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Introduction

Aircraft maintenance is subject to stringent regulations, with safety being the absolute top priority. Both air-
craft carriers and Maintenance, Repair, and Overhaul (MRO) organizations aim to optimize maintenance pro-
cedures to minimize aircraft downtime [2, 20]. Over the past decade, numerous machine learning algorithms
have been developed and integrated to improve maintenance management. Aircraft are now equipped with
specialized sensors, leading to increased data collection regarding component failures [21]. However, while
MROs and aircraft carriers have made progress in predicting component failures, they have difficulty obtain-
ing a complete list of materials for dedicated maintenance events due to the complexities of technical doc-
umentation. Consequently, the spare parts required to complete maintenance events are often unavailable
during the execution phase, resulting in unexpected delays and increased costs.

Purchasing these spare parts is not as straightforward as expected. Aircraft consist of thousands of unique
components that are typically purchased from aftermarket companies, which are distributors of aircraft spare
parts. The availability of aircraft spare parts at aftermarket distributors may differ; some spare parts are on
the shelf and can be delivered directly, while other spare parts may be very case specific and need to be
produced or ordered from suppliers first, resulting in a delivery time of months, which substantially affects
the duration of the maintenance event. This underscores the importance of having a comprehensive material
list in advance to streamline planning, improve efficiency, and minimize aircraft downtime. Additionally,
predicting future demand for spare parts poses challenges for aftermarket distributors due to the distinct
characteristics and variable demand patterns associated with each spare part. Traditional demand prediction
models rely on historical sales records to forecast monthly demand values.

This thesis is done in collaboration with an aircraft aftermarket distributor and addresses the aforemen-
tioned challenges by developing a robust prediction model. This model forecasts the occurrence of customer-
specific purchases of Maintenance Planning Document (MPD) related spare parts by incorporating technical
documentation and historical sales records. All necessary information, including the required sales records
and identified MPD related spare parts, was provided by the aftermarket distributor. To the best of the au-
thor’s knowledge, this paper marks the first attempt to integrate these components into a single architecture
tailored to the needs of the aftermarket distributor. Such an algorithm has the potential to revolutionize the
aftermarket industry, shifting it from a reactive environment to a proactive one. For example, it could be im-
plemented as a spare part recommendation system, introduces the possibility of dynamic pricing, and can
be utilized to optimize stock levels and improve current supply chain processes.

This thesis report is organized as follows. In Part I, the scientific research paper is presented. This is the
final and main contribution of this thesis and discusses the methodology, results, limitations, and potential
applications of the robust prediction model. The second part of the thesis report, Part II, covers the literature
review that was completed as the initial step in this thesis. It summarizes previous research on aircraft spare
parts and the use of machine learning models for demand prediction. Finally, in Part I1I, a comprehensive
overview of the results obtained from two case studies that assess the proposed classification model described
in the scientific paper is provided.
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Predicting Future Aircraft Spare Part Purchases by Using Previous

Sales Records and Technical Maintenance Documentation

M.L. Wittenberg,*
Delft University of Technology, Delft, The Netherlands

Abstract

Efficient maintenance scheduling is a critical objective for aircraft carriers and Maintenance Repair and Over-
haul Organizations (MROs) to minimize aircraft downtime. While predictive maintenance models have im-
proved, accurately identifying materials, especially spare parts, for specific maintenance events remains chal-
lenging. This paper combines the challenges of identifying spare parts by MROs and aftermarket distributor
demand models by developing a robust prediction model (SPSO-CM) to forecast subsequent customer-specific
purchases of maintenance planning document (MPD) related spare parts, considering technical documentation
and previous sales records. The proposed architecture employs a gradient-boosting algorithm with numerous
data mining improvement techniques to predict the likelihood of a subsequent spare part purchase from a
customer. A k-means clustering algorithm is used to group spare parts with similar characteristics, as certain
specific spare part properties significantly influence demand prediction models. A unique feature selector and
nested group K-fold TimeSeriesplit cross-validation method were developed and incorporated into the Bayesian
search space to optimize hyperparameters and improve performance. Two test cases were simulated, and the
results demonstrated that SPSO-CM is more effective in forecasting proprietary parts and frequently purchased
spare parts than those with extremely lumpy demand patterns. Two potential applications for an aftermarket
distributor are discussed, one from a customer-level perspective and another at a larger supply-chain level,

highlighting its promising capabilities.

keywords: Aircraft aftermarket distributor, aircraft
gradient-boosting, machine-learning

1 Introduction

The aviation industry has grown rapidly in the last
decade. Millions of passengers travel every day with
thousands of competing airlines that use different air-
craft types. Current global market forecasts predict
that passenger and freight traffic will even further in-
crease annually by 3.6% and 3.2%, respectively, to-
wards 2040 [1]. To accommodate this growth, airliners
must optimize their current operational fleet usage by
planning maintenance activities as efficiently as possi-
ble to limit downtime of their aircraft while keeping
passenger safety as a key priority.

Maintenance, Repair, and Overhaul (MRO) organi-
zations and aircraft carriers have traditionally relied
on maintenance regulations, component data, and past
maintenance schedules to predict and schedule main-
tenance activities [2]. However, accurately identifying
the materials required for a specific maintenance event,
including spare parts for related events, remains a sig-
nificant challenge. Incomplete material bills can lead
to unexpected delays during maintenance, resulting in
high downtime costs. Purchasing these spare parts is
not as straightforward as expected. Aircraft consist
of thousands of unique components that are typically
purchased from aftermarket companies, which are dis-

*Msc Student, Air Transport & Operation, Faculty of
Aerospace Engineering, Delft University of Technology

maintenance, classification model, demand prediction,

tributors of aircraft spare parts. The availability of
aircraft spare parts at aftermarket distributors may
differ; some spare parts are on the shelf and can be
delivered directly, while other spare parts may be very
case-specific and need to be produced first, resulting in
a delivery time of months which substantially affects
the duration of the maintenance event. This challenge
became even more pressing after the COVID-19 pan-
demic, when many grounded aircraft had to be rein-
tegrated into service and delayed maintenance tasks
had to be quickly addressed, leading to a high demand
for aircraft spare parts [3]. A recent news article by
van der Heide [4] on current spare part delivery issues
caused by problems in the Boeing and Airbus supply
chain illustrates these challenges.

Forecasting demand for aircraft spare parts is chal-
lenging for aftermarket distributors due to the extreme
number of different spare parts, each of which exhibits
unique characteristics and varying demand patterns.
Aircraft components are frequently classified as Rota-
bles, Repairables, Expendables, or Consumables based
on their economic value, functionality, essentiality, and
expected lifespan. Rotables, including landing gears
and major engine components, are designed for unlim-
ited repairs and will not be replaced under normal op-
erating conditions. Repairables, such as engine blades
and tires, have a limited repair lifespan before replace-
ment is necessary. Expendables, such as cotter pins



and rivets, cannot be repaired and are regularly re-
placed with new parts. Consumable items, like oil and
lubrication, are depleted during aircraft operations and
require periodic refreshment [5, 6].

Traditionally, aftermarket demand prediction mod-
els are based on previous sales records to predict
monthly demand values to opt in spare part invento-
ries, which leads to lower holding costs and increased
customer satisfaction. This research combines the
challenges of identifying spare parts needed by MROs
and aftermarket demand models by developing a ro-
bust prediction model to forecast subsequent customer-
specific purchases of maintenance planning document
(MPD) related expendable spare parts considering
technical documentation and previous sales records.
The proposed architecture employs a gradient-boosting
algorithm with numerous data mining improvement
techniques to predict the likelihood of a subsequent
spare part purchase from a customer. To the best of the
author’s knowledge, this paper is the first to combine
technical aircraft documentation with an aftermarket
distributor’s sales records to predict the occurrence of
future purchases. This model empowers aftermarket
distributors to shift their business strategy from a re-
active approach to a more proactive one, enabling them
to recommend spare parts to customers and take pre-
emptive action before specific purchases occur.

This paper is structured as follows: A review of the
relevant literature on aircraft spare part demand pre-
diction models is presented in Section 2. Subsequently,
Section 3 provides a comprehensive explanation of the
problem, the objective, the setup, and the underlying
assumptions. A detailed description of the proposed
model’s architecture is presented in Section 4. Vari-
ous framework configurations are evaluated to identify
the best-performing algorithm by considering two case
studies, and the results are discussed in Section 5. The
initial steps toward developing a use case application
utilizing the spare part subsequent purchase order oc-
currence prediction model are discussed in Section 6.
Finally, the conclusion of this article, the limitations of
the study, and the recommendation for future research
are discussed in Section 7.

2 Literature Review

This section provides an overview of related work, in-
cluding forecasting models designed to address the spe-
cific characteristics of aircraft spare parts in Subsec-
tion 2.1, as well as data improvement techniques dis-
cussed in Subsection 2.2 to improve forecasting models.

2.1 Forecasting Models

Aircraft spare parts exhibit a unique and uncertain de-
mand pattern, necessitating the classification of de-
mand patterns to select the most suitable predic-
tion model for accurate results. The commonly used
Syntetos-Boylan-Croston modified Williams scheme
categorizes spare parts into smooth, erratic, intermit-

tent, or lumpy classes based on their average demand
interval (ADI) and squared correlation of variation
(CV2) [7]. Aircraft spare parts typically exhibit an
intermittent or lumpy pattern, characterized by a high
average demand interval. This uncertainty in demand
quantity and interval poses significant challenges for
demand forecasting and limits the choice of prediction
models [2].

Various forecasting methods have been proposed in
the existing literature to cope with uncertain demand
quantity and irregular intervals. The Croston method
[8], widely used in the aviation industry to address
lumpy demand behavior, employs two separate single
exponential smoothing (SES) models: one to predict
demand sizes and the other to predict demand inter-
vals. Several studies compared the performance and
precision of the Croston method with a single SES
model to predict aircraft spare parts demand.

Regattieri et al. [9] compared parametric forecast-
ing techniques using historical demand data from A320
spare parts used by Alitalia, which exhibited a lumpy
demand pattern. The study demonstrated the su-
periority of the Croston method over simpler SES
approaches, indicated by the Mean Absolute Devia-
tion Average (MAD/A). Similarly, in another study by
Eaves and Kingsman [10] on predicting aircraft spare
part demand for the UK Royal Air Force, the Cros-
ton method outperformed simpler single-parametric
approaches.

The Syntetos Boylan Approximation (SBA) [11] is a
modified version of the Croston method. The original
model was found to be biased, as it assumed the inde-
pendence between the predicted results for the demand
interval and the size of the demand. The researchers
introduced a correction term in the SBA version to ad-
dress this bias. Testing the modified SBA model on an
automotive demand dataset containing 3000 intermit-
tent pattern spare parts, it demonstrated superior per-
formance over the original Croston method, measured
by the scaled mean error and Geometric Root Mean
Square Error (GRMSE). Despite its bias, the Croston
method remains widely used in the aviation industry
due to its simplicity, relatively good results, easy im-
plementation, and wide availability in leading software
packages [11].

Parametric approaches, despite their usefulness,
have limitations in recognizing nonlinear patterns,
leading to misinterpretation of relationships between
dependent and independent variables. To overcome
this, nonparametric models such as artificial neural
networks (ANN) are proposed in research papers to
forecast spare part demand [12]. A commonly used
ANN form is the Multi-Layered-Perceptron (MLP) net-
work with Back Propagation (BP) algorithm. Gutier-
rez et al. [13] developed a 3-layer MLP model to fore-
cast daily demand for 24 electronic spare parts that
exhibit a lumpy demand pattern. Their model consid-
ered the demand value at the end of the immediately
preceding time period and the time difference between
the previous two non-zero demand transactions. Com-
paring the MLP performances with three parametric



models (SES, Croston, and SBA), the proposed MLP
outperformed the parametric approaches in terms of
MAPE when the ADI showed no significant difference
between training and testing data. However, in cases
where a significant difference was present, the para-
metric models achieved a slightly lower MAPE than
the proposed MLP model.

Extending the work of Gutierrez et al. [13], Babai
et al. [14] further improved the earlier proposed MLP
by incorporating additional input parameters from pre-
vious time periods. Analyzing their model on a real-
case dataset containing 5000 aircraft spare parts from
an airliner, they concluded that the extended MLP
model reached higher forecast accuracy compared to
the same three parametric approaches and even sur-
passed the performance of the original MLP model
Gutierrez et al. [13]. Furthermore, Amirkolaii et al. [15]
constructed an MLP to predict the demand for 30 dif-
ferent spare parts, exhibiting a lumpy demand pattern,
for a French Aircraft Original Equipment Manufacturer
(OEM) used in business aircraft. Various input fea-
tures were utilized, including the previous demand in-
terval, ADI, CV2, the number of periods separating the
previous two non-zero demand intervals, and the price
of the spare part. Their results clearly demonstrated
that the proposed MLP outperforms Croston and SBA.

An alternative ANN model that incorporates prior
information to forecast spare part demand is the Re-
current Neural Network (RNN). Unlike the MLP net-
work, the RNN has an extra layer that sends the out-
put of the model back into the input layer [16]. Un-
fortunately, the RNN can be affected by the vanish-
ing exploding gradient problem, leading to unrealistic
results [17, 16]. To address this problem, Hochreiter
and Schmidhuber [18] introduced the Long Short-Term
Memory Network (LSTM), which equips each neuron
with a memory cell featuring input, output, and for-
get gates to effectively manage the information flow.
Renowned for its versatility and strong learning capa-
bilities, high-tech companies such as Google, Facebook,
and Amazon have widely adopted the LSTM network
for translation and speech recognition products [19].
Recently, these models have gained significant interest
in time-series predictions.

Chandriah and Naraganahalli [20] employed a 6-
layer RNN-LSTM model to forecast the demand for
passenger cars in Norway and found that it out-
performed standard parametric approaches (Croston,
SES, SBA) in terms of Mean Squared Errors when pre-
dicting lumpy/intermittent demand patterns.

Possible downsides of ANNs include their lack of in-
terpretability, often referred to as black boxes, as well
as their substantial need for training data, which may
not always be readily available. This issue becomes
particularly pertinent when dealing with complex sys-
tems such as aircraft that consist of thousands of long-
lifecycles components. A promising solution to these
forecasting challenges comes in the form of Gradient
Boosting models. These supervised machine-learning
models ensemble multiple weak decision trees to con-
struct a stronger robust prediction model. Gradient

Boosting algorithms are renowned for effectively man-
aging mixed data types, strong performances despite
limited data availability, and run-time efficiency.

In a study by Chang and Meneguzzi [21], the pre-
dictive performance of an extreme gradient boosting
(XGBoost) model was compared to an MLP network
and other machine learning regressors using a computer
retailer sales dataset. The considered input features in-
cluded a limited subset of contextual data and some ge-
ographical information from the customer. The results
indicated that the XGBoost model outperformed or
matched the other selected approaches in terms of per-
formance metrics such as Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Mean Absolute
Square Error (MASE), and MAPE. Furthermore, the
researchers validated the efficacy of the model using a
bike-sharing demand dataset and consistently observed
enhanced predictive capabilities across both datasets.

In summary, based on the existing literature, various
forecasting techniques can be utilized for demand pre-
dictions. However, it is evident that ANNs and gradi-
ent boosting machine-learning algorithms outperform
traditional parametric approaches when dealing with
lumpy or intermittent demand patterns. The litera-
ture review also concluded that feature engineering is
crucial to improve the performance of the prediction
model; additional literature on this topic is provided
in Subsection 2.2. Based on the described pros and
cons, this study decided to employ a gradient-boosting
forecasting algorithm due to its limited data effective-
ness and interpretability.

2.2 Data Mining Improvement Strate-
gies

Numerous studies state that the effective utilization of
big data mining techniques significantly enhances the
accuracy of prediction models [22]. This research in-
vestigates the application of two big data mining tech-
niques, association rule mining (ARM) and unsuper-
vised clustering, in combination with demand forecast-
ing.

Traditional ARM techniques, often referred to as
the market-basket approach, discover correlations be-
tween non-consecutive items within large datasets [23].
This frequent item set discovery process is commonly
achieved through the A-Priori algorithm Agrawal and
Srikant [24] and the FPgrowth algorithm [25]. Al-
though both techniques aim to yield the same fre-
quent itemsets, they differ in how they construct search
spaces, leading to variations in runtime efficiency and
memory usage. A comparative analysis conducted by
Singh et al. [26] affirmed the equivalence of the associ-
ation rules derived from both algorithms. However,
when dealing with larger databases, the FPgrowth
algorithm converges more quickly and consumes less
memory than the A-priori algorithm. Conversely, for
smaller databases, the A-priori remains preferable due
to its scalability.

Chen and Wu [27] explored the impact of ARM on
the efficiency of order/batch picking of products in



warehouses. Their research employed the A-priori al-
gorithm to uncover correlations among different orders,
resulting in a significant increase in order-picking effi-
clency in warehouse operations. Another study con-
ducted by Moharana and Sarmah [28], examined the
implications on stock levels and inventory control by
considering frequently co-occurring sold spare parts as
cohesive groups rather than individual items. The find-
ings of their study showed that interdependencies be-
tween spare parts lead to reduced stock levels and im-
proved inventory control. Furthermore, the researchers
highlighted how shortages in critical components can
significantly influence the shortage and holding costs
related to the interconnected minor parts.

Another interesting big data mining technique that
may improve the performance of demand forecasting
models is unsupervised clustering. Clustering tech-
niques aim to categorize data points, such as cus-
tomers with similar characteristics and purchase be-
havior. These segments are primarily used to de-
velop marketing strategies within the e-commerce sec-
tor. However, recent studies also examined the effects
of data segments on forecasting models.

In the study conducted by Kalchschmidt et al.
[29], distinct forecasting models were trained for in-
dividual customer segments. Subsequently, the re-
searchers amalgamated the results of all distinct groups
to project the total demand. In contrast, the method-
ology adopted by Caniato et al. [30] focused solely on
training the forecasting model to predict the demand
of the customer located closest to the centroid of the
cluster. Following this step, the obtained forecast re-
sults were extrapolated to the entire cluster, resulting
in an overall demand forecast. Customer segmenta-
tion was achieved by considering a diverse set of histo-
rical demand variables that describe purchase behav-
ior, followed by the application of K-means clustering.
Despite the different approaches, both studies demon-
strated that by initially clustering demand patterns,
forecasting models can be improved.

3 Problem Description

This section formulates the problem and the research
objective. First, a short introduction to aircraft main-
tenance and aftermarket distributors is given in Sub-
section 3.1. The research objective of this study is
stated in Subsection 3.2. Followed by a detailed de-
scription of the problem setup in Subsection 3.3, in-
cluding the data sources to construct the input of the
model and the projected output. Finally, the assump-
tions to delineate and refine the scope of this study are
presented in Subsection 3.4.

3.1 Aircraft Maintenance Aftermarket
Order Predictions

Many aircraft maintenance prediction models are de-
signed to predict aircraft component failure. These
predictions are based on historical maintenance ac-

tivities, degradation data, aircraft utilization rates,
and regulatory documentation for aircraft mainte-
nance. Maintenance Repair and Overhaul organiza-
tions (MROs) utilize these predictions to enhance fleet
schedules and minimize (unexpected) aircraft down-
time [2]. However, these models often overlook the exe-
cution complexity of the projected maintenance events.

Each aircraft maintenance event is documented
within a Maintenance Planning Document (MPD),
containing the event’s maximum utilization threshold,
denoted in Flight Hours (FH), Calendar Days (CD)
or Flight Cycles (FC), number of required mechan-
ics, average completion time per mechanic, and the
corresponding Aircraft Maintenance Manual (AMM)
reference number [31]. The AMM, in turn, pro-
vides a detailed step-by-step procedure for the ex-
ecution phase; a comprehensive overview of condi-
tional and on-conditional required spare parts; Essen-
tial tools/equipment; and any interconnected AMM
tasks that must be accomplished before or after the
originally scheduled maintenance event. In essence, not
only the ability to predict the need for a maintenance
event, but also gaining a comprehensive understand-
ing of its execution phase, including the availability
of necessary spare parts, is essential in optimizing fleet
schedules and minimizing any additional downtime due
to maintenance activities.

The detailed step-by-step procedure and references
to related AMM tasks can make it difficult for MROs
and aircraft carriers to prepare a complete material list
in advance for a specific maintenance event. Experi-
enced mechanics and maintenance schedulers are bet-
ter equipped to understand the process and ensure that
all necessary parts are available in advance. However,
less experienced personnel may struggle with this task.
Additionally, some maintenance events are infrequent,
occurring only once every few years, making it even
harder to create a comprehensive materials list due to
the lack of prior experience and knowledge. Having a
complete bill of materials in advance is crucial for the
purchasing process at an aftermarket distributor. Not
all spare parts are readily available; some are rare or
specific to certain aircraft configurations. In such cases,
the aftermarket distributor must initiate a back-order
process with the original spare part supplier. In the
worst-case scenarios, this can introduce delays of sev-
eral months. Consequently, the necessary spare parts
cannot be delivered immediately to the MRO, leading
to aircraft unavailability.

Forecasting demand is challenging for aftermarket
distributors due to the varying properties of spare parts
and the lumpy demand pattern. Traditionally, these
models relied on past monthly sales volumes, lack-
ing specificity in customer considerations and technical
spare part relationships detailed in the AMM. After-
market distributors that are integrated with an Air-
craft OEM, on the other hand, can combine technical
knowledge from maintenance documentation with pre-
vious sales records of spare parts to predict upcoming
purchase orders. These predictions can be utilized to
construct a complete bill of material for an aftermar-



ket customer. Additionally, these predictions can opti-
mize aftermarket inventories. Furthermore, it has the
potential to transform the entire aftermarket distribu-
tor business model. Currently, the business model is
reactive, responding to customer needs as they arise.
However, if successful, the prediction of subsequent
spare part purchase orders introduces the potential for
a proactive approach, allowing the aftermarket to an-
ticipate the future needs of the customer.

3.2 Research Objective

The objective of this research is to develop a robust
forecasting model to predict the occurrence of subse-
quent purchase orders of spare parts related to the
same MPD event to enhance inventory efficiency at
aftermarket distributors. To achieve this objective, a
machine-learning classification model is developed.

The classification model predicts spare part order oc-
currences using historical transaction records, techni-
cal aircraft maintenance documentation, and available
spare part characteristics translated into various input
features. These features are transformed via different
preprocessing steps, such as scaling methods and en-
coders, into the required model’s input format. A fea-
ture selector algorithm is constructed to select a subset
of features, based on the correlation with the projected
output, during the model’s training and tuning phase
to optimize the performances. The predicted outcome
is compared with actual spare part occurrences, and
the results are evaluated via various classification error
metrics.

In addition to developing the classification model,
this paper explores its potential applications for the af-
termarket distributor. These applications range from
generating a comprehensive customer-level bill of ma-
terials for specific maintenance events to optimizing in-
ventory levels at a broader supply chain level.

3.3 Research Setup

This research is conducted in close collaboration with
an aftermarket distributor that is integrated into an
aircraft OEM. This collaboration offers access to mul-
tiple data sources necessary for the development of the
classification model. An overview of these data sources
is presented below:

e Sales Records: The sales records cover all avail-
able transactions of the aftermarket distributor.
Each order line comprises a date stamp, customer
name, unique part ID, ordered quantity, order ref-
erence number, paid price, priority code, and order
placement warehouse. The order priority codes
classify the transactions into four distinct prior-
ities: Aircraft On Ground (AOG), Work Stop-
page (WSP), Routine (RTN), and Urgent Stock
Replenishment (USR). AOG and USR represent
unexpected urgent orders, while WSP and RTN
denote planned orders by customers.

e Technical Documentation Forecast (TDF)
Information: The TDF information encom-
passes the outcomes of a currently in-development
tool within the company. This algorithm provides
a comprehensive overview of all relevant spare
parts associated with a selected MPD event. By
using the MPD event code, the tool searches for
the corresponding AMM reference number. Subse-
quently, it generates a complete list that includes
tools/equipment, expendables, and consumables
mentioned in the context of the AMM. In partic-
ular, it outlines the conditional necessity for these
components along with the spare part category
code and the essentiality code. Moreover, if ad-
ditional AMM references are identified in the con-
text, whether preceding or succeeding the original
(first-level) AMM task description, the tool incor-
porates these supplementary tools and spare parts.
This process extends to a maximum AMM depth
of three levels.

e Spare Part Catalog: This catalog describes
the interconnection among spare parts. It pro-
vides a comprehensive overview of all possible in-
terchangeable spare parts related to the selected
component, along with the part’s evolution over
time.

3.4 Assumptions

Numerous simplifications and assumptions were essen-
tial to enhance this research to simplify data analysis
and develop the model for analyzing spare part orders.

Upon analyzing sales records, inconsistencies were
identified in the use of purchase order reference num-
bers by customers over time. It was found that nearly
all purchase orders consisted of a single purchase order
line, suggesting that different spare parts are rarely
sold together. The company experts supported this
data observation. Consequently, it is assumed that
each purchase order line represents a distinct purchase
order, treating different spare parts bought by the same
customer on the same day, with similar or dissimilar
order reference numbers, as separate orders. Addition-
ally, to simplify the problem, separate purchase orders
of the same spare part on the same date by the same
customer with identical order line properties are con-
solidated into one single large purchase order line by
aggregating quantities and turnover. This consolida~
tion assumes that a customer may have placed a pur-
chase order with lower than intended quantities. Sim-
ilarly, when forecasting future purchase order occur-
rences, the model treats scenarios in which a particular
spare part is ordered multiple times within a defined
time frame as a singular occurrence. This approach is
rooted in the fact that the purchase order occurrence
classification model exclusively predicts the instances
of occurrences, without delving into quantity predic-
tions associated with these projected occurrences. This
simplification aligns with the model’s exclusive empha-
sis on forecasting the probability of subsequent spare
part purchase order occurrences, regardless of quanti-



ties or number of separate upcoming purchase orders.

Given that each order line only has a date stamp,
it is impossible to discover the chronological order of
purchase orders on a specific date. Therefore, it is as-
sumed that the sorted sales record database represents
the chronological order of transactions. Furthermore,
in terms of purchase order priorities, it is assumed that
every customer truthfully selects the priority. This
assumption is necessary since company experts noted
that customers occasionally opt for a higher priority for
faster delivery times, despite the absence of an actual
AOG scenario.

Additionally, assumptions are made regarding the
TDF documentation and MPD events. Each aircraft,
even of the same type, possesses a unique MPD and
AMM due to factors like customer preferences, produc-
tion year variations, and advancements in construction
methods. Consequently, predicting subsequent spare
part purchase order occurrences based on similar MPD
events becomes challenging, as similar MPD events
may require different spare parts. Therefore, to make
this research feasible, it is assumed that the spare parts
identified for an MPD event by the TDF remain con-
sistent across all aircraft. Furthermore, it should be
noted that the influence of spare parts shared among
multiple MPD events is not considered in the classifi-
cation model for simplicity.

Finally, in terms of interchangeability between spare
parts, it is assumed that all interchangeable spare
parts, whether one-way, two-way, or predecessors of the
original parts listed on the TDF, can be used for the
same MPD event. The reason for this assumption is
to include all possible spare parts purchase order re-
lationships in the analysis to improve the predictive
performance of the classification model.

4 Methodology

To fulfill the objective presented in Section 3, a Python-
based model named the Spare Part Subsequent Pur-
chase Order Occurrence Classification Model (SPSO-
CM) has been developed. The SPSO-CM is designed
to classify subsequent purchase order occurrences for
spare parts associated with the same MPD event. It
employs a single-label stacked classification approach,
where each label corresponds to all subsequent pur-
chase orders for a specific spare part and is indepen-
dently trained. Once trained, the predicted purchase
order occurrences for all spare parts are stacked to-
gether and evaluated as one unit for an entire MPD
event.

The SPSO-CM architecture is presented in Figure 1.
This independent architecture consists of seven main
components:

e Input Parameters: A dictionary containing the re-
quired input parameters for the SPSO-CM.

e Database Collector: The necessary database is
constructed, including transaction records, TDF
information, and spare part catalog, based on the
predefined input parameters.

e PN Clustering algorithm: All listed PNs in the
Available Information Library are analyzed and
grouped according to their similarities.

e Feature Creator: MPD-specific input features and
projected target labels are generated from the
Available Information Library.

e Preprocessor: Processing the created features for
the prediction model.

e Prediction Model: Optimization and fine-tuning
of the prediction model.

e FEuvaluation: Assessing the performance accuracy
of the complete SPSO-CM architecture.

The SPSO-CM operates based on specific input
parameters, including MPD event codes, time lag
(t1), time-window (tw), and the selected configuration.
These parameters guide the functioning of the six re-
maining components of SPSO-CM, each of which is
detailed in this section. Starting with the database col-
lector in Subsection 4.1, followed by the PN clustering
algorithm in Subsection 4.2. The MPD-specific fea-
tures are constructed in Subsection 4.3. The descrip-
tions of the preprocessor and the employed gradient-
boosting algorithm can be found in Subsection 4.4 and
Subsection 4.5, respectively. Finally, the section con-
cludes by examining the performance of SPSO-CM in
Subsection 4.6.

4.1 Database Collector

The database collector imports commas-separated
value (CSV) files containing the company’s sales
records and spare part catalog. Given the input MPD
event codes, the company’s TDF tool extracts condi-
tional and unconditional expendable spare parts from
the MPD and AMM documentation. These parts are
extracted from the TDF’s output and stored in a new
spare part database, known as the PN nomenclature.
Each spare part in this nomenclature receives a new
unique part ID. The PN nomenclature is expanded
to include all interchangeable parts from the catalog,
each inheriting the original part’s ID. Purchase orders
with nomenclature-listed spares are isolated from sales
records, after which the original part IDs are replaced
by the corresponding nomenclature spare’s ID. The re-
maining purchase orders are then sorted by purchase
date and customer name and stored, together with the
spare part nomenclature, in the available information
library.

4.2 PN Cluster algorithm

Based on the literature review in Section 2 it became
evident that each spare part exhibits different proper-
ties and therefore it is difficult to utilize one forecast
model that works for all PNs. To address this chal-
lenge, numerous spare parts properties are derived and
used to cluster PNs with similar characteristics. These
variables, along with the derived PN cluster ID (Cpy),
can then be used as additional input features for the
prediction model. Moreover, the derived clusters help
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Figure 1: Visual representation of the SPSO-CM’s architecture.

in identifying the suitability of the SPSO-CM for spe-
cific PNs. An overview of the derived PN properties
from sales records and TDF documentation is listed
below:

o Material Group (Matpy): A numerically encoded
variable that characterizes the type of the PN. A
value of 30 represents vendor parts, 70 corresponds
to standard parts, and 10 indicates proprietary
parts.

o Average Quantity (Qntpy): The average amount
of PN sold per purchase order.

e Number of Interchangeable PN (NpN_inter):
Number of interchangeable items related to the
respective PN.

e PN support (Npy): Total number of purchase or-
ders associated with the specified PN.

e PN’s unique customers (Npn customers): The
number of unique customers who purchased the
PN.

o Average Demand Interval (ADIpn): Mean time
between consecutive purchase orders, calculated in
months.

e Squared Correlation of Variation (CV3y):
Squared correlation of the monthly variation in
the quantity of the PN.

A k-means clustering algorithm is employed on the
listed PN properties to identify which PNs have simi-
lar characteristics. This algorithm, imported from the
Sklearn Python library, initially divides data points
into K clusters and then iteratively reassigns them to
minimize the squared distances between data points
and cluster centroids until an optimum is achieved
[32]. As the K-means algorithm requires the number
of optimal clusters as an input parameter, it should
first be determined by computing the silhouette score
and constructing the elbow method. The silhouette
score measures inter-cluster separation, with higher
scores indicating better clustering. While the elbow
method plots the sum of squared distances to cluster
centroids (WCSS), identifying a turning point where

further splitting becomes less effective, revealing the
optimal cluster count. By iteratively applying the k-
means algorithm with varying K values, an optimal
number of clusters is found and used to cluster the
MPD’s PNs.

Eventually, the listed PN input features and C'py are
substituted in the PN nomenclature, where they can be
extracted as additional SPSO-CM input features.

4.3 Feature Creator

The remaining MPD-specific purchase orders in the
available information library are utilized to form input
features for the classification model and generate the
model’s training output. The feature creator consists
of three parallel feature construction blocks: Order fea-
ture Constructor generates input features from the re-
spective purchase order line; Lagged feature Construc-
tor constructs input features from information prior to
the current purchase order line; And the Label Con-
structor generates the target label that indicates fu-
ture spare part purchase order occurrences, necessary
for training and evaluating the classification model.
All these features are created for every MPD-specific
purchase order line within the available information
database. A more detailed explanation of each feature
creator block is given below.

Order Features Constructor

Each purchase order line (X;) contains predictive in-
formation about future spare parts purchase orders.
The order input features extracted from the X; are
Spare Part ID (PN), Customer Name (customer), Or-
der priority code (priority), order month (month), or-
der year (year), ordered quantity of the corresponding
PN (Qntx,), and the warehouse where the purchase
order is placed (Whx,). It is important to note that
month, year, and Qntx, are presented as numerical
properties, while PN, customer, and priority are cat-
egorical properties.



Lagged Features Constructor

Lagged features capture valuable information from pre-
ceding purchase orders (Xpy,—1) leading up to the
current purchase order (X;). As highlighted in the lit-
erature review, these features can significantly enhance
the performance of prediction models. The classifica-
tion model incorporates four key lagged input features:

e previous time (ATpy): Signifies the time interval
in days between X; and Xpy ¢—1.

e previous quantity (Qnitar., ): Denotes the associ-
ated quantities of each Xpy +—1.

e number previous purchase orders (Nx,, ,): repre-
sents the frequency of the previous purchase orders
of the customer of the specific PN.

e adjacent set: represents the previously purchased
PNs within the time lag precedent to the X;.

e adjacent set support (Fadjacem): Equals the fre-
quency of the adjacent set in the database.

The extraction principles and characteristics of
ATpn, Qntarpy, and Nx, ., are the same. These
three input features are PN-specific, thereby separately
computed for each PN within the MPD event. More-
over, their representation varies, being either integers
or Not a Number (NaN) values, depending on whether
the customer had previously purchased the PN.

The remaining two lagged features, adjacent set and
Fldjacent, are inspired by ARM techniques. By using
the predefined time lag input parameter, an adjacent
set of previous purchase orders is created. This variable
is encoded in a binary chromosome format, where each
segment of the chromosome corresponds to a specified
PN. A value of 0 signifies the absence of the PN, while
1 indicates its presence within the predefined time lag.
To illustrate, the presence of PN A.1 and PN A.4 in
MPD A which consists of 5 parts is denoted as {10010}.

A supplementary computational step is required to
calculate the associated support value, Fygjgcent. A
rolling window, equivalent to the predefined time lag,
is applied to each X; to generate a feasible set of pur-
chase order baskets per customer. Subsequently, the
FP growth algorithm is utilized to compute the sup-
port values of all potential frequent itemsets. This
process is done per available order year, encompass-
ing all baskets up to that year. As a result, the first
available order year in the database does not contain
any frequent itemsets. However, for subsequent or-
der years, all records from the preceding year(s) are
included. This cumulative process establishes a com-
prehensive database of support values for all frequent
itemsets leading up to each available order year. Ulti-
mately, Fogjacent can be extracted from this database
by looking up the support value of the early defined
adjacent set.

Label Constructor

The target labels necessary to train and evaluate the
SPSO-CM are derived along with the input features.

For each X, the label constructor extracts all upcom-
ing purchase orders from the same customer within
the predefined tw. As the SPSO-CM is a classification
model, the target labels (ypn ¢+w) are binary encoded:
0 indicating no future purchase orders of a specific PN
in the subset, while 1 signifies that the customer has
purchased the specified PN in the upcoming tw.

4.4 Preprocessor

The final step in the SPSO-CM before employing the
classification model is the Preprocessor block. This
part of the architecture ensures that the input data set
is ready for the training and evaluation phase. First,
the input features, together with the binary encoded
target labels, are split into a training and testing set
by the Time Serie Split processor, after which the en-
coder preprocesses all features into suitable formats for
the classification model. The last step in the prepro-
cessor undersamples the train data to deal with the
imbalances between occurring and non-occurring sub-
sequent purchase orders.

Data split

The first stage of the SPSO-CM preprocessor involves
dividing the computed X; features, which have been
sorted in a timely order, into a separate training and
test subset. This split is essential for the subsequent
training and evaluation phases of the SPSO-CM frame-
work and is shown in Figure 2.
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Figure 2: The initial split of the available X; into a
training and test set.

Before partitioning X; into a train and test set, an
additional data exclusion step is applied to maintain
the integrity of the input features aligned with the
predefined ¢/ and tw, highlighted in gray in Figure 2.
As described in Subsection 4.3, lagged input features
are derived using purchase orders prior to the analyzed
X;. Consequently, initial X that lack the necessary in-
formation to compute lagged features are disregarded.
Similarly, X; at the tail end of the dataset are elimi-
nated, as generating target labels beyond this period is
not feasible. To guarantee sufficient training and test
data for a robust performance assessment, the remain-
ing portion of the dataset is split using Sklearn’s time-
seriesplit algorithm, employing an 85% training and
15% testing split ratio.

Scalars & Encoders

Most machine-learning classification models require
feature encoding before training to accommodate un-
supported data types and potentially improve model



performance. The selected gradient-boosting classifica-
tion models, which will be discussed in Subsection 4.5,
specify that decision trees do not require numerical
scalars. However, assessing the scalar’s impact on the
model performance is recommended. Categorical fea-
ture types, on the other hand, are not supported by
selected classifiers and require numerical conversion.

As described in Subsection 4.3, the input features
for each X; encompass both numerical and categori-
cal types. To address this, the SPSO-CM framework
integrates three distinct feature encoders:

e MinMax Scalar: A data normalization tech-
nique that scales numerical values to a 0-to-1
range, ensuring uniformity among various input
features and leading to enhanced model perfor-
mance.

e One Hot Encoder: A categorical transforma-
tion technique that converts categorical features
into binary values. For each category, an addi-
tional/separate input feature is created to indi-
cate its presence within X;. While this encoder
is effective when dealing with a few categories, it
loses effectiveness when numerous categories exist,
causing higher input feature dimensionality and
data sparsity. Consequently, more training time is
required, and the risk of overfitting increases.

e Target Encoder: This categorical encoding tech-
nique substitutes the original category with its cal-
culated impact on the corresponding target labels.
The impact is determined by computing the poste-
rior probability of the target label’s presence given
the respective category. Unlike the One Hot En-
coder, this approach does not alter the dimension-
ality or sparsity of the input feature since no extra
features are introduced.

The encoders employed for each input feature are
specified within the SPSO-CM’s input parameters.
Various combinations between input features and en-
coders are assessed to achieve optimal performance.
Nevertheless, categorical features with more than 10
categories are only target encoded to control dimen-
sionality and data sparsity.

Resampling

The Near-Miss version 3 undersampling technique is
used to address the imbalance within the training data.
This method alters the composition of the training set
by selectively eliminating certain data points from the
majority class, typically X;|ly = 0, to establish a bal-
anced ratio between X:|y = 0 and X|y = 1. The
version-3 variant only selects majority class examples
that are closest to each minority class data point, re-
sulting in a balanced dataset with X;|y = 0 situated
close to the decision boundaries.

4.5 Prediction Model

Following the preprocessing of input features and the
creation of a training and test dataset, the next phase

of the SPSO-CM architecture initiates the training
phase of the classification model. Within this context,
two gradient-boosting classification algorithms are ex-
amined and incorporated into the SPSO-CM model
as part of this study. The differences between these
models, together with a better explanation of gradient-
boosting models, are discussed in this section. Fur-
thermore, fine-tuning the hyperparameters of the cho-
sen classifier through a Bayesian search optimization
method is described. To further enhance performance,
a self-developed feature selector is introduced and in-
tegrated into the Bayesian search space.

Gradient Boosting

Gradient boosting is a machine-learning model that
combines multiple weak decision trees to make better
predictions. The ensembling process of poor learners,
typically decision trees, is called boosting. The pro-
cess starts with fitting an initial decision tree to the
data. Subsequently, a sequence of trees is generated,
each of which focuses on the data points where the pre-
ceding model exhibited poor performance. This itera-
tive process strengthens the ensemble model, leading to
more robust predictions. The gradient term in gradient
boosting refers to the way that additional trees are cre-
ated. These successive trees are designed to capture the
maximum variance between the target values (y) and
the predicted values (§), which can be mathematically
expressed as the partial derivative of the loss function:
(— ‘gg =y — 7). By utilizing this computed gradient as
the target for new trees, the model optimizes its per-
formance by explaining the maximum amount of vari-
ation within the overall gradient-boosting model [33].
The interested reader may refer to the work of Benté-
jac et al. [34], for more information on the construction
of gradient-boosting models.

Over the years, many gradient-boosting variants
have been developed for regression and classification
tasks. Two of these algorithms, XGBoost and Light-
GBM, are considered for the SPSO-CM’s framework.
A detailed explanation of their properties and under-
lying differences is listed below [33]:

e XGBoost: The XGBoost algorithm, developed
by Chen and Guestrin [35], is one of the most
well-known gradient-boosting methods and often
serves as the primary choice by many practition-
ers to quickly solve prediction problems. The al-
gorithm utilizes a level-wise tree construction stra-
tegy, each tree being incrementally developed layer
by layer. In addition, it employs a histogram-
based splitting technique, where histograms are
constructed for each variable to determine the
best variable split within each tree. This ap-
proach empowers the XGBoost algorithm to con-
verge quicker, leading to faster prediction speeds.
However, a downside of this method is that it may
encounter inefliciencies when dealing with many
missing values or data sets with unbalanced distri-
butions. To counter the risk of overfitting, several



regularization techniques and tree pruning meth-
ods are incorporated into the XGBoost algorithm.
Additionally, the model provides a wide range of
possible hyperparameters that can be fine-tuned
for optimal performance during training. Further-
more, it offers parallel processing capabilities to
effectively handle large databases.

LightGBM: A more recent gradient-boosting al-
gorithm, developed by Ke et al. [36], is Light-
GBM. Unlike XGBoost, Light GBM adopts a leaf-
wise growth tree construction strategy, prioritizing
nodes with the largest loss reduction rather than
incrementally adding new layers. Furthermore, it
employs the Gradient-Based One-Side Sampling
(GOSS) technique for data-splitting. This tech-
nique selectively resamples data points and focuses
solely on data instances with the greatest contri-
bution to gradients. As a result, GOSS proves to
be more efficient than XGBoost’s histogram-based
splitting approach, which computes gradients for
all training instances. LightGBM also integrates
an Exclusive Feature Bundling (EFB) method,
which enhances runtime performance when deal-
ing with many correlated variables.  Overall,
Light GBM’s methodology focuses on optimizing
computational speed while retaining the same ac-
curacy levels, making it particularly beneficial for
large datasets. However, compared to XGBoost,
the Light GBM structure increases the risk of over-
fitting when only limited data is available. Simi-
larly to XGBoost, Light GBM offers numerous reg-
ularization techniques and supports parallel train-
ing capabilities.

As mentioned above, the main differences between
XGBoost and Light GBM relate to the approach of gen-
erating trees, which is visually represented in Figure 3.
Anticipating which model is the superior one for this
study is impractical. The model’s performance may
vary across scenarios and MPD events. Consequently,
the performance of both models within the SPSO-CM
framework is evaluated in Section 5.

Hyperparameter Tuning

As described, both models consist of numerous hyper-
parameters that can be adjusted to optimize perfor-
mance. Grid searches are commonly employed to iden-
tify the optimal hyperparameter configuration. These
searches involve testing various hyperparameter values
to determine the ones that yield the best performance.
Methods for conducting such searches include an ex-
haustive grid search of all possible combinations, a grid
search that randomly selects different hyperparameter
values, and a Bayesian search optimization technique.

In the Bayesian approach, promising hyperparame-
ter values are predicted based on probability distribu-
tions. The algorithm first constructs a surrogate proba-
bility model (p(y|hyperparameters)) by tracking past
evaluations. The next most promising hyperparame-
ters are determined by optimizing this surrogate model.
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These chosen hyperparameters are then employed in
the original objective function, leading to an updated
version of the surrogate model. By iteratively repeat-
ing this process, the optimal set of hyperparameters is
identified. In summary, the Bayesian Search algorithm
spends a bit more time in intelligently selecting the
next optimal hyperparameters to eventually decrease
the number of potential hyperparameter combinations
that should be evaluated. Consequently, the Bayesian
approach proves to be more efficient than exhaustive
and random grid searches, particularly when optimiz-
ing many hyperparameters. Due to these reasons, the
Bayesian approach is utilized during the SPSO-CM’s
classification model’s training phase. An overview of
the tuned XGBoost and LightGBM hyperparameters
is presented in Appendix B.

A cross-validation technique is required when fine-
tuning the hyperparameters during training. Such
techniques divide the complete training set into differ-
ent training and test folds. The model’s performance is
assessed on each fold independently, leveraging all data
points for optimal performance. Furthermore, applying
cross-validation ensures that the initial test set is ex-
cluded during training and solely reserved to evaluate
the model’s performance on unseen data. In the con-
text of the SPSO-CM framework, a nested group K-fold
TimeSeriesplit cross-validation method is developed.
The group K-fold technique initially splits the train-
ing dataset into four non-overlapping customer folds.
Within each fold, the nested time-series method se-
lects the most recent 40% of X; as the evaluation set,
while the remaining 60% of X; are added to the other
three folds as the training set. By repeating this pro-
cess across all folds, four datasets containing the same
data points but with varying divisions between training
and testing sets are created. This implemented cross-
validation technique ensures that all training data is
used during fine-tuning, the relationship between X
from the same customer is preserved, and possible data
leakage is prevented.

Feature Selector

In addition to fine-tuning the hyperparameters of the
selected gradient-boosting model, a feature selector is
developed and incorporated into the Bayesian search
space. It is essential to identify the importance of in-
put features for prediction models as they heavily affect
the model’s performance. Irrelevant or marginally rel-
evant input features can overcomplicate the model and
negatively affect the model’s performance. Generally,
it is preferred to incorporate fewer features to enhance
performance and reduce computational time.

The feature selector developed for SPSO-CM uses
the Pearson correlation coefficient to assess the rela-
tionship between each input feature and the target
value. The coefficient ranges from -1 to 1, with closer
values indicating a stronger correlation, and 0 implying
no correlation. After thorough testing of the feature
subset and exclusion of heavily correlated features at
the preprocessing stage, numerous input features might



XGBoost's Leve

I-Wise Tree Growth

— 8 e

LightGEM's Leaf-Wise Tree Growth

N

5

Figure 3: Differences between the XGBoost’s level-wise tree construction method and Light GBM’s leaf-wise

tree construction method

remain relevant for certain PNs while inconsequential
to others. During fine-tuning, the feature selector fil-
ters out uncorrelated features by employing distinct
minimum correlation values in the Bayesian search al-
gorithm’s search space. As a result, the algorithm au-
tomatically selects the optimal feature sets for each
prediction, leading to enhanced performance.

4.6 Evaluation Metrics

The final SPSO-CM layer consists of various error met-
rics to assess the model’s performance. These met-
rics are widely utilized to evaluate binary classifica-
tion models and interpret specific model characteris-
tics. The main foundation of these error statistics is
rooted in the confusion matrix, a performance measure-
ment table that classifies the binary predicted values
into four distinct categories. These classes are visually
depicted in Figure 4 and are described below:

Negative (0)

Actual

Positive (1)

Negative (0) | Positive (1)
Predicted

Figure 4: Visual representation of the confusion matrix

e True Negative (TN): Correctly predicts no sub-
sequent PN purchase order occurrence.
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e True Positive (TP): Correctly predicting a sub-
sequent PN purchase order occurrence.

e False Negative (FN): Incorrectly predicting no
subsequent PN purchase order occurrence, also
known as a type II error.

e False Positive (FP): Incorrectly predicting a
subsequent PN purchase order occurrence, also
known as a type I error.

Most classification models primarily aim to maxi-
mize accuracy by minimizing both type I and type
II errors. However, when dealing with class imbal-
ance in classification models, relying solely on accu-
racy can be misleading. This is because high accuracy
can be achieved by correctly predicting the majority
class, without giving adequate attention to the minor-
ity class. To gain a more comprehensive understanding
of model performance, it is essential to consider three
other metrics: Precision, Recall and F1. These met-
rics focus on the positive class and can be calculated
using the formulas presented in equations Equation 1,
Equation 2, and Equation 3, respectively. Each metric
examines different aspects of performance. Precision
measures the ratio of accurately predicted positive in-
stances to all predicted positives. Recall, on the other
hand, computes the portion of correctly predicted pos-
itive instances out of all actual positives. In essence,
a high precision score corresponds to a low type I er-
ror, whereas a high recall score indicates a low type II
error. The F1 score combines the precision and recall
score in one error metric, balancing the two metrics.

TP
Precision = ——— 1
recision = o r s (1)
TP
Recall = 75N @)



Fl—9 Precision - Recall

Precision + Recall (3)
As discussed in this section, SPSO-CM can be con-
figured in various ways. To determine the optimal con-
figuration, the weighted average F'1 score is calculated,
as it is impractical to perform an SPSO-CM configura-
tion evaluation for each PN individually. The weighted
average F1 score takes into account the positive class
distribution across all PNs, providing a comprehensive
F1 score for the entire configured SPSO-CM. Once the
best configuration is identified, an individual assess-
ment of each PN is performed, as it is reasonable to
assume that the prediction accuracy could vary among
the included PNs, due to the limited availability of
training instances or the presence of uncommon PN
characteristics.

In addition to the individual calculation of the F1
score for each PN, two other metrics are used to as-
sess the prediction performance of each subsequent PN
purchase order. The first additional metric involves the
examination of the precision-recall curve, which plots
precision against recall scores, along with the calcula-
tion of its corresponding Area Under the Curve (AUC).
This curve provides valuable information on the trade-
off between precision and recall at different thresholds,
making it more suitable to address class imbalance is-
sues compared to the F1 score. A high AUC signifies
strong performance in terms of both recall and preci-
sion, consequently reducing Type I and Type II errors.
A no-skill classifier is represented by a horizontal line
with a precision score of 0 and an AUC of 0, while a
random classifier has an AUC of 0.5. Perfect classifiers
achieve a turning point in the upper right corner of the
graph, yielding an AUC of 1.

The second metric computed is the Matthews Cor-
relation Coefficient (MCC). This metric considers the
entire confusion matrix and is particularly useful when
dealing with imbalanced datasets. MCC values range
from -1 to 1, where -1 indicates poor performance, 0
suggests that the classifier performs no better than ran-
dom chance, and 1 represents a perfect classifier [37].
The formula to compute the MCC score is provided in
Equation 4.

TP.-TN—FP-FN
\/(TP+FP).(TP+FN)-(TN+FN)-(TN+FN)
(4)

In an ideal scenario, all evaluation metrics should
consistently demonstrate strong classifier performance.
However, this is not always the reality, necessitating
a thorough assessment of all metrics. Unfortunately,
this complexity can pose challenges in interpretation,
particularly for practitioners less familiar with SPSO-
CM. To simplify interpretation and enhance clarity, it
is decided to combine these three metrics into a single
evaluation score. This combined performance indica-
tor, named Model Effectiveness (MFE), is calculated
using the formula presented in Equation 5. Notably,
the MCC score has been normalized to align its value
range with that of F1 and AUC-PR. Furthermore, a

MCC =

12

higher weight has been assigned to the MCC, as it en-
compasses both positive and negative classes, while the
F1 score and AUC-PR exclusively focus on the positive
class.

2-MCChror + F1+ AUCpr
: (5)
The ME score is bounded between 0 and 1. Consis-
tent with the three included metrics, where 0 signifies
a non-skill classifier, 0.5 represents a random classifier,
and 1 signifies a perfect classifier, this study has estab-
lished multiple thresholds to facilitate a more nuanced
interpretation of performance:

ME =

e Good Accuracy: The SPSO-CM is considered
highly accurate when it achieves a ME score
greater than or equal to 0.7 (ME > 0.7) for pre-
dicting specific PN purchase orders. This thresh-
old was chosen because an ME score of 0.7 im-
plies that the SPSO-CM predictions significantly
outperform random guessing, which corresponds
to an ME score of 0.5, indicating a robust under-
standing of underlying data patterns.

e Moderate Accuracy: An ME score between 0.6
and 0.7 (0.6 < ME < 0.7) indicates moderate
performance, surpassing random chance but still
having a notable error margin.

e Random Chance: SPSO-CM’s predictions fall
within the range of 0.4 to 0.6 (0.4 < ME < 0.6),
signifying performance equivalent to a random
classifier.

e Poor Accuracy: An ME score below 0.4 (M E <
0.4) signifies poor performance, making SPSO-CM
less effective than a random classifier. It is not rec-
ommended to use the SPSO-CM to predict subse-
quent PN purchase orders.

5 Results

This section evaluates the performance of the proposed
SPSO-CM framework by considering two case stud-
ies, detailed in Subsection 5.1. The discussion begins
with an examination of the generated features, par-
ticularly focusing on the derivation of the cluster fea-
tures, in Subsection 5.2. Subsequently, Subsection 5.3
assesses various configurations of the SPSO-CM frame-
work to determine the optimal setup. Following this,
the SPSO-CM’s individual PN prediction performance
using the optimal configuration is discussed in Subsec-
tion 5.4. Lastly, the section concludes with a sensitivity
analysis in Subsection 5.5, which describes the impact
of some unique SPSO-CM components.

5.1 Case Studies

To assess the predictive capabilities of the SPSO-CM
two distinct A320-family MPD events are simulated for
a tw of 30, 60, and 90 days. The reason for two different
MPD events is to test and evaluate the robustness of
the model. A short overview of the two selected MPD
events is summarized below:



e MPD A: This event is directly associated with
one of the aircraft’s water /waste airframe systems.
It is recommended to be conducted at intervals of
either 24 months or after accumulating 7500 flight
hours. However, it is important to note that the
initial interval could be adjusted based on the spe-
cific operators and the prevailing operating condi-
tions. The execution of this event requires the
availability of three first-level spare parts. Addi-
tionally, it requires an unconditional second-level
spare part and a conditional third-level propri-
etary spare part, as indicated in the AMM.
MPD B: MPD B presents a larger and more intri-
cate scope compared to MPD A. It encompasses
the comprehensive inspection of a specific flight
control system of the aircraft. To have an airwor-
thy aircraft, this event should not exceed an exe-
cution interval of 12,000 flight hours. The event
entails a total of 23 spare parts, distributed over
multiple AMM tasks: 6 second-level spare parts,
14 third-level spare parts, and three parts, which
are referenced in both second-level and third-level
AMM task descriptions.

A tl of 30 days was selected to generate the adja-
cent set and adjacent set support after discussions with
company experts. Although longer periods were con-
sidered, this option was considered the most balanced
between tl and different tw. Furthermore, the avail-
able company’s sales records for simulating these two
MPD events only included transactions between 2010
and 2020. To eliminate potential outliers caused by the
disruptive impact of the COVID-19 pandemic on the
aviation industry, it was chosen to exclude all transac-
tion records from 2020 for further analysis. As a result,
the sales database contained all X; between 2010 and
2019.

5.2 Feature Results

As described in Subsection 4.3, the K-means cluste-
ring algorithm is employed to cluster PNs with sim-
ilar characteristics, regardless of the associated MPD
events. Through the use of the elbow method and the
calculation of the silhouette score, the optimal cluster
count was determined. A visual representation of the
elbow method is shown in Figure 5.

The graph does not have a clearly distinguishable
turning point. Consequently, the highest silhouette
score, equal to 0.407 with 4 clusters, served as the
decisive factor. Silhouette scores range from -1 to 1,
where -1 implies poor separation, 0 suggests closely
bound cluster boundaries, and 1 indicates optimal clus-
ters. The relatively low score suggests that the result-
ing clusters lack distinctiveness, potentially due to the
small dataset containing only 28 PNs, making cluster
separation challenging. A visual representation of the
differences between the four obtained clusters is illus-
trated in Figure 6, followed by a description of each
cluster. The impact of the derived C'py on the perfor-
mance of SPSO-CM is discussed in Subsection 5.3.
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Figure 5: Visual representation of the Elbow Method
to determine the optimal number of PN clusters. The
turning point is supported by the highest silhouette
score, equal to 0.407.
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Figure 6: Visual representation of the four obtained
clusters and their specific characteristics.

e C.0: This cluster includes all the proprietary PNs.
The demand pattern is smooth or erratic with an
ADI of approximately 1.0 and a CV? that ranges
between 0.33 and 0.63. Furthermore, the PNs in
this cluster are characterized by a high Npy and
are associated with a significant Npn customers-
C.1: PNs in this cluster can be categorized as
vendor or standard parts. They show a lumpy
demand pattern with an average ADI of 2.22 and
a CV?2 of 3.86. The Npy within the sales records
and the associated Npn customers are at a medium
level.

C.2: This cluster includes vendor parts exhibit-
ing a lumpy demand pattern similar to C.1, but
with a greater variation in CV2. Both Npy
and Npn customers for these parts are at a low-
medium level. Company experts have identified
these parts as standard components that are often
used in aircraft. However, the reason behind the



lumpy demand patterns, low-medium Nppy, and
NpnN customers 18 that these parts are typically or-
dered in bulk quantities from specialized hardware
suppliers.

C.3: PNs in this cluster can be classified as stan-
dard or vendor parts and exhibit extremely lumpy
demand behavior. The lowest ADI equals 5.86 and
CV? starts from 8.84. Moreover, the Npyn and
NpN,customers that have purchased these PNs are
extremely low, indicating that these PNs are rare
or purchased from another aftermarket distribu-
tor.

During SPSO-CM’s evaluation, it became evident
that most derived input features enhance accuracy, ex-
cept for Whx,, which had a negative effect on the
model’s prediction performances. Therefore, this fea-
ture is excluded from future analysis. Additionally,
including Matpy, a cluster feature, as an additional
order feature improved performance. This resulted in
a total of 24 input features for each X; associated with
MPD A, including 17 lagged features (5 lagged fea-
tures indicating each MPD-related PN value of ATpy,
QnitaTpy, Nxpy,), 6 order features (PN, customer,
priority, month, year, @Qntx, ), and 1 specific PN prop-
erty feature (Matpy). For MPD B, the number of in-
put features is higher due to the computation of lagged
features for each of the 23 PNs, resulting in a total of
78 input features.

The evaluation also revealed that the highest accu-
racy across all error metrics was achieved by scaling
all numerical features using the MinMax Scaler and
encoding categorical features with the target encoding
technique. Although decision trees do not necessitate
numerical feature scaling, applying MinMax scaling led
to improved accuracy. One plausible explanation for
this lies in the diverse purchase behaviors of differ-
ent customers, which result in varying lagged feature
values. The MinMax scaler normalizes these values,
thereby enhancing the interpretability of features for
the gradient-boosting model. Additionally, using the
target encoder, rather than the One Hot encoder, re-
sulted in higher prediction accuracies. This is probably
because the target encoder takes the target label into
account when transforming categorical features, while
the One Hot encoder increases feature dimensionality
and introduces data sparsity.

5.3 SPSO-CM Performance

Various iterations of the SPSO-CM framework were ex-
amined to identify the most effective configuration that
yields optimal performance indicators. These SPSO-
CM configurations differ in their choice of gradient-
boosting algorithm, inclusion of Cpy as an additional
cluster feature, and the different X, priorities selected
within the data sample. This resulted in the evalua-
tion of eight distinct SPSO-CM configurations across
three different tw: 30 days, 60 days, and 90 days for
each MPD event. The differences between configura-
tions are denoted by their unique model configuration
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codes, referred to as M-CF-DS:

e Model (M): Signifies the chosen gradient-boosting
algorithm, which can be either XGBoost (X) or
LightGBM (L).

Cluster Feature (CF'): represents whether or not
the cluster feature is included. The presence of
the cluster feature is indicated with a C, while its
absence is indicated by an N.

Data Subset (DS): Indicates which X; priority
types are included in the data set when using
SPSO-CM. Two different data subsets were con-
sidered: a subset that contains all available X;
(AO) and another that contains only X, instances
with WSP or RTN priorities (SO), potentially
excluding unplanned/unpredictable maintenance
events typically indicated by AOG or USR priority
codes.

For example, a configuration that utilizes an XG-
Boost gradient-boosting model with an additional clus-
ter feature and is trained on all data priorities is de-
noted as X-C-AO, while a configuration that employs
a Light GBM gradient-boosting algorithm without the
cluster feature and is only trained on WSP and RTN
purchase order priorities is denoted as L-N-SO.

To analyze the behavior of SPSO-CM across different
time windows (tw), a distribution of weighted F1 scores
is depicted for all possible configurations using multiple
boxplots, shown in Figure 7.

Weighted F1 distribution of 30, 60 and 90 days
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Figure 7: Comparison of the weighted F1 distribution
for each tw, visually represented by separate boxplots.

The results reveal that all configurations perform
poorly for a tw of 30 days, with medians of 0.22 for
MPD A and 0.32 for MPD B. Consequently, these con-
figurations are excluded from further analysis. On the
contrary, the findings demonstrate an enhancement in
SPSO-CM performance as tw increases. This can be
explained as it becomes more likely that customers will
place subsequent purchase orders when considering a
longer tw.

For tw values of 60 and 90 days, the weighted F1 dis-
tributions for both MPD events show more promising



results. Specifically, MPD B showed that longer fu-
ture order windows are more predictable, as evidenced
by the slightly higher position of the 90-day boxplot
compared to the 60-day boxplot. Although this trend
is less pronounced in the results of MPD A, a closer
examination reveals that the maximum and minimum
values of the 90-day boxplot surpass those of the 60-
day boxplot. This suggests that a 90-day forecast is
likely to be more accurate than a 60-day forecast, re-
inforcing the notion that longer future order windows
are easier to predict.

Additionally, it is worth noting that SPSO-CM'’s
configuration had a more significant impact on MPD
A compared to MPD B, resulting in higher weighted
average F1 scores for MPD A. This performance dif-
ference can be attributed to the complexity between
the two events. MPD A consists of only 5 PNs, with 4
belonging to the same cluster, while MPD B includes
23 PNs distributed across all available clusters. This
variation in the number and distribution of PNs can
affect the weighted F1 score, as some PNs are more
difficult to predict due to their unique characteristics.

Next, the influence of the two distinct DS on SPSO-
CM prediction performance is assessed. Similarly to
the previous analysis, the distributions of the weighted
F1 scores are represented as boxplots in Figure 8. How-
ever, this time, only scores from the 60-day and 90-day
tw experiments are included. The presented boxplots
clearly demonstrate that the model performs better in
predicting SO than in predicting A O, particularly con-
cerning MPD A. This performance difference can be
explained by the exclusion of unplanned X;, which are
inherently unpredictable. Furthermore, it is interesting
to note that the weighted F1 scores for different AO
configurations are relatively similar, except for a cou-
ple of outliers. On the contrary, the SO scores exhibit
a wider spread, indicating that the selected configu-
ration has a more significant impact on performance.
Consequently, for the remainder of the analysis, the fo-
cus will only be on the SO configuration evaluated for
the 90-day forecast.
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Figure 8: Comparison of the weighted F1 distribution
for each DS-configuration, visually represented by sep-
arate boxplots.
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The impact of the selected M is detailed in Ta-
ble 1. When exclusively comparing the two gradient-
boosting models while maintaining consistent con-
figuration settings across the board, the results re-
veal that X-configurations consistently outperform L-
configurations. As previously discussed in section 4.5,
LightGBM models are specifically designed to enhance
accuracy and optimize computational speed when han-
dling large datasets. Therefore, one plausible expla-
nation for the superior performance of the XGBoost
model is that, for most PNs, there is a limited number
of PN occurrences. Additionally, when more training
data is available, Light GBM models can achieve higher
weighted F1 scores.

Table 1: The weighted average metric scores for differ-
ent TS-configurations forecasting a 90-day tw

MPD A MPD B
Model Fi1 [-|1 Runtime[s| | F1|[-]T Runtime [s| ]
X-N-SO  0.825 317.05 0.524 1620.69
X-C-SO 0.690 327.31 0.545 1709.15
L-N-SO 0.525 395.89 0.522 1826.41
L-C-SO 0.543 389.89 0.518 2670.85

Finally, the different CF for the available X-SO con-
figurations are evaluated. The results displayed in Ta-
ble 1 present contradictory observations. MPD A’s
weighted F1 score decreases significantly from 0.825
to 0.690 when including Cpy as an input feature. In
contrast, MPD B’s performance slightly improves with
the addition of C'pp, probably due to varying PNs and
their diverse C'py values. Incorporating Cpy as an in-
put feature appears promising for predicting complex
MPD events with various PNs, as it accounts for the
properties of the PNs and their influence on future pur-
chases.

In conclusion, the analysis clearly demonstrates that
the X-N-SO configuration for MPD A and the X-C-
SO configuration for MPD B outperform the other
proposed configurations in terms of the weighted F1
score. Consequently, the selection for further analysis
is based on these configurations. A concise summary
of the X-N-SO configuration for MPD A and the X-
C-SO configuration for MPD B can be found in Ta-
ble 2 and Table 3, respectively. It is important to note
that the SPSO-CM performs poorly for a 30-day tw,
but its performance significantly improves with longer
tw, leading to higher F1 scores. Additionally, there is
a substantial difference in computational runtime be-
tween the two MPD events, which can be attributed to
the larger training dataset, more PNs, and additional
input features associated with MPD B.

5.4 Individual PN Performance

To better understand the performance of the optimally
configured SPSO-CM, an in-depth analysis was per-
formed by evaluating the predicted subsequent orders
for each PN individually. The results of this analysis
are visually displayed in a scatter plot shown in Fig-
ure 9.



Table 2: Results of the best performing SPSO-CM configuration, X-N-SO, for MPD A

tw [days] Weighted Precision [-] 1 Weighted Recall [-] T Weighted F1 [-] 1 Runtime [s] |
30 0.069 0.222 0.102 319.58
60 0.719 0.861 0.757 324.10
90 0.867 0.793 0.825 371.05

Table 3: Results of the best performing SPSO-CM configuration, X-C-SO, for MPD B

tw [days] Weighted Precision [-] T Weighted Recall [-] 1 Weighted F1 [-] T Runtime [s] |
30 0.339 0.305 0.292 1560.78
60 0.462 0.496 0.464 1590.80
90 0.547 0.576 0.545 1709.15
Individual PN performance no interference from other distributors, leading
to a more precise accuracy. The calculated ME
0.9 1 o scores confirm this, indicating that most of these
PNs achieve moderate accuracy scores. However,
8 two PN are less predictable, exhibiting ME scores
0.7 o e e T that suggest random behavior. In general, PNs
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Figure 9: Graphical representation of the ME score
against the PN support value to identify if a subsequent
PN purchase order is predictable or not.

Upon examining the ME scores of all PNs as shown
in Figure 9, two main observations emerge. First, there
is a significant performance difference between PNs of
MPD A and MPD B, aligning with the earlier compari-
son of the weighted F'1 scores. As noted previously, this
performance difference can be attributed to the exclu-
sive presence of C.0 and C.1 PNs in MPD A, which
inherently possess greater predictability, as illustrated
in the graph. Furthermore, it is possible that there ex-
ists a more pronounced relationship among the PNs of
MPD A compared to those of MPD B, possibly due to
the inherent characteristics of MPD events.

The second observation that emerges is the clear pat-
tern between the earlier derived clusters and the corre-
sponding PNs” ME score. This pattern suggests a cor-
relation between specific PN properties and the SPSO-
CM’s ability to predict subsequent PN purchase orders.
The primary findings for each cluster are summarized
below:

e C.0: This cluster exclusively consists of propri-
etary PNs, indicating that the company is the sole
distributor of these PNs with no competition. As
a result, more training data is available to pre-
dict purchase orders for these PNs and there is
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order occurrences. The SPSO-CM is exceptionally
well suited for forecasting purchase orders for PNs
in this cluster.

C.2: ME scores indicate that PNs in this cluster
are unpredictable, ranging from random to poor
performance. It is not recommended to use the
SPSO-CM to forecast these types of PNs.

C.3: PNs that belong to this cluster exhibit an
extremely lumpy demand behavior, which, accord-
ing to the existing literature, is very difficult to
predict. The results confirm this difficulty, as all
ME scores for these PNs fall below the random
chance threshold, indicating poor prediction pre-
cision. The low Npy and the limited number
NpN,customers already suggested that forecasting
these purchase orders would be difficult. Con-
sequently, the SPSO-CM should not be used to
predict upcoming purchase orders associated with
these PNs.

In summary, a direct correlation is observed between
the inherent characteristics of PNs and the correspond-
ing predictive capabilities of the SPSO-CM. The results
in this section underscore the exclusive applicability of
SPSO-CM to PNs belonging to C.0 or C.1, which typ-
ically include proprietary PNs or those with a signif-
icant number of available training instances. More-
over, noticeable variations in accuracy performance
have been observed when comparing PNs sourced from
MPD A and MPD B, suggesting that certain MPD
events are better suited to predict subsequent PN pur-
chase orders. Nevertheless, to comprehensively eval-
uate the model’s performance, it is crucial to assess



it over an extended time period and across numerous
MPD events. Additionally, as more data on subsequent
PN purchase orders become available, a more precise
performance assessment can be achieved.

5.5 Sensitivity Analysis

The SPSO-CM incorporates several unique compo-
nents and their impacts, when considering the X-N-SO
configuration for predicting purchase orders associated
with MPD A, are summarized in Table 4. Each com-
ponent contributes positively to the predictive perfor-
mance of the proposed algorithm.

Table 4: Ablation Study Results Compared to the Best
Performed SPSO-CM: X-I-SO

Removed Component AF1 [%] ARuntime [%]
Resampler -48.70 6.18
Feature Selector -24.33 -1.15
Nested cross-validation -31.00 -0.58

Removing the resampler from the proposed SPSO-
CM results in a 48.7% decrease in the weighted F1
score. This aligns with existing literature, suggest-
ing that data undersampling or oversampling improves
machine-learning accuracy when dealing with class im-
balance within datasets. Additionally, it demonstrates
that undersampling maintains accurate predictions for
most instances in the negative class, reflecting the in-
herent data characteristics. Furthermore, removing the
resampler also leads to a slight decrease in runtime,
which is expected since the model trains on fewer data
instances.

Regarding the next distinctive component, the fea-
ture selector, its exclusion diminishes the SPSO-CM’s
predictive capabilities, reducing the weighted F1 score
by 24.33%. This finding supports the hypothesis that
various input features exert distinct influences on spe-
cific PNs, especially when considering the lagged in-
put features that are unique to each PN. This suggests
that some PNs within an MPD event have stronger
associations with others, while some do not. Incorpo-
rating the feature selector naturally increases runtime
due to the optimization of an additional hyperparame-
ter. However, the runtime increase is minimal and can
be disregarded. This may be attributed to situations
in which fewer input features are utilized during the
hyperparameter search, resulting in faster runtimes.

Lastly, the impact of the nested cross-validation is
evaluated by comparing it with an original group K-
fold cross-validation approach. The results, as listed
in Table 4, demonstrate that the weighted F1 score
is heavily influenced by the removal of the nested
cross-validation component. In summary, incorporat-
ing nested cross-validation in the SPSO-CM not only
increases the availability of training data during hyper-
parameter optimization but also mimics the original
train-test split, where the same customers are present
in both the training and testing sets. This approach
provides the model with better insights into the rela-
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tionships between customers and their corresponding
X, making it a valuable addition to the SPSO-CM.

6 Discussion & Potential Appli-
cations

This section discusses the potential impact of the newly
developed SPSO-CM on aftermarket distributors. As
demonstrated in Section 5, SPSO-CM excels in pro-
ducing accurate forecasts for proprietary PNs and PNs
with a moderate amount of training data and a high-
medium variety of Npn customers.- However, when deal-
ing with PNs characterized by extremely lumpy de-
mand patterns or limited training data, SPSO-CM
struggles to yield accurate results and often performs
below average compared to a random classifier.

Before delving into the SPSO-CM’s potential for af-
termarket distributors, it is important to address some
limitations and assumptions. Currently, the model is
evaluated on a small dataset of 28 PNs across 2 MPD
events. Drawing definitive conclusions about its per-
formance requires further research involving a larger
number of MPD events and a diverse set of PNs. Fur-
thermore, the current framework assumes unique PNs
for each MPD event, which is not realistic. Investigat-
ing the SPSO-CM’s performance when PNs are shared
among events would provide valuable insights. Another
approach is to include all specific PN-related MPD
events, but this would introduce a significant amount
of lagged input features, leading to increased compu-
tational time and potential data sparsity.

Additionally, the SPSO-CM currently employs a
gradient-boosting model. Future research could ex-
plore the use of neural networks, which are known for
handling lumpy demand datasets effectively. This shift
would also enable multiclass prediction possibilities,
with each label representing potential purchase order
occurrences for PNs in specific MPD events. However,
it should be noted that this approach would result in
longer computational times and increase the complex-
ity of the SPSO-CM, making it less interpretable.

With these findings in mind, the practical impli-
cations of the proposed SPSO-CM algorithm are dis-
cussed both from a customer-level perspective in Sub-
section 6.1 and from a broader supply chain perspective
in Subsection 6.2, while also considering the current li-
mitations of SPSO-CM and potential areas for future
research.

6.1 SPSO-CM for Customer-level Ap-
plications

The SPSO-CM, designed and trained to predict subse-
quent PN purchase orders at individual customer lev-
els, is ideal for serving as a customer PN recommen-
dation system. These systems, also known as Other
customers also bought algorithms, are widely adopted
in many e-commerce businesses. Numerous studies
demonstrated their ability to increase sales and im-
prove customer satisfaction, allowing the e-commerce



business to increase product prices [38, 39]. In addi-
tion to the company-developed TDF algorithm, which
identifies all correlated MPD PNs, the SPSO-CM can
provide probabilities indicating a customer’s likelihood
of needing specific PNs to complete an MPD event. In
this use case scenario, the ultimate decision to purchase
the predicted PNs remains with the customer, mitigat-
ing any direct impact on the aftermarket distributor
in the event of an inaccurate prediction. This addi-
tional service provides customers with essential infor-
mation to make informed decisions about subsequent
PN purchases. Consequently, this can lead to improved
maintenance schedules and potentially reduce aircraft
downtime, as all required PNs are readily available dur-
ing the execution of a maintenance event.

Customer-Specific Subsequent PNs Purchase Order
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Figure 10: The SPSO-CM used to predict subsequent
MPD A PN purchase orders for a specific customer
that just purchased A.5

To illustrate the potential of SPSO-CM as a recom-
mendation system for subsequent PN purchase orders,
a real-case example featuring a customer who recently
purchased PN A.5, is depicted in Figure 10. The prob-
ability forecast indicates a high likelihood that the cus-
tomer will purchase A.2 and A.3 in the next 90 days, a
slightly higher probability than 50% for A.1 and A.5,
and a nearly zero probability for A.4. The customer
can utilize this information by discussing it with tech-
nicians and warehouse personnel to determine whether
to take action based on these probabilities and pur-
chase the additional predicted PNs or safely disregard
the forecast. Overall, this application helps aircraft
carriers and MROs to generate a complete bill of ma-
terial for a specific maintenance event.

A current limitation of the proposed SPSO-CM, and
consequently the potential recommendation system, is
its customer-specific nature. As highlighted in the liter-
ature review in Section 2, it was found that variations
in customer buying behaviors have a significant im-
pact on the accuracy of prediction models. Customers
who frequently purchase PNs may exhibit greater pre-
dictability compared to those with irregular purchasing
patterns. Therefore, more research is needed to under-

18

stand how different customer profiles affect the accu-
racy of the SPSO-CM before providing customers with
subsequent PN purchase order forecasts. A potential
research approach could involve segmenting customers
based on loyalty, purchasing behavior, company size,
fleet type, and fleet age, and evaluating the SPSO-
CM’s performance within these segments. Addition-
ally, exploring the potential value of including customer
clusters as additional input features could provide valu-
able insights.

When the SPSO-CM is individually evaluated for
multiple customers and tested across various MPD
events, it opens up new business opportunities for af-
termarket distributors. By accurately predicting up-
coming purchase orders, aftermarket distributors can
offer the SPSO-CM forecast as an additional service to
customers. In addition to additional service revenue,
this collaboration between an aftermarket distributor
and their customers can enhance the SPSO-CM perfor-
mance by integrating customers’ maintenance sched-
ules, component deterioration data, and current fleet
status. Another promising business opportunity for af-
termarket distributors is to proactively adjust or re-
duce PN prices based on these individual forecasts.
For instance, when the SPSO-CM indicates a high
probability of subsequent PN orders, distributors can
propose bundled packages of multiple PNs at reduced
prices, making it more attractive for customers to pur-
chase all PNs together. Conversely, if customers post-
pone specific PN purchases despite the SPSO-CM pre-
dictions, the distributor may increase prices due to the
increased complexity of on-time delivery, added ship-
ping costs, and shifts in purchase order priorities. Fur-
thermore, this proactive approach introduces the possi-
bility of including unpredictable PNs from clusters C.2
and C.3 in the bundles when the TDF indicates a con-
ditional relationship with the more reliable forecasted
PNs from clusters C.0 and C.1, potentially leading to
increased purchases of unpredictable PNs. In sum-
mary, this shift from a reactive business perspective to
a proactive environment can increase sales, customer
satisfaction, revenue, and even reduce the carbon foot-
print due to the combination of multiple shipments.

6.2 SPSO-CM for Supply Chain-level
Applications

In addition to its potential applicability at the cus-
tomer level, the SPSO-CM can be extended to a global
scale to improve supply chain efficiency and optimize
warehouse stock control. Instead of analyzing indi-
vidual predictions, a monthly purchase forecast can
be generated by aggregating the predicted PN pur-
chase order occurrences (3) over a month. The X, are
grouped per month, and for each month, the differences
between the actual order occurrences (y) and the pre-
dicted occurrences (§) are calculated. This calculation
is called the purchase error and is equal to FFN — F'P.
The purchase error indicates that achieving a perfect
prediction of every purchase order occurrence may not
be as crucial. This is because if there is an equal num-



ber of FN and FP on a monthly basis, the stock in-
ventory level remains accurate. Thus, even with sub-
optimal prediction performance, the SPSO-CM can be
utilized for monthly PNs demand predictions.

To illustrate this, an example is given in Table 5,
where the monthly purchase error is calculated for A.1.
The results indicate that there is some variation within
the purchase error across the four months. For in-
stance, in July, the algorithm exhibited an error of
-5, whereas in June, the error was 0. To provide a
more comprehensive evaluation of this application, the
mean absolute error (MAE), the root mean squared er-
ror (RMSE), and the mean absolute percentage error
(MAPE) were calculated. For formulas and additional
information on these metrics, the interested reader may
refer to [40]. The results of these calculations for A.1
are detailed in Table 6.

Table 5: The purchase error of A.1 per monthly X;.

Month TN TP FP FN Purchase Error
June 4 3 1 1 0
July 2 4 5 0 -5
August 3 4 2 4 2
September 3 4 4 1 -3

Table 6: Error metrics derived from the monthly pur-
chase errors of A.1

MAE | RMSE | RMSE [%] |
2.50 3.08 21

Al

The calculated error metrics for A.1, with MAE and
RMSE of 2.50 and 3.08 for misclassified purchase or-
ders, respectively, fall within an acceptable range. Es-
pecially when considering an average of 11.25 purchase
predictions per month. This reaffirms that in supply
chain applications, the focus is on maintaining a bal-
ance between FN and FP on a monthly basis to ensure
accurate stock inventory levels, rather than achieving
perfect predictions for every PN purchase order occur-
rence. It is important to note that the example above
does not exactly match a real-case scenario. In this
case, the grouping of predicted PN purchase order oc-
currences into monthly intervals is based on the initial
X; purchase date. Given a 90-day period tw, there
is a significant probability that subsequent predicted
PN purchase orders may occur in a different month.
Nonetheless, it is assumed that the results of this pre-
liminary analysis still provide a valuable indication of
its intended purpose for future research or implemen-
tation.

Expanding on the performance findings of the SPSO-
CM in supply chain applications, the creation of a pur-
chase order probability forecast becomes possible. This
SPSO-CM application has the potential to improve the
current demand prediction algorithms used by the af-
termarket distributor, ultimately leading to more effec-
tive stock control. In order to develop this, its is im-
portant to understand that the SPSO-CM essentially
evaluates the probability that purchase orders occur
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based on probability values. When the predicted prob-
ability is below 50%, it signifies a low likelihood of a
subsequent PN purchase order and predicts that it will
not occur. Conversely, a probability higher than 50%
suggests a higher likelihood of an order and predicts
its occurrence. Figure 11 visually represents the prob-
ability distribution for the predicted purchase orders
of A.1 when considering the test dataset. Using these
probabilities, a forecast can be generated to estimate
the probability of a specific number of purchase orders
for the next 90 days, considering all unfulfilled predic-
tions of X; made in the last 90 days. An illustrative
example of this application for A.1 can be found in Fig-
ure 12. The formula for calculating the probability of
K purchase orders out of N predicted purchase orders
is presented in Equation 6, where p stands for the pre-
dicted SPSO-CM order occurrence probability, N for
the total events (total available probabilities) and K
for the target number of purchase order occurrences.

P(K) = > (Hpi])( 11 (l—pij)>
1<i) <ig<...<ig <N \j=1 j=K+1

(6)
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Figure 11: Probability distribution of A.1 purchase or-
der occurrences when prediction the initial X; within
the test dataset

The depicted probability forecast indicates a higher
probability of 6 or 7 purchases of A.1 in the first few
weeks. As time progresses and the number of consid-
ered X; decreases, the maximum number of expected
purchase orders also decreases. In summary, the high-
est probability line should provide a reliable estimate
of the maximum number of subsequent PN purchase
orders expected during that period. Furthermore, the
forecast should be updated weekly by including the
most recent X; to have a comprehensive probability
forecast.

As already described, this probability forecast ap-
plication can positively contribute to existing demand
prediction models, resulting in a more effective opti-
mization of warehouse inventory levels for specific PNs.
By forecasting potential subsequent purchase orders for
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these PNs, inventory management becomes more pre-
cise. This precision enables aftermarket distributors
to proactively address potential stock shortages, lead-
ing to increased customer satisfaction and potentially
higher sales volumes. Additionally, it helps in iden-
tifying frequently sold PNs and those with lower de-
mand, simplifying the process of removing less promis-
ing products to create space for others.

However, before implementing the purchase order
probability forecast in practice, a thorough assessment
of its accuracy is needed in real-world scenarios over
an extended period. Additionally, the SPSO-CM cur-
rently focuses exclusively on predicting the occurrence
of subsequent PN purchase orders. An interesting di-
rection for future research is to extend the existing
SPSO-CM framework with an associated subsequent
PN purchase order quantity forecast. This expansion
would require either creating a new prediction model or
modifying the existing SPSO-CM by shifting its train-
ing objective from classification to regression, with tar-
get labels representing the respective purchase order
quantities rather than binary occurrences. Developing
this capability would provide even greater value for the
aftermarket distributor.

7 Conclusion

This paper presents a novel classification model
(SPSO-CM) to predict subsequent customer-specific
purchases of maintenance planning document (MPD)
related spare parts based on technical documentation
and previous sales records. The model is utilized to
forecast spare part purchase order occurrences within
30, 60, and 90-day time windows for an aircraft after-
market distributor.

The proposed model’s architecture centers around
a gradient-boosting algorithm and integrates several
unique components to enhance its performance. To
begin, it employs a feature creator that generates in-
put features by analyzing previous purchases of related
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SPSO-CM used to forecast the probability of subsequent A.1 purchase orders for the upcoming 90

spare parts, the initial purchase order details, and spare
part characteristics. A k-means clustering algorithm is
used to group spare parts with similar characteristics,
as certain specific spare part properties significantly in-
fluence demand prediction models. Four primary clus-
ters were identified, ranging from a segment of only
proprietary spare parts to a group of spare parts that
exhibits an extreme lumpy demand pattern.

Regarding the gradient-boosting algorithm, the ac-
curacy performance of both the XGBoost and Light-
GBM algorithms was evaluated within the framework.
It was determined that XGBoost outperformed the
Light GBM model in terms of computational time and
F1 scores, making it the preferred gradient-boosting
algorithm for further analysis. Furthermore, to ad-
dress class imbalances between the occurrence and
non-occurrence of purchase orders within the train-
ing dataset, the architecture incorporates a version-3
Nearmiss undersampling strategy. A unique feature
selector and nested cross-validation technique were de-
veloped and incorporated into the Bayesian search
space to optimize hyperparameters and improve per-
formance.

Evaluating the SPSO-CM on 28 different spare parts
across 2 MPD events provided valuable insight into
its performance. The results highlighted a correlation
between the derived clusters and the prediction accu-
racy of the proposed model. Notably, proprietary spare
parts and those with a moderate purchase history from
various customers demonstrated strong performance,
while spare parts with lumpy demand patterns and
limited available data exhibited poor accuracy scores.
However, to draw a definitive conclusion, the SPSO-
CM should be evaluated over an extended time period,
across numerous MPD events and a more diverse set
of spare parts.

When evaluating the SPSO-CM as a potential ba-
sis for applications, it demonstrates a significant po-
tential value for aftermarket distributors. Moreover,
it has the potential to introduce a new business per-
spective, transforming the current reactive environ-



ment into a more proactive approach. Two potential 10.
applications are discussed, one from a customer-level
perspective and another at a larger supply-chain level,
highlighting its promising capabilities. Future research
should involve simulations to evaluate its true value in
terms of revenue, stock efficiency, and customer satis-
faction. Additionally, an interesting new research di-
rection could involve the development of a separate
model to predict not only purchase order occurrences
but also the associated purchase order quantities. Such
an approach would lead to a more advanced estimation
of upcoming purchase orders, thereby enhancing sup-
ply chain efficiency and inventory management. Lastly,
it would be of interest to explore the use of neural net-
works as the used prediction model instead of gradient-
boosting algorithms, given their proficiency in handling
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Appendices

A Nomenclature

SPSO-CM Symbols

ATpn
Qntpy
AO
adjacentset
Cpn
customer
DS
Fadjacent
M
MatpN
month
NPN,custome'rs

Npn Total number of purchase orders associated with the specified PN.
NpN_inter Number of identified interchangeable items related to the respective PN.
Nxpy, The total number of PN purchase orders until the most recent PN purchase order.
priority The priority code of X;.
QNtATp N The quantity of the most recent PN purchase order.
Qnix, The specified quantity of X;.
SO SPSO-CM configuration that only considers WSP and RTN purchase orders.
tl time lag
CF Cluster Feature: Specifies whether the cluster feature is part of the SPSO-CM configuration.
tw time window
Whx, The warehouse of X;.
XpPN,t-1 The previous PN purchase order by the same customer
X purchase order line
YPN t+tw The target label indicating the presence or absence of a subsequent purchase of PN in the upcoming tw.
year The year (date) of X;.
Abbreviations
ADI Average Demand Interval
AMM Aircraft Maintenance Manual
ANN Artificial Neural Networks
ARM Association Rule Mining
AUC Aera Under the Curve
AUCpr Aera Under the Precision-Recall Curve
BP Back Propagation
CD Calendar Days
CcSvV Comma Separated Values
Ccv? Squared correlation of variation
EFB Exclusive Feature Bundling
FC Flight Cycles
FH Flight Hours
FN False Negative confusion matrix class
FP False Positive confusion matrix class
FPR False Positive Rate
GOSS Gradient-based One-Side Sampling
GRMSE Geometric Root Mean Square Error
LightGBM  Light Gradient Boosting Model
LSTM Longs-Short Memory Network
MAD/A Mean Absolute Deviation Average
MAFE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Square Error
MCC Matthew Correlation Coefficient
MLP Multi-layer Perceptron

Time interval in days since the last purchase order of the specified PN.
The average amount of PN sold per purchase order.

SPSO-CM configuration that considers all priority types

Adjacent set of previous purchase orders within the predefined tl
Unique cluster ID

The customer of the purchase order line.

Data Subset: Specifies which priorities types are presented for a SPSO-CM configuration.
Derived support / frequency of the adjacent set.

Model: Specifies the SPSO-CM gradient-boosting configuration.

PN material group

The month (date) of X;.

The number of unique customers who purchased the PN.

24



MPD Maintenance Planning Document

MRO Maintenance Repair & Overhaul
OEM Original Aircraft Manufacturer
PN Spare Part ID
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SBA Syntetos Boylan Approximation
SES Single Exponential Smoothing model
SPSO — CM  Spare Part Subsequent Purchase Occurrence Classification Model
TDF Technical Documentation Forecast
TN True Negative confusion matrix class
TP True Positive confusion matrix class
wcCSsSs Sum of squared distances to cluster centroids

XGBoost Extreme Gradient Boosting model

B

Gradient Boosting Hyperparameters

An overview of the used hyperparameters during the Bayesian search space is given below. The standard hyperparameters
utilized for both XGBoost and Light GBM models.

Standard Hyperparameters

learning rate [0,1]: Controls the step size shrinkage at each boosting iteration, serving to make the model more
conservative.

Maximum Depth [0, co]: Represents the maximum depth of the tree and is used to prevent the model from over-
fitting. A higher maximum tree depth enables the model to learn highly specific relationships unique to individual
data samples.

reg alpha: This parameter governs L1 regularization, often referred to as Lasso regularization. L1 regularization
introduces a penalty factor into the model’s loss function, pushing it to diminish the influence of less important
features by gradually reducing their weights to zero. As this parameter is increased, the strength of L1 regularization
grows, resulting in a more pronounced feature selection process. Ultimately, it serves to combat overfitting, boost
the model’s generalization capacity, and improve its performance when faced with noisy or interrelated features.
reg lambda: This parameter controls L2 regularization, also known as Ridge regularization. Unlike L1 regular-
ization, it reduces the squared magnitude of the weights rather than the absolute values. It is used to mitigate
overfitting.

subsample (0,1]: Indicates the ratio used to randomly sample the training instances before tree growth. Lower
values are used to mitigate overfitting, but excessively low values can result in underfitting.

colsample bytree (0,1]: Dictates the subsample ratio to control the columns used at each level of the tree. It is
applied once for every constructed tree.

colsample bynode (0,1]: Specifies the fraction of columns that are randomly chosen to split each node in a tree.
It is applied individually to the current node that is split, not to the entire tree or level.

scale pos weight [1,00]: Controls the balance between the positive and negative classes, particularly valuable
when handling imbalanced datasets. Higher values indicate a bigger imbalance between the classes of the dataset.

Specific XGBoost Hyperparameters

gamma [0, oo]: Denotes the minimum required loss reduction to make a further partition on a leaf node. A larger
gamma results in a more conservative algorithm.
colsample bylevel (0, 1]: specifies the subsample ratio of columns used at each tree depth level.

Specific Light GBM Hyperparameters

num leaves: Specifies the maximum number of leaves per tree. The more leaves the more conservative the algorithm
becomes.

max bin: This parameter sets the maximum number of discrete bins for bucketing input features. It improves
training speed and reduces memory usage by reducing the number of evaluated splits.
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Introduction

The aviation industry is a highly complex, competitive market with various stakeholders. Millions of trav-
elers are traveling every day with thousands of competing airlines that are using different kinds of aircraft
types. Over the last few decades, the entire sector grew steadily till the outbreak of the COVID-19 pandemic
at the beginning of 2020, causing a massive market disruption affecting the entire transportation industry.
Although the world is still recovering from the recent crisis, it is expected that air traffic is fully recovered in
2024 with respect to the 2019 levels. According to Airbus’s Global Service Forecast [22], it is even expected
that passenger traffic and freight traffic increases annually by 3.6% and 3.2%, respectively towards 2040. Con-
sidering this growth and the sustainability targets set by industry leaders [23], this will mean a total demand
of 39,500 new aircraft in the upcoming 20 years. Resulting in an operational fleet of 46,930 aircraft compared
to 22,880 aircraft in service in 2022 (pre-COVID times). This increase directly impacts aircraft maintenance
organizations and the demand for spare parts, in general [7].

Airliners try to plan their maintenance events as efficiently as possible to increase their operational usage
of an aircraft, which directly reduces their financial operating costs. It is estimated that approximately 10%-
15% of the direct airline’s operating costs are spent on keeping the aircraft maintained [24]. This only includes
the Maintenance, Repair, and Overhaul (MRO) costs and does not even consider the additional costs that will
apply during an unscheduled maintenance event.

Accurate forecasting of spare parts is one of the biggest challenges in the aviation industry, as their unavail-
ability can lead to high downtime costs. Due to the high variation in demand and its unpredictability, this is
a difficult process. A recent news article on the current spare parts delivery issue, caused by problems in the
supply chain of Boeing and Airbus [25], illustrates these challenges. Most forecasting programs are based on
the regulations such as maintenance schedules and usage patterns of parts or previous demand [20]. Aircraft
operators can utilize this information for their prediction models. Aftermarket solutions, on the other hand,
have limited access to these data sources. Their forecasting models are mainly based on previous purchases.
Therefore, The aim of this study is to provide an overview of spare part demand forecasting techniques that
are applicable to the aviation aftermarket industry. Furthermore, research on improvement strategies to
overcome the lacking data availability should also be conducted.

This report, in order to achieve the research aim, is structured as follows. Starting with a general introduction
to aircraft maintenance and its key stakeholders in Chapter 2. Followed by Chapter 3, where the main spare
part demand characteristics are introduced, along with a detailed analysis of various forecasting techniques,
evaluating their performance, structure, advantages, and disadvantages. The subsequent chapters focus on
forecasting improvement strategies, exploring customer segmentation in Chapter 4, and a detailed explana-
tion of two pattern mining techniques, association rule mining, and sequential pattern mining, in Chapter 5.
This research concludes with an overview of the main findings, derived research questions, and feature scope
of the project in Chapter 6.
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Aircraft Maintenance

Aircraft consists of thousands of parts that must be maintained regularly to guarantee their operational state.
Maintenance processes are complex and influenced by several factors, including the type of maintenance
events and the characteristics of spare parts, which are discussed in detail in this chapter. An overview of
aircraft maintenance processes and failure types is provided in Section 2.1. After which, multiple spare part
characteristics are described in Section 2.2. The domain of aircraft maintenance involves multiple stakehold-
ers, and an overview of they key parties can be found in Section 2.3. To conclude, a summary of all findings is
presented in Section 2.4,

2.1. Aircraft Maintenance Characteristics

Aircraft maintenance activities are highly-regulated and listed by the aircraft manufacturer in a Maintenance
Planning Document (MPD). This document consists of the Maintenance Review Board Report (MRBR) with
additional suggested tasks by the aircraft’s Original Equipment Manufacturer (OEM) and is unique for every
operating aircraft [2]. All the MPD requirements, together with additional airline requirements, are trans-
lated into scheduled tasks that can be executed by airline mechanics. These tasks are listed in the Aircraft
Maintenance Manuel (AMM) and organized by the standardized Air Transportation Association (ATA) chap-
ter structure, which breaks down the entire aircraft into different systems followed by related sub-systems,
making it simpler for mechanics to find information on particular systems for different aircraft types [19].

Aircraft maintenance tasks are performed to assure a safe, reliable, and airworthy aircraft. When an aircraft
enters into operation its designed state naturally deteriorates over time, shown in Figure 2.1a. After a while,
the aircraft’s current state reaches a certain threshold where maintenance actions are necessary to prevent the
aircraft from failing. This type of maintenance is called preventive maintenance, also referred to as scheduled
maintenance, and is indicated in Figure 2.1b by points a and b. It can also happen that the aircraft deterio-
rates faster than planned and exceed the predefined threshold. In worst-case scenarios, the aircraft breaks
down and cannot be operated anymore. Maintenance actions are then needed to restore the aircraft to an
operational state. These moments are unpredictable and the employed maintenance actions are, therefore,
categorized as unscheduled maintenance [2]. This phenomenon is illustrated by points c and d in Figure 2.1b.

Different maintenance concepts, including scheduled and unscheduled maintenance, were identified by
Tinga [4] and summarized in a tree structure, illustrated in Figure 2.2, by Oudkerk [3]. From the tree structure,
it can be seen that there are three main concepts: Reactive, Proactive, and Aggressive. Reactive and Proactive
maintenance is more focused on maintaining the aircraft when it is in operation, while the aggressive direc-
tion touches upon the design improvements of the aircraft, which can result in fewer maintenance events
during its operational phase. This branch is not of interest for the rest of this literature review as this study fo-
cuses on spare parts for current operational aircraft. The Reactive and Proactive concepts are further broken
down into multiple sub-concepts, including unscheduled (corrective) maintenance and scheduled (preven-
tive) maintenance, which are discussed in Subsection 2.1.1 and Subsection Subsection 2.1.2, respectively.
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Figure 2.1: Deterioration of an aircraft component [2]
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Figure 2.2: Overview of different aircraft maintenance types adapted from Oudkerk [3], based on a study by Tinga [4]

2.1.1. Unscheduled Maintenance

Reactive maintenance, most of the time referred to as unscheduled maintenance, is the unplanned failure of
a system or component of an aircraft. This non-routine maintenance is unpredictable and depends on many
factors. It can be that for example an unrelated component is damaged during a scheduled maintenance
event; Engine components are damaged due to a bird strike; Or a system deteriorates faster than planned. In
all these cases, maintenance actions are directly needed to restore the aircraft to an operable state in order
to limit its unavailability. Non-routine maintenance cases are also known as Aircraft On Ground (AOG) situ-

ations.
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The outdated Maintenance Steering Group-2 (MSG-2) approach, a process-orientated method that develops
the MRBR, identifies 3 different Primary Maintenance Processes (PMP), which are still being used in older air-
craft models and somehow incorporated into the newer MSG-3 approach (task-orientated approach): Hard
Time (HT), On-Condition (OC) and Condition Monitoring (CM). The first two processes are related to sched-
uled maintenance and further discussed in Subsection 2.1.2. For CM components there are no predefined
thresholds or requirements that indicate when the component should be replaced to prevent failure. These
components are, therefore, only replaced after failure and thus during an unscheduled maintenance event
[2]. CM processes monitor operational data of components to analyze the failure rates and their behavior to
eventually implement corrective procedures [20].

2.1.2. Preventive Maintenance

Preventive maintenance can either be based on predefined schedules or on opportunistic moments that are
beneficial for an aircraft operator. Scheduled maintenance events are all listed in the MPD and prevent the
aircraft from failing during its operation. For most aircraft types the maintenance events are grouped into
four different letter checks, based on the utilization of the aircraft. This utilization is based on the number
of calendar days (CD), flight cycles (FC), and/or flight hours (FH). An overview of the scheduled letter checks
is given below in Table 2.1. Newer aircraft models that follow a modified MSG-3 approach have a more dy-
namic interpretation of scheduling tasks compared to the traditional letter checks. In this approach, the max-
imum FH, FC, or CD intervals are independently identified for every system, which creates a more adaptable
schedule. However, some operators still choose to combine these tasks into (letter) blocks to simplify their
scheduling problem [2].

Table 2.1: Overview of standard scheduled maintenance checks [7, 16, 17]

Check Interval Description

Daily (transit) | After each FC with a | A basic visual inspection of the aircraft on deterioration or
turnaround time of more | damages.
than 4 hours

A-check 2-4 months General visual inspection of the aircraft, including some ser-
vicing.

B-check - Detailed check on the aircraft components and systems.

C-check 16-24 months An extensive maintenance check that includes a functional

operational check on different systems and components.
The aircraft must be overhauled for several days. Special
equipment and trained mechanics are necessary to perform
the check. C-checks automatically include A and B checks.

D-check 6-12 years heavy maintenance checks are maintenance checks where
the entire aircraft is taken out of service for a longer period.
Sections of the aircraft are dissembled for structural inspec-
tion of components on corrosion, cracking, deterioration,
and all kinds of structural damage. A, B, and C-check are
also performed during this check.

As already mentioned in Subsection 2.1.1, there are 2 PMP that were identified by the MSG-2 approach and
fall under scheduled maintenance activities, namely HT and OC:

* Hard Time (HT): This process belongs to the preventive maintenance branch and is applicable to com-
ponents/systems with predefined life limits. These life limits are expressed in the form of FH, FC or CD
[26]. The HT process requires the removal and replacement of components before the predefined life
limit exceeds. Sometimes it is possible to restore the removed components. In general, the HT process
includes components/systems that are critical within the aircraft [2].

* On-Condition (OC): Similar to the HT process, the OC process also belongs to the preventive main-
tenance category. However, this process includes components/systems where wear-out/deterioration
is detectable. In most cases, inspections are necessary to detect if the current state of the component
or system is still within the predefined interval and not below or above a certain threshold, depending
on the component/system [20]. The wear-out inspections take place after a predefined number of FH,
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FC, or CD, and the results of the inspections are used to determine the remaining serviceability of the
component/system [2].

2.2, Spare Parts Characteristics

During maintenance activities, aircraft parts are either replaced with new, repaired, or serviced parts. These
spare parts have different characteristics, which are classified via different approaches. Traditionally, aircraft
spare parts are categorized into four types based on a combination of maintenance regulations, lifespan,
economic value, and functional criteria. These types are known as Rotables, Repairables, Expendables, and
Consumables. Each type is described below [19, 27, 28]:

1. Rotables: These are the most expensive and complex items of an aircraft. The parts have a unique
assembly serial number and are serviced and repaired during a dedicated maintenance event. It is
expected, under normal conditions, that the part never has to be fully replaced with a new part and its
functionality can be guaranteed by unlimited repairs. The landing gear and major engine components
are examples of rotable items.

2. Repairables: These items can be repaired for a limited number of times after which they will be re-
placed with a new part. The decision to repair or replace an item depends on the technical/structural
condition with respect to the economic benefits. Examples of repairable items are tires, passenger
seats, and engine blades.

3. Expendables: Items that are always replaced after removal. These parts are usually very standard and
routinely consumed during maintenance activities. Repairing these parts is not economically benefi-
cial due to their relatively low cost. Examples are cotter pins, screws, and rivets.

4. Consumables: Items, normally raw materials/chemicals like oils, wires, lubrication, etc., that are con-
sumed during aircraft operations.

Next to the main general differences in part type, another distinction can be made concerning the criticality
of the part. Not all items directly influence the operational functionalities of the aircraft. Consequently, it
may not always be necessary to suspend the aircraft from commercial operations and perform immediate
maintenance activities to restore a specific part. In some cases, a failure of a specific item may still be within
the safety margins for a permitted flight. However, a combination of failed parts could lead to an AOG situa-
tion, necessitating immediate action.

For every aircraft type, a Master Minimum Equipment List (MMEL) is available, which defines the opera-
tional status of the aircraft prior to take-off [18]. Similarly, spare parts are assigned an Essentiality code (ESS)
to indicate whether a defective part needs immediate replacement or if it does not directly impact the opera-
tion and safety of the aircraft [19]. The ESS codes are described below in Table 2.2.

Table 2.2: Spare parts essentiality codes and their impact on the aircraft operational status [18, 19]

ESS code ESS Description
1 No-Go Commercial operation of the aircraft is permitted under all conditions, de-
spite the failure or absence of this item.
2 Go-If Operation of the aircraft is only permitted under specific conditions and for
a limited amount of time when this item is defective.
3 Go The aircraft is operable under all conditions when this item is defective.

Identical or relatively similar parts can be produced by different part manufacturers as long as the manu-
facturer has a Part Manufacturer Approval (PMA). This approval is granted by the FAA and ensures the same
functional requirements as the OEM part. Furthermore, some parts can also be substituted with alternative
(non-unique) parts while still fulfilling the same requirements. A part can be one-way interchangeable, part
A can replace part B but not vice versa, or two-way interchangeable, part A can replace part B and vice versa.
The interchangeability between spare parts is illustrated below in Figure 2.3.
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Part A Part A
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Figure 2.3: Three different interchangeability types for aircraft spare parts [5]

Lastly, spare parts are sometimes listed as proprietary parts. These parts are exclusively manufactured by
or for a manufacturer and sold solely by the same manufacturer. Resulting in a monopolistic market for
those specific spare parts. The advantages are that all products are traceable, and prediction models can be
more precise since they do not have to take other sellers into account, which reduces the unknown variables
compared to a competitive market with more uncertainties.

2.3. Overview of the Aircraft Maintenance sector
Various stakeholders are involved within the aircraft maintenance sector, including Aircraft OEMs, such as
Airbus or Boeing, Part OEMs, aftermarket distributors, and Maintenance Repair and Overhaul (MRO) ser-

vices. The diagram below in Figure 2.4 provides a schematic overview of the interactions between these
stakeholders.
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Figure 2.4: Simplistic overview of the interactions within the aircraft maintenance industry, adapted from Jan Gottemeier [6] and based
on a study by Rodrigues Vieira and Loures [7]

Part suppliers, represented by the term Part OEM in Figure 2.4, manufacture and supply spare parts to after-
market distributors and Aircraft OEMs. Aftermarket distributors subsequently distribute these parts to MRO
organizations, which can be independent entities or airline operators with in-house MRO services. The in-
teraction between airline operators and independent MRO services depends on the chosen MRO strategy of
the airliners. Aircraft OEMs, on the other hand, utilize the obtained spare parts from the part supplier to
assemble new aircraft. A broader description of the MRO services and aftermarket sector is given below in
Subsection 2.3.1 and Subsection 2.3.2, respectively.

2.3.1. Maintenance Repair and Overhaul (MRO) Sector

The term MRO includes all related actions to maintain an aircraft to guarantee the intended functions of all
items (components, systems, etc.) necessary to operate in a safe and reliable environment [2]. MRO orga-
nizations are responsible for carrying out these maintenance activities. Airliners generally adopt one of the



38 2. Aircraft Maintenance

four different MRO strategies, which differ in terms of inventory control and maintenance tasks: Fully In-
tegrated MRO, Partially Outsourced MRO, Mostly Outsourced MRO, and Wholly Outsourced MRO. A visual
representation of these strategies is provided in Figure 2.5.
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Figure 2.5: A schematics overview of different MRO strategies for airline operators, adopted from Al-Kaabi et al. [8].

Airliners that adopt, for example, a Fully Integrated MRO strategy are executing both line and base mainte-
nance tasks, as well as controlling their corresponding spare parts inventory levels. Whereas other airliners
choose to partially or even completely outsource all possible MRO activities [8]. Line maintenance tasks
include all maintenance activities that can be performed during the aircraft’s turnaround time, while more
complex and time-consuming hanger/base maintenance tasks are only performed on aircraft that are out-
of-service [2].

An airliner’s decision on which MRO strategy to adopt is mainly based on economic reasons. For airliners
with a large fleet, consisting of different aircraft types and various operating destinations, it is beneficial to
keep all MRO activities in-house (Fully Integrated MRO). In many cases, these airliners developed their MRO
business into an independent subsidiary which enables them to offer services to other airliners as well, re-
sulting in less expenses. On the other hand, new airliners are more inclined to outsource their entire MRO
activities as it is more cost-efficient. Other reasons why airliners can choose to partially or fully outsource
their MRO activities are listed below [8]:

* Specialized skills: Airline operators may have limited access to knowledge or employers with special
expertise, whereas MRO organizations, with their primary focus on maintenance, typically possess
such expertise in-house. Similarly, MRO organizations are better equipped with specialized tools that
are required for certain maintenance activities.

* Repair time: MRO organizations are more experienced in conducting different maintenance tasks and
can handle multiple maintenance events simultaneously, leading to quicker task completion.

* Focus shifting: Airliners can focus more on other non-core businesses when the MRO is outsourced.
Furthermore, low-cost carriers only operate new aircraft and are constantly updating their operational
fleet. Therefore, it is unnecessary to invest in specialized equipment and infrastructure to conduct
hangar maintenance events.

2.3.2. Aftermarket sector

MRO organizations typically procure necessary spare parts from aftermarket companies, which serve as dis-
tributors for a wide range of aircraft spare parts. The ordering process at an aftermarket distributor should
be taken into account by the MRO organization, as it can be time-consuming due to potential product un-
availability or the need for spare part certification procedures. A simplistic overview of an order process at an
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aftermarket is illustrated below in Figure 2.6. The gray box in the top-right corner of the flowchart represents
the additional steps required to fulfill an order when a product is currently unavailable/out of stock at the
aftermarket distributor.

The extra necessary steps when a product is unavailable
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Figure 2.6: Complexity of an order process at an aftermarket company

If a requested product is out of stock, the aftermarket distributor must backorder the requested product at a
Part OEM. The manufacturer will then, if the requested product is available or in production, ship the prod-
uct to one of the aftermarket warehouses, where an inbound inspection will take place to ensure its quality
and functional requirements. In the worst-case scenario, when the product is also unavailable at the Part
OEM, the manufacturer first needs to set up an entire production line which may increase the delivery time
by several months.

In situations where the aftermarket company is a subsidiary of an aircraft OEM, it is sometimes possible to
improve the delivery time by directly taking out the requested part from the assembly line of an aircraft. How-
ever, it is important to note that this is far from optimal and is only implemented when necessary, depending
on the agreements between the airline operator and the aircraft OEM/aftermarket. This order process is rep-
resented by the red-dotted line in Figure 2.6

2.4. Conclusion

In general, aircraft maintenance can be classified into scheduled and unscheduled events. Scheduled events
are planned by an airliner or MRO, and involve various checks of the aircraft based on its utilization, which
is usually expressed in Flight Hours (FH), Flight Cycles(FC), or Calendar Days (CD). While scheduled main-
tenance events are performed to prevent an aircraft from failing, unscheduled events are unpredictable and
usually executed directly. During these non-routine maintenance events, also known as Aircraft On Ground
(AOG) situations, a component is replaced to restore the aircraft to a safe and airworthiness condition.

Modern aircraft are composed of thousands of parts that all have to be maintained regularly to guarantee
a safe and reliable aircraft. These parts vary in many characteristics and are categorized via different ap-
proaches. Traditionally, all parts are categorized based on their value, lifespan, and functional criteria, into
4 types: Rotables, Repairables, Expendables, and Consumables. The importance of a part is indicated by an
essentiality code, which describes whether an aircraft is permitted to take off when that part is defective or
missing. Furthermore, parts can also be interchangeable with each other.

Various parties are involved in aircraft maintenance. Airliners adopt different strategies with respect to out-
sourcing their maintenance activities to MRO organizations. The aftermarket sector serves as a distributor of
spare parts to these customers, but the ordering process can be complex due to the diversity and availabil-
ity of spare parts. Overall, when considering the different characteristics of aircraft maintenance and spare
parts, as well as the involvement of different entities, executing a maintenance task is often more complex
than expected.
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Predicting the need for spare parts during a selected maintenance event is difficult for most maintenance
organizations, especially for smaller airliners with limited resources. However, Aftermarket distributors that
are integrated with an Aircraft OEM can combine the technical knowledge from the maintenance documen-
tation with previous sales records of spare parts to generate an overview of necessary spare parts. These com-
bined components form the foundation of this MSc Thesis project. This research will address the complexity
of aircraft spare parts demand predictions and aims to develop a robust prediction model for an aftermarket
e-commerce service that estimates the need for correlated spare parts to generate a complete bill of material
based on previously ordered parts.



Spare Parts Demand Forecasting Models

One of the main challenges in the aviation sector is accurately forecasting spare part demand for mainte-
nance activities. Various forecasting techniques have been proposed to increase accuracy, all with their own
unique characteristics. This chapter focuses on demand forecasting models for spare parts. First, classifica-
tion schemes to identify different demand patterns, which influence the performances of forecasting models,
are investigated in Section 3.1. Followed by a comprehensive overview and description of parametric fore-
casting techniques in Section 3.2. After which, popular non-parametric models are discussed in Section 3.3.
This chapter ends with a short recap in Section 3.4.

3.1. Demand Patterns

Analyzing and classifying demand patterns for spare parts is useful as it helps in understanding specific char-
acteristics that can improve forecasting accuracy and stock control by choosing a better prediction model
[10]. Classification schemes group multiple spare parts with similar characteristics together. Next to the
forecasting enhancements, it enables managers or companies to shift their attention to the most important
classes [29]. Traditionally, classification techniques can be divided into mono-dimensional categorization
schemes, where classification is done on a single variable, and multi-dimensional categorization schemes,
where multiple variables are used to classify the demand pattern. However, it is also possible to make an-
other distinction by focusing more on quantitative or qualitative techniques [30].

Qualitative approaches are based on the judgment of experts and aim to classify parts into different cate-
gories concerning their usage, storage constraints, costs, essentiality code, and operational influences such
as an aircraft’s downtime due to part replacement. A commonly used technique is the VED method, which
stands for Vital, Essential, and Desirable. Experts label the most crucial parts as vital, whereas the less impor-
tant parts are labeled as desirable. An Analytical Hierarchic Procedure (AHP) helps with the assignment pro-
cedure, as it may suffer from the subjective decisions of experts [30]. Quantitative classification approaches
are more of interest for this literature review as it focuses on analyzing numerical data patterns. Therefore,
Qualitative approaches will not further be reviewed in this study.

Quantitative Classification Techniques

Quantitative techniques are popular used techniques for spare part classification as they focus on analyz-
ing numerical data patterns. One of the earliest developed classification schemes is the ABC classification
model, which groups spare parts into three different classes based on the total annual sales volume (cost per
unit times the annual sold units) [31]. Apart from mono-dimensional ABC schemes, several studies suggest
that adding extra variables, such as part criticality [32] or the number of customer transactions [33], could
improve the ABC classification.

Over the years, multiple different classification techniques have been proposed. Williams [34] was one of
the first who specifically considered variance participation. A technique that classifies spare parts based on
the analysis of historical demand variation during lead time into smooth, slow-moving and sporadic classes.
Each category was associated with the most appropriate forecasting model, resulting in lower inventory costs
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compared to a generic model that uses a continuous distribution for all parts. Syntetos et al. [9] further de-
veloped the Williams’ scheme by introducing a two-dimensional matrix to classify spare parts into four main
categories based on the average demand interval (ADI) and squared correlation of variation (CV?3) [30]. This
classification scheme is widely used in the aviation industry and commonly known as the Syntetos-Boylan-
Croston scheme. A schematic representation can be found in Figure 3.1, followed by the definition of the four
categorization classes: Smooth, Erratic, Intermittent, and Lumpy.
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Figure 3.1: Spare part classification technique and the corresponding cut-off values based on a study from Syntetos et al. [9]

* Smooth: Constant demand interval and almost no variation in demand quantity. Usually, these pat-
terns are easier to forecast. There is no risk of overstocking as the items are sold regularly.

 Erratic: Demand distribution over time is constant and comparable to the smooth pattern. However,
there is a large variation in demand size.

° Intermittent: Many periods with zero (no) demand occurrences. The demand size is constant over
time.

° Lumpy: Extremely sporadic demand, many periods with no demand at all. High variation in demand
size.

A crucial aspect of the classification process is the determination of the cut-off values for each class. Previ-
ous studies determined these cut-off values arbitrarily or subjectively based on judgmental decisions, after
which different forecasting techniques were tested on all categories to identify the most suitable prediction
model for each category. Syntetos et al. [9] approached this problem differently by comparing the theoretical
quantified error measures of three different parametric forecasting techniques to understand their underly-
ing performance characteristics. These forecasting techniques, namely Croston, Single Exponential Smooth-
ing (SES) and Syntetos-Boylan-Approximation (SBA), are explained in Section 3.2. Their analysis revealed
that the optimal cut-off values for ADI and CV? were found to be 1.32 and 0.49, respectively. To validate their
findings, they conducted demand forecasts for 3000 different automotive spare parts, and the results demon-
strated that the classification scheme could indeed be utilized to select the most suitable forecasting method.

The cut-off values determined by Syntetos et al. [9] are commonly used to categorize spare parts as smooth,
intermittent, erratic or lumpy [35]. Due to the uncertainty in demand size and interval, most aircraft spare
parts encounter a lumpy or intermittent demand pattern, which is challenging for accurately predicting de-
mand [20].
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3.2. Parametric Time series methods

Parametric forecasting models fit given data points to a known probability distribution and utilize the char-
acteristics of the fitted distribution to predict future data points [10]. One of the earliest used parametric
forecasting techniques is the Simple Exponential Smoothing (SES) method, developed by Brown [36] in 1956.
This univariate technique is commonly used to forecast demand, and is the foundation for later developed
models. The original form is considered simple, as it is unable to detect any trends or seasonality. The un-
derlying concept of the SES model is to predict future values by considering the weighted sum of previous
observations in chronological order, giving more weight to recent observations compared to older ones. A
representation of the model is shown in Equation 3.1. The outcome of the model, S;, stands for the predicted
value at timestamp t which is calculated by multiplying the smoothing constant with the currently observed
value, which is denoted as X;. The smoothing constant «, usually a value between 0 and 1, indicates the effect
of the current observation on the predicted value. The closer « is to 1, the higher the effect of the previous
observation. When «a is smaller more previous observations are considered to determine future values [6, 37].

Si=aX;+(Q-a)S;—1 (3.1)

Holt [38] developed, independently from Brown and around the same period, a Double Exponential Smooth-
ing (DES) model. This model is similar to the SES model but also accounts for trend effects in the prediction.
The expression of the model is given Equation 3.2. A constant trend smoothing parameter, expressed by y, is
used to generate the smoothed additive trend at the end of period t, which is noted by T;_;. This additional
term is added to the original SES to include the trend effects in the predictions[37].

Si=aX;+ (1 -a)(Si—1 + Ty-1)

(3.2)
Ti=y(S: = Se-1)+ (=T

Holt [38] also developed a third forecasting model for time-series that are suffering from seasonal patterns.
This model is known as the Triple Exponential Smoothing (TES) model and is formulated in Equation 3.3.
Two additional variables are included to capture seasonality: The smoothed seasonality index, I;, calculated
at the end of time period t; And the constant smoothing seasonality index (§). Winters tested both Holt’s
models to prove their theoretical concepts. Nowadays, these models are known as the Holt-Winter (HW)
Models. It is also possible to combine the expressions for trend and seasonality into one model [37].

St=aXe—Ii—p)+ (1 —-a)S;1

(3.3)
It = 6(Xt—S[) + (1 —5)1[_,7

3.2.1. Croston’s Method and its Modifications

Croston discovered that the SES methods are biased when demand data follows an intermittent demand
pattern, resulting in inaccurate estimates leading to overestimated stock levels. The problem of the SES model
is that it only generates new values after a period with nonzero demand [10]. Most recent demand periods
are affecting the predicted value the most, resulting in higher predicted demand values just after a demand
occurrence. These overestimated demand values are decreasing during zero demand periods [39]. This SES
bias is well illustrated by Pince et al. [10] in their critical review on intermittent demand forecasting. The
authors described the SES bias as sawtooth pattern, which is illustrated by the red line in Figure 3.2b. The
predicted demand values from Figure 3.2b are the result of the observed demand values from Figure 3.2a.
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Figure 3.2: True values vs predicted values by the SES and Croston method, adopted from Pinge et al. [10]

To solve the bias of the SES, Croston [40] developed a new method that could deal with intermittent demand
patterns by decomposing the demand prediction into demand sizes and inter-demand periods. Both com-
ponents are separately modeled with the SES method and later combined to predict the demand value per
period [10]. This method is known as Croston’s Method and became an important benchmark for other stud-
ies on spare part demand forecasting. Both components, the inter-demand period and demand size indicated
by p; and Z;, respectively in Equation 3.4, are only updated after a positive demand occurrence (z; # 0). If
no demand occurs (z; = 0), the predicted values are constant and identical to the generated demand size in
the previous time-period. Eventually, the demand forecast itself can be calculated by dividing z; over py, as
expressed in Equation 3.5 [10, 41].

z;=0: Pr=Pr-1, Zr=2% (3.4)
z; #£0: pr=ap;+1-a)p;1, Zr=az+(1-a)2r
I
v, =L (3.5)
Pt

Pince et al. [10] used the same demand observations, illustrated in Figure 3.2a, to compare the SES model
with Croston’s method. Figure 3.2 shows that with Croston’s method, the sawtooth pattern disappears and
the demand forecast becomes smoother. Furthermore, when comparing Equation 3.4 with Equation 3.1, it
can be concluded that Croston’s method is identical to the SES model if there are demand occurrences in
every period [41].

Multiple studies tested both methods and compared their accuracy. Willemain et al. [42] concluded that
the Croston method is superior to the SES method under intermittent demand conditions. The same con-
clusion was drawn by Eaves and Kingsman [43], after testing and comparing different forecasting models on
predicting aircraft spare part demand for the UK Royal Air Force. The Croston method is one of the most pop-
ular forecasting methods used in the aviation industry for spare part demand prediction and can be found in
multiple leading software packages [41].

Modification on Croston’s Method

Syntetos and Boylan [41] showed that Croston’s method is still slightly biased due to the assumption that the
estimators of both components, Z; and p;, are independent. The error’s magnitude is directly related to the
value of @, which is used to calculate p;. To overcome this error, Syntetos and Boylan [4 1] proposed a modified
version of Croston’s method by adding a bias correction coefficient, shown between brackets in Equation 3.6.
This modified version of Croston is known as the Syntetos-Boylan-Approximation (SBA) in literature. In order
to evaluate the SBA performance, Syntetos and Boylan [41] tested their solution on a dataset containing 3000
different spare parts for the automotive industry. Their analysis showed its superiority over SES and Croston
for fast intermittent demand patterns [10].
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Y, = (1— %)% (3.6)

Another modified Croston method is the Tuenter-Syntetos-Babai (TSB) model, developed by Teunter et al.
[44]. This method specifically focuses on spare parts that are affected by demand obsolescence. The problem
with the original Croston method is that it is only updated after a demand occurrence, resulting in outdated
demand values for periods with zero demand, making it impossible to detect or approximate demand obso-
lescence. Teunter et al. [44] solved this problem by updating the demand values periodically. In addition, The
TSB model combines the demand size forecasts with the demand probability forecasts instead of the inter-
demand forecasts to predict upcoming demand occurrences. This change should improve the reaction time
of the model if demand obsolescence originates.

Hemeimat et al. [45] compared the performances of the TSB model with Croston, SES, and SBA in forecasting
monthly orders for 1200 spare parts from a paper mill company. The spare parts were classified as non-
moving, slow-moving, or fast-moving items. The analysis showed that the TSB model achieved lower Mean
Errors (ME) and Root Mean Square Errors (RMSE) for slow and non-moving parts. However, for predicting
the upcoming orders of fast-moving items, the SBA method achieved lower errors.

3.2.2. Alternative Parametric Models

Although Croston’s method and its respective variants are the most commonly used methods within the in-
dustry, some other methods are interesting to consider for intermittent or lumpy demand forecasting. One
such method is the ARMA model, which was developed by Box et al. [46]. The model consists of two poly-
nomials: An Auto Regressive (AR) polynomial to capture the dependencies between the observations; And
a Moving Average (MA) model to linearly forecast the relation between demand observations and previous
residual error terms. Multiple studies showed that the results are comparable to SES and HW models [47-49].

A more promising forecast method for intermittent demand patterns is the newer ARIMA model, a modified
version of the ARMA model that includes an integration component to remove the non-stationarity within
the time-series. Gautam and Singh [48] demonstrates that the ARIMA model outperforms the ARMA model
in predicting monthly air passengers in terms of the Mean Absolute Percentage Error (MAPE). However, the
same study concluded that the ARMA model performs slightly better when predicting hourly energy con-
sumption. Both models have comparable performances to the SES model.

Another alternative approach for forecasting spare parts demand is the recently developed Prophet method
[50]. This method consists of three different components to capture trends, seasonality, and event effects.
Unfortunately, research on the model performances with respect to intermittent and lumpy demand data
patterns is still limited. Nevertheless, Jan Gottemeier [6] concluded that the prophet method is comparable
to other traditional parametric methods when forecasting demand for aircraft spare parts that exhibit lumpy
patterns. The same conclusion was drawn by Sousa et al. [51] when they tested the methods on predicting
customers arrivals at stores with an hourly frequency between January 2015 and November 2019.

3.3. Non-parametric Models

Parametric models are considered to be simple and straightforward to use. However, there are multiple dis-
advantages when it comes to these models. First, parametric models can easily misinterpret the relation
between dependent and independent variables. Resulting in modification inflexibility during their design
phase [52]. Second, outliers can affect the model, which leads to biased parameters. Recalibration of the
model is needed to overcome this problem [53]. Lastly, parametric models have difficulties in recognizing
non-linearity, which often occurs in intermittent or lumpy demand patterns [54]. Non-parametric models
overcome these drawbacks as these models do not dependent on a probability distribution but try to recon-
struct the empirical distribution, making them more flexible and better suited for forecasting intermittent
and lumpy demand patterns [10]. This section mainly focuses on Artificial Neural Networks (ANNs) and their
applications.
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3.3.1. Artificial Neural Networks

Artificial Neural Networks (ANNs or NNs) are computational models that are inspired by the human/animal
neuron system. Most conventional computing systems are performing calculations with higher computa-
tional and can outperform human brain capacity. The problem with these conventional models is that they
are only applicable to a specific given problem, while ANNSs structures can solve different complex problems
with simple computational operations by also looking into the organization of elements and their correla-
tions. The human nervous system works relatively similar. During the learning phase, the connections be-
tween neurons are continuously adapting into denser, thinner, newly formed, or disappearing connections
depending on the relations between neurons. A simplified schematic comparison of a biological neuron with
an ANN isillustrated in Figure 3.3. The input (X) can be seen as the dendrites of biological neurons, which are
triggering the activation of the neurons. The dependencies between the neurons are indicated with different
weights (W) and represent the axon of the human nervous system. The model’s output is comparable to the
Synapse and is computed by the cell body, which can be seen as the computational power of the neuron.
These different weighted connections between neurons form the fundamental principles of ANNs [55].
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Figure 3.3: MLP network used by Park and Lek [11]

NNs are not based on distribution assumptions and the relations between neurons are easily adaptable when
new information is introduced, which makes them extremely flexible in modeling linear and non-linear pat-
terns [54, 56]. According to Wieland and Leighton [57], These two aspects are the most powerful aspects of
ANNSs. However, it is important to notice that ANNs could get stuck in a local optimum, which affects the final
outcome [58]. The biggest challenge when using ANNs is related to the availability of historical data, which
is necessary to train the model in order to obtain desired accuracy levels [30]. Unfortunately, the amount of
training data can be limited, especially when many stakeholders are involved, which is the case for the avia-
tion sector.

Over the years, several types of ANNs have been developed, each with their own specific capabilities to obtain
the best results depending on the problem characteristics. In general, when considering the learning phase
of the models, a distinction between supervised and unsupervised learning models can be made. Supervised
learning is applied when the input and output of the model are classified. The ANN is then trained to predict
the output based on the performance feedback it receives from the classified output. Unsupervised learning
is applied when the output is not classified. These models categorize the dataset by analyzing all the respec-
tive data properties and are commonly used to cluster unlabeled datasets [11]. Supervised learning ANNs are
more common for time series forecasting. Examples of frequently used methods for demand predictions are
discussed below, together with their capabilities and design flaws.

Multi Layer Perceptron (MLP) Model

The Perceptron, proposed by Rosenblatt [59], is one the first developed artificial neurons and has become a
fundamental element in many ANNs. A simplistic diagram of a Perceptron is presented in Figure 4.2a. The
inputs are multiplied with their corresponding weights and summed by the transfer function, and represent
the net input of the neuron(net;). The activation function transforms the net; into the output of the neuron
(0;) to capture, process, and recognize the complexity of the data, to enhance the learning capabilities of the
network. Various activation functions can be used to constrain the output within certain limits, such as a
linear or threshold activation that can model linear patterns. A more advanced activation function is the Sig-
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moid function. This function is popularly used by programmers as it captures non-linearity. Other non-linear
activation functions are Softmax, Tangens hyperbolicus (Tanh), Swish, Rectified Linear Unit (ReLU), and dif-
ferent variances of the ReLU activation function. Deciding which activation function to use is complicated as
it depends on the context of the problem [55, 60].

For demand forecasting tasks, it has been observed that the ReLU activation function and its variations yield
the highest accuracy. In a study conducted by Jan Gottemeier [6], the performance of the same network struc-
ture was compared using various activation functions to forecast monthly demand values for aircraft spare
parts. The findings concluded that the ReLU function produced the best results. Similarly, Henkelmann [61]
analyzed different activation functions for predicting monthly demand values of spare parts manufactured
by an automotive OEM and reached the same conclusion in favor of the ReLU function.

A Multi-Layer Perceptron (MLP) network trained by a Back Propagation (BP) algorithm, also known as a multi-
layer feedforward neural network, is one of the most commonly used types of ANNs [11]. This model, as well
as most ANNS, is built up from multiple Perceptrons. The outputs of the previously layered Perceptrons are
the inputs of the next layered Perceptrons. The BP learning algorithm, proposed by Rumelhart et al. [62],
minimizes the loss function by adjusting the weights of each layer backwardly. The gradient of the loss func-
tion is computed via the chain rule. This process is iterated layer by layer in reverse order, starting from the
final layer all the way up to the first layer, which should avoid unnecessary calculations of intermediate parts
in the chain rule [63]. The BP learning algorithm was a significant improvement for multi-layer networks as it
solved the inefficiencies of the first developed 'multi-layer’ training algorithm, which was too slow and strict
as it directly calculated the gradient for each weight individually [55].

Predicted value of
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Figure 3.4: Explanation of a MLP network

The simplest form of an MLP consists of three layers: An input layer, 1 hidden layer, and an output layer.
This form was used in a study by Gutierrez et al. [54] to forecast daily demand for spare parts of an electronic
distributor with a lumpy demand pattern. A schematic overview of their proposed model is illustrated in Fig-
ure 4.2b. The input layer consists of two input nodes, each representing an input variable: The demand at
the end of the immediately preceding period; And the length, counting from the last nonzero demand pe-
riod, between the previous two nonzero demand transactions. The hidden layer is constructed out of three
Perceptrons and the output layer consists of one output node which equals the predicted demand value.

Gutierrez et al. [54] tested their proposed MLP network on 24 different lumpy demand datasets and com-
pared the obtained results with three parametric approaches: SES, Croston, and SBA. They concluded that
their MLP almost always outperforms the parametric approaches, except when there is a significant decrease
in the average nonzero demand periods between training and testing data. In this scenario, the paramet-
ric models tend to perform slightly better compared to the proposed MLP [30]. This same conclusion was
drawn by Mukhopadhyay et al. [39] on the same electronic product demand dataset. Babai et al. [65] ex-
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tended the input variables with N additional variables, corresponding to the actual demand values at period
T minus N. The empirical investigation, conducted on more than 5000 spare parts for an aircraft fleet of an
airliner, showed that the extended models are again superior to the parametric models and even outperform
the model from Gutierrez et al. [54].

Recurrent Neural Network (RNN)

Rumelhart et al. [62] mentioned, in the same study where they highlighted the MLP network, a new ANN
concept that incorporates observations from previous time periods, namely the Recurrent Neural Network
(RNN). The RNN'’s structure is relatively similar to that of an MLP as can be seen in Figure 3.5a. The main
difference lies in the additional context layer that acts as a recurrent loop between the output of the hidden
layer and the input layer, illustrated as the red loop in Figure 3.5a. After each iteration, the output signals
are fed back into the input layer. Sometimes it is chosen to only reincorporate the errors of the output layer
in the recurrent loop. The advantage of this recurrent loop is that the network can also learn from previous
observations instead of only considering the feed-forward network, which only considers the current time
period’s input. This property is particularly useful for forecasting time series and other problems where past
data patterns influence current time periods, which is normally the case for demand predictions [55, 66, 67].
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Figure 3.5: Overview of a RNN and the Vanishing Gradient Problem

Hochreiter [69] and Bengio et al. [70] discovered that RNNs, unfortunately, suffer from the vanishing gradi-
ent problem. This problem occurs during the training phase of the network when the BP learning algorithm
is applied and particularly affects time series that are influenced by long-term dependencies [12, 66]. An
explanatory illustration of the vanishing gradient problem is given in Figure 3.5b. The BP algorithm, as pre-
viously explained, is adjusting the weights between neurons by computing the gradient of the loss function.
According to the chain rule, when the BP algorithm adjusts the weight of the recurrent loop, indicated by Wy,
in Figure 3.5Db, it has to multiply the same weight multiple times. If the weight is small, the gradient will slowly
approach zero and eventually vanishes, which causes difficulties during the training phase of the network as
it is unable to update the weights. Conversely, if the initial value for W, is larger than 1, the gradient will
explode as it tends to go to infinity [68].

Amin-Naseri and Rostami Tabar [71] constructed an RNN, similar to the one in Figure 3.5a, to predict the
demand for 30 different spare parts from Dassault Aviation. These spare parts are used in business aircraft
and exhibit a lumpy demand pattern. Various input features were employed, including the previous demand
interval, ADI, CVZ, number of periods separating the previous two non-zero demand interval, and spare part
price. Their results clearly demonstrated that the proposed RNN outperforms Croston, SBA, MLP, and a Gen-
eralized Regression Neural Network (GRNN). The same conclusion was supported by Lolli et al. [72] in their
forecasting analysis of a 24 weekly intermittent demand dataset of spare parts from an automotive company.
Additionally, Islam and Ahmed [73] conducted a case study on predicting electrical load demand for a power
company and concluded that an RNN model with a ReLU activation function achieved higher prediction ac-
curacy compared to a MLP. Their model also included additional external features, such as holiday periods
and climate statistics.
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Alternative proposed RNNs in literature for forecasting demand patterns are a Fully Recurrent Network (FRNN)
and a Time Delay Neural Network (TDNN). Every layer in a FRNN has a recurrent loop to the previous layer
instead of one loop from the the output of the model to the input layer [55]. Wang et al. [74] effectively applied
this algorithm to predict building occupancy, which could potentially lead to better facility control and en-
ergy efficiency improvements. Their model achieved accuracy levels up to 90% when proper error tolerances
were allowed. The TDNN model, on the other hand, is designed to deal with sequential data patterns by ex-
tending the input variables with previous periods demand values [72]. Sahin et al. [56] obtained the same
results for forecasting the demand over the last 12 months for 90 different aircraft spare parts when using a
TDNN instead of a RNN. However, when dealing with erratic demand patterns, The TDNN seems to have
a slight advantage over RNN and MLP models in terms of the Geomteric Mean of Mean Absolute Deviation
Average (GMAMAD/A).

Long- Short Term Memory (LSTM) Network

Hochreiter and Schmidhuber [75] found a solution to overcome the exploding vanishing gradient problem
by proposing a new structure of the RNN and named it the Short Long Term Memory (LSTM) Network. The
LSTM adds a Constant Error Carousel (CEC) to each neuron within the network that maintains the error signal
in a so-called memory cell. At first, The memory cell consisted of an input and output gate that protects the
relevant content from and for a neuron. Later, a forget gate was added by Gers et al. [76], which enables the
cell to reset. This addition formed the basis of the LSTM structures that are used nowadays and is known as
the Vanilla LSTM. A straightforward overview of the Vanilla LSTM is given below in Figure 3.6, together with
some extra explanation on the three included gates. After following all the multiplication and summations
steps, one can calculate the new/current cell’s value and LSTM’s output [12].
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Figure 3.6: The traditional structure of a Vanilla LSTM block, copied from Van Houdt et al. [12]

1. Forgot Gate (f): As the name already suggests, this gate re-evaluates the information of the previous
cell state, denoted with ¢“~1, and determines if some previous information can be discarded based on
the previous LSTM’s output ( y”’”) and current cell’s input (x?).

2. Input Gate (i): This gate updates the information of the previous cell state with some extra relevant
information based on the previous LSTM’s output and the current input.

3. Output Gate (0): Controls whether the output of the current cell becomes visible by protecting relevant
information from irrelevant information.

Due to its high applicability and relatively good learning ability, LSTM became a popular model used by
high-tech companies. Google, Facebook, and Amazon use LSTM network structures for their translation and
speech recognition products [12]. Recently, these models became an interesting research area for time series
predictions. An empirical study on financial time series from the stock market by Siami-Namini et al. [47]
showed that a state-of-the-art LSTM model outperforms the traditional ARMA model. Chandriah and Nara-
ganahalli [77] predicted the demand for passenger cars in Norway and concluded that a six-layer RNN-LSTM
model outperforms the standard used parametric approaches (Croston, SES, SBA, and TSB) in terms of the
Mean Squared Errors (MSE) when forecasting lumpy/intermittent demand patterns. The same findings were
presented in a comparable study by Jan Gottemeier [6] on forecasting demand for spare parts with lumpy
demand patterns for an aviation aftermarket company. The study results concluded that the RMSE of a five-
layer LSTM model was approximately 17% lower than the best-performing parametric model, which was an
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SES model.

A drawback of the LSTM network is that it contains a large number of parameters, resulting in a compli-
cated system with implementation difficulties. The Gated Recurrent Unit (GRU) network, a recent alternative
model proposed by Cho et al. [78], tries to solve this issue by eliminating the output gate; Combining the
input with the forget gate into an update gate that determines which information is stored or removed; And
adding a reset gate that decides whether to reset previous information for future cell states. Essentially, the
GRU is a simplified version of the LSTM with fewer parameters and only two gates instead of three gates.

Multiple studies have compared LSTM networks with GRU models. Ma et al. [66] conducted a case study
on spare part order predictions for a Chinese automotive company and concluded that both models showed
similar performances, measured by the MAPE, when only considering the demand of the past four consec-
utive months to predict the demand for the upcoming month. However, the GRU proved to be easier to
implement and required less computational time. A similar conclusion was reached by Fu et al. [79] when
analyzing the performances of both models, measured by MSE, in predicting five minutes of traffic flow by
using traffic sensor information from the past 30 minutes.

3.3.2. Alternative Non-Parametric Approaches

Other viable options for capturing non-linearity in data patterns are in the form of Machine Learning (ML)
algorithms. One of the most popular supervised machine learning algorithms for spare part prediction is the
Support Vector Machine (SVM) algorithm, also known as the Support Vector Regression algorithm. This al-
gorithm, proposed by Cortes et al. [80], determines an optimal hyperplane that classifies all data points into
different classes. The objective of the hyperplane is to maximize the distance between data points of differ-
ent classes while minimizing the generalization error. All data points are projected in an infinite dimensional
space by a kernel function to capture non-linearity [81]. Multiple studies showed that the SVM model can
outperform traditional and simple ANN models. However, the same studies also concluded that the SVM
may not perform as well when historical data is limited and follows a lumpy or intermittent demand pattern
[6, 82-84].

Recently developed transformer networks by Vaswani et al. [85] are gaining interest in the prediction field.
These models, currently state-of-the-art in language processing problems, are based on an encoding-decoding
structure with a self-attention algorithm that enables the model to compute the input data simultaneously
instead of considering the time series’ sequential input order. This reduces the computational time signifi-
cantly compared to RNNs and LSTMs. When it comes to spare part predictions some preliminary findings are
looking promising for these models [66, 86]. However, for demand forecasting problems that exhibit lumpy
or intermittent demand patterns, more research must be conducted before considering these models as a
reliable option.

Another interesting approach, which can either be parametric or non-parametric, is the Bootstrap method.
The original bootstrap model generates future demand values purely by randomly selecting previous demand
values. Willemain et al. [87] developed a bootstrap method specifically designed to handle intermittent de-
mand patterns. The authors employed a two-state, first-order Markov chain to compute a sequence of de-
mand occurrences. For each non-zero demand occurrence in the sequence, a jittering formula was applied to
a randomly selected past demand observation to produce life-like values that may differ from past observa-
tions. By summing the entire sequence, the demand value for that specific period was obtained. This process
was repeated at least 1000 times to generate a demand distribution for the upcoming period. Comparing their
method with traditional time series methods such as Croston, SBA, TSB, and SES, Willemain et al. [87] con-
cluded that their approach achieves higher accuracy. The same method was critically reviewed by Syntetos
et al. [88] on jewelry data with different demand patterns and concluded that the bootstrap method outper-
forms parametric methods when the data is slightly intermittent and has short lead times. However, when
the demand is highly intermittent with longer lead times parametric approaches tend to perform better than
the bootstrap method. Overall, the bootstrap method is a good alternative when the availability of historical
data is limited [30].
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3.4. Forecasting Methods’ Overview and Final Remarks

Demand patterns of spare parts can provide valuable insights into their characteristics, which can help to
improve stock control. To classify these demand patterns, quantitative techniques such as the Syntetos-
Boylan-Croston modified Williams scheme are often used. This method categorizes spare parts based on
their average demand interval (ADI) and squared correlation of variation (CV?) into 4 categories: smooth, er-
ratic, intermittent, and lumpy. Aircraft spare parts commonly follow a smooth or intermittent pattern, which
is characterized by many periods of zero demand. The uncertain nature of demand intervals and quantities
is challenging for forecasting models, and should be considered when selecting an appropriate prediction
model. Furthermore, understanding the overall characteristics of spare parts can help in obtaining better
predictions. All these variables should be considered as input parameters for forecasting models.

Various methods have been proposed to cope with lumpy and intermittent challenges, including Croston’s
method. Croston’s method is one of the most widely used parametric models in the aviation industry to fore-
cast intermittent and lumpy demand patterns. It decomposes the demand prediction into two separate Single
Exponential Smoothing (SES) models: one to predict the demand sizes and another to predict the intervals.
However, Syntetos and Boylan [41] showed that Croston’s method is biased because it assumes that both the
predictions, demand interval and demand size, are independent of each other. To overcome this flaw, a mod-
ified version called the Syntetos-Boylan-Approximation (SBA) was proposed. Multiple studies have shown
its superiority to the traditional Croston’s method. Alternative versions such as the Tuenter-Syntetos-Babai
(TSB) model are particularly good at dealing with demand obsolescence.

The above-mentioned parametric approaches have several limitations, including their inability to recognize
non-linear patterns which can lead to misinterpretation between the dependent and independent variables.
Non-parametric models such as Artificial Neural Networks (ANNs) can overcome these limitations. ANNs are
inspired by the human neuron system and consist of multiple connected layers of neurons. These connec-
tions are adaptable when new information is introduced. One of the simplest forms of an ANN is a Multi-
Layered-Perceptron (MLP) network. Several studies have shown that this model already outperforms the
parametric approaches. To include previous information in the training phase of the model, a Recurrent
Neural Network (RNN) was proposed. This method has an additional layer that feeds the output into the
input layer, and it is trained by a backpropagation (BP) algorithm. Unfortunately, during the training phase,
the network can suffer from the vanishing exploding gradient problem. To overcome this, a Long Short Term
Memory network was proposed. The neurons in this network contain a memory cell with an input, output
and forget gate, which re-evaluates current information and only updates its state with new information when
necessary. A modified version of the LSTM networks, named Gated Recurrent Unit (GRU), has recently been
proposed. This method simplifies the memory cell of the LSTM by eliminating the output gate, combining
the input and forget gate into an update gate, and adding a reset gate. An overview of the above-discussed
developments is illustrated in Figure 3.7.

A newly structured RNN model that
overcomes the gradient vanishing problem
by adding a memory cell to each neuron

Basic 3-layer ANN model built
from muitiple Perceptrons.

MLP > RNN > LSTM GRU
A modified MLP network with a A simplified vers'ion of the LSTM
recurrent loop to incorporate network that consists of an update
previous demand obesrvation gate and a reset gate

Y

Development timeline

Figure 3.7: The evolution of ANNs used for forecasting intermittent and lumpy demand patterns

In summary, this literature review concludes that the LSTM and GRU networks outperform the other dis-
cussed prediction models when dealing with intermittent or lumpy demand patterns. Furthermore, their
inner characteristics are beneficial when forecasting multi-variable demand problems. However, it should be
noted that deciding which model to use always depends on the dataset characteristics and problem require-
ments.






Customer Segmentation

The purchase behavior of customers depends on many factors. Some customers wait till the latest moment to
buy and restore a product, while others may follow a longer-term purchase strategy. In most cases, these pur-
chases are directly correlated with a customer’s needs and preferences. With the help of big data technology,
customers with similar buying patterns can be grouped together to improve demand predictions. The use of
these applications is especially large in the e-commerce sector where all processes are already digitized [89].
This chapter starts with an introduction to customer segmentation in Section 4.1. Followed by Section 4.2
about clustering, A data mining technique used for customer segmentation. Various clustering approaches,
along with relevant literature examples, are discussed in this section. Finally, this chapter concludes with a
small overview of the discussed subjects and algorithms in Section 4.3.

4.1. Customer Segmentation

An interesting application that arises after the introduction of Big Data is customer segmentation, an ap-
proach used in the e-commerce sector to understand, recognize and improve customer behavior by develop-
ing marketing strategies dedicated to individual customer groups [90]. Besides the attracted attention in the
e-commerce sector, customer segmentation can be a valuable solution that can overcome some drawbacks
related to demand forecasting. One of the main challenges in demand forecasting is the limited availability
of data, which is necessary to obtain accurate predictions. This limitation is especially problematic during
the training phase of ANNs. In some cases, due to the long life cycles of certain products, predicting the
next demand cycle may even seem impossible, as previous demand data for specific customers might not be
available until a maintenance event occurs for the first time [19]. With the availability of Big Data and min-
ing algorithms, customers with the same buying behavior can be grouped to improve forecasting accuracy
[13, 91, 92].

Several options to increase the accuracy of demand predictions with the help of customer segmentation are
presented in literature. The initial steps are similar: Instead of considering all the customers at once to train
a general forecasting model, the customers are first divided into smaller subsets. Kalchschmidt et al. [13] de-
veloped a forecasting model for each customers group separately and combined all groups’ results to predict
the total demand, as shown in Figure 4.1. While Caniato et al. [92] only forecasted demand for the customers
closest to the centroid of the cluster and extrapolated those results to the entire group to have an overall fore-
cast. The latter one is only of interest if the density of customer groups is small and there is enough previous
demand data of the most centralized customer available.
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Figure 4.1: Customer segmentation example methodology proposed by Kalchschmidt et al. [13] to increase forecast accuracy

The fundamental idea behind customer segmentation is to group customers based on similarities in their
buying behavior. Therefore, it is crucial to explore and understand the drivers behind purchases. According
to Caniato et al. [92], there are three main variables influencing demand: Systematic variability, managerial
variability, and randomness. Systematic variability includes variables related to products and overall cus-
tomer preferences. These variables represent the entire industry and are easy to explore via historical sales
data sets. Examples are seasonality and trends. Managerial variables, on the other hand, cannot be captured
by only analyzing historical demand data. Inner characteristics of the customer are needed to explain cer-
tain behavior. These variables represent the business strategies and management decisions of the buyer and
seller. Typical examples of managerial variables are promotional activities and customer strategies/policies.
Lastly, there are random variables. These variables are useless for segmentation as they are different for each
customer and purely depend on individual needs. Caniato et al. [92] concluded that systematic and manage-
rial variables are positively correlated with demand patterns, and although they performed a case study for a
specific company of a specific industry, they expect similar results for other industries.

A popular method to describe customers’ preferences and transaction activities is the RFM model, devel-
oped by Hughes [93]. This method focuses on three systematic customer variables: Recency (R), Frequency
(F), and Monetary (M). Recency equals the interval length since the last purchase. The shorter this length,
the larger the R-value. The number of unique transactions in a predetermined period is expressed by the Fre-
quency, and the corresponding amount of money spent during those transactions equals the Monetary value.
Many studies have used this method to cluster customers on their behavior. Wang et al. [90] used the RFM
model to cluster customers into Favorite, General, and Inactive customers. Over the years, many modifica-
tions and extra variables were proposed to improve the method. Giigdemir and Selim [94] added five extra
variables describing the developing relationship with the customer since their first purchase: (1) Loyalty, the
time since the first purchase; (2) Average annual demand; (5) Relationship potential computed by multiplying
loyalty with recency; (4) Average percentage change in annual demand; And (5) Average percentage in annual
sales revenue. Their analysis showed that loyalty, frequency, and the percentage change in annual demand
and sales revenue were important segmentation factors.

Airworthiness and safety are important drivers in the aviation sector, as explained in chapter 2. These are
similar for all customers. However, maintenance and operating strategies differ per customer and probably
influence their buying behavior. Therefore, it is interesting to identify these managerial variables for customer
segmentation to improve forecasting accuracy.

4.2, Clustering

The data mining technique for customer segmentation is clustering, an unsupervised learning approach that
organizes unstructured unlabeled data sets into smaller subsets named clusters. The algorithm forms clus-
ters of data points, with higher similarities among each other than among other groups [95, 96]. It should
be noted that these techniques only focus on reassigning data points and do not specify the importance of
each cluster [94]. Different types of clustering algorithms are discussed in literature. The most common tech-
niques can be categorized into Hierarchical or Partition clustering techniques [91].
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The concept of hierarchical clustering is to construct a hierarchy of clusters step-by-step, which can be done
via an agglomerative or divisive approach. The agglomerative approach, also known as the bottom-up ap-
proach, initially expresses all data points as individual clusters. At every time step, the most similar clusters
are merged until an optimum solution is reached. The divisive approach, also known as the top-down ap-
proach, works the other way around. Initially, all data points are together in one cluster, and at every step, the
most diverse data points are split into smaller clusters until an optimum solution is reached.

Popular hierarchical clustering techniques are single linkage, complete linkage, and Ward’s method. Single
linkage combines two separate clusters by using the smallest distance between the closest and most similar
data points. While in complete linkage, the shortest distance between the farthest, most dissimilar data points
is used to decide which clusters can be combined. Wards method works differently and computes the min-
imum sum of squared errors to determine which clusters to merge or split [14, 94]. The advantages of Hier-
archical clustering techniques are their easy and straightforward implementation and the self-determination
of the optimal number of end clusters throughout the hierarchical structure. However, the downsides of this
technique are the long computational time and their inability to recover after a time step, which makes them
infeasible for large datasets [97].

Partitioning clustering techniques have a different approach than hierarchical techniques. Instead of start-
ing at the bottom or top, all data points are initially divided over a predetermined amount of clusters and
reassigned until an optimum criterion is met. The initial partition (random or nonrandom), reassigned pro-
cedure, and stop-criteria depend on the chosen algorithm [90, 98]. Empirical studies have shown that par-
titioning clustering techniques tend to perform better and quicker than hierarchical techniques when the
dataset is large, and the initial starting conditions are known [91, 98]. The most commonly used algorithm
is K-means partitioning which is further explained below next to some other high-performance clustering
techniques.

4.2.1. K-Means

The most popularly used clustering method is the K-means method. Since this is a partitioning method, all
data observations are initially split into a predetermined number of clusters, denoted as K clusters. The al-
gorithm then computes the distance between the data observations and centroids of each cluster. At every
step, the algorithm minimizes the squared distance by reassigning data points to other clusters, after which
it recalculates the centroid of the newly formed clusters. This assignment procedure is repeated until no re-
assignments occur [91, 94]. The easy implementation, high overall accuracy, and the ability to handle large
datasets in a short amount of time are advantages of the K-means algorithm. On the other hand, the biggest
drawbacks are the predetermination of final K clusters and the initial starting point, which strongly affects the
final outcome. Furthermore, the algorithm is sensitive to outliers, and the obtained results will completely
change when the dataset is rescaled [97, 99, 100].

Several studies have shown the practicality and performance accuracy of the K-Means method. Murray et al.
[91] used this algorithm to cluster customers from a material supplier into 10 different segments based on
seasonality, industry type, etc. They concluded that outliers in the data had a bigger effect on the outcome
than using other clustering techniques. Similarly, in a study conducted by Giigdemir and Selim [94], the
K-means algorithm outperformed hierarchical clustering methods in terms of the squared sum of distances
within clusters. The study focused on segmenting customers of an international OEM using variables derived
from the RFM model. The K-means method successfully clustered the customers into four distinct groups:
best, valuable, average, and potential customers.

4.2.2, Self Organising Feature Maps (SOFM)

Another widely used algorithm for clustering problems is the Self Organising Feature Maps (SOFM) devel-
oped by Kohonen [101]. SOFM are unsupervised learning ANNSs that transform high-dimensional inputs into
alow-dimensional topology while preserving the essential data characteristics as much as possible. The same
fundamental ANN principles, explained in Subsection 3.3.1, apply to this network. The overall structure of
the SOFM network, which includes an input and output layer, is illustrated in Figure 4.2. In the input layer,
each data observation is connected via adaptable weights to every neuron in the output layer. The neurons
in the output layer are, on their side, connected laterally with each other.
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During the training phase of the algorithm, the input data points are projected into the low-dimensional
grid via the output neurons. As a result of the interconnected output neurons, high-density areas start to oc-
cur, representing similarities between data points [102, 103]. An example of cluster determination via SOFM
from Seyedan et al. [14] is presented in Figure 4.3.
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Figure 4.2: Simplematic sketch of the SOMF network structure

Figure 4.3: Determination of the optimal number of clusters via SOFM [14]

Positive aspects of SOFMs are their ability to handle large datasets and, contrary to the K-means method, they
do not require the predetermination of optimal clusters due to their unsupervised self-organizing character-
istic [91]. However, the complexity of the training set-up and different parameters can significantly affect the
outcome. Furthermore, similarly to ANNs, they require a relatively long computation time [99].

Kiang et al. [104] utilized a SOFM network to cluster customers of an American Telecom company. By in-
cluding demographic variables and additional customer attitude information concerning long-distance com-
munication, they concluded that SOFM network outperformed the traditional K-means method in generat-
ing more precise clusters. The accuracy performance between the two methods was measured by the total
within-cluster variance.

another study conducted by Sanchez et al. [105], employed a SOFM to classify customers based on their
hourly energy consumption. The research focused on clustering the current energy users of a Spanish energy
company, aiming to predict the energy consumption of future customers. The results showed that the SOFM
successfully identified 10 distinct clusters and thereby provided valuable information on residential users
within the Spanish electricity market. Unfortunately, their method was not compared with other clustering
approaches, making it difficult to draw definitive conclusions regarding the superiority of the SOFM network
over other approaches.

4.2.3. Genetic Algorithms (GA)

The application of Genetic Algorithms (GA) to solve clustering problems is widely studied. Originally, These
algorithms were designed for optimization and search problems. Their good search capabilities make them
an interesting alternative solution for clustering big data sets [106]. GAs are inspired by biological evolution
and natural genetic principles. The parameters are represented as a population of multiple chromosomes.
Many variations are developed over the years, some more complex than others, all with specific capabilities.
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However, the fundamental principles are similar. The main terms and processes of a simple clustering GA for
market segmentation are explained below [107]:

1. Initializing of a population: A population of chromosomes equal to the size of the data set is created
at the start of the genetic algorithm. Each chromosome represents the centroids of the predetermined
clusters. For every chromosome, these centroids are obtained by randomly selecting a data point from
the data set. Thus, a data point is initially considered as the center of a cluster during the initialization
of the GA [107].

2. Fitness computation: Per chromosome, all remaining data points are assigned to the nearest cluster.
After which, the original clusters’ centroids are updated with their respective mean points. Finally, the
clustering metric for every chromosome in the population is computed. Various clustering metrics
exist. An example is the Euclidian distance which equals the total distance between the data points and
their respective clusters’ centroids. This metric illustrates the fitness of the chromosome [107].

3. Parent selection: Different selection techniques exist for GA, all with their own characteristics. How-
ever, the main principle is the same: Survival of the Fittest. A mating pool containing the best chromo-
somes is created for further genetic operations. This is commonly done by creating duplicates of each
chromosome, proportional to their early determined fitness in the population [107].

4. Crossover determination: Two 'parent’ chromosomes are selected from the mating pool to create two
new 'child’ chromosomes. This process is called the crossover and can be done in many ways. A
straightforward solution is to randomly determine a crossover point to split the chromosome into a
left and right part. By exchanging the right parts with each other, two chromosomes are created [107].

5. Mutation: The centroids in the chromosome are slightly mutated to create unique chromosomes.
Again, various mutation approaches exist. Normally, an uniformly distributed variable between 0 and
1 is randomly added or subtracted from the centroid [107].

6. Termination: The process is repeated until a termination criterion is met. After each iteration, the
chromosome with the highest fitness is preserved. After termination, this chromosome contains the
‘optimal’ centroids of the clusters [107].

Similarly to the K-means clustering technique, the number of final clusters needs to be determined in ad-
vance, which is not ideal for most problems. Another disadvantage relates to the increased complexity of the
algorithm compared to traditional methods. However, the performance accuracy of GAs tend to be better
than the simpler K-means methods and hierarchical approaches. Cowgill et al. [108] concluded that the GA
outperformed the K-means and Ward’s method in terms of the Euclidian distances when applied to artificial
datasets with pre-defined cluster groups. The same observation was made by Maulik and Bandyopadhyay
[107], who compared the results of GA and K-means on multiple datasets, including artificial and real-life
datasets such as sound vowel data, iris/pupil data, and crude oil data. The results consistently demonstrated
that the GA significantly outperforms the K-means method across all datasets in terms of the Euclidian dis-
tances.

Kim and Ahn [109] utilized a GA for an online shopping market recommendation system to categorize on-
line users into five distinct clusters based on their online opinions and preferences. The results indicated that
the GA clustering approach led to better segmentation compared to the k-means method and SOFM meth-
ods. Nevertheless, the study acknowledged that other effective error metrics to accurately compare clustering
algorithms should first be considered or applied before making a definitive conclusion.

Liu and Ong [110] emphasized the significance of carefully selecting relevant variables when conducting mar-
ket segmentation to avoid distorting the clustering algorithm. The authors applied a GA to identify the most
promising variables for cluster determination, followed by a traditional k-means method to cluster the cus-
tomers. The GA algorithm was applied to a German Credit dataset containing 20 distinct features, such as
historical credit records, age, gender, marital status, current job, and other personal information. Their anal-
ysis concluded that the GA effectively rejected the irrelevant variables, resulting in better distinct clustering
groups compared to an all-variables included K-means method.

Traditionally, GAs were developed for solving single-objective optimization problems. Recently, multi-objective
GAs were proposed to increase the accuracy of the final cluster outcomes. Two objective functions are simul-
taneously optimized to capture all the dataset characteristics and achieve a better, more balanced result. In
the case of a clustering problem, the fitness of a chromosome may not only dependent on the similarity of
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data points within a cluster but also on the dissimilarity between data points from other clusters [96, 111].
For instance, Ben Ncir et al. [112] developed a multi-objective GA to segment customers of a retail bank by in-
corporating socio-demographic and behavioristic variables. Their results concluded that the multi-objective
approach outperformed single-objective methods, such as K-means, when analyzing the within-cluster vari-
ance and the dissimilarities between the nearest clusters.

4.2 .4, Alternative Hybrid methods

Alternative hybrid approaches are proposed in literature to overcome the shortcoming of single clustering
techniques. A two-stage method, containing Ward’s Hierarchical method and K-means partitioning algo-
rithm, was suggested by Punj and Stewart [98] for market segmentation to solve K-means issue related to the
prior determination of end clusters. This solution overcomes both methods’ drawbacks and ends up with a
combination of their best features. First, Ward’s method determines the optimal number of clusters and start-
ing points, which are necessary to initialize the K-means method. After which, the k-means method assigns
the data points to the clusters, since partitioning methods tend to outperform hierarchical methods when
the necessary starting information is available. To overcome the non-recovery characteristic of hierarchical
methods, Kuo et al. [99] proposed to replace Ward’s method with SOFM in the earlier suggested two-stage
methodology, as SOFM can rearrange data points to the nearest cluster. The prior information of final clus-
ters and starting points necessary for the K-means algorithm can easily be determined by sight, as shown in
Figure 4.3. Their study results on multiple customer datasets showed that the SOFM plus K-means method
slightly outperforms the Ward’s plus K-means two-stage approach. In a subsequent research, The same re-
searchers proposed a similar two-stage approach with a GA instead of the simpler K-means method. After
comparing all methods, they concluded that the SOFM followed by GA is superior to the other approaches
Kuo et al. [106].

Another proposed approach to enhance clustering is by incorporating the principles of the Fuzzy set theory
into an existing technique. Fuzzy logic reflects human thinking and its corresponding uncertainty by allow-
ing data points to belong to multiple clusters instead of being restricted to just one. A membership grade
is assigned to each data point to indicate its potential presence in a cluster. Fuzzy clustering is especially
interesting when clusters may overlap in a data set. Commonly used fuzzy clustering methods are Fuzzy C-
means and Fuzzy K-means. [91, 94]. For instance, a study conducted by Ansari and Riasi [113] focused on
clustering customers of a steel company using a combination of Fuzzy C-means and a GA. The clustering
approach aimed to cluster customers into two groups based on variables derived from the RFM model. The
algorithm successfully identified the two clusters: one including loyal customers and the other consisting
of more recent/newer customers. The results indicated that the combined approach obtained a lower MSE
score compared to using the algorithms individually.

Many literature reviews state that there is not a particular technique that would always outperform other
models since it heavily depends on the data set characteristics [114]. Therefore, Seyedan et al. [14] proposed
to use an ensemble learning technique to combine the outcome of multiple clustering methods into one fi-
nal solution to forecast demand. The cluster results of the K-means method and three hierarchical clustering
techniques were combined via Majority voting. This algorithm assigns data points to their respective clus-
ters based on the overlapping results of all clustering methods. The final obtained segments were then used
as input variables for an LSTM and prophet model to predict future demand. Results show that the clusters
generated via majority voting achieve better forecasts than when the methods were used individually.

4.3. Conclusion

Big data techniques have been widely adopted across many industries in recent years, particularly in the e-
commerce sector where everything is digitized. A popular Big Data application is customer segmentation,
which is an unsupervised classification technique that groups customers with similar characteristics. Several
studies have suggested that clustering customers based on their buying behavior can improve forecasting ac-
curacy.

Various models have been considered to cluster customers based on their inner characteristics and purchase
behavior. The K-means method is widely used in many applications and assigns data points to the nearest
cluster by calculating the respective distances toward the clusters’ centroids. Another considered approach
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to cluster customers is using Genetic algorithms (GAs) which are inspired by biological evolution and natural
genetic principles and known for their good search capabilities. A GA typically consists of a population of
chromosomes that are paired and mutated in order to find an optimal solution. GAs have the ability to opti-
mize multiple objectives, whereas the K-means method only optimizes one. However, both methods require
the number of final clusters upfront, which can be challenging to determine. The Self Organising Feature Map
(SOFM) network is the third approach that is considered to cluster the customers and has an unsupervised
self-organizing feature that independently determines the final amount of clusters. The model projects high-
dimensional inputs into a low-dimensional topology via output neurons, which results in high area densities
that are equal to the final cluster. The disadvantages of SOMF are its complexity and long computational time.

A combination of two models is preferred to overcome the particular model drawback and end up with the
best results. SOFM is used to determine the number of final clusters, and the results are then utilized by a
GA to group customers. Variables from the RFM model should be considered during the clustering process.
Other interesting variables that can express customer behavior in the aviation sector include flight schedules,
the number of available aircraft, aircraft type, airline strategy, and its operating region. The final customer
segmentation can be used as an input feature for the forecasting model to improve its accuracy.






Pattern Mining

This chapter discusses relevant pattern mining techniques to evaluate and discover correlations between
items in a data set. Section 5.1 starts off with a detailed explanation of Association Rule Mining. After which,
two powerful ARM algorithms are described. Another mining technique, Sequential Pattern Mining, is dis-
cussed in Section 5.2. The chapter concludes with an overview of both techniques and their potential usage
for spare part predictions in Section 5.3.

5.1. Association Rule Mining (ARM)

The overlapping term for discovering correlations and patterns in data sets, which are understandable and
helpful for decision-making processes, is pattern mining. ARM, short for Association Rule mining, is the
best-known Big Data pattern mining technique. This technique aims to discover relations between together
ordered items by analyzing all transaction records in a data set [114]. Agrawal et al. [115] were the first to
formulate this problem and referred to it as the market-basket analysis. In their problem statement, they
mentioned that a transaction does not necessarily have to consist of items that were bought together but
could also consist of multiple items, purchased over a longer period. This property makes ARM a powerful
tool for different industry types.

ARM techniques describe the correlation between items via association rules. Each association rule con-
sists of a condition/antecedent part and a prediction/consequent part and is formulated as an if-statement:
If product A and product B are bought THEN product C is also bought. If the conditional part, in this exam-
ple product A and product B, is true, then product C is also true. The mathematical expression is given in
Equation 5.1. Usually, The condition part contains multiple items while the prediction part only represents a
single item[114].

AB=C (6.1

Different ARM techniques have been proposed since their discovery. All with unique characteristics, de-
pending on specific data set properties. In general, these algorithms can be classified into three categories:
Categorical, numeric, and fuzzy rules. Most algorithms are designed to generate categorical association rules.
These are binary rules that only specify the presence of items in a transaction and do not mention anything
concerning their corresponding quantities. Whereas numeric association rules describe these quantities
as boundaries. However, these boundaries are represented as intervals and, therefore, unable to describe
smooth changes between the interval boundary layers, which often occurs in practice. Fuzzy association
rules overcome this limitation by representing the quantities as fuzzy sets [111, 114]. This literature review
mainly focuses on algorithms computing categorical association rules since the main interest of this case
study relates to the determination of correlation between products in sale records. First, the oldest and most
commonly used ARM technique, the A-priori algorithm, is described in Subsection 5.1.1. After which, an
alternative approach in the form of genetic algorithms is discussed in Subsection 5.1.2.
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5.1.1. A-Priori Algorithm

The A-Priori algorithm, developed by Agrawal and Srikant [116], was the first technique to obtain relevant
categorical association rules in large data sets. The algorithm first determines the frequency of all itemsets
in the sales records by computing its support value. The items with a higher support value than the prede-
termined minimum support level are labeled as large itemsets, while the remaining itemsets are labeled as
small itemsets. The second part of the algorithm generates the association rules from the large itemsets by
computing the confidence value, which describes how often a rule is true. If the confidence value is above a
certain threshold, the association rule holds. The formulas to calculate the support and confidence of itemset
ABC are given in Equation 5.2 and Equation 5.3, respectively. When both the support and confidence surpass
the minimum required level, the rule AB = C holds.

frequency(ABC)
Support= N , Support=Supporitpyin (5.2)
ABC
Confidence = frequency ), Confidence= Confidenceniy (5.3)
frequency(AB)

Determining the minimum support level is challenging. Low support levels generate many rules, which can
be difficult to interpret or distinguish. However, these rules can still contain valuable information that is
relevant to certain company processes. Whereas, this information wouldn’t be available and probably be un-
aware of when the support threshold is set too high [114]. Another challenge of the algorithm is regarding
the two-stage structure. To determine the large itemsets, the entire database has to be scanned for every set
separately, which is a time-consuming process that exponentially increases with the size of the database. Fur-
thermore, the generated association rules by the algorithm are only based on frequent appearances in a data
set. Other factors that could be of interest when determining a rule’s relevancy, such as comprehensibility
and interestingness, are thus not included in the algorithm [111]. Nevertheless, the A-Priori technique is still
commonly used by many companies and known as a proven solution for mining association rules.

Chen and Wu [117] utilized the A-priori algorithm to uncover associations between different orders, which
could increase order/batch-picking efficiency in warehouses. Although, the researcher did not compare the
A-priori algorithm with other ARM approaches, they concluded that the A-priori algorithm effectively im-
proved the efficiency of order batching problems in warehouses. In another study by Magdalene Delighta An-
geline [118], the A-priori algorithm was employed to identify relevant connections among variables describ-
ing student educational information, including class attendance, delivering assignments, and more. The
objective of the research was to identify the good, average, and poor-performing students. The study suc-
cessfully derived high-value rules by considering the support, confidence, and lift metrics.

5.1.2. Multi Objective GA for Association Mining

An alternative approach with Genetic Algorithms (GA) is suggested by Dhaenens and Jourdan [114] and
Mukhopadhyay et al. [111], to overcome the challenges/drawbacks of the A-Priori algorithm. As previously
described in Subsection 4.2.3, GAs are based on the principles of biological evolution and are highly effective
in searching databases. Instead of scanning the database for every item set separately, GAs skip the support
phase and generate the rules directly. This approach decreases the computational time significantly and can
optimize multiple objectives. The algorithm’s main components for ARM are similar to the already described
clustering GA and still consist of: population initialization, fitness determination, crossover, mutation, and
termination. The main differences relate to the generation of chromosomes and their fitness computation.

Two main design approaches can be followed when using GAs for ARM: The Michigan design or the Pitts-
burgh design. The Michigan approach is better suited for ARM since every solution describes a rule. Whereas
the solutions generated by the Pittsburgh design describe a possible set of rules, which are normally difficult
to interpret. Following the Michigan approach, the chromosomes can either be represented as binary strings
or integers. Binary chromosomes are built out of bits. Each item is presented as a pair of bits, describing
its presence or absence in the respective rule. There are four possibilities to express the state of an item: 00,
11, 01, and 10. Items that are part of the rule are denoted with 00 or 11, depending on their presence in the
condition or prediction part of the rule, respectively. The other pairs, 01 and 10, describe the absence of the
items in the respective association rule. An advantage of binary representation is that all items are present
in a chromosome, meaning that each chromosome has the same length, equal to 2 times the available items
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[111]. An example of binary chromosome representation for a data set of 4 items (A, B, C, and D) is given in
Equation 5.4. In this example, rule AB = C holds. It is worth mentioning that a programmer can choose a
different binary bit representation. Some studies express the presence of items as 01 and 10 instead of 00 and
11 [111].

Binary=1{00/00/11|01} (5.4) Integer = {2|ABC} (5.5)

The entire data set has to be transformed into a binary set to create binary chromosomes, which can be
challenging. Furthermore, binary chromosomes tend to have an extremely long length because all items are
present. Representing the chromosomes as integers overcomes this issue. An example of an integer chro-
mosome representation is given in Equation 5.5. The first gene describes the position between the condition
and prediction part of the rule. All items on the left of the indicated position belong to the condition part, and
all items on the right belong to the prediction part. The problem with integer chromosome representation is
its variable length, which introduces inconsistencies and difficulties during crossover and mutation. Special
operators need to be selected to guarantee that the algorithm runs smoothly. Whereas standard operators are
already effective when using binary chromosome representations [111].

A benefit when using GAs for ARM is the ability to optimize multiple objectives. Instead of maximizing the
support and confidence of rules, the quality of the rules can also be obtained [114]. According to Mukhopad-
hyayetal. [111], several studies proposed additional metrics. Interestingness to describe the rule’s quality and
comprehensibility to express its complexity/interpretation level are commonly used. The interested reader
may refer to the study of Mukhopadhyay et al. [111] for a complete overview of multi-objective GAs. Further-
more, its worth mentioning that GAs are also applicable to numeric and fuzzy ARM. The respective quantities
are then incorporated into the chromosomes, which increases the complexity of the GA.

Wakabi-Waiswa and Baryamureeba [119] developed a multi-objective GA to uncover meaningful relation-
ships among 18 animal attributes. These attributes included characteristics like the presence of hair, legs,
backbone, egg-laying ability, milk production, and more. All these attributes were collected in an extensive
real-world Zoo dataset consisting of over 100 different animal species. The GA was specifically designed to
optimize three distinct objectives: prediction accuracy, comprehensibility, and J-measure. The study findings
demonstrated that the algorithm successfully discovered precise rules, some with more than 90% accuracy.

5.2. Sequential Pattern Mining

Another mining technique that discovers interesting patterns in big data sets is sequential pattern mining.
The difference with ARM is that this technique considers the sequential ordering process by analyzing se-
quences of purchases. Next to sequential databases, this mining technique can also be used to discover
patterns in time series. However, this literature review will only reflect on the mining process for sequen-
tial databases, as the eventual database consists of transaction records. Similar to ARM, sequential pattern
mining techniques are searching for itemsets, in this case, subsequences from a sequence data set, with a
higher support and confidence value than the predefined thresholds. Various sequential pattern mining al-
gorithms and improvement techniques have been proposed in literature, since its introduction by Agrawal
and Srikant [120]. To a large extent, these techniques depend on the chosen search algorithm, sequential
database representation, possible sequential pattern generation, and each sequence support determination
[15]. First, different search algorithms are discussed in Subsection 5.2.1. After which, the database represen-
tation and their respective properties, including pattern generation and support computation, are discussed
in Subsection 5.2.2. This section ends with an overview of the available algorithms in Subsection 5.2.3.

5.2.1. Search algorithms

A search algorithm creates an entire database of possible sequences from available transaction records by
performing s-extensions and i-extensions. These two straightforward sequence generation techniques ap-
pend an extra item to an already generated sequence. An i-extension operation adds a new item to the last
transaction of a sequence, which means that the appended item was ordered during the same transaction
as the previous item in the sequence. An s-extension operation works slightly differently as the extra item
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joins the sequence as a subsequence, meaning that the appended item was purchased at a later transac-
tion moment than the last items in the sequence. To better understand the difference between these two
extension operations, the reader may refer to the second and third steps of the breadth-first algorithm, illus-
trated in Figure 5.1. In general, three different search algorithms for sequential pattern mining are available:
The breadth-first search algorithm, the depth-first search algorithm, and the pattern-grown algorithm. All
three techniques are constantly performing i-extensions and s-extensions. However, their problem-solving
approach is different [15].

({a}) ({a}.{a}), {{a},{b}), {{a}.{c}) ({a,b}), ({a,c})

(1) Starting with a 1-sequence (2) Performing s-extension operations (3) Performing i-extension operations

Figure 5.1: The first generated sequences of the breadth-first search algorithm [15].

The breadth-first algorithm, also known as the level-wise approach, starts with collecting frequent sequen-
tial patterns of 1 item from the transaction records. By performing s-extensions and i-extensions on these
collected '1-sequences’, '2-sequences’ are created. After which, '3-sequences’ are generated from the '2-
sequences’, and so on. The process terminates when no new sequences can be formed. Alternatively, the
depth-first search algorithm can be used to create a sequential database. This algorithm is relatively similar
to the breadth-first algorithm. However, i-extensions and s-extensions are performed first to extend the se-
lected '1-sequence’ with new items until all possible sequences are generated. After which, the whole process
is repeated with the next selected '1-sequence’. The first few generated sequences of the breadth-first and
depth-first search algorithms are shown in Figure 5.1 and Figure 5.2, respectively.

({a}) ({a,b}), {a,b,c}), ({a,c}) (fa}.{a}), ({a}.{ab}), ({a}.fac})

(1) Starting with a 1-sequence (2) Performing i-extension operations (3) Performing s-extension operations

Figure 5.2: The first generated sequences of the depth-first search algorithm [15].

The problem with these two search algorithms is that they both create extremely large databases with many
possible sub-sequences, which can cause difficulties during the rule’s determination phase. The downward-
closure property, sometimes referred to as the Apriori property or anti-monotonicity property, partially solves
this issue by reducing the search space. This property only explores extended sequences in the generated
database when its previous version (the sequence before the i-extension or s-extension) has a higher support
value than the predefined threshold, because an extended sequence cannot have a higher support value than
its predecessor. To conclude, with the help of the downward-closure property, the database doesn’'t have to
be scanned for every sequence to determine its support and confidence, which decreases the computational
time [15].

Both algorithms, the breadth-first search and the depth-first search, create a database of possible sequences
from the obtained '1-sequences’ of the transaction records. The transaction records are thus only scanned
once, which is beneficial for the computational time. However, it is possible that non-existing candidate
sequences, sequences that do not appear in the transaction records, are created when applying these al-
gorithms. Pattern-growth algorithms overcome this issue by scanning the transaction records after every
extension to evaluate its existence. This process increases the computational time. To reduce the computa-
tional time, the algorithm creates a so-called projected database for the currently evaluated sequence, which
only consists of items that appear after this sequence in the transaction records. The support value of each
item in the projected database is then calculated to make sure that the downward-closure property holds.
After which, the depth-first search algorithm extends the sequences with the possible items in the projected
database by performing i-extension and s-extensions. A drawback of this technique is that generating an ad-
ditional projected database increases the memory consumption, which is not always preferable or even an
option [15].
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5.2.2. Database representation & optimization techniques

Next to the different search algorithms, there are various ways to represent the generated sequential database.
Traditionally, a horizontal database representation was used, where all possible sequences are summarized
under each other and indicated by a unique sequence identifier (SID). Newer algorithms that make use of the
depth-first search technique store the generated sequences in a vertical database. This vertical representation
indicates the IDList of every item, which summarizes all possible positions of an item in every generated
sequence. A simple example of a horizontal and vertical database representation is given in Figure 5.3a and
Figure 5.3b, respectively. Horizontal databases can be transformed into vertical databases and vice versa.

N N\

SID | Sequence a b
1 ({a, b}, {c}, {fra}:-{gt. {e}) S:D Iterr;sels S:D Iterr;sas Item z | IDList of » as a bit vector
2 {{a,d}. {c}, {b},{a,b.e, f}) a 100001001100000
: [P 2 1,4 2 3,4 -
3 {{a}, {b}, {f. g} 1€} 3 ] 3 5 b 100000011010010
4 {e}. {f.9}) 4 41
(a) Horizontal database (b) Vertical representation of item a and b (c) Bit vector representation of item a and b

Figure 5.3: Evolution of the sequential database representation [15].

Vertical databases have a few specific attributes that make them powerful for sequential pattern mining. First,
an item’'s/sequence’s support value can easily be determined by counting the number of distinct identifiers
in the corresponding IDList. This property decreases the computational time compared to the horizontal
database representation, where the support values are calculated by scanning the transaction records for
every item or sequence individually. The second attribute corresponds to the creation of new IDLists. Vertical
databases can create an IDList for an extended sequence by comparing the IDLists of its components. Again,
this means that the original database doesn’t have to be scanned to create a new sequence, which makes them
extremely efficient. The vertical database representation becomes even more efficient when transforming
the IDList structures into bit vectors. These vector representations reduce the overall memory consumption
as they represent the entire IDList structure as a single line [15]. The explained evolution of the database
representation is illustrated inFigure 5.3.

5.2.3. Available Algorithms

Every improvement step described above emerged from a newer developed algorithm. One of the first al-
gorithms, GSP, applied the breadth-first search technique to create a horizontal database. Due to the earlier
described limitations of these properties, the Spade algorithm was proposed. This algorithm utilizes a depth-
first search algorithm to generate a vertical database. As the general memory consumption increased, bit
vectors were introduced, which led to the introduction of the BitSpade algorithm. A relatively similar tech-
nique is the Spam algorithm. A recent improvement of the Spam algorithm is the CM-Spade algorithm and of
BitSpade algorithm is the CM-Bitspade algorithm. These algorithms generate a co-occurrence MAP (CMAP)
that contains all possible frequent 2-sequence item sets. If the last two items of a sequence are not in the
CMAP the sequence can be ignored for further operations. This extra step should prevent generating and
analyzing infrequent sequences and reduce the computational time [15]. According to a recent survey on
sequential pattern mining techniques by Fournier-Viger et al. [15], the CM-Spade algorithm outperforms all
other available algorithms.

5.3. Conclusion & Applicability

Association Rule Mining (ARM) and Sequential Pattern Mining algorithms are powerful techniques to dis-
cover relations between items/products in big data sets. ARM algorithms describe correlations between items
within a single transaction without taking the sequential order of the transactions into account. Sequential
pattern mining algorithms, on the other hand, specify these sequences. Using a Genetic Algorithm to de-
termine association rules overcomes the challenges of traditional algorithms. Instead of first searching for
frequent itemsets, GAs directly starts with obtaining the association rule. Furthermore, they can optimize
multiple objectives simultaneously to capture more specific associations. The CM-Spade algorithm is the



66 5. Pattern Mining

most advanced algorithm to discover sequential sales record patterns. This method is an improved version
of the earlier proposed Spade method with additional features to reduce memory consumption and run time.

An aviation aftermarket company can obtain valuable information from its sales records by utilizing these
two methods. Which mining technique is more applicable depends on the transaction database. It is sus-
pected that most spare parts are bought independently during separate transactions. With this knowledge,
one can assume that sequential pattern mining techniques are better suited for finding correlations between
spare parts and their respective maintenance events. However, by combining multiple transaction moments
into one basket, ARM should also be capable of finding the relation between spare parts. The discovered
correlation between spare parts can be used to improve forecast accuracy and increase customer services.



Conclusion & Future scope

The conclusion and future scope of this research are stated in this chapter. First, a conclusion on the main
findings is presented in Section 6.1. After which, the main research questions and a first preliminary future
scope for the remaining part of the project are described in Section 6.2

6.1. Conclusion

The main objective of this study was to provide a comprehensive overview of spare parts demand forecast-
ing techniques that apply to the aviation aftermarket industry. Furthermore, extra research on improvement
strategies to increase prediction accuracy was necessary. In general, it can be concluded that the prediction
of spare parts demand is challenging due to strict regulations on aircraft maintenance, the variation in main-
tenance processes, the various spare part characteristics, high variation in competing stakeholders, many
different customer characteristics, and lumpy/intermittent demand patterns. All these characteristics have
been considered while analyzing different forecasting models.

It is concluded that non-parametric forecasting models are superior to traditional parametric approaches,
due to their ability to capture non-linear demand patterns. various non-parametric models were analyzed
on their performances. The Long Short-Term Memory (LSTM) network tends to outperform other alternative
artificial neural networks (ANNs). The neurons in the network consist of a memory cell with an input, output,
and forget gate, which re-evaluates all incoming information and only updates its state when new informa-
tion is interesting. This property overcomes the vanishing gradient problem of Recurrent Neural Networks
(RNNs). The Gated Recurrent Unit (GRU), a recently developed modified version of the LSTM, is shown to
perform similarly to the LSTM.

Two big data techniques were discussed to improve the accuracy of the prediction model. The first technique
involves using a clustering algorithm to group customers based on their buying behavior, which should in-
crease the amount of accurate data that is necessary for training the prediction model. First, a clustering
algorithm that clusters customers based on their buying behavior is proposed. This would generate accu-
rate training data for the LSTM model. Various clustering models have been considered. From conducted
research, it is concluded that a Genetic Algorithm (GA) outperforms the traditional K-means method. How-
ever, both methods require the number of final clusters as input variables. To overcome this drawback, a
two-stage method that includes the Self-Organizing Feature Map (SOFM) is suggested.

The second big data technique that was investigated is pattern mining, which can be done using either asso-
ciation rule mining (ARM) or sequential pattern mining. A GA is suggested for ARM as it optimizes multiple
objectives and decreases the computational time by skipping the support determination of every rule. The
best algorithm for sequential pattern mining is CM-Spade, which incorporates additional features to further
reduce computational time.

67
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6.2. Research Question(s) & Future outline
This literature review serves as the basis for formulating the primary research question driving this project by
incorporating the findings and knowledge derived from various studies:

To what extent is the need for correlated aircraft spare parts predictable when considering previous de-
mand observations from available transaction records, technical aircraft documentation, and customer
characteristics?

To answer this research question in a structured manner, it has been decomposed into 3 sub-questions with
several underlying sub-questions:

1. How much do prior spare part demand data reflect the theoretical/technical association between air-
craft spare parts for a maintenance event described in Maintenance Planning documents (MPD) and
the Aircraft Maintenance Manual (AMM)?

(a) What is the difference in correlation between conditional and unconditional identified aircraft
spare parts of a specific maintenance event, as indicated in the technical maintenance documen-
tation, based on previous demand observations?

(b) What is the difference in the observed correlation between aircraft spare parts of a maintenance
event with OEM proprietary parts and common spare parts?

(c) What is the ideal and reasonable timeline/range for grouping purchases together to analyze the
correlation between aircraft spare parts in sales records?

2. To what extent are different aircraft customer types reflected by their purchase behavior in previous
demand observations?

(a) What are the relevant subjects that describe customer purchase behavior?
(b) How can these features be translated into variables related to sales records?

(c) What is the optimal number of clusters to describe the similarities and discrepancies between
customers?

(d) What is the effect of customer clustering on the magnitude of the earlier examined technical cor-
relation between spare parts?

(e) Towhat extent can the statistically obtained customer cluster be identified or labeled as the known
aircraft customer types by industry experts?

3. Which features positively affect demand forecasts for aircraft spare parts and how can they be incorpo-
rated into a prediction model?

(a) Which variables are relevant to forecast demand for aircraft spare parts and are these features
present in the available data resources?

(b) What is the effect of the time horizon on the accuracy of the forecast?

(c) What is the effect of clustering customers on the accuracy of the forecast?

Based on these research questions, a preliminary outline of the remaining part of this project is structured as
follow: Firstly, the correlation between spare parts involved in similar maintenance events will be analyzed
using an association rule pattern mining technique. The results will provide valuable information and addi-
tional input features for the later-developed prediction model. Next, an in-depth investigation into spare part
characteristics and customer purchasing behavior will be conducted. This analysis aims to extract essential
features that will enhance the prediction model’s ability to forecast upcoming spare part orders based on the
current customer spare part order. To complete the project, the developed prediction model will be evaluated
on its performance accuracy and its practical applicability within existing company processes.
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Overview of Spare Parts used to assess

SPSO-CM

An overview of all spare parts (PNs) used to simulate and assess the performance of the proposed Subsequent
PN Purchase Order Occurrence Classification Model (SPSO-CM) across two chosen MPD events (A and B),
along with their specific properties, is presented in Table A.1. Additional details on variable computation and
the overall assessment of the SPSO-CM can be found in Part I.

Table A.1: Overview of the PN characteristics for clustering analysis and SPSO-CM performance assessment.

TDF Information Spare Part Catalog Sales Records Cluster

MPD | PN | Matpy AMMLevel ConditionalLl Conditional L2 ESS NpN—inter Npn (Npn,customers  Qnipy ADIpy  CV2. | Cpn
5*A Al 70 1 - - 3 2 263 90 3.35 1.74 3.02 C1
A2 70 1 - - 3 2 122 53 1.80 1.77 1.87 C1

A3 70 1 - - 3 4 92 51 16.59 2.80 6.64 C1

A4 30 2 False - 3 3 63 34 14.52 3.10 4.50 C1

A5 10 3 False True 2 1 432 134 8.52 1.02 1.16 C.0

23*B | B.1 30 2,3 True True 2 1 75 39 302.97 2.26 5.78 C2
B.2 30 2,3 True True 3 1 87 42 256.77 1.51 3.55 C.2

B.3 30 2,3 True/False True/False 2 1 99 53 255.29 2.43 3.45 C.2

B.4 30 2 True - 2 1 103 27 293.50 1.83 3.04 C2

B.5 10 2 False - 1 7 2561 207 37.44 1.00 0.33 C.0

B.6 10 2 False - 1 4 996 139 5.82 1.00 0.71 C.0

B.7 10 2 False - 1 10 1032 132 6.68 1.00 0.60 C.0

B.8 10 2 False - 1 3 1316 170 6.91 1.01 0.63 C.0

B.9 10 2 False - 1 8 1165 166 7.52 1.00 0.61 C.0

B.10 10 3 False True 2 1 432 134 8.52 1.02 1.16 C.0

B.11 70 3 True True 2 1 69 36 7.09 2.66 4.72 C1

B.12 30 3 True True 3 7 52 20 370.44 3.56 16.30 C.2

B.13 34 3 True True 1 1 263 116 62.29 1.27 1.94 C1

B.14 70 3 True True 3 2 16 13 6.25 7.73 8.84 C3

B.15 30 3 True True 2 4 115 61 518.84 213 9.94 C.2

B.16 30 3 True True 2 1 57 33 359.68 2.37 2.99 C2

B.17 30 3 True True 2 1 45 30 426.64 4.60 9.43 C.2

B.18 30 3 False False 2 2 170 56 567.21 1.72 7.49 C.2

B.19 30 3 False True 3 2 24 11 15.17 5.87 13.53 C3

B.20 30 3 False True 2 12 9 7 7.78 9.75 10.27 C3

B.21 30 3 False True 2 12 7 7 1.86 11.25 11.23 C3

B.22 34 3 False True 3 1 76 34 23.28 2.21 4.34 C1

B.23 34 3 False True 3 1 26 17 3.73 5.88 10.57 C3
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SPSO-CM Configuration Results

This appendix provides a comprehensive summary of the computational results obtained using SPSO-CM
for both MPD events selected for the scientific paper presented in Part I. Specific configuration details for
MPD A and MPD B are available in Table B.1 and Table B.2, respectively. Furthermore, Table B.3 presents the
prediction accuracy for each PN.

Table B.1: MPD A Results of all possible SPSO-CM configurations for a 30-day, 60-day, and 90-day time window

30 days 60 days 90 days
Weighted Average Weighted Average Weighted Average
Model Precision Recall F1 Runtime [s] Precision Recall F1 Runtime [s] Precision Recall F1 Runtime [s]
L-N-CO 0.220 0.359 0.255 340.49 0.360 0.349  0.325 410.58 0.336 0.54 0.388 450.54
L-C-CO 0.265 0.308  0.257 348.76 0.362 0.556  0.408 385.67 0.337 0.526  0.400 409.41
X-N-CO 0.464 0.231 0.194 321.42 0.328 0.508 0.389 329.39 0.289 0.474  0.348 324.00
X-C-CO 0.444 0.410 0.228 320.46 0.404 0.381 0.369 312.03 0.286 0.540  0.365 313.12
L-C-SO 0.309 0.222 0.244 391.11 0.689 0.698  0.660 395.69 0.845 0.453  0.543 389.03
L-N-SO 0.546 0.148 0.167 368.22 0.699 0.674 0.631 416.28 0.647 0.622  0.525 395.89
X-N-SO 0.069 0.222  0.102 319.58 0.719 0.861  0.757 324.10 0.867 0.793  0.825 317.05
X-C-SO 0.099 0.259  0.135 321.59 0.532 0.744  0.607 326.29 0.642 0.901  0.690 327.31

Table B.2: MPD B Results of all possible SPSO-CM configurations for a 30-day, 60-day, and 90-day time window

30 days 60 days 90 days
Weighted Average Weighted Average Weighted Average
Model Precision Recall F1 Runtime [s] Precision Recall F1 Runtime [s] Precision Recall F1 Runtime [s]
L-N-CO 0.369 0.3238  0.324 3614.30 0.484 0.482  0.469 2915.44 0.546 0.551  0.536 3506.23
L-C-COo 0.361 0.333  0.328 2662.58 0.484 0.487  0.471 2722.56 0.548 0.518  0.525 10462.61
X-N-CO 0.395 0.371  0.362 2238.23 0.476 0.446  0.448 2262.56 0.537 0.503  0.511 1544.32
X-C-CO 0.380 0.312  0.319 2188.67 0.475 0.457  0.451 2054.42 0.528 0.469  0.490 1918.12
L-C-SO 0.355 0.399 0.353 2075.60 0.418 0.462  0.424 2558.24 0.531 0.531 0.518 2670.85
L-N-SO 0.353 0.328 0.324 2005.89 0.437 0.496  0.453 2536.88 0.539 0.539  0.522 1826.41
X-N-S0 0.348 0.302  0.306 1734.23 0.452 0.493  0.488 1740.23 0.518 0.567  0.524 1620.69
X-C-SO 0.339 0.305 0.292 1560.78 0.462 0.496  0.498 1590.80 0.547 0.576  0.545 1709.15
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Table B.3: Computational results with the most optimal configurations: X-N-SO for MPD A and X-C-SO for MPD B.

PN TN FP FN TP Precision Recall F1 AUCpr MCC ME ME class
Al 22 2 5 16 0.889 0.762 0.821 0.912 0.691 0.856 Good Accuracy
A2 32 3 1 9 0.750 0.900 0.818 0.571 0.766  0.789 Good Accuracy
A3 36 0 1 8 1.000 0.889 0.941 0.913 0.930 0.946 Good Accuracy
A5 32 1 3 9 0.900 0.750 0.818 0.920 0.766  0.876 Good Accuracy
0
3

B.1 341 28 12 0.000 0.000 0.000 0.060 -0.051 0.252 Poor Accuracy
B2 342 36 0 0.077 1.000 0.143  0.105 0.264 0.378 Poor Accuracy
B3 293 12 54 22 0.647 0.289 0.400 0.385 0.351 0.534 Random Chance
B4 317 45 6 13 0.224 0.684 0.338 0.307 0.339 0.496 Random Chance
B5 137 38 74 132 0.776 0.641 0.702  0.801 0.425 0.732 Good Accuracy
B6 158 54 74 95 0.638 0.562 0.597  0.660 0.313 0.643 Moderate Accuracy
B7 181 73 71 56 0.434 0.441 0.438 0.438 0.153  0.507 Random Chance
B.8 108 106 41 126 0.543 0.754 0.632  0.623 0.264 0.629 Moderate Accuracy
B9 108 76 56 141 0.650 0.716 0.681  0.771 0.305 0.689 Moderate Accuracy
B.10 250 53 50 28 0.346 0.359 0.352  0.407 0.182 0.485 Random Chance
B.11 312 24 11 34 0.586 0.756  0.660  0.648 0.615 0.731 Good Accuracy
B.12 345 7 18 11 0.611 0.379 0.468  0.605 0.449 0.631 Moderate Accuracy
B.13 288 34 20 39 0.534 0.661 0.591  0.650 0.511 0.688 Moderate Accuracy

B.14 380 O 1 0 0.000 0.000 0.000 0.501 0.000 0.375 Poor Accuracy
B.15 317 37 22 5 0.119 0.185 0.145 0.167 0.066  0.345 Poor Accuracy
B.16 346 1 34 0 0.000 0.000 0.000 0.137 -0.016 0.280 Poor Accuracy
B.17 304 38 21 18 0.321 0.462 0.379  0.236 0.300 0.479 Random Chance
B.18 325 26 25 5 0.161 0.167 0.164  0.100 0.091 0.339 Poor Accuracy
B19 377 0 4 0 0.000 0.000 0.000  0.005 0.000 0.251 Poor Accuracy
B20 138 241 0 2 0.008 1.000 0.016 0.012 0.055 0.271 Poor Accuracy

B.22 317 24 2 38 0.613 0.950 0.745 0.589 0.730 0.766 Good Accuracy
B23 293 45 17 26 0.366 0.605 0.456  0.511 0.383 0.588 Random Chance
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