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Abstract

Current driver behaviour models (DBMs) are primarily designed for the general driver
population under specific scenarios, such as car following or lane changing. Hence DBMs
capturing individual behaviour under various scenarios are lacking. This paper presents
a novel method to quantify individual perceived driving risk in the longitudinal and lat-
eral directions using risk thresholds capturing the time headway and time to line crossing.
These are integrated in a risk-based DBM formulated under a model predictive control
(MPC) framework taking into account vehicle dynamics. The DBM assumes drivers to
operate as predictive controllers jointly optimising multiple criteria, including driving risk,
discomfort, and travel inefficiency. Simulation results in car following and passing a slower
vehicle demonstrate that the DBM predicts plausible behaviour under representative driv-
ing scenarios, and that the risk thresholds are able to reflect individual driving behaviour.
Furthermore, the proposed DBM is verified using empirical driving data collected from a
driving simulator, and the results show it is able to accurately generate vehicle longitudi-
nal and lateral control matching individual human drivers. Overall, this model can capture
individual risk perception behaviour and can be applied to the design and assessment of
intelligent vehicle systems.

1 INTRODUCTION

Modelling driver behaviour is a complex task and it has attracted
significant research attention throughout the past decades. A
well-developed driver behaviour model (DBM) can not only
transfer human driving skills to traffic systems but also help
improve current transportation systems’ capacity and safety [1].
In this work, we propose an integrated DBM model that
has potential applications in various domains. By accurately
capturing individual driving behaviour under different driving
scenarios, the model can be used to do driving simulations
of autonomous vehicles when interacting with human drivers,
develop personalised advanced driver assistance systems, and
understand human driver behaviours to enhance current traf-
fic systems’ safety and efficiency. To develop DBMs, a clear
understanding of driver behaviour is essential. Various concep-
tual theories have been proposed to depict driver behaviour to
make driving decisions and interact with other traffic partici-
pants [2–4]. According to Michon’s theory [2], driver behaviour
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is reflected at three levels, as shown in Figure 1. General plan-
ning stages, like trip goals, routes, and driving models, are
defined at the strategic level from a long-term perspective. Con-
trolled action patterns, such as obstacle avoidance and lane
selection, are decided at the tactical level, taking up several sec-
onds. Finally, at the operational level, continuous vehicle control
is executed. This study focuses on modelling driver behaviour at
the operational level.

Driver behaviour at the operational level can be divided into
longitudinal (speed) and lateral (steering) control. Typical speed
control models include the optimal velocity model (OVM) [5]
and the intelligent driver model (IDM) [6]. To address unrealis-
tically large accelerations provided by the OVM, the full velocity
difference model (FVDM) was developed [7]. This model took
both positive and negative velocity differences into account to
enhance velocity control, which improved driving comfort to
some degree for car following. Meanwhile, many researchers
focused on modelling driver-vehicle lateral control. Weir and
McRuer [8] described a basic driver model based on errors in the
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2 YUAN ET AL.

FIGURE 1 The flowchart of vehicle feedback control. This study mainly
involves layers circled by dotted blue blocks.

target heading angle and inspired many early studies on steering
control. However, most current models are limited to spe-
cific driving scenarios, such as car following and lane changes,
because they only consider longitudinal speed control or lat-
eral steering control or ignore lateral dynamics. For instance, a
driving behaviour analysis using an open dataset was conducted
for car-following paired trajectories [9]. To minimise the energy
efficiency of electric vehicles, a speed planning model specific
for car-following scenarios was developed using model-based
reinforcement learning [10]. In addition, a data-driven sequen-
tial lane change model was established for lateral control in a
spatial domain instead of a traditional temporal domain [11].

Integrated DBMs considering both longitudinal and lat-
eral control have the advantage of adapting to more complex
maneuvers [12–14]. A fuzzy logic approach was proposed to
model both longitudinal and lateral driver behaviours, aiming
to ensure integration between road safety and crash reduction
based on an examination of speed limitations under weather
conditions [15]. An integrated DBM was formulated as a
sequential decision-making problem that is characterised by
non-linearity and stochasticity, and unknown underlying cost
functions, and an imitation learning approach optimised the for-
mulation [16]. Previous DBM studies have demonstrated that
the dynamic bicycle model is a robust description of vehicle
dynamics. A hybrid framework [14] utilised the dynamic bicycle
model [17] to describe vehicle dynamics. The dynamic bicycle
model was also adopted by Prokop to model humans’ driving
processes as an optimisation problem [13].

Although integrated DBMs are more adaptive for complex
driving scenarios, they are not yet realistic in terms of individ-
ual real world driving behaviour. For instance, various DBM
models immediately correct driving states once the vehicles
slightly deviate from a reference path or state [13, 14], which
can reduce travel efficiency or cause discomfort in some con-
ditions in practice. In 1981, Gipps proposed a car-following
model where the follower response was described based on the
expectancy of other vehicles rather than formulating driving
velocity directly [18]. In addition, Boer proposed a satisfic-
ing driving strategy. It used a time to line crossing (TLC)
model to capture driving risk for straight and curved roads [19]
as TLC has been proven to be an important indicator to
evaluate driver behaviour [20]. Wiedemann defined different

thresholds and regimes in the relative speed/space of ego vehi-
cles and their leaders to describe their interaction [21]. The
acceleration equations of the Wiedemann model were further
modified to represent more realistic driving behaviour, and
the model parameters were calibrated using mixed traffic with
different conventional vehicle classes [22]. More recently, psy-
chophysical models [23] utilised perceptual thresholds to model
driver reactions to changes in driving states. These studies
show that thresholds can be used to reflect human driving
behaviour regarding safety/risk perception, motion prediction,
and speed control.

In this study, we present an innovative approach to address
the limitations of current DBMs. For example, some mod-
els are not realistic for real world driving or can not reflect
individuals’ driving preferences. To fill these research gaps, we
proposed an integrated risk-based DBM to apply to a range of
driving scenarios, where individual driving behaviours are cap-
tured by risk-related thresholds. The proposed DBM is derived
under a model predictive control (MPC) framework, provid-
ing solutions for vehicle control at each sampling time [24].
The dynamic bicycle model, capturing the velocity and steer-
ing dynamics of vehicles, is adopted to predict the driving
dynamics of ego vehicles on a prediction horizon. To formu-
late driver behaviour, cost criteria of travel inefficiency, driving
risk, and discomfort are defined. These criteria are evaluated
by minimising the total cost of six driving objectives (e.g., min-
imising driving risk, enhancing driving comfort, and improving
efficiency in longitudinal and lateral moving directions, respec-
tively). The main contribution of our work lies in proposing a
novel method that uses two risk thresholds to measure indi-
vidual perceived driving risk in the longitudinal and lateral
directions, respectively. We verify this approach with empiri-
cal data and evaluate the performance of the developed DBM
under different driving scenarios.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the feedback control framework and model
assumptions, and Section 3 provides a detailed description
of the proposed DBM. Simulation settings are presented in
Section 4, while simulation results and detailed analysis are illus-
trated in Section 5. In Section 6, the developed DBM is verified
using empirical driving data. Finally, Section 7 concludes this
paper and discusses potential future research directions.

2 CONCEPTUAL FRAMEWORK AND
MODEL ASSUMPTIONS

In this section, the vehicle feedback control framework and the
main assumptions of driver behaviour are introduced.

2.1 Human driving as feedback control
problem

Human driving is a typical feedback control problem [17].
According to the theory proposed by Michon in 1985 [2], the
feedback control scheme of human driving is illustrated in
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YUAN ET AL. 3

Figure 1. The top layer represents the strategic plan, followed
by the decision-making layer, where driving decisions are made
based on the current driving states and environment, such as
lane selection, desired speed, and duration time of lane chang-
ing (LC). Then, the trajectory planning layer generates control
commands, including acceleration and steering angle, which are
based on the decisions made and take into account the cur-
rent driving state. Once the corresponding tracking commands
are executed, the vehicle updates its driving states, which are
then observed by the decision-making and trajectory planning
layers to correct their outputs. This cyclical process ensures
that the vehicle’s actions remain consistent with its intended
trajectory.

2.2 Assumptions of human driver behaviour

Before we formulate the DBM, we state the assumptions on
how drivers perceive their driving environment (static and
dynamic obstacles), decide on driving objectives, and control
their vehicles [25]. The main assumptions of our model include:

∙ Drivers are predictive controllers:
Human drivers have the ability to utilise internal models

of vehicle dynamics/kinematics to predict the evolution of
the local environment based on their previous knowledge or
driving experience. Modelling studies [13, 14] showed that
average drivers could predict ego vehicles’ dynamics as a
linear parameter varying system, such as the bicycle vehicle
model. Another research [17] indicated that an experienced
driver or race driver may be able to predict more complex
nonlinear vehicle dynamics for ego vehicles. As for sur-
rounding vehicles, most human drivers could estimate the
surrounding vehicles’ dynamics using a simpler model. For
example, leading vehicles can be assumed to drive on roads
with non-zero longitudinal acceleration during car follow-
ing (CF) maneuvers [14], but keep a constant longitudinal
velocity (zero longitudinal acceleration) during lane-changing
tasks [26].

∙ Drivers are optimal and switching controllers:
Studies indicate that in real driving, there are usually three

driving objectives: 1) maximise driving rewards such as travel
efficiency and comfort [27]; 2) minimise the cost of control
actions, including driving risk, stress, and jerk along trajecto-
ries [26], and 3) fulfil constraints like road or lane boundaries
that need to hold during the whole driving task [28]. Such
objectives shall be jointly addressed by human drivers. For
example, a driver who only checks driving rewards may
potentially collide with other traffic participants or disrupt
traffic flow. In practice, most drivers are able to find an opti-
mal driving strategy to reach their destinations under various
driving scenarios. For instance, they might make a trade-off
between rewards, cost, and constraints [13, 29]. Moreover,
drivers might switch objectives when transitioning from one
maneuver to another, since the driving objectives of human
controllers are situation-dependent [30].

The proposed integrated risk-based DBM in this study is built
upon two fundamental assumptions about driver behaviour:
predictive control and optimal/switching control. The first
assumption is reflected in the use of an MPC framework for the
DBM. This allows the model to predict driver behaviour and
adjust to changes in driving conditions. The second assump-
tion, that drivers are optimal controllers, is incorporated into
the consideration of three cost criteria: travel inefficiency, driv-
ing risk, and discomfort. Meanwhile, drivers’ switching abilities
are applied to perceive driving risk, where driving risk is formu-
lated by risk thresholds. By minimising the total cost of the three
criteria, the DBM is able to generate an optimal driving strategy
to complete various driving tasks like humans.

3 MATHEMATICAL DRIVER
BEHAVIOUR MODEL

Human drivers can predict and regulate driving states accord-
ing to their basic knowledge of vehicle dynamics and driving
experience. Focusing on the operational level, this study models
driver behaviour under an MPC framework, where the dynamic
bicycle model, described in Section 3.1, is used to predict the
dynamics of ego vehicles. Control variables u = (u1, u2)T are
optimised to minimise the total cost of driving objectives under
dynamic constraints, where u1 indicates front-wheel steering
angle, u2 represents vehicles’ forward acceleration, and T means
transpose. Only the first sample of optimal steering and accel-
eration is used to control vehicles. The control inputs u are
updated at regular intervals, independently bounded by corre-
sponding limitations. Mathematically, the DBM is formulated as
an optimisation problem under dynamic equality and inequality
constraints:

J∗(t ) = min
u(t )

J , t ∈ [t0, t0 + th]

subject to ż(t ) = f (z(t ), u(t ))

z(t0) = zc

u1.min ≤ u1(t ) ≤ u1.max

u2.min ≤ u2(t ) ≤ u2.max (1)

where t0 is the current time and th is the prediction horizon. J

represents the cost function that consists of six components, see
Section 3.3, which should be minimised by a suitable choice of
control variables u(t ).

For the equality constraints, f is the nonlinear dynamics
of vehicles (Equation (2)), which is described in Section 3.1.
z(t0) indicates the initial states of vehicles and corresponds to
vehicles’ current states, zc . Meanwhile, control variables should
satisfy inequality constraints, indicating that controlled accelera-
tion u1(t ) and steering angle u2(t ) are bound by their limitations.
u1.min indicates the maximum deceleration, u1.max is the maxi-
mum acceleration, and bmin and bmax are the upper and lower
boundaries for the steering angle.
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4 YUAN ET AL.

FIGURE 2 The vehicle model. (X,Y) indicates the global frame, and (x, y)
represents the vehicle local frame.

3.1 The dynamic bicycle model

The dynamic bicycle model is widely used to describe vehi-
cle dynamics [13, 14], offers a realistic representation of forces
applied to vehicles, and captures steering dynamics for most
lane-based driving scenarios. The model includes dynamic states
of the front and rear wheels, merging left and right wheel
dynamics. It is also adopted in our study to describe vehicle
dynamics as it can be considered an accurate representation of
the inference of future states of vehicles in both longitudinal and
lateral directions [17], which are requirements for an integrated
DBM. We assume linearised lateral tyre slip, making this model
suitable for dynamic lateral maneuvers up to around 6 m/s2.

In Figure 2,(X,Y) indicates the inertial/global frame, and
(x, y) is used to represent vehicle coordinate systems. The
state variables of the dynamic bicycle model are vehicle global
position (X ,Y ), velocity vx , vy, heading angle 𝜓, and corre-
sponding heading angle change rate �̇�, thus defining the state
vector z = [X ,Y , vx , vy, 𝜓, �̇�]T. With the control variable u,
the equations of vehicles’ motion are given by Equation (2),
where Fi = Ci𝛼i , i ∈ { f , r} is the tire force. f and r denote
the front and rear tires, respectively, Ci indicates the cornering
stiffness of lumped tires for the axle i, and 𝛼i is the slip angle
of lumped tire i. At small angles, 𝛼i can be approximated as:

𝛼 f =
vy+l f �̇�

vx

− u2, 𝛼r =
vy−lr �̇�

vx

[17].

†z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx sin𝜓 + vy cos𝜓

vx cos𝜓 + vy sin𝜓

vy�̇� + u1

−vx�̇� +
Ff

m
+

Fr

m

�̇� + �̈�dt

1

Iz

(
l f Ff − lr Fr

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f (z, u) (2)

We use (X e,Y e ), 𝜓e , and ve
x to represent the current global

position, heading angle, and driving speed of ego vehicles, and
(X l ,Y l ) to denote the position of leading vehicles. Parameters
for the dynamic model are listed in Table 1.

TABLE 1 The dynamic bicycle model parameters [14].

Parameters

Default

value Unit Description

l f 1.1 m The distance from the center of
gravity to the front axle

lr 1.58 m The distance from the center of
gravity to the rear axle

C f 80, 000 N/rad Front axle cornering stiffness

Cr 80, 000 N/rad Rear axle cornering stiffness

m 1573 kg The mass of the vehicle

Iz 2873 kg m2 Yaw moment of inertia

FIGURE 3 The illustration of driving scenarios. The blue vehicle is the
ego, and the green one is the leader. The block coloured yellow indicates
unreachable areas on the road, and the blue block centered at the leading
vehicle is an effective area. (X, Y) indicates the position in the global frame, and
w depicts the width (e.g. road, vehicle, and effective area). Lc and Lt are the
current and the target driving lanes respectively. Rleft and Rright indicate the left
(upper) and right (lower) road boundaries. dsafe is the safe front spacing, and dy
represents the lateral position offset. 𝜖 is the heading angle offset, and D

depicts the distance to line crossing.

3.2 Scenario description

We designed the DBM to capture highway driving, including car
following (CF), lane changes (LC) to pass a slower lead vehicle,
and free driving. Driving scenarios are illustrated in Figure 3.
The left figure shows CF, where the ego vehicle follows the
leading vehicle at a safe distance. The right figure indicates the
LC process, and after changing lanes, the ego vehicle drives free
on the road. We use Lc to indicate the current driving lane and
Lt to denote the target lane. The number of lanes is labeled in
Figure 3. For Lt , there are two selections: 1) if changing lanes,
Lt is the selected target lane; 2) if keeping the current lane, Lt is
the same as the current driving lane, Lc .

3.3 Cost function formulation

By adopting the dynamic bicycle model, the longitudinal and lat-
eral driving states are considered at the same time. However, to
develop a DBM, we have to understand how to formulate driver
behaviour. We take criteria into consideration, including driv-
ing risk, driving inefficiency, and discomfort [13, 14, 26]. These
three criteria are evaluated by six driving objectives, including
guaranteeing longitudinal and lateral driving safety using risk
thresholds, enhancing driving comfort by minimising steering
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YUAN ET AL. 5

rate and acceleration rate, and improving driving efficiency by
following the desired speed and terminal lateral position.

3.3.1 Driving risk

Driving risk mainly comes from static obstacles (road bound-
aries) and dynamic obstacles (other traffic participants). Driver-
perceived risk is captured using human drivers’ thresholds
according to the driving risk concept proposed in [21, 31]. Here,
we consider lateral driving risk from lane boundaries and lon-
gitudinal driving risk from neighbouring vehicles. If applied to
non-lane-based environments, there is no lateral risk coming
from lanes.

∙ Lateral risk:
Lateral driving risk is measured by the available time to cor-

rect driving states using TLC, defined as the time duration
available for drivers before crossing any lane boundary. The
importance of this indicator for driver performance evalua-
tion and model development is outlined in several research
studies [19, 20]. For example, it was successfully applied in
satisficing curve negotiation [19]. In this study, we use TLC
to evaluate driver perceived lateral risk within straight lanes.
According to the concept represented in [31], a threshold
of TLC, 𝜁, is defined to reflect an individual acceptable lat-
eral driving risk. When the real TLC is bigger than 𝜁, drivers
would like to accept and keep current driving states, while
they have to make corrective control actions when the real
TLC is smaller than 𝜁.

When driving on a straight road, we assume that the road
parallels the global horizontal axis. 𝜃r is defined to indi-
cate the angle between the tangent line of a lane and the
corresponding global horizontal axis, which is zero for a
straight lane. In this way, the TLC on a straight lane is actu-
ally infinite when the heading angle parallels the driving lane.
Otherwise, the TLC is determined by the non-zero head-
ing angle offset 𝜖 (Equation (3)) and lateral position offset
dy (Equation (4)). Notice that collision-free driving means
any single point of the vehicle does not touch road bound-
aries or other obstacles. Consequently, the true road width is
not an effective driving width for vehicles, and the effective
width is calculated taking into account vehicle width wvehicle
by Equation (5). Here, the upper road boundary is deter-
mined by the results of lane selection, Rleft = wroadLt , and
the lower boundary is the boundary of the current driving
lane, Rright = wroad(Lc − 1).

𝜖 = |𝜃r − 𝜓e| (3)

dy = |(Lt − 1∕2)wroad −Y e| (4)

weffective = Rleft − Rright − wvehicle (5)

Dl and Dr are used to represent the distance to line crossing
for the left and right sides, and 𝜁l and 𝜁r are correspond-

FIGURE 4 Effect of lateral position offset and heading angle on 𝜁 on a
straight road and corresponding tolerable range for the acceptable TLC.

ing TLC values. The calculation of TLC on a straight road
is derived from the Pythagoras theorem. When 𝜓e is positive
and defined in the counter-clockwise direction, the TLC value
𝜁l is calculated by Equations (6) and (7), and 𝜁r is calculated
by Equations (8) and (9) when 𝜓e is negative. Then, the real
TLC value 𝜁 is obtained by Equation (10).

Dl = (weffective∕2 − dy )∕ sin 𝜖 (6)

𝜁l = Dl ∕ve
x (7)

Dr = (weffective∕2 − dy )∕ sin 𝜖 (8)

𝜁r = Dr∕ve
x (9)

𝜁 =

{
𝜁l , if 𝜓e is positive

𝜁r , if 𝜓e is negative
(10)

The effects of lateral position offset dy and heading angle
offset 𝜖 on the value of 𝜁 on a straight road are presented
in Figure 4. Here, the current driving velocity is set as ve

x =
10 m/s, and Lt = Lc = 0. The result in Figure 4a indicates
that as the heading angle offset increases, the acceptable
range of lateral offset decreases, and vice versa. We can also
state that the heading angle offset highly affects the value of
𝜁. From Figure 4b, the acceptable lateral offset is relatively
large for a small 𝜖 (dy is ±0.25 when 𝜖 = 3◦, but dy is ±0.75
when 𝜖 = 1◦). It means that even though a vehicle does not
follow the center line of the lane, as long as the heading angle
offset is small enough, it can still drive safely. In Figure 4, 𝜁 is
defined as the individual threshold of 𝜁 according to the con-
cept proposed in [31]. The default value is set at 1.5 s based
on the study in [19]. 𝜁 is one of the risk thresholds we adopted
to reflect driver behaviour, and the effects of this parameter
are simulated and analysed in Section 5.

The lateral driving risk from road constraints can be
obtained by comparing the real 𝜁 value with the threshold.
Then the Euclidean norm is adopted to evaluate the final
driving risk as Equation (11).

rTLC = ∫
t0+th

t0

‖max(0, 𝜁 − 𝜁(t ))‖2dt (11)
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6 YUAN ET AL.

TABLE 2 Simulation parameter settings.

Parameters

Default

value Unit Description

u1.max 2 m/s2 Maximum acceleration [32]

u1.min −4 m/s2 Maximum deceleration [32]

u2.max 5 deg Maximum steering angle [35]

u2.min −5 deg Minimum steering angle [35]

wvehicle 1.6 m The width of the vehicle

wroad 3.6 m The width of a single lane

th 5 s The prediction horizon [36]

Td 5 s The duration time of LC [36]

𝜏 1.5 s The safe headway time [32]

𝜁 1.5 s The threshold of TLC [19]

Vde 15 m/s The desired speed

V e
x0 10 m/s The initial speed of the ego

vehicle

vl
x0 13 m/s The initial speed of the leader

al 0 m/s2 The acceleration of the leader

Ts 8 s The start time of LC

Parameters for different simulations

Parameters

Car following

(CF)

Lane

changing

(LC) Effect of 𝜻 Effect of 𝝉

vl
x0 10 - - -

al Equation (19) - - -

Ts Infinity - - -

𝜁 - - [1, 1.5, 2.5, 3] -

𝜏 - - - [1, 1.5, 2, 2.5]

∙ Longitudinal risk:
As for longitudinal driving risk, we only consider the lead-

ing vehicle in the driving environment. We use the concept
of safe front spacing to quantify longitudinal risk, where the
parameter of safe time headway 𝜏 is different for individu-
als [29, 32]. The value of 𝜏 affects the interaction between ego
vehicles and the leaders, which is measured by the effective
area of the leading vehicle, as shown in Figure 3. The width
of the effective area is equal to the width of a single lane. The
length of this area is determined by the safe front spacing
dsafe(t ) = d0 + 𝜏ve

x (t ), where parameter d0 is the zero-speed
clearance that is set as d0 = 5 m, and 𝜏 is the safe time head-
way that varies between different drivers. The default value of
𝜏 is 1.5 s in Table 2. In addition, we will conduct simulations
in Section 5 to examine the impact of different values of 𝜏,
in order to demonstrate that acceptable safe front spacing for
individuals varies depending on different risk thresholds. The
analysis will aim to provide insights into how drivers make
decisions about safe following distances based on their own
perceived level of risk.

The real front spacing between an ego and its leader is
calculated by their longitudinal position using Equation (12),

where X l (t ) and X e (t ) are the longitudinal positions of the
leading vehicle and the ego vehicles at time t . During driv-
ing, we assume that the velocity of the leader is within the
speed limits on specific roads. Consequently, the ego vehicle
approaches the leader at a safe distance to maximise travel
efficiency. Then, rdis is calculated using the distance error to
reach such goals.

dreal(t ) = X l (t ) − X e (t ) (12)

rdis = ∫
t0+th

t0

‖max(0, dsafe(t ) − dreal(t ))‖2dt (13)

3.3.2 Driving comfort and efficiency

In actual driving, drivers try to control vehicles smoothly and
comfortably by minimising accelerations and corresponding
jerks along the driving directions [26]. Inspired by that, cost
functions on the steering angle rate u̇2(t ) and acceleration
rate u̇1(t ) are formulated to improve driving comfort, utilising
Equations (14) and (15).

cacc = ∫
t0+th

t0

‖u̇1(t )‖2dt (14)

cangle = ∫
t0+th

t0

‖u̇2(t )‖2dt (15)

To improve driving (travel) efficiency and guarantee the comple-
tion of LC, terminal driving states are considered. Equation (16)
shows the terminal cost for velocity, where vx (th ) is the driving
speed at time th and Vde is the desired velocity. Equation (17)
formulates the terminal lateral position of ego vehicles to move
from the current lane to the target lane or keep the current lane.
Y (th ) is the lateral position of ego vehicles at time th. Ytar is the
lateral position on the target lane, which is determined by Gtar
(lane selection).

c
th
ve = ‖vx (th ) −Vde‖2 (16)

c
th
Y e = ‖Y (th ) −Ytar )‖2 (17)

The final cost function is written as Equation (18), where 𝛽1,
𝛽2, and … 𝛽6 are weight values for the six cost function com-
ponents. In this work, the values of 𝛽1, 𝛽2, and … 𝛽6 are set
manually, fi = [0.7, 0.2, 2, 2, 1, 0.7], to achieve credible results
in the scenarios simulated in Section 5. We adopted the method
applied in [13, 26], where the key idea is that when the expected
cost for a driving objective is too high, the corresponding weight
𝛽 should be reduced so that the corresponding driving objec-
tive costs decrease. By solving this optimisation problem, we
can calculate the optimal states of vehicles at each time, that is,
the risk-based trajectory for vehicles.

J = 𝛽1rTLC + 𝛽2rdis + 𝛽3cacc + 𝛽4cangle + 𝛽5c
th
ve + 𝛽6c

th
Y e (18)
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YUAN ET AL. 7

3.4 Problem solution

The proposed DBM is implemented using MPC in a discrete-
time form in Matlab. To solve this optimisation problem, we
adopt sequential quadratic programming (SQP) as it is a reliable
and efficient method to find (local) optimal solutions for both
linear and non-linear inequality problems [13, 33]. SQP is partic-
ularly suitable for the DBM, which includes several non-linear
effects and constraints. The optimal control variables u(t ) are
initialised to zero and recalculated at regular time intervals of
ts = 0.1 s based on the newest information regarding the sys-
tem states. The prediction horizon th is an important parameter
that influences both the computational efficiency and the per-
formance of the DBM. A larger prediction horizon generally
leads to better model behaviour but increases computation load.
To strike a balance, we set the prediction horizon to th = 5 s
based on previous research presented in [34], where the choice
of th = 5 s was verified as a suitable trade-off between model
behaviour and computation load.

4 SIMULATION SETTINGS

We numerically implement the developed risk-based DBM
using discrete-time simulations. The discrete decisions at the
tactical layer are set as: the target lane number Lt = 1, desired
speed Vde = 15 m/s, start time of LC Ts = 8 s, and duration
of LC Td = 5 s. More default parameter settings are listed in
Table 1.

We evaluate the performance of the DBM and the sensitiv-
ity/effects of risk thresholds on driving behaviour using four
separate simulations. The duration of each simulation is 20 s,
and it takes around 10 s computation time to optimise two
control variables. Hence, this model can be applied online for
real-time trajectory planning. The performance of the DBM
is evaluated in the first two simulations on a two-lane freeway
with a leading vehicle. The sensitivity of risk thresholds is
analysed based on the simulation results of using different TLC
threshold 𝜁 and safe time headway 𝜏. The four simulations are
introduced as follows:

(1) Car following (CF): The first simulation is designed to eval-
uate the performance of the developed DBM following a
non-zero-acceleration leading vehicle. Simulation settings
are shown in Table 1. In this simulation, the acceleration
of the leading vehicle is set by Equation (19) with an initial
velocity vl

x0
= 10 m/s. It means the leader accelerates dur-

ing the first 5 s, decelerates from 5 to 10 s, and then speeds
up again until t = 10 s. The start time of LC is Ts = inf.,
indicating the ego vehicle will not change lanes.

alx (t ) =

⎧⎪⎪⎨⎪⎪⎩

1, if t ≤ 5

−0.5, if 5 < t ≤ 10

0.5, if 10 < t ≤ 15

0, if 15 > t

(19)

(2) Lane changing (LC): This simulation adopts the default
parameters in Table 1 to evaluate the performance of LC.

(3) Effect of 𝜁: The sensitivity/effect of 𝜁 on driving behaviour
is evaluated and analysed by applying four different values
under CF and LC manoeuvers. In addition, other model
parameters are set as default values, as shown in Table 1.

(4) Effect of 𝜏: The sensitivity/effect of 𝜏 on driver behaviour
is also evaluated and analysed by setting four different
values under CF and LC maneuver while setting other
parameters as default.

5 SIMULATION RESULTS

5.1 Results in car following (CF)

The CF simulation result in Figure 5a is the generated trajectory,
while Figure 5b shows the driving heading angle, and Figure 5c
depicts the controlled steering angle. These figures show that
the developed integrated DBM completes CF successfully. Dur-
ing CF, the driving direction of the ego vehicle is always parallel
to the driving lane. Since the simulated driving scenario is set on
a straight road, the heading angle and steering angle remain zero,
as well as the steering angle rate cangle in Figure 6c. Meanwhile,
TLC value 𝜁 is infinite in Figure 6a resulting in lateral driving
risk also being zero.

Figure 5d shows the front longitudinal spacing between the
ego vehicle and the leader. Figure 5e depicts the speed of the
ego vehicle and the leading vehicle. The velocity of the leading
vehicle is determined by the initial value vl

x0
= 10 m/s and the

acceleration (the dashed line in Figure 5f). From Figure 5d,e,
we can see that when the leading vehicle accelerates/decelerates
suddenly, the ego vehicle can change velocity in a timely manner
to keep a safe front spacing while guaranteeing driving com-
fort without a significant change in acceleration (Figure 5f).
The ego vehicle accelerates at the first five seconds to max-
imise efficiency by reducing front spaicng rdis (Figure 6d) and
increasing driving velocity (Figure 6e). As the leading vehicle
slows down, the longitudinal driving risk increases, forcing the
ego vehicle to decelerate. Finally, the ego reaches the desired
velocity Vde = 15 m/s where the velocity offset (Figure 6e),
longitudinal risk (Figure 6d), and longitudinal jerk become zero
(Figure 6f). Note that even though the velocity offset is relatively
large at first in Figure 6e, it does not heavily affect the current
driving states (th = 5 s). In additional simulations, a maximum
deceleration of 6 m/s2 has been set for the leading vehicle.
Results demonstrate that the developed model performs effec-
tively when the leading vehicle brakes suddenly by giving a high
penalty to the terminal cost for the desired velocity.

5.2 Results in lane changing (LC)

Figure 7 shows the simulated lateral and longitudinal dynamics
for CF and LC maneuvers, and Figure 8 represents six compo-
nents in the cost function. Figure 7a is the generated trajectory;
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8 YUAN ET AL.

FIGURE 5 Simulated lateral and longitudinal dynamics during CF, following a non-zero-acceleration leading vehicle. The solid line in (a) is the generated
trajectory, (b) is heading angle, (c) is steering angle, and (d) depicts front spacing. (e,f) Driving velocity and acceleration of the ego vehicle and its leading vehicle.

FIGURE 6 The six components of the cost function during CF. Lat., Ste,. Vel., and Acce. are the abbreviations of Lateral, Steering, Velocity, and Acceleration.

FIGURE 7 Simulated lateral and longitudinal dynamics during CF and LC maneuver. The solid line in (a) is the generated trajectory, (b) is heading angle, (c) is
steering angle, and (d) depicts front spacing during CF. (e,f) Driving velocity and acceleration of the ego vehicle and its leading vehicle.
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YUAN ET AL. 9

FIGURE 8 The six components of the cost function during CF and LC maneuver. Lat., Ste., Vel., and Acce. are the abbreviations of Lateral, Steering, Velocity,
and Acceleration.

Figure 7b shows the driving heading angle, and Figure 7c depicts
the controlled steering angle. From Figure 7a and the TLC value
in Figure 8a, we can see that the ego vehicle performs CF and
LC tasks while keeping the real TLC 𝜁 above the TLC threshold
𝜁. During LC, 𝜁 decreases gradually, indicating increased lat-
eral driving risk. When the heading angle peaks (Figure 7b), the
TLC value 𝜁 equals 𝜁. As the ego vehicle approaches the target
lane, the TLC gets far away from the TLC threshold again. The
same as the effect of velocity offset mentioned before, a large
lateral position offset in Figure 8b affects the current driving
states slightly. The lateral position offset is close to zero with
the reduction of heading angle.

The front spacing between the ego vehicle and the leader
is depicted in Figure 7d. After changing lanes, the ego vehi-
cle and the previous leading vehicle drive on different lanes,
so this figure only shows the front spacing when they are on
the same lane, where the red point indicates the start time of
LC. Figure 7e,f denotes the driving velocity and the controlled
acceleration of the ego and the leader. From Figure 7f, the ego
vehicle speeds up at a relatively large acceleration until the front
distance approaches the safe driving distance, where rdis equals
zero (Figure 8d). Then the ego vehicle increases its velocity
slowly to follow the leading vehicle’s speed vl = 13 m/s. After
changing lanes, the ego vehicle does not need to keep a large
front spacing with the leader. It accelerates to reach the desired
velocity (Figure 8e). In addition, the optimised steering angle
rate and acceleration rate shown in Figure 8c,f indicate that the
driving comfort is enhanced.

5.3 Results of effect of 𝜻

Simulation results in Figure 9a show the generated trajectories.
Figure 9b,c presents heading angle and controlled steering angle.
From these two figures, we can see that 𝜁 highly affects lat-
eral/steer control. A large 𝜁 makes the model very sensitive.
The reason is that when a driver tries to minimise lateral risk
rTLC, she/he has to reduce speed, heading angle offset or lat-
eral position offset as we analysed in Section 3.3.1. Because

lateral position and velocity are also related to terminal cost
and longitudinal driving risk, the driver would like to minimise
heading angle offset. On the other hand, Figure 9d,e,f indicates
that 𝜁 has little influence on longitudinal control. In our test
case, the DBM performs well by setting 𝜁 between 1 and 2.5.
However, to guarantee driving safety, we suggest a range of
𝜁 ∈ [1.5, 2.5].

5.4 Results of effect of 𝝉

Simulation results of the effects of 𝜏 are shown in Figure 10.
The results of heading angle (Figure 10b) and steering angle
(Figure 10c) indicates that the safe time headway affects lat-
eral control slightly. Setting the initial front spacing between
the ego vehicle and the leading vehicle as a constant value, a
smaller 𝜏 forces the ego to drive closer to the leader, according
to Figure 10d,e. Consequently, the ego vehicle becomes more
sensitive to changes in front spacing. Meanwhile, we can see
that a large 𝜏 pushes the ego to decelerate abruptly at first from
Figure 10f. Furthermore, a large driving distance between the
leader and the follower yields low travel efficiency and decreases
road capability, even though it can improve driving safety to
some degree. A reasonable range of 𝜏 is between 1.5 and 2 s
where 1.5 s is the minimum value to avoid collisions with leading
vehicles [32]. To guarantee travel efficiency and improve trans-
portation capacity, we suggest a maximum of 𝜏 as 2 s based on
the simulation results of the effect of 𝜏.

6 MODEL VERIFICATION WITH
EMPIRICAL DATA

In this section, we verify the proposed risk-based DBM using
empirical observations to test its reliability when applied to real
driving. Since two risk thresholds are used to reflect individual
driving behaviours, they are calibrated using part of the empiri-
cal driving data, in Section 6.1, according to Equations (11) and
(13). The calibrated parameters are given in Table 3.
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10 YUAN ET AL.

FIGURE 9 Simulated lateral and longitudinal dynamics using different 𝜁. (d) depicts the front spacing when the ego vehicle and leading vehicle drive on the
same lane. The solid red line in (e) is the speed of the leading vehicle, and the solid blue one depicts the desired velocity. The dots in the figure indicate the start time
of LC.

FIGURE 10 Simulated lateral and longitudinal dynamics using different 𝜏 values. (d) depicts the front spacing when the ego vehicle and leading vehicle drive
on the same lane. The solid red line in (e) is the speed of the leading vehicle, and the solid blue one depicts the desired velocity. The dots in the figure indicate the
start time of LC.

TABLE 3 Parameters calibrated using empirical data.

TLC threshold 𝜻 Safe headway time 𝝉

Driver 1 1.6 1.6

Driver 2 2.4 1.6

6.1 Empirical driving data

We use an empirical driving dataset collected by a driving sim-
ulator based on PreScan to verify the developed model [37].

The dataset recorded the driving data of two different drivers
on a two-lane road with normal traffic conditions (no crashes).
Each driver was instructed to conduct a CF manoeuver dur-
ing the first 9 s, and then start LC while decreasing the driving
velocity. There is a leading vehicle during CF and no vehicle in
the target lane. The experiment was repeated ten times by each
driver. Each sample contained the current position, heading
angle, velocity, acceleration, and steering angle of ego vehicles,
and the position of leading vehicles, captured at 10 Hz. Con-
sidering this dataset was collected in CF and LC scenarios, and
recorded detailed trajectory information of ego vehicles and the
position information of leaders, it is suitable for us to verify our
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YUAN ET AL. 11

FIGURE 11 Validation experiments using driving data from two
different drivers. The blue and red dashed lines indicate observations from
driver 1 and driver 2, respectively. The solid lines coloured blue and red are the
outputs of the developed DBM.

model with empirical data. The desired tactical decisions in this
dataset are set using the closest values, such as when the desired
velocity during CF is set as Vde = 9 m/s, which is changed to
Vde = 7.5 m/s after starting LC, where Lc = 1 and Lt = 2.

6.2 Results analysis

Applying the parameters obtained from empirical observations
to DBM in Section 3, simulation results are shown in Figure 11.
The dashed lines in Figure 11 show the observed trajectories for
driver 1 and driver 2, and solid lines are the outputs of DBM,
where the model parameters are adapted based on the obser-
vations of each driver as shown in Table 3. From Figure 11a,
we can see that both the drivers and the developed DBM can
track the lane center during CF. After changing lanes, the obser-
vations do not follow the lane center closely. It implies that the
perceived risk for human drivers is acceptable, not requiring any
corrective action to track the lane center line. Meanwhile, the
developed DBM performs similarly, which indicates our devel-
oped model is able to behave like human drivers by using TLC
thresholds to evaluate lateral driving risk. The performance of
our model is also supported by the result shown in Figure 11b,
where the maximum heading angle of driver 1 is larger than
that of driver 2. The reason could be that the TLC threshold
of driver 1 is smaller than that of driver 2 (in Table 1). The
effects of the TLC threshold on driving behaviours are con-
sistent with the simulation results in Figure 9b. Figure 11d,c
shows that our model keeps a safe distance from leading vehi-
cles like humans by changing driving speed. Results indicate
that the developed model is able to behave like human drivers,
driving safely and efficiently. In addition, by minimising acceler-
ation, steering angle, and their changing rates, driving comfort
has been enhanced [38]. Meanwhile, two risk thresholds func-
tion well to reflect how each driver perceives longitudinal and
lateral driving risk.

7 CONCLUSIONS

We have developed an integrated risk-based DBM under an
MPC framework, that adopts the dynamic bicycle model to pre-
dict ego vehicle dynamics. This model operates at the control
level in a feedback loop, taking into account driving risk from
road and lane boundaries and neighbouring vehicles, while
simultaneously enhancing travel efficiency and driving com-
fort by minimising corresponding costs. Four simulations are
designed to evaluate the performance of the developed DBM
and analyse the effects of risk thresholds on driving behaviour.
The first two simulations demonstrate that our model performs
exceptionally well during CF and LC maneuvers. These results
showcase the advantages of our integrated DBM, which can
generate smooth and comfortable trajectories and adapt to
various driving scenarios. Simulations 3 and 4 analyse the sen-
sitivity of risk thresholds and the effects of various parameter
settings on driving behaviour. The results demonstrate that the
choice of threshold values has a modest impact on the driving
behaviour of the model. We also provide reference ranges for
two risk thresholds based on our simulation results. Finally, we
verify that the developed model is able to behave like humans
using empirical data, especially for driving risk evaluation. In
conclusion, our integrated risk-based DBM has demonstrated
promising results, indicating that it could be applied to intelli-
gent traffic systems to help enhance driving safety, efficiency,
and comfort. The sensitivity analysis of risk thresholds provides
valuable insights into their influence on driving behaviour.
A limitation of our study is that a tactical-decision model is
not integrated, so some decisions are manually given, such as
the start of the lane change. To address this issue, we plan to
incorporate a risk-based decision-making model into future
studies. In this case, this integrated DBM can be applied to
more driving scenarios including non-lane based environment.
Meanwhile, we will use more empirical driving data, including
videography data, to verify our findings and models.
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