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Abstract

This study investigates the performance of three dy-
namic scheduling approaches—proactive, reactive,
and STNU-based—for solving the Multi-Mode
Resource-Constrained Project Scheduling Problem
with maximal time-lags and no-wait constraints
(MMRCPSP/max) in uncertain environments. The
performance of the approaches is validated on
three key performance measures: solution qual-
ity (makespan), offline computation time, and on-
line computation time. Drawing from the current
work on stochastic RCPSP/max, this research in-
troduces a more realistic formulation of the prob-
lem with multi-mode execution, generalised time
lags, and no-wait constraints, under the PyJobShop
library and stochastic duration modelling. Experi-
mental results, based on altered PSPLIB instances,
show that the three algorithms yield similar feasi-
bility rates. However, they show distinct trade-offs
in terms of solution quality, time offline, and time
online. The proactive algorithm requires the short-
est offline and online computational times, but pro-
vides slightly worse makespans. The STNU-based
algorithm produces the best average solution qual-
ity, with significantly higher offline time. The reac-
tive algorithm offers competitive offline times and
solution quality, but has the largest online com-
putational time. The findings provide insight into
the trade-offs in solution quality and computational
time in dynamic project scheduling and offer in-
sight for using the strategies in the real world.

1 Introduction

Constraint programming comprises a class of NP-hard algo-
rithms that are key to solving industrial problems, partic-
ularly the resource-constrained project scheduling problem
(RCPSP) [101[17]. RCPSP aims to minimise the makespan
(total duration of a schedule) by scheduling task start times
that respect precedence constraints (tasks that must be com-
pleted before others can begin) and resource availability
while ensuring non-preemptiveness (once an activity starts,
it must run to completion without interruption) [1].

RCPSP has been applied in various domains, such as make-
to-order production scheduling, batch scheduling in the pro-
cess industry, and assembly line balancing [2]. Using RCPSP,
efficient and high-quality scheduling solutions can be found,
leading to significant improvements in operational perfor-
mance.

An extension to the RCPSP problem is the Multi-Mode
RCPSP/max with generalised time-lag and no-wait con-
straints. The RCPSP/max variant extends the classical
RCPSP by allowing precedence constraints between activi-
ties that include minimum and maximum time lags [13].

The Multi-Mode RCPSP extends the classical RCPSP by
allowing tasks to be executed in multiple modes, each with
different durations and resource requirements [18]. This
added flexibility better reflects real-world scenarios (for ex-

ample, increasing the number of workers can reduce task du-
ration), but also significantly increases the search space, mak-
ing it more challenging for algorithms to find optimal solu-
tions.

Generalised time-lags introduce additional constraints be-
tween task pairs by specifying minimum and maximum time
differences between their start and/or finish times. Although
this added control increases scheduling flexibility, it also im-
poses more constraints on problem instances [14].

The no-wait constraint is a special case of generalised time-
lag constraints, where the time lag between the end of one
task and the start of the next is zero, hence enforcing that a
task must start immediately after the preceding task finishes.
The no-wait constraint can be modelled by creating an end-
to-start constraint from task A to task B of 0 lag and creating
a start-to-end constraint from task B to task A of 0 lag.

In real-world applications, external factors often introduce
uncertainty, leading to variability in the duration of tasks. Dy-
namic constraint programming is an extension of constraint
programming that accounts for this uncertainty by modelling
durations as stochastic instead of deterministic [4].

Currently, two main approaches address stochastic
scheduling problems: proactive and reactive. The proactive
approach creates an offline solution that anticipates uncer-
tainty using the upper bounds of the duration. The reactive
approach begins with a solution and modifies it dynamically
during execution in response to uncertainty [3]. The two ap-
proaches represent opposite ends of a spectrum, while most
real-life approaches follow a hybrid implementation [6]. This
paper explores which of the two approaches is best for solv-
ing an instance of a Multi-Mode RCPSP/max with gener-
alised time lags/no-wait constraints. It also compares a hybrid
approach that uses a Simple Temporal Network with Uncer-
tainty (STNU).

The metrics used to compare these algorithms in this paper
were solution quality, offline time, and online time. The so-
lution quality is measured by comparing the makespan. The
time offline refers to all computations performed before the
execution of the schedule begins, including schedule genera-
tion and any preprocessing steps. The time online is the time
spent adapting the schedule in response to randomness during
execution.

This paper builds on the work of van den Houten et al. [6]
by developing a model that incorporates multi-mode features,
generalised time lags, and a no-wait constraint, thus creating
instances that more closely reflect real-world conditions and
offering a fundamental contribution to the field.

Section 2 of this paper provides a formal description of the
MMRCPSP/max problem. Section 3 discusses related works
to this paper. Section 4 outlines the methodology of the in-
vestigation. Section 5 provides the setup and results of the
experiment. Section 6 provides an overview of the ethical
issues and reproducibility of the experiment. Section 7 pro-
vides a comparison with known results and a broader context
for the investigation. Finally, Section 8 provides a conclusion
and future works that can improve upon this investigation.



2 Formal problem description
The MMRCPSP/max is described as follows [15]:

1. Given a set of activities V' = {0,1,...,n + 1}, with
0 and » + 1 as dummy start/end nodes. Each activity
has a set of modes, each mode m containing a stochastic
duration d;,,; and number of resources used 7, .

2. Given a set of resources R with capacities Ry,

3. Given a set of generalised precedence constraints £/ C
V' x V, each with:

* A relation type 7;; € {SS,SF,FS,FF}, where S

and F denote the start and finish times of the re-
spective tasks.

* Atimelagl;; € Z
4. Aset N CV x V of no-wait constraints

The objective is to find the start times .S; € N and mode as-
signments m; € M; for all 7 € V that minimise the makespan
of the schedule such that the following constraints are satis-
fied:

1. Generalized temporal constraints:

Sj Z SZ + lij ifTij =SS
Sj-l-dij ZSZ—l—l” ifTZ'jZSF L.
7 N E
Sj >S5+ dim,; + li if 7;; =FS (27]) <
Sj+djm; > Si +dim, +1l;; if 7y =FF
2. No-wait constraints:
Sj =S; + dsz V(Z,j) eN

3. Resource constraints (for all time units t):

> Gim, () - Timuw < Re Yk € RVt €N
eV
where 0;,, (t) = 1if S; <t < S; + djs,, otherwise 0.

Figure 1 illustrates an instance of an RCPSP/max prob-
lem. The precedence graph represents temporal constraints
between task start times; for example, task a must start at least
2 seconds before task b begins. The accompanying Gantt
chart shows a feasible schedule that satisfies all constraints,
with the number of resources used at each time point.

3 Related works

The multi-mode resource-constrained project scheduling
problem (MMRCPSP) has been studied many times, includ-
ing the work of Tao and Dong [18]. Similarly, the resource-
constrained project scheduling problem with maximal time
lags (RCPSP/max) has also been widely investigated, demon-
strated, for example, in the study by Oddi and Rasconi [13].

In Lin et al. [11], a robust proactive algorithm is devel-
oped that uses the maximum possible duration of each task to
create the schedule.

The dynamic controllability of an STNU implies the ex-
istence of a strategy that can assign execution times to all
controllable events in a way that guarantees that all tempo-
ral constraints are met, independent of duration [12]. The

algorithm developed to check for dynamic controllability in
Morris [12] takes O(N?), which also transforms the STNU
into an extended STNU (ESTNU) by adding wait edges to the
STNU.

In this paper, we used the RTE* algorithm developed by
Hunsberger and Posenato [7]. This algorithm transforms an
ESTNU into a schedule in polynomial time.

In Deblaere et al. [5], the stochastic MMRCPSP problem
was studied. However, their investigation was limited to fo-
cusing on the reactive approach, while exploring changes in
duration and resource availability.

This study builds on the work of van den Houten et al.
[6], which addresses dynamic scheduling for the RCPSP/max
problem. In van den Houten et al. [6], different schedul-
ing strategies are investigated for the stochastic RCPSP/max
problem. They investigated four different algorithms: a
proactiveg 9, reactive, STNU and proactives44 approach.
This paper extends their approach by focusing on the
MMRCPSP/max, incorporating multi-mode execution and
maximal time-lag constraints into a dynamic scheduling set-
ting.

From our understanding, while the stochastic RCPSP/max
problem was investigated by van den Houten et al. [6], and
the stochastic MMRCPSP was investigated by Deblaere et
al. [5], the stochastic MMRCPSP/max with generalised time-
lags and no-wait constraints has not. Moreover, to our knowl-
edge, only van den Houten et al. [6] have investigated us-
ing the STNU approach to investigate stochastic scheduling.
Therefore, this paper aims to eliminate this knowledge gap
by investigating which of the reactive, proactive, and STNU
algorithms performs best when using the metrics of solution
quality, time offline, and time online.

4 Methodology

This section outlines the methodology of the investigation.
The library used to create a constraint programming model
for MMRCPSP/max is given in 4.1. The selection of mode
is shown in Section 4.2. The reactive, proactive and STNU
approaches are discussed in 4.3. Finally, the method of com-
parison of the results is discussed in 4.4.

4.1 Constraint programming model for an
MMRCPSP/max

This investigation uses the PyJobShop library, a Python-
based modelling tool designed for job-shop and project
scheduling problems [9].

PyJobShop provides support for MMRCPSP through its
Model class. The Model class allows for modelling the prob-
lem, with each task having multiple execution modes.

PyJobShop also supports integration with generalised
time-lags. The Model class contains the following methods
for adding temporal constraints between tasks:

¢ add_start_before_start(Taskl, Task2, lag)
¢ add_start_before_end(Taskl, Task2, lag)
¢ add_end_before_start(Taskl, Task2, lag)
¢ add_end_before_end(Taskl, Task2, lag)



(a) Precedence constraint graph
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(b) Gantt chart

Figure 1: Precedence graph and Gantt chart of a solution to a small instance of the RCPSP/max problem with a single resource. [16]. The

X-axis of the Gantt chart is time, and the Y-axis is the resource demand.

These methods allow for modelling both generalised time-
lags and, as an extension, the no-wait constraint.

PyJobShop also integrates well with Constraint Program-
ming solvers, making it suitable for handling maximal time-
lags and mode-dependent resource constraints.

4.2 Mode of the task

In this investigation, the mode of a task is selected only during
the offline phase, rather than during the offline and online
phases. This simplifies the complexity of the problem for the
reactive and STNU online phases at the expense of feasibility.

4.3 Algorithms investigated

The algorithms investigated in this paper are the proactive-
reactive approach and the STNU approach.

Proactive-reactive model
The proactive-reactive model consists of two phases: A
proactive phase and a reactive phase. The proactive phase
generates a baseline schedule using a selected quantile of the
duration bounds. The schedule is run with the proactive base-
line using the real durations. If a duration is greater than its
predicted duration, the schedule is considered proactively un-
feasible.

The reactive phase builds on the same baseline. Whenever
a task is completed at a different time from its predicted com-
pletion time, the model triggers a rescheduling procedure.
When this happens, the scheduling problem is redefined: The
start times of already completed tasks are fixed to their actual
execution times, and unscheduled tasks are restricted to start
no earlier than the current time. This process continues itera-
tively until all tasks are scheduled or infeasibility is detected.

STNU model

The STNU model is constructed using a quantile in the same
way as the proactive approach. Based on this baseline, an
STNU is generated and tested for dynamic controllability. If
the network is dynamically controllable, it is considered fea-
sible, and a solution is found using the RTE* algorithm. If
not, the instance is unfeasible for the STNU algorithm.

4.4 Comparison of algorithms

The algorithms are compared using the metrics of time of-
fline, time online, and the quality of the solution (measured

using the makespan). However, some instances are unfeasi-
ble and limit the direct comparison between the methods. For
example, if an instance has a large makespan compared to the
others and is found unfeasible in the reactive approach but
feasible in the robust proactive approach, it would only hin-
der the average of the robust proactive approach if ignored
or extremely punish the average of the reactive approach. To
solve this problem, we used a partial ordering strategy us-
ing the Wilcoxon, proportion, and magnitude tests, as seen in
van den Houten et al. [6]. The Wilcoxon test shows whether
one algorithm consistently outperforms another. The propor-
tion test shows how often an algorithm outperforms another,
this being weaker than the Wilcoxon test. The magnitude test
shows the magnitude by which one algorithm outperforms
another, though it is limited as it cannot handle unfeasible
values.

5 Experimental Setup and Results

This section outlines the experiment’s setup and the investi-
gation’s results, including the generation of instances. The
implementation of the stochastic duration is shown in 5.1. In-
stance generation is shown in 5.2. The experimental process
is given in 5.3. The results are then presented and analysed in
54.

5.1 Duration of the tasks

The real duration of a task is determined by introducing vari-
ability to its original duration. This paper will follow the
method proposed by van den Houten et al. [6]. The real du-
ration is simulated by computing lower and upper bounds us-
ing a noise factor provided as a parameter. The lower bound
is calculated as the original duration minus the noise factor
multiplied by the square root of the duration, with a mini-
mum value of 1. The upper bound is the original duration plus
the same noise-based adjustment. Both bounds are rounded
to integers, and the final duration is sampled from a discrete
uniform distribution within this range. This discrete uniform
sampling method was selected in contrast to other distribu-
tions such as normal, as the STNU approach needs a clearly
defined lower and upper bound while only allowing for inte-
ger values. To adapt this implementation to an MMRCPSP
instance, the real duration of each mode is simulated.



® ® simple:
PROJECT INFORMATION:
pronr. #jobs rel.date duedate tardcost MPM-Time

jobnp.  #modes #successors  successors

(a) Instance of a simple MMRCPSP

problem

® © jsimplestmm

MAXIMAL LAGS:
from to type delay
) ES
ES
ES!
ES!
ES
ES
ES
ES
SS
SE
ES

(b) The generated
generalised time-lags
for the MMRCPSP
problem

Figure 2: Simple instance of a Multi-Mode RCPSP/max with generalised time lags: 3 real tasks, a super-source, super-sink, and 1 resource

(ID 1, capacity 3).

5.2 Instance generation

The instances used in this experiment were obtained from the
PSPLIB database at the Technical University of Munich [8].
Since the original instances are for the standard

MMRCPSP, they were transformed into an MMRCPSP/max
instance by introducing generalised time lags. This transfor-
mation was achieved by adding temporal lags between differ-
ent types of relationships (start-to-start, start-to-end, end-to-
start, and end-to-end) between tasks with a predefined prece-
dence relationship (predecessor—successor). The precedence
relationship between tasks was considered instead of apply-
ing full randomness to preserve the structure of the
MMRCPSP instances and try to maintain feasible schedules.
The lag values were randomly selected within an arbitrary
range. The no-wait constraint was added between tasks with
a start-to-end relationship with zero lag. This process was
achieved by adding a reversed direction end-to-start relation-
ship with zero lag. To reduce the number of constraints and
allow the possibility of open-bounded start-to-end relation-
ships with zero lag, the no-wait constraint was limited to
a maximum of two per instance. Figure 2 shows a simple
instance for an MMRCPSP/max and the respective lags be-
tween the different tasks. In this example, task 4 has a no-
wait constraint with task 2 (task 4 must start as soon as task 2
finishes).

5.3 Experimental process

Each instance is run 10 times for each noise factor. Running
multiple instances allows us to evaluate the instance with dif-
ferent real durations per task and evaluate different schedules
that satisfy the instance’s constraints. Due to time constraints,

Number | Noise factor 1 \ Noise factor 2

oftasks | pro react STNU | pro react STNU
10 | 0.245 0.256 0.213 | 0.208 0.229  0.201
20 | 0.041 0.038 0.021 | 0.044 0.042 0.036

Table 1: Feasibility rates for the proactive, reactive and STNU meth-
ods with 10 and 20 tasks using a noise factor of 1 and 2.

this investigation will be limited to 100 instances per config-
uration, with a configuration having a number of tasks (10 or
20) and noise factor (1 or 2), totalling 400 instances and 4000
runs.

PyJobShop stores the mode of tasks within its task object.
This allows us to precompute and store the simulated duration
of the different modes in an array of the same size as the total
number of modes of the instance. Using an array, we can
simulate real durations for all modes and efficiently access
them during runtime. The real durations of the modes are
calculated using the method explained in Section 5.1.

First, the proactive-reactive algorithm is run, followed by
the STNU algorithm. For every run of an instance, the
makespan, time online, and time offline of the three algo-
rithms are saved. The results are then compared using the
methods described in Section 4.4.

5.4 Results

Feasibility rate

Table 1 shows the feasibility rate of the three algorithms using
noise factors 1 and 2. Table 2 shows the feasibility rate for



Number | Noise factor 1 \ Noise factor 2

of tasks | pro react STNU | pro react STNU
10 | 1.000 1.000 0.113 | 1.000 1.000 0.073
20 | 1.000 1.000 0.015 | 1.000 1.000  0.008

Table 2: Feasibility rates for the proactive, reactive and STNU meth-
ods with 10 and 20 tasks using a noise factor of 1 and 2 when not
using start-to-end and end-to-end constraints.

Reactive ——— Proactive

Voise facioy 7> STNU

Figure 3: Partial ordering of the methods using all constraints, based
on solution quality. Solid arrows indicate a significant difference us-
ing the Wilcoxon test, and dashed arrows indicate a significant dif-
ference using the proportion test when the Wilcoxon test did not find
a significant difference. The reactive approach dominates the proac-
tive approach, and dominates the STNU approach for the proportion
test when the noise factor is 1.

Reactive —— Proactive —— STNU

Figure 4: Partial ordering of the methods not using start-to-end and
end-to-end constraints, based on solution quality. Solid arrows in-
dicate a significant difference using the Wilcoxon test. The reactive
approach yields the highest quality, followed by the proactive ap-
proach, and finally, the STNU approach.

Smaller instances
o = .

Reactive Proactve ——STNU

Figure 5: Partial ordering of the methods using all constraints, based
on time offline. Solid arrows indicate a significant difference us-
ing the Wilcoxon test. For smaller instances, the reactive approach
yields the smallest time offline, followed by the proactive, and last
the STNU approach. For larger instances, the proactive and reactive
approaches yield the smallest time offline, with the STNU approach
yielding the largest.

Proactive ——

. STNU
Reactve —

Figure 6: Partial ordering of the methods not using start-to-end and
end-to-end constraints, based on time offline. Solid arrows indicate
a significant difference using the Wilcoxon test. The proactive and
reactive approaches yield the lowest offline time, followed by the
STNU approach.

Proactve——STNU——Reactive

Figure 7: Partial ordering of the methods using all constraints, based
on time online. Solid arrows indicate a significant difference using
the Wilcoxon test. The proactive approach yields the lowest time
online, followed by the STNU approach, and finally, the reactive
approach.

Proactive——Reactive ——STNU

Figure 8: Partial ordering of the methods not using start-to-end and
end-to-end constraints, based on time online. Solid arrows indicate
a significant difference using the Wilcoxon test. The proactive ap-
proach yields the fastest time online. followed by the reactive ap-
proach, with the STNU approach being the slowest.

the same instances, but ignoring the precedence constraints:
start-to-end and end-to-end.

Table 1 shows that the feasibility rates of the three algo-
rithms are low when all constraints are maintained. For 10
tasks, the reactive approach shows the highest overall feasi-
bility, followed by the proactive approach, with the STNU ap-
proach having the lowest feasibility. For 20 tasks, the proac-
tive approach shows the highest overall feasibility, followed
by the reactive approach, with the STNU approach again hav-
ing the lowest feasibility.

The noise factor also affects the feasibility, with a noise
factor of 1 showing a higher feasibility rate for smaller in-
stances, while a noise factor of 2 shows greater feasibility in
larger instances. However, the increases and decreases are
minimal.

The magnitude tests in Appendix A show that, in most in-
stances where the proactive approach found a solution, the
reactive approach also did. In contrast, for most instances
where the STNU algorithm found a solution, the other two
algorithms did not, and vice versa.

Table 2 shows that, when the constraints affected by the
end time of the second task are removed, the feasibility rate
of the proactive and reactive algorithms increases to a rate of
1 for all instances and noise factors. In contrast, the feasibil-
ity of the STNU algorithm decreased to values of 0.113 and
0.073 for noise factors 1 and 2 with a task size of 10, and
0.015 and 0.008 for noise factors 1 and 2 with a task size of
20. It is important to note that this is a relaxation of the prob-
lem as it not only removes these relationships between tasks,
but, in doing so, it removes the no-wait constraints as well.

Analysis of the Wilcoxon, proportion and Magnitude test
Table 3 compares the three algorithms using the three differ-
ent tests for instances of 10 tasks and a noise factor of 1. Ap-
pendix A shows the complete set of results for noise factors 1
and 2, and for the relaxation of the problem.

As explained in Section 4.4, both the Wilcoxon and the
proportion tests compare all instances between algorithms. In
contrast, the magnitude test only compares instances where



Schedule Quality (Makespan)

j10 reactive-STNU proactive robust-STNU  reactive-proactive robust
Wilc. Quality | [381]-0.815 (0.415) [363] -1.729 (0.084) [225] -12.724 (*)
Prop. Quality | [375] 0.544 (0.098) [362] 0.494 (0.875) [208] 0.995 (*)
reactive-STNU ST NU-proactive robust — reactive-proactive robust
Magn. Quality | [40] -1.692 (0.099) [38] 1.578 (0.123) [203] -18.533 (*)
reactive: 0.98 STNU: 0.979 reactive: 0.957
STNU: 1.02 proactive robust: 1.021 proactive robust: 1.043
Offline Time
jl0 reactive-proactive robust  reactive-STNU proactive robust-STNU
Wilc. Quality | [225] -4.252 (*) [381] -8.195 (*) [363] -7.096 (*)

Prop. Quality

[22] 0.955 (*)

[381] 0.588 (*)

[363] 0.562 (*)

reactive-proactive robust

reactive-STNU

proactive robust-STNU

Magn. Quality | [203] nan (nan) [40] -28.903 (*) [38] -27.566 (*)
reactive: 1.0 reactive: 0.26 proactive robust: 0.27
proactive robust: 1.0 STNU: 1.74 STNU: 1.73
Online Time
j10 proactive robust-reactive ~ STNU-reactive proactive robust-STNU
Wilc. Quality | [225] -8.407 (*¥) [381]-5.581 (%) [363]-7.133 (¥)

Prop. Quality

[225] -8.407 (*)

[381] -5.581 (*)

[363] -7.133 (*)

proactive robust-reactive

STNU-reactive

proactive robust-STNU

Magn. Quality

[203] -8177.742 (*)
proactive robust: 0.01
reactive: 1.99

[40] -99.327 (*)
STNU: 0.18
reactive: 1.82

[38] -469.392 (*)
proactive robust: 0.07
STNU: 1.93

Table 3: pairwise test results for 10 jobs with noise factor 2. The metrics covered are Wilcoxon, proportion, and magnitude tests.
Results:[pairs]z-value(p-value)(* for p < 0.05), proportion (p-value), and t-stat (p-value) with normalised averages. Column headers list
the compared methods. The order of the columns displays which algorithm (bolded) is found to be better in that category. If no algorithm is
bold, neither outperforms the other. This table format is based on the results from van den Houten et al. [6]

both algorithms have found a solution. Hence, the Wilcoxon
and proportion tests punish unfeasibility, while the magni-
tude test does not. The outcome of the Wilcoxon and propor-
tion tests allows us to create a partial ordering of the meth-
ods, with the Wilcoxon test representing strong connections
and the proportion test creating weak connections when the
Wilcoxon test had p > 0.05. The magnitude test shows the
magnitude difference between the algorithms when both in-
stances find a solution.

Figure 3 shows the visualisation of the partial ordering of
the quality of the solution for the three algorithms using all
the constraints. The Wilcoxon test found that the reactive
algorithm outperformed the proactive algorithm consistently.
The proportion test found that the reactive algorithm outper-
forms the STNU algorithm when the noise factor is 1.

Figure 4 shows the visualisation of the partial ordering for
the quality of the solution for the three algorithms without
using start-to-end and end-to-end constraints. In this prob-
lem relaxation, the Wilcoxon test showed that the reactive
approach dominated the proactive approach in all instances,
with the STNU approach finding the worst solutions.

The magnitude test shows that, in instances where two al-
gorithms found a solution, the reactive approach outperforms
the proactive approach. The reactive approach also outper-
forms the STNU approach for noise factor 1, while being
mostly equal for noise factor 2.

When relaxing the problem, the STNU algorithm does out-
perform the reactive and proactive algorithms in the magni-
tude test. This is consistent for both noise factors.

Figure 5 shows the visualisation of the partial ordering of

the offline time for the three algorithms using all the con-
straints. For smaller instances, the reactive approach yields
the lowest offline time, followed by the proactive approach,
with the STNU algorithm being the slowest. For larger in-
stances, the proactive and reactive algorithms are equal, with
the STNU approach being the slowest.

Figure 6 shows the visualisation of the partial ordering
of the offline time for the three algorithms when relaxing
the problem by not using start-to-end and end-to-end con-
straints. The relaxed problem behaves similarly to the fully
constrained problem for offline time, as the proactive and
reactive algorithms outperform the STNU while performing
equally with each other. This is consistent for 10 and 20 tasks.

The magnitude test for the offline time shows that both the
reactive and proactive approaches perform the same, with the
STNU approach performing the worst. This is consistent for
all results. Hence, when all algorithms find a solution, the
proactive and reactive approaches are equal in time offline,
with the STNU being the worst of the three by a wide margin.

Figure 7 shows a visualisation of the partial ordering of the
time online for the three algorithms. The proactive approach
is yet again the best-performing algorithm when comparing
online time, followed by the STNU approach, and the reactive
approach being the worst-performing algorithm.

Figure 8 shows the partial order of the online time for
the three algorithms when relaxing the problem by not using
start-to-end and end-to-end constraints. In these instances,
the proactive algorithm still outperforms, but the reactive al-
gorithm dominates the STNU algorithm.

The magnitude test shows that, for the online time, when



two algorithms find a solution, the proactive algorithm far
outperforms the other two, followed by the STNU algorithm,
with the reactive algorithm performing the worst by a consid-
erable margin.

6 Responsible Research
6.1 Harms and biases

This paper reduces potential harms and biases using two main
measures. First, the problem instances are adapted from
the publicly available PSPLIB benchmark suite developed by
the Technical University of Munich, ensuring a standard and
widely accepted baseline. To introduce generalised time lags,
random lags are created within a predefined range, reducing
the risk of human-induced bias. Second, each experiment is
conducted on 100 distinct instances, with each instance run-
ning 10 times. This repetition helps to reduce the effect of
outliers in both instances and randomness.

6.2 Ethical discussion

This paper aims to find which of the predefined approaches
is best for an MMRCPSP/max problem. Hence, the results of
this paper can be used to try to solve instances of this problem
in different fields, such as construction, logistics, or health-
care. Although these methods try to improve schedule effi-
ciency, applying these methods without a clear understanding
of their limitations can lead to suboptimal or harmful results.

In addition, this investigation focuses on simulated uncer-
tainty using independent and identically distributed random
variables. These variables are unlikely to reflect the random
properties of real-world tasks, which limits the real-world ap-
plicability of this investigation.

Finally, this investigation deals with the usage of NP-hard
problems, which require high computational power, leading
to ethical concerns regarding energy consumption and envi-
ronmental sustainability.

6.3 Reproducibility

This paper aims to ensure the reproducibility of
the research. To that end, all relevant program
files are available in a dedicated GitHub repository
(https://github.com/kimvandenhouten/PyJobShopSTNUs).
These include the source code, a README file with in-
structions for running the program, the requirements, and
the instance files for the MMRCPSP/max problem. The
code uses a fixed random seed to guarantee consistent results
regardless of randomness.

7 Discussion

This section discusses the results by focusing on the larger
picture and comparing it with baselines.

7.1 Comparison with the results of stochastic
RCPSP/max

The main difference between the experimental setup of van
den Houten et al. [6] and our investigation are the change
from an RCPSP/max to an MMRCPSP/max with generalised
time-lags and no-wait constraints, our use of the proactive

robust algorithm instead of the proactivey ¢ algorithm, and
our exclusion of the proactiveg 4 4 algorithm.

For the relaxed variant, when comparing the Wilcoxon and
proportion tests, the results do differ. The proactive and reac-
tive algorithms dominate the STNU algorithm in all metrics.
The main reason for this discrepancy is the low feasibility rate
of the STNU algorithm compared to the proactive and reac-
tive algorithms, as these tests place a significant emphasis on
feasibility. This explanation is supported by the magnitude
tests, as it follows the same pattern as the results from van
den Houten et al. [6], since the magnitude test only compares
instances where both algorithms found a solution.

However, for the unrelaxed variant, the key difference from
van den Houten et al. [6] is that the makespan of the STNU
approach is equal to or greater than that of the reactive ap-
proach in all tests.

7.2 Feasibility rate of the reactive and proactive
approaches

The low feasibility rate of the proactive and reactive algo-
rithms is due to the time-lags using the end-time of the suc-
cessor task, as seen in start-to-end and end-to-end relation-
ships. In the reactive approach, this issue arises from its
robust scheduling strategy. As the reactive approach fixes
the starting time of tasks that have already started while
rescheduling based on the worst-case scenario, a task whose
real duration is lower than the predicted one can break the
start-to-end and end-to-end constraints.

The low feasibility of the proactive approach is caused by
the inability to anticipate the end duration of the successor
tasks. While adding buffers based on maximum duration al-
lows us to ensure that a successor task can always satisfy the
start-to-start and end-to-start relationships, it cannot plan for
a task ending earlier, hence creating issues with start-to-end
and end-to-end relationships. This is especially seen with the
no-wait constraint, as ensuring that a task starts as soon as
another ends can only happen if the duration of a task ends as
predicted by the maximum duration.

7.3 Explaining the results with theory

Makespan

The proactive robust approach used in this paper creates a
schedule using the worst-case duration. The schedule cre-
ated is then unchanged. However, the reactive and STNU
approaches are more flexible in their scheduling, as both ap-
proaches can react to the stochastic duration dynamically.
Hence, it goes with the theory that the proactive robust ap-
proach creates the largest makespan when all approaches find
a solution.

Time offline

All three algorithms need to create a baseline during their of-
fline time. The STNU approach has to transform the baseline
into an STNU and then transform the STNU into an
ESTNU. As reactive and proactive approaches only need to
create a baseline, while the STNU approach has to create and
then transform its baseline, it explains why the magnitude test
shows that both the reactive and proactive algorithms have no
difference in offline time, while the STNU approach is con-
siderably slower.



Time online

The proactive algorithm creates a schedule that tries to ac-
count for uncertainty by using the worst-case scenario of du-
rations during the time offline. Hence, its online time is neg-
ligible as no rescheduling is needed.

The reactive algorithm has to constantly create schedules
to account for uncertainty. Creating each new schedule is an
NP-hard problem [10], and requires a lot of computational
power.

For the STNU approach, the ESTNU created during offline
time needs to be solved. The RTE* algorithm can solve an
ESTNU in polynomial time [7], thus being faster than the
reactive approach.

Our results agree with the theory, as the magnitude test
shows that, when all algorithms find a solution, the reactive
approach is the slowest. followed by the STNU approach,
with the proactive robust being the fastest for this metric.

7.4 Real world applications

It is necessary to point out that, when the problem is not re-
laxed, the feasibility rate that these algorithms offer is a great
deterrent for using them in real-life scheduling, even more
so in projects where a working schedule is of extreme im-
portance. However, for relaxed instances, both the proac-
tive and reactive algorithms could have multiple uses outside
academia.

The proactive algorithm

The proactive algorithm has the lowest online and offline
times. Its main drawback is its makespan as it is higher than
the other two algorithms. Due to its low creation time, the
proactive algorithm seems ideal for the creation of quick so-
lutions to real-life scheduling problems when time is of the
essence.

The STNU algorithm

The main drawback of the STNU algorithm is its slow of-
fline time. Its main advantages are that the STNU algorithm
can find solutions with a good makespan while having a rela-
tively short online time. This algorithm seems ideal when the
offline time to prepare a schedule is not strict. However, this
algorithm has an even worse feasibility rate when relaxing the
problem, hence limiting its real-world usage even more.

The reactive algorithm

The reactive algorithm shows great ability to minimise the
makespan, while conserving a low offline time. Its main
drawback is its online time, as it is NP-hard, hence not very
scalable. The reactive algorithm excels in instances where the
online time is not as strict, or not many tasks have random-
ness, as it limits the amount of reshuffles to the schedule.

8 Conclusions and Future Work

This section serves as a conclusion to the investigation, while
considering future works that can be expanded from this in-
vestigation.

8.1 Conclusion

This paper has investigated three different algorithms and
compared them to analyse their performance using three dis-
tinct evaluation metrics: Quality of solution, time offline,
and time online. The paper has found that the proactive al-
gorithm serves as a faster option for solving instances of
MMRCPSP/max with generalised time-lags and no-wait con-
straints, but both the reactive and STNU algorithms offer so-
lutions of greater quality. This study has also found that,
when relaxing the problem by removing start-to-end and end-
to-end constraints, in terms of feasibility, both the proactive
and reactive algorithms heavily outperform the STNU algo-
rithm, which limits the real usage of the STNU algorithm out-
side of academia for generalised time-lags.

8.2 Future works

This paper specifically investigates the MMRCPSP/max
problem with generalised time-lags and no-wait constraints
while also taking liberties with the formulation of the prob-
lem. The following investigations, hence, can build upon this
work.

Precedence constraints between modes

Currently, the precedence constraints are added between
tasks. In the real world, there are instances where, depend-
ing on the mode selected, the precedence constraint is differ-
ent between two tasks. Hence, an investigation focusing on
precedence constraints between modes would expand on this
paper.

Limiting mode selection between tasks

In this paper, the modes have no relation to each other. How-
ever, in the real world, some task modes depend on the previ-
ously selected mode of their predecessor [18]. For example,
if task A has two modes and task B has two modes, the mode
selected from B might depend on the mode selected from A.
This follows from most real-world multi-mode applications,
as some tasks cannot be performed if a specific mode is not
selected.

Mode being changed dynamically in the experiment

In both the reactive and STNU approaches, the mode is not
allowed to change during the online phase. It can be inves-
tigated how the quality of the solution and the feasibility of
the instance change when the mode is allowed to be selected
dynamically.

The noise factor to be individual per task instead of all
having an arbitrary noise factor

In this investigation, the upper and lower bounds of the dura-
tion for all tasks use the same noise factor. In the real world,
different tasks have different duration variance. Hence, an
investigation where the noise factor is independent per task
could expand on the real-world modelling of instances.
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Full results

This appendix contains the full results of the experiment. It
includes tables for noise factors 1 and 2, and instances with-
out start-end and end-end relationships. For each experiment,
there is a table for the Wilcoxon, proportion and magnitude
test comparing the makespan, the time offline and the time
online.



710

reactive-ST NU

proactive robust-STNU

reactive-proactive robust

Wilcoxon : [n] z (p)

[383] -0.964 (0.335)

[375] -0.601 (0.548)

[235] -12.624 (*)

proportion: [n] z (p)

[377]0.562 (%)

[372]0.522 (0.437)

[200] 0.99 (%)

reactive-STNU

STNU-proactive robust

reactive-proactive robust

magnitude: [n] z (p)

[44] -2.052 (*)
reactive: 0.986
STNU: 1014

[42]1.583 (0.121)
STNU: 0.987

proactive robust: 1.013

[221] -18.225 (*)
reactive: 0.973
proactive robust: 1.027

720

reactive-STNU

proactive robust-ST' NU

reactive-proactive robust

Wilcoxon : [n] z (p)
proportion: [n] z (p)

[50] -2.158 (%)
[50] 0.66 (*)

321 231 (%)
[52] 0.673 (¥)

[37]-3.145 (%)
[35] 0.886 (%)

reactive-STNU

proactive robust-STNU

reactive-proactive robust

magnitude: [n] z (p)

[1] nan (nan)
reactive: 0.972
STNU: 1.028

[1] nan (nan)
proactive robust: 0.981
STNU: 1.019

[31]-8.42 (%)
reactive: 0.983
proactive robust: 1.017

Table 4: Pairwise comparison on schedule quality (makespan) for noise factor c=1. Using a Wilcoxon test, proportion test and magnitude test.
The Wilcoxon and proportion tests include all instances for which at least one of the two methods found a feasible solution. The magnitude
test includes all instances for which both methods found a feasible solution. Note that the ordering matters: the first method (bolded) shown
is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the other. Each cell shows on the first
row [nr pairs] z-value (p-value) of the Wilcoxon test with (¥) for p < 0.05. Each cell shows on the second row [nr pairs] z-value (p-value)
with (*) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with (¥) for p < 0.05, on the fourth

row the normalised average of method 1 and on the fifth row the normalised average of method 2.

710

reactive-STNU

proactive robust-STNU

reactive-proactive robust

Wilcoxon : [n] z (p)

[381]-0.815 (0.415)

[363] -1.729 (0.084)

[225]-12.724 (%)

proportion: [n] z (p)

[375] 0.544 (0.098)

[362] 0.494 (0.875)

[208] 0.995 (*)

reactive-STNU ST NU-proactive robust — reactive-proactive robust
magnitude: [n] z (p) [40]-1.692 (0.099)  [38] 1.578 (0.123) [203] -18.533 (*)
reactive: 0.98 STNU: 0.979 reactive: 0.957

STNU: 1.02

proactive robust: 1.021

proactive robust: 1.043

720

reactive-STNU

proactive robust-STNU

reactive-proactive robust

Wilcoxon : [n] z (p)

[71]-1.398 (0.162)

[73]-1.213 (0.225)

[43]4.116 (%)

proportion: [n] z (p)

[71] 0.549 (0.476)

[73]0.548 (0.483)

[38] 0.921 (*)

reactive-STNU

STNU-proactive robust

reactive-proactive robust

magnitude: [n] z (p)

[3]1-0.08 (0.944)
reactive: 0.998
STNU: 1.002

[3] 0.346 (0.762)
STNU: 0.992
proactive robust: 1.008

[39]-7.373 (*)
reactive: 0.975
proactive robust: 1.025

Table 5: Pairwise comparison on schedule quality (makespan) for noise factor c=2. Using a Wilcoxon test, proportion test and magnitude test.
The Wilcoxon and proportion tests include all instances for which at least one of the two methods found a feasible solution. The magnitude
test includes all instances for which both methods found a feasible solution. Note that the ordering matters: the first method (bolded) shown
is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the other. Each cell shows on the first
row [nr pairs] z-value (p-value) of the Wilcoxon test with (¥) for p < 0.05. Each cell shows on the second row [nr pairs] z-value (p-value)
with (*) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with (*) for p < 0.05, on the fourth
row the normalised average of method 1 and on the fifth row the normalised average of method 2.



710

reactive-STNU

proactive robust-ST NU

reactive-proactive robust

Wilcoxon : [n] z (p)

[1000] -26.729 (*)

[1000] -26.697 (*)

[1000] -26.82 (*)

proportion: [n] z (p) [970] 0.916 (*) [992] 0.894 (*) [835] 1.0 (*)
STNU-reactive STNU-proactive robust  reactive-proactive robust

magnitude: [n] z (p) [113] 11.019 (*) [113] 17.021 (*) [1000] -38.131 (*)
STNU: 0.966 STNU: 0.933 reactive: 0.969

reactive: 1.034

proactive robust: 1.067

proactive robust: 1.031

720

reactive-STNU

proactive robust-ST'NU

reactive-proactive robust

Wilcoxon : [n] z (p)

[1000] -27.383 (*)

[1000] -27.386 (*)

[1000] -26.595 (*)

proportion: [n] z (p)

[999] 0.986 (*)

[1000] 0.985 (*)

[808] 1.0 (*)

STNU-reactive

STNU-proactive robust

reactive-proactive robust

magnitude: [n] z (p)

[15]5.95 (*)
STNU: 0.967
reactive: 1.033

[15]7.247 (*)
STNU: 0951
proactive robust: 1.049

[1000] -37.031 (*)
reactive: 0.983
proactive robust: 1.017

Table 6: Pairwise comparison on schedule quality (makespan) for noise factor c=1 with no start-to-end and end-to-end relationships. Using a
Wilcoxon test, proportion test and magnitude test. The Wilcoxon and proportion tests include all instances for which at least one of the two
methods found a feasible solution. The magnitude test includes all instances for which both methods found a feasible solution. Note that the
ordering matters: the first method (bolded) shown is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither
outperforms the other. Each cell shows on the first row [nr pairs] z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows
on the second row [nr pairs] z-value (p-value) with (*) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat
(p-value) with (*) for p < 0.05, on the fourth row the normalised average of method 1 and on the fifth row the normalised average of method
2.
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reactive-STNU

proactive robust-ST' NU

reactive-proactive robust

Wilcoxon : [n] z (p)

[1000] -27.125 (*)

[1000] -27.103 (*)

[1000] -27.278 (*)

proportion: [n] z (p)

[985] 0.946 (*)

[999] 0.928 (*)

[922] 1.0 (*)

STNU-reactive

STNU-proactive robust

reactive-proactive robust

[73]7.751 ()
STNU: 0.941
reactive: 1.059

[73] 15.486 (*)
STNU: 0.888
proactive robust: 1.112

[1000] -38.82 (*)
reactive: 0.95
proactive robust: 1.05

720

reactive-ST NU

proactive robust-ST' NU

reactive-proactive robust

Wilcoxon : [n] z (p)

[1000] -27.392 (*)

[1000] -27.393 (*)

[1000] -27.066 (*)

proportion: [n] z (p)

[1000] 0.993 (*)

[1000] 0.992 (*)

[879] 1.0 (*)

STNU-reactive STNU-proactive robust  reactive-proactive robust
magnitude: [n] z (p) [8] 4.382 (*) [8] 6.899 (*) [1000] -36.781 (*)
STNU: 0.948 STNU: 0.926 reactive: 0.974

reactive: 1.052

proactive robust: 1.074

proactive robust: 1.026

Table 7: Pairwise comparison on schedule quality (makespan) for noise factor c=2 with no start-to-end and end-to-end relationships. Using a
Wilcoxon test, proportion test and magnitude test. The Wilcoxon and proportion tests include all instances for which at least one of the two
methods found a feasible solution. The magnitude test includes all instances for which both methods found a feasible solution. Note that the
ordering matters: the first method (bolded) shown is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither
outperforms the other. Each cell shows on the first row [nr pairs] z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows
on the second row [nr pairs] z-value (p-value) with (*) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat
(p-value) with (*) for p < 0.05, on the fourth row the normalised average of method 1 and on the fifth row the normalised average of method
2.



j10 reactive-proactive robust  reactive-STNU  proactive robust-ST NU

Wilcoxon : [n] z (p)  [235] -2.645 (*) [383] -8.691 (*) [375] -8.206 (*)
proportion: [n] z (p) [14] 0.857 (*) [383] 0.608 (*) [375] 0.595 (*)
reactive-proactive robust reactive-S’T’NU  proactive robust-S’T'NU
magnitude: [n] z (p) [221] nan (nan) [44]1-30.736 (*) [42] -29.306 (*)
reactive: 1.0 reactive: 0.23 proactive robust: 0.24
proactive robust: 1.0 STNU: 1.77 STNU: 1.76
720 reactive-proactive robust reactive-S’T’NU  proactive robust-ST NU
Wilcoxon : [n] z (p) [37] -0.709 (0.478) [50] -4.103 (*) [52] -4.339 (*)
proportion: [n] z (p) [6] 0.333 (0.683) [50] 0.66 (*) [52] 0.673 (*)
reactive-proactive robust reactive-STNU  proactive robust-STNU
magnitude: [n] z (p) [31] nan (nan) [1] nan (nan) [1] nan (nan)
reactive: 1.0 reactive: 0.94 proactive robust: 0.94
proactive robust: 1.0 STNU: 1.06 STNU: 1.06

Table 8: Pairwise comparison on time offline for noise factor c=1. Using a Wilcoxon test, proportion test and magnitude test. The Wilcoxon
and proportion tests include all instances for which at least one of the two methods found a feasible solution. The magnitude test includes all
instances for which both methods found a feasible solution. Note that the ordering matters: the first method (bolded) shown is the better of
the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the other. Each cell shows on the first row [nr pairs]
z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second row [nr pairs] z-value (p-value) with (*) for p <
0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with (*) for p < 0.05, on the fourth row the normalised
average of method 1 and on the fifth row the normalised average of method 2.

j10 reactive-proactive robust  reactive-ST’NU  proactive robust-STNU
Wilcoxon : [n] z (p) [225] -4.252 (¥) [381] -8.195 (*) [363] -7.096 (*)
proportion: [n] z (p)  [22] 0.955 (*) [381] 0.588 (*) [363] 0.562 (*)
reactive-proactive robust reactive-ST'NU  proactive robust-ST NU
magnitude: [n] z (p) [203] nan (nan) [40] -28.903 (*) [38] -27.566 (*)
reactive: 1.0 reactive: 0.26 proactive robust: 0.27
proactive robust: 1.0 STNU: 1.74 STNU: 1.73
j20 reactive-proactive robust — reactive-S’T’NU  proactive robust-STNU
Wilcoxon : [n] z (p) [43]-0.951 (0.341) [71]-1.991 (*) [73] -2.166 (*)
proportion: [n] z (p) [4] 0.25 (0.617) [7110.563 (0.342) [73] 0.575 (0.242)
reactive-proactive robust reactive-ST’NU  proactive robust-ST'NU
magnitude: [n] z (p) [39] nan (nan) [3]-9.837 (*) [3]1-9.837 (*)
reactive: 1.0 reactive: 0.26 proactive robust: 0.26
proactive robust: 1.0 STNU: 1.74 STNU: 1.74

Table 9: Pairwise comparison on time offline for noise factor c=2. Using a Wilcoxon test, proportion test and magnitude test. The Wilcoxon
and proportion tests include all instances for which at least one of the two methods found a feasible solution. The magnitude test includes all
instances for which both methods found a feasible solution. Note that the ordering matters: the first method (bolded) shown is the better of
the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the other. Each cell shows on the first row [nr pairs]
z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second row [nr pairs] z-value (p-value) with (*) for p <
0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with (*) for p < 0.05, on the fourth row the normalised
average of method 1 and on the fifth row the normalised average of method 2.



j10 reactive-proactive robust reactive-ST NU proactive robust-ST'NU

Wilcoxon : [n] z(p) [1000] nan (nan) [1000] -27.393 (*)  [1000] -27.393 (*)
proportion: [n] z (p) [nan] nan (nan) [1000] 1.0 (*) [1000] 1.0 (*)
proactive robust-reactive  reactive-STNU proactive robust-ST'NU
magnitude: [n] z (p) [1000] nan (nan) [113]-51.558 (*) [113]-51.558 (*)
reactive: 1.0 reactive: 0.26 proactive robust: 0.26
proactive robust: 1.0 STNU: 1.74 STNU: 1.74
320 proactive robust-reactive  reactive-STNU proactive robust-ST'NU
Wilcoxon : [n] z(p) [1000] nan (nan) [1000] -27.393 (*)  [1000] -27.393 (*)
proportion: [n] z (p) [nan] nan (nan) [1000] 1.0 (*) [1000] 1.0 (*)
proactive robust-reactive  reactive-STNU proactive robust-ST'NU
magnitude: [n] z (p) [1000] nan (nan) [15] -26.676 (*) [15] -26.676 (*)
reactive: 1.0 reactive: 0.25 proactive robust: 0.25
proactive robust: 1.0 STNU: 1.75 STNU: 1.75

Table 10: Pairwise comparison on time offline for noise factor c=1 with no start-to-end and end-to-end relationships. Using a Wilcoxon test,
proportion test and magnitude test. The Wilcoxon and proportion tests include all instances for which at least one of the two methods found a
feasible solution. The magnitude test includes all instances for which both methods found a feasible solution. Note that the ordering matters:
the first method (bolded) shown is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the
other. Each cell shows on the first row [nr pairs] z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second
row [nr pairs] z-value (p-value) with (¥) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with
(*) for p < 0.05, on the fourth row the normalised average of method 1 and on the fifth row the normalised average of method 2.

j10 reactive-proactive robust reactive-ST NU proactive robust-ST'NU
Wilcoxon : [n] z (p) [1000] nan (nan) [1000] -27.393 (*)  [1000] -27.393 (*)
proportion: [n] z (p) [nan] nan (nan) [1000] 1.0 (*) [1000] 1.0 (*)

proactive robust-reactive  reactive-STNU proactive robust-ST'NU
magnitude: [n] z (p) [1000] nan (nan) [73] -26.028 (*) [73]-26.028 (*)

reactive: 1.0 reactive: 0.33 proactive robust: 0.33

proactive robust: 1.0 STNU: 1.67 STNU: 1.67
720 proactive robust-reactive  reactive-STNU proactive robust-ST NU
Wilcoxon : [n] z (p) [1000] nan (nan) [1000] -27.393 (*) [1000] -27.393 (*)
proportion: [n] z (p) [nan] nan (nan) [1000] 1.0 (*) [1000] 1.0 (*)

proactive robust-reactive  reactive-STNU proactive robust-ST'NU
magnitude: [n] z (p) [1000] nan (nan) [8] -7.728 (*) [8] -7.728 (*)

reactive: 1.0 reactive: 0.31 proactive robust: 0.31

proactive robust: 1.0 STNU: 1.69 STNU: 1.69

Table 11: Pairwise comparison on time offline for noise factor c=2 with no start-to-end and end-to-end relationships. Using a Wilcoxon test,
proportion test and magnitude test. The Wilcoxon and proportion tests include all instances for which at least one of the two methods found a
feasible solution. The magnitude test includes all instances for which both methods found a feasible solution. Note that the ordering matters:
the first method (bolded) shown is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the
other. Each cell shows on the first row [nr pairs] z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second
row [nr pairs] z-value (p-value) with (*) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with
(*) for p < 0.05, on the fourth row the normalised average of method 1 and on the fifth row the normalised average of method 2.



j10 proactive robust-reactive STNU-reactive proactive robust-ST' NU

Wilcoxon : [n] z (p) [235] -10.673 (*) [383] -4.842 (*) [375] -8.207 (*)
proportion: [n] z (p)  [235] 0.949 (*) [383] 0.507 (0.838)  [375] 0.595 (*)
proactive robust-reactive STNU-reactive proactive robust-ST' NU
magnitude: [n] z (p) [221] -5825.29 (*) [44] -101.291 (*) [42] -791.108 (*)
proactive robust: 0.01 STNU: 0.19 proactive robust: 0.07
reactive: 1.99 reactive: 1.81 STNU: 1.93
720 proactive robust-reactive ST NU-reactive proactive robust-ST' NU
Wilcoxon : [n] z (p) [37] -4.322 (*) [50]-0.748 (0.454)  [52]-4.727 (*)
proportion: [n] z (p) [37] 0.946 (¥) [50] 0.36 (0.066) [52] 0.673 (*)
proactive robust-reactive ST NU-reactive proactive robust-STNU
magnitude: [n] z (p) [31] -9261.66 (*) [1] nan (nan) [1] nan (nan)
proactive robust: 0.0 STNU: 0.27 proactive robust: 0.02
reactive: 2.0 reactive: 1.73 STNU: 1.98

Table 12: Pairwise comparison on time online for noise factor c=1. Using a Wilcoxon test, proportion test and magnitude test. The Wilcoxon
and proportion tests include all instances for which at least one of the two methods found a feasible solution. The magnitude test includes all
instances for which both methods found a feasible solution. Note that the ordering matters: the first method (bolded) shown is the better of
the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the other. Each cell shows on the first row [nr pairs]
z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second row [nr pairs] z-value (p-value) with (*) for p <
0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with (*) for p < 0.05, on the fourth row the normalised
average of method 1 and on the fifth row the normalised average of method 2.

j10 proactive robust-reactive STNU-reactive proactive robust-ST' NU
Wilcoxon : [n] z (p)  [225] -8.407 (*) [381] -5.581 (*) [363] -7.133 (*)
proportion: [n] z (p) [225] -8.407 (*) [381] -5.581 (*) [363] -7.133 (*)
proactive robust-reactive STNU-reactive proactive robust-ST NU
magnitude: [n] z (p) [203] -8177.742 (*) [40] -99.327 (*) [38] -469.392 (¥)
proactive robust: 0.01 STNU: 0.18 proactive robust: 0.07
reactive: 1.99 reactive: 1.82 STNU: 1.93
j20 proactive robust-reactive  STNU-reactive proactive robust-ST' NU
Wilcoxon : [n] z (p)  [43]-5.228 (*) [71] -2.659 (*) [73] -4.186 (*)
proportion: [n] z (p)  [43] 0.977 (*) [7110.479 (0.812) [73] 0.575 (0.242)
proactive robust-reactive STNU-reactive proactive robust-ST NU
magnitude: [n] z (p) [39] -10424.541 (*) [3]-23.526 (%) [3]-265.878 (*)
proactive robust: 0.0 STNU: 0.25 proactive robust: 0.03
reactive: 2.0 reactive: 1.75 STNU: 1.97

Table 13: Pairwise comparison on time online for noise factor c=2. Using a Wilcoxon test, proportion test and magnitude test. The Wilcoxon
and proportion tests include all instances for which at least one of the two methods found a feasible solution. The magnitude test includes all
instances for which both methods found a feasible solution. Note that the ordering matters: the first method (bolded) shown is the better of
the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the other. Each cell shows on the first row [nr pairs]
z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second row [nr pairs] z-value (p-value) with (*) for p <
0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with (*) for p < 0.05, on the fourth row the normalised
average of method 1 and on the fifth row the normalised average of method 2.



j10 proactive robust-reactive reactive-STNU proactive robust-ST NU

Wilcoxon : [n] z (p)  [1000] -27.393 (*) [1000] -26.688 (*)  [1000] -27.393 (*)
proportion: [n] z (p) [1000] 1.0 (¥) [1000] 0.887 (*) [1000] 1.0 (*)
proactive robust-reactive STNU-reactive proactive robust-ST NU
magnitude: [n] z (p) [1000] -14995.664 (*) [113]207.391 (*)  [113]-1284.565 (¥)
proactive robust: 0.01 STNU: 0.18 proactive robust: 0.07
reactive: 1.99 reactive: 1.82 STNU: 1.93
J20 proactive robust-reactive reactive-STNU proactive robust-ST' NU
Wilcoxon : [n] z (p) [1000] -27.393 (*) [1000] -27.38 (*) [1000] -27.393 (*)
proportion: [n] z (p) [1000] 1.0 (*) [1000] 0.985 (*) [1000] 1.0 (*)
proactive robust-reactive  STNU-reactive proactive robust-ST NU
magnitude: [n] z (p) [1000] -48515.729 (*) [15] 74.127 (*) [15] -668.258 (*)
proactive robust: 0.0 STNU: 0.22 proactive robust: 0.03
reactive: 2.0 reactive: 1.78 STNU: 1.97

Table 14: Pairwise comparison on time online for noise factor c=1 with no start-to-end and end-to-end relationships. Using a Wilcoxon test,
proportion test and magnitude test. The Wilcoxon and proportion tests include all instances for which at least one of the two methods found a
feasible solution. The magnitude test includes all instances for which both methods found a feasible solution. Note that the ordering matters:
the first method (bolded) shown is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the
other. Each cell shows on the first row [nr pairs] z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second
row [nr pairs] z-value (p-value) with (¥) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with
(*) for p < 0.05, on the fourth row the normalised average of method 1 and on the fifth row the normalised average of method 2.

j10 proactive robust-reactive reactive-STNU proactive robust-ST NU
Wilcoxon : [n] z (p) [1000] -27.393 (*) [1000] -27.097 (*)  [1000] -27.393 (*)
proportion: [n] z (p) [1000] 1.0 (*) [1000] 0.927 (*) [1000] 1.0 (*)
proactive robust-reactive  STNU-reactive proactive robust-S7T NU
magnitude: [n] z (p) [1000] -17311.034 (*) [73] 211.909 (*) [73] -669.699 (*)
proactive robust: 0.01 STNU: 0.16 proactive robust: 0.08
reactive: 1.99 reactive: 1.84 STNU: 1.92
20 proactive robust-reactive  reactive-STNU proactive robust-ST NU
Wilcoxon : [n] z (p)  [1000] -27.393 (*) [1000] -27.389 (*)  [1000] -27.393 (*)
proportion: [n] z (p) [1000] 1.0 (¥) [1000] 0.992 (*) [1000] 1.0 (*)
proactive robust-reactive STNU-reactive proactive robust-ST'NU
magnitude: [n] z (p) [1000] -52164.235 (*) [8] 46.044 (*) [8]-472.131 (*)
proactive robust: 0.0 STNU: 0.2 proactive robust: 0.03
reactive: 2.0 reactive: 1.8 STNU: 1.97

Table 15: Pairwise comparison on time online for noise factor c=2 with no start-to-end and end-to-end relationships. Using a Wilcoxon test,
proportion test and magnitude test. The Wilcoxon and proportion tests include all instances for which at least one of the two methods found a
feasible solution. The magnitude test includes all instances for which both methods found a feasible solution. Note that the ordering matters:
the first method (bolded) shown is the better of the two in each pair, method 1 - method 2. If no algorithm is bold, neither outperforms the
other. Each cell shows on the first row [nr pairs] z-value (p-value) of the Wilcoxon test with (*) for p < 0.05. Each cell shows on the second
row [nr pairs] z-value (p-value) with (*) for p < 0.05 for the proportion test. Each cell shows on the third row [nr pairs] t-stat (p-value) with
(*) for p < 0.05, on the fourth row the normalised average of method 1 and on the fifth row the normalised average of method 2.
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