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Dynamic multi-level load balancing for
scalable simulations of reacting multiphase
flows

Gijs van den Oord1, Victor Azizi1, Mohamad Fathi2 and Stefan Hickel2

Abstract
Simulations of reacting multiphase flows tend to display an inhomogeneously distributed computational intensity over the
spatial and temporal domains. The time-to-solution of chemical reaction rates can span multiple orders of magnitude due to
the emergence of combustible kernels and thin turbulent reaction zones. Similarly, the time to solve the equation of state
(EoS) for non-ideal fluid mixtures deviates substantially between the grid cells. These effects result in a performance profile
that is unbalanced and rapidly changing for transient simulations, and therefore beyond the capabilities of traditional (quasi-)
static mesh partitioning methods. We analyse this loss of parallel efficiency for large-eddy simulations of the ECN Spray-A
benchmark with the multi-physics solver INCA and propose to mitigate the problem by introducing two independent
repartitioning stages in addition to the classic domain decomposition for fluid transport: one for the EoS and one for
chemical reactions. We explore various scalable repartitioning strategies in this context and observe that rebalancing
computational load yields a significant speedup that is robust for various mesh resolutions and process numbers. The
dynamic multistage load-balancing thus effectively removes obstacles towards good parallel scaling of INCA and similar
solvers for reacting and/or multiphase flows.
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1. Introduction

High-fidelity simulations of reacting multiphase flows at
high pressures are essential to the development and opti-
mization of rocket engines, gas turbines, and modern energy
conversion systems. Driven by the demand for higher ef-
ficiency and emission reduction, the operating pressure of
these devices exceeds the critical values for fuel and oxi-
dizer, but is usually lower than the cricondenbar pressures of
their mixtures. States that locally occur during the mixing
can thus fall within the subcritical two-phase region. This
leads to a transcritical regime, where the multi-species
mixture may locally condensate and develop liquid-gas
interfaces Oschwald et al. (2006). Simulating such condi-
tions requires a realistic representation of the complex
multi-physics and multi-scale interactions of turbulence,
non-linear variations of fluid properties including phase
change, mixing, heat transfer, and chemical reactions. A
proven successful approach is the combination of large-
eddy simulation (LES) with a multiphase equilibriummodel
Matheis and Hickel (2014); Fathi et al. (2022) and a suitable
(cubic) equation of state (EoS) reflecting the departure from

ideal gas behavior at high pressures Müller et al. (2016).
Matheis and Hickel (2018) pioneered this approach and
demonstrated that LES with real-gas EoS including vapor
liquid equilibrium (VLE) calculations can accurately re-
produce experimental results for the Spray-A benchmark
case Engine Combustion Network (ECN), (2021), where
cold n-dodecane is injected into a warm nitrogen reservoir at
a pressure of 6 MPa. The method can capture jet breakup,
subcritical condensation and evaporation of species with
different rates, as well as real-fluid effects such as dissolution
of the ambient gas in the liquid or liquid-like fuel (Matheis
and Hickel, 2018). The resulting flow displays combustible
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kernels and reaction zones within the two-phase flow regions
in the outer shear layer, spreading out into a large gaseous
cooling zone away from the injection point Skeen et al.
(2015); Ma et al. (2019); Fathi et al. (2022).

The two-phase regions and reaction zones represent
locations of high computational intensity for the numerical
integration scheme. Solving the EoS to obtain pressure and
temperature within a cell is computationally more expensive
if the cell contains a vapor-liquid mixture that requires phase-
splitting (VLE) calculations with an iterative procedure to
solve the isochoric-isoenergetic flash problem. Calculating
the species mass fraction evolution proves to be time-
consuming whenever local conditions enable combustion.
This evidently introduces load imbalance in a computational
fluid dynamics (CFD) solver that has been parallelized via
traditional domain decomposition of the coordinate grid.

Classic domain decomposition strategies implicitly as-
sume a homogeneous computational cost proportional to the
number of grid cells plus communication overhead with
neighboring partitions. Numerical algorithms with non-
homogeneous and non-stationary computational cost,
such as the chemistry and multi-phase thermodynamics of
fuel-injection simulations, require more sophisticated
strategies to mitigate the emerging imbalance between
processors. A straightforward method keeps a weight wi for
every single cell i, which represents the computational cost
of the integration time step of that grid cell, and regularly
applies a re-partitioning of the constructed weighted graph.
This method assumes the weights are sufficiently auto-
correlated over the integration period between re-
partitionings, such that the principle of persistence Kalé
(2002) holds. The strategy is typically combined with
adaptive mesh refinement Berger and Colella (1989) to
improve accuracy of turbulent or chemically reacting zones.
In multi-physics simulations with synchronization points,
the partitioning algorithm can be refined to include weights
from individual processes Karypis and Kumar (1998).

The methods above always use a single universal parallel
decomposition throughout the integration time step. This
has the benefit that communication overhead from
switching between partitionings is absent. The residual load
imbalance, however, remains nonzero for each physical
process because the partitioner has to make a compromise
between the different (sequential) phases of the computa-
tion. Furthermore, the unbalanced computational phases
often operate point-wise and the edge-cut objective is not
relevant for such constraint. If data migration overhead is
small with respect to such point-wise function evaluation,
load rebalancing may yield better performance. Watts et al.
(1997) have implemented a diffusion scheme to redistribute
the uneven load of computing particle movement in elec-
tromagnetic fields in plasma physics. Lu et al. (2009) ad-
dresses the imbalanced fractional time stepping for
chemistry in reactive flows within the framework of in situ

adaptive tabulated (ISAT) chemical kinetics. Hiremath et al.
(2012) examine some heuristic balancing strategies such as
random reassignment of particles or partitioned versions
thereof. Recently, Wu et al. (2019) deployed a more so-
phisticated parallel iterative balancing Aggarwal et al.
(2003) algorithm that minimizes data migration by priori-
tizing grid cells where the 4th-order Rosenbrock-Krylov
solver converges much slower than the average. Tekgül
et al. (2021) applied a combination of dynamic load bal-
ancing and tabulation to reacting flows in the OpenFOAM
compressible PIMPLE scheme, noting that the impact of the
reference mapping optimization is substantial for transient
problems like the ECN Spray-A case.

In this paper, we develop and analyse a dynamic load
balancing method in a similar spirit as Refs. Wu et al.
(2019); Tekgül et al. (2021). To accommodate the various
phases in the time stepping, a flexible multi-stage approach
is introduced. This novel method has been implemented in
the multi-physics CFD solver INCA as two additional and
independent work redistribution stages for (1) the ther-
modynamics and (2) chemistry, in addition to the classical
domain decomposition for the fluid transport (stage 0). The
methodology is described in Section , where we explore
several load-balancing strategies and discuss their im-
plementation. We evaluate the effect of various parameters
and test the resulting parallel efficiency and scaling for the
ECN Spray-A benchmark case in Section , and summarize
and discuss our conclusions in Section .

2. Methodology

2.1. Fluid physics model and solver

The INCA CFD1 code integrates the compressible multi-
species Navier-Stokes equations with an explicit third-order
Runge-Kutta time-marching method and a finite-volume
space discretization; interested readers are referred to Hickel
et al. (2014) for more details. To avoid prohibitively small
time steps, stiff chemical source terms are computed with an
implicit fifth-order time-marching scheme implemented in
the VODE library (Brown et al., 1989) and coupled to the
fluid dynamics through second-order Strang splitting. The
real-fluid thermodynamics model is based on VLE calcu-
lations for cubic EoS which are solved by Newton-Raphson
iteration in an effectively reduced space based on the molar
specific value of the volume function derived from the
Helmholtz free energy, see Fathi and Hickel (2021). This
method prevents the quadratic growth of the computational
time with the number of species observed with the con-
ventional method (Matheis and Hickel, 2018), such that the
cost of VLE solutions becomes essentially independent of
the number of species (Fathi and Hickel, 2021). A detailed
description of the physical models and numerical methods
for thermodynamics and chemistry calculations is beyond
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the scope of this paper and can be found in Refs. Fathi and
Hickel (2021); Fathi et al. (2022). INCA operates on block-
Cartesian meshes that are generated by an Adaptive Mesh
Refinement (AMR) method. The mesh blocks are distrib-
uted over the available processors using the multi-constraint
k-way domain partitioning algorithm provided by the
ParMETIS library (Karypis and Kumar, 2013, 1998).
Communication between the processors is implemented
through the Message Passing Interface (MPI) library. We
remark here that a single MPI task can therefore operate on
multiple blocks, but blocks cannot me divided between
multiple MPI tasks.

2.2. Characterization of load imbalance

Since neither the chemistry nor the thermodynamics solver wall
clock time play any role in the baseline domain partitioning, the
computational load imbalances within these physical models
will naturally result into an overall decrease in parallel effi-
ciency. This is illustrated for the Spray-A setup on a mesh with
1.8 million grid cells distributed over 2727 mesh blocks, for
which a snapshot of the temperature field is shown in Figure 1.

The reaction zone spans several mesh blocks and the VLE
calculations result in localized spots of high computational
load, as one can see in Figure 2. These cells populate the long
tail in the timings distribution in Figure 3, where we have
aggregated the timings of 100 time steps. The chemistry step,
which also involves additional evaluations of the equation of
state, is seen to be consistently slower than the thermody-
namics. Spikes above the median load often, but not always,
coincide for the two computational phases in the time step.

2.3. Objectives and limitations

Our aim is to redistribute the clustered cells of high com-
putational load over available processors within each time
step. For a given set of processes p and wall-clock times Tn
spent on the computation within process of rank n, we
intend to minimize the total load imbalance

L ¼ maxn2PðTnÞ
hTiP

� 1

¼ max
n2P

Ln

Figure 1. Adaptive mesh for the full domain of the Spray-A coarse grid setup and fluid temperature contours in and around the
developed jet on a slice through the simulation domain for the reacting ECN Spray-A case.

van den Oord et al. 3



where Ln = Tn/hT ip � 1 denotes the fractional load im-
balance per process and the brackets h�ip indicate the mean
over all processors. The sorted fractional load imbalances
shown in Figure 4 display a sharp peak that leads to a large L
and signals inefficiency in the parallellization of the
problem.

Ignoring vectorization, memory bandwidth and cache
effects, we can assume the timespan per processor is the sum
of the compute times per grid cell,

Tn ¼
X

i2In
ti, (1)

where In denotes the set of grid cells belonging to processor
nwithin the initial partitioning. In the INCA application, we
measure the ti by clocking the iteration loop that solves the
reaction rates or vapor-liquid equilibrium differential
equations in each grid cell. Now, if we allow the transfer of
grid cell data and the associated workload from one pro-
cessor to another, we can dynamically minimize L, and the
above formula becomes

Tn ¼
X

i2InnOn

ti þ
X

m ≠ n

X

i2Pmn
si þ tið Þ, (2)

with Pmn being the set of grid cells transferred from pro-
cessor m to n and

On ¼ [
k ≠ n

Pnk (3)

denotes the cells offloaded to other processors. In the for-
mula above, si denotes the communication time to transfer
the state of cell i from processor m to n and to return the
results.

There exist many strategies for the selection of the
partitions Pmn; our present methods are all based upon the
principle of persistence. This is the assumption that the

measured set {ti} at a rebalancing time step provides a
sufficient indicator for the timings at the subsequent time
step. Abandoning this principle would require a radically

Figure 2. Time spent per grid point on the thermodynamics calculations for a snapshot of the developing jet.

Figure 3. Characterization of load imbalance for ECN Spray-A
benchmark. Histogram of time spent per grid cell on the
thermodynamics calculations (top) and chemistry (bottom), for
700 consecutive time steps.
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different load balancing approach, such as work stealing,
which is challenging to implement over MPIwhilst keeping
low communication overhead (Klinkenberg et al., 2020). In
a combined approach between work stealing from persistent
task configurations was found to effectively mitigate the
overhead of processors polling for work for high core
counts, using HPC middleware to support task-based par-
allelism via active messages over MPI. In Micale et al.
(2024), a hybrid approach was chosen, where OpenMP
dynamic scheduling was used to balance chemistry cal-
culations within partitioning domains.

Predictability of the timings per grid cell is a key limiting
factor to the achievable increase in efficiency by dynamic
load balancing and depends critically on the case at hand. A
non-stationary case like the fuel injection in Spray-A
contains a substantial number of locations where chemis-
try and thermodynamics compute times are uncorrelated
between time steps. Throughout the development of the jet,
combustion cores may appear or extinguish, leading to a
significant unpredictable fraction of cells. The correlation of

the chemistry calculation time of two consecutive time steps
is analysed in Figure 5. Cells with unpredictable timing are
represented by the horizontal and vertical arms in the left
plot and the peaks at ± 1 in the histogram on the right in
Figure 5. These grid cells may deteriorate the effectiveness
of persistence-based algorithms and we will discuss the
effect of this limitation based on our results in Section .

2.4. Load balancing methods

Given the persistence assumption, there are plenty of
strategies one can follow to obtain the Pmn in order to reduce
the load imbalance L. However, in order to select appro-
priate candidates for a large-scale MPI-parallel CFD ap-
plication such as INCA, we face a trade-off between various

Figure 4. Characterization of load imbalance for ECN Spray-A
benchmark. Bar charts of the average load imbalance of the top
5% most unbalanced processors, for a configuration of 512 MPI
tasks.

Figure 5. Top: the auto-correlation of the chemistry calculation
time of two consecutive time steps per grid cell. Color contours
show a 2d histogram of the derived density. Bottom: histogram of
the normalized difference of the chemistry calculation time.
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aspects of dynamic load balancing. First of all, the (single-
threaded) wall-clock time of the partitioning computation
itself should not become a dominant factor in the perfor-
mance profile, meaning that the strategy should be either
relatively fast and iterative methods should be controlled
with a tolerance parameter to avoid carrying out many
passes that do not provide significant performance benefits.
Secondly, we favor parallel and scalable partitioning
algorithms that minimize collective communication and
do not require a large-memory master process gathering
timing information from all grid cells. This has lead us to
dismiss the so-called 1.5-order algorithm described in
Ref. Aggarwal et al. (2003) and examined in Ref. Wu
et al. (2019). Finally, the algorithm should produce
balanced partitions that not only minimize processor idle
time, but also data movement across compute nodes, in
order to keep the communication overhead si terms in
equation (2) small.

The package ZOLTAN Devine et al. (2009) contains a
useful set of routines to compute the task distribution based
upon hypergraph repartitioning. We can assign the ’base-
line’ distribution of grid cells in INCA (domain decom-
position used for fluid dynamics) as the original partition
and let the ZOLTAN library compute an optimization of this
using the measured timings. Since the cell-wise computa-
tions involve no communications with neighbors, the hyper-
edges in this setup contain the grid cells residing on the
same compute node, where task migration involves only
copying memory and no networking. Because the mesh
topology in this case is extremely simple, the hypergraph
partitioning tends to be too heavyweight for our purpose.
We have therefore developed several simpler alternatives
with better overall efficiency. These methods share the
method of offloading blocks in one-to-one communication,
but differ in how they select which processes should
communicate to offload work.

2.4.1. One-to-one communication. The one-to-one commu-
nication between processes proceeds only if the pair (m, n)
has an overloaded and underloaded processor,

Ln < 0 < Lm: (4)

Then the list of surplus grid cells of the overloaded pro-
cessor is determined by taking the maximal value of k such
that

X

i> k

ti � hTiP > 0, (5)

where the timing ti denote the grid cell weights in the
overloaded process m. The weights {t1, …, tk} are sent to
process n, which determines how many points it can ac-
commodate without becoming overloaded, that is com-
puting the minimal value oflfor which

1

hTiP
X

i<l

ti þ Ln ≥ 0: (6)

Then the cells one tol (includingl) are flagged to be
offloaded from process m to n and the respective load
imbalances are updated to

Ln → 0, Lm → Lm þ Ln: (7)

If the overloaded processor m already had offloaded cells to
other processors in a preceding iteration, these are discarded
in the above work exchange determination. Furthermore,
there is a slight discrepancy between the updated load
imbalances above and the ’true’ loads carried by n and m
since equation (6) generally corresponds to a small positive
value for the updated Ln. In practice, this means that im-
posing a very small L-threshold as a stopping condition for
the iterations may result in a configuration that slightly
exceeds this value.

2.4.2. Load balancing strategies. The load-balancing strate-
gies now differ in the sequence in which these point-to-point
communications are being issued:

· GREEDY: Simple round-robin-like balancing algo-
rithm. During each iteration i, every processor (say
with rank n) engages in the above offloading dialogue
with processor n + i. After each iteration, the ap-
proximate quality of the partitioning is checked by
determining if maxn2P (Ln) is below the maximum
allowed absolute load imbalance, or if i is equal to the
number of processors. If either is true the partitioning
is done.

· SORT: This strategy distributes the partial load im-
balances Li to all processes and locally sorts the
processes according to descending load. If we rep-
resent this sorting by the mapping S : {1,…, N}→ P,
then the above work offloading procedure is started
from S (1) to S(N), S (2) to S(N� 1) and so forth. This
algorithm is repeated until the load imbalance is
below the maximum allowed absolute load imbalance
or the redistributed load becomes less than a user-
specified tolerance ΔLmin. We use ΔLmin = 0 in this
paper. This is the same algorithm as described in Ref.
Tekgül et al. (2021) and does not provide special
treatment of node-crossing task offloading.

· SORT2: This algorithm is a node-aware version of the
above SORT method; it applies SORT first within all
process groups on shared compute nodes, favoring
intra-node offloading. After that, it continues iden-
tically to SORT to resolve the final imbalances.

One may notice that we use several limiting criteria in the
above methods. For GREEDY, the user needs to provide a
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desired global threshold for L, which may not be known in
advance. For the sorted algorithms we also can use a
convergence parameter, halting the whenever L no longer
significantly decreases. The latter is unsuitable for the
GREEDY method because it may perform intermediate
iterations where L does not decrease significantly due to the
pre-assignment of the processors. In any case, we addi-
tionally impose a maximum number of allowed iterations
after which the partitioning halts.

2.5. Implementation

The load-balancing functionality has been implemented in a
modular and object-oriented design. To support multiple
physics routines which need re-balancing within an ap-
plication, the design supports an arbitrary number of in-
dependent load-balancing tasks in a straightforward and
transparently programmable way. The infrastructure is
implemented at a high level of abstraction, is unaware of the
underlying mesh, and supports work sharing via data
transfers of any size and type. Within the INCA solver, the
same work-offloading and partitioning code is executed for
both the chemistry calculations and the thermodynamics.
Figure 6 schematically illustrates the time stepping of the
simulation of a reacting flow: during each Runge-Kutta sub-
step, the fluid transport terms are evaluated as first part of the
operator splitting. Then the thermodynamic equation of
state, viscosity, diffusivity and conductivity are evaluated
for the interior (non-boundary) cells. After integrating the
boundary conditions, the same quantities are computed for
the boundary cells. In the last Runge-Kutta sub-step, the
stiff system of chemical reaction rates is solved with a
Strang-splitting procedure; again this process involves
evaluating the equation of state twice in another operator
splitting.

At the heart of the implementation is the load balancer
object, a Fortran type t_loadbalancer. The load bal-
ancer instance keeps an administration of process IDs that
receive data from and offload data to its current MPI task.
The data associated with the compute task is subdivided into
chunks comprising one or several grid cells. Upon creation,
the caller must provide the load balancer object how large
the outgoing requests should be per grid cell and how many
bytes the incoming results will take. For example, if the
load balancer is used for distributing a double-precision
calculation of pressure, temperature and the speed of sound
from density and internal energy, then the requests and
results buffers should be 16 and 24 bytes long, respec-
tively. The (de-)serialization of the in- and output fields to
these buffers have to be implemented by the user appli-
cation and, together with the to-be-balanced routine, have
to be supplied to the load balancer object as procedure
pointers. Once these implementations are present and the
load balancer instance contains a valid, non-trivial

partitioning, the computation is redistributed by the fol-
lowing sequence of calls:

! Send work to accepting processes
! and/or receive work from offloading
! processes:
call load_balancer% COMMUNICATE_DATA
! Compute ’native’ grid cells:
call load_balancer% LOCAL_COMPUTATION
! Compute migrated grid cells:
call load_balancer% IMPORT_COMPUTATION
! Receive results from accepting
! processes and/or return results to
! offloading processes:
call load_balancer% COMMUNICATE_RESULT
During the computations, the load balancer keeps track

of the time spent per grid cell to construct a partitioning
weight. Periodically, the load balancer can be instructed to
recompute the partitioning following one of the strategies
listed in the previous section.

We provide the load balancing methods implemented in
this paper as an open-source package called QUICKL,2

which includes the original Fortran implementation as a
standalone library, a Python interface, and documentation
with examples.

Figure 6. Runge-Kutta time step flow diagram. The various load-
balanced functional blocks are indicated. The chemistry
calculations are only executed the last step, using a double Strang
splitting with a thermodynamics update.

Table 1. Details of the Spray-A simulations.

Case Spray-A-coarse Spray-A-fine

Grid points 1.8 million 10.6 million
AMR blocks 2727 2864
Time steps 700 400
Rebalancing frequency 1 step 1step
Load balancing chunk size 4 cells 4 cells

van den Oord et al. 7



Figure 7. Strong scaling of the load-balanced INCA program for
the Spray-A-coarse case (top), Spray-A-coarse without
chemistry (2nd from above), Spray-A-fine case (3rd from above)
and Spray-A-fine without chemistry (bottom). The dotted lines in
top and 3rd plot denote the performance using only chemistry
load balancing.

Figure 8. Load imbalance histograms for thermodynamic EoS
solving of the Spray-A-coarse simulation with 512 processors
(top), chemistry solver of Spray-A-coarse (second from above),
thermodynamics solver of Spray-A-fine using 1024 processors,
and chemistry solver of Spray-A-fine at the bottom. All
computed load imbalances for all time steps are aggregated. The
baseline histogram tail has been cut off for visualization purposes.

8 The International Journal of High Performance Computing Applications 0(0)



3. Results

Our results are based upon a low-resolution and a high-
resolution version of the reacting Spray-A benchmark (see
Table 1) simulation with the INCA solver. For the low-
resolution run, we use a mesh containing 1.8 million cells
distributed over 2727 blocks, which was generated by AMR
but remains fixed throughout all experiments. For the high-
resolution case, the mesh contains 2864 AMR blocks and
about 11 million cells. Results for the coarse mesh are
obtained using 700 time steps starting from a state with a
well-developed reacting jet. The fine-resolution results are
based upon 400 time steps to keep the computational cost
limited.

For the load-balancing strategies that we explore, we use
chunk sizes of four grid cells, which was observed as an
optimal value from a preliminary parameter space scan
using 10 time steps of the Spray-A-coarse benchmarks. We
have examined the impact of the repartitioning frequency
using a few full simulations and found that re-balancing

each time step yields the best overall performance. This is
because the persistence reduces when re-balancing is only
performed every few time steps and the partitioning process
causes only a small overhead with respect to the possibly
large load imbalance of chemistry calculations in rapidly
evolving flows. As for convergence criteria, the objective is
always a global maximum load imbalance of 1%, but we
impose a maximum of 100 iterations for each balancing
strategy. The load-balancing of thermodynamics and
chemistry calculations are performed independently from
another with the same load-balancing method and the same
parameters unless stated otherwise.All simulations have
been executed on the Dutch supercomputer Snellius, which
is a cluster of dual-socket nodes containing two 64-core
2.6Ghz AMD Rome 7H12 processors, connected by an
Infiniband HDR100 (100Gbs) network. For each experi-
ment, we have used a single core per MPI task, and no
OpenMP parallelization has been used. Note that the
number of AMR blocks provides an upper limit to the
amount of MPI tasks that can be used by INCA, and ideal
parallel speedup for the fluid transport can be expected only

Figure 9. Load imbalance histograms for the fine-mesh SprayA
simulation for 1536 processors. All computed load imbalances
for all time steps are aggregated. The baseline histogram tail has
been cut off for visualization purposes.

Figure 10. Time series for the value of maxn2p (Ln) produced by
the load balancers for the coarse Spray-A case with
1024 processes.

van den Oord et al. 9



up to about half this maximum number of MPI tasks as the
AMR blocks have unequal cell numbers in both considered
cases. All benchmarks have been performed without dy-
namically refining the mesh.

3.1. Parallel scaling

The resulting performance of the load-balanced application
and its strong scaling is displayed in Figure 7 for all methods.
In these charts we have also plotted lines where we substituted
the equation of state solver with the timings of the baseline run
(dotted lines in the left column) as a proxy for the scaling
behavior in the absence of thermodynamics load balancing.
Likewise, the charts in the right column of Figure 7 are ob-
tained by subtracting the chemistry solver time as a proxy for a
non-reacting case. These are plotted in separate charts because
the solution to the thermodynamic EoS is much faster than the
chemistry and its load-balancing impact is almost unnoticeable
in a reacting flow profile. The performance characteristics of
the various load-balancing strategies are very similar for both
tested resolutions, available cores and process at hand; the
sorting algorithms (SORT and SORT2) both result in a sub-
stantial speedup of the solver, reaching around 45% at higher
core counts, where the program ceases to scale any further. The
GREEDY algorithm is observed to be consistently slower than
the baseline, especially in the high-resolution reacting case.
The improved balance of the computational load fails to offset
the overhead of repartitioning. Reducing the frequency of the
GREEDY repartitioning has been observed to lift its perfor-
mance above the imbalanced case, but the algorithm cannot
match the speedups achieved by the sorted variants.

The SORT2 method performs similarly to the regular
sorting, except at high core counts, where the parallel
scaling is sub-optimal compared to the SORT strategy. This
is due to the fact that the constraint of re-balancing within
individual nodes leads to many small communication re-
quests and reduces the quality of the partitioning especially
for a high number of nodes.

3.2. Rebalancing efficiency

The partitions resulting from the methods described in
Section display different characteristics and quality. In
Figures 8 and 9 we depict the distribution of processor loads
fLigi2P for various methods and values of |p|. Roughly
speaking, the tail of these distributions determine the per-
formance of the load-balanced solver. We see that overall,
SORT produces the shortest tail and is, in agreement with the
scaling numbers above, the best performing algorithm. Note
that the tail of the SORT distribution extends well beyond the
target maximal load imbalance of 0.01, which is due to the
fact that the maximal number of 100 iterations is usually
reached while maxn2p (Ln) is larger than this threshold. The

GREEDY and SORT2 tend to produce a thin tail of high
processor loads. Here it seems like SORT2 is the worse
performer due to a few highly loaded processes spread thinly
across the plotted range, which would be contradictory to the
global performance numbers of the two strategies in Figure 7.
A closer inspection of the time evolution of the maximum
load imbalance shown in Figure 10, however, reveals that
these tails of high loads result from incidental spikes, and the
SORT2 strategy performs systematically better than
GREEDY, and close to the efficiency of SORT.

We can crudely explore weak scaling by comparing the
2048-core high-resolution case with a 512-core coarse-
resolution setup, which leads us to conclude that, from
these results, the weak scaling is in line with the unbalanced
version over the tested range of core counts.

3.3. Predictability of process loads

In Section , we pointed out that the autocorrelation of
chemistry and thermodynamics solver time at the grid-cell

Figure 11. Measured load per processor plotted against load in
previous repartitioning for the equation of state (left) and
chemistry solver (right). The plotting range has been limited to
20 to make the load-balanced data visible.
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level displays highly off-diagonal clusters, limiting the
efficiency of load balancing strategies based upon the
principle of persistence. Fortunately at the process level, the
load is a lot more predictable because the cells of high
computational load tend to stay within the same AMR
blocks. Hence, the blue dots with higher load imbalance in
Figure 5 are grouped along the diagonal axis. Load balanced
methods, on the other hand, tend to erase this correlation;
the algorithm redistributes costly cells across processes in
an ad hoc fashion, which results in an uncorrelated cloud of
points near the origin. The sub-optimal GREEDY algorithm
retains a tail of highly loaded processes that are persistently
slow, especially for the chemical reactions. We hypothesize
that these essentially are processes of high computational
load that were not redistributed due to the fact that the
algorithm has exceeded its maximal number of iterations.
Allowing the slow-converging GREEDY to take more it-
erations indeed results in an improved distribution of loads,
but it comes at the cost of more repartitioning overhead. A
separate coarse-resolution experiment on 1024 MPI ranks,
where we allowed GREEDY repartitioning to take 1000 it-
erations resulted in a performance that was 10% faster than
the baseline and substantially reduced maximum load im-
balance (Figure 11).

4. Conclusions and outlook

In recent years, progress in HPC hardware has been driven
by a steady increase of the number of logical cores per
compute node. Software seeking to effectively leverage this
computational power should therefore implement the un-
derlying algorithm as a parallel workflow that is balanced
across the available resources. Traditionally in CFD, opti-
mal parallelization of the fluid dynamics requires a balanced
partition of the mesh that minimizes edge-cuts. The situa-
tion, however, drastically changes when chemical reactions
and multi-phase thermodynamics enter the problem and
dominate the performance profile. These are simulation
aspects for which the computational intensity is usually
highly nonuniform across the physical domain. Moreover,
these physical processes lead to strong dynamic fluctuations
of computational load within a given grid cell in transient
simulations, making a partitioning that is (quasi-)static with
respect to the flow evolution by definition sub-optimal. We
have signalled this problem for reacting multi-phase flows,
and illustrated this by measured performance metrics for
simulations of the ECN Spray-A benchmark with the INCA
solver.

We have mitigated the uneven computational burden of
chemical reactions and multi-phase thermodynamics in
INCA by dynamically offloading work to under-utilized
cores. The implementation is done in a highly abstract way,
allowing us to use independent dynamic load balancers for
the chemistry and thermodynamics in INCA. We have

designed and implemented multiple repartitioning strate-
gies, which are parallel in nature and bring the number of
MPI collective calls to a minimum. The relevant parameters
for these repartitioning methods are the granularity of the
offloaded work, the stopping criterium for the iterative
repartitioning loop and the repartitioning frequency. Due to
the small number of collective communications in the
implementation of these algorithms, we can safely choose a
small granularity, a strict stopping criterium and high fre-
quency of repartitioning, in order to achieve a high-quality
repartitioning of the work load.

For sorting-based load balancing strategies, which as-
semble the partitioning by pairing highest- with lowest-cost
processors, we see a reduction in the maximum processors
load by an order of magnitude. This translates in a 45%
reduction of the overall wall-clock time of the application, a
speedup that is more or less independent of the number of
available resources. A sorting algorithm designed to favor
intra-node communication does not seem to have significant
benefit, and actually scales worse at high core counts due to
its constrained nature, which leads us to conclude that the
communication latency and bandwidth limitations are small
factors compared to the local computational cost. The basic
round-robin-based GREEDY method slows down the pro-
gram. This is likely due to the slow convergence of the
iterative rebalancing, resulting in sub-optimal partitions.
However, increasing the maximal number of rebalancing
iterations could likely still provide a speedup with the
GREEDY method in many cases.

We have observed substantial decorrelation of the
computational cost between time steps at the grid cell level
for both the chemistry and thermodynamics for Spray-A.
This is a consequence of the unpredictable nature of the
interactions between a turbulent velocity field and thin gas-
liquid interfaces, small ignition kernels, and thin flame fronts
in transient flows. This unpredictability can be a limiting
factor to the effectiveness of the dynamic load balancing we
have adopted here. At the aggregated process level however,
the correlation is much higher for high-cost processes.

Obviously, other types of boundary conditions, geom-
etries, or flow conditions may impact these findings: for
example, we expect cases with fewer chemically reacting
species or injection pressures beyond or below the trans-
critical regime to be computationally less demanding and
less imbalanced. In such situations, the optimal load bal-
ancer settings could well change, since the ratio of com-
munication overhead and computation increases. Also,
more stationary cases (such as the reactive shear layer
configuration in Tekgül et al. (2021)) may improve the
speedup of the load balanced code as the compute intensity
of the grid cells are more predictable and partitionings based
on measurements of the preceding time step are more ef-
fective. An interesting direction for future research is
finding a good predictor of the subsequent run time for a
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given grid cell, based upon its neighborhood and current
physical state. With novel machine-learning approaches, the
persistence assumption could be improved upon, paving the
way for more efficient partitions for which efficiency levels
of work-stealing methods could be achieved.

The load-balancing core is completely unaware of the
spatial discretization, the variables being computed, or the
time stepping; it is therefore highly abstract and re-usable in
any other MPI-parallel code. Wherever the workload be-
comes highly unbalanced in the most time-consuming
section of the algorithm with respect to the original par-
allelization, it makes sense to consider work redistribution,
which can subsequently be fine-tuned per use case by al-
tering block sizes, repartitioning intervals, quality threshold
or work distribution strategy. Hence this method can be
applied to many multi-physics problems dealing with lo-
calized computational loads with a relatively modest
modification of the code structure.

5. Supplementary material

The load-balancing library has been developed as part of
INCA and is also available as a stand-alone library,
QUICKLB, for use in other HPC codes. The open-source
package QUICKLB includes the original Fortran im-
plementation and a Python interface and is available at
https://zenodo.org/record/6598303. Additional documen-
tation is available at https://quicklb.readthedocs.io. The
benchmark data and plotting scripts are publically available
on Zenodo at https://doi.org/10.5281/zenodo.14846663
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