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Summary

With the rapid growth in point cloud acquisition technologies the recent years we have the
ability to measure large quantities of 3D points of significantly detailed and geometrically
composite scenes such as urban environments [1]. This advantage can be exploited and used
for direct analysis on point clouds. A direct point cloud analysis has several advantages over
for example 3D surface reconstruction, such as the end result having more details and the
computation being less expensive. In order to make a point cloud representation a suitable
alternative for other types of 3D city models, they need to be semantically enriched, resulting
in a rich point cloud.

One element of this enrichment is the detection of objects, such as windows. Extracting these
from facades is specifically what this research revolves around, which can be done by taking
advantage of the fact that they show up as holes, since lasers of the point cloud scanner do not
properly reflect on them. Two different general approaches are taken to detect windows in a
by mobile laser scanner obtained point cloud of Noordereiland, Rotterdam, The Netherlands.

The first method is the so-called 2D bitmap occupancy map method. Here, the point cover-
age of a facade is approximated in a bitmap. A Gaussian or median filter is then applied, to
remove noise. Subsequently, holes can be extracted from this bitmap, which would represent
windows. The boundary pixels of the holes are tied to original points, which means that
these will be selected to be window points.

The other method is the slicing method, derived from an existing paper, in which a facade
is cut into both horizontal and vertical slices. All points that belong to a slice are projected
to 1 dimension, and based on a distance threshold between the points on the line, holes can
be detected. The extreme points of these holes are extracted, and after doing this for every
slice, the boundary points of all holes in the facade are detected. These points would then
represent the outlines of windows, and are classified as such. The quality of both methods is
assessed and compared.

Besides the enrichment of the point cloud with classified window points, the ratio between
the surface of a facade and the total surface of its windows is calculated and added as
an attribute as well, which is useful for the estimation of the energy usage of a building.
Moreover, other applications for which this analysis can be used, are presented. Window
detection in tunneling risk assessment and fire propagation simulation in high-rise buildings
are two of these applications, which were the study objective of other research papers.
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1 Introduction

In recent years, laser scanning technology became crucial in surveying and urban managing.
The increasing possibilities driven by developing technologies, give the opportunity to ac-
quire, measure and interpret the surrounding environment on detailed level and with high
accuracy. However, big possibilities are always coming with big challenges – and one of them
is computationally- demanding processing of point clouds. Obviously, the simplest solution
for deriving information are basing on geometrically reconstructed objects. However, the
effectiveness of this approach decreased dramatically together with increasing density or size
of the datasets, forcing the scientist to find more suitable solution to face fast growing de-
mands. The basic idea behind most of them, is to derive information of interest directly from
a point cloud – without intermediate steps requiring expensive hardware - which was also
the main assumption behind the idea of creating this project. With the help of Municipality
of Rotterdam, the general idea of this analysis was related to a specific problem - assessment
of energy effectiveness of buildings with respect to window coverage in facade surfaces. The
size of the provided datasets (forcing to find solution without geometrical reconstruction), as
well as a lot of emphasis in put on ecological issues, made the problem interesting from the
point of view of the group.

Building energy performance results are becoming increasingly important for design decisions
concerning building sustainability that have to be made in the early design stage [2]. However
it is equally important to reduce the energy consumption of existing buildings. Windows are
a significant source of heat loss in a building. Therefore, any effort to significantly improve
building energy efficiency and reduce environmental impacts [3] is a step towards being more
compliant with regulations, as the governments stipulates a minimum efficiency requirement
for both new build and existing buildings. In general it would be of bigger importance for the
occupants to have temperature control and thermal comfort, but mainly a further sustainable
decrease in energy and utility costs which in turn, would unlock further potential for growth
due to the extra purchasing power made available this way. In this context, undertakings
may profit from both new market opportunities opening up in sectors engaged in rationaliz-
ing energy use, and more predictable and stable energy costs [4].

The primary objective of this study is to provide a preliminary solution that automatically
and rapidly detects windows in existing buildings from LIDAR point cloud data that can be
further utilized for building performance simulation applications. We process the provided
point cloud data from a terrestrial and airborne laser scanner system to recognize and dis-
tinguish the windows as an individual building component that will be later on used by the
client, for the calculation of applications like the overall heat loss coefficient of a building
from windows, as mentioned above.
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1.1 Project overview

This report provides an overview of the ”Automatic detection of windows from point clouds”
research, as part of the Geomatics Synthesis Project 2019. The aim of this course is to apply
the knowledge, skills and insight acquired in prior mandatory courses of the programme into
practice, making it possible to combine scientific research with practical work. This way the
opportunity was given to combine and implement the knowledge gained from the following
courses:

− Digital Terrain Modelling (GEO1015)

− Geo Database Management Systems (GEO1006)

− Positioning and Location Awareness (GEO1003)

− 3D Modelling of the Built Environment (GEO 1004)

− Geoweb Technology (GEO1007)

− Geo Datasets and Quality (GEO1008)

− Python Programming for Geomatics (GEO1000)

− Sensing Technologies for the Built Environment (GEO1001)

The following research starts with providing the problem definition and also the requirements
of the project as a whole (Chapter 1). Hereafter the theoretical background of every method-
ology milestone is presented thoroughly (Chapter 2), followed by the applied methodology
that is necessary to derive to the results (Chapter 4). The next chapter is devoted to the
quality assessment of the developed algorithm. Finally the conclusions (Chapter 5) as well
as the project plan framework (Chapter 6) are provided .

1.2 Problem definition

The Municipality of Rotterdam has to perform various kinds of analysis by using point cloud
data, acquired with different methods. Its goal is to use these for various applications. In this
concept, it is of their interest to try to explore for potential types of analysis on point cloud
data that can be used to their benefit, in terms of accuracy, accessibility, time management,
cost savings in the long term and for several current or prospective projects and applications.
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Figure 1: Research area: Noordereiland, an island within the municipality of Rotterdam.

Objective: To create a window detection algorithm that takes as input point cloud data
and detects windows without the need of 3D surface reconstruction. Moreover it should be
able to calculate the ratio between the window surfaces and total surface of buildings facades
and also identify individual windows per facade.

Research question:

The research question defines the scientific goals that the team would like to explore and try
to provide an answer to. Through this, a general direction is chosen on which the main focus
will be.

To which extent can the immediate use and analysis of a point cloud be used
for the specific purpose of window detection without the need of 3D Surface
Reconstruction?

Therefore the main research question for this project is composed of the following sub-
questions:

• What is the accuracy of the implemented algorithms?

• Is this analysis truly usable and practical for the current but also other applications?

12



• What is the efficiency level of the implemented algorithm?

• Can the result of this analysis be used in combination with other datasets (e.g BAG) or
applications (e.g estimation of ratio between window - building surface areas per BAG
ID)?

The research of the team will be focused on the detection of windows since this is the most
important part of the application. Trying to achieve the best accuracy, in terms of the exact
shape of the window and therefore the area of it will lead to a better and more precise out-
come for the algorithm which will result in a more reliable application for the calculation of
the window coverage ratio in facades.

1.3 Requirements of the Analysis

1.3.1 MoSCoW Rules:

MoSCoW is a technique used in management and software development which aims to en-
sure that all stakeholders have a common understanding on the importance they place on the
delivery of each requirement [5]. Every requirement is characterized as a MUST, SHOULD,
COULD and WON’T depending on its importance within the projects realization.

Requirements labelled as MUST are the ones that have to be satisfied to acquire a final result,
otherwise if absent, the implementation of the project might be considered as well as a failure.

SHOULD requirements are also important additional requisites, but are not vital for the
success of the end product. They can be characterized as secondary priority, as the they
cannot create a big risk for the project itself in case this requirements are not met.

COULD requirements are the ones which that are desirable or interesting to implement but
not significant for the outcome. They do represent an enhancement of certain features used
in the process that are not necessarily important but can be put into practise if the project
is not highly - constrained in time just to increase client satisfaction.

WON’T requirements are concepts that the team will not be able to deliver. However they
can be labelled as possible future work as the stakeholders are actually interested in this re-
quirements but just have agreed that they will not be implemented as they are not achievable
within the framework of the current application.

13



Figure 2: Moscow Rules

1.3.2 Functional/Non Functional Requirements

Apart from defining the main objectives of the project, it is necessary to determine the con-
ditions and needs that must be met by an end product based on the requirements of the
involved stakeholders. Although there are various types of requirements, the most important
ones are the functional and non-functional. The functional requirements identify the neces-
sary task, action or activity that must be accomplished for the project to run successfully
and the non-functional requirements specify the criteria for assessing the outcome.

Functional Requirements: Data Processing

• Read point cloud datasets from different sources

• Clean/Filter Data

• Perform analysis on point cloud data

• Visualize Results
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Functional Requirements: Softaware Tools

• QGIS: Manipulation of data

• Python 3.7: Algorithm development

• C++ (Visual Studio Compiler 2017): Algorithm development

• CloudCompare: Visualization and Processing

• Libraries Python: Algorithm development

• Libraries C++ : Algorithm development

• Image Master: Calibration of camera

Non-Functional Requirements:

• Accuracy: To try to ensure that the project outcome offers accurate enough results.

• Usability/Efficiency: To try to ensure that the implemented algorithm for the window
detection is easy to understand, user friendly and most importantly performance and
time wise efficient

2 Theoretical Concepts

2.1 Point cloud data acquisition

There are a number of well established surveying techniques, active or passive, for the acqui-
sition of (geo)spatial information. A wide variety of instruments is commercially available,
and a large number of companies operationally use these techniques, accompanied by many
dedicated data acquisition, processing and visualization software packages [6]. A thorough
inside in these techniques was given during the GEO101, GEO1004 and GEO1001 courses.

2.1.1 Laser scanning techniques

Typically, active techniques measure 1) the distance to the surface they are scanning and 2)
their own position and orientation relatively to a global coordinate system. By combining
these, the 3D coordinates of the measured location on the target surface can be computed
[7]. Sensors/scanners, either airborne or terrestrial, are categorized as active methods. A
LIDAR system measures distance to a target by generating and casting upon it pulses of
laser light and then using a sensor to capture and measure the refleced pulse. (see Figure 3).
It is generally considered to be the most accurate acquisition technique. By measuring the
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time-of-flight, i.e the difference in time between sending a pulse and sensing its return, the
distance to the target that reflected the pulse can be found by multiplying the time-of-flight
with the speed of light, which is a known constant [7]. Another way for measuring 3D points
is with Tachymetry. This method does not provide point clouds in the sense defined before.
In this case specific points of interest are measured. However, also in this case the accuracy
that is provided is very high. The following figure (3) was derived from [8].

Figure 3: Scanning Techniques

2.1.2 Photogrammetry techniques

Photogrammetry (aerial or terrestrial) gives us as the possibility to measure 3D points. Due
to the recent development of computer vision, we are able to acquire detailed and of good
quality point clouds from images that were captured with uncalibrated simple cameras [6].
Photogrammetry is based on creating the geometry of a 3D feature by capturing the same
object from different perspectives. Every separate image that is taken consists of pixels, each
of which is connected to the center of the camera through a line, i.e the are collinear. The
3D position of the point can be identified by finding the intersection point location of these
lines from different images. This however requires a further processing called Dense Image
Matching (DIM) (Figure 4) [9]. With dense image matching it is attempted to find a match
for every pixel in an image [6]. The following figure (4) was derived from [9].
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Figure 4: Dense Image Matching

2.2 Point cloud indexing

A spatial index is a data structure that was created to enable access and query operations in
spatial databases. Otherwise the response time of a specific spatial feature would require a
lot more time, as every record would be checked consecutively [10]. Therefore data structures
are designed to enable fast access to spatial data. The used data structures for indexing and
searching point clouds in the implementation of this projects algorithm are presented here-
after. Point cloud indexing was introduced during the courses GEO1015 and GEO1006.

2.2.1 Kd-tree

A k-dimensional tree is a data structure to organize points in a k-dimensional space [11].
Through this, the extended is also divided in different regions [11]. It is based on the con-
cept of a binary search tree in which each node is used to partition one specific dimension.
More analytically, each of its nodes represents an axis-aligned hyper-rectangle, as Figure 5
shows. Moreover, every node designates a specific axis and the points of the dataset are then
separated and placed, by comparing their coordinate in this axis to a certain value in terms
of being bigger or smaller, such as a coordinate median. This way, all points are indexed.As
described in [11] and the hyperplanes are created in the following way: First, we choose one
dimension as split axis and a splitting point which is the middle of the existing values in this
axis. Afterwards, every point is positioned in the tree according to its specific axis-value and
relatively to the middle point. This, as stated in [10], makes ”points with a lower coordinate
value than the node along that dimension (corresponding to ‘left’ or ‘under’ the hyperplane)
being put into the left subtree of the node, and the other ones into the right subtree” [11].
The following figure (5) was derived from [11].
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Figure 5: Kd-tree indexing

2.2.2 Nearest neighbour search (NNS)

Kd-trees, are a compact spatial data structure, hence they are well suited for important tasks
like the location of nearest neighbours (NN). As mention in [11] ”the nearest neighbour query
aims to find the point c in a set S that is the nearest (according to the Euclidean distance) to
a query point q” and for this ”the whole tree has to be traversed (in depthrst order)”. The
properties of the kd-tree offer the possibility to eliminate large portions of the tree. based on
their bounding boxes. A generic k nearest neighbours search algorithm begins at the root of
the kd-tree and adds points to a list if they are within a certain distance. For the k nearest
neighbours, the list is sorted such that the point that most distant can be eradicated if the
list contains k points and a new closer one is found [11]. More analytically, the first step is
to locate the location where the point would be located if it were added to the tree (Figure
6). As the tree is traversed the distance between the point and the current node is recorded.
Next, we go back up the tree evaluating each branch of the tree that could have points within
the current minimum distance. The following figure (6) was derived from [10].

.

(a) Exploration of branch closest to query point (b) Elimination of part with no NN

Figure 6: Nearest Neighbour Search [9]
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2.2.3 R-tree

R-tree is another index structure for partitioning space. Also here, the principle of partition-
ing data into axis-aligned tree nodes, is shared. In [12] it is stated that ”the key idea of this
specific data structure is to group nearby objects and represent them with their minimum
bounding rectangle in the next higher level of the tree; the ”R” in R-tree is for rectangle”.
Compared to the kd-tree which can usually contain only points, the R-tree can have coordi-
nates, rectangles or polygons as objects. Another property of the R-tree is that its rectangles
might overlap (Figure 7) and do not always cover the whole data space. Empty areas may
be uncovered. The process starts with partitioning the data into a specific number n of
rectangular boxes. Then each box is sorted into the same n number of smaller boxes. The
same process is repeated until the final box contains n number of rectangles at most. R-tree
structures are very useful since most normal range queries don’t work for geometry (only for
point data) so some spatial operations (e.g. intersect) can be enabled through the use of the
R-tree. The following figure (7) was derived from [12].

Figure 7: R-tree structure and overlapping of rectangles

2.3 Segmentation

2.3.1 Segmentation methods

Segmentation is one of the most important processes in the direct analysis of unorganized
point clouds, since normally point clouds are unstructured 3D data (with few exceptions).
It utilizes the generation of classified/ segmented point clouds. The main idea is to group
points that share the same properties into homogeneous regions. It is considered a very
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challenging process as it has to deal with various matters such as uneven point density, high
redundancy and absence of specific structure. There are different segmentation techniques
used for different primitive extraction purposes (e.g edges, smooth regions). As described by
Anh Nguyen and Bac Le in [13], these segmentation methods can be assorted in the following
categories:

1. Edge based methods: The boundaries of objects are detected and points which
belong to these are grouped together.

2. Region based methods: Points in a specific search neighbourhood with similar char-
acteristics are detected and grouped in segments that share the same similarity.

3. Attributes based methods: The classification of the points is based on attributes
that are computed for all points.

4. Model based methods: Points that can be represented with the same mathematical
surface e.g plane, cylinder etc., are grouped together. RANSAC is one well known
example of shape fitting algorithms.

5. Graph based methods: Segmentation is performed with a graph in which the nodes
represent the points and the edges the connection of points that are spatially close.

2.3.2 Random Sample Consensus segmentation (RANSAC)

Random Sample Consensus (RANSAC) is used as one of the most common segmentation
methods to detect planes. It provides robust models with a certain probability, meaning
that it is able deal with the presence of outliers (values that differ abnormally in a random
sample from the the population). Most parameter estimation techniques are based on the
assumption that the noise is following a Gaussian distribution (mean is at zero) and therefore
it would be smoothed after optimizing these parameters which are taken as an average of all
the data. This does not apply in the case of gross erroneous samples. The Ransac paradigm,
however is capable of interpreting data that contain a big percentage of gross errors [14] as
it trains the model only with inliers according to an optimization method and the distance
function of the model [15]. However as mentioned in [16], it suffers from the spurious-plane
problem when noise and outliers exist, due to the uncertainty of randomly sampling the
minimum subset with 3 points.

The main idea of the algorithm according to George Vosselman and Hans-Gerd Maas in [6],
is based on the notion of minimal sets. Minimal set, is considered the minimum number of
points that are required to define a plane (three points). The process starts by choosing a
number of subsets of 3 points for each of which a plane is fitted. Afterwards, all the points
that are inliers, i.e. are within a specific tolerance (distance) from the plane, constitute the
consensus set as named in [6]. All the points that do not belong in the set are gross errors
and are considered outliers, as they do not fit in the model. Once all the consensus sets have
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been formed, the model with the biggest consensus set, is the preponderant plane. For even
better results, least square adjustment can be performed on the prevailing consensus set.

Figure 8: RANSAC plane fitting

As described in [17] RANSAC needs some predefined parameters that have to be chosen
during the implementation of the algorithm:

1. Number of minimal subsets: Is estimated depending on the expected probability
success and the (possibly) known number of outliers in the dataset.

2. Initial size of sample subset: Minimum number of points to fit the model. More
samples in the sample subset are not better as expected, as this would increase the
search space for the subset selection so more subsets, This way more subsets would
have to be tested which would increase the computational complexity.

3. Error tolerance: We choose the threshold so that we have a certain probability p for
inliers. This parameter helps us deal with the noise in the data.

4. Number of samples: We choose it in a way so that with probability p, at least one
random sample is free from outliers.

5. Consensus set size: Should respond to expected inlier ratio. This ratio might be
unknown a priori, but at first, the worst case scenario can be picked and then adapted
in as second phase.
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6. Number of Iterations: Instead of following the deterministic approach and check for
every possible subset to find the best one, something that is computationally expensive,
RANSAC chooses a subset with no outliers and then calculates the necessary number
of iteration to obtain a succesful run with a certain high probability (success).

Apart from the gross outliers, the datasets contain noise which is not considered in the com-
putation of the probability for good minimal sets. The error threshold is used for handling
this noise but in practise it is generally not possible to analytically capture the eect of noise
in the minimal set on the instantiated model [6]. It is very important, though to choose
a reasonable value for the error tolerance in order to achieve the result desirable with this
algorithm, as small value could result in the omission of correct points in the consensus set
or contrariwise a big value in the commission of incorrect points. Therefore it is useful if
the error tolerances are determined empirically, for example by using a small multiple of the
precision mentioned in the specifications of a laser scanning device for the acquisition of a
point cloud [6].

Overall, the RANSAC paradigm has many advantages. As a method it can be applied in may
different cases, it is easy to implement, it is robust to outliers and has good runtime perfor-
mance in big datasets. Nonetheless when used the following things should be considered: it
has a certain probability of success, it requires prior knowledge about data , many parameters
have to be tuned number of iterations increases logarithmically with outlier percentage [15]
and lastly in the case of low inlier ratios, too many iterations will be or worst case there is
the danger of the algorithm failing entirely.

2.4 Morphological filtering

During the point cloud data acquisition, no interpretation of the scene is performed [6].
Therefore, in order to exploit the maximum of the information that a point cloud can offer,
the classification of the point cloud points into ground and non ground points is essential.
However removing non ground points from LIDAR datasets has proven to be a challenging
task. This can be achieved through various kinds of filtering of point clouds. Progres-
sive morphological filtering is based on the concept of mathematical morphology which is a
set-theoretical method of image analysis providing a quantitative description of geometrical
structures [6] based on two operators, erosion, which is used to reduce, and dilation used to
enlarge size of features. These two operators utilize the simplification of the surface by per-
forming two different operations named closing (erosion after dilation) and opening (dilation
after erosion). The ultimate goal of this method is to identify and remove non ground points
like cars, trees, buildings etc.

With the help of a structure element (window) which represents the neighborhood of a point,
the maximum (dilation output) or minimum elevation (erosion output) of the neighbouring
points is determined. The points within a threshold from this lowest elevation are considered
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ground points. The size of the window has to be carefully picked since a small window can
result in removing only significantly small features like cars while preserving bigger ones like
buildings, whereas big window can falsely remove ground points. Since it is very hard to pick
a window size that is small enough to preserve the terrain points and large enough to remove
non terrain objects at the same time in order to compensate for this limitation, Kilian et al.
[18] proposed to apply a progressive morphological filter.

In this type of filtering, the size of the window of the morphological filter is increasing grad-
ually starting from the smallest size. One important property of this method is the fact that
the opening operation preserves the features that are larger that the window size. However
by using windows that grow progressively, we can acquire a smoother surface as the build-
ing measurements are removed and replaced by the minimum elevation of previous filtered
surface in each iteration [18]. At the end of this process an approximation of the terrain is
acquired since only the lowest height values are used. Therefore the points can be filtered
according to a height tolerance from this lowest surface.

2.5 Raster filtering

A raster image is a matrix of intensity values. Filtering operations are often used to modify
or enhance certain features in a raster image. They are performed on a neighborhood of
pixels resulting to the alteration of the values of the pixels in the output image. For this,
a kernel, which is an odd nxn array/ matrix, or a mask composed of weights is used, to
compute the weighted average in a neighborhood. The kernel represents the weights of the
pixels. Raster filtering was part of the education material for GEO1001.

2.5.1 Median

The median filter belongs to the class of non linear filters. It is used to remove impulse noise
without blurring the image [19]. This is achieved trough the modification of the intensity
values of each pixel by utilizing its neighbors. The principal of the median filter is to take
the median value in a neighborhood of pixel instead of a weighted average. The median is
different that the average as it is surrounded half by smaller values in the neighborhood by
larger. Therefore as mentioned in [20], ”it is a stronger ”central indicator” than the average,
so it is hardly affected by a small number of discrepant values among the neighbouring pix-
els”. The steps of the process are described as follows: first the kernel size is specified, then
the pixel values that are covered by the kernel are listed in an ascending order, the median
value is determined and finally the pixel at the center is replaced by the median of all of these
pixel values inside the window. If the kernel covers an even number of pixels, the average of
two median values are used [21]. The kernel is shifted until all elements are replaced. The
final output is a linear/nonlinear function of the input, and more specifically an array of the
same size containing the median filtered result.
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The median filtering is very effective, to some extend, to distinguish between isolated random
noise and actual features of the image (edges, lines etc) [19] but at the same time its main
disadvantage is the that smoothing can not be performed in boundary regions. One way to
compensate for this limitation is by beginning the median filtering by placing zeros around
the row edge and column [22]. However this would still cause edge distortion near the image
boundary. The median filter, as being an edge preserving smoothing filter [21], it is able to
preserve sharp edges, but depending on the size of the feature, since if the size is less that
half of the size of the filter, then pixel is replaced by the median as it is considered as a noisy
element of the raster [23]. The following figure (9) was derived from [21].

Figure 9: Median Filtering Example

2.5.2 Gaussian

Gaussian filtering is used to remove noise and most importantly to smooth images by elimi-
nating detail (high frequency components) [24]. It is a convolution filter in which the values
of the kernel are simulative to the shape of a Gaussian distribution [25], according to which
the distribution of the values decreases the further we move away from the peak of the curve
(Figure 10). Same applies in the Gaussian filtering where the weight values decline with the
distance from the center pixel which has the highest weight [25]. Therefore the center and its
immediate neighbours, lend heavily weight to the weighted average, which is also the main
reason for the persistence of edges after this operation.

The two basic characteristics of the Gaussian filtering process are the kernel size and the
standart deviation(s). The shape of the Gaussian kernel function is depends on the value of
σ which is defined relatively to a decimal number of standart deviations. A higher value of
sigma would cause higher levels of smoothing and less preservation of edges, as the Gaussian
curve would be more broad and less peaked [24]. Increasing the standard deviation will af-
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fect likewise the kernel size. Overall, the kernel size can be normally limited to contain only
values within specific standard deviations of the mean.The following figure (10) was derived
from [26].

Figure 10: Gaussian Curves for σ = 11, σ = 7, σ= 2

2.6 Web Map and Web Feature Service

Geographic information infrastructures (GII) were created to facilitate the availability and
access to geographic information for all possible stakeholders (government, ordinary citizens
etc). Proliferation of geo spatial information and the need for interoperating applications
led to the emergence of Web Services. Web Map and Web Feature services are considered
a very useful new paradigm, as it provides access to spatial data online instead of direct
connections to ‘remote’ databases [17]. This offers the indisputable advantages that no user
login is required (as in the case of a database) and is not only for exclusive browser - server
cases but also for more generic applications.

The Open Geospatial Consortium, which is an international organization leads the develop-
ment of interoperable standards for geospatial and site-specific services [27]. The two geo
- related standarts, namely Web Map and Web Feature Service, were created for viewing,
modifying, and exchanging geographic information in raster and vector format in the Internet.

Web Map Service generates static maps in raster format for viewing purposes only. Web
Feature Services is the OGC specification that defines the standart for exchanging geoinfor-
mation in digital format independently from the underlying data source [28]. It provides raw
vector geodata comparable to shapefiles and PostGIS, without any particular portrayal. The
output of the request is more than display. The user is able to edit and update the features
itself. Apart from the geographic vector data, associated administrative information can be
retrieved (e.g BAG IDs). During the GEO1007 course the possibilities of these web services
were introduced.
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2.7 BAG

The BAG (Basisregistratie Adressen en Gebouwen) is the Dutch governemnt system for
registrations of buildings. It possesses information for all properties in Netherlands which
can be municipal details for five different object types (buildings, residential objects, number
designations, public spaces and places of residence) [29]. As mentioned in [29] the information
itself are the purpose of use,construction year, status, surface area, geometry and location on
the map (xy coordinates) as mention . These types of administrative data can be requested
through the Web Feature Service (WFS). The following figure (11) was derived from [30].

Figure 11: Example of BAG information for building

2.8 Calibration of camera

Since the picture is only 2-dimensional representation of the reality, it is not possible to pre-
serve all of the information about feature of the interest. However, some of the details about
reality, especially the one which were distorted not occluded, are possible to restore, with
the usage of camera parameters. To calculate them, camera calibration is needed [31], as a
necessary step in order to extract metric information from 2D images [32]. It includes the
determination of intrinsic and extrinsic camera parameters. More specifically, a mathemati-
cal problem is solved to find distortions of image, in other obtain real world measurements .
These distortions are caused by the cameras physical flaws which are internal characteristics
that are specific for each camera.
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Calibration parameters: As it was written above, main goal of the camera calibration
is the establishment of parameters describing dependencies between camera’s and real co-
ordinate system as well as parameters describing physical characteristic of instrument and
transformation of the perspective [31].

In general it is possible to distinguish two groups of parameters in every procedure:

• Extrinsic parameters – related to shift and rotation of the camera in respect to real
situation,

• Intrinsic parameters – describing the characteristics of lens and other “internal” pa-
rameters.

The parameters of the first group are relatively easy to obtain because rotation and shift is
simple in description with 6 parameters (3 related to movement in the direction of every axis
and 3 related to rotation around every axis of coordinate system). However in the second
group situation differs; to describe them, the theoretical model of the camera needs to be
developed.

Pinhole Camera Model Commonly, the pinhole camera model is used as the reference
for geometrical relations (Figure 12 derived form [31]).

Figure 12: Pinhole camera model
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The model presented is leading to equation: [31]

−x/f = X/Z,

Thus,

−x = f ∗X/Z.

After exchanging the surface of picture and camera from the picture, we can transform the
equation as follows:

x/f = X/Z.

Unfortunately in real situation the assumption that the principal point of the camera is ex-
actly in the middle of the image plane is not always preserved. Because of that it is important
to add to the model two additional parameters: Cx and Cy. The final result is a simple model
in which the point in the real world with 3 coordinates (X,Y,Z) is captured on the image
plane in the place described with the equations as follows [31]:

ximageplane = fx(X/Y ) + Cx

yimageplane = fy(X/Y ) + Cy

where fx is focal length

Parameters fx, fy, Cx, Cy are considered as intrinsic parameters and stored in matrix know
as intrinsic parameters matrix and looks as follows:

Mi =

fx 0 cx
0 fy cy
0 0 1
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Extrinsic parameters – rotation matrix and shift vector To describe the external
parameters of camera it is necessary to introduce the rotation matrix and shifting vector.
Location of the object (in real world) can be describe in respect to the coordinate system of
the camera with the usage of them. Because of that is it possible to obtain the mathemat-
ical description about coordinates transformation between coordinate system of the object
of interest and coordinate system of the camera [33]. The rotation of the camera can be
described as matrix multiplication in 2 dimensions (Figure 13 derived from [31]). Thus, as
I was mentioned in introduction to calibration, the rotation in 3-dimensional space can be
decomposed to 3 2-dimensional rotation around every axis, which is leading to the equation:
R = R(ψ) +R(φ) +R(θ)
Where:

Rx(ψ) =

1 0 0
0 cos(ψ) sin(ψ)
0 −sin(ψ) cos(ψ)



Ry(φ) ==

cos(φ) 0 cos(φ)
0 1 0

cos(φ) 0 cos(φ)



Rz(θ) ==

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1
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Figure 13: Transformation of object to camera coordinates principles

The second subgroup of extrinsic parameters is shift parameters, merged together as shifting
vector. In other words, it is the vector which is describing the shift between origins of coor-
dinate systems involved in transformation. With the previously obtained matrix of rotation
and assumption that Po is the actual position of the point and Pc is the position of the point
on the image plane, the equation looks as follows:
Pc = R(Po − T ),
where R is rotation matrix and T is shift vector.
Together with previously obtained information, which is intrinsic matrix:

Mi =

fx 0 cx
0 fy cy
0 0 1


and extrinsic parameters matrix Me (together with shift parameters and all the rotations):

Me =

r11 r12 r13 −RT
1 T

r21 r22 r23 −RT
2 T

r31 r22 r23 −RT
3 T


Final relation between matrices can be written as follows:
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Where M is the projection matrix. With all the information it is possible to use the collinear-
ity equation and transform it to the form which can be used to derive pixel coordinates

xpx = xh

w
= m11Xw+m12Yw+m13Zw+m14

m31Xw+m32Yw+m33Zw+m34

ypx = xh

w
= m21Xw+m22Yw+m23Zw+m24

m31Xw+m32Yw+m33Zw+m34

Which is the goal of image coordinate reconstruction – to relate 2-dimensional image plane to
3-dimensional reality. With all the parameters mentioned above as well as derived equations,
he formal calibration camera became trivial and simplified to estimation of the parameters
basing on the object with known size and shapes called calibration benchmark [43]. The
specific procedure describing how to obtain the parameters have to be chosen depending on
user experience and application. There are various techniques to solve that – most popular
approaches are usually basing on non-linear square adjustment with altered version of Gauss-
Newton algorithm and realised with pre-prepared solutions.

2.9 Software

2.9.1 Fiona

Fiona is a Python library used to read and write data. It mostly focuses on GIS vector
spatial data that represent discrete fields (roads, boundaries of properties etc). It makes use
of the OGR Simple Features Library which supports various data formats. The reason it
is essential for data exchange in GIS applications is that, this way more types of data can
be supported and converted in different GIS formats. The intermediary for input/output of
Fiona, is a format called Well -Known Text (WKT), which is a text mark up language [12]
regulated as a standard by the OGC, that represents the geometry of vector objects.

2.9.2 Shapely

Shapely is another Python tool essential for geospatial programming that analyses and ma-
nipulates data. It supports spatial operations of vector features (polygons, lines, points)
such as intersections, centroids, convex hulls [34] and more. Shapely’s functional operation
is based on another OGC Simple Features standard, the GEOS (Geometry Engine Open
Source) library, which executes spatial operations, including validation and topology func-
tions. GEOS is the geometry engine of the PostGIS spatial extension for the PostgreSQL
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RDBMS (relational database management system), hence Shapely is able to perform Post-
GIS type geometry operations outside of an RDBMS, avoiding the need for the data to be
imported into a spatial RDBMS [35]. This is the main advantage of the Shapely library if
we consider that, not all spatial data within a database are equitably well processed using
SQL [35].

2.9.3 OWSLib

OWSLib is python package that enables the use of OGC Web Feature Service (WFS). The
format of the response to a request for a selection of features from a data (geometry and
attributes) values is by default text/xml. Other output formats (including older versions of
GML, non-XML, binary and vendor specific formats)[36]. However for this, the appropriate
values for the output format need to be mentioned in the capabilities file.

2.9.4 Opencv

OpenCV (Open source computer vision) is a programming library originally developed in
C++ environment but was later started used as an extension of python. It has many different
moduls such as Image Processing and Object detection and it supports many applications
(e.g. segmentation and recognition)[37], but in the case of this project it was used for the
processing of raster files to detect contours. Contours are considered all the continuous pixels
with the same intensity or color along a boundary. They are a very useful for shape analysis
and object detection and recognition [38].

2.9.5 PDAL

As described in the PDAL documentation [39], the Point Data Abstraction Library is used
for translating and manipulating point cloud data. It is a C++ open source library meaning
that it is available online. The main advantage of is that it can operate on point cloud data
of any format. For this every operation that is performed on the dataset, is organized in
pipelines that pertain to different stages of the processing. These pipelines are written in
JSON (JavaScript Object Notation) format.

2.9.6 Psycopg2

Psycopg2 is a PostgreSQL database adapter for Python. It supports the insertion of the
point cloud data in databases and then the access of it for retrieval (quering of data), update
and deletion purposes through the processing in python environment. For the use of this
library the installation of a PostGIS extension is necessary.
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2.9.7 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is Python library
that performs clustering of data. Clustering means grouping points together depending
on some sort of similarity. The most important parameters defined in DBSCAN are the
maximum distance between two points (eps) in order to be considered a part of a cluster
and minimum number of samples (min samples) to form a dense region [40]. This type of
clustering has very good results with datasets high density and is capable to deal with the
presence of outliers. However when similar densities occur in a dataset it has difficulty in
discriminating between different clusters.

2.9.8 RANSAC

The RANSAC implementation in C++ environment was used as provided by Dr. Liangliang
Nan for the course GEO1004.

3 Methodology

3.1 Overview

Our approach developed two different solution for the purpose of window detection. One of
them was based on the scientific paper titled “Slicing Method for Curved facade and Window
Extraction from Point Clouds”, written by S. M. Iman Zolanvari and Debra F.Laefer [41] and
makes the assumption that all windows are uniformly represented as holes (lack of points).
The second solution is derived from the idea mentioned in the research ”Automatic detection
and feature estimation of windows for refining building facades in 3D ubran point clouds”
written by Aijazi A. et al. and it is relying on assumption slightly different from the previ-
ously mentioned one - which is the fact, that windows in the points cloud are represented by
lack of points [42].

Our approach contains 3 main steps. During the first step, the point cloud used as input is
”filtered”, meaning that the point cloud will be processed to fulfill the requirements for the
purposes of the chosen task. During the second step, a segmentation algorithm is applied in
order to classify each point to its corresponding building facade. The third and final step
is the window detection, from which window and facade boundary points will be collected.
Moreover, all points belonging to a specific window, are clustered together. A step-by-step
implementation description is given in the following sections. At final part, the results are
evaluated and conclusion about applications and accuracy is made.

The fundamental steps of the approach are shown on the diagram as follows:
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Figure 14: Workflow

3.2 Dataset Filtering

The cleaner the input dataset is for the window detection algorithm, the better the results
will turn out. For this reason, filtering the dataset such that only facade points are left is
an important step. There are multiple approaches for this. First of all, a point cloud that
has been obtained with a terrestrial laser scanner is ideal to use for the application of this
project, because its point density on facades is normally higher than of an airborne laser
scanner point cloud. The steps of which the methodology of this part consists, are shown in
the diagram below, and the used code is present in appendix G.

Figure 15: Dataset filtering workflow

The approach starts with filtering out the ground points from the dataset. For that purpose
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itself there are multiple approaches, but this research considers two of them - performing ei-
ther a Simple Morphological Filter (SMRF, derived from [43]) or Progressive Morphological
Filter (PMF, derived from [44]). The reason for this partially is because they are imple-
mented in the Point Data Abstraction Library (PDAL), a library for processing point clouds
that will be used for this part of the methodology.

The basic idea behind both morphological filters are as follows. Since the point cloud is
assumed to have an irregular point distribution, a regular grid is imposed on it, of which
every cell has the value of the lowest elevation point that intersects with the cell. That is
unless there is no original point intersecting with the cell - it then gets the height value of the
nearest point assigned to it. Subsequently, a morphological filter using an opening operation
is performed on the previously created minimum elevation surface. Then, a window with a
specified radius that defines a search neighbourhood is used as input for the filter, together
with the surface. The surface is now smoothed, also because non-ground points are detected
based on an elevation difference threshold. This step is performed iteratively with the new
surface and an enlarged filter window as input. This iteration is terminated when the filter
window has become larger than a set maximum value, which is marginally larger than the
maximum size of buildings [44].

Ultimately, only points that are deemed as ground points are left. These can now be filtered
out of the original point cloud. As the ground points are removed, the building facades will
be left, along with other objects such as vegetation, cars and sidewalks. These objects should
be removed to clean the point cloud further. Again, there is one proposed method to do so.

After the ground filtering, it is possible to derive a height above ground estimation for every
point. By filtering points that are just above the ground, the sidewalks can be eliminated.
Then, because the BAG is available, an intersection can be made between it and the points,
to keep only those that are supposed to lie on a building. This will leave only the facades,
as objects are generally located on a minimum distance from the facades.

However, facades are normally not straight, having parts that stick out such as balconies. In
addition to that, the point cloud will contain points that have been reflected through windows
from objects that are located inside buildings. While these points can potentially be used for
window detection, as has been done in [45], they are only a hindrance in the methodology
that is proposed in this report. For these reasons, rather than intersecting the point cloud
with original BAG features, a buffer ring is created around every individual polygon. This
is achieved by both creating a buffer with a positive and with a negative distance around
every feature, resulting in separate polygons that are respectively bigger and smaller than
the originals. By performing a difference operation with the smaller shapes on the bigger
ones, only a ring remains, which would intersect with all facade points, and with just few
other points (of outside and inside located objects).
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3.3 Linking points to BAG

In order to link calculated areas of facades and windows (and the ratio between them) to
BAG features, every point in the cloud should get the ID attached to it of the BAG feature
from which it is reflected. The largest challenge for this part is the computation time of
the algorithm. A simple intersection check is not sufficient since points of facade parts that
stick out will not intersect with any polygon, and a closest polygon to point calculation for
example is expensive, which is why another solution is sought. The final code is included in
appendix F.

Firstly, points that intersect with a BAG feature will get the id of that feature attached
to it. To increase the speed of point in polygon calculations, the R-tree is used to index
the envelopes of all polygons. For every point, it is then checked with which envelopes it
intersects. Then, the intersection with the real polygons that correspond to these envelopes
are tested, to filter out false positives.

The second step is to assign an id to every point that does not intersect with any BAG
feature. Because a closest point algorithm is faster than a closest polygon algorithm, equally
spaced points are created on the boundaries of the polygons as shown on figure 16. With the
help of a kd-tree, the points that have not yet been classified will receive the id of the poly-
gon that corresponds to the closest one of the newly created points on the polygon boundaries.

Figure 16: The created equally spaced points on BAG features. Each point colour represents
a different BAG ID.

3.4 Segmentation

Plane segmentation is a usual task in the automatic 3D modelling reconstruction from un-
organized point clouds acquired by different technologies such as airborne or mobile LiDAR.
Since our window detection algorithm is iterating through different building facades and is not
treating them as one, every point needs to be assigned to one of the facades. This is achieved
with the execution of a point cloud segmentation algorithm to identify individual facades.
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For this purpose, an iterative technique called Random Sample Consensus (RANSAC), which
is easier to implement but has limited possibilities, is applied. Another approach to separate
points into different facades is the Histogram-Based Segmentation Method, which, however,
will not be used in our implementation due to the demanding time frame of the project. For
the sake of comprehensiveness, a description of both methods will be given in the following
subsections.

3.4.1 Histogram-Based Segmentation Method

The Histogram-Based Segmentation Method is based on quantitative measurements and one
basic assumption, that points acquired by a laser scanner are evenly distributed in the 3D
space. Density differences in the point cloud could be caused by differences in materials of
objects (e.g. mirrors, glass), or simply, due to the absence of objects (smaller number of
points observed at a local region). The main advantage of this approach is that it can also
detect non-planar surfaces, like curved building facades, overcoming the possibilities of the
RANSAC Segmentation approach, which can only detect planar surfaces.

Figure 17: Facades of buildings detected by using the Histogram-Based Segmentation Method

The algorithm is ”dropping” every point of the point cloud to 0-elevation, applies a regular
grid on the same level and assigns the number of points inside every cell of the grid as
the cell’s value. The plot of the grid shows a three dimensional histogram of the points’
distribution. Thus, searching for a building facade corresponds to choosing a threshold value
for number of points inside a cell and searching for connected cells with equal or higher cell
value than the threshold. High concentration of points in one of the histogram’s cells can
only occur for objects that consist of a high number of points - high density of points in
a small neighborhood- and also, of high vertically distributed density of points. Even in
cases of inclined building facades, the concentration of points on the histogram’s cell for that
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region will still remain higher than the concentration of points that describe other objects
than buildings. The threshold value selection can be based on the density of the point cloud,
as well as the minimum building height of the study area. Obviously limitation related
to quality of measuring equipment as well as not always perpendicular facades are forcing
small buffer around the place of interest, defined as the cell size. In principles, the points
filtered with conditions mentioned about should be used for plane estimation with non-linear
solution, since the assumption is that this approach is mentioned to be used to recognize
curved facades. However, due to limited time and lack of possibilities to find suitable data
for this solution, it is only mentioned in the report as the proposition for solving the problem
related to non-rectalinear facades.

3.4.2 RANSAC Segmentation

Since the previously described method is experimental and requires more time for testing
and implementation, a different approach was proposed to ensure the fulfillment of the main
project requirements in the given time frame, the RANSAC Segmentation approach. The
major disadvantage of this approach is the fact that it is not robust to non-planar surfaces -
the Random Sample Consensus algorithm is searching for linear solutions.

The RANSAC algorithm starts with selection of random points to build random subset and
estimate the required model parameters basing on them. Secondly, it is assigning the points
as outliers or inliers basing on provided threshold. By iterative repetition of this process, the
algorithm is finding the solution that will mark highest possible number of points marked
as inliers. Obviously, that kind of approach cannot guarantee finding optimal parametric
model, hence the probability of finding optimal solution is increasing with every iteration.
In the project, the RANSAC algorithm was chosen to estimate the optimal plane for specific
facade representation according to the point coverage of each plane, only planes with point
coverage larger than 30% are kept in the final result. Since the core part of the project is
requiring to handle every facade separately, the necessity to cluster the points facade-wise is
crucial for the algorithm.
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Figure 18: Planes segmented by refined RANSAC algorithm

3.5 Window Detection

Window and facade boundary detection is challenging due to the fact, that all the solutions
are ill-conditioned – which means not robust for big differences in dataset parameters (such
as shape of clusters or robustness to mesh). Because of that, the characteristics of the dataset
derived from previous steps have to be evaluated by the user depending on experience and
assumptions. In the following subsections, two different window and facade boundary detec-
tion approaches will be described, the Slicing Method and the 2D bitmap occupancy map
method. Our group focused on implementing two different approaches in order to be able to
offer multiple solutions to our client, have an alternative plan in case one of the two methods
fails and make an accuracy comparison of two different techniques.

3.5.1 Projection of 3D points in 2D plane

For the implementation of both window detection methods it was necessary to project the
3D points to a 2D plane while making sure that its shape remains unchanged. For this, a
transform matrix for the projection and reprojection was used.
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(a) Plane in 3D (b) Projection in 2D

Figure 19: Example of plane projection in 2D

The direction of the z-axes is set same as the plane’s normal direction, the direction of x-axes
is parallel to the ground, and y-axes is perpendicular to these two axis. The transformation
matrix is as follows:

T =


vX.x vY.x vZ.x CenterX
vX.y vY.y vZ.y CenterY
vX.z vY.z vZ.z CenterZ

0 0 0 1


where:

vX: Direction vector of x-axes

vY: Direction vector of y-axes,

vZ: Direction vector of z-axes,

CenterX, CenterY, CenterZ: x, y, z value of centroid of point cloud

So, we can use the formula below to project the 3D points to 2D and vice versa:

(x1,y1,z1,1)*T=invT*(x0,y0,z0,1)*T
where:

x0, y0, z0: x, y, z coordinates of 3D points
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x1, y1, z1:x, y, z coordinates of 2D points,

T: Transformation matrix

invT – Inverse of transform matrix

After projection, the z1 value of points on the same plane is almost same, so we can discard
the z1 value and (x1, y1) is the 2D coordinates of each points.

3.5.2 Slicing method

This method is based on the paper of Zolanvari and Laefer [41], and is able to detect any
opening on a facade, including for example occluded parts or doors, but most importantly
windows. As a prerequisite, it takes a segmented facade as input, of which non-planar points
are removed. The facades are then sliced horizontally and vertically, with a set thickness
that needs to be multiple times smaller than the smallest window, and detects points that
describe boundaries of windows and facades. For every slice, clusters will be created based
on the distances between the points inside. The used code for this method is in appendix I.

Points withing every slice are projected in 1-D, onto a locally defined x-axis, forming an
alignment of points. Moving on the x-axis, from one side to the other, the distance between
sequential points is used to delimit holes and surfaces. If the distance to the next point is
larger than a selected threshold value, it means that there is a hole found between the current
and the next point. The threshold used for data-sets in Rotterdam is usually determined as
ten times the median distance between the points, which can be calculated as points are on
a line, the x-axis. When this is done for a slice, points that were identified in the end or in
the beginning of holes, are characterized as extreme points. Moreover, the first and the last
points of the x-axis of every slice are also characterized as extreme points, which in the end
are used as boundary points of the facade.

When the collection of extreme points is performed for every slice, every cluster, i.e. every
window, is extracted by applying the Density-based spatial clustering of applications with
noise (DBSCAN), proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei
Xu in 1996 [46]. Given a set of points, in our case the extreme points, it groups together
points that are closely packed together, or different said, points with many nearby neighbors.
In our implementation, the parameters we chose are the maximum distance between points
and the minimum number of identified clusters. After completing the clustering of windows,
a property is attached to the original 3D points of the point cloud, indicating which are part
of a window boundary and which are not. The code for this part is included in appendix J.
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(a) Horizontal slicing (b) Extreme points derived from horizontal slices

Figure 20: Horizontal Slicing and resulting extreme points

.

(a) Vertical slicing (b) Extreme points derived from vertical slices

Figure 21: Vertical Slicing and resulting extreme points
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Figure 22: Extreme points derived from both horizontal and vertical slicing

3.5.3 2D bitmap occupancy map method

Data preparation: With all the points extrapolated to plane facade, the preparation of the
raster can be done. Because every facade has it is own characteristic noise as well as geometry,
it is necessary to specify several parameters during the whole process of bitmap preparation
necessary to prepare the dataset for actual window detection. Since there are various reasons
that can change them, starting with architecture characteristics, the weather, air condition
and finally the quality of measuring equipment, it was concluded that the parameters have to
be determined by trial and error. To perform that, various datasets were prepared basing on
user experience and every of them was used in the next steps to conclude about application
possibilities for every of them by comparing the results to measured benchmark data. Again,
the code is included in the appendix (H).
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Figure 23: The diagram showing workflow of the bitmap preparation. The numbers refers to
sigma for Gaussian filter and size of kernel for median filter

Obviously the main idea behind finding the parameters is to remove as much noise as possible
and keep as much actually windows as possible. Regardless to the taken approach, some of
the characteristics were expected and noticed on the bitmap, such as wood crosses in the
middle of the window or curtains covering the window. Since the previous steps also resulted
in multiple results (different cell size for projection and different treshold), at end 72 different
results were tested. In most of the cases it was possible to assess with naked eye that the
results of pre-processing will not lead to acquisition of windows shapes, position and size from
point cloud - it was not possible to distinguish any windows in some cases. The datasets
produced from 0.007 size of the cell bitmap looks to be the most accurate in the way of
presenting real situation. The boundaries are clearly visible, better than in the two other
approaches, and the middle cross is removed in most of the cases. Obviously, some artefact
are still possible to notice. The only problem was related to poor density of the points on
the facades which were measured with instrument located close to the building - the interval
between scanning layers is increasing with distance and angle.

Bitmap - windows detection algorithm: The main idea driving this part of window
detection, crucial in the workflow, is the fact that windows shapes are regular and there is
no need to provide the exact boundary of it (if information about the centers of windows is
present) and classify it to some “window template”. Obviously, the variety of shapes and
sizes is making this task challenging. To solve that, some assumptions are made.

At first, the window can be only distorted toward inside – it is not possible for the win-
dow to appear bigger than in real situation, because the most basic assumption is that the
window is described as lack of points. The remaining parts of the buildings, because of the
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building materials, will reflect the light – which means, that every feature distorting actual
shape of the window will cover it by adding additional points inside. This rule is fulfilled
for curtains, crosses in the middle of the windows, stickers on the windows glass (such as
souvenirs or Christmas decorations, balconies (the measurements were taken from the ground
level so in specific situations it is even possible that the balcony floor can coven the whole
window if it is width enough) and every other features than can interfere with proper window
measurement. However this assumption is making necessary to take into consideration that
density of points is dependent on vertical and horizontal distance to the measuring instru-
ment – the cells of the bitmap with no points can be caused by low density if chosen size of
cell does not take this fact into consideration.

The second assumption is that it is highly probable that the windows which are lying next
to each other are similar in size and shape. Obviously, in one facade it is possible to detect
variety of them; however, it is unlikely to have set up of 16 different windows on the facade
with 16 of them. Besides that, as it was described above, it is not possible to detect the exact
shape of the window – it will be always distorted. This information is leading to conclusion,
that the windows will be not the same in shape and size on the bitmap even if they are in
real situation – because of the random factor correlated with the chance for closed curtains
and so on. Natural idea to solve this problem is to provide the factor which is adjusting
the definition “the same” to “similar” with provision of numerical justification of this idea.
The problem related to this approach is automatic assumption that windows considered as
different does not have similarities described with those factors. This problem is neglaced
due to the fact that the main goal of the research is to establish the ratio of the windows
compare to facade – which is imposing usage of accumulated information together. Since
parameters describing the size of the window in specific class are established basing on the
parameters of the windows assigned to the class, there is no need to distinguish the classes
which are highly similar, because the impact on results will be unsignificant. The decision
tree for considering the window as similar was built as follows:

Data: Q(C), P(W) where
P(X)⊂ (width, height, ratio), Q ⊂ {width, height, area, classid}, C ⊂ {classes}

Result: Q(W)
for ∀(C) do

if W == C ⇔ ∀(P )(P (W ) == Q(C)) where ‘==’ denotes similarity. then
∀(P )(P (W ) assign as P (C));

else
continue

if P(C) = ∅ then
CREATE C, WHERE ∀(Q)(Q(C) = P (W ))andQ ⊂ {classid} = NEW else

continue
Algorithm 1: Assign window to class
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4 Quality assessment

4.1 Dataset filtering assessment

4.1.1 Results

As had been noted in the methodology chapter, the facades should be as clean as possible in
order to retrieve the best window detection results. Therefore, testing has been done to find
out what the quality is of the filtering, and what the influence is of some different choices.
There are differences regarding the chosen ground filtering technique, and whether or not to
remove inside points.

In the methodology, it was explained that the PDAL library gives the possibility to use both
the Progressive and the Simple Morphological Filter (PMF and SMRF). After performing
of these ground filters on a subset of the point cloud, some differences can be noticed in the
results. It has to be kept in mind that other objects such as cars and trees are not removed
during this step, so they are still included in the example images. The images are shown in
appendix A (Figures 47, 48, 49), since they are too large. In addition to that, the execution
time of both are compared.

The SMRF removes more points than the PMF, which can both be seen on table 1 below
and the resulting figures. With the PMF 58,6 percent of the original amount of points is
removed, and for the SMRF this is 64,4 percent. Parts where this is clearly shown are marked
with red boxes on the figures. The SMRF removes the same points as the PMF, but also
additional ones that seem to be part of the bottom of objects. Some lower parts of facades
are removed, but this would be done in an additional step as well if PMF would be used -
the height above ground estimation, and subsequent removal of points that are 20cm higher
than the local estimated ground. This is needed to remove some pieces of pavement that are
not removed, as can be seen in the snapshots of figure 24 below. Using the SMRF rather
than the PMF would thus eliminate an extra step.

46



Figure 24: An example of a part of the street that has not been removed by PMF (left), but
has been removed by SMRF (right)

Amount of points Original subset PMF subset SMRF subset

Absolute 3.432.452 1.422.431 1.223.294
Relative 100% 41,4% 35,6%

Table 1: The amount of points that remain after the filtering

Adding to that, SMRF already has a shorter computation time. Both filters have been
performed ten times on the same subset, and the computation times have been averaged.
On average it took 4.82 seconds on the subset of 3.432.452 points for the SMRF, compared
to 5.52 seconds for the PMF. This means that the former takes 12,7 percent less time. The
specifications of the used system are listed in table 2 below. The SMRF thus is the best
choice, as it is faster on itself and also diminishes one step to achieve the desired results.

Specification Type

Operation system Windows 10
Processor Intel i5-4570 3.20GHz

RAM 8 GB

Table 2: The specifications of the computer used for the execution time benchmarking

4.1.2 Overall quality

For the removal of inside points, a simple method has been chosen as has been explained in
the methodology. This means that inside points that are close to the facade itself remain.
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This can be seen in figure 25 below - while most of them are removed, there is still noise be-
hind the facade. To remove these points, a more sophisticated method has to be used. One if
these is by using RANSAC. This has been noticed during the segmentation part, when using
suitable parameters. This is also the used method in [45] for this purpose. However, another
advantage of removing a part of the inside points is a reduced file size of the point cloud.

Figure 25: The difference between before (top) and after (below) removal of inside points

Close to the facades, some artefacts can be found. Examples of these are shown in appendix
B, figures 50, 51, 52. The reason for this is that they are above the ground points and thus
not removed in that way, and also are close enough to a building to fall within the buffers
that are made around the buildings. While not ideal, these kind of artefacts are removed
during the RANSAC segmentation part and therefore do not pose an issue.

Overall, 71 percent of the points of the original dataset are removed after the filtering step -
34.023.119 points are left, out of the 117.485.603 original ones. By lessening the file size and
the amount of unneeded points, the computation speed and error proneness of the following
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steps are decreased. The problems that have been pointed out form no significant problems,
and a large share of the resulting point cloud is clean. An example of a clean part of the
final outcome is shown in appendix B, figures 53, 56. Lastly, from figure 26, it can be told
that all points have been assigned to a proper corresponding BAG ID. This is the case for
the complete dataset.

Figure 26: Subset of clusters of facade points coloured per unique BAG ID property, with on
the background the boundaries of BAG features.

4.2 Window detection and surface ratio calculation assessment

Every research cannot be considered as done without proper assessment of the results with
respect to the data wanted to perform benchmarking on. The dataset chosen for that role
should have several characteristics which are making it reliable in a mentioned application.
At first, it should cover all the aspect interesting from the point of view of benchmark. In
this particular situation, the most interesting part from the researcher’s point of view is the
robustness to relatively clear input data (without major occlusion caused by balconies or
features temporally placed between instrument and facades, appearing as artefacts too close
to them to be automatically removed by filtering. Proposed algorithms are sensitive to dis-
tortions, and have limited possibilities for adjusting to poor quality data – the choice of low
quality benchmarking data can cause difficulties in assessment of technical solutions, since
major errors would be caused by that and recognition of minor mistakes would be impossible.

Because the proposed methods differ between each other, there is no point to provide unified
way of benchmarking. The steps taken in this procedure should be chosen in respect to
characteristics of specific method.

49



4.2.1 General Principles of Assessment

2D Bitmap Occupancy Map method:

Since the method is relying on several assumptions, it is important to prepare the bench-
mark procedure that will help with assessment of the approach on wide extent. Also, the
benchmark should focus on crucial elements of the algorithms – related directly to the most
important part of the results. In this particular case, it is more important to assess if win-
dows/facade ratio is preserved than to assess if windows are detected in specific positions.
Obviously, good quality of second information would be appreciated, however it is not crucial
to obtain the results and should not be taken into consideration in conclusions assessing this
part of the project.

Since the algorithm is following several steps to reach the final one with formal calculation
of ratio, assessment of results that are obtained in middle part of the work flow can make
possible to acquire information on more detailed level and explore specific problems. Crucial
elements of the workflow, considering benchmarking, are listed as follows:

• Calculation of surface (area) and size of windows (height-width)

• Comparison of the results to classes and clustering the results to the groups with same
class

• Assignation of the width, height and area to the window basing on the class character-
istics

• Calculation of window-facade ratio

• Conclusion about differences in different direction of deviation (vertical and horizontal)

To conclude which parameters should be taken into account during assessment it is necessary
to evaluate the dependencies between them. From one side, there is no point in assessment
of area of the window compare to the benchmarking data, since it would be impossible to
conclude if the problem is related to width or height calculation. From the other side, crucial
functionality of the algorithm is related to area – and even with significant error in both of the
dimensions the results can be still considered as accurate, as long as deviation of width and
height is opposite. Because of that, to obtain most information possible, the benchmarking
is performed on both of the approaches – with respect to height and width and area.

Slicing method:

The idea behind slicing method vary greatly from previously mentioned one – and that
means, that there is a necessity to provide second proposition for benchmarking, suitable
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for this specific approach. The main idea is relying on the assumption, that extreme points
are describing the boundaries. Obviously, the term extreme points requires some explana-
tion. At the principles, the algorithm is identifying the point as extreme in specific slice, if
the distance between the current point and the next one satisfies the threshold value that
corresponds to a gap in the dataset and, therefore, a window. This assumption requires to
take into consideration at least one important factor – density of the points. Point cloud
is not continuous; without assumption about its sampling, the idea is worthless. However,
the point cloud was collected from ground level with instruments with its own limitations –
density of the point cloud is decreasing with increasing height of the building. It can lead to
the problem, that assumptions correctly describing the facade at the ground level are making
the whole analysis impossible on the higher floors.

Second problem is related with clustering – if density of the points is not high in respect to
previous assumptions, it is problematic to conclude which points are related to which window
– and lead to clustering of windows, which are in close distance to each other. Regardless
to that, this problem should not be considered as crucial; the clustering of windows is only
problematic in the situation when the frames are close to each other. Thus, area of them is
comparable to sum of two separate one, and in respect to other problems driving the algo-
rithm it is not essential to conclude about it robustness and application possibilities.

Since the algorithm is based on different principles than previous one, the way of deriving
final ratio will differ as well. In this situation, there is no class assignment – all the windows
are treated separately, without generalization. The area of them is considered as area of
a polygon, which is created by the Density-Based Spatial Clustering of Applications with
Noise. Besides that, the area of the bounding box around clusters was calculated, to provide
addition information about possible approaches in derivation of solution.
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Figure 27: Clustered windows retrieved after applying DBSCAN. The polygons that are
created will be used to calculate the windows-facade area ratio.

Because problem driving the crucial part of this method (finding threshold for extreme point
recognition) is not constant on the whole facade, but it is dependent on the height in respect
to height of measuring instrument, it is crucial to assess the results with respect to that in-
formation. Specific floors on the facade will be assessed separately. Besides that, the general
comparison will be performed, with respect to windows/facade ratio.

4.2.2 Benchmark data preparation

To perform actual assessment, there is a necessity obtain data for which the scientists can be
sure about the quality of them. For the purpose of the project, photogrammetrical solution
was taken into consideration. At first, the calibration procedure was performed to obtain
intrinsic and extrinsic parameters of the camera, making possible to transform coordinates
from image plane to real world coordinates, necessary to obtain width and height of the win-
dows. The calibration was made with usage of Image Master software and final results were
derived in Python 3.7 with usage of collinearity equation, mentioned in previous sections.
The facades for benchmarks were chosen from original dataset acquired in Rotterdam, to
check it’s robustness in this particular environment.

The requirements for both benchmarks were obtained as follows: Slicing method (for every
window):
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• facade id

• window id (local, global identification can be done together with facade id)

• height and width of the window’s bounding box

• floor of the window

• area calculated with shoelace algorithm

• area calculated as height*width

Bitmap method (for every window class)

• facade id

• window class id

• height of window class

• width of window class

• number of windows in window class

• area calculated as height*width

Besides that, separate table with height and width of every facade was created, for control
purposes. To confront all the requirements mentioned in previous sub chapters, 6 facades
were chosen to perform the benchmark and group into 2 separate subgroups:

Group 1:

This part of the benchmark is focused on evaluation of the method on various type of input
data. In the subgroup facades number 1, 2 and 3 were chosen, and every of them is repre-
senting different part of the assessment and can be characterized as follows:

• facade 1 - 2 rows of windows of same size (floor 2 and 3), 1 row of windows with various
size and occlusions caused by cars - to compare the different types of windows in same
facade

• facade 2 - unified type of windows frames with few windows covered - to focus on impact
of that factor which is crucial for method

• facade 3 - facade with 3 different types of windows with diversity too little to be taken
into consideration during class assignment - evaluation of that impact on the final ratio
result.
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Figure 28: Facade 2 with fake window frames

Figure 29: Facades 4,5 and 6 - similar in shape and size of windows.
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Group 2:

In this part the benchmark is focused on comparison of the results and robustness of the
algorithm in the simplest case. The facades that were chosen are situated next to each
other (to assume that the conditions during measurements were similar) with same type of
window. Every one of them is tall compare to average height of the facades, which is making
possible to conclude if robustness is constant regardless of density of points. Facade 5 was
cleaned artificially to compare the results to ”perfect” facade and provide more conclusions
and reasoning.

4.2.3 Assessment results

2D Bitmap Occupancy Map method:

The final results look as follows (bitmaps before and after windows detection are attached in
appendix K):

Figure 30: Obtained data from benchmark dataset and bitmap method.

Figure 31: Required results neccessary to provide final assessment.
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Figure 32: Final results of the assessment.

Figure 33: Plot of differences of height and width in % of benchmark width and height for
every window class. Classes 1.2 and 3.3 were removed because the algorithm failed to find
any example of window for every of them.
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Figure 34: Plot of differences of area in % of benchmark area for every window class.

On the first facade it is possible to notice that main problem was driving the first floor of the
building. Lots of occlusions, as well as too little windows (taken into consideration as noise
and discarded) made the whole analysis low quality, even if some of the elements and most
of the windows were found with acceptable accuracy.

In second facade the situation is different - the algorithm properly recognized the windows
frame with wall inside. However, some windows were also counted as the wall (Figure 27).
Direct analysis of point cloud is leading to conclusion, that it was caused by curtains which
are close to the surface of the glass and were not remove by RANSAC as outliers. The prob-
lem is not directly related to approaches driving this algorithm and because of that it is not
evaluated as the part of specific method assessment.

Third facade shows that (Figure 28), the windows were unified and only one type of them
was reconstructed. However it is important to notice that the highest row of windows was
not recognized at all - spread of points made the analysis impossible and shapes of windows
were lost during pre processing.
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The results of remaining part of the benchmark with facades with similar windows brought
surprisingly accurate results when it comes to accuracy inside specific class - in all of them
the accuracy was higher than 80%, with outstanding 98% for facade 5 (Figure 29). However,
it is worth of noticing that ”dimensional accuracy” of the facade 5 was lower in both of the
cases - which is leading to conclusion that 98% of the final accuracy is derived on random
manner - one of the dimensions were overestimated and the other underestimated (Figure 30,
Figure 31). Regardless of those facts, the overall accuracy of the results is still better than
expected - low results of facade 4 were caused by covered windows (93% accuracy of window
ratio, but only 6 out of 11 windows recognized - final ratio 59% accuracy).

The results show clearly that on every facade the algorithm was able to detect most of the
windows. However, even with good accuracy in windows shape and size estimation, the
number of windows found is low - in some cases 40% of windows were not detected at all. In
this part of the assessment this effect is neglected due to the nature described above - it is
not possible to improve the input dataset.
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Slicing method:

Facade 1 was discarded from set of facades assessed, because, due to the noise, it was not
possible to derive results which could be used for benchmarking. The remaining results look
as follows (detailed results for specific floors were provided as appendices):

Figure 35: Table with results for facade 2.
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Figure 36: Table with results for facade 3.

Figure 37: Table with results for facade 4.

60



Figure 38: Table with results for facade 5.

Figure 39: Table with results for facade 6.
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Figure 40: Plot of differences of area in % of benchmark area for every window - alpha shape
areas
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Figure 41: Plot of differences of area in % of benchmark area for every window - bounding
box areas.
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Figure 42: Plot of differences of area in % of benchmark area for every facade. Two ap-
proaches of area estimation were taken into consideration: area of bounding box around the
shape and area of the shape.
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Figure 43: Plot of differences of area in % of benchmark area for every floor. Two approaches
of area estimation were taken into consideration: area of bounding box around the shape and
area of the shape.

In the first group on the second facade (Figure 32) the algorithm was able to reproduce most
of the windows possible to see. It is worth of noticing, that it successfully distinguished
empty window frames (with no windows inside). The windows on third floor seems to be
reconstructed on the most accurate way. The algorithm reconstructed also the door, which
is leading to conclusion that door frame have to be noticeably thicker than window frame
and the points representing door were counted as interior (curtain etc.). Also, facade 2 is
the only facade that bounding box approach reconstructed windows better, than alpha shape
approach. On the third facade (figure 33), the algorithm was the most successful among all
of the facades, with high accuracy in both of the methods. The windows were reconstructed
accurately and no artefacts were considered as windows. The algorithm had problem with
windows on the highest floor, which can be explainable by low density of the points cloud.

On the fourth facade, as first facade from the second group, (Figure 34) the situation differs;
the slicing method could not reproduce windows properly, especially on the ground floor (the
most probable reason for that is occlusion – making the shapes irregular). It is worth of
noticing that the problem is increased in the case of bounding box – because of irregularity
of the alpha shapes (Figure 39). On the fifth facade (Figure 35), the algorithm was successful
especially with alpha shape approach. Obviously, facade 5 was prepared and “cleaned” - the
expectations for the results were comparable to actually derived ones. Similar to facades
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3 and 4, bounding box approach was not accurate enough to assume it as successful – the
difference in ratio estimation was more than 30%. The last facade shows comparable results
to facade 4 – both of the algorithms had problems with windows reconstruction (Figure 36).
It is worth of noticing, that it is the only facade with clearly visible artefact on the top of
it – the algorithm found the window in the place where there is no window in the real sit-
uation. The most probable reason is the same as previously mentioned – low density of points.

With information about all the facades, the benchmark results were also divided depen-
dent on floors of the building (understand as horizontal rows of windows) and plotted on the
diagram (Figure 40). The biggest errors are caused on the first level (ground floor), which
can be explained by occlusions and irregular shapes of windows due to storefronts and irreg-
ular doors. The remaining floors are not making possible to conclude about the influence of
point density on the windows estimation on specific facade. The assumption is that variance
caused by different factors made this part of the assessment impossible to finish.

4.2.4 Assessment results - general conclusions

The final comparison of the results looks as follows:

Figure 44: Comparison of the results obtained with Bitmap and Slicing Method. The num-
bers represent the different in % of benchmark facade. For Slicing Method, two sub-methods
were assessed separately and for every facade the most and at least accurate results were
marked (green and red colour respectively).

The results show that both of the method have strong and weak sides (Figure 44). The
slicing approach obtained more accurate results in the first group of the facades. However,
it is important to underline, that first facade was discarded - which is leading to conclusion,
that robustness of this method (especially in alpha shape version) should not be taken as
granted. The algorithm has problems with major occlusions, pure point cloud density and
missing information, which is leading to artefacts and wrongly reconstructed windows.

In the second group, bitmap approach seem to be more suitable. The algorithm had no
problem with decreasing density of the points - but only to certain extend. on One of the
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facades last floor was totally ignored by the algorithm and no windows were detected. The
conclusion is, that relation is not linear - as long as the density of points is high, which means
that the distance between the points is not bigger than size of the cell, the problem is not
present and correct results are possible to obtain.

5 Applications

To make a link between the technical parts of the window detection that has been performed
during this project and the real world, it is necessary to explain why and how the end results
of these algorithms are useful in practice. The major application of the detection of windows
that has been taken in mind during the project, is the estimation of the energy usage of
buildings. Besides this, the use for tunneling, fire propagation and indoors will be explained
in this chapter. But firstly, the advantages and added use of direct point cloud analysis will
be examined.

5.1 Benefits of a direct point cloud analysis

Since the project revolves around direct point cloud analysis, the window detection algo-
rithms are supposed to result into a rich point cloud, which is a point cloud with added
information that would act as a 3D city model on its own. These added semantics can be
generated with automated classification of points and the detection of objects, such as win-
dows. This means that for example 3D surface reconstruction is not involved, which usually
takes point clouds as input for information with which generalized shapes are created [47].
Creating a rich point cloud is a conscious choice, since there are several advantages to both
performing the analysis directly on a point cloud and having a point cloud as result, rather
than transforming the data to another representation.

Point clouds are more detailed, since they are less generalized than other data types (vector,
raster). This means that the representation of objects in a point cloud can be more realistic,
such as trees with better leaves. Furthermore, the method of acquisition is mostly automated.
When maintaining the point cloud representation, there is also no conversion time involved
to transform the data to other types. Reconstructed surfaces on the other hand are expensive
to compute, need relatively much human intervention, and information is lost as shapes are
generalized by making assumptions, such as that they are planar or smooth [48][47].

The drawbacks are that a point cloud consists of more data, as many individual points are
used rather than fewer points that are connected edges to form boundaries. They are thus
more expensive to store and load. As for the visualization, there are empty spaces between
the points. Additionally, current algorithms are not always suitable to use on a point cloud,
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and standards and existing software are also mostly developed for 3D surfaces rather than
points. These need to be redeveloped, which is a reason for this project to look into this
specific analysis on object detection. Lastly, the density in a point cloud varies because of
variations in the geometry and surface of objects, and the sampling process with objects
farther from the scanner returning less points due to diverting laser beams [48][47]. This not
only causes issues for the visualization, but also during analysis as has been noted during
this project.

Some examples of applications in which detected windows are useful but specifically in com-
bination with direct point cloud analysis, are the inclusion of visible indoor points through a
window from specific perspectives (viewshed analysis), assessing with multi-temporal point
clouds if parts of a building have been damaged (change detection, such as in [49]), and the
automatic blurring or censoring of windows for privacy reasons (not only in the point cloud
itself, but also on corresponding 3D imagery) [48].

5.2 Energy usage estimations

As has been introduced in the first chapter of this report, the windows of buildings are a
large source of heat transfer, which thus can either be gain or loss. The detection of windows
can thus contribute in the estimation of the energy usage of a building, since temperature
control in buildings is a large consumer of energy, be it air conditioning or central heating.
The size of the windows of a building, their locations and the ratio of openings (windows
and doors) to the complete facade surface all have a share in the heat balance of the building
[2][3]. In this subsection, a deeper look is taken into the influence of windows on the energy
usage of a building, and how knowing the dimensions of windows helps in making a heat
transfer estimation.

Firstly, to understand why windows are important for this cause, the three ways in which
energy can transfer through windows - temperature driven heat transfer, solar heat gain, and
infiltration - are explained, with information from [50] and [51]. These processes result in
heat loss or heat gain, which both can be an advantage or disadvantage, depending on the
desired temperature in a building.

Temperature driven heat transfer is the energy transfer that happens when the outside tem-
perature differs from the inside temperature. This can go both ways, so heat can also come in
through a window in this way. It happens through the window frame and the window’s glaz-
ing. An important factor for this is the size of a window. Within this type of heat transfer,
there are three processes that play a role. Conduction, which means heat that is transferred
through solids, convection, which indicates energy transfer through the movements of gases
or liquids, and radiative heat transfer, which is energy transfer that is done through space,
but not using conduction through or movement of the air. With these three processes in
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mind, the U-factor can be calculated to measure the insulation quality of a window, that in-
dicates the total heat transfer “through the fenestration product”. Environmental properties
are taken into account as well in the U-factor. The smaller it is, the less heat transfer would
take place [50].

Solar heat gain is the most significant factor in the energy transfer, which is caused by solar
radiation being transmitted through a window. This can both directly originate from sun
beams, or indirectly by it being reflected from other surfaces. These beams also include
near-infrared, far-infrared and ultraviolet electromagnetic radiation, which are thus not visi-
ble. The glazing of a window determines which wavelengths to what extent are able to pass
through, reflect back or absorbed by the material. Knowing this property of a window, and
again the environmental properties at a moment, you can calculate how much heat is trans-
ferred in this way. But for this kind of calculation, the size of a window is also of importance,
since a larger surface area means more interaction with solar beams. This effect can also be
advantageous in the winter, when buildings are heated up [50].

Lastly, heat can be gained or lost by infiltration. This regards the travel of air that can occur
through small holes around the window. The extent to which this happens, again depends on
environmental circumstances such as the wind outside and the temperature difference, im-
pacting the air pressure. Infiltration can be reduced by double glazing, which also improves
the insulation of a window [50].

Ultimately, the impact of these three energy transfer processes for windows depend much on
the type of glass/glazing and the window frame that is used. Environmental circumstances
are important as well, and these are not constant. While the size of a window is also of
significance in energy usage estimations, there are many more parameters that need to be
known in order to do accurate calculations. Even this explanation regarding heat transfer
through and around windows leaves out many complexities.

Then, there are other factors too such as walls and indoor heat sources [51]. The Dutch
government uses the NTA 8800 energy performance calculation specifications [52] to do such
estimations, which is explained in over 900 pages. This indicates how complex the topic is.
All these parameters can not be determined from such a point cloud as that has been used
for this project, mainly because laser beams do not reflect on windows.

However, being able to automatically determine the size of windows for buildings is a useful
step for this application, as is specifically noted in [3]. When this can be combined with the
locations of windows and the (general) types of windows of a building, it is already possible
to do estimations.
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5.3 Window detection used in tunneling construction for risk as-
sessment

As mentioned in [53] the risk assessment of ground subsidence is one of the major possible
threats when creating a tunnelling network underground. In order to evaluate it, we need in-
formation about the building environments they cover. Building models is one way to make
this process more automated but very often they are very simplified. Detected windows
can be used to make these models more detailed. With direct analysis on point clouds the
detection of windows can be done with less computational expense. Despite regional and ar-
chitectural variation in the facade’s and window’s appearance [53], the provided information
would still be enough to estimate the possible risk.

Underground construction elements can cause damage in above ground structures. For this
not only the tunneling hypothetical routes are enough. The goal is to find which route is the
optimal to minimize risk. But this has to be done in large scale, meaning that since the type
of construction networks might be big and can cover whole districts, we need information
that enables the analysis in terms of accuracy, time and sources efficiency [53].

Windows affect the risk assessment as they are related to the stiffness of a building con-
struction. Building structures are made of various materials, some of them are more fragile
(e.g. glass) and others less (e.g. concrete) but in any case they are directly related to the
structural robustness of the building. There is a relation between the settlement and the
structure of the building at each location, which can result in some cases for example in
ground depressions. Therefore it is crucial to calculate the buildings opening ratios. For this
purpose a window detection algorithm can be implemented for settlement prediction as a
preprocessing step and subsequently a damage risk evaluation [53].

5.4 Window detection for the simulation of high-rise building fires

Building fires especially in urban environments can cause huge disasters, as described thor-
oughly in the research paper of [54]. The way the building areas are build and designed,
having high density and population, are increasing the fire vulnerability of it and conse-
quently the appearing damaging effects. Windows are directly related to the way the fire
propagates. Flames and hot gases can be ejected through openings openings and flow along
building walls accelerating this way the fire towards upper floors [54]. The window glasses
play a big role in this as many buildings don’t use thick fire-rated glazing. Instead they
shatter amongst other reasons due to explosions or the absence of glass temperature unifor-
mity causing a “thermal shock” making different parts of it expand in different amounts and
eventually crack. In the case of high- rise buildings especially the situation can go easily out
of hands as it would be severely difficult for firefight teams to control it.

Window configurations, in other words its shape and dimension, were proven in [55] to be of
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crucial importance in the spread of fire. A specific model was developed that could describe
the geometry (height) of the flames and the amount of heat that flows to upper floors through
the exterior wall. In this implementation of fire simulation, the results of several practical
tests with various types of windows of different width/height and shape, showed that the
route the fire is following in wide windows does not reach far away for the facade but climbs
instead to higher heights in the wall, something that does not happen in the case of narrow
windows. Moreover, smaller windows create a higher heat and smoke flux and seem to cause
oppressive heat temperatures at the wall. Finally, they concluded that heat emission exposure
to the exterior wall is high for wide windows, but lower for square windows and less for tall
windows[55].

5.5 Indoor applications

Algorithms to extract windows can be useful for indoor point clouds as well, which are utilized
to create BIMs. These models can be used for architectural purposes and indoor navigation.
Currently, it is still a slow and expensive procedure, while also demanding human interven-
tion to retrieve good results. Better automated object extraction methods can thus aid in
improving this process. However, there is yet no uniform method to detect windows in all
three different situations - outdoor, roof and indoor datasets (both sources). A reason for
this, is that indoor point clouds have different properties from exterior and top view ones,
which are used in this report [56] [57].

For example, holes in a wall perceived from indoors can be the result of indoor objects that
block the laser beams of the scanner. While exterior point clouds also can have problems
with occlusion caused by for example trees, it will there rather create holes of such a size
that it could not realistically be a window. Indoors, it is more likely that occluded spots
have a size similar to regular windows. Because of this, it is challenging to create one window
detection method that works well in both perspectives [56] [57]. The used window detection
methods in this report focus on the detection on outdoor point clouds, and would have to be
altered in order to yield results of similar quality, if possible at all. Additionally, the tested
methods can be combined with indoor ones, both to increase each others’ quality and as a
step in combing outdoor information with indoor (GeoBIM).

6 Conclusions

As technology grows every day, point clouds are easily and quickly derived and provided to
end users. However, in terms of applicability and usability, it is of most significant interest
not only to acquire point clouds but also to find ways to enrich point clouds with attributes
that can be useful to end-users for particular domain applications.

Our research ties in with the above mentioned goal of enrichment of point clouds, as it adds
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to each point of a dataset the property of being part of a window or not. However there
are several issues that need to be addressed for the applicability of this algorithm and the
requirements related to the input datasets. Through a benchmarking process it was possible
to answer to the subquestions of the problem definition of this research.

Evaluation of acquired results showed, that both of the method are promising when it comes
to mentioned application. However, a lot of improvements and robustness need to be added.
Without that it is impossible to perform it on automated way – the algorithms required set-
ting the parameters by the user, sometimes even by trial and error, with conclusion about the
best setup based on examination of the results. Obviously this way of providing solutions is
not suitable for points cloud processing in large extend. The main conclusion of the research
was done and further examination of the method sounds to be promising way to develop
efficient way for windows detection, without expensive geometry reconstruction.

6.1 Capabilities and Limitations

In conclusion the provided end product is able to detect windows in limited extend. Major
problem leading to biggest differences in comparison to benchmark data, was related to oc-
clusions and hard covers behind window glass. However, those problems are related to quality
of the point cloud and the algorithms have no possibility to enrich it. The second problem
identified during assessment was related to the low point cloud density. The assumption
is, that changing the way of performing measurement can solve this issue; in measurement
recorded from longer distance (for example, from airborne LIDAR) the difference in point
density will be significantly lower; thus, it should be easier to find parameters which are suit-
able for the top and the bottom of the facade on the same manner. Besides that, the other
conclusion from the assessment is changing the focus of searching for improvement - the best
results were acquired on facade, that was prepared manually to fulfill tough requirements.
The conclusion is, that the algorithm is able to provide accurate solution, but it is sensitive to
occlusions and artefacts. Focusing on data filtering can also provide noticeable improvement
for the whole application.

To answer concisely to the subquestions of our problem definition, the overall accuracy is
highly dependent on number of occlusions and other artefacts. For clear facade it was possi-
ble to reach more than 90% of correctly detected windows, however on most noisy facades the
number was dropping to 50%. Also, the actual percentage of detected windows is dependent
on number of covered windows which are physically covered from the inside and it is not
possible to determine the mean value of this number for general assessment. In terms of
processing time during the tests on individual facades the resulting duration was reasonable.
Moreover, considering always the above mentioned factors it is possible to combine the result
this analysis with other datasets such as the BAG for extracting the ratio between window
- building surface areas per BAG ID. However, the quality of the results depends highly on
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the quality of the input dataset.

There are three major groups of problems that have to be faced during the whole process of
window detection project. First, the limited time frame – the complexity of the task is too
high to test all of the interesting methods and elaborate about quality of them. The purpose
of the project from the perspective of stakeholders from Municipality of Rotterdam is to de-
rive the best possible solution for windows detection, and from that perspective it is crucial
to test various approaches to conclude about differences between them. Unfortunately, the
other algorithms were moved to optional part of the project with note, that it should be
taken into consideration if the project will proceed without noticeable delays, to avoid cross
the specified deadline.

The second group, is the most common problem for most of the spatial analysis – inconsistent
quality of the data. The LIDAR technology is not robust to all kind of shapes and surfaces
it is scanning. The appearance of unwanted artefacts has to be taken into consideration to
avoid misclassification of outliers as the points of the interest.

The third group are “artificial” limitations, which are not deriving directly as natural corol-
lary of chosen approaches and equipment, but are set up by the users to make the project
more challenging and focus on finding the specific kind of the solutions. The two major ones
are the limited computational power, to avoid time-consuming and computationally ineffec-
tive solutions and taken approach, to provide the computation directly on point cloud (if
possible).

More analytically:

• Our method cannot be fully automated, because additional information about the
building facades is required. Building materials, shape and size of facades, architectural
style, etc. play a major role in our window detection algorithm. For example, a building
which has a wide facade will require higher amount of vertical slices than a narrow
facade.

• Our methodology is based on the assumption that a window in the point cloud will
be recognized as missing information, because the laser beam emitted from the laser
scanner penetrated the glass surface and didn’t create a return. Objects that are located
on that surface, like curtains, posters, furniture, ornamental, etc. affect the final point
cloud output of the laser scanning measurement and windows cannot be identified.

• The scanner’s location affects both the point cloud’s density and completeness. The
bigger the distance between the scanner and an object, the more sparse the point cloud
becomes. As a result, the point cloud is sparser for higher elevations, and in extent, in
higher floors of a building. Also, due to the fact that a mobile scanner is usually placed
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on top of a car, a lot of obstacles prevent the return of laser beams back to the scanner,
creating empty regions in the point cloud or regions with not enough information to
describe the target object. Missing information or less-dense point cloud in one region
means that our algorithm might consider it as a gap of information and therefore,
falsely identify a window.

• The computation time of our methodology is not optimal, due to the fact that the
methodology was divided into multiple tasks and implemented with different program-
ming languages and packages. The used programming languages are C++ and Python,
but it would be quicker to be able to use one streamlined workflow in C++. In addition
to that, it has not always been attempted to optimise the speed of algorithms. For it
to be used for an application, it is desirable to do as much optimisation as possible,
especially so that it is also feasible to use on larger datasets.

6.2 Recommendations - Future Work

Especially since direct point cloud analysis is a relatively new research area and the scope
of this project has been limited, multiple recommendations and ideas for future work can be
noted. Firstly, the quality of the used dataset is of importance for the results, and possible
improvements on that regard will be discussed. Lastly, the application side of the topic will
be considered.

By performing laser scanning measurements on regions where data is missing, it will become
more complete. Without enough data, no proper additional information can be derived from
a point cloud. In such a case, it can only be predicted according to statistical reasoning (e.g.
patterns), which the tested methods in this report do not take into account. Atlernatively
to improving the dataset quality, the methods can be adapted to retrieve better results for
occluded spots.

Adding onto the topic of dataset quality, its density could be increased by merging different
types of point clouds, like airborne laser scanning measurements (with UAVs or airplanes),
point clouds created by Structure from Motion techniques, or even terrestrial laser scanning
measurements. Specifically, this can prevent problems that arise when dealing with varying
point densities within objects. What has been noted as well in the mobile laser scanner
dataset, is that parts of rooftops can show up as artefacts. Windows can be present on
here as well, but these parts are currently removed as outliers during the performance of the
methodology.

Moreover, filtering of the dataset could be improved by using more sophisticated methods.
Potentially, the computation time of the filtering can be made better, and a cleaner input
for the window detection algorithms can be derived. For example, inside points that have
been registered by the scanner through a window can be identified properly. These can cause
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problems during the gap detection, as they can be seen as part of a plane during RANSAC
segmentation when they lie too close to the actual window, which is often the case when
curtains are closed.

Moving on to the application part, knowing the dimensions of the windows of a building and
the ratio between windows and full facade surfaces are not sufficient to make reliable energy
usage estimations of a building. While window detection definitely benefits this application,
it should be combined with other data and techniques. GeoBIM could be suitable in this
regard, as it could contain the type of glazing of a window for example. Weather simulations
are another addition that is necessary to improve the estimations. Future work can attempt
to combine these aspects.

Also, the two algorithms have only been tested on the exterior of buildings, but from a BIM
perspective, methods need to be created that are suitable for indoor point clouds [57]. It
could be tested whether these methods work with such a dataset, which alterations should
be done, or if they are not useful at all for indoor applications.

7 Project Plan

The purpose of the project plan is to strategically define the process of the implementation
of the project and all of its different components. The plan of the project is created in its
infancy containing info about schedule baselines, project requirements and communication
of stakeholders. It is a crucial part of the project as a whole, as the absence of is often
connected to a bad outcome in the execution of the project such as mediocre results or even
failure.

7.1 Meetings

Weekly team meetings are on Monday, Wednesday and Friday. During these meetings the
daily tasks were discussed and the team got informed on the progress made by other team
members. The stand-up meeting on Wednesday was usually attended by mentors Edward
Verbree and Martijn Meijers.

7.2 Organizational and Work Breakdown Structure

Successful project management requires a highly organized planning. This includes a very
detailed specification of the tasks, the related responsibilities and the timeline of the pro-
cess. The Organizational Breakdown Structure (OBS) is a model that is used to describe the
responsibilities assigned to each task according to the created Work Breakdown Structure
(WBS). WBS aims to describe the organizational framework by subdividing the project in
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smaller parts. These two models combined, will give a clear indication of the different and
also the corresponding contribution of each team member.

The team:
Liyao Zhang (Technical Manager), Maria Moscholaki (Report Manager), Konrad Jarocki
(Quality Manager), Pantelis Kaniouras (Coordinator) and Jordi van Liempt (Communica-
tor).

• Coordinator: Coordinates resources and information, defines meetings, monitors the
progress.

• Communicator: Is responsible for the communication between the team, client and the
supervisors, sets meetings.

• Quality Manager: Evaluates the overall project quality, defines accuracy/quality results
of implemented project method.

• Report Manager: Is responsible for the organization and evaluation of report and doc-
ument requirements.

• Technical Manager: Is responsible for technical issues.

In order to make certain that every part of the project would be of good quality, responsi-
bilities were divided. This would ensure that every section of the implementation would be
enoughly checked and evaluated. Of course since the main goal of this project was that all
team members would work equally troughout the project while learning as much as possi-
ble, every person of the team got involved with all work packages. However, for each work
package the person first mentioned had the main responsibility.
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Figure 45: Organizational and Work Breakdown structure

7.3 Work Plan

The Work Plan is used to organize big projects. It represents all work phases and the in-
cluded work packages together with the time -related progress of each of the project parts.
The deliverables of the report were organized in 3 parts. They are namely: the Inception
Report, the Midterm/Technical Review and the Final Technical Review. The purpose of
these were to inform the supervisors and client about the progress of the project while giving
the chance for some fruitful feedback. The dates of deliverables (reports and presentations)
are shown in the Work plan located in the Appendix C.

Below is a brief description of each of the tasks presented in the Work Packages.

Organization:

• Team and stakeholder meeting as held after the kick off meeting of the Synthesis 2019.
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• The Municipality of Rotterdam explained the goal of the project and their expectations.

• Another meeting took place with the group supervisor, Edward Verbree where a brief
discussion about the management and the technical details of the project was held.

• Discussion among the team members about a rough organization of the entire project,
from its start until the finish date.

• A few specific responsibilities were assigned to the different team members for the start
of the implementation of the project.

Exploration and Analysis:

• During the research several external sources like papers and information gained through
the communication with relevant professors and professionals of the field, were taken
into consideration and studied thoroughly.

• Data preparation by filtering the provided datasets for the removal non building points
like ground points, vegetation, cars etc.

• Exploration and familiarization of the possible software, programming languages and
tools (libraries etc) for the implementation of the algorithm.

• A Midterm presentation of the project to inform about the implemented steps and the
general course of the project so far.

Design and Development:

• Design and Development of a specific methodology for the project.

• Implementation of the steps of the methodology by using more than one datasets,
software and programming languages.

• Integration and Testing of the algorithm by evaluating the results for different datasets
or different chosen parameters in the implemented code.

Final Presentation:

• Creation of the the final report.

• Presentation of the Project at the Geomatics Day Symposium.
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7.4 Rich Picture

In order to get an insight on the goals, the important aspects and possible risks and concerns
of the project, a rich picture was created. A rich picture is visual means to describe the
main elements of a project, the related stakeholders and the relationships between them. It
consists of a triangle formed by our team and the project coaches and the client (Municipality
of Rotterdam).

The project is the core of a triangle in the peaks of which, the stakeholders are placed.
Each group has different motivation, interests and needs with respect to the current project.
Some of these are presented for each interest group with a green frame. The results of
the team’s research will assist in the decision making process the municipality officials for
different applications of the implemented algorithm. As in every situation that involves
many stakeholders, questions or concerns about what is perceived as risks are also present.
The rich pictures indirectly imply that, every decision and action within this ”stakeholder
system” will have some sort of impact on the existing relationships and individual initiatives
and motivations.

Figure 46: Rich Picture
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extraction from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing,
119:334–346, 2016.

[42] Ahmad Kamal Aijazi, Paul Checchin, and Laurent Trassoudaine. Automatic detec-
tion and feature estimation of windows for refining building facades in 3d urban point
clouds. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2(3):1, 2014.

[43] Thomas J Pingel, Keith C Clarke, and William A McBride. An improved simple mor-
phological filter for the terrain classification of airborne lidar data. ISPRS Journal of
Photogrammetry and Remote Sensing, 77:21–30, 2013.

[44] Keqi Zhang, Shu-Ching Chen, D. Whitman, Mei-Ling Shyu, Jianhua Yan, and Chengcui
Zhang. A progressive morphological filter for removing nonground measurements
from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing,
41(4):872–882, April 2003.

[45] S Tuttas and U Stilla. Window detection in sparse point clouds using indoor points.
International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 38:3, 2011.

[46] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

[47] Stephan Nebiker, Susanne Bleisch, and Martin Christen. Rich point clouds in virtual
globes–a new paradigm in city modeling? Computers, Environment and Urban Systems,
34(6):508–517, 2010.

[48] Peter van Oosterom. Web-based 3d viewer for massive point clouds, 2019.

[49] Diogo Duarte, Francesco Nex, Norman Kerle, and George Vosselman. Damage detection
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A Appendix - Morphological filter comparison

Figure 47: Point cloud subset before ground filtering
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Figure 48: Point cloud subset after PMF filtering, with notable spots marked in the red
boxes
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Figure 49: Point cloud subset after SMRF filtering, with notable spots marked in the red
boxes
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B Appendix - Point cloud filtering quality

Figure 50: Some points of undefinable objects are present close to these facades
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Figure 51: Part of a car that is close to a facade is not entirely removed

90



Figure 52: A few objects in front of the corner building are not removed
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Figure 53: A part of the original cloud before filtering

92



Figure 54: A part of the original cloud after filtering
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C Appendix - Project management

Figure 55: Workplan
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D Appendix - Essential parts of code for bitmap method

1 #Merge clusters in certain distance together

2 def find_if_close(cnt1,cnt2):

3 row1,row2 = cnt1.shape[0],cnt2.shape[0]

4 for i in range(row1):

5 for j in range(row2):

6 dist = np.linalg.norm(cnt1[i]-cnt2[j])

7 #distance in pixels

8 if abs(dist) < 10 :

9 return True

10 elif i==row1-1 and j==row2-1:

11 return False

12

13 #function for finding maximum value in the group

14 def groupvaluemax(cont_areas, group_numbers, group_number):

15 counter2 = 0

16 area = 0

17 for i in group_numbers:

18 if i==group_number:

19 if area<cont_areas[counter2]:

20 area = cont_areas[counter2]

21 counter2+=1

22 return area

23

24 #function for finding average value in the group

25 def groupvalue(cont_areas, group_numbers, group_number):

26 counter=0

27 counter2 = 0

28 area = 0

29 for i in group_numbers:

30 if i==group_number:

31 area += cont_areas[counter2]

32 counter+=1

33 counter2+=1

34 return area/counter

35

36 #importing the facade

37 img = cv2.imread(’facade6.jpg’)

38 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

39 ret,thresh = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

40 contours,hier = cv2.findContours(thresh,1,2)

41 LENGTH = len(contours)

42 status = np.zeros((LENGTH,1))
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43 group_numbers = np.zeros((LENGTH,1))

44 cont_areas = np.zeros((LENGTH,1))

45 cont_w = np.zeros((LENGTH,1))

46 cont_h = np.zeros((LENGTH,1))

47 contours_saved = []

48

49 #iterating every cluster to find neighbors

50 for i,cnt1 in enumerate(contours):

51 x = i

52 if i != LENGTH-1:

53 for j,cnt2 in enumerate(contours[i+1:]):

54 x = x+1

55 dist = find_if_close(cnt1,cnt2)

56 if dist == True:

57 val = min(status[i],status[x])

58 status[x] = status[i] = val

59 else:

60 if status[x]==status[i]:

61 status[x] = i+1

62 #assignation to the group and calculation of parameters

63 for i in range(maximum):

64 kupa = []

65 pos = np.where(status==i)[0]

66 if pos.size != 0:

67 cont = np.vstack(contours[i] for i in pos)

68 x,y,w,h = cv2.boundingRect(cont)

69 c_area = w*h

70 #condition for max and min size to avoid noise

71 if c_area<0.4*area and c_area>0.005*area and w>10 and h>10:

72 cont_areas[counter3] = c_area

73 cont_h[counter3] = h

74 cont_w[counter3] = w

75 counter1 = 1

76 for group_area in groups_area:

77 if group_area >0:

78 #similarities conditioning

79 if c_area>group_area*(1-similarity) and c_area<group_area*(1+

similarity):

80 if w>groups_w[counter1]*(1-similarity_d) and w<groups_w[

counter1]*(1+similarity_d):

81 if h>groups_h[counter1]*(1-similarity_d) and h<groups_h[

counter1]*(1+similarity_d):

82 group_numbers[counter3] = counter1

83 counter1+=1
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84 #if non group assigned

85 if group_numbers[counter3] == 0:

86 counter2+=1

87 group_numbers[counter3] = counter2

88 #calculation of new parameters for the group

89 groups_area[int(group_numbers[counter3])] = groupvalue(cont_areas,

group_numbers, group_numbers[counter3])

90 groups_w[int(group_numbers[counter3])] = groupvalue(cont_w,

group_numbers, group_numbers[counter3])

91 groups_h[int(group_numbers[counter3])] = groupvalue(cont_h,

group_numbers, group_numbers[counter3])

92 counter3+=1

93

94 #Estimation position of the window and plotting the results

95 counter = 1

96 for i in range(maximum):

97 pos = np.where(status==i)[0]

98 if pos.size != 0:

99 cont = np.vstack(contours[i] for i in pos)

100 x,y,w,h = cv2.boundingRect(cont)

101 c_area = w*h

102 if c_area<0.4*area and c_area>0.003*area and w>10 and h>10:

103 group_n = int(group_numbers[counter])

104 M = cv2.moments(cont)

105 cX = int((M["m10"] / M["m00"]))

106 cY = int((M["m01"] / M["m00"]))

107 x,y = cX-groups_w[group_n]/2, cY-groups_h[group_n]/2

108 h,w = groups_h[group_n], groups_w[group_n]

109

110 print(x,y,cX,cY,h,w,groups_h[group_n]/2)

111 print(’...’)

112 counter+=1

113 ratio = round(int(w*h)/int(area),4)

114 image = cv2.rectangle(img,(x,y),(x+w,y+h),(110,0,50),2)

115 cv2.putText(image, ’G:’+str(group_n), (cX, cY), 2,0.5, (0, 120, 255),

1)

116 cv2.imshow(’Windows Detection’,image)
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E Appendix - Detailed tables for specific floors

Figure 56: Detailed tables for specific floors
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F Appendix - Dataset filtering code

1 from owslib.wfs import WebFeatureService

2 import xml.etree.ElementTree as ET

3 from shapely.geometry import Polygon

4 from shapely import ops

5 import numpy as np, pdal, json

6 import shapely.wkt

7

8 # retrieve BAG features

9 wfs11 = WebFeatureService("https://geodata.nationaalgeoregister.nl/bag/wfs?",

version="1.1.0")

10

11 wfs_response = wfs11.getfeature(typename="bag:pand", bbox=(93020, 436021, 94263,

436884))

12

13 bag_parse = ET.parse(wfs_response)

14 bag = bag_parse.getroot()

15

16 # parse BAG features into a list

17 bag_polygons = []

18 for geom in bag.iter("{http://www.opengis.net/gml}posList"):

19 np_points = (np.array(geom.text.split())).astype(float)

20

21 np_points = np_points[np_points != 0]

22

23 np_points = np.split(np_points, len(np_points)/2)

24

25 bag_polygon = Polygon(list(map(tuple, np_points)))

26

27 bag_polygons.append(bag_polygon)

28

29 # for removing some BAG-features that we don’t want

30 manual_bag_polygons = [shapely.wkt.loads( * insert some long WKT polygons *)

31 ]

32

33 # for removing other artefacts

34 manual_other_polygons = [shapely.wkt.loads("POLYGON ((93655.320313 436559.75, 

93654.617188 436560.75, 93571.359375 436481.25, 93568.539063 436478.156250, 

93655.320313 436559.75))"),

35 shapely.wkt.loads("POLYGON ((93923.23 436705.93, 93923.23 

436741.5, 93954.78999999999 436741.5, 93954.78999999999 

436741.18, 93946.78999999999 436741.18, 

93946.78999999999 436732.37, 93954.78999999999 
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436732.37, 93954.78999999999 436693.44, 93934.95 

436693.44, 93934.95 436705.93, 93923.23 436705.93))")]

36

37 # remove the unwanted parts that we have just defined from the original BAG

38 manual_bag_polygons = ops.unary_union(manual_bag_polygons)

39 manual_other_polygons = ops.unary_union(manual_other_polygons)

40 bag_polygons = ops.unary_union(bag_polygons)

41 bag_polygons = bag_polygons.difference(manual_bag_polygons)

42 bag_polygons = bag_polygons.buffer(1.8, cap_style=3)

43 bag_polygons = bag_polygons.difference(manual_other_polygons).wkt

44

45

46 # the filtering steps that are described in the report

47 json = """

48 {

49 "pipeline":

50 [

51 "filtered_output.las",

52 {

53 "type":"filters.reprojection",

54 "out_srs":"EPSG:28992"

55 },

56 {

57 "type":"filters.assign",

58 "assignment" : "NumberOfReturns[0:0]=1"

59 },

60 {

61 "type":"filters.pmf"

62 },

63 {

64 "type":"filters.hag"

65 },

66 {

67 "type":"filters.range",

68 "limits":"HeightAboveGround[0.2:]"

69 },

70 {

71 "type":"filters.crop",

72 "polygon":%s

73 },

74 {

75 "type":"writers.las",

76 "filename":"bag_test_full3.las",

77 "extra_dims":"all"
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78 }

79 ]

80 }

81 """ %json.dumps(bag_polygons)

82

83 # PDAL performing the steps of the above defined pipeline

84 pipeline = pdal.Pipeline(json)

85 pipeline.validate() # check if our JSON and options were good

86 pipeline.loglevel = 8 #really noisy

87 count = pipeline.execute()

88 arrays = pipeline.arrays

89 metadata = pipeline.metadata

90 log = pipeline.log
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G Appendix - BAG-linking code

1 def bag_id(ins,outs): # ins and outs refer to the point cloud

2 bag_polygons, bag_ids = retrieve_bag()

3

4 # slightly erode BAG polygons

5 polygons = []

6 for polygon in bag_polygons:

7 polygons.append(polygon.buffer(-0.001, cap_style=3, join_style=2))

8

9 # arrange the points from the point cloud

10 points = np.stack((ins[’X’], ins[’Y’]), axis=-1)

11

12 polygon_points = []

13 polygon_points_ids = []

14 polygon_lines_set = []

15

16 # first, retrieve all the lines from the polygons

17 for i, polygon in enumerate(polygons):

18 x, y = polygon.exterior.coords.xy

19 polygon_lines = []

20

21 for c in range(len(x) - 1):

22 polygon_lines.append(LineString((Point(x[c], y[c]), Point(x[c+1], y[c

+1])))) # create line with current and next point

23 polygon_lines_set.append(LineString((Point(x[c], y[c]), Point(x[c+1], y

[c+1]))))

24

25 # then, create points on the lines

26 for l in polygon_lines:

27 for distance in range(int(l.length / 0.5)):

28 point = l.interpolate(0.5 * distance )

29 polygon_points.append((point.x, point.y))

30 polygon_points_ids.append(bag_ids[i])

31

32 # create kd-tree

33 kdtree = scipy.spatial.cKDTree(polygon_points)

34 neigh_dist, neigh_i = kdtree.query(points, k=1)

35

36 # we’ve just retrieved nearest neighbour indices, but we want the

corresponding BAG-ids and put it in the .las

37 neigh_bag_id = np.empty((0, 1))

38 neigh_bag_id = np.append(neigh_bag_id, [ polygon_points_ids[i] for i in

neigh_i ])
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39

40

41 # now, we need to change the BAG-id for points that actually intersect a BAG-

feature, using rtree

42 rtree = build_rtree(bag_polygons)

43 func = get_intersection_func(rtree)

44

45 # check for every point with which polygon it intersects

46 for i, point in enumerate(points):

47 my_intersections = func(point)

48 if(len(my_intersections) > 0): # because if len = 0, there is no

intersection

49 neigh_bag_id[i] = bag_ids[my_intersections[0].id] # assign BAG-id

50

51

52 # time to update the point cloud with the BAG-ids

53 neigh_bag_id = neigh_bag_id.astype(np.dtype(’Float64’)) # a new dimension

added (in the PDAL pipeline) always is of type float64

54

55 outs[’bag_id’] = neigh_bag_id # update bag_id dimension in point cloud

56

57 return True # PDAL requires this for a self-defined function

58

59

60 # the next three functions are for the rtree. mostly copied from https://

stackoverflow.com/questions/53224490/how-can-i-look-up-a-polygon-that-contains

-a-point-fast-given-all-polygons-are-a

61 def get_containing_box(p):

62 # this function is needed because the rtree only takes boxes, and not polygons

63 xcoords = [x for x, _ in p.exterior.coords]

64 ycoords = [y for _, y in p.exterior.coords]

65 box = (min(xcoords), min(ycoords), max(xcoords), max(ycoords))

66 return box

67

68 def build_rtree(polys):

69 def generate_items():

70 pindx = 0

71 for pol in polys:

72 box = get_containing_box(pol)

73 yield (pindx, box, pol)

74 pindx += 1

75 return index.Index(generate_items())

76

77 def get_intersection_func(rtree_index):
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78 def intersection_func(point):

79 pbox = (point[0], point[1],

80 point[0], point[1])

81 hits = rtree_index.intersection(pbox, objects=True)

82 # Filter false positives:

83 result = [pol for pol in hits if (pol.object).intersects(Point(point)) ]

84 return result

85 return intersection_func
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H Appendix - Bitmap points generation code

1 void MyViewer::bitmap(easy3d::PointCloud* cloud, std::vector<vec4>

all_plane_vertices, std::vector<int> list, std::vector<vec3> vertex_list, std

::vector<vec4> plane_list, std::vector<vec3> &all_vx, std::vector<int> &

primitive_index, std::vector<vec4> &primitive_list, std::vector<vec3> &

primitive_point_list) {

2 auto points = cloud->get_vertex_property<vec3>("v:point");

3 auto indices = cloud->vertex_property<int>("v:segment_index", -1);

4 auto plane_normals = cloud->vertex_property<vec3>("v:plane_normals", vec3(0, 0,

0));

5

6 std::vector<vec3> colors;

7 std::vector<vec3> all_plane_list;

8 SurfaceMesh* mesh = new SurfaceMesh;

9

10 std::vector<vec3> candidate_points;

11 std::cout << "Please enter path of output file:";

12 std::string path;

13 std::cin >> path;

14 std::ofstream fout(path);

15

16 int all_cols;

17 int all_rows;

18 float gap;

19 std::cout << "Please enter the size of cell:";

20 std::cin >> gap;

21

22 float threshold;

23 std::cout << "Please enter the threshold of bitmap:";

24 std::cin >> threshold;

25 if (!gap || threshold < 0) {

26 std::cerr << "Warning: size/threshold is invalid!" << std::endl;

27 }

28 else {

29 std::cout << "Bitmap is generating..." << std::endl;

30

31 std::vector<int> points_number;

32 for (int i = 0; i < list.size(); ++i) {

33 std::vector<easy3d::PointCloud::Vertex> vertices_i;

34 for (auto v : cloud->vertices()) {

35 if (indices[v] == list[i])

36 vertices_i.push_back(v);

37 }
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38 points_number.push_back(vertices_i.size());

39 }

40

41 auto max_element = std::max_element(std::begin(points_number), std::end(

points_number));

42 int max_facade = list[std::distance(std::begin(points_number), max_element)];

43

44 for (int i = 0; i < list.size(); ++i) {

45 if (list[i] != max_facade)//only keep one primitive with most points, which

is detected by RANSAC

46 continue;

47

48 vec3 n = vec3(plane_list[i][0], plane_list[i][1], plane_list[i][2]);

49 if (abs(n[2]) > 0.02)//don’t deal with the horizontal planes(i.e.,rooftops)

50 continue;

51 std::vector<vec4> plane_vertices;

52 std::vector<int> plane_indices;

53 vec3 c = random_color();

54 for (int j = 0; j < all_plane_vertices.size(); ++j) {

55 int index = all_plane_vertices[j][3];

56 if (index / 100 == list[i]) {

57 plane_vertices.push_back(vec4(all_plane_vertices[j][0],

all_plane_vertices[j][1], all_plane_vertices[j][2], index % 100));//

plane_vertices are vertors which store the vertices of each face

polygon

58 plane_indices.push_back(index % 100);

59 }

60 }

61 plane_indices.erase(unique(plane_indices.begin(), plane_indices.end()),

plane_indices.end());

62

63 std::vector<easy3d::PointCloud::Vertex> vertices_i;

64 for (auto v : cloud->vertices()) {//find points belongs to the facade

65 if (indices[v] == list[i])

66 vertices_i.push_back(v);

67 }

68

69 //calculate the transform matrix

70 float sumX = 0;

71 float sumY = 0;

72 float sumZ = 0;

73 for (int j = 0; j < vertices_i.size(); ++j) {

74 sumX += points[vertices_i[j]][0];

75 sumY += points[vertices_i[j]][1];
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76 sumZ += points[vertices_i[j]][2];

77 }

78

79 //coordinates of centroid of these points

80 float centerX = sumX / vertices_i.size();

81 float centerY = sumY / vertices_i.size();

82 float centerZ = sumZ / vertices_i.size();

83

84 sort(plane_vertices.begin(), plane_vertices.end(), compX);

85 sort(plane_vertices.begin(), plane_vertices.end(), compY);

86 sort(plane_vertices.begin(), plane_vertices.end(), compZ);

87 vec3 p0 = plane_vertices[0];

88 plane_vertices.erase(plane_vertices.begin());

89

90 std::vector<vec4>dif_z;

91 for (int k = 0; k < plane_vertices.size(); ++k) {

92 float dz;

93 dz = plane_vertices[k][2] - p0[2];

94 dif_z.push_back(vec4(plane_vertices[k][0], plane_vertices[k][1],

plane_vertices[k][2], dz));

95 }

96 sort(dif_z.begin(), dif_z.end(), compGradient);

97

98 vec3 vy;//y-axes direction vector

99 for (int k = 0; k <dif_z.size(); ++k) {

100 if (plane_vertices[k][0] != p0[0] || plane_vertices[k][1] != p0[1] ||

plane_vertices[k][2] != p0[2]) {

101 vy = vec3(dif_z[k][0] - p0[0], dif_z[k][1] - p0[1], 0);

102 break;

103 }

104 }

105 vec3 vx = cross(vy, n);//x-axes direction vector

106 vec3 vz = n;//z-axes direction vector

107

108 mat4 T = mat4(vx[0], vy[0], vz[0], centerX,

109 vx[1], vy[1], vz[1], centerY,

110 vx[2], vy[2], vz[2], centerZ,

111 0, 0, 0, 1);//transform matrix

112 mat4 inv_T = inverse(T);

113 fout << vx[0] << "  " << vy[0] << " " << vz[0] << "  " << centerX << std::

endl;

114 fout << vx[1] << "  " << vy[1] << " " << vz[1] << "  " << centerY << std::

endl;

115 fout << vx[2] << "  " << vy[2] << " " << vz[2] << "  " << centerZ << std::
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endl;

116 fout << 0 << "  " << 0 << " " << 0 << "  " << 1 << std::endl;

117

118 float sumz = 0;

119 std::vector<vec3> projected_points;

120 for (int j = 0; j < vertices_i.size(); ++j) {//project the points to 2d

121 vec4 p = vec4(points[vertices_i[j]][0], points[vertices_i[j]][1], points[

vertices_i[j]][2], 1);

122 vec4 pp = inv_T * p;

123 projected_points.push_back(vec3(pp[0], pp[1], pp[2]));

124 sumz += pp[2];

125 }

126 float z = sumz / projected_points.size();

127 fout << z << std::endl;

128

129 int num = 0;

130

131 //get number of cols and rows by dividing the length/width with cell size

132 sort(projected_points.begin(), projected_points.end(), compX);

133 float xmin = projected_points[0][0];

134 float xmax = projected_points[projected_points.size() - 1][0];

135 sort(projected_points.begin(), projected_points.end(), compY);

136 float ymin = projected_points[0][1];

137 float ymax = projected_points[projected_points.size() - 1][1];

138 int cols = int((xmax - xmin) / gap) + 1;

139 int rows = int((ymax - ymin) / gap) + 1;

140 fout << cols << " " << rows << std::endl;//export number of cols and rows,

in order to generate raster bitmap in the next step

141

142 std::vector<vec3> candidate_points_j;

143 for (int k = 0; k < cols; ++k) {

144 for (int l = 0; l < rows; ++l) {

145 int inside_point = 0;

146 //p0, p1, p2, p3 are the vertices of each cell

147 vec3 p0 = vec3(xmin + gap*k, ymin + gap* l, 1);

148 vec3 p1 = vec3(xmin + gap*(k + 1), ymin + gap* l, 1);

149 vec3 p2 = vec3(xmin + gap*(k + 1), ymin + gap* (l + 1), 1);

150 vec3 p3 = vec3(xmin + gap*k, ymin + gap* (l + 1), 1);

151 std::vector<vec3> grid;

152 grid.push_back(p0);

153 grid.push_back(p1);

154 grid.push_back(p2);

155 grid.push_back(p3);

156 grid.push_back(p0);

109



157

158 int is_hole = 1;//variable which shows if the cell is inside a hole (

candidate windows)

159

160 for (int m = 0; m < projected_points.size(); ++m) {

161 if (in_polygon(projected_points[m], grid) == 1) {//determine if the

point is inside the cell

162 inside_point += 1;

163 }

164 if (inside_point > threshold) {

165 is_hole = 0;

166 break;

167 }

168 }

169

170 vec4 grid_point = vec4((p0[0] + p1[0]) / 2, (p0[1] + p2[1]) / 2, z, 1);

171 vec4 candidate = T * grid_point;//reproject it to 3d

172 if (is_hole == 1) {

173 fout << grid_point[0] << " " << grid_point[1] << " " << 0 << "  " <<

list[i] << std::endl;

174 }

175 else if (is_hole == 0) {

176 candidate_points.push_back(vec3(candidate[0], candidate[1], candidate

[2]));

177 fout << grid_point[0] << " " << grid_point[1] << " " << 1 << "  " <<

list[i] << std::endl;

178 }

179 }

180 }

181 projected_points.clear();

182 vertices_i.clear();

183 }

184 std::cout << "creating drawable..." << std::endl;

185 easy3d::PointsDrawable* drawable = cloud->points_drawable("points");

186 drawable->update_vertex_buffer(candidate_points);

187 drawable->set_per_vertex_color(true);

188 drawable->set_point_size(0.8f);

189 update();

190 }

191 }
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I Appendix - Extreme points extracting by slicing method

code

1 void MyViewer::slicing(easy3d::PointCloud* cloud, std::vector<vec4>

all_plane_vertices, std::vector<int> list, std::vector<vec4> plane_list) {

2 auto points = cloud->get_vertex_property<vec3>("v:point");

3 auto indices = cloud->vertex_property<int>("v:segment_index", -1);

4 auto plane_normals = cloud->vertex_property<vec3>("v:plane_normals", vec3(0, 0,

0));

5

6 std::vector<vec3> colors;

7 std::vector<vec3> all_slicing_vertices;

8 std::vector<vec3> boundaries;

9 SurfaceMesh* mesh = new SurfaceMesh;

10

11 std::cout << "Please enter BAG_id:";

12 std::string BAG_id;

13 std::cin >> BAG_id;

14

15 std::cout << "Please enter window_ratio:";

16 float ratio;

17 std::cin >> ratio;

18

19 std::cout << "Please enter path of output file:";

20 std::string path;

21 std::cin >> path;

22 std::ofstream fout(path);

23

24 std::cout << "Please enter type of threhold (1. average, 2. median, 3.constant):

";

25 int threshold_type;

26 std::cin >> threshold_type;

27

28 std::cout << "Please enter the size of threhold (if type is average or median, 

then threshold will be x times of type above, if type is constant, then the 

size is threshold itself ):";

29 float threshold_size;

30 std::cin >> threshold_size;

31

32 float num;

33 std::cout << "Please enter the number of slicing (veritical slicing):";

34 std::cin >> num;

35

36 float num2;
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37 std::cout << "Please enter the number of slicing (horizontal slicing):";

38 std::cin >> num2;

39

40 if (num < 0 || num2 < 0) {

41 std::cerr << "Warning: num is invalid!" << std::endl;

42 }

43 else {

44 std::cout << "Slicing is generating..." << std::endl;

45

46 std::vector<int> points_number;

47 std::vector<int> rows;

48 std::vector<int> cols;

49 std::vector<vec3> all_extreme_points;

50

51 for (int i = 0; i < list.size(); ++i) {

52 std::vector<easy3d::PointCloud::Vertex> vertices_i;

53 for (auto v : cloud->vertices()) {

54 if (indices[v] == list[i])

55 vertices_i.push_back(v);

56 }

57 points_number.push_back(vertices_i.size());

58 }

59

60 auto max_element = std::max_element(std::begin(points_number), std::end(

points_number));

61 int max_facade = list[std::distance(std::begin(points_number), max_element)];

62

63 for (int i = 0; i < list.size(); ++i) {

64 if (list[i] != max_facade)//only keep one primitive with most points, which

is detected by RANSAC

65 continue;

66

67 vec3 n = vec3(plane_list[i][0], plane_list[i][1], plane_list[i][2]);

68 if (abs(n[2]) > 0.02)//don’t deal with the horizontal planes(i.e. rooftops)

69 continue;

70 std::vector<vec4> plane_vertices;

71 std::vector<int> plane_indices;

72

73 for (int j = 0; j < all_plane_vertices.size(); ++j) {

74 int index = all_plane_vertices[j][3];

75 if (index / 100 == list[i]) {

76 plane_vertices.push_back(vec4(all_plane_vertices[j][0],

all_plane_vertices[j][1], all_plane_vertices[j][2], index % 100));//

plane_vertices are vertors which store the vertices of each face
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polygon

77 plane_indices.push_back(index % 100);

78 }

79 }

80 plane_indices.erase(unique(plane_indices.begin(), plane_indices.end()),

plane_indices.end());

81

82 std::vector<easy3d::PointCloud::Vertex> vertices_i;

83 Box3 box;

84 for (auto v : cloud->vertices()) {

85 if (indices[v] == list[i]) {

86 vertices_i.push_back(v);//find points belongs to the facade

87 box.add_point(points[v]);

88 }

89 }

90

91 //since the easy3d library can only deal with 6-digits, and this will cause

lose of decimal part of coordinates, so we first move them to upper left

corner of all the points to keep the precision

92 float minx = box.x_min();

93 float miny = box.y_min();

94 float minz = box.z_min();

95

96 fout << minx << " " << miny << "  " << minz << std::endl;

97

98 //calculate the transform matrix

99 float sumX = 0;

100 float sumY = 0;

101 float sumZ = 0;

102 for (int j = 0; j < vertices_i.size(); ++j) {

103 sumX += points[vertices_i[j]][0];

104 sumY += points[vertices_i[j]][1];

105 sumZ += points[vertices_i[j]][2];

106 }

107

108 //coordinates of centroid of these points

109 float centerX = sumX / vertices_i.size();

110 float centerY = sumY / vertices_i.size();

111 float centerZ = sumZ / vertices_i.size();

112

113 sort(plane_vertices.begin(), plane_vertices.end(), compX);

114 sort(plane_vertices.begin(), plane_vertices.end(), compY);

115 sort(plane_vertices.begin(), plane_vertices.end(), compZ);

116 vec3 p0 = plane_vertices[0];
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117 plane_vertices.erase(plane_vertices.begin());

118

119 std::vector<vec4>dif_z;

120 for (int k = 0; k < plane_vertices.size(); ++k) {

121 float dz;

122 dz = plane_vertices[k][2] - p0[2];

123 dif_z.push_back(vec4(plane_vertices[k][0], plane_vertices[k][1],

plane_vertices[k][2], dz));

124 }

125 sort(dif_z.begin(), dif_z.end(), compGradient);

126

127 vec3 vy;//y-axes direction vector

128 for (int k = 0; k <dif_z.size(); ++k) {

129 if (plane_vertices[k][0] != p0[0] || plane_vertices[k][1] != p0[1] ||

plane_vertices[k][2] != p0[2]) {

130 vy = vec3(dif_z[k][0] - p0[0], dif_z[k][1] - p0[1], 0);

131 break;

132 }

133 }

134 vec3 vx = cross(vy, n);//x-axes direction vector

135 vec3 vz = n;//z-axes direction vector

136

137 mat4 T = mat4(vx[0], vy[0], vz[0], centerX,

138 vx[1], vy[1], vz[1], centerY,

139 vx[2], vy[2], vz[2], centerZ,

140 0, 0, 0, 1);//transform matrix

141 mat4 inv_T = inverse(T);

142

143 std::vector<vec3> projected_points;

144 float sumz = 0;

145 for (int j = 0; j < vertices_i.size(); ++j) {//get the 2d coordinates of

points on the original plane i

146 vec4 p = vec4(points[vertices_i[j]][0], points[vertices_i[j]][1], points[

vertices_i[j]][2], 1);

147 vec4 pp = inv_T * p;

148 projected_points.push_back(vec3(pp[0], pp[1], 1));

149 sumz += pp[2];

150 }

151 float avrz = sumz / vertices_i.size();

152

153 sort(projected_points.begin(), projected_points.end(), compX);

154 float xmin = projected_points[0][0];

155 float xmax = projected_points[projected_points.size() - 1][0];

156 sort(projected_points.begin(), projected_points.end(), compY);
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157 float ymin = projected_points[0][1];

158 float ymax = projected_points[projected_points.size() - 1][1];

159

160 float gapy = (ymax - ymin) / num;

161

162 for (int j = 0; j < num; ++j) {//vertical slicing

163 std::vector<double> slicing_x;

164 std::vector<vec3> slicing_points;

165

166 for (int k = 0; k < projected_points.size(); ++k) {

167 if ((projected_points[k][1] >= ymin + gapy * j) && (projected_points[k

][1] <= ymin + gapy * (j + 1)))

168 slicing_points.push_back(projected_points[k]);//find points which

belong to current slice

169 }

170

171 if (slicing_points.size() == 0)//ignore the slice without any point

172 continue;

173

174 sort(slicing_points.begin(), slicing_points.end(), compX);

175 std::vector<double> dis;

176 double sumd = 0;

177 for (int k = 0; k < slicing_points.size() - 1; ++k) {

178 double d = slicing_points[k + 1][0] - slicing_points[k][0];

179 sumd += d;

180 if (d > 0)

181 dis.push_back(d);

182 }

183 sort(dis.begin(), dis.end());//vector dis is to store the distance between

each two neighbors

184

185 double threshold;//determine the threshold according to the parameters

186 if (dis.size() != 0) {

187 if (threshold_type == 1)

188 threshold = threshold_size * sumd / (slicing_points.size() - 1);

189 else if (threshold_type == 2)

190 threshold = threshold_size * dis[int(dis.size() / 2)];

191 }

192 else {

193 if (threshold_type == 3)

194 threshold = threshold_size;

195 else

196 threshold = 9999;

197 }

115



198

199 slicing_x.push_back(slicing_points[0][0]);

200 fout << slicing_points[0][0] << " " << ymin + gapy * j << "  " << 1 << "  

" << list[i] << std::endl;

201 fout << slicing_points[0][0] << " " << ymin + gapy * (j + 0.5) << "  " <<

1 << "  " << list[i] << std::endl;

202 fout << slicing_points[0][0] << " " << ymin + gapy * (j + 1) << "  " << 1

<< "  " << list[i] << std::endl;

203

204 for (int k = 0; k < slicing_points.size() - 1; ++k) {

205 if ((slicing_points[k + 1][0] - slicing_points[k][0]) > threshold) {//if

the distance between these two points is larger than the threshold,

then they are extracted as extreme points

206 slicing_x.push_back(slicing_points[k][0]);

207 fout << slicing_points[k][0] << " " << ymin + gapy * j << "  " << 0 <<

"  " << list[i] << std::endl;

208 fout << slicing_points[k][0] << " " << ymin + gapy * (j + 0.5) << "  "

<< 0 << "  " << list[i] << std::endl;

209 fout << slicing_points[k][0] << " " << ymin + gapy * (j + 1) << "  " <<

0 << "  " << list[i] << std::endl;

210

211 slicing_x.push_back(slicing_points[k + 1][0]);

212 fout << slicing_points[k + 1][0] << " " << ymin + gapy * j << "  " << 0

<< "  " << list[i] << std::endl;

213 fout << slicing_points[k + 1][0] << " " << ymin + gapy * (j + 0.5) << "

  " << 0 << "  " << list[i] << std::endl;

214 fout << slicing_points[k + 1][0] << " " << ymin + gapy * (j + 1) << "  

" << 0 << "  " << list[i] << std::endl;

215 }

216 }

217

218 slicing_x.push_back(slicing_points[slicing_points.size() - 1][0]);

219 fout << slicing_points[slicing_points.size() - 1][0] << " " << ymin + gapy

* j << "  " << 1 << "  " << list[i] << std::endl;

220 fout << slicing_points[slicing_points.size() - 1][0] << " " << ymin + gapy

* (j + 0.5) << "  " << 1 << "  " << list[i] << std::endl;

221 fout << slicing_points[slicing_points.size() - 1][0] << " " << ymin + gapy

* (j + 1) << "  " << 1 << "  " << list[i] << std::endl;

222

223 for (int k = 0; k < slicing_x.size() / 2; ++k) {

224 std::vector<vec3> slicing_vertices;

225 vec3 c = random_color();

226 vec4 p0 = vec4(slicing_x[2 * k], ymin + gapy * j, avrz, 1);

227 vec4 p1 = vec4(slicing_x[2 * k + 1], ymin + gapy * j, avrz, 1);
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228 vec4 p2 = vec4(slicing_x[2 * k + 1], ymin + gapy * (j + 1), avrz, 1);

229 vec4 p3 = vec4(slicing_x[2 * k], ymin + gapy * (j + 1), avrz, 1);

230

231 vec4 p00 = T * p0;//reproject the points to 3d

232 vec4 p11 = T * p1;

233 vec4 p22 = T * p2;

234 vec4 p33 = T * p3;

235

236 slicing_vertices.push_back(vec3(p11[0], p11[1], p11[2]));

237 slicing_vertices.push_back(vec3(p22[0], p22[1], p22[2]));

238 slicing_vertices.push_back(vec3(p33[0], p33[1], p33[2]));

239

240 boundaries.push_back(vec3(p00[0], p00[1], p00[2]));

241 boundaries.push_back(vec3(p11[0], p11[1], p11[2]));

242 boundaries.push_back(vec3(p22[0], p22[1], p22[2]));

243 boundaries.push_back(vec3(p33[0], p33[1], p33[2]));

244

245 //draw the mesh of slices

246 for (int k = 0; k < slicing_vertices.size() - 1; ++k) {

247 vec3 p0 = vec3(p00[0], p00[1], p00[2]);

248 vec3 p1 = slicing_vertices[k];

249 vec3 p2 = slicing_vertices[k + 1];

250 all_slicing_vertices.push_back(p0);

251 all_slicing_vertices.push_back(p1);

252 all_slicing_vertices.push_back(p2);

253 std::vector<SurfaceMesh::Vertex> face_vertices = {

254 mesh->add_vertex(p0),

255 mesh->add_vertex(p1),

256 mesh->add_vertex(p2)

257 };

258 mesh->add_face(face_vertices);

259 colors.push_back(c);

260 colors.push_back(c);

261 colors.push_back(c);

262 }

263 }

264 }

265

266 float gapx = (xmax - xmin) / num2;

267

268 for (int j = 0; j < num2; ++j) {//horizontal slicing

269 std::vector<double> slicing_y;

270 std::vector<vec3> slicing_points;

271
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272 for (int k = 0; k < projected_points.size(); ++k) {

273 if ((projected_points[k][0] >= xmin + gapx * j) && (projected_points[k

][0] <= xmin + gapx * (j + 1)))

274 slicing_points.push_back(projected_points[k]);//find points which

belong to current slice

275 }

276

277 if (slicing_points.size() == 0)//ignore the slice without any point

278 continue;

279

280 sort(slicing_points.begin(), slicing_points.end(), compY);

281 std::vector<double> dis;

282 double sumd = 0;

283 for (int k = 0; k < slicing_points.size() - 1; ++k) {

284 double d = slicing_points[k + 1][1] - slicing_points[k][1];

285 sumd += d;

286 if (d > 0)

287 dis.push_back(d);

288 }

289 sort(dis.begin(), dis.end());//vector dis is to store the distance between

each two neighbors

290

291 double threshold;//determine the threshold according to the parameters

292 if (dis.size() != 0) {

293 if (threshold_type == 1)

294 threshold = threshold_size * sumd / (slicing_points.size() - 1);

295 else if (threshold_type == 2)

296 threshold = threshold_size * dis[int(dis.size() / 2)];

297 }

298 else {

299 if (threshold_type == 3)

300 threshold = threshold_size;

301 else

302 threshold = 9999;

303 }

304

305 slicing_y.push_back(slicing_points[0][1]);

306 fout << xmin + gapx * j << "  " << slicing_points[0][1] << " " << 1 << "  

" << list[i] << std::endl;

307 fout << xmin + gapx * (j + 0.5) << "  " << slicing_points[0][1] << "  " <<

1 << "  " << list[i] << std::endl;

308 fout << xmin + gapx * (j + 1) << "  " << slicing_points[0][1] << "  " << 1

<< "  " << list[i] << std::endl;

309
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310 for (int k = 0; k < slicing_points.size() - 1; ++k) {

311 if ((slicing_points[k + 1][1] - slicing_points[k][1]) > threshold) {//if

the distance between these two points is larger than the threshold,

then they are extracted as extreme points

312 slicing_y.push_back(slicing_points[k][1]);

313 fout << xmin + gapx * j << "  " << slicing_points[k][1] << " " << 0 <<

"  " << list[i] << std::endl;

314 fout << xmin + gapx * (j + 0.5) << "  " << slicing_points[k][1] << "  "

<< 0 << "  " << list[i] << std::endl;

315 fout << xmin + gapx * (j + 1) << "  " << slicing_points[k][1] << "  "

<< 0 << "  " << list[i] << std::endl;

316

317 slicing_y.push_back(slicing_points[k + 1][1]);

318 fout << xmin + gapx * j << "  " << slicing_points[k + 1][1] << " " << 0

<< "  " << list[i] << std::endl;

319 fout << xmin + gapx * (j + 0.5) << "  " << slicing_points[k + 1][1] <<

"  " << 0 << "  " << list[i] << std::endl;

320 fout << xmin + gapx * (j + 1) << "  " << slicing_points[k + 1][1] << " 

 " << 0 << "  " << list[i] << std::endl;

321 }

322 }

323 slicing_y.push_back(slicing_points[slicing_points.size() - 1][1]);

324 fout << xmin + gapx * j << "  " << slicing_points[slicing_points.size() -

1][1] << " " << 1<< "  " << list[i] << std::endl;

325 fout << xmin + gapx * (j + 0.5) << "  " << slicing_points[slicing_points.

size() - 1][1] << "  " << 1 << "  " << list[i] << std::endl;

326 fout << xmin + gapx * (j + 1) << "  " << slicing_points[slicing_points.

size() - 1][1] << "  " << 1 << "  " << list[i] << std::endl;

327

328 for (int k = 0; k < slicing_y.size() / 2; ++k) {

329 std::vector<vec3> slicing_vertices;

330

331 vec3 c = random_color();

332 vec4 p0 = vec4(xmin + gapx * j, slicing_y[2 * k], avrz, 1);

333 vec4 p1 = vec4(xmin + gapx * j, slicing_y[2 * k + 1], avrz, 1);

334 vec4 p2 = vec4(xmin + gapx * (j + 1), slicing_y[2 * k + 1], avrz, 1);

335 vec4 p3 = vec4(xmin + gapx * (j + 1), slicing_y[2 * k], avrz, 1);

336

337 vec4 p00 = T * p0;//reproject the points to 3d

338 vec4 p11 = T * p1;

339 vec4 p22 = T * p2;

340 vec4 p33 = T * p3;

341 slicing_vertices.push_back(vec3(p11[0], p11[1], p11[2]));

342 slicing_vertices.push_back(vec3(p22[0], p22[1], p22[2]));
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343 slicing_vertices.push_back(vec3(p33[0], p33[1], p33[2]));

344

345 boundaries.push_back(vec3(p00[0], p00[1], p00[2]));

346 boundaries.push_back(vec3(p11[0], p11[1], p11[2]));

347 boundaries.push_back(vec3(p22[0], p22[1], p22[2]));

348 boundaries.push_back(vec3(p33[0], p33[1], p33[2]));

349

350 //draw the mesh of slices

351 for (int k = 0; k < slicing_vertices.size() - 1; ++k) {

352 vec3 p0 = vec3(p00[0], p00[1], p00[2]);

353 vec3 p1 = slicing_vertices[k];

354 vec3 p2 = slicing_vertices[k + 1];

355 all_slicing_vertices.push_back(p0);

356 all_slicing_vertices.push_back(p1);

357 all_slicing_vertices.push_back(p2);

358 std::vector<SurfaceMesh::Vertex> face_vertices = {

359 mesh->add_vertex(p0),

360 mesh->add_vertex(p1),

361 mesh->add_vertex(p2)

362 };

363 mesh->add_face(face_vertices);

364 colors.push_back(c);

365 colors.push_back(c);

366 colors.push_back(c);

367 }

368

369 slicing_vertices.clear();

370 }

371 }

372 }

373 std::cout << "creating drawable..." << std::endl;

374 easy3d::FacesDrawable* drawable = mesh->add_faces_drawable("surface");

375 // transfer vertex coordinates and colors to the gpu.

376 drawable->update_vertex_buffer(all_slicing_vertices);

377 drawable->update_color_buffer(colors);

378 drawable->set_per_vertex_color(true);

379 Viewer::add_model(mesh);// add the model to the viewer

380 easy3d::PointsDrawable* drawable2 = cloud->points_drawable("points");

381 drawable2->update_vertex_buffer(boundaries);

382 update();

383 }

384 }
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J Appendix - Clustering of extreme points from slicing

1 import numpy as np

2 import alphashape #https://pypi.org/project/alphashape/ a=0 --> convex hull , a=2

--> concave hull, If you go too high on the alpha parameter, you will start to

lose points from the original dataset.

3 from sklearn.cluster import DBSCAN #https://scikit-learn.org/stable/auto_examples/

cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

4 from shapely.geometry import Point, LineString, mapping

5 import scipy.spatial

6 import fiona

7 from fiona.crs import from_epsg

8

9 #Read the txt file in a list of lists

10 file_name = ""

11 input_path = "facade5.txt"

12 output_path = ""

13 file = open(input_path)

14 t_matrix = []

15 lines = []

16 for i, line in enumerate(file):

17 # The rstrip method gets rid of the "\n" at the end of each line

18 if i < 5:

19 t_matrix.append(line.rstrip().split())

20 else:

21 lines.append(line.rstrip().split())

22 file.close()

23

24

25 # Distinguish window and facade points

26 facade = []

27 windows = []

28 for line in lines:

29 if line[2] == "0":

30 windows.append([float(line[0]), float(line[1])])

31 else:

32 facade.append([float(line[0]), float(line[1])])

33

34

35 #Facade area calculation

36 facade = np.array(facade)

37 alpha_facade = alphashape.alphashape(facade, alpha=2.0)

38 facade_surface = alpha_facade.area

39
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40 #Clustering of windows

41 windows = np.array(windows)

42 clustering = DBSCAN(eps=0.055, min_samples=40).fit(windows)

43 unique_labels = np.unique(clustering.labels_)

44

45

46

47

48 #Collect indices of each individual window according to the clustering

49 window_indices = []

50 for label in unique_labels:

51 window = np.where(clustering.labels_ == label)

52 window_indices.append(window)

53

54 # create points on facade alpha shape

55 alpha_facade_points = []

56 x, y = alpha_facade.exterior.coords.xy

57 polygon_lines = []

58 for c in range(len(x) - 1):

59 polygon_lines.append(LineString((Point(x[c], y[c]), Point(x[c+1], y[c+1])))) #

create line with current and next point

60

61 for l in polygon_lines:

62 for distance in range(int(l.length * 1000)):

63 point = l.interpolate(((l.length / (int(l.length * 1000))) * distance))

64 alpha_facade_points.append((point.x, point.y))

65

66 #collect final windows from indices

67 kdtree = scipy.spatial.cKDTree(alpha_facade_points)

68 window_facade_threshold = 0.000

69 windows_distance_threshold = 0.000

70 final_windows = []

71 alpha_shapes = []

72 window_surfaces = []

73 total_windows_surface = 0

74 for i, ind_window in enumerate(window_indices):

75 if i == 0:

76 continue

77 final_window = windows[ind_window[0]]

78

79 neigh_dist, neigh_i = kdtree.query(final_window, k=1)

80

81 if min(neigh_dist) < window_facade_threshold: # if the window is too close to

the facade, do not add it
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82 continue

83 #elif (alphashape.alphashape(final_window, alpha=3.5)).area < 0.000:

84 # continue

85 else:

86 combined_windows_indices = []

87 deprecated_windows_indices = []

88 polygon_window = alphashape.alphashape(final_window, alpha=3.5)

89

90 # merge clusters based on the distances between their alpha shapes

91 if(len(alpha_shapes) > 0):

92 for j, window in enumerate(alpha_shapes):

93 if polygon_window.distance(window) < windows_distance_threshold:

94 #if polygon_window.area < 0.010 and window.area < 0.010:

95 final_window = np.concatenate((final_window, final_windows[j]))

96 polygon_window = alphashape.alphashape(final_window, alpha=3.5)

97 deprecated_windows_indices.append(j)

98

99

100

101 final_windows.append(final_window)

102 alpha_shapes.append(polygon_window)

103

104 for i in sorted(deprecated_windows_indices, reverse=True):

105 del final_windows[i]

106 del alpha_shapes[i]

107

108 # calculate surface of every window

109 window_surfaces.append(polygon_window.area)

110 #print("Current polygon area: ", polygon_window.area)

111 total_windows_surface = total_windows_surface + polygon_window.area

112 #print ("Total windows area: ",total_windows_surface)

113

114

115

116 #write the output WKT file

117 with open("alpha_shapes_test.txt", "w") as polygon:

118 polygon.write("id|geom\n")

119 polygon.write("0" + "|" + alpha_facade.wkt + "\n")

120 for i, alpha_shape in enumerate(alpha_shapes, start=1):

121 polygon.write(str(i) + "|" + alpha_shape.wkt + "|" + "\n")

122

123

124 with open("clusters.txt","w") as clustered:

125 count = 0
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126 clustered.write("id|geom\n")

127 for label in unique_labels:

128 if label == -1:

129 continue

130 window = np.where(clustering.labels_==label)

131 for index in window[0]:

132 point_shapely = Point(windows[index][0],windows[index][1])

133 clustered.write("1" + "|" + str(point_shapely) + "|" + str(count) + "\n

")

134 count +=1

135

136 ratio = total_windows_surface / facade_surface

137 with open("windows_labeled_test.txt" , "w") as labeled_points:

138 for line in t_matrix:

139 labeled_points.write(’ ’.join(line) + "\n")

140

141 for facade_point in facade:

142 labeled_points.write(str(facade_point[0]) + " " + str(facade_point[1]) + "

 " + "1" + " " + str(ratio) + "\n")

143

144 for i, window in enumerate(final_windows):

145 for window_point in window:

146 labeled_points.write(str(window_point[0]) + " " + str(window_point[1]) + " " + str

(i+2) + " " + str(ratio) + "\n")
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K Appendix - Bitmaps before and after windows de-

tection.

Figure 57: Facade 1 - bitmap before and after windows detection.

Figure 58: Facade 2 - bitmap before and after windows detection.
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Figure 59: Facade 3 - bitmap before and after windows detection.

Figure 60: Facade 4 - bitmap before and after windows detection.
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Figure 61: Facade 5 - bitmap before and after windows detection.
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Figure 62: Facade 6 - bitmap before and after windows detection.
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