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Preface

Verdwaald in het bos,
Blik ik terug
Op alles wat achter me ligt;
De obstakels,
maar ook de openheid van mijn zicht,
Om roerloos hierdoor
te blijven stilstaan
En me af te vragen waar
Naartoe te gaan.
Om doelen te stellen voor
Een weg vooruit
En te omvatten wat
Alles voor me beduidt.
Door deze inzichten van
Het verleden en het heden
Weet ik me nu in
Een bepaalde richting
Te begeven.

Leen Aarts

In front of you lies the thesis I have been conducting over the last several months. It is the final
work I deliver, in order to meet the graduation qualifications for the Aerospace Engineering
masters at Delft University of Technology, the Netherlands.

During my internship at Georgia Institute of Technology (Georgia Tech), Atlanta, USA, I
developed an absolute localization algorithm for Unmanned Aerial Vehicles (UAVs). During
this internship I decided to select a thesis topic in UAV Guidance Navigation & Control
(GNC).

I asked Guido de Croon to be the supervisor for my thesis work. Guido let me choose between
different thesis topics, after which I chose to work on high-level insect-inspired visual naviga-
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vi Preface

tion. This gave me the opportunity to work with other research disciplines than engineering
and it forced me to take computational constraints of micro UAVs into account.

I would like to thank Kimberly and Guido, for their tips and feedback on my research.
Kimberly was a great sparring partner, who helped me stay motivated throughout the process.
Combined with Guido’s ample experience and relaxed attitude I am very grateful with these
supervisors. Furthermore, I thank members of MAVLab for help and motivation during
the project. In particular Kirk Scheper facilitated me a lot during my struggles with the
SmartUAV simulator. Also, I would like to thank Tobias Heil for proofreading the work.
Last but not least, I would like to thank friends and family for listening, when I rambled on
about robotics, programming or artificial intelligence.

With the poem above (in Dutch), I would like to finish this personal note, by symbolizing
the thesis and showing the transition I am going to make from the academic to the industrial
world.

Gerald van Dalen
May 19, 2016

Delft, The Netherlands
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Acronyms

ALV Average Landmark Vector
BoA Basin of Attraction
BoW Bag of Words
EKF Extended Kalman Filter
GNC Guidance Navigation & Control
GPS Global Positioning System
GVG Generalized Voronoi Graph
HSV Hue Saturation Value
IMAV International Micro Air Vehicle Conference and Competition
IMU Inertial Measurement Unit
INS Inertial Navigation System
LK Lucas-Kanade
MAV Micro Aerial Vehicle
MP Milestone Position
MPU Micro Processing Unit
NN Neural Network
PI Path Integration
PTaM Parallel Tracking and Mapping
RANSAC Random Sample Consensus
RMS Root-Mean-Square
SfM Structure from Motion
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SSD Sum of Squared Differences
SVO Semi-direct Visual Odometry
UAV Unmanned Aerial Vehicle
VO Visual Odometry
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List of Definitions

Active Navigation In the context of this thesis it is the opposite of exploration; i.e., it can
entail navigation to an earlier visited location.

Exploration Journey The journey where a UAV flies around without navigating. In the
context of homing this often means it is used for route learning.

Fingerprint Any representation of a mapped place of interest in the environment (i.e., node).

Homing The proces of returning to an earlier visited location. It can be used for animals or
unmanned vehicles.

Homing Problem Part of the navigation problem, which only considers returning to an
earlier visited location.

Homing/Return Trajectory Path which is followed to reach an earlier visited location.

Landmark An object or feature of a landscape that is easily seen and recognized from a
distance, especially one that enables someone to establish their location.1

Low-Level Autonomy Flying behavior on a lower cognitive level than homing navigation,
like stabilizing, turning or obstacle avoidance.

Map-Based Navigation Navigation where either a pre-defined map is used, or a map is
generated and used for navigation afterwards.

Mapless Navigation Navigation where no map is used.

Navigation The process of determining and maintaining a course or trajectory to a goal
location.

Navigation Problem The broad definition of navigation, consisting of self-localization and
navigation within the environment.

Visual Homing Homing using vision as main sensory input.

Visual Odometry Integration of velocity extracted from optic flow, in order to get a lo-
cation estimate. In this thesis this estimate can be aided by information from other
sensors.

1http://www.oxforddictionaries.com/definition/english/landmark
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Chapter 1

Introduction

One of the major scientific challenges with regard to research to Micro Aerial Vehicles (MAVs)
are the limitations concerning both sensor and computational capacity of the vehicles. Espe-
cially when GNC tasks are required to be done on-board these very limited platforms, clever
sensor usages and algorithm designs must be formulated.

A well-known use case for MAVs is performing vision-based exploration missions. Two ex-
amples of this are exploration of disaster environments and stock checking in warehouses.
Low-level requirements for these missions include the ability to move, change direction and
avoid obstacles. Much research has already been done in these fields.

Another element is the ability to navigate actively. In the context of exploration missions
this active navigation can entail the ability to return to an earlier visited location or more
specifically the initial location. Especially if environments are unknown (i.e., no external
sensors available) and unreachable by humans, it is important to return to this initial location.

The navigational ability to return to the initial location is in literature referred to as homing,
derived from homing behavior of insects (Nelson, 1991). An example of this homing behavior
has been observed in desert ants (Cataglyphis fortis), where path integration mechanisms are
employed to find straight paths to the nest (Muller & Wehner, 1988). Given the limitations in
both sensor- and cognitive capabilities of ants, the homing strategy employed must be simple
and yet powerful.

Translating homing to MAV research, insect behavior can be mimicked by very small vehicles
with extremely limited computational resources. Especially for situations where both sensing
and computing must be performed fully on-board, this problem is not yet solved.

When vision is the driving sensor, home-bound navigation is referred to as visual homing. Ap-
plication of this is observed in both bee- and ant navigation. In case of UAV implementations,
this means the main sensor used is a camera.

The goal of this thesis is to investigate a recently published method on insect behavior, where
solely the visual familiarity of a route is used to perform visual homing (Baddeley, Graham,
Husbands, & Philippides, 2012). The focus is on investigating the biological proof of concept
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2 Introduction

presented by Baddeley et al., to find out whether the algorithm is suitable for implementation
on MAVs.

1-1 Research Context & Relevance

The research done by MAVLab1 at TU Delft has been and still is focused on low-level flight
and (vision-based) autonomy of MAVs. Notable examples concerning DelFly are system
identification (Caetano et al., 2013), vision-based flight (de Wagter, Tijmons, Remes, & de
Croon, 2014; G. de Croon, de Clercq, Ruijsink, Remes, & de Wagter, 2009), obstacle avoidance
and autonomous flight in general (G. C. H. E. de Croon et al., 2012, 2013).

A missing element on these MAVs is autonomous navigation with on-board sensing and
on-board processing only. This thesis should be a first step in implementing vision-based
navigation algorithms on-board micro aerial systems. Especially the ability to navigate back
to the initial location is a vital skill for a drone to have in an exploration mission.

1-2 Thesis Layout

The main part of this thesis is a scientific article, containing the key methods, results, con-
clusions and recommendations. This article is presented in Chapter 2 of this report. A more
concise version of this paper is submitted to the International Micro Air Vehicle Conference
and Competition (IMAV) 2016 and can be found in Chapter 3.

As addendum to this article, several chapters are added to give more context and show earlier
research done. First, Chapter 4 contains an overview of the literature reviewed in an early
stage of the project. Secondly, Chapter 5 shows a detailed explanation of the Infomax neural
network: an unsupervised neural network used for route learning. This neural network is ap-
plied in closed-loop simulations presented in the scientific papers. Finally, Chapter 6 contains
extra details regarding the simulation environment used to obtain the results presented in the
papers.

1http://mavlab.tudelft.nl/
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Chapter 2

Thesis Article

This chapter contains the scientific article which is the main body of this thesis. It can be
read on its own.
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Visual Homing for Micro Aerial Vehicles
using Scene Familiarity

Gerald J.J. van Dalen∗ Kimberly N. McGuire‡ Guido C.H.E. de Croon†

Abstract—Autonomous navigation is a major challenge in the
development of MAVs. When an algorithm has to be efficient,
insect intelligence can be a source of inspiration. An elementary
navigation task is homing, which means autonomously returning
to the initial location. A promising approach makes use of visual
familiarity of a route to determine reference headings during
homing. In this article an existing biological proof of concept
based on desert ants is transferred to MAVs. Vision-in-the-
loop experiments in different environments are performed, to
investigate the viability of scene familiarity for visual navigation.
Trained images are used to determine which control actions to
take during homing. To determine familiarity, either a database
of stored images is kept or an artificial neural network is
used. Different image representations are compared in multiple
simulated environments. The use of textons for determining
familiarity gives the best performance, but HSV color histograms
also perform well and are very efficient. It is concluded that
to make this method competitive with other visual navigation
approaches, route familiarity should be combined with other
methods to improve robustness.

I. INTRODUCTION

A major challenge in robotics is to navigate autonomously
through an unknown environment. Especially in indoor scenes,
where no Global Positioning System (GPS) system is avail-
able, the entire navigation problem has not been solved yet.

Current navigation algorithms either require expensive sen-
sors or significant computation power. Examples include
Simultaneous Localization and Mapping (SLAM) methods,
which have shown to be successful in real-time navigation,
on platforms with enough power. Most Micro Aerial Vehicles
(MAVs) do not carry such sensors and cannot perform heavy
computations on-board the vehicle.

In order to find suitable navigation algorithms for MAVs,
insects can be a source of inspiration, since they constantly
have to deal with complex navigation tasks while only having
small-sized brains [1]. Different algorithms have already been
created based on observations done on insect. A well-known
example is the use of optic flow to get a sense of velocity,
which is known to be done by insects [2]. Integrating this es-
timate for localization is called visual odometry. The obtained
location estimate is employed in higher level navigation algo-
rithms. Still, these algorithms are not readily available for tiny
MAVs yet. One of the higher level skills employed by insects
is the ability to return to the nest location. This is referred to as

∗Gerald van Dalen is a graduate student at the Micro Air Vehicle Laboratory
at TU Delft. Email: gjj.vandalen@gmail.com‡Kimberly McGuire is a PhD candidate at the Micro Air Vehicle Laboratory
at TU Delft.†Guido de Croon is an assistant professor at the Micro Air Vehicle
Laboratory at TU Delft.

homing [3]. It would be an important enabler for MAVs, if they
could use similarly high-level, but computationally efficient
algorithms for navigation.

A promising homing algorithm is proposed by Baddeley et
al., where familiar views along a route are used to determine
the correct direction to an earlier visited location [4]. This is
a visual homing algorithm, since cameras are used as driving
sensor. Instead of focussing on the construction of a detailed
(or coarse) map, Baddeley et al. propose that homing can
be performed just by means of recognizing which direction
seems most familiar to a robot. Furthermore, they use a small
neural network to store and recapitulate a route in order to find
the initial location. Potentially, this is very useful for MAV
navigation algorithms, since it deals with limited memory
found on many small platforms.

In an effort to find efficient navigation algorithms for MAVs,
this paper investigates the practical application of the scene
familiarity algorithm. The focus is on how robust familiarity
is to determine control actions. First, section II discusses the
state-of-the-art in autonomous visual navigation on drones.
Then, section III explains the scene familiarity method as
introduced by Baddeley et al. After identifying the limitations
in the simulations presented, sections IV, V and VI show
simulations and experiments for different environments, to
overcome current shortcomings in the implementation de-
scribed by Baddeley et al. Finally, closed-loop simulation
flights are performed to show a more realistic use-case of view
familiarity for MAV homing.

II. RELATED RESEARCH

The scene familiarity method introduced by Baddeley et al.
is a biologically plausible method to find a solution for the
visual homing problem [4]. Visual homing is in principal an
element of the general navigation problem, to which much
research is being done. Many algorithms made for solving
this navigation problem can potentially be used to solve the
homing problem. In this paper, the following definition for
navigation is used: ”Navigation is the process of determining
and maintaining a course or trajectory to a goal location.” [5].
This basically states that the aim is to navigate to a goal loca-
tion, without enforcing to have knowledge about the current
location of the robot. This section gives a brief overview of
previous research done to visual navigation and specifically
visual homing.

1



A. Map-based Navigation

Map-based navigation refers to methods where a map is kept
to navigate. Since the navigation algorithms we are interested
in must work in different, priorly unknown locations, only
SLAM methods are considered [6].

SLAM is a paradigm in which the agent generates a map
when traversing a route, and simultaneously localizes itself and
navigates on this map. This means that SLAM in principal
consists of three parts, namely traversing/exploring a route,
constructing a map and self-localization and navigation in this
map [7]. This means, map-based methods require information
about the current location of a robot. To make generated
maps more robust, loop closure is performed, where errors
are corrected by re-visiting mapped locations [8], [9], [10].

Since SLAM is a general navigation method, homing can
also be done with it. This is for example shown in Motard et
al., where an AIBO robot1 must navigate back to its charging
station [11]. Still, running SLAM, and in particular visual
SLAM algorithms in real-time, requires much computational
power, since (visual) processing, mapping and self-localization
must be performed simultaneously. Since most MAVs have
limited computational power, visual SLAM often cannot be
run in real-time, which makes it less suitable for homing on
small platforms.

B. Path Integration

Path Integration (PI) methods form navigation solutions
where localization at different moments in time are used to
navigate. A velocity estimate is obtained and integrated to
perform localization. In principle, no map is made of the
environment, although when heading estimation is part of the
localization, the result will be a map-like representation.

In visual driven robotics, velocity is often obtained using
optic flow between different frames of a scene [12]. Often,
a downward looking camera is used to obtain images. Optic
flow is the apparent motion observed in an image and many
different algorithms exist to calculate optic flow. A comparison
of these methods and different applications to Unmanned
Aerial Vehicles (UAVs) are published by Barron et al. [13] and
Chao et al. [14] respectively. For UAV applications, the most
common algorithms for calculating optic flow are the Lucas-
Kanade (LK) method [15], the Horn-Schunck method [16],
image interpolation methods [17], block matching techniques
and feature matching techniques.

For the homing problem the aim is to record and store the
traversed route of an MAV. As mentioned in the introduction,
integrating optic flow to estimate location is called visual
odometry. Research in visual odometry is done for both stereo
vision and monocular vision [18]. When stereo vision is used,
it is easier to make a three dimensional representation of the
environment due to available depth information. For monoc-
ular vision, this depth information must be extracted from
sequential images. This means that stereo visual odometry can

1http://www.sony-aibo.co.uk/

operate without motion, where in the monocular case motion
is needed to extract environmental geometry.

C. Snapshot Model

One way in which insects can store a location is by making
a snapshot. This means a location is marked by storing an
image. When performing localization, the current visual input
is compared to this snapshot in order to converge toward
the location. In 1983, Cartwright & Collett introduced the
Snapshot Model [19]. The framework they presented explains
the navigation capabilities of bees when traveling between dif-
ferent food sources. The model consists of two main elements:
a dead-reckoning method to get close to the goal location and
finding the best visual match with a stored snapshot to find
the exact location of this goal. The visual matching is done by
a direct comparison of an image on the retina with a stored
snapshot.

For highly cluttered environments close to the goal location,
the visual matching would only work when the distance is very
small. Cartwright & Collett extended the snapshot model by
adding an extra snapshot, which does not contain landmarks
close to the goal [20]. This snapshot can be used for visual
matching when the distance to the goal is larger, while the
other snapshot (including visual information close to the goal)
can be used for the last part of the homing route. Navigation
based on those snapshots is done by comparing size and
azimuth of the landmarks between the snapshot and retinal
image [21].

The landmark approach is further extended with the addition
of visual beacons along the route [22]. During the early parts
of the return to a feeder or nest location, not only dead-
reckoning, but also visual landmark information is used. The
usage of those beacons reduce the occurence of integration
errors. A disadvantage of this is that many images have to be
stored.

In order to make the snapshot model biologically more
plausible, a neural implementation is developed [23]. It gives
an explanation of why and how the snapshot model can work
in an insect’s brain. The paper shows that even though the
real neural implementation in an insect’s brain is unknown, a
simple neural model can mimic snapshot homing.

D. Average Landmark Vectors

The snapshot model stores an image to represent a certain
location of interest, like a nest or food source. From this, a
heading vector to the home location is obtained. A similar
approach uses Average Landmark Vectors (ALVs) to represent
landmarks [24]. ALVs, introduced by Lambrinos et al. in
1998, are averages of the heading vectors to all landmark
locations [25]. The homing vector is determined with respect
to this ALV. Lambrinos et al. classified objects as landmarks
using a brightness threshold on pixel intensities [24]. When a
patch of pixels above (or below) this threshold is available, it
is recognized as a landmark.

The main difference between ALV homing and snapshot
homing is that a location of interest is represented by a single
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vector, instead of an entire image. This both improves the
computational efficiency and reduces the storage demands.
The downside is that it is less accurate and prone to errors.
A small offset of a landmark vector can have a big impact on
the ALV and thus the homing vector. Furthermore, the current
heading of a robot is needed to be able to rely on ALVs.

E. Scene Familiarity

Scene familiarity methods refer to recognition of a traversed
route, without specific information about the goal location.
This means, a robot must always move into the most familiar
direction. In the ideal case, this would automatically mean that
the agent returns to the goal location.

In 2012, Baddeley et al. proposed a scene familiarity method
for visual homing of desert ants [4]. The purpose of this
research was to give a proof of concept for how desert ants,
which do not rely on pheromone trails, might navigate back
to their nests.

This scene familiarity method is quite new and to our
knowledge not yet used in robotic applications. Our paper
analyzes the method as a first step towards applying the
algorithm on-board MAVs. The focus is on computational
efficiency of the algorithm. The next section reviews the paper
published by Baddeley et al. in depth.

III. THE SCENE FAMILIARITY METHOD

In an effort to find a biologically more plausible alternative
to map-based navigation methods and the snapshot model
described in the previous section [26], the scene familiarity
homing method is introduced [4]. To show that homing
navigation could take place without the use of visual odometry,
a method is presented where views along the entire route
determine the heading in which to proceed. Conceptually, this
means that during a training run images in the direction of the
route are stored. Then, when using the algorithm for homing,
images taken around the robot are compared to these stored
views in order to determine the most familiar direction.

The method is both presented assuming a perfect memory,
as well as a biologically more plausible neural method. The
first method stores pictures taken during a training run and
matches them for homing using the Sum of Squared Differ-
ences (SSD) of raw pixel values. The second method uses an
unsupervised neural network called Infomax to approximate
familiarity [27]. The network can be seen as an approximator
of the familiarity of images that would otherwise be stored.
Next to the biological likeliness of such a network, it gives
control over the required computational power.

In this section, first homing using both a perfect memory
(section III-A) and an Infomax neural network (section III-B)
are summarized. Then, in section III-C an overview of issues
is given, which must be addressed before the scene familiarity
method can be applied on-board an MAV.

A. Route Representation using a Perfect Memory

The algorithm presented by Baddeley et al. makes use of an
exploration (training) run and a homing (testing) run. During

Fig. 1. Binary panoramic image used in Baddeley et al. [4].

exploration, path integration and obstacle avoidance are used
to progress through the environment. This is the training phase
of the agent, in which a perfect memory is used for storing
views. This entails storing a panoramic image every 4cm. The
panoramic images serve as visual compass, since they have a
known field of view of 360◦ and are centered in the direction
of travel of the agent.

When the homing capabilities are tested, the agent is placed
back at its initial location. From there, homing is done by
taking 360◦ images with an omni-directional camera. Each
panorama is iteratively shifted by 1 pixel, such that the center
of the image is placed in all direction. These shifted panoramas
are matched against the stored database of images, to find the
most familiar view. This most familiar view is found by max-
imizing the familiarity values between each shifted panorama
and each stored image. The familiarity value between a single
view and all stored images is obtained by calculating the SSD
of raw pixel values, as defined in Equation 1 [28].

F (I) = − arg min
i

∑

x,y

(I(x, y)− Vi(x, y))
2 (1)

In this equation, F (I) is the familiarity of view I , I(x, y) is
a single panoramic view and Vi(x, y) are the stored views. It
can be seen that the stored image that gives the closest match
to the current image is used as familiarity value. Note that
the agent can rotate on the spot or use an omni-directional
camera to obtain familiarity values in all directions. The latter
approach is used by Baddeley et al. After determining the most
familiar direction (by maximizing the values obtained with
Equation 1), the simulated agent is moved in that direction by
10cm. After this the procedure is repeated.

In the paper, the stored panoramas are binary images and
have dimensions of 90 by 17 pixels (Figure 1). The resolution
is such that each pixel in horizontal direction is equivalent
to a rotation of 4◦. During homing, familiarity is evaluated
for steps of 1 pixel, such that each panorama is shifted 90
times and hence Equation 1 is evaluated 90 times. As said,
the maximum outcome of these 90 familiarity values results
in the most familiar direction.

An example of the simulation environment is shown in
Figure 2. Simulations using a perfect memory are done with
different clutter densities in the environment. The presented
results show that densely cluttered environments are harder to
recognize than sparsely cluttered ones. This can be explained
by obstruction of views; especially when objects appear in the
vicinity of the agent, scenes can differ significantly by only
moderate displacements of the agent. Figure 2 also shows the
results presented in Baddeley et al. for a perfect memory. Each
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Fig. 2. Figure A shows the simulation environment used by Baddeley et
al., including typical views experienced along the route [4]. The three red
lines show the learned routes and the black lines show different homing runs,
performed using a perfect memory. Figures B, C and D show parts of the
route at different scales.

of the three routes contain between 700 and 980 stored views.
During homing, Gaussian noise with a standard deviation of
approximately 5◦ was added to the heading during each step
performed by the agent. This is done to simulate uncertainties
during navigation.

Looking at the results, it can be concluded that the simula-
tions show very good performance. Due to the large memory
and computational requirements, the algorithm in the current
form is not yet suitable for implementation on-board a small
robot. The next section shows the use of a neural network
for the storage of familiarity, to reduce these computational
requirements.

B. Route Representation using an Infomax Neural Network

In their paper, Baddeley et al. also study a neural network
approach for determining familiarity. The goal of the homing
method is not to recapitulate the entire route, but only to get a
sense of familiarity. Using a neural network limits the storage
requirements for the route, since all information is encoded in
the initially defined neurons.

To store the familiarity of a route, an Infomax neural
network is chosen [27], [29]. The Infomax neural network
used consists of two layers, with an input layer and a novelty
layer (Figure 3) [27]. The network can be used for both
feature extraction and familiarity discrimination. However, for
the method proposed by Baddeley et al., only familiarity
discrimination is needed. This familiarity discrimination works
as follows. Each input provided to the network as training
sample changes the weights such that the input to the second
layer (the novelty layer) is lowered. This means when during
testing familiar samples are provided, the summed input to
novelty neurons is lower than for unfamiliar samples. Note that
in our paper, a higher outcome means more familiar; therefore,
a minus sign is added to the summed novelty layer input.

Fig. 3. Infomax neural network structure with an input layer and a novelty
layer. In this representation it is assumed that the input layer and novelty layer
contain an equal amount of neurons. Obtained from [27].

As input to the network raw pixel values of filtered binary
images are used. The number of input neurons is equal to
the number of novelty neurons. In principle this is not a
given necessity, since a lower amount of novelty neurons
is computationally advantageous and might give sufficient
performance for successful scene discrimination. On the other
hand, a higher amount would increase the storage capacity of
the network [27]. N is used to indicate the number of inputs,
while M indicates the number of novelty neurons.

As mentioned above, the main idea behind an Infomax
network for familiarity discrimination is that any sequence of
inputs encountered during training adjust the weights such that
the total input to the novelty layer decreases. The metric for
familiarity is defined as:

d(x) = −
M∑

i=1

|hi| (2)

Here, d(x) (also called the decision function) is the famil-
iarity of input sequence x, for which a larger value means that
the sequence is more familiar than when d(x) is smaller. hi
is the input to the ith novelty neuron and is defined as:

hi =
N∑

j=1

wijxj (3)

In this equation xj is the input from the jth input neuron.
Finally, the activation function of the ith novelty neuron is a
hyperbolic tangent of hi.

As the familiarity d(x) can be seen as the desired output
of this network, an output layer is not needed and therefore
discarded.

Training is done using an unsupervised learning rule, with
the aim to lower the familiarity for each sample encountered
during training. The difference between supervised learning
(which is normally used in neural networks) and unsupervised
learning, is that in supervised learning the difference between
desired and actual output of the network is minimized to
update the weights of the neurons. In unsupervised learning,
however, the desired output is not used for training. Instead, an
update rule as function of network input, novelty layer output
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Fig. 4. Multiple routes trained using the same Infomax neural network. The
numbers indicate the order in which routes were trained. Obtained from [4].
In Figure A, homing on each route is performed immediately after training.
In Figure B, familiarity on routes 1 and 2 is evaluated after having finished
training all routes.

and current neuron weights is applied to update the weights.
On the one hand this makes unsupervised training very fast,
but on the other hand it provides less control over the trained
output of the network. As the familiarity output of an Infomax
network is only used to compare the result with respect to
other inputs, unsupervised learning suffices. The unsupervised
learning rule used is obtained from [30] and is defined as:

∆wi,j =
η

M

(
wi,j − (yi + hi)

M∑

k=1

hkwk,j

)
(4)

In this equation, η is the learning rate, wi,j is the current
value of the weight between input j and neuron i and yi is
the output of the ith novelty neuron.

Baddeley et al. also presented simulation results using the
Infomax network as storage for views. The only difference is
the use of panoramic images of 180◦ instead of 360◦, centered
on the heading chosen in the previous timestep. The results
using this network show to be very similar to the results using
a perfect memory. Therefore, these are not included here.

When dealing with artificial neural networks, providing new
training data will eventually cause the network to forget earlier
provided views. To investigate this, Baddeley et al. attempted
to learn three different routes sequentially, using the same
network. The results of this are shown in Figure 4. It can
be seen that training three routes (i.e., a total learned distance
of approximately 30 meters) increases the failure rate during
homing.

C. Issues for Robotic Implementations

After having presented a brief overview of the results
obtained by Baddeley et al., the following lists the issues
that must be addressed before being able to implement the
algorithm on a robot:

• Environment: Binary sceneries are used: the sky is
white and objects are black. These environments are not
representative for the scenes through which a robot must
navigate. The reasoning for using such environments, is
that it may be representative for the views experienced

by ants. Even though these binary images are not rep-
resentative for a real environment, it might be possible
to extract such a skyline from normal camera images.
Experimenting with different, more realistic environments
will be the main focus of this paper.

• Scanning accuracy: For determining familiarity, forward
looking panoramic images are used. The simulation is
set up such that moving the image by one pixel in the
horizontal direction is equivalent to a rotation of the agent
of 4◦. In the simulations, the most familiar direction
is chosen by comparing different views with the stored
panoramas. The different views are a single pixel (hence,
4◦) apart. These accurate rotations are not realistic for
application on an MAV.

• Computation: The simulations using a perfect memory
store 700 to 980 views per route. To perform a scan over
360◦, 90 views have to be matched with each stored
images. This comes down to a total number of image
comparisons between 63000 and 88200 per timestep.
This was solved by using an Infomax network instead,
where approximately 1500 input neurons and novelty
neurons are used. This amount of novelty neurons makes
it unusable in real-time, but a smaller number may lead
to similar performance and better computional efficiency.
Comparing the real-time performance of different image
representations is implicitly done during the closed-loop
simulations, since they are performed in real-time. For
the Infomax network this means less novelty neurons are
used. Also, the views used are scaled down to decrease
the number of inputs to the network.

• Short distances: The simulation results clearly show
the applicability to insects. This is seen in the fact that
images are stored every 4cm and movements of 10cm
per timestep are made during homing. When the method
is implemented in robotics, the robot should be able to
cover longer distances to make it more useful. This might
not be a problem, but has to be tested before concluding
the usefulness on UAVs.

• Training run: Training of the route is done in the
direction of homing. Ultimately, it is desired to perform
training during exploration, while homing occurs in the
opposite direction. There are several ways to circumvent
this, like adding an extra camera on the back of the
robot, using an omni-directional camera or by making a
turn when homing is initiated (i.e., navigation behavior).
When the goal of the algorithm is to run on platforms
with a single, forward looking camera, this must be
further investigated. In the closed-loop results presented
in our paper, the simulated MAV flies backwards during
training and forward during homing.

Recently, Gaffin et al. have published a detailed analysis
on scene familiarity in realistic, indoor environments [31].
Distinguishing familiarity is both analyzed in rotation and
translation, for raw pixel matching between images of dif-
ferent resolutions. A rail mounted camera is used to perform
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MATLAB-driven experiments.
In our analysis of the scene familiarity method, we will use a

simulator containing realistic sceneries, vehicle dynamics and
camera parameters. A translation and rotation analysis will be
performed as well, however, next to raw pixel values, we will
also investigate alternative image representations, to determine
which one is more suitable for recognizing familiar views.
Closed-loop simulations with an MAV are presented and we
show the use of an Infomax neural network as well, since this
helps in meeting the limited storage requirements of an MAV.
We hope to better understand autonomous navigation for small
MAVs.

IV. ENVIRONMENT ANALYSIS

In the previous section, the original simulation results
presented by Baddeley et al. are discussed. Based on this,
a key question remains whether the algorithm will work in
different types of environments. As mentioned, only filtered
binary images were used as experienced views. Also, the SSD
between pixel values of two views is used for familiarity
registration, while there may be more viable methods to
evaluate this. Similarly, raw pixel values were given as input
to the Infomax neural network, while other metrics may work
as well or better.

In this and the following sections, an analysis of different
environments is presented in combination with different im-
age representations. First, this section gives an overview of
the different image representations tested and introduces the
different image matching performance criteria. Then, section V
shows simulation results of these different methods in multiple
environments and section VI shows similar results for real
imagery, in an attempt to validate the simulations. Note that
the focus is not on the use of a neural network for storing
familiarity, since this (and other approximators) can be applied
to either image representation.

To test the usability of familiarity of scenes for visual hom-
ing, we investigate the familiarity sensitivity to both rotation
and translation. Analyzing rotation is done by performing a
360◦ turn at a fixed location in the environment, in steps of
5◦. A single view is stored and used as trained image and all
other views experienced during this rotation are compared to
it. The hypothesis is that familiarity should improve when the
heading difference between the current view and the stored
image decreases.

Translation is analyzed by evaluating familiarity in a grid
of locations, with a fixed heading. Again, a single view is
used as training sample and the familiarity is expected to
improve when the distance to the trained image gets smaller.
Results of this should show the sensitivity of familiarity with
both increasing distance (in two directions) and increasing
heading angle. Rotation is considered to be most important,
since heading commands are given to determine control ac-
tions during homing. Analysing translation is mainly done to
determine how much familiarity changes when an agent drifts
away. When these changes are significant, it is likely that the
home location is not found when the robot does not follow the

exact training path. Note that opposed to the results shown by
Baddeley et al., a more realistic camera model is used instead
of cropping parts of the environment.

The following image representations are compared in the
different environments:

• Raw pixel values The sum of squared differences of each
pixel in two images outputs a similarity score [28]. A
value of zero indicates that the two images are identical
and when the value gets larger, images are less similar.
SSD on these pixel values is computationally expensive,
since all pixels are compared. This method is used in
the simulations presented by Baddeley et al. [4]. As
mentioned, in this paper the score is inverted such that
the most familiar view gives the highest score.

• Texton histograms Textons are small texture describ-
tive image patches, which can be extracted from an
image [32]. The patches can be assigned to pre-trained
texton clusters, such that a histogram is created which
represents the image. This makes it less sensitive to
small displacements compared to spatially variant image
matching methods such as SSD between raw pixel values.
An example texton histogram is shown in Figure 5. Image
patches of 5 by 5 pixels are extracted from an image
of a sports hall (as shown in Figure 5a) and classified
to a dictionary of 50 textons (or: clusters). The patches
in the dictionary are shown in Figure 5b. The patches
extracted from the image are clustered by minimizing
the euclidean distance with the textons in the dictionary,
resulting in a histogram as shown in Figure 5c. In this
paper the histogram frequencies are normalized; each
cluster is divided by the total number of patches extracted.

• Hue Saturation Value (HSV) color histograms Color
histograms contain a classification of each pixel based on
color intensity. Here, HSV colors are used. A saturation
threshold of 0.2 is used, which means all pixels with a
saturation lower than this value are discarded. The corre-
sponding Hue and Value channels of the pixels accounted
for are used for the histogram. The Hue histogram con-
tains 25 bins, as does the Value histogram. To obtain the
HSV color histogram (which looks conceptually similar
to Figure 5c), the histograms are concatenated.

The performances of the different methods in different
environments are evaluated by 1) looking at how distinct a
view close to the trained view is, compared to other views and
2) what the probability is that the correct (i.e., trained) view is
selected as most familiar, since that direction will be chosen
for homing. Figure 6 shows an example of a familiarity curve
when rotating on the spot. The trained image is positioned
at an angle of 180◦ and image matching is in this figure
done using the SSD of raw pixel values. The performance
is evaluated using the following measures:

• Peak ratio As mentioned, a rotation on the spot is used
to compare all views around the robot with a single
stored view. It is expected that the view that resembles
the trained view best comes out as most familiar. If this
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Fig. 5. Example of an image representation using textons. Figure 5a shows
an example image from a sports hall. Figure 5b shows the clusters to which
textons are assigned and Figure 5c shows the corresponding texton histogram.
The textons are patches of 5 by 5 pixels, and a total number of 36816 textons
have been extracted from the example image.

is indeed the case, the distinctiveness of this peak can
provide information on how likely it is that it will be
picked as most familiar direction. In Figure 6 a green,
dashed, horizontal line is drawn through the mean of the
familiarity curve. This means the further the peak lies
from the line, the more distinct a peak is.
To compare different environments, the peak ratio is
defines as:

PR =
maxF − µF

maxF −minF
(5)

In this equation, F refers to the familiarity values shown
in Figure 6 and µF is the mean of all familiarity values
(i.e., the green line in Figure 6). The higher the peak ratio
is, the more distinct a peak is.

• Basin of Attraction (BoA) The basin of attraction shows
how far an agent can be off from the trained view, before
diverging away from the correct direction. It is evaluated
by finding all local optima (both minima and maxima)
and looking between which minima the agent converges
towards the trained optimal familiarity (maximum). In
Figure 6 two red, dashed, vertical lines are drawn through
the local minima closest to the trained view. The percent-
age BoA is defined as the distance between those vertical
lines divided by 360◦. The larger this value is, the larger
the probability that the most familiar direction is found.

• Correlation coefficient This is used to estimate the
correlation between two neighboring heading angles, in
this case differing by 5◦. Here, the Pearson product-
moment correlation coefficient is used, where 1 indicates
full positive correlation between two neighboring angles,
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Fig. 6. Rotation on the spot at a constant location in the SmartUAV simulator.
Unfiltered images of 48 by 32 pixels are taken every 5◦ and compared to a
stored image at a heading angle of 180◦. The red dashed lines indicate the
BoA bounds and the green dashed line shows the mean familiarity.

-1 means full negative correlation and 0 means no corre-
lation.

The BoA is considered to be most important, since it
determines how far an agent can be off the route (i.e., the
correct heading) while still being able to converge back to
the correct path, with a gradient-like search. The peak ratio
is mainly useful when an agent has no clue where to go; if
the agent makes a 360◦ turn and the the trained peak is very
distinct, the probability of continuing in the right direction
is high. The correlation coefficient gives a measure for how
continuous a familiarity curve is. When the correlation is low,
it could happen that spikes occur in the familiarity curve,
which may give wrong results.

V. SMARTUAV SIMULATIONS

This section analyzes different sceneries in the SmartUAV
simulator. SmartUAV is developed for Guidance Navigation
& Control (GNC) research to MAVs and specializes in the
use of vision as primary sensor. The simulator is written in
C++ and sensors and controllers can be connected using a
block interface. This makes it easily extendable and the level
of simulation fidelity can be adapted by changing complexity
of vehicle dynamics, sensor dynamics and realism of the
environment. Furthermore, the simulator can either run in real-
time or fast-time.

Two different simulated environments are analyzed. Figure 7
shows example frames of each scene. As mentioned in the
introduction, GPS can be used for outdoor navigation, which
makes a visually driven homing algorithm less relevant. There-
fore, indoor environments are analyzed, in contrast to what is
done by Baddeley et al.

• Sports hall Figure 7a shows a frame from the TU Delft
sports hall. The dimensions are 30 by 60 meters and the
sports hall contains two orange poles on the center line
of the hall.
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Fig. 7. Examples from the different sceneries used in SmartUAV simulations.
Figure 7a shows a sports hall environment and Figure 7b shows a room with
photos on the walls.

• Photo room Figure 7b shows an artificial gray room,
containing randomly placed frames with photographs.
The dimensions of the room are approximately 10 by
10 meters.

As mentioned, each environment will be tested on rota-
tional and translational familiarity sensitivity. For familiarity
estimation, SSD values of raw pixels, SSD values of texton
histograms and SSD values of HSV color histograms are used
and compared. The values are inverted and scaled for easy
comparison.

A. Rotation

The familiarity sensitivity to yaw rotations is most important
for view familiarity-based homing. Each turn taken during
homing is made based on the familiarity values at different
heading angles.

To analyze familiarity for different headings, this section
presents performance for different image representations in the
two environments. As explained in the previous section, the
performance is evaluated by calculating the BoAs, peak ratios
and correlation coefficients.

Rotation is analyzed by simulating an MAV on a single
location in the environment and storing a representation of
one view. Then, this representation is matched to views in all
other directions in order to get a measure of familiarity. This
is done in a grid of locations in each environment, to get both
unobstructed views as well as obstructed views (e.g., close to
a wall). The grids cover the entire sports hall and photoroom,
and the spacings are 1 meter. For each location, the BoA, peak
ratio and correlation coefficient can be calculated.

Table I summarizes these performance measures for the
different methods and environments. The calculated BoAs,
peak ratios and correlation coefficients are averaged for all
locations and the standard deviations are included as well.
Good performance is characterized by large BoAs (i.e., it is
likely that the correct heading is found), large peak ratios
(i.e., the correct familiarity value is distinct compared to
familiarities in other directions) and correlation coefficients
close to 1 (i.e., continuous and not too noisy).

Looking at the results, it can be seen that the BoAs for
raw pixel matching and texton histogram matching are similar
in both environments. HSV matching does not perform as
good, which is also seen in lower correlation coefficients.

TABLE I
AVERAGE PERFORMANCE METRICS FOR EACH IMAGE MATCHING METHOD

AND ENVIRONMENT COMBINATION DURING ROTATION.

Raw pixels Textons HSV
Sports hall

BoA average 37.3% 36.7% 6.90%
BoA std. dev. 16.5% 12.0% 3.77%
Peak Ratio average 0.57 0.43 0.53
Peak Ratio std. dev. 0.10 0.076 0.13
Correlation Coefficient average 0.98 0.98 0.80
Correlation Coefficient std. dev. 0.051 0.0091 0.14

Photo room
BoA average 21.6% 22.0% 9.02%
BoA std. dev. 7.51% 8.89% 4.21%
Peak Ratio average 0.58 0.49 0.37
Peak Ratio std. dev. 0.092 0.12 0.089
Correlation Coefficient average 0.96 0.94 0.90
Correlation Coefficient std. dev. 0.023 0.026 0.037

This indicates more local optima, which inherently reduces the
BoA. The peak ratios are in both environments best with raw
pixel matching. Since the values and standard deviations of
these peak ratios lie close to each other for both environments,
no significant conclusions can be drawn from this.

To illustrate the results shown in the table, familiarity
curves of both environments are shown in Figures 8 and 9
respectively. Note again that the curves show how familiar a
direction is, where a higher value means a better recognized
view. The blue, solid lines indicate the average familiarity
curve for all locations in the environments, the red dashed lines
indicate two times the standard deviation and the gray lines
show some example familiarity curves at individual locations
in the environments. The results are scaled such that the
average line lies between 0 and 1.

As expected, all average curves show a single peak at the
trained locations (i.e., at 180◦). The HSV histogram result
however, shows a less predictable outcome, with a larger
amount of local optima. This was expected because of the
lower BoAs and correlation coefficients shown in Table I.

When comparing the two different environments, it can be
seen that the BoAs in the photoroom environment are lower
than in the sports hall. An explanation can be found in the
similarity in the photoroom environment, where each wall is
gray and the only notable differences found are in the pictures
on the walls. It seems that, at least for raw pixel and texton
matching, a more realistic environments yields into higher
BoAs. For HSV color matching this is the other way around,
where the color differences found in the sports hall make
HSV histograms more noisy. This especially leads to a lower
correlation coefficient and peak ratio.

Because a BoA is very sensitive to the presence of local
optima, smoothing the familiarity curves can lead to increased
performance. When smoothing is applied, non-distinct local
optima can disappear. Obviously, the more such a curve is
smoothed, the more peaks disappear. When the right amount
of smoothing is applied, the BoA can increase drastically,
which makes it easier to converge towards the trained view.
To test the effect of smoothing and the extent to which this
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Fig. 8. Average rotation on the spot of 231 locations in SmartUAV. Unfiltered
images of 48 by 32 pixels are taken every 5◦ and compared to a stored image
at a heading angle of 180◦. The red dashed lines indicate the 2σ bounds and
the gray lines are some example familiarities.
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Fig. 9. Average rotation on the spot of 81 locations in SmartUAV. Unfiltered
images of 48 by 32 pixels are taken every 5◦ and compared to a stored image
at a heading angle of 180◦. The red dashed lines indicate the 2σ bounds and
the gray lines are some example familiarities.
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Fig. 10. Different BoAs for varying smoothness of the familiarity curve,
evaluated in the sports hall environment. The x-axis indicates the smoothing
span used for moving average smoothing. The curves are averages from all
locations in the sports hall.
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Fig. 11. Smoothed familiarities, for no smoothing, smoothing for optimal
BoA (smoothing span of 30) and over smoothing (smoothing span of 70), in
the sports hall environment.

is needed, a moving average filter is applied to the familiarity
curves with varying span. Figures 10 and 12 show this for the
two environments. Both plots show that smoothing (a moving
average span of approximately 30◦) drastically increases the
BoAs of all three image representations. When too much
smoothing is applied, the BoAs are lower, which indicate that
the smoothing changed the shape of the familiarity curves too
much. Figure 11 confirms this, by showing familiarity curves
with different smoothing applied, using raw pixel matching.
Note that smoothing a familiarity curve is not trivial, because
the familiarity at all different headings must first be evaluated
in order to apply smoothing. Then, a gradient-like search can
be applied to find the most familiar direction.

In conclusion, raw pixel and texton matching show sim-
ilar recognition performance in rotation. They both perform
better than HSV matching, which suffers from the significant
differences between color histograms at different angles. For
both environments and matching methods, smoothing the
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Fig. 12. Different BoAs for varying smoothness of the familiarity curve,
evaluated in the photoroom environment. The x-axis indicates the smoothing
span used for moving average smoothing. The curves are averages from all
locations in the photoroom.

familiarity curves with a span of 30◦ leads to big increases
in performance.

B. Translation

To test familiarity sensitivity with translation only, images
taken in a grid pattern are analyzed. In both the sports hall
and photoroom the trained view is obtained in the centre
of the room. That view is matched against views from the
entire room. The heading angle of each view is equal to
the heading angle of the trained one. In contrast to rotation,
translational motion is not directly controlled. For homing,
only the heading angle is adjusted in order to reach the correct
destination. This means that good performance in translation
is characterized by a familiarity that only changes slightly
for small displacements. Stated differently: when a 360◦ turn
is performed, it is advantageous when the familiarity curves
are similar for proximate locations, so that good homing
performance is achieved even when exploration and homing
routes do not perfectly align.

Figures 13 and 14 show the results in the sports hall
and photoroom respectively, for raw pixel matching, texton
histogram matching and HSV color histogram matching. The
colors indicate the familiarity of a certain location, and the
arrows show the direction to the steepest familiarity increase
in the surroundings.

TABLE II
FAMILIARITY PERFORMANCE METRICS FOR EACH IMAGE MATCHING

METHOD AND ENVIRONMENT COMBINATION.

Raw pixels Textons HSV
Sports hall

Number of local optima 2 5 4
Photo room

Number of local optima 3 1 2

From the figures it is clear that raw pixel matching shows
the most distinct global optimum. Texton and HSV histogram
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matching however, show a larger region of optimal familiarity.
This can be useful when the robot is slightly off-track, because
rotational performance will be similar on adjacent locations.
However, in the sports hall environment both methods show
several local minima, as shown in Table II, which can be
disadvantageous for homing. It is hard to draw conclusions
from these minima, since it is not consistent for both envi-
ronments. Even though raw pixel matching shows the most
distinct optimum in the photoroom environment, three local
optima are present. It is expected that a larger size of the
optimal regions gives more advantages than having a very
narrow (distinct) optimum.

VI. VALIDATION EXPERIMENT

The environment analyses presented until now are done in
simulation. To validate this, an experiment is shown using
real imagery taken in an indoor environment. The environment
used is the Cyberzoo; a flight arena of the TU Delft. Figure 15
shows two images taken there.

Validation is done for both rotation and translation. For
rotation, a total of 25 videos of rotations on the spot are
recorded, in a grid of 5 by 5 meters. The average BoAs, peak
ratios and correlation coefficients are computed, as done with
the simulations presented in the previous section. The results,
including the corresponding standard deviations, are shown in
Table III. The first observation is that the BoAs are much
smaller than in simulation. This is explained by more spikes
(and hence local optima) in the results, which is confirmed
by the lower correlation coefficients. It is however, in contrast
with the observation in the previous section that more realistic
environments yield in higher BoAs.

The second observation is that texton and HSV matching
show slightly better BoAs than raw pixel matching. Due to the
small differences and the large standard deviations however,
no significant conclusions can be drawn from this. Still, it
may be an indication that texton and HSV histogram matching
perform better in real flights. The corresponding rotation plots
are shown in Figure 16. From these, it can indeed be seen that
the average familiarity curve for texton and HSV histogram
matching have a clearer peak at the trained heading.

TABLE III
FAMILIARITY PERFORMANCE METRICS FOR EACH IMAGE MATCHING

METHOD IN THE CYBERZOO ENVIRONMENT.

Raw pixels Textons HSV
Rotation

BoA average 9.13% 12.7% 11.7%
BoA std. dev. 3.38% 6.57% 4.24%
Peak Ratio average 0.52 0.41 0.37
Peak Ratio std. dev. 0.054 0.095 0.093
Correlation Coefficient average 0.82 0.92 0.84
Correlation Coefficient std. dev. 0.093 0.025 0.14

Translation
Number of local optima 1 2 2

Translation is validated by comparing images taken in the
same direction, in a grid of 49 locations. The results are quite
similar to the simulation results, and are shown in Figure 17.
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Fig. 13. Varying x and y positions in a SmartUAV simulation, with constant
heading angle. Unfiltered images of 48 by 32 pixels are taken in a grid pattern
and compared to a stored image at the center of the grid (x=0 and y=0). The
environment used is a sports hall, and the camera is pointing upward (in the
figure).
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Fig. 14. Varying x and y positions in a SmartUAV simulation, with constant
heading angle. Unfiltered images of 48 by 32 pixels are taken in a grid pattern
and compared to a stored image at the center of the grid (x=0 and y=0). The
environment used is a photoroom., and the camera is pointing to the left (in
the figure).

(a) (b)

Fig. 15. Example images from the Cyberzoo environment.

Again, the result for raw pixel matching shows a very narrow
peak at the trained location. This can be disadvantageous
for homing, since a small offset from the training path can
cause divergence from this path. When looking at the texton
matching result, it can be seen that two clear optima are
present. Even though the surrounding region has quite similar
familiarity values, the local optimum at x = 3m and y = 2m
might result in wrong convergence.

Looking at both rotation and translation of HSV matching,
it can be observed that the real-life results are better than those
made in simulation. This can be explained by more distinct
color in the validation imagery, such that the HSV histogram
shows better distribution, enabling more information storage
in a single histogram.

VII. CLOSED-LOOP SIMULATION FLIGHT

As mentioned in the previous sections, the recognition
of views during rotation performs best for texton histogram
matching. In simulation, the result is similar to raw pixel
matching, but in the validation experiment raw pixel match-
ing performed less well. When observing familiarity during
translations, both texton and HSV histogram matching show a
large central region of similar familiarity. As explained earlier,
this can be advantageous for homing, since recognizing the
correct heading during rotation yields a similar familiarity
curve for proximate locations. When considering closed-loop
simulations, it is therefore expected that texton matching will
perform better than the other two methods.

To confirm this, a simulated robot is placed in the sports
hall environment. A route is learned by flying backwards
(with a speed of 0.5m/s), such that the front camera looks
in the direction of homing, which is necessary to use scene
familiarity. One third of the image taken at the center of
each view is stored as trained sample. When homing is
initiated, the robot starts flying forward with a constant speed
of 0.5m/s and the heading is constantly determined using
view familiarity. This is done by selecting one third of the
image giving the best match with one of the trained views.
The center of this image patch is converted to an angle, to
which the MAV is steered. Views are obtained from a forward
looking camera with a field of view of 90◦. This means each
stored view has a field of view of 30◦. It also means that it is
expected that the method will only work for small turns.

In total, three closed-loop simulations are performed. The
first result is shown in Figure 18. The explored route consists
of turn angles drawn from a normal distribution with a
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Fig. 16. Average rotation on the spot of 25 locations in the Cyberzoo
environment. Unfiltered images of 64 by 36 pixels are taken every 5◦ and
compared to a stored image at a heading angle of 180◦. The red dashed lines
indicate the 2σ bounds and the gray lines are some example familiarities.
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Fig. 17. Varying x and y positions using pictures of the Cyberzoo environ-
ment, with constant heading angle. Unfiltered images of 64 by 48 pixels are
taken in a grid pattern and compared to a stored image at the center of the
grid (x = 4m and y = 4m). The camera is pointing upward (in the figure).
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Fig. 18. Closed-loop homing simulation in the sports hall environment in
SmartUAV. On the left, a perfect memory is used; on the right the Infomax
neural network is applied. The route consists of turns, with an angle drawn
from a normal distribution, with a standard deviation of 15◦.

standard deviation of 15◦. The left image shows the result for
homing using a perfect memory. The blue solid line indicates
the trained route, starting at x = 4m and y = 12m, which
are arbitrarily chosen. A route is flown up to a distance of
approximately 20m from the starting location.

From the results it can be seen that homing using texton
histogram matching or HSV histogram matching approxi-
mately reach the initial location. The main difference is that
when using texton histogram matching turns are performed
with a small delay, where performing homing with HSV
histogram matching, turns are made too early. The delay
can be explained by a low frequency of the algorithm; be-
cause all possible patches are extracted from each image,
texton matching operates at approximately 1Hz, where HSV
matching operates at approximately 20Hz. Texton histogram
matching can be significantly improved by using sub-sampling
of textons, instead of extracting them all. The path taken
when performing homing using HSV histogram matching is
cut off, although the curvature of the trained path is followed.
When homing is done by matching raw pixels (performed at
approximately 5Hz), the robot diverges from the trained route.
It does, however, also follow the curvature of the trained path.
The fact that raw pixel matching performs less suggests that
differences in familiarity when a vehicle drifts causes views
to be hard to distinguish.

The Infomax neural network can be used as function ap-
proximator of familiarity [27]. To test this in closed-loop, the
three methods are all represented in a neural network. For both
texton and HSV histogram matching a network with 50 inputs
is defined (i.e., each histogram forms one input vector to the
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Fig. 19. Closed-loop homing simulation in the sports hall environment in
SmartUAV. On the left, a perfect memory is used; on the right the Infomax
neural network is applied. The route consists of small, constant turns in
alternating direction.

network). The number of novelty neurons is chosen to be 200.
Furthermore, the number of epochs is set to 500. It turned
out that a lower number of epochs gives significantly less
performance. In Future simulations or flight tests this should
be tuned by testing multiple amounts of both novelty neurons
and epochs. For raw pixel matching, the image is scaled down
to 16 by 12 pixels, which gives 192 inputs to the network.
Larger dimensions as input cannot be processed in real-time.
The number of novelty neurons and epochs are kept the same.

The results of homing along the same route using an
Infomax network can be seen at the right of Figure 18. It
is clear that the results are slightly worse than with a perfect
memory (i.e., by keeping a database of images, textons or
HSV histograms). It does however, look quite similar to the
perfect memory case, which suggests that the assumption that
Infomax is a valid approximator for familiarity is quite good.

To analyze more diverse exploration routes, two addi-
tional closed-loop simulations are performed. These results
are shown in Figures 19 and 20. The result in Figure 19
performs similar to the previous one. Again, raw pixel match-
ing performs less well than the other two methods. HSV
histogram matching however, performs slightly better than
texton histogram matching. Another notable observation is
that the Infomax result of texton histogram matching performs
better than the perfect memory one. Even though this is odd,
it can be caused by the fact that evaluation of the Infomax
neural network is very fast (which does not hold for training it
though). Again, it is questionable whether Infomax still works
bettter when sub-sampling of textons is applied.

The final closed-loop simulation results are shown in Fig-
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Fig. 20. Closed-loop homing simulation in the sports hall environment in
SmartUAV. On the left, a perfect memory is used; on the right the Infomax
neural network is applied. The route resembles half a circle.

ure 20. Here, half a circle is flown during training, to test how
well the method performs with big turns. It can be seen that
neither of the methods reach the initial location, although they
all get halfway. Unfortunately, no definite conclusions can be
drawn from this, because the algorithm is implemented for
small turns only. Especially for raw pixel matching and HSV
histogram matching, the divergence from the route explains the
fact that the starting location is not reached. Since the turn is
not tight enough (again, probably due to the inherently small
turns), at some point the trained view cannot be seen anymore.
When performing homing using texton histogram matching,
the turn is made a little too tight. When the exploration path
is crossed, the right turn needed to get back on track is too
sharp. Again, the last result aims to give an impression of turn
performance only. From this it cannot be concluded that scene
familiarity based algorithms cannot deal with larger turns.

VIII. DISCUSSION

When first looking at the rotational analysis, it was observed
that raw pixel and texton histogram matching performed best.
When looking at the translation results, raw pixel matching
shows the most distinct peak. Because position of the robot
is not directly controlled, it is advantageous that a large
familiar region appears in translation, so that a little drift
of the robot does not change the homing performance. This
was especially the case for texton histogram matching and
HSV histogram matching. This suggests that texton histogram
matching would perform best, which is confirmed by the
closed-loop results. Even though the final error from the
home location was sometimes smaller with HSV histogram

matching, the overall tracking of the route was better with
texton histogram matching.

Surprisingly, HSV histogram matching shows very good
performance in closed loop. A reason for this can be that
generating and storing HSV histograms is computationally
very efficient, which allows for a high frequency of the
algorithm. This means corrections are made very quickly so
that the robot does not diverge much. Especially because the
algorithm can only perform small turns due to the limited field
of view, running at a high frequency enables a higher turn rate.
It does not say however, that HSV matching would perform
well when an agent has already diverged from the route.

When evaluating the closed-loop tests in this paper, some
limitations can be identified. First of all, it is only tested
in simulation. Even though the fidelity of the simulation is
higher than the simulations performed by Baddeley et al., it
is questionable whether the same results would be obtained
in a real flight. Furthermore, many additions can be proposed
to make the algorithm more robust. An example is to use
active rotation instead of using the inherent field of view of
the forward looking camera, so that bigger turns can be made.
Another possible addition is the use of visual odometry to
get a rough estimate of the path taken. Odometry could be
used to prevent severe divergence from the correct route. This
was especially seen in the last closed-loop result, where half a
circle was flown during exploration. Visual odometry can lead
to approximate following of the route and the integration errors
caused by visual odometry could be solved by using scene
familiarity. Since the experiment enforces the implementation
of small turns only, it cannot be concluded that the method
works well for diverse trajectories, which is, again, seen in the
last closed-loop result.

Another point of discussion is that the main reason scene
familiarity can be a viable approach for visual homing of
MAVs is computational efficiency. The only way this is tested
in this paper, is by performing the closed-loop simulations
in real-time on a laptop computer. When implementing the
algorithm on-board an MAV, the real-time performance may
be inadequate due to a slower micro-processor. This seems
less of a problem for HSV histogram matching, because
both the computations needed to extract histograms and the
memory requirements are limited. In this paper however, all
textons were extracted from each image. Usually, it suffices
to randomly pick a set of textons (i.e., sub-sampling), which
would drastically improve computational performance. The
storage of a texton histogram is similar to storing an HSV
histogram.

As explained in section III Baddeley et al. use an Infomax
neural network for familiarity representation. Even though
results with the network are shown in the closed-loop tests,
this cannot be considered as an analysis based on which
conclusions can be drawn about this network. In this paper,
the assumption is made that using a database of views (in
Baddeley et al. referred to as a perfect memory) always
gives better performance than a neural network, given that
computational efficiency is disregarded. In the closed-loop
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results it is seen that disregarding the computational efficiency
should not be done, because Infomax performed better than
using a perfect memory once. In general, the performance
when using an Infomax neural network was quite similar
to the perfect memory experiments. For this reason, using
such a neural network should be considered, because the
memory usage can be controlled and limited. Although this
means that the network can forget earlier trained views, it
allows control over the often very limited memory available
on MAVs. Another advantage is that evaluating familiarity can
be done very fast. Training on the other hand, is quite slow;
especially when having to train each sample 500 times. When
the method is combined with a path integration method, this
can be solved by increasing the timestep between different
training instances.

A final note about the simulations presented in this paper,
is that the image representations are not tuned in a structured
manner. Examples of tunable parameters are image dimen-
sions, number of texton clusters, the texton clustering method,
the number of patches extracted for histogram generation
and the HSV saturation threshold. Tuning this, might either
increase performance or decrease computational cost, which
are both advantageous.

IX. CONCLUSION AND RECOMMENDATIONS

This paper investigates the applicability of the scene fa-
miliarity homing method, observed from insect behavior, to
MAVs. The scene familiarity method is introduced as proof
of concept for desert ants to use recognition of a route to find
their way home. Next to this, an unsupervised neural network
method was used to limit the memory required for storing
familiarity.

The concept of only using recognition along a route is a
very interesting one. The analysis shows that the closed-loop
performance is good; at least for straight, short paths. The
reason the method is promising, is the potential computational
efficiency. For all three image representations the algorithm
works in real-time on a laptop computer, but for texton
histogram matching and raw pixel matching the frequency is
quite low. As mentioned, extracting all textons from an image
is computationally expensive and probably not necessary. It
is therefore recommended that experiments are done with
sub-sampled image patches. We expect that the increase in
efficiency inherently increases the performance, due to the
higher possible turn rate. This combined with the currently
good tracking of texton histogram matching, brings us to
the conclusion that texton histograms are the most promising
image representation for visual homing using scene familiarity.

In the closed-loop results, it is seen that once a route is
lost, the current implementation is not robust enough to find it
back. As mentioned, combining scene familiarity with visual
odometry can improve this. Visual odometry can further be
used for stopping at the home location. Another solution is
to change the algorithm such that the vehicle actively looks
around to observe the scene, instead of using the field of view
of the forward looking camera. This should be investigated in

future research, as well as closed-loop experiments done on
real-life MAVs.

The most surprising results came from HSV histogram
matching (either with or without the Infomax neural network),
since performance is good and it is very fast. This makes it a
good method to be combined with other, existing methods like
visual odometry. This seems especially needed because the
environment analysis showed that HSV histogram matching
results were quite noisy.

The final conclusion is that when computational efficiency
is a driving factor, scene familiarity is a viable approach for
visual homing. Using an Infomax neural network is advanta-
geous, because the results showed similar performance, while
being more efficient during homing. Especially when comple-
menting the scene familiarity method with visual odometry,
the method can be a powerful alternative to existing visual
navigation solutions.
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Chapter 3

IMAV Article

This chapter contains the conference paper submitted to IMAV 2016, taking place in Beijing,
China. It is a more consize article than the main one in the previous chapter and focusses on
the same research and results.
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ABSTRACT

Autonomous navigation is a major challenge
in the development of Micro Aerial Vehicles
(MAVs). Especially when an algorithm has to
be efficient, insect intelligence can be a source
of inspiration. An elementary navigation task
is homing, which means autonomously return-
ing to the initial location. A promising approach
uses learned visual familiarity of a route to deter-
mine reference headings during homing. In this
paper an existing biological proof-of-concept is
transferred to an algorithm for micro drones, us-
ing vision-in-the-loop experiments in indoor en-
vironments. An artificial neural network deter-
mines which control actions to take.

1 INTRODUCTION

A major challenge in robotics is to navigate autonomously
through an unknown environment. Especially in indoor
scenes, where no Global Positioning System (GPS) system
is available, the entire navigation problem is not yet solved.

Current navigation algorithms either require expensive
sensors or significant computation power. Especially Simul-
taneous Localization and Mapping (SLAM) methods have
shown to be successful in real-time navigation, given enough
computational power on-board a vehicle or good sensors.
Most Micro Aerial Vehicles (MAVs) do not have such sensors
and cannot perform heavy computations on-board the vehicle.

In order to find suitable navigation algorithms for MAV,
insects can be a source of inspiration, since they constantly
have to deal with complex navigation problems while only
having small-sized brains [1]. Different algorithms have al-
ready been created based on observations done on insects.
A well-known example is using optic flow to get a sense of
velocity, which is known to be done by insects [2]. Integrat-
ing this estimate for localization is called visual odometry.
The obtained location estimate is employed in higher level
navigation algorithms. Still, these algorithms are not readily
available for tiny MAVs yet. One of the higher level skills em-
ployed by insects is the ability to return to the nest location.
This is referred to as homing [3]. It would be an important
enabler for MAVs, if they could use similarly high-level, but
computationally efficient algorithms for navigation.

∗Email address: gjj.vandalen@gmail.com

Figure 1: Pocket drone: a micro quad rotor containing a Lisa-
S autopilot and a stereo camera [5]. While this pocket drone
can already fly, stabilize and avoid obstacles, in this paper we
investigate efficient insect-inspired algorithms that will allow
it to navigate in an unknown environment.

A promising homing algorithm is proposed by Baddeley
et al., where familiar views along a route are used to deter-
mine the correct direction to an earlier visited location [4].
This is a visual homing algorithm, since cameras are used
as driving sensor. Instead of focussing on the contruction of a
detailed (or coarse) map, Baddeley et al. propose that homing
can be performed just by means of recognizing which direc-
tion seems most familiar to a robot. Furthermore, they use a
small neural network to store and recapitulate a route in order
to find the initial location. Potentially, this is very useful for
MAV navigation algorithms, since it deals with limited stor-
age capacity found on many small platforms, like the pocket
drone shown in Figure 1.

In an effort to find efficient navigation algorithms for
MAVs, this paper investigates the practical application of the
scene familiarity algorithm on MAVs. The focus is on how
robust familiarity is to determine control actions.

First, section 2 discusses the state-of-the-art in au-
tonomous visual navigation on drones. Then, section 3 ex-
plains the scene familiarity method as introduced by Bad-
deley et al. Section 4 shows simulations and experiments
for different environments, to overcome current shortcomings
in the implementation described by Baddeley et al. Finally,
closed-loop simulation flights are performed and presented in
section 5, to show a more realistic use-case of view familiar-
ity for MAV homing.

2 RELATED RESEARCH

This section gives a brief overview of previous research
done to visual navigation and specifically visual homing. Vi-
sual SLAM is the most commonly used algorithm in camera-



driven robotics. An example is shown in Motard et al.,
where an AIBO robot1 must navigate back to its charging
station [6]. Still, visual SLAM algorithms in real-time re-
quire much computational resources, since (visual) process-
ing, mapping and self-localization must be performed simul-
taneously. Since most MAVs have limited computational re-
sources, visual SLAM often cannot be run in real-time, which
makes it less suitable for homing.

In 1983, Cartwright & Collett introduced the Snapshot
Model [7]. The framework they presented gives an expla-
nation of the navigation capabilities of bees when traveling
between different food sources. The visual matching is done
by a direct comparison of an image on the retina with a stored
snapshot. The landmark approach is further extended by the
addition of visual beacons [8]. A disadvantage of this is that
many images have to be stored.

A similar approach uses Average Landmark Vectors
(ALVs) to represent landmarks [9]. ALVs, introduced by
Lambrinos et al. in 1998, are averages of the heading vec-
tors to all landmark locations [10]. The homing vector is de-
termined with respect to this ALV. ALV homing stores the
location of interest as a vector, which is more efficient in com-
putation and storage, than storing an entire image. However,
due to its simplicity, ALV homing is also more prone to er-
rors.

Scene familiarity methods refer to recognition of a tra-
versed route, without specific information about the goal lo-
cation. This means, a robot must always move into the most
familiar direction. In the ideal case, this would automatically
mean that the agent returns to the goal location. In 2012,
a scene familiarity method is proposed for visual homing of
desert ants [4]. The scene familiarity method proposed by
Baddeley et al. is quite new and not yet used in robotic appli-
cations. The next section reviews their paper in depth.

3 THE SCENE FAMILIARITY METHOD

In an effort to find a biologically more plausible alterna-
tive to map-based navigation methods and the snapshot model
described in the previous section, the scene familiarity hom-
ing method is introduced [4]. To show that homing navigation
could take place without the use of visual odometry, a method
is presented where views along the entire route determine the
heading in which to proceed. Conceptually, this means that
during a training run images in the direction of the route are
stored. Then, when using the algorithm for homing, images
taken around the robot are compared to these stored views in
order to determine the most familiar direction.

When the homing capabilities are tested, the agent is
placed back at its initial location. From there, homing is done
by performing 360◦ scans of the world and comparing images
taken in each direction with all images stored. A familiarity
value of a single image is obtained by calculating the Sum of

1http://www.sony-aibo.co.uk/

Figure 2: Binary panoramic image used in Baddeley et al. [4].

Squared Differences (SSD) of raw pixel values, as defined in
Equation 1 [11].

F (I) = − argmin
i

∑

x,y

(I(x, y)− Vi(x, y))
2 (1)

In this equation, F (I) indicates the familiarity of view I ,
I(x, y) is the current view and Vi(x, y) are the stored views.
It can be seen that the stored image that gives the closest
match to the current image is used as familiarity value. The
agent can rotate on the spot or use an omni-directional cam-
era to obtain familiarity values in all directions. After deter-
mining the most familiar direction (by maximizing the values
obtained with Equation 1), the simulated agent is moved in
that direction.

The stored panoramas are binary images and have dimen-
sions of 90 by 17 pixels (Figure 2). The resolution is such
that each pixel in horizontal direction is equivalent to a rota-
tion of 4◦. During homing, familiarity is evaluated for steps
of 1 pixel, such that Equation 1 is evaluated 90 times. The
maximum outcome of this results in the most familiar direc-
tion.

Due to the large memory needed for storing images and
the computational requirements, the algorithm in the current
form is not yet suitable for implementation on-board a small
robot. Baddeley et al. therefore also study an unsupervised
Infomax neural network to approximate familiarity [12]. The
network is a two-layer neural network, where the linear com-
bination of an input and the network weights represent famil-
iarity. A lower value indicates more familiar. The training
rule therefore adapts the weights such that the value is lower
for every input encountered during training.

Baddeley et al. showed the validity of scene familarity
with virtual robotic ants in a simulated environments. How-
ever, they use an environment of binary sceneries, which are
not representative for the scenes through which a robot must
navigate. Moreover, the simulation is set up such that moving
the image by one pixel in the horizontal direction is equiva-
lent to a rotation of the agent of 4◦. These direct relations
to rotation and pixel difference are not realistic for real-life
cameras. Furthermore, the algorithm has only been tested on
relatively small distances, since images are stored every 4cm
and movements of 10cm per timestep are made. When the
method is implemented in robotics, the robot should be able
to cover longer distances to make it more useful.

Recently, Gaffin et al. have published a detailed analysis
on scene familiarity in realistic, indoor environments [13].



Distinguishing familiarity is both analyzed in rotation and
translation, for raw pixel matching between images of dif-
ferent resolutions. A rail mounted camera is used to perform
a MATLAB-driven experiment.

In our analysis of the scene familiarity method, we will
use a simulator containing realistic sceneries, vehicle dynam-
ics and camera parameters. A translation and rotation anal-
ysis will be performed as well, however, next to raw pixel
values, we will also investigate alternative image representa-
tions, to determine which one is more suitable for recogniz-
ing familiar views. Closed-loop simulations with an MAV
are presented and we show the use of an Infomax neural net-
work as well, since this helps in meeting the limited storage
requirements of an MAV. We hope to better understand au-
tonomous navigation for small MAVs.

4 FAMILIARITY ANALYSIS

In the previous section, the original simulation results
presented by Baddeley et al. are discussed [4]. Based on
this, a key question remains whether the algorithm will work
in more realistic environments. In this and the following
sections, an analysis of an indoor simulated environment is
presented in combination with different image representation
methods. First, the tested image representations and calcu-
lated performance measures are introduced. Then, simulation
results of these different methods in multiple environments
are shown. To validate this, similar results are shown on real
imagery.

4.1 Methods

To test the usability of familiarity of scenes for visual
homing, we investigate the familiarity sensitivity during both
rotation and translation. Analyzing rotation is done by per-
forming a 360◦ turn at a fixed location in the environment, in
steps of 5◦. A single image is stored and used as trained view
and all other views experienced during this rotation are com-
pared to this. The hypothesis is that familiarity should im-
prove when the heading difference between the current view
and the stored image decreases.

Translation is analyzed by evaluating familiarity in a grid
of locations, with a fixed heading. Again, a single image is
used as training sample and the familiarity is expected to im-
prove when the distance to the trained view gets smaller. Re-
sults of this should show the sensitivity of familiarity with
both increasing distance (in two directions) and increasing
heading angle.

The following image representations are compared:
• Raw pixel values The sum of squared differences of

each pixel in two images outputs a similarity score [11],
as shown in Equation 1.

• Texton histograms Textons are small distinct image
patches, which can be extracted from an image [14].
When clustered with a texton dictionary, histograms
are formed which represent an image.
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Figure 3: Rotation on the spot at a constant location in a sim-
ulator. Unfiltered images of 48 by 32 pixels are taken every
5◦ and compared to a stored image at a heading angle of 180◦.
The red dashed lines indicate the BoA bounds and the green
dashed line shows the mean familiarity.

• Hue Saturation Value (HSV) color histograms Color
histograms contain a classification of each pixel based
on color intensity.

The performances of the different methods are evaluated
by 1) looking at how distinct a view close to the trained view
is, compared to other views and 2) what the probability is
that the correct (i.e., trained) view is selected as most famil-
iar, since that direction will be chosen for homing. Figure 3
shows an example of a familiarity evaluation when rotating
on the spot. The trained image is positioned at an angle of
180◦ and, in this example, image matching is done using the
SSD of raw pixel values. The performance is evaluated using
the following measures:

• Peak ratio The peak ratio is defines as:

PR =
maxF − µF

maxF −minF
(2)

In this equation, F refers to the familiarity values
shown in Figure 3 and µF is the mean of all familiarity
values (i.e., the green line in the figure). The higher the
peak ratio is, the more distinct a peak is.

• Basin of Attraction (BoA) The basin of attraction
shows how far an agent can be off from the trained
view, before diverging from the correct direction. It
is evaluated by finding all local optima (both minima
and maxima) and looking between which minima the
agent converges towards the trained optimum familiar-
ity (maximum).

• Correlation coefficient This is used to estimate the
correlation between two neighboring heading angles,
differing by 5◦. Here, the Pearson product-moment
correlation coefficient is used, where 1 indicates full
positive correlation between two neighboring angles,
-1 means full negative correlation and 0 means no cor-
relation.

The BoA is considered to be most important, since it de-
termines how far an agent can be off the route (i.e., the correct
heading), while still being able to converge back to the cor-
rect path with a gradient-like search. The peak ratio is mainly



(a) (b)

Figure 4: Examples from the scenery used in SmartUAV sim-
ulations (a) and the validation Cyberzoo environment (b).

useful when an agent has no clue where to go; if the agent
makes a 360◦ turn and the trained peak is very distinct, the
probability of continuing in the right direction is high. The
correlation coefficient gives a measure for how continuous a
familiarity curve is. When the correlation is low, it could hap-
pen that spikes occur in the familiarity curve, which may give
wrong results.

4.2 SmartUAV Simulations
This section shows analyses for sceneries in the

SmartUAV simulator. SmartUAV is made for Guidance Navi-
gation & Control (GNC) research on MAVs and specializes in
the use of vision as primary sensor. The simulator is written
in C++ and sensors and controllers can be connected using a
block interface. This makes it easily extendable and the level
of simulation fidelity can be adapted by changing complex-
ity of vehicle dynamics, sensor dynamics and realism of the
environment.

The tested environment is based on a sports hall located in
Delft (the Netherlands). The dimensions are 30 by 60 meters.
Figure 4a shows an example view of the sports hall. This
environment is used for both familiarity analysis and closed-
loop simulations.

As mentioned, both rotational and translational familiar-
ity sensitivity will be tested. For familiarity estimation, SSD
values of raw pixels, SSD values of texton histograms and
SSD values of HSV color histograms are used and compared.
The familiarity sensitivity to yaw rotations is most important
for view familiarity-based homing. Each turn taken during
homing is made based on the familiarity values for different
heading angles. To analyze familiarity for different headings,
different image representations are compared by calculating
the BoAs, peak ratios and correlation coefficients. An MAV
is simulated at a single location and stores a representation of
one view. This view is matched to images in all other direc-
tions to get a measure of familiarity. This is done in a grid of
locations in the sports hall, to get imagery in the center of the
room, as well as close to walls. For each location, the BoA,
peak ratio and correlation coefficient can be calculated.

Table 1 summarizes these performance measures for the
different methods. The calculated BoAs, peak ratios and cor-
relation coefficients are averaged for all locations and the
standard deviations are included as well. Good performance

is characterized by large BoAs (i.e., it is likely that the correct
heading is found), large peak ratios (i.e., the correct familiar-
ity value is distinct compared to familiarities in other direc-
tions) and correlation coefficients close to 1 (i.e., continuous
and not too noisy).

Table 1: Average performance metrics during rotation, for
each image matching method in the simulated sports hall.

Raw pixels Textons HSV
BoA average 37.3% 36.7% 6.90%
BoA std. dev. 16.5% 12.0% 3.77%
Peak ratio average 0.57 0.43 0.53
Peak ratio std. dev. 0.10 0.076 0.13
Corr. coeff. average 0.98 0.98 0.80
Corr. coeff. std. dev. 0.051 0.0091 0.14

Looking at the results, it can be seen that the BoAs for
raw pixel matching and texton histogram matching perform
similarly. HSV histogram matching performs much worse,
which is also seen in the lower correlation coefficient. This
indicates more local optima, which inherently decreases the
BoA. The peak ratio is best with raw pixel matching, although
the differences between the different methods are quite small.

To illustrate the results shown in the table, familiarity
curves are shown in Figure 5. The top plot shows raw pixel
matching, the middle texton histogram matching and the bot-
tom one HSV histogram matching. The blue, solid lines in-
dicate the average familiarity curves for all locations in the
environment, the red dashed lines indicate two times the stan-
dard deviation and the gray lines show some example famil-
iarity curves at individual locations in the sports hall. The
results are scaled such that the average lies between 0 and 1.

As expected, all average curves show a single peak at
the trained locations (i.e., at 180◦). The HSV histogram re-
sult however, shows a less predictable outcome, with a larger
amount of local optima. This is in line with the lower BoAs
and correlation coefficients shown in Table 1.

To test familiarity sensitivity with translation only, im-
ages taken in a grid pattern are analyzed. In the sports hall
the trained view is obtained in the centre of the room, which
is matched against views from the entire room, keeping the
heading angle constant. In contrast to rotation, translational
motion is not directly controlled. For homing, only the head-
ing angle is adjusted in order to reach the correct destination.
This means that good performance in translation is charac-
terized by a familiarity that does not change too much for
small displacements. Stated differently: when a 360◦ turn is
performed, it is advantageous when the familiarity curves are
similar for proximate locations, so that good homing perfor-
mance is achieved even when exploration and homing routes
do not perfectly align. Figure 6 shows the results in the sports
hall environment, for raw pixel matching, texton histogram
matching and HSV color histogram matching. The colors
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Figure 5: Average rotation on the spot of 231 locations in
the sports hall environment in SmartUAV. Unfiltered images
of 48 by 32 pixels are taken every 5◦ and compared to a
stored image at a heading angle of 180◦. The red dashed lines
indicate the 2σ bounds and the gray lines are some exam-
ple familiarities. The top, middle and bottom plots indicate
raw pixel matching, texton histogram matching and HSV his-
togram matching respectively.

indicate the familiarity of a certain location and the arrows
show the direction to the steepest familiarity increase in the
surroundings.

From the figures it is clear that raw pixel matching shows
the most distinct global optimum. Texton and HSV histogram
matching however, show a larger region of optimal familiar-
ity. This can be useful when the robot is slightly off-track,
because rotational performance will be similar on different
locations. However, both methods show several local min-
ima, which can be disadvantageous for homing.

4.3 Validation Experiment

The previous analysis is done in simulation. To validate
this, an experiment is shown using real imagery taken in an
indoor environment. The environment used is the Cyberzoo;
a flight arena located at the TU Delft, as shown in Figure 4b.

Validation is done for both rotation and translation. For
rotation, videos of rotations on the spot are recorded, con-
taining 25 videos in a grid of 5 by 5 meters. The average
BoAs, peak ratios and correlation coefficients are computed,
as in the simulations presented in the previous section. The
results, including the corresponding standard deviations, are
shown in Table 2. The first observation is that the BoAs are
much smaller than in simulation. This is explained by more
spikes (and hence local optima) in the results, which is con-
firmed by the lower correlation coefficients. It is however,
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Figure 6: Varying x and y positions in a SmartUAV simula-
tion in a sports hall, with constant heading angle. Unfiltered
images of 48 by 32 pixels are taken in a grid pattern and com-
pared to a stored image at the center of the grid (x=0 and
y=0). The top figure uses raw pixel matching, the middle fig-
ure texton histograms and the bottom figure HSV histograms.

in contrast with the observation in the previous section that
more realistic environments yield higher BoAs.

The second observation is that texton and HSV histogram
matching show slightly better BoAs than raw pixel matching.
Due to the small differences and the large standard deviations
however, no significant conclusions can be drawn from this.
The corresponding rotation plots are shown in Figure 7.

Table 2: Familiarity performance metrics for each image
matching method in the Cyberzoo environment.

Raw pixels Textons HSV
BoA average 9.13% 12.7% 11.7%
BoA std. dev. 3.38% 6.57% 4.24%
Peak Ratio average 0.53 0.41 0.37
Peak Ratio std. dev. 0.054 0.095 0.093
Corr. Coeff. average 0.82 0.92 0.84
Corr. Coeff. std. dev. 0.093 0.025 0.14

Translation is validated by comparing images taken fac-
ing the same direction, in a grid of 49 locations. The results
are quite similar to the simulation results and are shown in
Figure 8. Again, the result for raw pixel matching shows a
very narrow peak at the trained location. This can be disad-
vantageous for homing, since a small offset from the training
path can cause divergence from this path. When looking at
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Figure 7: Average rotation on the spot of 25 locations in the
Cyberzoo environment. Unfiltered images of 64 by 36 pix-
els are taken every 5◦ and compared to a stored image at
a heading angle of 180◦. The red dashed lines indicate the
2σ bounds and the gray lines are some example familiarities.
The three plots indicate raw pixel matching, texton histogram
matching and HSV histogram matching respectively.

the texton histogram matching result, it can be seen that two
clear optima are present. Even though the surrounding re-
gion has quite similar familiarity values, the local optimum at
x = 3 and y = 2 might result in wrong convergence.

Looking at both rotation and translation of HSV his-
togram matching, it can be observed that the real-life results
are better than those made in simulation. This can be ex-
plained by more distinct colors in the validation imagery, such
that more bins in the HSV histogram are filled.

5 CLOSED-LOOP SIMULATION FLIGHT

As mentioned in the previous sections, the recognition of
views during rotation performs best for both raw pixel match-
ing and texton histogram matching. Especially in simulation,
the BoAs of these two methods are comparable. When ob-
serving familiarity during translations, both texton and HSV
histogram matching show a large central region of similar fa-
miliarity. As explained earlier, this can be advantageous for
homing, since recognizing the correct heading during rota-
tions probably yields the same result for proximate locations.
When looking at closed-loop results it is therefore expected
that texton histogram matching will perform better than the
other two methods.

To show a closed-loop simulation, a simulated robot is
placed in the sports hall environment. A route is learned by
flying backwards (with a speed of 0.5m/s), such that the front
camera looks in the homing direction, which is necessary to
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Figure 8: Varying x and y positions using pictures of the Cy-
berzoo environment, with constant heading angle. Unfiltered
images of 64 by 48 pixels are taken in a grid pattern and com-
pared to a stored image at the center of the grid (x=4 and
y=4).



use scene familiarity for homing. One third of the image
taken at the center is used for training. When homing is initi-
ated, the robot starts flying forward with a constant speed of
0.5m/s and the heading is constantly determined using view
familiarity. This is done by selecting one third of the image
giving the best match with one of the trained views. The cen-
ter of this image patch is converted to an angle, to which the
MAV is steered. Views are obtained from a forward looking
camera, with a field of view of 90◦. The result is shown in the
left part of Figure 9. Here, the blue solid line is the training
route, starting at x = 4m and y = 12m, which are arbitrarily
chosen. A route of approximatelly 20m is flown.

From the results it can be seen that both texton histogram
matching and HSV histogram matching approximatelly reach
the initial location. The main difference is that texton his-
togram matching performs turns with a small delay, where
HSV histogram matching turns too early. The delay can be
explained by low frequency: because all possible patches are
extracted from each image, texton histogram matching oper-
ates at approximatelly 1Hz, where HSV histogram matching
operates at approximatelly 20Hz. Texton histogram match-
ing can be significantly improved by using sub-sampling of
textons, instead of extracting all. For HSV histogram match-
ing it could be questioned whether it only performs well be-
cause the flying direction is approximatelly straight. When
homing is done by matching raw pixels (performed at approx-
imatelly 5Hz), the robot diverges from the trained route. It
does, however, follow the curvature of the trained path. The
fact that raw pixel matching works worst suggests that dif-
ferences in familiarity when performing small translational
movements causes views to be hard to recognize.

As mentioned, the Infomax neural network can be used
as function approximator of familiarity [12]. To test this in
closed-loop, the three methods are all represented in a neu-
ral network. For both texton and HSV histogram matching a
network with 50 inputs is defined (i.e., each histogram forms
one input vector to the network). The number of novelty neu-
rons is arbitrarily chosen to be 200. Furthermore, the number
of epochs is set to 500. It turned out that a lower number of
epochs gives significantly worse performance. In further sim-
ulations or flight tests this should be tuned by testing multiple
numbers of both novelty neurons and epochs. For raw pixel
matching, the image is scaled down to 16 by 12 pixels, which
gives 192 inputs to the network. Larger dimensions as in-
put cannot be performed in real-time. The number of novelty
neurons and epochs are kept the same.

The results using an Infomax network can be seen in
the right part of Figure 9. It is clear that the results are
slightly worse than with a perfect memory (i.e., by keeping a
database of images, texton histograms or HSV histograms). It
does however, look quite similar to the perfect memory case,
which suggests that the assumption that Infomax is only used
as approximator for views is quite good.
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Figure 9: Closed-loop homing simulation in the sports hall
environment in SmartUAV. On the left, a perfect memory is
used; on the right the Infomax neural network is applied.

6 DISCUSSION

When first looking at the rotational analysis, it was ob-
served that raw pixel and texton histogram matching per-
formed best. When looking at the translation results, raw
pixel matching shows the most distinct peak. Because po-
sition of the robot is not directly controlled, it is advanta-
geous that a large familiar region appears in translation, so
that a small displacement of the robot does not change the
homing performance. This was especially the case for tex-
ton histogram matching and HSV histogram matching. This
suggests that texton histogram matching would perform best,
which is confirmed by the closed-loop results. Surprisingly,
HSV histogram matching shows very good performance in
closed-loop. A reason for this can be that generating and stor-
ing HSV histograms is computationally very efficient, which
allows for a low timestep. This means corrections are made
very quickly so that the robot does not diverge too much. It
does not say however, that HSV histogram matching would
perform well when divergence already happened.

When evaluating the closed-loop tests in this paper, some
limitations can be identified. First of all, it is only tested in
simulation. Although the fidelity of the simulation is higher
than the simulations performed by Baddeley et al., it is ques-
tionable whether the same results would be obtained in a real
flight. Furthermore, additions can be proposed to make the
algorithm more robust. An example is to use active rotation
instead of using the inherent field of view of the forward look-
ing camera, such that bigger turns can be made. Alternatively,
a camera with a larger field of view can be added. Another
possibility is the use of visual odometry to get a rough esti-



mate of the path taken. Odometry could be used to prevent
severe divergence from the correct route. Since the experi-
ment enforces small turns only, it cannot yet be concluded
that the method works well for diverse trajectories.

Another point of discussion is that the main reason scene
familiarity can be a viable approach for visual homing of
MAVs is computational efficiency. The only way this is tested
in this paper, is by performing closed-loop real-time simula-
tions on a laptop computer. When implementing the algo-
rithm on-board an MAV, the real-time performance may be
inadequate due to a slower micro-processor. The one excep-
tion was HSV histogram matching, because both the compu-
tations needed to extract histograms, and the storage capacity
are limited. In this paper however, all textons were extracted
from each image. Usually, it suffices to randomly pick a set
of textons, which would drastically improve computational
performance. The storage of a texton histogram is similar to
storing an HSV histogram. A huge advantage of using a neu-
ral network is that the storage capacity is constrained. Even
though this means that the network can forget earlier trained
views (which is also investigated by Baddeley et al.), it al-
lows control over the often very limited storage capacity on
MAVs. Training on the other hand, is quite slow; especially
when having to train each sample 500 times.

7 CONCLUSION AND RECOMMENDATIONS

This paper investigates the applicability of the scene fa-
miliarity homing method, observed from insect behavior, to
MAVs. The scene familiarity method is introduced as proof
of concept for desert ants to use the recognition along a route
to find their way home. Next to this, an unsupervised neural
network was used to keep storage of familiarity compact.

The concept of only using recognition along a route is a
very interesting one. The analysis shows the closed-loop per-
formance is good. The reason the method is promising, is the
computational efficiency. Especially HSV histogram match-
ing showed surprisingly good closed-loop performance while
running quite fast. For the other two image representations
the algorithm works in real-time on a laptop, although the
frequencies in the current implementations are low.

It is concluded that using texton or HSV histogram match-
ing is useful for visual homing on small robots. Once a route
is lost, the risk of divergence is quite high. This must be
further investigated. It seems very useful to combine scene
recognition with existing methods like visual odometry. This
way, two computationally efficient algorithms can be com-
bined to succesfully perform homing.
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Chapter 4

Literature Overview

UAV navigation is an ongoing research topic. Many different approaches are being used to
find solutions to specific or more general navigational problems. This chapter reviews earlier
work done in finding a solution to the navigation problem, and specifically a solution to the
homing problem, as stated in the introduction. The focus will be on vision-aided navigation,
mainly because a camera sensor is cheap, light-weight, versatile, and it is already available
on the test platforms.

In this thesis, two definitions for navigation are distinguished (Franz & Mallot, 2000):

i) An answer to the three questions: Where am I? Where are other places relative to me?
How do I get to other places from here? (Levitt & Lawton, 1990)

ii) Navigation is the process of determining and maintaining a course or trajectory to a
goal location. (Franz & Mallot, 2000; Gallistel, 1990)

The main difference between those definitions is that the second definition does not set the
requirement for the agent to know some sort of map, including its own location. Instead, it
specifies that an agent must be able to reach a behavioral goal, regardless of the layout of the
environment. Navigation where self-localization of an agent with respect to the goal location
is used, is in the context of insect navigation referred to as true navigation (Graham, 2010).

Especially the second definition is useful in the context of this thesis, as the efficiency of
an algorithm is considered to be more important than having real-time information on the
current location.

Homing is a very limited part of the navigation problem. The only goal is to return back
to the initial location as efficient as possible. Knowledge about the location of the vehicle
and its environment can be useful, but will always be a means to reaching the home location.
Therefore, the second definition for navigation will be used throughout this thesis.

The chapter is split up into two parts. First, in Section 4-1 an overview is given of visual
navigation techniques applied in robotics and specifically on UAVs. Then, research that has
investigated insect navigation and homing methods is presented in Section 4-2, which includes
implementations in robotics as well.
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4-1 Vision-Based UAV Navigation

Using computer vision to navigate a UAV is an active field of research. The availability
of cheap cameras with a small footprint and the growing computational power of Micro
Processing Units (MPUs) make real-time camera usage for navigation possible.

Most vision-aided navigation research is done on the navigation problem in general. This
section gives an overview of different navigation solutions. As homing is a small part of this
navigation problem, these techniques can also be applied to this.

The different methods are divided in three different categories, as shown in Figure 4-1 (Wolf,
2011). These categories will be used as guideline to go through the different methods.

(a) (b) (c)

Figure 4-1: Three different modes of navigation: map-like representations (4-1a), path integra-
tion (4-1b) and route following (4-1c). The top pictures illustrate the navigation principles and
the bottom pictures contain a homing example using that method. Adapted from (Wolf, 2011).

First, section 4-1-1 shows the use of methods to perform localization in a generated map.
After this, section 4-1-2 focusses on Visual Odometry (VO), where optic flow is integrated to
obtain the traveled distance.

Then, the focus will switch to insect-inspired methods, which will continue with Path Inte-
gration (PI) methods and also introduce route familiarity.

4-1-1 SLAM

Map-building methods perform concurrent map-building and localization within that map.
This is referred to as Simultaneous Localization and Mapping (SLAM) (Leonard & Durrant-
Whyte, 1991). SLAM is a paradigm in which the agent generates a map when traversing a
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route, and simultaneously localizes itself and navigates on this map. This means that SLAM
in principal consists of three parts, namely traversing/exploring a route, constructing a map
and self-localization and navigation on this map (Bonin-Font, Ortiz, & Oliver, 2008).

Currently, both the theory behind SLAM and the implementation of different methods are
researched actively. In (Dissanayake, Newman, Clark, Durrant-Whyte, & Csorba, 2001) the
authors show that a general SLAM solution must exist, by proving that the determinant of the
covariance matrix of the map estimation problem decreases with successive observations. The
availability of a theoretical proof of concept of the SLAM problem is confirmed in (Durrant-
Whyte & Bailey, 2006), with the notion that a practical realization of a general SLAM solution
still contains many issues. These issues mainly concern environmental conditions, like lighting
and temporary occlusions.

SLAM solutions must deal with three key problems, which Fuentes-Pacheco et al. refer to as
data association problems. These problems are (Fuentes-Pacheco, Ruiz-Ascencio, & Rendón-
Mancha, 2012):

• Loop closure detection can correct errors in a generated map by re-visiting a
mapped location (Ho & Newman, 2007; Clemente, Davison, Reid, Neira, & Tards,
2007; B. P. Williams, 2009). A problem originating from this is perceptual aliasing,
where similar views of different locations cannot be distinguished (Angeli, Doncieux,
Meyer, & Filliat, 2008b).

• Robot kidnapping addresses the situation where a robot performing SLAM is moved
to another location within the map, without knowing where it is placed. This can
also occur when the robot moves blindly due to occlusions or sensor outage (Eade &
Drummond, 2008; B. Williams, Klein, & Reid, 2011).

• Multi-session mapping refers to the situation where a map made of a part of the
environment during an earlier SLAM session must be reused. This earlier generated
map will be aligned with maps made during later sessions in different parts of the
environment (Ho & Newman, 2007). This problem is similar to the case where multiple
robots perform SLAM simultaneously in the same environment (Gil, Reinoso, Ballesta,
& Juliá, 2010; Vidal-Calleja, Berger, Solà, & Lacroix, 2011).

Especially when localization and mapping are done using a camera, performing it on-board
is computationally demanding. As both map construction and localization need to be done
in real-time, the application of on-board visual SLAM on small UAVs is quite new.

A vast number of SLAM algorithms are presented in literature. An overview of methods can
be found in (Fuentes-Pacheco et al., 2012, Table 1).

The maps made in SLAM solutions can be divided into two categories: grid-based (metric)
SLAM, where dense photographic maps are made, and topological SLAM, which only maps
certain landmarks and connections between them (Thrun, 1998). First metric SLAM based
on probabilistic filters is described, after which several topological methods are presented.

EKF SLAM

Most SLAM solutions are based on probabilistic filters. In (Smith, Self, & Cheeseman, 1990)
a map-building approach is presented using an Extended Kalman Filter (EKF). An EKF is a
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(a) (b)

Figure 4-2: Example of a SLAM loop closure, where 4-2a shows the map before loop closure
and 4-2b shows the closed map. Extracted from (Ho & Newman, 2006).

recursive filter, which integrates a state transition model and an observation model in order
to get a state (and in this case also map) estimate.

A notable EKF SLAM homing solution is shown by the ”explore and return” experiment pub-
lished in (Newman, Leonard, Tardos, & Neira, 2002), where a ground robot performs mapping
during manually controlled exploration and autonomously returns to the initial location. Dur-
ing manual exploration, the operator only used real-time generated maps. Processing of the
algorithm was done on a laptop computer.

The presented algorithm can be implemented for different robots and sensors. In (Newman
et al., 2002) odometry and laser ranging is used. Using a camera instead will increase the
computational demands of the algorithm. This and the fact that the algorithm is run off-
board, violate the research criteria specified in the introduction, making the solution too
demanding for the homing problem posed in this thesis.

Another EKF SLAM solution is presented in (Magree & Johnson, 2015), where a numerically
stable visual SLAM algorithm is introduced and applied to a Yamaha R-Max unmanned he-
licopter1 (the same algorithm is implemented on a light-weight quadrotor in (Magree, van
Dalen, Haviland, & Johnson, 2015)). The algorithm is, in combination with an Inertial Mea-
surement Unit (IMU), used for both stabilizing the vehicle and performing localization. Unlike
full-blown SLAM solutions, only a local map (i.e., close to the current helicopter location)
is kept up-to-date. This makes real-time performance quite good, although the presented
results are performed on a high-end Core i7 processor. As no overall map is maintained, the
data association problems are not accounted for, which gives rise to propagating errors in
localization.

1http://rmax.yamaha-motor.com.au/
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Disadvantages of EKF based methods are the possibility of divergence when a wrong
measurement-covarience combination is provided and the high computational complexity with
increasing map size.

Topological SLAM

The difference between metric SLAM and topological SLAM is found in the representation of
the environment. A purely topological map is an abstract representation of the environment
containing nodes and connections between them. This is illustrated in Figure 4-3, where an
office environment is represented by a series of connected nodes.

Using this representation, only the most significant places are mapped and connected to each
other (Fraundorfer, Engels, & Nister, 2007; Eade & Drummond, 2008). This makes it com-
putationally more advantageous than metric SLAM, as only small parts of the environment
have to be mapped in detail. However, to make sure the map is robust, global optimization
is needed in order to keep localization errors small (Frese, Larsson, & Duckett, 2005; Olson,
Leonard, & Teller, 2006).

(a) (b)

Figure 4-3: Example of a topological map, where 4-3a shows an office environment and 4-3b
shows the corresponding map. Extracted from (Angeli et al., 2008a).

The idea behind using a topological mapping for SLAM methods is introduced in (Kuipers &
Byun, 1991), where it is described as a graph of distinctive places and travel edges. An exam-
ple definition of such graphs are Generalized Voronoi Graphs (GVGs) introduced in (Choset,
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2000).

In (Garcia-Fidalgo & Ortiz, 2015) topological maps are classified in three categories:

• Global descriptors use full images to describe nodes in maps and are therefore fast.
An overview of SLAM methods using those descriptors can be found in (Garcia-Fidalgo
& Ortiz, 2015, Table 2).

• Local Features can be used to only describe distinctive parts of the image, instead
of the entire image. To make sure local features form a robust representation of a
view, (Tuytelaars & Mikolajczyk, 2007) described the following properties of good local
features: repeatability, distinctiveness, locality, quantity, accuracy and efficiency.

• Visual Bags of Words (BoWs) contain vocabularies of image patches. An image
can be represented by a histogram of occurrences of those patches (Garcia-Fidalgo &
Ortiz, 2015, section 4). The BoW method originates from counting the number of words
in documents using a predefined vocabulary. In (Eade & Drummond, 2008) BoWs are
used to identify loop closures in a real-time monocular topological SLAM algorithm.

Current topological SLAM implementations often use less abstract representations, where
the nodes contain geometric information. A mapping strategy based on this approach is
published in (Tapus & Siegwart, 2005) and uses fingerprints to represent nodes (Lamon,
Nourbakhsh, Jensen, & Siegwart, 2001). In the context of topological SLAM fingerprints can
be any representation of a mapped node. Lamon et al. represent each fingerprint as a string
which encodes color patches and vertical edges to describe the location. A map is pre-built
and consists of a fixed amount of fingerprints. Localization is done by a minimum energy
optimization between mapped fingerprints and fingerprints obtained at the current location
of a robot. In (Tapus & Siegwart, 2005) this method is extended by an incremental mapping
approach based on these fingerprints. A combined SLAM system is found in (Tapus, 2005).

In (Motard, Raducanu, Cadenat, & Vitria, 2007) an incremental topological map learning
algorithm is proposed, specifically aiming towards visual homing. The algorithm is designed
for the AIBO robot2 and is meant for the robot to navigate back to a charging station when
needed. AIBO is already capable of navigating back towards the charger when it is within
a range of one meter from it. The goal of the proposed topological SLAM algorithm is to
navigate the robot to within a meter from the charger. The approach makes use of two
modules. The first module is used for online incremental map-learning during exploration.
The second module is for route planning and is only activated when the robot needs charging.

For map learning, Motard et al. make use of a graph consisting of Scale Invariant Feature
Transform (SIFT) features (Lowe, 2004) and their spatial relationships. These locations are
connected so that a chain of snapshots represents the environment. When a new topological
location is recorded which is sufficiently distinct from previous ones, it is added to the chain
of snapshots. Besides distinctiveness, another requirement for new snapshots is that it has
to be connected to an earlier one, as a camera is the only sensor used. A homing solution is
calculated using a shortest path algorithm (Dijkstra’s algorithm (Cormen, Leiserson, Rivest,
Stein, et al., 2001)).

2http://www.sony-aibo.co.uk/
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The AIBO experiment is performed in real-time, but image processing is done on an external
PC (i.e., frames are sent to the PC for on-the-fly processing) at a frequency of 10 frames/s.
This suggests that the algorithm is computationally expensive. Experimental results are good
for the object rich test location. The robustness of the algorithm in larger environments is
not yet guaranteed.

Hybrid SLAM

Hybrid SLAM combines the best of metric and topological SLAM. Usually it consists of
connected nodes, where the nodes are represented by a metric map. This combines the
accuracy of metric SLAM and the efficiency of topological SLAM (Thrun & Bü, 1996).

An example of hybrid SLAM is RatSLAM (Milford, Wyeth, & Prasser, 2004). RatSLAM is
a bio-inspired method that models navigation abilities found in the hippocampus of rodents.
Especially the observation that rats have place fields in their brains, which are patterns of
neural activity, induced by moving and visual inputs, defines the difference between RatSLAM
and topological SLAM solutions. Which fields are active determines the rat’s knowledge of
its current location. In RatSLAM these place fields are implemented as pose cells, which
are competitive attractor Neural Networks (NNs). These networks contain local clusters of
activation, so that certain inputs activate a clustered part of the network. The total activation
of a network is constant so that the pose cells form a probability distribution of location or
heading. These pose cells act as topological landmarks with metric SLAM behavior. The
location of cells in the competitive attractor NN gives information about the location of
the robot, which can be considered metric. In RatSLAM two NNs are implemented: one
for heading and one for the two dimensional location of the robot. As sensory input the
algorithm combines wheel odometry with vision, which detects coloured cylinders and outputs
the distance and bearing from the robot to that cylinder.

The fact that RatSLAM is bio-inspired, makes it especially interesting for this thesis. Still,
the system was tested on an external computer and is quite demanding. As with metric
SLAM solutions, the computional price paid for the more diverse navigational abilities does
not comply with the requirements specified in the introduction.

Conclusion

As mentioned in the introduction the purpose of this thesis is to find a homing algorithm
for an MAV. The SLAM methods presented in this section can do much more than what is
needed for visual homing. If a map is generated, navigation between different points in the
map can be done. The cost of this is a high computational demand of the algorithms.

4-1-2 Visual Odometry

Path Integration (PI) methods form navigation solutions where localization at different mo-
ments in time are used to navigate. A velocity is obtained and integrated, to perform local-
ization. In principle, no map is made of the environment, although when heading estimation
is part of the localization, the result will be a map-like representation. The major difference
with SLAM is that the data association problems are not accounted for.
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In robotics, velocity is often obtained using optic flow between different frames of a
scene (Desouza & Kak, 2002). Optic flow is the apparent motion observed in an image,
which Chao et al. define as a two dimensional projection of three dimensional relative motion
in an image (Chao, Gu, & Napolitano, 2013). Many different algorithms exist to calculate
optic flow. A comparison of these methods and different UAV applications can be found
in (Barron, Fleet, & Beauchemin, 1994) and (Chao et al., 2013) respectively. For UAV appli-
cations, the most common algorithms for calculating optic flow are the Lucas-Kanade (LK)
method (Lucas & Kanade, 1981), the Horn-Schunck method (Horn & Schunck, 1981), image
interpolation methods (Srinivasan, 1994), block matching techniques and feature matching
techniques.

Optic flow is not only used for UAV navigation, but also for lower level operations like obstacle
avoidance and autonomous landings. For the homing problem posed in this thesis, the aim
is to record and store the traversed route of an MAV. This can be done with optic flow, by
estimating the velocity vector of the vehicle and integrating this to obtain position. In (Ding
et al., 2009), a height and velocity estimation technique using optic flow is used when GPS
fails temporarily. Optic flow is used in combination with an Inertial Navigation System (INS)
and is integrated in an EKF. It is shown that the measurements are noisy, but are useful for
short periods of time.

As mentioned, this localization is referred to as Visual Odometry (VO), which formally entails
the motion estimation of a mobile robot using only camera images as sensory input. The term
was first introduced by (Nister, Naroditsky, & Bergen, 2004) and is based on odometry of
ground vehicles, where wheel rotations are used to measure motion. VO is a form of Structure
from Motion (SfM), but only focuses on motion estimation instead of map construction. In
this thesis the term VO is used more loosely: besides using cameras, other sensors can aid
the path estimate.

Research in VO is done for both stereo vision and monocular vision. When stereo vision
is used, it is easier to make a three dimensional representation of the environment due to
available depth information. For monocular vision, this depth information must be extracted
from sequential images. This means that stereo VO can operate without motion, where in
the monocular case motion is needed to extract environmental geometry.

In (Nister et al., 2004) both stereo and monocular VO approaches are presented. In both
cases Harris corners (Harris & Stephens, 1988) were identified in each frame, and matched
by computing correlation of image patches around each corner. From the matched frames,
the geometric motion was extracted using the 3-point algorithm (Haralick, Lee, Ottenberg,
& Nölle, 1994) and preemptive Random Sample Consensus (RANSAC) (Nistér, 2005).

In (Nister et al., 2004) an experiment with a ground robot is presented, where a comparison is
made between VO and differential GPS. The results are very good, since a small accumulation
of drift is observed during these tests (i.e., a position error of one to five percent over less than
300 meters). A comparable but more recent research is published in (Strydom, Thurrowgood,
& Srinivasan, 2014), where a quadrotor navigation system is designed using a combination of
optic flow and stereo vision.

Currently, many VO algorithms (for example, (Blosch, Weiss, Scaramuzza, & Siegwart, 2010;
Weiss et al., 2013)) are based on Parallel Tracking and Mapping (PTaM). PTaM (Klein &
Murray, 2007) is a SLAM system that separates feature tracking from creating a map of 3D
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features. The tracking uses a large set of low quality (but computationally efficient) features,
to construct a dense map of a small environment. This does not make it suitable as full blown
SLAM navigation system, but it can be used as an accurate form of local VO.

Semi-Direct Visual Odometry

Most VO method make use of feature tracking to get a velocity and position estimate. Extrac-
tion of features is computationally expensive. A recently published approach is Semi-direct
Visual Odometry (SVO), which only extracts features on so-called keyframes (Forster, Piz-
zoli, & Scaramuzza, 2014). These are frames which contain significant changes in the scene.
Between two keyframes, matching is done using pixel intensities which is significantly faster
than extraction and matching of features. The combinations of feature matching and pixel
(gradient) matching make SVO a fast and accurate three dimensional pose estimator.

Forster et al. did multiple experiments, among which a flight test with an MAV with a
downward looking camera. Processing was done on-board, on an Odroid-U2 (ARM Cortex A9,
1.6 GHz, 4 cores), and two cores were used for the algorithm (one for motion estimation and
one for updating the keyframe database). The algorithm ran with a speed of approximately
50 Hz, and had a position Root-Mean-Square (RMS) error of 0.0059 m/s, and a rotation RMS
error of 0.43 deg/s. The speed and accuracy increase of SVO over other VO algorithms is
mainly due to the use of a depth filter, where outlying features are rejected.

Conclusion

From the different methods it can be concluded that VO is quite accurate. The inherent
integration errrors are small; especially for indoor homing, where distances are small. The
accuracy is related to the computional complexity of algorithms. For instance SVO is very
accurate but computationally quite demanding for more accurate settings. When ample
computational resources are available, the homing problem can be solved with VO. The next
section will show insect-inspired homing methods, where VO often plays a part, but with
even less computational resources. This means different strategies are needed to obtain the
same accuracy.

4-2 Insect-Inspired Homing

The problems with SLAM solutions as described in the previous section are the computational
and memory requirements imposed by such algorithms. Especially for metric SLAM, maps
can get very big when the distance covered by the robot increases. The suitability of such
algorithms is limited for the use of MAVs, as the computational demands are quite high.
Mapless methods, however, are much more efficient, but induce velocity integration errors
over time. Even though these errors are not always significant, a trade-off has to be made
between accuracy and speed.

Looking into biology, many insects face the same navigational problems as UAVs. Espe-
cially visual homing is considered to be an important skill for insects like honeybees and
ants (T. S. Collett, 1996; T. S. Collett & Collett, 2002). Since the toolbox available to insects

Visual Homing for Micro Aerial Vehicles using Scene Familiarity G.J.J. van Dalen



40 Literature Overview

in order to navigate successfully is limited, much research is done in navigation habits of ants
and bees, from which computationally efficient algorithms can be created. This section gives
an overview of insect navigation research and also presents robotic implementations.

(a) (b) (c)

Figure 4-4: Three different modes of navigation: map-like representations (4-4a), path integra-
tion (4-4b) and route following (4-4c). The top pictures illustrate the navigation principles and
the bottom pictures contain a homing example using that method. Adapted from (Wolf, 2011).

As mentioned, the structure in this chapter is based on the navigation modes repeated in
Figure 4-4 (Wolf, 2011). The previous section already covered map-based representations
and path integration. The latter is continued in this section.

section 4-2-1 discusses research on optic flow observed in honeybees and MAV navigation
techniques which make use of this. Then, section 4-2-2 goes into the famous snapshot model
as homing method, and section 4-2-3 describes the use of landmark vectors to find a trajectory
to a home location.

After this, Section 4-2-4 presents several views on the question whether insects make use of
maps for navigation or not. Finally, Section 4-2-5 shows a modern route learning method
(Figure 4-4c) as alternative to landmark methods like the snapshot model.

4-2-1 Visual Motion Detection

In the previous section mapless navigation techniques are presented, which make use of op-
tic flow. Several researchers observed visual navigation based on optic flow in honeybees.
Therefore, this section gives an overview of visual motion detection employed by honeybees.

Research has shown that bees make use of visual cues to navigate between food sources.
In (Srinivasan, Zhang, Lehrer, & Collett, 1996) an experiment is presented with the aim to
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(a) (b)

Figure 4-5: Experiment shows that bees obtain range from apparent image speed. The short
arrows indicate direction of flight and the long arrows the movement of the images on the wall.
Rearranged image copied from (Srinivasan et al., 1996).

test the observations that bees always fly through the center of a confined space and that they
know when to stop moving. The hypothesis is that the motion in retinal images is used to
estimate velocity on all sides. To test this hypothesis an experiment is set up where honeybees
fly through a tunnel towards a food source. The walls of the tunnel have a black-and-white
striped pattern (Figure 4-5).

To find out whether apparent motion is indeed used by honeybees to fly through the center of
the tunnel, the patterns in the tunnel are moved asymmetrically. As illustrated in Figure 4-5b
honeybees change their location in the tunnel such that the apparent motion is constant on
both sides. Different dimensions of the black-and-white blocks on both sides of the tunnel
did not influence the flying behavior of the honeybees.

The second hypothesis is that honeybees also control their flight speed with apparent retinal
motion. This was tested in (Srinivasan et al., 1996) by letting bees fly through a tapered
tunnel (i.e., changing width of the tunnel). It turned out that the bees accelerated when the
tunnel got narrower and decelerated when the tunnel got wider. This suggests the use of
apparent motion to control the flight speed.

Further experiments confirm that honeybees apply VO using optic flow to estimate when to
stop moving and hence to navigate (Esch & Burns, 1996; Srinivasan, Zhang, & Bidwell, 1997).
A more detailed overview of experiments done to study the VO capabilities of honeybees can
be found in (Srinivasan, 2014). The use of VO by integrating optic flow for motion estimation
is already used frequently in UAV navigation, as mentioned in earlier sections of this chapter.

A biologically-inspired application of the use of optic flow for robot homing is presented
in (Diamantas, Oikonomidis, & Crowder, 2010). As seen with topological SLAM methods,
fingerprints are used as landmarks and are represented by LK optic flow vectors. A training
algorithm is presented where the optic flow fingerprints are stored when traversing a route.
The platform contains two cameras on the sides of the vehicle, which record optic flow vectors
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that are a function of the distance from the camera to the object and the speed. A fingerprint
can thus be seen as a sequence of optic flow vectors. During homing the currently obtained
sequence of optic flow vectors is compared to the fingerprints in the topological map. Based
on a similarity threshold a probability that it is indeed the correct landmark is produced.
During simulations the authors show that a similarity of 20% between optic flow vectors
perceived during homing and optic flow in a given fingerprint is enough to correctly identify
a landmark.

4-2-2 Snapshot Model

In 1983, Cartwright & Collett introduced the Snapshot Model (Cartwright & Collett, 1983).
The framework they presented gives an explanation of the navigation capabilities of bees
when traveling between different food sources. The model consists of two main elements: a
dead-reckoning method to get close to the goal location and finding the best visual match
with a stored snapshot in order to find the exact location of this goal. The visual matching
is done by a direct comparison of an image on the retina with a stored snapshot.

For highly cluttered environments close to the goal location, the visual matching would only
work when the distance is very small. In (Cartwright & Collett, 1987) the snapshot model is
extended by adding an extra snapshot, which does not contain landmarks close to the goal.
This snapshot can be used for visual matching when the distance to the goal is larger, while
the other snapshot (including visual information close to the goal) can be used for the last
part of the homing route. Navigation based on those snapshots is done by comparing size and
azimuth of the landmarks between the snapshot and retinal image (Franz, Schölkopf, Mallot,
& Bülthoff, 1998).

In (T. S. Collett, 1996) the landmark approach is further extended by the addition of visual
beacons. During the early parts of the return to a feeder or nest location, not only dead-
reckoning but also visual landmark information is used, so that they serve as beacons which
can correct heading errors.

In order to make the snapshot model biologically more plausible, (Möller, Maris, & Lambrinos,
1999) present a neural implementation of the snapshot model. It gives an explanation of why
and how the snapshot model can work in an insect’s brain. They show that even though the
real neural implementation in an insect’s brain is unknown, a simple neural model can mimic
snapshot homing.

Since the introduction of the snapshot model in a biological context, many successful attempts
have been done to use this model in robot navigation. In (Argyros, Bekris, Orphanoudakis, &
Kavraki, 2005) a method is proposed where navigation happens between Milestone Positions
(MPs). A navigation problem is split up into multiple local navigation tasks from one MP to
the next. An MP is specified by a set of at least three image features (Shi & Tomasi, 1994)
and a new MP is defined when these features (partly) disappear from view. The images are
taken with an omni-directional panoramic camera. An illustration of homing in a grid using
multiple MPs can be seen in Figure 4-6.

Navigation between two MPs happens by calculating a motion vector based on three or more
image features. This vector is an average of partial vectors drawn for each possible feature
pair, and is updated constantly. The construction of a partial motion vector is illustrated in
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Figure 4-6: Long-range homing strategy using multiple MPs. H indicates the home location and
G is the goal location from which homing is initiated. Obtained from (Argyros et al., 2005).

Figure 4-7. In this angular approach two mirrored hyperbolas are drawn with two features as
focal points. The tangent at S of the hyperbola going through the location of the agents forms
the partial motion vector. The angular approach is tested on a slow-moving ground robot in
an office environment, where a homing accuracy in the order of centimeters was achieved.

Another implementation of the snapshot model for robot homing is presented in (Pons,
Hübner, Dahmen, & Mallot, 2007), which is derived from a vision-based homing method
published in (Vardy & Moller, 2005). The goal is to improve their homing algorithm, by tak-
ing dynamic changes of the environment into account. This means occlusions and illumination
changes are considered in the experiment. Robust landmarks are defined as a representation
of SIFT features, and a matching and voting scheme is used to determine which features
describe the location best (Vardy & Moller, 2005).

The experiments were performed on an all terrain four-wheel drive ground robot, with an on-
board laptop with dual core processor for computations and an omnidirectional camera. Both
an indoor and an outdoor experiment were performed, with varying brightness. Performance
was measured by evaluating the estimated homing vectors and the success rate of homing
after a fixed amount of movements. In the indoor experiment it was observed that increasing
occlusions and illumination did not affect the mean homing vector, but increased the standard
deviation. When the home location was placed far away from the place where homing was
initiated, the performance decreased drastically under the influence of dynamic changes in
the environment. The outdoor experiments were performed at different times during the day
to test the algorithm under different illuminations. The results are better and more robust
in these outdoor experiments.

4-2-3 Average Landmark Vectors

The snapshot model stores an image to represent a certain location of interest, like a nest or
food source. From this, a heading vector to the home location is obtained. A similar approach
is presented in (Lambrinos, Möller, Labhart, Pfeifer, & Wehner, 2000), which make use of
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Figure 4-7: Composition of a partial motion vector from the agent location S, based on two
hyperbolas with features F1 and F2 as focal points. The tangent in S with one of the hyperbolas
defines the movement vector for this pair of features. Obtained from (Argyros et al., 2005).

Average Landmark Vectors (ALVs) to represent landmarks. ALVs, introduced in (Lambrinos,
Möller, Pfeifer, & Wehner, 1998), are averages of the heading vectors to all landmark loca-
tions. The homing vector is determined with respect to this ALV, as shown in Figure 4-8.
In (Lambrinos et al., 2000) objects are classified as landmarks using a brightness threshold
on pixel intensities. When a patch of pixels above (or below) this threshold is available, it is
recognized as a landmark.

The main difference between ALV homing and snapshot homing is that a location of interest
is represented by a single vector, instead of an image. This both improves the computational
efficiency and decreases the storage demands. The downside is that it is less accurate and
prone to errors. A small offset of a landmark vector can have a big impact on the ALV and
thus the homing vector. Furthermore, the current heading of a robot is needed to be able to
rely on ALV.
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Figure 4-8: Graphic description of the ALV model, where a home vector is computed by sub-
tracting the target ALV from the current ALV. Obtained from (Lambrinos et al., 2000).

4-2-4 Cognitive Maps

Insect-inspired navigation algorithms try to mimic the cognitive process going on in insect
brains. One of the main reasons why insects are used as inspiration, is the relative simplicity
of their brains, with only several hundred-thousands neurons (Mathews et al., 2009).

Next to computational limits, the simplicity of insect’s brains also limit storage capabilities
of route representations. In the snapshot model presented in the previous section, a retinal
image is stored to identify the home or feeder location of honeybees. In more advanced
landmark navigation approaches (for instance when using multiple snapshots for different
locations), this route representation is already more complex, which suggests the availability
of a cognitive map.

A way in which multiple retinal images can be identified as landmarks is by having a database
of landmark vectors to identify the general direction of a certain food source or nest, based
on the earth magnetic field (T. S. Collett & Baron, 1994).

In (Menzel et al., 2005) an experiment investigating the flight paths of bees is presented. The
experiment involves kidnapping of bees when they leave a feeder location and placing them
elsewhere. The results showed that bees flew straight back to a known (for instance nest)
location, even when they were released far from this location. Based on these short-cuts,
Menzel et al. conclude that bees must have a rich, map-like spatial memory.

Researchers are not unanimous on the usage of cognitive maps in insects like ants and bees.
Observations of desert ants (which do not rely on pheromone trails) not taking the shortest
route to a nest location and the observation that these ants only know the route in one
direction, suggest the absence of such a map (M. Collett & Collett, 2006).

In (Cruse & Wehner, 2011) a neural model is made which makes use of PI and landmark
guidance to mimic a cognitive map in an insect’s brain. Based on the definition that a map
allows for taking short-cuts to reach a certain landmark, they conclude that a cognitive map
is not present in insects.
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Both the snapshot model and ALV methods assume the presence of some cognitive map,
though those maps do not have the properties of maps generated in SLAM methods (e.g.,
closing the loop). In the next section a method is presented where such a map is not used.

4-2-5 Scene Recognition

The use of snapshots in ant and bee navigation has recently been challenged by several
researchers (Cheung et al., 2014). In (Baddeley et al., 2012) a different insect-inspired method
is proposed, where pictures along the entire route are used for homing. In the paper it is
posed as a likely explanation of how ants solve the homing problem (when pheromones are
not effective due to the environment). Moreover, simulation results are presented which show
a possible implementation on robots.

The algorithm starts as follows: one return to the nest is used to take pictures. These pictures
are stored and used as familiar views. When the algorithm is applied for homing, pictures
are taken with several bearings and compared against the stored frame. The most familiar
image is used as correct direction. This is repeated for the entire route. Figure 4-9 shows the
results of a homing simulation performed in (Baddeley et al., 2012). The red line indicates a
single training run and the black lines show several (successful) homing experiments.

Two methods of scene storage are described in the paper. First, navigation with a perfect
memory is presented, in which all pictures taken during the training run are stored. Familiar-
ity between different images is then computed by minimizing the Sum of Squared Differences
(SSD) between a stored frame and the frames taken at a location along the route.

The second storage method is the (biologically more plausible) use of an Infomax NN (Lulham,
Bogacz, Vogt, & Brown, 2011), where each pixel of an image is used as input to the network.
Familiarity is encoded in the weights, which are trained according to an unsupervised training
scheme, as developed in (Bell & Sejnowski, 1995). A detailed description and simulation
examples of the Infomax NN can be found in Chapter 5 of this thesis.

Baddeley et al. address the following three problems when performing homing using scene
familiarity:

• The agent would overshoot the nest location if no stop criterion is present. The solution
posed is the use of learning walks around the nest, in order to make the agent converge
towards it (Muser, Sommer, Wolf, & Wehner, 2005; Müller & Wehner, 2010). An
example of the usage of learning walks is shown in Figure 4-10.

• Storing multiple routes within a single NN can become a problem for network capacity.
Baddeley et al. show that the algorithm still works for three different routes, although
the failure rate (i.e., the amount of times the nest is not reached) is higher.

• Performance degrades when the tussock density (and hence also the number of occlusions
and ambiguities) increases. This degradation is observed in the occurrence of failed
returns.

A final note about the paper concerns the need for a return to the nest for training purposes.
The fact that such a training run is needed, makes the method less useful for returning
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Figure 4-9: Homing results from (Baddeley et al., 2012). The left panel shows a training run
(red) and test routes (black), for a route of 12 m in an environment with tussocks. The right
panel shows example views from the training run.

Figure 4-10: Learning walks prevent an agent to pass the nest during homing (the red lines
indicate training and the black lines indicate homing simulations). Obtained from (Baddeley et
al., 2012).
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home after an exploratory flight. This issue could for instance be solved by using an omni-
directional camera, so that training can happen during explorating. Another possibility is
to adapt the flying behavior of the MAV to aid training. During this review, the usage of
an omni-directional camera or implementation of special training behavior, when employing
scene familiarity, was not found.

Based on the research presented in (Baddeley et al., 2012), more papers have been published
by researchers from the same institute to show the superiority of the scene familiarity method
over the snapshot model. In (Wystrach, Mangan, Philippides, & Graham, 2013), experiments
which were originally designed to show the working of the snapshot model in navigation
behavior of foragers are re-evaluated, to show that the scene familiarity approach is a more
plausible model for homing behavior of insects.

Scene familiarity is a new development in insect navigation. To my knowledge, no robotic
implementations using this methodology have been published yet.
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Chapter 5

Infomax Neural Networks

As mentioned in the previous chapters, the approach published in (Baddeley et al., 2012) is
used as basis for this thesis. The scene familiarity method makes use of an Infomax neural
network (Lulham et al., 2011; Bell & Sejnowski, 1995) as representation of the route. In
order to better understand the working principles and capabilities of this network, several
MATLAB simulations are performed with this network.

First, Section 5-1 gives a general description of the Infomax NN for familiarity recognition and
uses simple simulations to show the working of it. Then, initial research to the application
of the Infomax network to vision-based scene recognition is presented in Section 5-2, using
different representations of a video frame (i.e., an image). Finally, Section 5-3 lists some ideas
of future research to be done in order to better understand how to robustly apply Infomax
NNs on MAVs.

5-1 Infomax Neural Network Learning

As mentioned in Section 4-2-5 the scene familiarity recognition homing algorithm presented
in (Baddeley et al., 2012) makes use of a neural representation to store route familiarity. This
section first gives a short overview of Infomax NNs and then presents simulation results to get
a better grip on how well the network is performing with regard to familiarity discrimination.

The Infomax NN used is a two-layer network with an input layer and a novelty layer (see
Figure 5-1) (Lulham et al., 2011). The network can be used both for feature extraction and
familiarity discrimination. However, for the method proposed in (Baddeley et al., 2012), only
familiarity discrimination is needed. In both (Baddeley et al., 2012) and (Lulham et al., 2011)
the number of input neurons is equal to the number of novelty neurons. In principle this is
not necessary, since a lower amount of novelty neurons is computationally advantageous and
might give sufficient performance for successful scene discrimination, while a higher amount
should increase the storage capacity of the network (Lulham et al., 2011). In this chapter N
indicates the number of inputs, while M indicates the number of novelty neurons.
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Figure 5-1: Infomax NN structure with an input layer and a novelty layer. In this representation
it is assumed that the input layer and novelty layer contain an equal amount of neurons. Obtained
from (Lulham et al., 2011).

The main idea behind an Infomax network for familiarity discrimination is that any sequence
of inputs given as training data, will adjust the weights such that the total input to the
novelty layer decreases. This metric for familiarity is defined in Equation 5-1.

d(x) =
M∑

i=1

|hi| (5-1)

Here, d(x) (also called the decision function) is the familiarity of input sequence x, for which
a smaller value means that the sequence is more familiar than when d(x) is larger. hi is the
input to the ith novelty neuron, and is defined as:

hi =

N∑

j=1

wijxj (5-2)

In this equation xj is the input from the jth input neuron. Finally, the activation function
of the ith novelty neuron is a hyperbolic tangent of hi.

As the familiarity d(x) can be seen as the desired output of this network, an output layer is
discarded.

The network weights are initialized according to U(−0.5, 0.5), and then normalized such that
the mean and standard deviation of all

∑N
j=1wij (i.e., the sum of weights for each novelty

neuron) are 0 and 1 respectively.

Training is done using an unsupervised learning rule, with the aim to lower the familiarity for
each given training sequence. The difference between supervised learning (which is normally
used in NNs) and unsupervised learning, is that in supervised learning the difference between
desired and actual output of the network is minimized to update the weights of the neurons.
In unsupervised learning, however, the desired output is not used for training. Instead, an
update rule as function of network input, network output, and current neuron weights is
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applied to update the weights. On the one hand this makes unsupervised training very fast,
but on the other hand it does not give direct control over the output of the network. As the
familiarity output of an Infomax network is only used to compare the result with respect to
other inputs, unsupervised learning suffices. The unsupervised learning rule used is obtained
from (Lee, Girolami, & Sejnowski, 1999) and is defined as:

∆wi,j =
η

M

(
wi,j − (yi + hi)

M∑

k=1

hkwk,j

)
(5-3)

In this equation, η is the learning rate, wi,j is the current value of the weight between input
j and neuron i, and yi is the output of the ith novelty neuron.

To demonstrate the familiarity discrimination capabilities, a simulation is done using 100
input vectors, each containing N = 500 random numbers generated from N (0, 1). The first
50 vectors were fed to the network for training (note that the performance did not seem to
vary with the number of training sequences, given a total of 100 samples). Then, the weight
update rule was turned off and all 100 sequences were fed to the network to compare the
familiarity. The result for a network with 200 novelty neurons and a learning rate of 10−3

is shown in Figure 5-2a. Even though a trend is already visible, it is hard to discriminate
between familiar and novel sequences. Two ways to get a better distinction are increasing
the learning rate and increasing the number of epochs (i.e., how many sequential times the
weight is updated for each training sequence). Increasing the learning rate is computationally
cheaper, but can lead to an unstable network. Increasing the number of epochs is more robust,
but requires more computation. An example of using 10 epochs instead of 1 can be seen in
Figure 5-2b. Now, it is easy to see that the first half of the sequences is familiar and used for
training.
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Figure 5-2: Simulation results for familiarity discrimination for 1 epoch and 10 epochs, for
samples of 100 elements in N (0, 1).

The simulations shown give good results when a threshold is defined for the decision value
(i.e., each sequence which has a decision value lower than the threshold is treated as familiar).
In (Baddeley et al., 2012) no use is made of such a threshold. Instead, all measurements (i.e.,
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samples) taken at different bearings are compared and the measurement with the lowest
decision value is taken as the correct one.

In order to show that such recognition of the most familiar input sample works, a synthetic
simulation is performed, where the height of a skyline is simulated by low-pass filtering white
noise. A cutoff frequency of 0.1 rad/s is applied and the function is 1000 units wide (Figure 5-
3a). One sample of 500 units is taken from this skyline (exactly in the middle) and fed to the
network for training. Then, each possible view is taken from the skyline function (i.e., each
possible sample with 500 units) and the familiarity d is evaluated. The result can be seen in
Figure 5-3b. The figure clearly shows the sample taken in the middle of the skyline as most
familiar.
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Figure 5-3: Recognition of a single trained input sample. Figure 5-3a shows low-pass filtered
white noise with a cutoff frequency of 0.1 rad/s (height representation of a skyline) and Figure 5-3b
shows familiarity of windows from the filtered noise of 500 units wide.

Note that an Infomax network is very sensitive to the order in which the inputs are provided
to the network during training and during testing familiarity. An effective way to diminish
this effect is by applying a Gaussian filter on the input sample, which effectively spreads one
input over multiple, neighboring input neurons. This, however, will cause distinctive features
to disappear. A trade-off is needed between sensitivity to input order and the availability
of distinctive features, to find the optimal standard deviation of the Gaussian applied to the
input vector.

5-2 Infomax Scene Recognition

As mentioned before, the purpose of the Infomax network in (Baddeley et al., 2012) and also
in this thesis, is storage of familiar views encountered during an exploration route. The size
and meaning of the network input vector should be designed such that a single sample forms
a unique representation of an image. In (Baddeley et al., 2012) this is done by making a
vector containing the gray scale intensities of each pixel. Simulations of this are shown in
Section 5-2-1.
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Using one input neuron for each pixel in an image often requires very many inputs to the
network, which automatically means more novelty neurons for the same storage capacity.
Instead of using pixels, different image features can be used as input to the network. In
Section 5-2-2 simulations are performed with a histogram of edge features as input to the
network.

In the end, the aim of the network is to be able to find a motion vector in a robust way, based
on familiarity of a scene. A way to achieve this is by combining familiarity from multiple
Infomax networks with different inputs. Section 5-2-3 shows simulations where a network
using pixel intensities is combined with a network using edge histograms.

5-2-1 Pixel Inputs

First an Infomax network with pixel intensities as inputs is simulated. In order to replicate the
results from (Baddeley et al., 2012), two simulations were set up to test the scene familiarity
capabilities of the network.

The first simulation uses a training video where an agent moves towards a wall. For testing
familiarity, the agent moves parallel to the wall at a constant distance from it. The goal is for
the agent to identify the view which best resembles the training set. Image sequences of four
frames from the videos for training and familiarity testing are shown in Figures 5-4 and 5-5
respectively.

(a) (b) (c) (d)

Figure 5-4: Four frames from the training video where an agent moves towards a wall. The
video contains 173 frames in total and has a duration of 5 seconds.

The videos have a resolution of 29 by 52 pixels, which means the Infomax network has 1508
input neurons. Furthermore, the network has an (arbitrary) amount of 1000 novelty neurons
and a learning rate of 0.001. Each sample is trained 20 times.

The familiarity results are shown in Figure 5-6, which contains both the familiarity before
training and after training. It can be seen that the most familiar frame (i.e., it has the lowest
decision value) is found to be frame 158, which corresponds to Figure 5-5b. This is indeed a
good result.

The second simulation is performed in a hallway, where a walk through it is used as training
video and a rotation on the spot is used for familiarity determination. Frames from the videos
used for training and testing are shown in Figures 5-7 and 5-8 respectively.
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(a) (b) (c) (d)

Figure 5-5: Four frames from the testing video where an agent moves parallel to a wall. The
video contains 406 frames in total and has a duration of 13 seconds.
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Figure 5-6: Familiarity output of moving towards a wall experiment before and after training.
The most familiar direction is found in frame 158 and is indicated with a red marker.

(a) (b) (c) (d)

Figure 5-7: Four frames from the training video where an agent moves through a hallway. The
video contains 225 frames in total and has a duration of 15 seconds.
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(a) (b) (c) (d)

Figure 5-8: Four frames from the testing video where an agent rotates on a spot where the
direction must be determined. The video contains 91 frames in total and has a duration of 6
seconds.

The resolution of the videos is 44 by 36 pixels, which gives a total of 1584 input neurons.
The number of novelty neurons, training epochs, and the learning rate are the same as in the
previous experiment.

Figure 5-9 shows the familiarity results for this experiment. Frame 54 (shown in Figure 5-8c)
was found as most familiar, which indeed corresponds quite well with the training video.
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Figure 5-9: Familiarity output of walking in a hallway experiment before and after training. The
most familiar direction is found in frame 54 and is indicated with a red marker.

5-2-2 Edge Inputs

As mentioned, there are other image representations which could be used as input to the
Infomax NN. One possibility is the use of histograms of vertical edges.
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Edges in the vertical direction are calculated using the Sobel operator and are summed over
the vertical axis. This results in a one dimensional row-vector containing a histogram of
edges, which can be seen as a representation of the image. Figure 5-10b shows an example
of such an edge representation (to obtain a histogram, the pixel values must still be summed
over the vertical axis).

(a) (b)

Figure 5-10: Example of vertical edges of Figure 5-5b, calculated using the Sobel operator.

Advantages of using edges are that the number of inputs to the network can be reduced and
hence also the number of hidden neurons, which reduces computational demands during both
training and testing. Furthermore, since only vertical edges are used, the network becomes
more resistant against small differences in altitude between the training and testing videos.

To test the use of edges in the neural network, the same two experiments as described above
are performed with the use of edges. For the experiment where an agent walks towards a
wall, the resolution used is 540 by 960, which means that the row-vector containing the edges
has 540 elements. Therefore, the network contains 540 input neurons. The number of novelty
neurons (1000), training epochs (20) and the learning rate (0.001) are kept the same as before.

Figure 5-11 shows the familiarity result before and after training. The best match is again
found at frame 158 (which is correct). However, the minimum decision value is less dis-
tinct than in the previous results and the familiarity after training is quite similar to the
initial familiarity, which might lead to wrong solutions when this is not the case in different
experiments.

The test where an agent walks through a hallway is also performed with edges as inputs.
Here, the resolution of each frame is 640 by 360 pixels. Furthermore, a longer walk period
of 35 seconds is used for training, which amounts to a total of 1050 frames. For testing the
rotation on the spot video consists of 182 frames and has a duration of 6 seconds. The results
can be seen in Figure 5-12.

The minimum decision value found is at frame 94. It can be seen however, that there is a local
minimum at frame 111. In Figure 5-13 both of these frames are displayed, and it is concluded
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Figure 5-11: Familiarity output of moving towards a wall experiment before and after training.
A histogram of vertical edges is used for familiarity. The most familiar direction is found in frame
158 and is indicated with a red marker.

that frame 111 actually is a better match to the training video. Note that Figure 5-13a is
a little more blurry than 5-13b. This is the same effect as having a Gaussian filter over the
inputs, which may be an explanation for the better match at the local minimum.

5-2-3 Hybrid Networks

From the tests presented in the previous sections, it can be seen that pixels used as inputs give
the best results. Even so, edge histograms also give quite good results and can potentially be
better when tests are performed on a flying vehicle where altitude can fluctuate.

In this section an attempt is made to improve the robustness of the results by combining both
decision values in a single familiarity estimate. This is done by running two neural networks
in parallel, one of which taking pixels as inputs and the other using the edge histograms.
Combining the decision values is done by mapping the values of d in [0,1] (for each neural
network) and adding them up. This means the familiarity solutions for both networks are
weighted equally (this can be tuned in the future).

For the experiment where an agent walks towards a wall, the same videos as for the edge tests
are used (i.e., with a resolution of 540 by 960 pixels). For the network with pixel intensities
as inputs, this is scaled down to 34 by 60 pixels, such that 2040 input neurons are used. In
order not to saturate the capacity of this network, the number of novelty neurons is increased
to 2000. To increase the speed of the simulation, the number of epochs for both networks is
decreased from 20 to 10.
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Figure 5-12: Familiarity output of walking in a hallway experiment before and after training. A
histogram of vertical edges is used for familiarity. The most familiar direction is found in frame
94 and is indicated with a red marker.

(a) (b)

Figure 5-13: Best (frame 94) and second best (frame 111) frames from the testing video of the
hallway walk experiment using edge features.

The result for this experiment can be seen in Figure 5-14. Obviously, the most familiar view
is still found at frame 158, but with a more distinct minimum decision value.

Finally, the hallway experiment is also performed with both pixel intensities and edge his-
tograms as inputs. Again, the same videos as in the edge histogram experiment are used (i.e.,
with a resolution of 640 by 360 pixels). For the network with pixel intensities as inputs this
is scaled down to 40 by 23 pixels, which give 920 inputs to this network. Both networks have
1000 novelty neurons, and 10 training epochs are used.
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Figure 5-14: Familiarity output of moving towards a wall experiment before and after training.
A combination of pixel intensities and edge histograms is used for familiarity. The most familiar
direction is found in frame 158 and is indicated with a red marker.

The results of this experiment can be found in Figure 5-15. Similar to the previous combined
experiment, the optimum decision value is more distinct than in the experiments with one
neural network. The optimum is found at frame 107, and is close to the second best minimum
(which actually was the best solution) from the experiment with only edge histograms as input.

5-3 Future Research

This chapter showed the scene recognition capabilities of an Infomax NN. Still, there are
many aspects to investigate regarding the network, before implementing it on an MAV. The
aspects currently found are listed here:

• Investigate whether direction can still be determined when circles are flown for training.
This would make it possible to train on an exploration flight, by rotating at certain
points on the trajectory and use dead-reckoning to navigate between those spots.

• Investigate the capacity of a network, both in theory (i.e., based on existing literature
or synthetic simulations) and in an application on images.

• Investigate existence of other familiarity representations than Infomax.
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Figure 5-15: Familiarity output of walking in a hallway experiment before and after training. A
combination of pixel intensities and edge histograms is used for familiarity (average familiarities
of two networks). The most familiar direction is found in frame 107 and is indicated with a red
marker.

• Investigate the usage of panorama images for training, instead of rotation videos. Be-
sides the fact that this would align sequential frames during familiarity testing, a
panorama is a typical output of a camera with a high field of view.

• Investigate the effects of decreasing the frame rates of videos used to train the network.

• Instead of using two networks as hybrid approach, use a single Infomax NN with both
pixels and edges as inputs.
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Chapter 6

SmartUAV Simulations

The cores of the papers presented in Chapters 2 and 3 consist of a familiarity analysis and
closed-loop simulation results. These results are made in SmartUAV; a vision-in-the-loop
simulator, developed by TU Delft. This chapter first gives a brief overview of the SmartUAV
simulator, in section 6-1. Then, section 6-2 describes the image representations used in the
papers in more detail, namely raw pixels, texton histograms and Hue Saturation Value (HSV)
color histograms.

6-1 SmartUAV

SmartUAV is a UAV simulation platform developed in C++ at the TU Delft. It is mainly used
for creating and testing UAV GNC algorithms. Due to the 3D rendered sceneries, SmartUAV
is especially useful for development of computer vision algorithms for UAVs.

SmartUAV is completely modular, which means that different vehicles, sensors and algorithms
can be combined easily. Different modules can be connected to eachother in a graphical
manner, which enables researchers to quickly develop and test different GNC algorithms.
Since the program runs on multiple threads, algorithms running at different frequencies can
be used simultaneously. Simulations can be performed both in real-time and fast-time.

For the development of computer vision algorithms, the vehicles are virtually placed in a 3D
environment. The fidelity of these simulated environments can be high, as needed by the
researcher. To aid efficient development of computer vision methods, OpenCV is linked to
SmartUAV. This makes it very easy to use well-tested computer vision algorithms.

Figure 6-1 shows a screen capture of the SmartUAV development window, where different
modules can be connected to compose a GNC algorithm. Figure 6-2 shows some screen
captures of a running simulation. Here, the top left figure is the Simulation Manager, where
different views of the UAV can be seen by the developer. The top right window shows a trigger
button, used to switch between exploration and homing. The bottom left image shows the
view as observed by the UAV and the bottom middle picture contains some state values for
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Figure 6-1: SmartUAV main window, containing the algorithm structure for homing using tex-
tons.

Figure 6-2: SmartUAV windows open during a homing simulation.

debugging. Finally, the bottom right window contains a top-view map, where the red line is
the exploration route and the green line the homing route.

6-2 Image Representations

In the methods described in the papers, different image representations for scene familiarity
are compared. These three representations are raw pixels, texton histograms and HSV color
histograms, and are described in sections 6-2-1, 6-2-2 and 6-2-3 respectively.

6-2-1 Raw Pixels

As the name suggests, raw pixels represent the pixels directly coming from the camera. In the
simulations performed, these are converted to grayscale and scaled down to improve real-time
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performance. Figure 6-3 shows an example of an image captured in a simulated sports hall in
SmartUAV. Figure 6-3a shows the raw capture from the simulated camera and Figure 6-3b
shows the scaled down gray image used in simulations.

(a) (b)

Figure 6-3: Image taken in the sports hall environment in SmartUAV. Figure 6-3a shows the raw
image (480 by 320 pixels) and Figure 6-3a shows the corresponding gray, scaled down image (48
by 32 pixels).

6-2-2 Texton Histograms

Textons are small image patches extracted from images. When classifying these patches to
pre-determined clusters, a histogram can be obtained as compact representation for an image.
Figure 6-4 shows an example texton representation. Figure 6-4a shows an image taken in a
simulated sports hall environment, Figure 6-4b shows the set of 50 pre-determined clusters
and Figure 6-4c shows a resulting texton histogram.

In the results presented in the papers, all possible patches are extracted from each image. In
the case of Figure 6-4a this means that a total of 36816 image patches are extracted. Each
patch is compared to each pre-determined cluster in the texton dictionary (Figure 6-4b), in
order to classify it. This comparison is done by calculating the squared euclidean distance
between a patch and a cluster, which is the same as computing the SSD between the two. The
patch is then classified to the closest cluster. When this is done for all patches, a histogram
is obtained like the one in Figure 6-4c. Note that for better computational performance,
sub-sampling can be applied. This means not all possible patches are extracted from each
image, but only a (random) sample.

Training of the clusters is done using the K-means clustering algorithm. For this, image
patches for many (representative) images must be provided. Then, K clusters are randomly
selected as initial clusters (note that K = 50 throughout this thesis). All other image patches
in the training set are clustered to these K clusters. When this is done, for each cluster a new
center of mass is calculated based on all patches classified in a single cluster. This center of
mass is used as new cluster center, after which this process is repeated multiple times.
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Figure 6-4: Example of an image representation using textons. Figure 6-4a shows an example
image from a sports hall. Figure 6-4b shows the clusters to which textons are assigned and
Figure 6-4c shows the corresponding texton histogram. The textons are patches of 5 by 5 pixels,
and a total number of 36816 textons have been extracted from the example image.
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6-2-3 HSV Color Histograms

The last image representations used in this thesis are HSV color histograms. Color histograms
contain a classification of each pixel based on color intensity. Here, HSV colors are used.

The three channels in the HSV color space are hue, saturation and value. Hue represents the
color of a pixel. The value indicates an angle between 0 and 360 degrees and corresponds
to a location on a colored disk. Saturation represents the amount of gray in a color; a high
saturation indicates much color and little gray. Saturation is expressed as a percentage.
Finally, value indicates the brightness or intensity of a pixel.

The HSV color histograms used in this paper are composed from the hue and value channels.
Both are divided in 25 equal parts, which results in two histograms. For the final image
representation, these histograms are concatenated.

A saturation threshold of 0.2 is used, which means all pixels with a saturation lower than this
value are discarded in the histograms. This is to make sure that only illuminated pixels are
used for the representation.
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Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., & Wehner, R. (2000, jan). A mobile
robot employing insect strategies for navigation. Robotics and Autonomous Systems,
30 (1-2), 39–64. doi: 10.1016/s0921-8890(99)00064-0
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Pons, J. S., Hübner, W., Dahmen, H., & Mallot, H. (2007). Vision-based robot homing
in dynamic environments. In 13th IASTED International Conference on Robotics and
Applications (pp. 293–298).

Visual Homing for Micro Aerial Vehicles using Scene Familiarity G.J.J. van Dalen



72 Bibliography

Shi, J., & Tomasi. (1994). Good features to track. In Proceedings of IEEE conference on
computer vision and pattern recognition CVPR-94. New York, USA: IEEE Computer
Society Press. doi: 10.1109/cvpr.1994.323794

Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in
robotics. In Autonomous robot vehicles (pp. 167–193). New York, USA: Springer. doi:
10.1007/978-1-4613-8997-2 14

Srinivasan, M. V. (1994, sep). An image-interpolation technique for the computation of optic
flow and egomotion. Biological Cybernetics, 71 (5), 401–415. doi: 10.1007/bf00198917

Srinivasan, M. V. (2014, apr). Going with the flow: a brief history of the study of the
honeybee’s navigational ‘odometer’. Journal of Comparitive Physiology A, 200 (6), 563–
573. doi: 10.1007/s00359-014-0902-6

Srinivasan, M. V., Zhang, S., & Bidwell, N. (1997). Visually mediated odometry in honeybees.
The Journal of Experimental Biology , 200 (19), 2513–2522.

Srinivasan, M. V., Zhang, S. W., Lehrer, M., & Collett, T. S. (1996, jan). Honeybee navigation
en route to the goal: visual flight control and odometry. Journal of Experimental
Biology , 199 , 237–244.

Strydom, R., Thurrowgood, S., & Srinivasan, M. V. (2014). Visual odometry: autonomous
uav navigation using optic flow and stereo. In Australasian Conference on Robotics and
Automation (ACRA)(Melbourne).

Tapus, A. (2005). Topological SLAM - Simultaneous Localization and Mapping with Finger-
prints of Places (Unpublished doctoral dissertation). École Polytechnique Fédérale de
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