which is significant, ≈ 30% without any significant accuracy loss observable, as discussed in sub-
section 4.5.3. Finally, it can be observed that over the 10 runs the LMB slightly outperforms the PLMB
in the time efficiency factor as well which is unexpected from theory, but can be due to implementation
inefficiencies. One main implementation inefficiency is suspected as the main contributor to this result.
The track promotion method promote a PPP to an LMB track, while performing a measurement update

2Repository Link: https://ba-tuong.vo-au.com/codes.html#

https://ba-tuong.vo-au.com/codes.html#

5.4. Implication for SSA 62

step. However, the current implementation actually promotes it to a tentative track for which the main
acquired tracks update i.e. δ-GLMB update, also performs a measurement update on the tentative
track effectively performing a relatively costly operation twice.

Table 5.1: Average CPU time performance of the LMB/PLMB filters for the non-linear coordinated turn model over 10 runs

5.4. Implication for SSA
The results obtained in the linear and non-linear tracking scenarios provide insight into the expected be-
haviour of the studied filters when applied to SSA problems, such as tracking RSOs or resolving dense
conjunction events in Earth orbit. While no SSA-specific measurement models were implemented in
this work, several implications can be drawn.

First, the relative strengths of the filters observed in simulation remain relevant in the SSA context.
The LMB filter’s ability to provide accurate cardinality estimates and maintain track labels is especially
important for SSA, where object custody across multiple sensor passes is a critical requirement. By
contrast, the PHD filter, despite its computational efficiency, suffers from weaker cardinality estimation
and the absence of persistent labelling, which would limit its utility in catalogue maintenance or collision
avoidance tasks where track continuity is important.

Second, the impact of non-linear dynamics observed in the CT-model reflects challenges in SSA, where
objects in eccentric or perturbed orbits often follow highly non-linear trajectories. The increased instabil-
ity in OSPA location error for the non-linear case suggests that the choice of motion and measurement
models will strongly influence filter performance in realistic orbital environments. A different non-linear
filtering scheme, potentially tailored to orbital dynamics, could be considered to achieve higher accu-
racy, such using adaptive Gaussian Mixtures [85, 48] or a particle filter implementation [13].

Third, the PLMB filter demonstrates the value of adaptive mechanisms in balancing detection sensitivity
and false track suppression. In SSA, where both missed detections (e.g. faint debris) and false alarms
(e.g. sensor artefacts, clutter) are frequent, the ability to tune birth thresholds and bound existence
probabilities can be crucial for scalable catalogue management. Although the PLMB accuracy was
somewhat lower than the LMB, its flexibility indicates potential for further adaptation to SSA-specific
conditions such as variable sensor coverage and cluttered measurement environments.

Finally, computational performance is a decisive factor in SSA applications. The significant speed-ups
observed with gating and efficient hypothesis management imply that the studied algorithms, when
carefully engineered, could be suitable for operational pipelines. However, further optimisation and
parallelisation would likely be required for large-scale catalogue maintenance involving tens of thou-
sands of RSOs. This parallelization can be achieved by properly implementing and testing the grouping
mechanism described in subsection 4.3.1 which should speed up the update step of the filters as each
sub-partition can be attributed to a separate thread, and the implemented C++ source code repo has
been written with future parallelization in mind.

In summary, while the tested filters were not explicitly tuned to SSA measurement models or orbital
dynamics, their relative behaviours in the linear and non-linear scenarios provide a meaningful indica-

5.4. Implication for SSA 63

tion of their prospective roles in SSA. The LMB appears most suited for high-fidelity catalogue tracking,
the PHD for lightweight filtering when approximate situational estimates suffice, and the PLMB as a
promising hybrid approach with potential for adaptive extensions tailored to the unique challenges of
SSA.

6
Conclusion

This thesis has addressed the challenges of multi-target tracking in Space Situational Awareness, with
a focus on the optimisation and scalability of filtering techniques within the Random Finite Set frame-
work. By evaluating the performance and computational efficiency of both established and emerging
multi-target filters, the research aimed to contribute toward the development of frameworks capable of
supporting large-scale SSA applications, where accurate and efficient tracking of resident space ob-
jects is essential. The work combined theoretical analysis with practical implementation, emphasizing
adaptability to distributed, multi-sensor architectures in C++.

The primary objective was to identify and assess which RFS-based methods can be optimised, scaled,
and combined to address the computational demands of distributed multi-sensor, multi-target tracking
in SSA. After the literature review phase, it was decided to implement three filters—the PHD, LMB,
and PLMB—in C++ and evaluate their respective performances on linear, non-linear, and SSA mod-
els, for both single-sensor and multi-sensor scenarios. This research successfully implemented the
three multi-target filters from scratch in C++ for both linear and non-linear models. The implementation
demonstrated comparable, if not better, time efficiency than the MATLAB baseline, with very similar
accuracy readings. Due to time constraints, extending these filters to a multi-sensor scenario or a full
SSA model was not possible. Nonetheless, insight was gained regarding which methods are likely to
perform best for SSA models, based on extrapolation from the achieved results. Consequently, the
main research question was de-scoped to:

Which methods within the Random Finite Set framework can be optimised, scaled up effi-
ciently, and combined to handle the increased computational demands of the single-sensor
multi-target problem for SSA?

The implementation of the filters for the linear and non-linear models demonstrated distinct trade-offs.
The PHD filter achieved superior runtime performance, offering strong scalability potential; however,
its lack of target labelling and unstable cardinality estimation make it less suitable for dense clutter
environments or long-term custody of RSOs. In contrast, the LMB filter, while an order of magnitude
slower, consistently provided better OSPAmetrics and reliable target labelling, making it more appropri-
ate for catalogue maintenance and scenarios requiring track continuity. The PLMB filter was expected
to bridge these trade-offs by combining the advantages of the PHD and LMB filters. Results indicated
that the PLMB achieved accuracy comparable to the LMB but did not yet outperform it in runtime. Nev-
ertheless, the PLMB remains the most promising candidate for SSA applications, as its Poisson Point
Process component retains information about undetected objects—a key capability in environments
where new RSOs may unpredictably appear, and where catalogues must evolve dynamically. The pro-
posed implementation of the PLMB promotion process was found to be successful for the non-linear
model after the introduction of the tuned adaptive birth threshold, thereby establishing the PLMB as a
promising approach for SSA problems.

In summary, the results from linear and non-linear scenarios provide a strong basis for assessing the
filters’ potential in SSA applications. While SSA-specific dynamics were not directly implemented, the

64

65

observed trade-offs indicate clear roles: the LMB for high-fidelity catalogue tracking, the PHD for com-
putationally efficient approximate situational awareness, and the PLMB as a flexible hybrid with scope
for adaptive enhancements. These findings highlight both the practical feasibility and the scalability
considerations of RFS-based filters for large-scale SSA, guiding future extensions toward multi-sensor
and SSA-specific implementations.

Future work should focus on incorporating an SSA-specific model for testing, extending the implemen-
tation to multi-sensor scenarios, and refining the promotion of Poisson Point Process components to
LMB tracks through improved adaptive birth models and existence probability computations. Addition-
ally, the grouping-based code structures developed in this work merit further investigation, as they
have the potential to significantly reduce update-time complexity in large-scale SSA tracking systems.
Moreover, implementation of advanced filtering schemes such as particle filter or adaptive Gaussian
Mixture may improve the OSPA metric for non-linear scenarios. Finally, many of the filter parameters
used, such as the merging threshold, were selected based on the baseline model used for code ver-
ification. It was observed that across the literature, many studies adopted similar parameter values
with analogous reasoning. While intuitive effects of parameter changes—for example, increasing or
decreasing the merging threshold and thus the number of Gaussian components—are understood, a
deeper analysis of the impact of parameter choices is lacking. Therefore, performing a hyper-parameter
analysis to identify which combinations of parameters most strongly influence performance would be
an interesting and valuable extension of this work.

References

[1] Martin Adams et al. “SLAM Gets a PHD: New Concepts in Map Estimation”. In: IEEE Robotics &
Automation Magazine 21 (2 June 2014), pp. 26–37. ISSN: 1070-9932. DOI: 10.1109/MRA.2014.
2304111. URL: http://ieeexplore.ieee.org/document/6814323/.

[2] U. Balbin. Course - AE4010 Research Methodologies. Technical University Delft. Dec. 2024.
[3] Michael Beard, Ba Vo, and Ba-Ngu Vo. “OSPA (2) : Using the OSPA metric to evaluate multi-

target tracking performance”. In: 2017 International Conference Control, Automation Information
Science. Oct. 2017, pp. 86–91. DOI: 10.1109/ICCAIS.2017.8217598.

[4] Michael Beard, Ba Tuong Vo, and Ba Ngu Vo. “A Solution for Large-Scale Multi-Object Tracking”.
In: IEEE Transactions on Signal Processing 68 (2020), pp. 2754–2769. ISSN: 19410476. DOI:
10.1109/TSP.2020.2986136.

[5] Michael Beard, Ba Tuong Vo, and Ba-Ngu Vo. “Performance Evaluation for Large-Scale Multi-
Target Tracking Algorithms”. In: 2018 21st International Conference on Information Fusion (FU-
SION). 2018, pp. 1–5. DOI: 10.23919/ICIF.2018.8455700.

[6] Richard Bellman. “On a routing problem”. In: Quarterly of Applied Mathematics 16.1 (1958),
pp. 87–90.

[7] José Bento and Jia Jie Zhu. A metric for sets of trajectories that is practical and mathematically
consistent. 2020. arXiv: 1601.03094 [cs.CV]. URL: https://arxiv.org/abs/1601.03094.

[8] Keni Bernardin and Rainer Stiefelhagen. “Evaluating Multiple Object Tracking Performance: The
CLEARMOTMetrics”. In: EURASIP Journal on Image and Video Processing 2008.1 (May 2008),
p. 246309. ISSN: 1687-5281. DOI: 10.1155/2008/246309. URL: https://doi.org/10.1155/
2008/246309.

[9] Margrit Betke et al. “Tracking Large Variable Numbers of Objects in Clutter”. In:Computer Society
Conference on Computer Vision and Pattern Recognition. July 2007, pp. 1–8. ISBN: 1-4244-1180-
7. DOI: 10.1109/CVPR.2007.382994.

[10] S Blackman and R Popoli. Design and Analysis of Modern Tracking Systems. Artech House,
1999.

[11] S.S. Blackman. “Multiple hypothesis tracking for multiple target tracking”. In: IEEE Aerospace
and Electronic Systems Magazine 19.1 (2004), pp. 5–18. DOI: 10.1109/MAES.2004.1263228.

[12] Samuel S. Blackman. Multiple-target tracking with radar applications. Artech House, 1986.
[13] Leonardo Cament, Martin Adams, and Pablo Barrios. “Space debris tracking with the poisson

labeled multi-bernoulli filter”. In: Sensors 21 (11 June 2021). ISSN: 14248220. DOI: 10.3390/
s21113684.

[14] Leonardo Cament et al. “The histogram Poisson, labeled multi-Bernoulli multi-target tracking fil-
ter”. In: Signal Processing 176 (2020), p. 107714. ISSN: 0165-1684. DOI: https://doi.org/
10.1016/j.sigpro.2020.107714. URL: https://www.sciencedirect.com/science/article/
pii/S0165168420302577.

[15] Nicolas Chenouard, Isabelle Bloch, and Jean-ChristopheOlivo-Marin. “Multiple Hypothesis Track-
ing for Cluttered Biological Image Sequences”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.11 (2013), pp. 2736–3750. DOI: 10.1109/TPAMI.2013.97.

[16] Coordinator-BME-3mE@TUDelft.nl. Literature ResearchMSc BMEYR2-Guidance document 2B.
Aug. 2023.

[17] I Cox and S Hingorani. “An efficient implementation of Reid’s multiple hypothesis tracking al-
gorithm and its evaluation for the purpose of visual tracking”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 18 (2 1996), pp. 138–150.

66

https://doi.org/10.1109/MRA.2014.2304111
https://doi.org/10.1109/MRA.2014.2304111
http://ieeexplore.ieee.org/document/6814323/
https://doi.org/10.1109/ICCAIS.2017.8217598
https://doi.org/10.1109/TSP.2020.2986136
https://doi.org/10.23919/ICIF.2018.8455700
https://arxiv.org/abs/1601.03094
https://arxiv.org/abs/1601.03094
https://doi.org/10.1155/2008/246309
https://doi.org/10.1155/2008/246309
https://doi.org/10.1155/2008/246309
https://doi.org/10.1109/CVPR.2007.382994
https://doi.org/10.1109/MAES.2004.1263228
https://doi.org/10.3390/s21113684
https://doi.org/10.3390/s21113684
https://doi.org/https://doi.org/10.1016/j.sigpro.2020.107714
https://doi.org/https://doi.org/10.1016/j.sigpro.2020.107714
https://www.sciencedirect.com/science/article/pii/S0165168420302577
https://www.sciencedirect.com/science/article/pii/S0165168420302577
https://doi.org/10.1109/TPAMI.2013.97

References 67

[18] Kai Da et al. “Recent advances in multisensor multitarget tracking using random finite set”. In:
Frontiers of Information Technology & Electronic Engineering 22.1 (Jan. 2021), pp. 5–24. ISSN:
2095-9230. DOI: 10.1631/FITEE.2000266. URL: https://doi.org/10.1631/FITEE.2000266.

[19] E. Delande et al. “A new multi-target tracking algorithm for a large number of orbiting objects”. In:
Advances in Space Research 64 (3 Aug. 2019), pp. 645–667. ISSN: 18791948. DOI: 10.1016/
j.asr.2019.04.012.

[20] Claudio Fantacci et al. “The Marginalized δ-GLMB Filter”. In: IEEE Signal Processing Letters
(2016). DOI: 10.1109/lsp.2016.2557078.

[21] Lester R Ford and Delbert R Fulkerson. “Network flow theory”. In: Rand Corporation. 1956.
[22] T. Fortmann, Y. Bar-Shalom, and M. Scheffe. “Sonar tracking of multiple targets using joint proba-

bilistic data association”. In: IEEE Journal of Oceanic Engineering 8.3 (1983), pp. 173–184. DOI:
10.1109/JOE.1983.1145560.

[23] D. Franken, M. Schmidt, and M. Ulmke. “”Spooky Action at a Distance” in the Cardinalized Prob-
ability Hypothesis Density Filter”. In: IEEE Transactions on Aerospace and Electronic Systems
45.4 (2009), pp. 1657–1664. DOI: 10.1109/TAES.2009.5310327.

[24] K. Gaast, M. Keestra, and L. Koender. Chapters on interdisciplinary research and research skills.
Amsterdam University PR, 2020. ISBN: 9048553970. URL: https://www.jstor.org/stable/
10.2307/j.ctv1fx4hbw.

[25] Lin Gao, Giorgio Battistelli, and Luigi Chisci. “Fusion of Labeled RFS Densities with Minimum
Information Loss”. In: IEEE Transactions on Signal Processing 68 (2020), pp. 5855–5868. ISSN:
1053587X. DOI: 10.1109/TSP.2020.3028496. URL: https://www.scopus.com/inward/record.
uri?eid=2- s2.0- 85094907620&doi=10.1109%2fTSP.2020.3028496&partnerID=40&md5=
caf795f08ceab815681b3489bb11d391.

[26] Ángel F. García-Fernández et al. “Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Im-
plementation”. In: IEEE Transactions on Aerospace and Electronic Systems 54.4 (2018), pp. 1883–
1901. DOI: 10.1109/TAES.2018.2805153.

[27] Steve Gehly. “Distributed Fusion Sensor Networks for Space Situational Awareness”. In: Pro-
ceedings of the 68th International Astronautical Congress (IAC). Paper code: IAC-17,A6,7,5,x40189.
Adelaide, Australia, Sept. 2017.

[28] Steven Gehly. “Estimation of Geosynchronous Space Objects Using Finite Set Statistics Filtering
Methods”. Available at https://www.colorado.edu/ccar/sites/default/files/attached-fi
les/estimation_of_geosynchronous_s.pdf. PhD thesis. Boulder, CO: University of Colorado,
2016.

[29] Mohinder S. Grewal and Angus P. Andrews. Kalman filtering: Theory and practice using MATLAB.
Wiley, 2015.

[30] Patrick Hoher et al. “A Detection Driven Adaptive Birth Density for the Labeled Multi-Bernoulli Fil-
ter”. In: 2020 IEEE 23rd International Conference on Information Fusion (FUSION). 2020, pp. 1–
8. DOI: 10.23919/FUSION45008.2020.9190532.

[31] R Hoseinnezhad et al. “Visual tracking of numerous targets via multi-Bernoulli filtering of image
data”. In: Pattern Recognition 45 (10 2012), pp. 3625–3635.

[32] K. Hussain et al. “Resident Space Objects Tracking Using Estimation-Based Data Fusion”. In:
AIAA/IEEE Digital Avionics Systems Conference - Proceedings. Institute of Electrical and Elec-
tronics Engineers Inc., 2024. ISBN: 9798350349610. DOI: 10.1109/DASC62030.2024.10748796.

[33] Khaja Faisal Hussain et al. “Space-Based Debris Trajectory Estimation Using Vision Sensors and
Track-Based Data Fusion Techniques”. In: Acta Astronautica (Jan. 2025). ISSN: 00945765. DOI:
10.1016/j.actaastro.2025.01.038. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0094576525000396.

[34] The MathWorks Inc. MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts, United States,
2022. URL: https://www.mathworks.com.

https://doi.org/10.1631/FITEE.2000266
https://doi.org/10.1631/FITEE.2000266
https://doi.org/10.1016/j.asr.2019.04.012
https://doi.org/10.1016/j.asr.2019.04.012
https://doi.org/10.1109/lsp.2016.2557078
https://doi.org/10.1109/JOE.1983.1145560
https://doi.org/10.1109/TAES.2009.5310327
https://www.jstor.org/stable/10.2307/j.ctv1fx4hbw
https://www.jstor.org/stable/10.2307/j.ctv1fx4hbw
https://doi.org/10.1109/TSP.2020.3028496
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094907620&doi=10.1109%2fTSP.2020.3028496&partnerID=40&md5=caf795f08ceab815681b3489bb11d391
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094907620&doi=10.1109%2fTSP.2020.3028496&partnerID=40&md5=caf795f08ceab815681b3489bb11d391
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094907620&doi=10.1109%2fTSP.2020.3028496&partnerID=40&md5=caf795f08ceab815681b3489bb11d391
https://doi.org/10.1109/TAES.2018.2805153
https://www.colorado.edu/ccar/sites/default/files/attached-files/estimation_of_geosynchronous_s.pdf
https://www.colorado.edu/ccar/sites/default/files/attached-files/estimation_of_geosynchronous_s.pdf
https://doi.org/10.23919/FUSION45008.2020.9190532
https://doi.org/10.1109/DASC62030.2024.10748796
https://doi.org/10.1016/j.actaastro.2025.01.038
https://linkinghub.elsevier.com/retrieve/pii/S0094576525000396
https://linkinghub.elsevier.com/retrieve/pii/S0094576525000396
https://www.mathworks.com

References 68

[35] Brandon A Jones et al. “Challenges of multi-target tracking for space situational awareness”. In:
2015 18th International Conference on Information Fusion, Fusion 2015. Institute of Electrical
and Electronics Engineers Inc., 2015, pp. 1278–1285. ISBN: 978-098244386-6. URL: https:
//www.scopus.com/inward/record.uri?eid=2- s2.0- 84960540103&partnerID=40&md5=
76de1b0bd3c3f729fbeb888705d1d11c.

[36] Brandon A. Jones. “CPHD Filter Birth Modeling Using the Probabilistic Admissible Region”. In:
IEEE Transactions on Aerospace and Electronic Systems 54.3 (2018), pp. 1456–1469. DOI: 10.
1109/TAES.2018.2793378.

[37] Donald Kessler et al. “The Kessler Syndrome: Implications to Future Space operations”. In: Ad-
vances in the Astronautical Sciences 137 (Jan. 2010).

[38] S Krishnaswamy and M Kumar. “Data association via tensor compression with application to
GEO multi-target tracking”. In: AIAA Scitech 2019 Forum. 2019. DOI: 10.2514/6.2019-0376.
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083943899&doi=10.
2514%2f6.2019-0376&partnerID=40&md5=a06ae7d88a1e57db941bd8b17cb1814f.

[39] Harold W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval Research Lo-
gistics Quarterly 2.1-2 (1955), pp. 83–97.

[40] Harold W. Kuhn. “Variants of the Hungarian method for assignment problems”. In: Naval Re-
search Logistics Quarterly 3.4 (1956), pp. 253–258.

[41] B Li. “Novel Rao–Blackwellized jump Markov CBMeMBer filter for multi-target tracking”. In: Inter-
national Journal of Systems Science 49 (15 2018), pp. 3007–3022. DOI: 10.1080/00207721.
2018 . 1531320. URL: https : / / www . scopus . com / inward / record . uri ? eid = 2 - s2 . 0 -
85054719842&doi=10.1080%2f00207721.2018.1531320&partnerID=40&md5=70c6435a501a
627f001948c2256d877f.

[42] Suqi Li et al. “Multi-Sensor Multi-Object Tracking with Different Fields-of-View Using the LMB
Filter”. In: 2018 21st International Conference on Information Fusion (FUSION). 2018, pp. 1201–
1208. DOI: 10.23919/ICIF.2018.8455250.

[43] Tiancheng Li, Juan M. Corchado, and Shudong Sun. “Partial Consensus and Conservative Fu-
sion of Gaussian Mixtures for Distributed PHD Fusion”. In: IEEE Transactions on Aerospace and
Electronic Systems 55.5 (2019), pp. 2150–2163. DOI: 10.1109/TAES.2018.2882960.

[44] Tiancheng Li et al.OnArithmetic Average Fusion and Its Application for DistributedMulti-Bernoulli
Multitarget Tracking. Jan. 2020. DOI: 10.36227/techrxiv.11599902.v1.

[45] H Liu et al. “Optimizing Distributed Multi-Sensor Multi-Target Tracking Algorithm Based On La-
beled Multi-Bernoulli Filter”. In: ICASSP 2023 - 2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2023, pp. 1–5. ISBN: 2379-190X. DOI: 10.1109/
ICASSP49357.2023.10095971.

[46] L Liu et al. “Multi-Target Tracking by Associating and Fusing the Multi-Bernoulli Parameter Sets”.
In: IEEE Access 8 (2020), pp. 82709–82731. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.
2991365.

[47] Ronald Mahler. Statistical Multisource-Multitarget Information Fusion. Artech House, 2007.
[48] Ronald P. S.. Mahler. Advances in statistical multisource-multitarget information fusion. Artech

House, 2014. ISBN: 9781608077984.
[49] Mahendra Mallick, Vikram Krishnamurthy, and Ba-Ngu Vo. “Bayesian Multiple Target Filtering

Using Random Finite Sets”. In: Integrated Tracking, Classification, and Sensor Management:
Theory and Applications. 2012, pp. 75–126. DOI: 10.1002/9781118450550.ch3.

[50] Gary Martin. NewSpace: The Emerging Commercial Space Industry. Accessed: 28-09-2025.
2015. URL: https://www.earthdata.nasa.gov/s3fs-public/2023-11/newspace_nasa.pdf.

[51] J. McKenzie et al. “The PRISMA 2020 statement: An updated guideline for reporting systematic
reviews”. In: International Journal of Surgery 88 (Apr. 2021). ISSN: 17439159. DOI: 10.1016/j.
ijsu.2021.105906.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960540103&partnerID=40&md5=76de1b0bd3c3f729fbeb888705d1d11c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960540103&partnerID=40&md5=76de1b0bd3c3f729fbeb888705d1d11c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960540103&partnerID=40&md5=76de1b0bd3c3f729fbeb888705d1d11c
https://doi.org/10.1109/TAES.2018.2793378
https://doi.org/10.1109/TAES.2018.2793378
https://doi.org/10.2514/6.2019-0376
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083943899&doi=10.2514%2f6.2019-0376&partnerID=40&md5=a06ae7d88a1e57db941bd8b17cb1814f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083943899&doi=10.2514%2f6.2019-0376&partnerID=40&md5=a06ae7d88a1e57db941bd8b17cb1814f
https://doi.org/10.1080/00207721.2018.1531320
https://doi.org/10.1080/00207721.2018.1531320
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054719842&doi=10.1080%2f00207721.2018.1531320&partnerID=40&md5=70c6435a501a627f001948c2256d877f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054719842&doi=10.1080%2f00207721.2018.1531320&partnerID=40&md5=70c6435a501a627f001948c2256d877f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054719842&doi=10.1080%2f00207721.2018.1531320&partnerID=40&md5=70c6435a501a627f001948c2256d877f
https://doi.org/10.23919/ICIF.2018.8455250
https://doi.org/10.1109/TAES.2018.2882960
https://doi.org/10.36227/techrxiv.11599902.v1
https://doi.org/10.1109/ICASSP49357.2023.10095971
https://doi.org/10.1109/ICASSP49357.2023.10095971
https://doi.org/10.1109/ACCESS.2020.2991365
https://doi.org/10.1109/ACCESS.2020.2991365
https://doi.org/10.1002/9781118450550.ch3
https://www.earthdata.nasa.gov/s3fs-public/2023-11/newspace_nasa.pdf
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.1016/j.ijsu.2021.105906

References 69

[52] Sh. Meral. K-Shortest Path- Yen’s algorithm. https://www.mathworks.com/matlabcentral/
fileexchange/32513-k-shortest-path-yen-s-algorithm. MATLAB Central File Exchange.
Retrieved May 29, 2025. 2025.

[53] Edward F. Moore. “The shortest path through a maze”. In: Proceedings of the International Sym-
posium on the Theory of Switching (1957), pp. 285–292.

[54] Michael Münz et al. “Generic Centralized Multi Sensor Data Fusion Based on Probabilistic Sen-
sor and Environment Models for Driver Assistance Systems”. In: IEEE Intelligent Transportation
Systems Magazine (2010). DOI: 10.1109/mits.2010.937293.

[55] David D. Murakami et al. “Space Traffic Management with a NASA UAS Traffic Management
(UTM) inspired architecture”. In: AIAA Scitech 2019 Forum (Jan. 2019). DOI: 10.2514/6.2019-
2004.

[56] Katta G. Murty. “An Algorithm for Ranking all the Assignments in Order of Increasing Cost”. In:
Operations Research 16.3 (1968), pp. 682–687. ISSN: 0030364X, 15265463. URL: http://www.
jstor.org/stable/168595 (visited on 05/29/2025).

[57] Kusha Panta, Daniel Clark, and Ba-Ngu Vo. “Data Association and Track Management for the
Gaussian Mixture Probability Hypothesis Density Filter”. In: Aerospace and Electronic Systems,
IEEE Transactions on 45 (Aug. 2009), pp. 1003–1016. DOI: 10.1109/TAES.2009.5259179.

[58] W J Park and C G Park. “Distributed GM-CPHD Filter Based on Generalized Inverse Covariance
Intersection”. In: IEEE Access 9 (2021), pp. 94078–94086. ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2021.3093719.

[59] Graham Pulford. “Taxonomy of multiple target tracking methods”. In: Radar, Sonar and Naviga-
tion, IEE Proceedings - 152 (Nov. 2005), pp. 291–304. DOI: 10.1049/ip-rsn:20045064.

[60] SQuan, DDing, andNZhaodong. “SpaceDebris Tracking ViaGeneralized LabeledMulti-Bernoulli
Random Finite Sets”. In: 2019 IEEE International Conference on Signal Processing, Communi-
cations and Computing (ICSPCC). 2019, pp. 1–4. DOI: 10.1109/ICSPCC46631.2019.8960764.

[61] Abu Sajana Rahmathullah, Ángel García-Fernández, and Lennart Svensson. “A Metric on the
Space of Finite Sets of Trajectories for Evaluation of Multi-Target Tracking Algorithms”. In: IEEE
Transactions on Signal Processing PP (May 2016). DOI: 10.1109/TSP.2020.3005309.

[62] Abu Sajana Rahmathullah, Ángel F. García-Fernández, and Lennart Svensson. “Generalized
optimal sub-pattern assignment metric”. In: 2017 20th International Conference on Information
Fusion (Fusion). 2017, pp. 1–8. DOI: 10.23919/ICIF.2017.8009645.

[63] D. Reid. “An algorithm for tracking multiple targets”. In: IEEE Transactions on Automatic Control
24.6 (1979), pp. 843–854. DOI: 10.1109/TAC.1979.1102177.

[64] Stephan Reuter et al. “A fast implementation of the Labeled Multi-Bernoulli filter using gibbs
sampling”. In: null (2017). DOI: 10.1109/ivs.2017.7995809.

[65] Stephan Reuter et al. “The labeled multi-Bernoulli filter”. In: IEEE Transactions on Signal Process-
ing 62 (12 June 2014), pp. 3246–3260. ISSN: 1053587X. DOI: 10.1109/TSP.2014.2323064.

[66] Branko Ristic et al. “A Metric for Performance Evaluation of Multi-Target Tracking Algorithms”.
In: IEEE Transactions on Signal Processing 59 (July 2011), pp. 3452–3457. DOI: 10.1109/TSP.
2011.2140111.

[67] Branko Ristic et al. “A Tutorial on Bernoulli Filters: Theory, Implementation and Applications”. In:
IEEE Transactions on Signal Processing 61.13 (2013), pp. 3406–3430. DOI: 10.1109/TSP.2013.
2257765.

[68] Dominic Schuhmacher et al. “A Consistent Metric for Performance Evaluation of Multi-Object
Filters”. In: IEEE Transactions on Signal Processing (2008). DOI: 10.1109/tsp.2008.920469.

[69] Kai Shen et al. “Consensus-Based Labeled Multi-Bernoulli Filter for Multitarget Tracking in Dis-
tributed Sensor Network”. In: IEEE Transactions on Cybernetics 52 (12 Dec. 2022), pp. 12722–
12733. ISSN: 2168-2267. DOI: 10.1109/TCYB.2021.3087521. URL: https://ieeexplore.ieee.
org/document/9478329/.

https://www.mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm
https://doi.org/10.1109/mits.2010.937293
https://doi.org/10.2514/6.2019-2004
https://doi.org/10.2514/6.2019-2004
http://www.jstor.org/stable/168595
http://www.jstor.org/stable/168595
https://doi.org/10.1109/TAES.2009.5259179
https://doi.org/10.1109/ACCESS.2021.3093719
https://doi.org/10.1109/ACCESS.2021.3093719
https://doi.org/10.1049/ip-rsn:20045064
https://doi.org/10.1109/ICSPCC46631.2019.8960764
https://doi.org/10.1109/TSP.2020.3005309
https://doi.org/10.23919/ICIF.2017.8009645
https://doi.org/10.1109/TAC.1979.1102177
https://doi.org/10.1109/ivs.2017.7995809
https://doi.org/10.1109/TSP.2014.2323064
https://doi.org/10.1109/TSP.2011.2140111
https://doi.org/10.1109/TSP.2011.2140111
https://doi.org/10.1109/TSP.2013.2257765
https://doi.org/10.1109/TSP.2013.2257765
https://doi.org/10.1109/tsp.2008.920469
https://doi.org/10.1109/TCYB.2021.3087521
https://ieeexplore.ieee.org/document/9478329/
https://ieeexplore.ieee.org/document/9478329/

References 70

[70] J Smith et al. “Systematic Analysis of the PMBM, PHD, JPDA and GNN Multi-Target Tracking
Filters”. In: 2019 22th International Conference on Information Fusion (FUSION). 2019, pp. 1–8.
DOI: 10.23919/FUSION43075.2019.9011349.

[71] . IEEE Staff. 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks
and Information Processing. IEEE, 2011. ISBN: 9781457706745.

[72] Zhenzhen Su et al. “A Partitioned Poisson Multi-Bernoulli Filter”. In: IEEE Sensors Journal 23 (14
2023), pp. 16002–16012. ISSN: 1530437X. DOI: 10.1109/JSEN.2023.3283441. URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85162707547&doi=10.1109%2fJSEN.
2023.3283441&partnerID=40&md5=a3b6b623c7d900c7c35446945305f7bb.

[73] Jeffrey K. Uhlmann. “Algorithms for Multiple-Target Tracking”. In: American Scientist 80.2 (1992),
pp. 128–141. ISSN: 00030996. URL: http://www.jstor.org/stable/29774599 (visited on
03/02/2025).

[74] B.-N. Vo and W.-K. Ma. “The Gaussian Mixture Probability Hypothesis Density Filter”. In: IEEE
Transactions on Signal Processing 54 (11 Nov. 2006), pp. 4091–4104. ISSN: 1053-587X. DOI:
10.1109/TSP.2006.881190. URL: https://ieeexplore.ieee.org/document/1710358/.

[75] B.-N. Vo et al. “Multitarget Tracking”. In: Wiley Encyclopedia of Electrical and Electronics En-
gineering. Wiley, Sept. 2015, pp. 1–15. DOI: 10 . 1002 / 047134608X . W8275. URL: https : / /
onlinelibrary.wiley.com/doi/10.1002/047134608X.W8275.

[76] Ba-Ngu Vo et al. “Sequential Monte Carlo methods for multitarget filtering with random finite sets”.
In: IEEE Transactions on Aerospace and Electronic Systems (2005). DOI: 10.1109/taes.2005.
1561884.

[77] Ba-Tuong Vo and Ba-Ngu Vo. “Labeled Random Finite Sets and Multi-Object Conjugate Priors”.
In: IEEE Transactions on Signal Processing 61.13 (2013), pp. 3460–3475. DOI: 10.1109/TSP.
2013.2259822.

[78] Tuyet Vu and Rob Evans. “A new performancemetric for multiple target tracking based on optimal
subpattern assignment”. In: 17th International Conference on Information Fusion (FUSION). July
2014, pp. 1–8.

[79] Gan Wang. “A pipeline algorithm for detection and tracking of pixel-sized target trajectories”. In:
Signal and Data Processing of Small Targets 1990. Ed. by Oliver E. Drummond. Vol. 1305. Inter-
national Society for Optics and Photonics. SPIE, 1990, p. 167. DOI: 10.1117/12.2321758. URL:
https://doi.org/10.1117/12.2321758.

[80] K Wang, Q Zhang, and X Hu. “Label GM-PHD filter based on threshold separation clustering”.
In: Sensors 22 (1 2022). DOI: 10.3390/s22010070. URL: https://www.scopus.com/inward/
record.uri?eid=2- s2.0- 85122300254&doi=10.3390%2fs22010070&partnerID=40&md5=
713fd149caf46fbd1bed8f51aa7adca7.

[81] L Wang et al. “Simulation of CBMeMber Multi-target Tracking Algorithm Based on Gauss Mix-
ture”. In: 2019 IEEE 19th International Conference on Communication Technology (ICCT). 2019,
pp. 1524–1528. ISBN: 2576-7828. DOI: 10.1109/ICCT46805.2019.8947076.

[82] BWei and BDNener. “Multi-Sensor Space Debris Tracking for Space Situational AwarenessWith
Labeled Random Finite Sets”. In: IEEE Access 7 (2019), pp. 36991–37003. ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2019.2904545.

[83] Jason L.Williams. “Marginal multi-bernoulli filters: RFS derivation ofMHT, JIPDA, and association-
basedmember”. In: IEEE Transactions on Aerospace and Electronic Systems 51.3 (2015), pp. 1664–
1687. DOI: 10.1109/TAES.2015.130550.

[84] Jin Y. Yen. “Finding the k Shortest Loopless Paths in a Network”. In: Management Science 17.11
(1971), pp. 712–716. DOI: 10.1287/mnsc.17.11.712.

[85] Huanqing Zhang, Hongwei Ge, and Jinlong Yang. “Adaptive Gaussian mixture probability hy-
pothesis density for tracking multiple targets”. In: Optik 127.8 (2016), pp. 3918–3924. ISSN:
0030-4026. DOI: https://doi.org/10.1016/j.ijleo.2016.01.098. URL: https://www.
sciencedirect.com/science/article/pii/S0030402616001479.

https://doi.org/10.23919/FUSION43075.2019.9011349
https://doi.org/10.1109/JSEN.2023.3283441
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162707547&doi=10.1109%2fJSEN.2023.3283441&partnerID=40&md5=a3b6b623c7d900c7c35446945305f7bb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162707547&doi=10.1109%2fJSEN.2023.3283441&partnerID=40&md5=a3b6b623c7d900c7c35446945305f7bb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162707547&doi=10.1109%2fJSEN.2023.3283441&partnerID=40&md5=a3b6b623c7d900c7c35446945305f7bb
http://www.jstor.org/stable/29774599
https://doi.org/10.1109/TSP.2006.881190
https://ieeexplore.ieee.org/document/1710358/
https://doi.org/10.1002/047134608X.W8275
https://onlinelibrary.wiley.com/doi/10.1002/047134608X.W8275
https://onlinelibrary.wiley.com/doi/10.1002/047134608X.W8275
https://doi.org/10.1109/taes.2005.1561884
https://doi.org/10.1109/taes.2005.1561884
https://doi.org/10.1109/TSP.2013.2259822
https://doi.org/10.1109/TSP.2013.2259822
https://doi.org/10.1117/12.2321758
https://doi.org/10.1117/12.2321758
https://doi.org/10.3390/s22010070
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122300254&doi=10.3390%2fs22010070&partnerID=40&md5=713fd149caf46fbd1bed8f51aa7adca7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122300254&doi=10.3390%2fs22010070&partnerID=40&md5=713fd149caf46fbd1bed8f51aa7adca7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122300254&doi=10.3390%2fs22010070&partnerID=40&md5=713fd149caf46fbd1bed8f51aa7adca7
https://doi.org/10.1109/ICCT46805.2019.8947076
https://doi.org/10.1109/ACCESS.2019.2904545
https://doi.org/10.1109/TAES.2015.130550
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/https://doi.org/10.1016/j.ijleo.2016.01.098
https://www.sciencedirect.com/science/article/pii/S0030402616001479
https://www.sciencedirect.com/science/article/pii/S0030402616001479

References 71

[86] Shangyu Zhao et al. “PMBM-based multi-target tracking under measurement merging”. In: Signal
Processing 225 (2024). ISSN: 01651684. DOI: 10.1016/j.sigpro.2024.109610. URL: https:
//www.scopus.com/inward/record.uri?eid=2- s2.0- 85198736104&doi=10.1016%2fj.
sigpro.2024.109610&partnerID=40&md5=7d91fe0ad30ad10d74d070f70ad9d6cd.

[87] R Zhu et al. “An Improved Multi-Target Tracking Method for Space-Based Optoelectronic Sys-
tems”. In:Remote Sensing 16 (15 2024). DOI: 10.3390/rs16152847. URL: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85200878897&doi=10.3390%2frs16152847&partnerID=
40&md5=5ce85089e9bdfabee304117697317ab1.

https://doi.org/10.1016/j.sigpro.2024.109610
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198736104&doi=10.1016%2fj.sigpro.2024.109610&partnerID=40&md5=7d91fe0ad30ad10d74d070f70ad9d6cd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198736104&doi=10.1016%2fj.sigpro.2024.109610&partnerID=40&md5=7d91fe0ad30ad10d74d070f70ad9d6cd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198736104&doi=10.1016%2fj.sigpro.2024.109610&partnerID=40&md5=7d91fe0ad30ad10d74d070f70ad9d6cd
https://doi.org/10.3390/rs16152847
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200878897&doi=10.3390%2frs16152847&partnerID=40&md5=5ce85089e9bdfabee304117697317ab1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200878897&doi=10.3390%2frs16152847&partnerID=40&md5=5ce85089e9bdfabee304117697317ab1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200878897&doi=10.3390%2frs16152847&partnerID=40&md5=5ce85089e9bdfabee304117697317ab1

A
Literature Selection Methodology

The selection of sources for this thesis was performed using the guidelines presented by Gaast [24]
and Balbin [2], giving priority to (recent) peer-reviewed articles, books and conference proceedings.
Moreover, the procedure employed to select and exclude sources systematically was inspired by the
bio-medical field’s use of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method1 [16, 51]. The selection process is depicted in Figure A.1 and Figure A.2, where the
distribution of the selected sources per year and the selection flowchart are shown, respectively.

The search was conducted using three different databases: Scopus, IEEE, and Research Rabbit. On
one hand, for Scopus and IEEE the search query presented in Listing A.1 was used.

Listing A.1: Search Query Scopus/IEEE

1 TITLE-ABS-KEY[("Multi-target tracking" OR "Multi target tracking") AND ("Aerospace
" OR "Space" OR "Space situational awareness") AND ("Random finite set" OR "
Bernoulli" OR "Joint Probabilistic Data Association" OR "Multi Hypotheses
Tracking")]

On the other hand, for Research Rabbit, the procedure consisted of feeding the supervisor recom-
mended sources and papers obtained by using the search query presented in Listing A.2 with Scopus,
and then using the ‘Similar Work‘ functionality within Research Rabbit to extend the database.

Listing A.2: Search Query Scopus/IEEE

1 TITLE-ABS-KEY[("Multi-target tracking" OR "Multi target tracking") AND ("Aerospace
" OR "Space" OR "Space situational awareness") AND ("Random finite set" OR "
Bernoulli")]

This yielded a non-unique database of 412 sources, from which the duplicates were removed. Further-
more, a first filtering process was performed where the title and abstract of each source were read
and the sources were given a score from 1⋆ to 5⋆ depending on relevance and publication year criteria.
Sources scoring ≤ 2⋆ are directly removed, while sources scoring ≥ 4⋆ are included for the next phase.
Sources that are hard to evaluate based on title and abstract are scored 3⋆ and sent to the next phase
with a special mention. Subsequently, in Phase 2, all papers are skimmed through, focusing on the
research objective, results, and conclusion sections. The papers of interest are then included for Phase
3, which is the thorough source analysis. Finally, the sources are either discarded or included for the
thesis and/or research proposal. The latter distinction is made in case a source is of relevance/interest
for the thesis. Still, enough other sources are representative/similar and of good quality to obtain the
overview needed in the research proposal.

1This method mainly applies to articles, but the same idea was adapted and employed for other source types.

72

73

Figure A.1: PRISMA selection flowchart

74

Figure A.2: Distribution of the selected sources for the thesis by publication year

B
Code Structures and Pseudo-Code

Algorithm 1: Labelled Multi-Bernoulli (LMB) Filter
Input: Measurement sequence Z = {Z1, . . . , ZK}
Output: Estimated states X̂
Data: Filter parameters: ps, pD, qD, λc, pc, thresholds (γ, track, elim., merge), caps (Tmax, Lmax)

1: Initialize empty estimates E and track set TLMB

2: Compute gating threshold γ from Z (chi-square inverse)
3: foreach time k = 1 to K do

/* --- Prediction --- */
4: Create birth tracks (r, w,m, P) with labels (k, i)
5: For each track t ∈ TLMB : rt ← ps · rt; propagate (m,P) via Kalman/UKF

/* --- Conversion to GLMB --- */
6: Convert Tbirth, Tsurvive into GLMB
7: Compute costs ci = ri/(1− ri), apply K-shortest paths
8: Normalize hypothesis weights (log-sum-exp)
9: Compute cardinality distribution

/* --- Update --- */
10: Gate Zk with γ (Linear/UKF)
11: For each z ∈ Zk, t ∈ T : update (m,P) and normalize w
12: Build cost matrix, apply Murty’s algorithm
13: Update log-weights using λc, qD, pD, pc
14: Normalize weights, compute ρ(n)

/* --- GLMB → LMB --- */
15: Merge tracks with identical labels
16: Redistribute weights by hypothesis probability
17: Normalize mixture weights

/* --- Track cleaning --- */
18: Remove tracks with r < thr, cap Tmax

19: For each track: prune (w < elim), merge close comps, keep Lmax

/* --- Estimate extraction --- */
20: Compute existence probs ri
21: Compute ESF, ρ(n), mode N
22: Pick top-N tracks by ri, take max-weight Gaussian
23: Store X̂k

/* --- Diagnostics --- */
24: Compute E[n], Var[n] from ρ(n)
25: Print diagnostics

26: return X̂

75

76

Algorithm 2: Poisson LMB (PLMB) Filter
Input: Measurement sequence Z = {Z1, . . . , ZK}
Output: Estimated states X̂
Data: Filter parameters: ps, pD, qD, birth tuning, λc, pc, thresholds (recycle, elim., merge, γ), caps

(Tmax, Lmax, Jmax)
1: Initialize empty estimates E, PPP intensity PPP , and track set T
2: Compute gating threshold γ from Z (chi-square inverse)
3: foreach time k = 1 to K do

/* --- PPP prediction --- */
4: Propagate each PPP Gaussian with Kalman/UKF
5: Multiply weights by ps
6: Add birth Gaussian mixture

/* --- Form new tracks from PPP --- */
7: Gate Zk with γ
8: For each z ∈ Zk: compute likelihood q(z) from PPP components
9: compute updated intensity w′ = pDq(z)w

λc+pDQq(z)

10: compute adaptive threshold θ = birth_tuning · λc∑
q(z)+λc

11: if w′ > max(θ,min Birth Threshold): create new track with r = min(max rcont, w
′), label (k, i), Gaussian

(m′, P ′)
12: Reduce PPP weights by (1− pD)

/* --- PPP cleaning --- */
13: Remove PPP components with w < elim
14: Merge close Gaussians (Mahalanobis distance < merge)
15: Keep top Jmax components

/* --- Predict active LMB tracks --- */
16: For each track t ∈ T : rt ← ps · rt; propagate (m,P) via Kalman/UKF

/* --- Conversion to GLMB and update --- */
17: Convert Tnew, Tsurvive into GLMB hypotheses
18: Gate Zk, update (m,P) and normalize w
19: Build cost matrix, apply Murty’s algorithm
20: Update log-weights using λc, qD, pD, pc
21: Normalize with log-sum-exp, compute ρ(n)

/* --- GLMB → LMB --- */
22: Merge tracks with identical labels
23: Redistribute Gaussian components by hypothesis weights
24: Normalize mixtures

/* --- Track cleaning --- */
25: Remove tracks with r < thr, cap Tmax

26: For each track: prune (w < elim), merge close comps, keep Lmax

/* --- Recycling --- */
27: For each track with r < recycle thr: add its Gaussians (scaled by r · w) to PPP
28: remove track from T

/* --- Estimate extraction --- */
29: Compute existence probs ri
30: Compute ESF, ρ(n), mode N
31: Pick top-N tracks by ri, take max-weight Gaussian
32: Store X̂k

/* --- Diagnostics --- */
33: Compute E[n], Var[n] from ρ(n)
34: Print diagnostics: tracks and PPP size

35: return X̂

77

Algorithm 3: K-Shortest Paths (Yen’s Algorithm)
Input: Cost matrix G, source s, destination d, number of paths k, DAG flag useDAG
Output: List of k shortest paths with costs
Data: Hash sets seenHashes, inHeapHashes; Priority queue B

1: Initialize result list A← [], hash sets, priority queue
2: if useDAG then
3: firstPath← DAGSP(G, s, d)
4: else
5: firstPath← BFMSP(G, s, d)

6: if firstPath is empty then
7: return A

8: Add firstPath to A and its hash to seenHashes
9: if k = 1 then
10: return A

11: for m = 1 to k − 1 do
12: prevPath← A[m− 1]
13: for i = 0 to |prevPath| − 2 do
14: spurNode← prevPath[i]
15: rootPath← prevPath[0 : i+ 1]
16: Create modified graph G′ by removing conflicting edges

/* Remove edges to force path deviation */
17: for j = 0 to i− 1 do
18: Remove all edges incident to prevPath[j] in G′

19: Remove edges that would recreate previous paths with same root
20: if useDAG then
21: spurPath← DAGSP(G′, spurNode, d)
22: else
23: spurPath← BFMSP(G′, spurNode, d)

24: if spurPath is not empty then
25: totalPath← rootPath+ spurPath[1 :]
26: pathHash← computeHash(totalPath)
27: if pathHash /∈ seenHashes and pathHash /∈ inHeapHashes then
28: Compute total cost and add to priority queue B
29: Add pathHash to inHeapHashes

30: Remove paths from B that are already in seenHashes
31: if B is empty then
32: Break;

33: nextBest← B.pop()
34: Add nextBest to A and its hash to seenHashes

35: return A

78

Algorithm 4: Bellman-Ford-Moore Shortest Path (BFMSP)
Input: Cost matrix G, source node s, destination node d
Output: Shortest path result (path, cost)

1: Initialize distance array dist[n]←∞, predecessor array pred[n]← −1
2: Build edge list edges from cost matrix G
3: dist[s]← 0

/* Relax edges up to n− 1 times */
4: for iter = 0 to n− 2 do
5: updated← false
6: foreach edge (u, v, weight) ∈ edges do
7: if dist[u] ̸=∞ and dist[v] > dist[u] + weight+ ϵ then
8: dist[v]← dist[u] + weight
9: pred[v]← u
10: updated← true

11: if not updated then
12: Break;

/* Check for negative cycles */
13: foreach edge (u, v, weight) ∈ edges do
14: if dist[u] ̸=∞ and dist[v] > dist[u] + weight+ ϵ then
15: return empty path (negative cycle detected)

16: if dist[d] =∞ then
17: return empty path

18: Reconstruct path from pred array
19: return (path, dist[d])

Algorithm 5: DAG Shortest Path (DAGSP)
Input: Cost matrix G, source node s, destination node d
Output: Shortest path result (path, cost)

1: Initialize distance array dist[n]←∞, predecessor array pred[n]← −1
2: dist[s]← 0

/* Process nodes in topological order */
3: for u = s to n− 1 do
4: if dist[u] =∞ then
5: continue
6: for v = u+ 1 to n− 1 do
7: w ← G[u][v]
8: if w is valid edge then
9: newDist← dist[u] + w
10: if dist[v] > newDist− ϵ then
11: dist[v]← newDist
12: pred[v]← u

13: if dist[d] =∞ then
14: return Empty Path;

15: Reconstruct path from pred array
16: return (path, dist[d])

79

Algorithm 6: Hungarian Algorithm for Optimal Assignment

Input: Cost matrix C ∈ Rm×n

Output: Optimal assignment vector assignment[m], total cost
Data: Star matrix starMatrix, prime matrix primeMatrix, covered rows/columns

1: Initialize assignment vector, cost← 0
2: Generate working copy of cost matrix, handle infinite values
3: Allocate boolean matrices for stars, primes, and coverage

/* Preliminary steps: reduce matrix */
4: if m ≤ n then
5: for each row r do
6: Find minimum value minV al in row r
7: Subtract minV al from all elements in row r

8: else
9: for each column c do
10: Find minimum value minV al in column c
11: Subtract minV al from all elements in column c

/* Step 1 & 2a: Initial assignment */
12: Create initial starred zeros without conflicts

/* Main algorithm loop */
13: repeat

/* Step 2b: Check if done */
14: Count covered columns
15: if covered columns = min(m,n) then
16: Build assignment vector from star matrix
17: Break;
18: else

/* Step 3: Cover zeros */
19: Find uncovered zeros and create primes
20: Handle conflicts between starred and primed zeros
21: if augmenting path found then

/* Step 4: Augment matching */
22: Update star matrix along augmenting path
23: Clear all primes and row coverings

24: else
/* Step 5: Modify costs */

25: Find minimum uncovered value h
26: Add h to covered rows, subtract h from uncovered columns

27: until assignment complete
28: Compute total assignment cost
29: return (assignment, cost)

80

Algorithm 7: Murty’s Algorithm for M-Best Assignments with Prefix Forcing
Input: Cost matrix C, number of desired solutions m
Output: List of m best assignments and corresponding costs
Data: Priority queue queue (min-heap), assignment list assignments

1: Initialize empty lists assignments← [], costs← []
2: if m ≤ 0 or C is empty then
3: return (assignments, costs)

4: (initialAssignment, initialCost)← Hungarian(C)
5: if no valid solution found then
6: return (assignments, costs)

7: Create subproblem P0 ← (C, initialAssignment, initialCost)
8: Add P0 to queue
9: while queue not empty and |assignments| < m do
10: current← queue.pop() (lowest-cost subproblem)
11: Append current.assignment to assignments
12: Append current.cost to costs

/* Generate child subproblems by enforcing prefixes and forbidding current pair */
13: for each row r in current.assignment do
14: col← current.assignment[r]
15: if col < 0 then
16: continue
17: Cchild ← current.costMatrix

/* 1. Enforce prefix assignments for rows 0 to r − 1 */
18: for p← 0 to r − 1 do
19: fixedCol ← current.assignment[p]
20: for each column j in Cchild do
21: if j ̸= fixedCol then
22: Cchild[p][j]←∞

/* 2. Forbid current assignment (r, col) */
23: Cchild[r][col]←∞

/* 3. Solve the modified problem */
24: (childAssignment, childCost)← Hungarian(Cchild)
25: if valid complete assignment found then
26: Create subproblem Pchild ← (Cchild, childAssignment, childCost)
27: Add Pchild to queue

28: return (assignments, costs)

81

Algorithm 8: Murty Wrapper for (P)LMB Filter
Input: Original cost matrix P0, number of solutions m
Output: 1-indexed assignments, adjusted costs

1: if m ≤ 0 or matrix is empty then
2: return empty results

3: n1 ← P0.rows(), n2 ← P0.cols()
/* Create padded matrix with dummy assignments */

4: Create padded matrix [n1 × (n2 + n1)]
5: padded.leftCols(n2)← P0

6: padded.rightCols(n1)← 0.0 (dummy assignments)
/* Make matrix non-negative */

7: minV al← padded.minCoeff()
8: padded← padded−minV al

/* Solve m-best assignment problem */
9: (assignmentsPadded, costsPadded)← Murty(padded,m)

/* Convert results: strip dummies, adjust to 1-indexing */
10: foreach (assignmenti, costi) ∈ (assignmentsPadded, costsPadded) do
11: Create stripped assignment vector
12: foreach assignment value a do
13: if a < n2 then
14: Add (a+ 1) to stripped vector (1-indexed)
15: else
16: Add 0 to stripped vector (unassigned)

17: adjustedCost← costi +minV al × n1

18: Add stripped assignment and adjusted cost to results

19: return (assignmentsStripped, costsAdjusted)

Algorithm 9: Multiple Kalman Prediction
Input: State means {mi}, covariances {Pi}, transition matrix F , process noise Q
Output: Predicted means {m−

i }, predicted covariances {P
−
i }

1: Initialize result vectors mPredicts, covsPredicts
2: foreach component i in mixture do
3: m−

i ← F ·mi

4: P−
i ← Q+ F · Pi · FT

5: Add (m−
i , P

−
i) to result vectors

6: return (mPredicts, covsPredicts)

82

Algorithm 10: Multiple Kalman Update
Input: Measurement z, prior means {mi}, covariances {Pi}, measurement matrix H, noise R
Output: Likelihoods {qi}, updated means {m+

i }, updated covariances {P
+
i }

1: HT ← H.transpose()
2: Initialize result vectors qzUpdate, mUpdate, covsUpdate
3: foreach component i in mixture do
4: µi ← H ·mi (predicted measurement)
5: Si ← R+H · Pi ·HT (innovation covariance)

/* Efficient inversion using Cholesky decomposition */
6: Li ← cholesky(Si).matrixL()
7: det(Si)← (

∏
Li.diagonal)2

8: S−1
i ← (L−1

i)T · L−1
i

/* Kalman gain and update */
9: Ki ← Pi ·HT · S−1

i

10: νi ← z − µi (innovation)
/* Likelihood computation */

11: e1 ← − 1
2
νT
i S−1

i νi
12: e2 ← − 1

2
|z| log(2π)

13: e3 ← − 1
2
log(det(Si))

14: qi ← exp(e1 + e2 + e3)
/* State update */

15: m+
i ← mi +Ki · νi

16: P+
i ← (I −KiH)Pi

17: Add (qi,m
+
i , P

+
i) to result vectors

18: return (qzUpdate,mUpdate, covsUpdate)

Algorithm 11: Unscented Transform
Input: Mean µ, covariance Σ, nonlinear function f(·), UKF parameters
Output: Sigma points matrix X , weights vector w

1: n← |µ|, α← UKF alpha parameter, κ← UKF kappa parameter
2: λ← α2(n+ κ)− n

3:
√
P ← cholesky((n+ λ)Σ).matrixL()

/* Generate sigma points */
4: X [:, 0]← µ (center point)
5: for i = 0 to n− 1 do
6: X [:, i+ 1]← µ−

√
P [:, i]

7: X [:, i+ 1 + n]← µ+
√
P [:, i]

/* Compute weights */
8: w[0]← λ/(n+ λ)
9: for i = 1 to 2n do
10: w[i]← 1/(2(n+ λ))

11: return (X , w)

83

Algorithm 12: UKF Single Prediction
Input: Prior mean m, covariance P , state transition function f(·), filter parameters
Output: Predicted mean m−, predicted covariance P−

1: Get process noise covariance Q from filter parameters
/* Create augmented state with process noise */

2: µaug ← [mT , 0T]T ∈ Rn+q

3: Σaug ←

[
P 0

0 Q

]
/* Generate sigma points for augmented state */

4: (Xaug, w)← unscentedTransform(µaug,Σaug, f, params)
/* Propagate sigma points through state transition */

5: for i = 0 to 2(n+ q) do
6: xi ← Xaug[0 : n, i] (state part)
7: vi ← Xaug[n : n+ q, i] (noise part)
8: Y[:, i]← f(xi, vi, params)

/* Compute predicted statistics */
9: m− ← Y · w
10: Ycentered ← Y −m−1T

/* Adjust weight for covariance (incorporate beta parameter) */
11: α, β ← get UKF parameters
12: w[0]← w[0] + (1− α2 + β)

13: P− ← Ycentered · diag(w) · YT
centered

14: return (m−, P−)

Algorithm 13: UKF Multiple Prediction
Input: Prior means {mi}, covariances {Pi}, filter parameters
Output: Predicted means {m−

i }, predicted covariances {P
−
i }

1: Get state transition function from filter parameters
2: Initialize result vectors mPredicts, covsPredicts
3: foreach component i in mixture do
4: (m−

i , P
−
i)← ukfPredictSingle(mi, Pi, f, params)

5: Add (m−
i , P

−
i) to result vectors

6: return (mPredicts, covsPredicts)

84

Algorithm 14: UKF Single Update
Input: Measurement z, measurement function h(·), prior mean m, covariance P , filter parameters
Output: Likelihood ℓ, updated mean m+, updated covariance P+

1: Get measurement noise covariance R from filter parameters
/* Create augmented state with measurement noise */

2: µaug ← [mT , 0T]T

3: Σaug ←

[
P 0

0 R

]
/* Generate sigma points and propagate through measurement function */

4: (Xaug, w)← unscentedTransform(µaug,Σaug, h, params)
5: for i = 0 to 2(n+ r) do
6: xi ← Xaug[0 : n, i] (state part)
7: ni ← Xaug[n : n+ r, i] (noise part)
8: Z[:, i]← h(xi, ni, params)

/* Compute predicted measurement statistics */
9: ẑ ← Z · w
10: Zcentered ← Z − ẑ1T

11: α, β ← get UKF parameters
12: w[0]← w[0] + (1− α2 + β)

13: S ← Zcentered · diag(w) · ZT
centered

/* Compute cross-covariance using efficient method */
14: U ← cholesky(S).matrixU()
15: S−1 ← (U−1)T · U−1, det(S)← (

∏
U.diagonal)2

16: Xcentered ← Xaug[0 : n, :]−m1T

17: G← Xcentered · diag(w) · ZT
centered

18: K ← G · S−1 (Kalman gain)
/* State update and likelihood */

19: ν ← z − ẑ (innovation)
20: m+ ← m+K · ν
21: P+ ← P −G · S−1 ·GT

22: log ℓ← − 1
2
(νTS−1ν + |z| log(2π) + log(det(S)))

23: ℓ← exp(log ℓ)
24: return (ℓ,m+, P+)

Algorithm 15: UKF Multiple Update
Input: Measurement z, prior means {mi}, covariances {Pi}, filter parameters
Output: Likelihoods {ℓi}, updated means {m+

i }, updated covariances {P
+
i }

1: Get measurement function from filter parameters
2: Initialize result vectors likelihoods, updatedMeans, updatedCovs
3: foreach component i in mixture do
4: (ℓi,m

+
i , P

+
i)← ukfUpdateSingle(z, h,mi, Pi, params)

5: Add (ℓi,m
+
i , P

+
i) to result vectors

6: return (likelihoods, updatedMeans, updatedCovs)

C
Original Research Proposal Plan

Having a well-established plan for research is essential for the success of any project, as such in
this chapter an overview of the nominal timeline as well as contingency measures are provided. The
planning for the project is based on the recommended structure for the master thesis as described on
the official TU Delft website1 but tailored specifically to this project. The thesis is estimated to be 35
weeks long and a general overview of the planned weekly hours over the project span can be found in
Figure C.1. The weekly hours are split between four categories:

1. Literature: Hours dedicated to literature review, including (but not limited to) finding/analysing/un-
derstanding source/papers.

2. Code: Hours dedicated to coding/implementation/debugging of the codebase, but also including
derivations and theoretical set-up for the problem.

3. Writing: Hours dedicated to writing the reports, deliverables, presentations, and weekly meetings
(including meeting notes and prepared questions).

4. Admin: Hours dedicated to ensuring that all deliverables and administrative procedures for the
various key milestones are performed correctly.

The project is further subdivided into four phases:

P1. Literature Review and Research Proposal - Weeks 1 → 7
During this initial phase the focus will be on gathering the relevant literature, compiling the re-
search proposal, setting up all of the necessary research materials/resources/tools/environments,
and starting to implement some basic filters such as the PHD. Nonetheless, the main focus of P1
remains the literature as seen by the planned hour distribution in Figure C.1.

P2. Research Phase 1 - Weeks 7 → 19
The focus will shift from literature to coding, implementation, and mid-term review compilation
(consisting of a report and oral presentation). During this phase, more advanced (labelled) fil-
ters will be implemented, and the first and second research guiding questions will be tackled.
Furthermore, the research can/will be further developed/modified for the midterm report.

P3. Research Phase 2 - Weeks 19 → 30
By this stage, the research is very well defined and the amount of literature hours is further re-
placed by coding/implementation/derivation hours. The end of this stage is marked by the thesis
draft for which all the estimators/filters of interest have been implemented/compared/tested, and
data/codebase/results have been verified/validated/analysed/discussed.

P4. Research Dissemination - Weeks 30 → 35
During this phase, the green light review is held and minor improvements and changes can be
made to the thesis. Preparations for the thesis defence are made and the weekly hours focus
changes from coding to admin and writing hours.

1https://www.tudelft.nl/studenten/lr-studentenportal/onderwijs/master/thesis Accessed 05/02/2025

85

https://www.tudelft.nl/studenten/lr-studentenportal/onderwijs/master/thesis

86

Milestone Projected Date Milestone Projected Date

Kick-off Meeting 20/01/2025 Thesis-Draft 18/08/2025
Research Proposal 05/03/2025 Green Light Review Week 31
Mid-Term Paper 19/05/2025 Thesis Defence Week 35

Figure C.1: Thesis draft timeline for weekly hours distribution

87

In addition to the presented planned weekly hours in Figure C.1, to keep the project on track the use
of a Notion webpage2 is made to track progress via a daily logbook and three timelines (one for cod-
ing, research and writing respectively). The timelines represent three Gant-Charts which are updated
weekly with new tasks and subtasks aiming to achieve the general objective of each of the four project
phases as described in Table C.2. This method along with Figure C.1 is used to keep flexible during
the project without losing sight of the important objectives/work-packages. Last but not least, it should
be noted that documenting and writing tasks are being performed along the project each week, so as
not to fall into a situation where extensive writing is needed before a deliverable.

Table C.2: Main objectives description per phase and category - Literature (L), Code(C), Writing(W), Admin(A) - non-critical
tasks marked with a star ⋆

Phase ID Objective ID Description

P1 A-1.1 Kick-Off meeting and submission of the Kick-off Form
A-1.2 Submit Research Proposal and Proposal Review
L-1.1 Select relevant literature using the PRISMA method
L-1.2 Analyse selected literature
C-1.1 Set-up coding environments and resources (Python, C++, Tudat, Delft-

Blue, CLion)
⋆ C-1.2 Implementation of basic filters and scenarios to get a feeling (PHD)
W-1.1 Compile the research proposal

P2 A-2.1 Apply for DelftBlue access
A-2.2 Mid-Term Deliverable → submit report, give oral presentation
L-2.1 Identify additional required materials for case-specific problem encoun-

ters
⋆ L-2.2 Check current publications and journals for new relevant materials

weekly
C-2.1 Implement advanced (labelled) filters/estimators (at least PHD, LMB,

PMBM)
⋆ C-2.2 Implement unit/system tests
C-2.3 Implement comparison/benchmarking structures

⋆ W-2.1 Write codebase documentation
W-2.2 Write midterm report
W-2.3 Compile midterm presentation

P3 A-3.1 Submit Thesis Draft
A-3.2 Apply for green-light review
L-3.1 Identify additional required materials for case-specific problem encoun-

ters
⋆ L-3.2 Check current publications and journals for new relevant materials

weekly
C-3.1 Implement advanced (labelled) filters/estimators (PMBM, LMB varia-

tions)
C-3.2 Implement unit/system tests
C-3.3 Data/results validation and verification
C-3.4 Data/results analysis/discussion

2Link to request access: https://www.notion.so/invite/f880f1fcdd4ad8d4bb27bb731e1a19f5c085981c

https://www.notion.so/invite/f880f1fcdd4ad8d4bb27bb731e1a19f5c085981c

C.1. Experimental Set-Up Ideal 88

C-3.5 Implement mixed estimator labelled/unlabelled RSO dependent
⋆ C-3.6 Compile for Delft Blue
W-3.1 Thesis Draft

⋆ W-3.2 Codebase Documentation
P4 A-4.1 Request examination and committee

A-4.2 Research Submission
A-4.3 Thesis Defence
C-4.1 Results analysis/discussion
W-4.1 General report improvements
W-4.2 Thesis defence preparation

Contingency Plan
Having contingency plans prepared in advance is important when planning the research and even
though it is hard to predict what the future holds, knowing which tasks are critical and which may be
changed, delayed or deleted is essential. The weekly hours planning presented in the nominal plan
allows for flexibility when it comes to task distribution, and having the objectives split into critical and non-
critical allows for additional flexibility. Since the hours per package/category are allocated in advance
and the specific task hours are allocated each week in notion for the next week, with the logbook data
it is possible to track the progress and apply one of the following contingency scenarios:

• Unfulfilled Hours due to external factors (e.g. administrative/health appointments, delays, ma-
terial malfunctions) - the hours will be re-allocated during the week, either during weekdays or
weekends, depending on scenarios, and can also be re-allocated to a further week.

• Task Delayed - if a tasks gets delayed and it is marked as non-critical in Table C.2 it can be
rescheduled, delayed or deleted. However, if it is a critical task, additional hours will be allocated
at the end of the day/weekends until the task is performed if it is believed to be a time issue.
Finally, the holidays were planned at strategic points such that in a worst-case scenario, they can
also be used for additional hours.

• Task Infeasibility - By the midterm review, an idea of the implementation of all filter categories
would have been acquired. As such, in case a filter is too problematic or a research question
needs to be modified, this can be done before the submission of the midterm. It should still
be noted that at least one member of each RFS branch presented in Figure 2.2 would ideally
be implemented uniquely, such that the best combinations are implemented for the combined
labelled/unlabelled estimator.

C.1. Experimental Set-Up Ideal
For this research, the most important resource is the computational power accessible which specifica-
tions are included in Table C.3. This consists of the personal laptop of the student and access to one
DelftBlue3 node of either compute type-a or compute type-b. It should be noted that the access request
for DelftBlue will be submitted after the research proposal phase in P2, where the exact compute speci-
fications will be made clear. Furthermore, there exists additional GPU-specific nodes and high memory
nodes which are not believed to be needed at this stage. For the computing power, when upscaling
the problem to a (very) large population of objects it is expected for the personal laptop to be a limiting
factor,

Table C.3: Available computing resources during the project

Personal Laptop - Windows 11 / WSL2 (Ubuntu 20/22)
Model Asus ROG Zephyrus M16

3https://www.tudelft.nl/dhpc/system (Accessed 19/02/2025)

https://www.tudelft.nl/dhpc/system

C.1. Experimental Set-Up Ideal 89

CPU Intel i9-12th Gen
GPU NVIDIA RTX 3070Ti - CUDA architecture 86
SSD 1TB

RAM 32GB

DelftBlue - Linux
Compute type-a

Cores 48
CPU 2x Intel XEON E5-6248R 24C 3.0GHz

Memory 192GB

SSD 480GB

Compute type-b
Cores 64
CPU 2x Intel XEON E5-6448Y 32C 2.1GHz

Memory 256GB

SSD 480GB

In addition to the computational power, several open-source source software/codebases and program-
ming languages will be employed during the project, as well as paid software/licences accessible
through TU Delft’s student account. As such a short description of the most important resources is
listed below:

Programming Language
Even though the main programming language for the project is C++17 (note that some of the software
which will be used compiles code in C++14), visualising data can also be performed with Python-3.10
(or above). Additionally compiling the C++ code will be performed using CMake 3.22.1 (or above), and
g++ 11.4.0 (or above). Moreover, even though some of the open-source repositories accompanying
the selected literature (notably the Vo&Vo research) have been written in MATLAB, whose licence is
provided by TU Delft, the project codebase will not include MATLAB code. Finally, all the reports will
be written using LaTeX.

Integrated Development Environments (IDE)
The main IDEs which will be used are Visual Studio Code4 (free) for any Python code involved and
CLion5 (JetBrains Licence required - provided by TU Delft) for the C++ code as it allows linking the
environment with WSL2 and is the recommended option for compiling Tudat software on Windows
based OS. As an alternative, it is possible to use the Visual Studio 2022 Community version6 (free) if
needed but would require more steps to set up the environment.

Open Source Repositories
The most important open-source repositories which will be used for the project are Tudat7 for all of
the astrodynamics propagations and simulations, metis8 by S. Gehly and RFS tracking toolbox9 by
B. Vo for verification, benchmarking and inspiration. In addition, it is worth mentioning Rerun.io10 as
visualization software that can potentially be used for both plotting and debugging.

4https://code.visualstudio.com/ (Accessed 19/02/2025)
5https://www.jetbrains.com/clion/ (Accessed 19/02/2025)
6https://visualstudio.microsoft.com/vs/ (Accessed 19/02/2025)
7https://github.com/tudat-team/tudat-bundle (Accessed 19/02/2025)
8https://github.com/gehly/metis (Accessed 19/02/2025)
9https://ba-tuong.vo-au.com/codes.html# (Accessed 19/05/2025)
10https://rerun.io/ (Accessed 19/05/2025) - version 0.19.0 or above

https://code.visualstudio.com/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/
https://github.com/tudat-team/tudat-bundle
https://github.com/gehly/metis
https://ba-tuong.vo-au.com/codes.html#
https://rerun.io/

C.1. Experimental Set-Up Ideal 90

Data Management & Miscellaneous
For data management, the codebase will be saved both locally and remotely using Github, the reports
will be written using Overleaf, all presentations will be created using PowerPoint, and all flowcharts will
be created using Lucidchart. Moreover, Mendeley and Research Rabbit are used for the reference
management. Furthermore, Grammarly will be used for grammar and spelling. Last but not least, it is
important to mention that doxygen will be used to generate the codebase documentation.

	Abstract
	Nomenclature
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Literature Review
	Challenges in Space Situational Awareness
	Approaches Overview
	Data Fusion
	Assessment Metrics

	Research Question
	Methodology
	Finite Set Statistics
	Probability Hypothesis Density
	Theory
	Numerical Example

	Labelled Multi Bernoulli
	Theory
	Implementation Approach

	Poisson Labelled Multi Bernoulli
	Supporting Concepts and Methods
	Gaussian Mixture
	Kalman and Unscented Kalman Filter: Prediction & Update
	K-Shortest Paths and Murty’s Algorithm for Hypothesis Management
	Model Description
	Parameter Tables

	Results & Discussion
	PHD/LMB comparison
	Linear Model
	Non-Linear Model

	LMB/PLMB comparison
	Time Performance
	Implication for SSA

	Conclusion
	References
	Literature Selection Methodology
	Code Structures and Pseudo-Code
	Original Research Proposal Plan
	Experimental Set-Up Ideal

