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1

Introduction

This thesis treats some aspects of the theory of non-autonomous stochastic evo-
lution equations with a random drift{

du(t) = (A(t)u(t) + F (t, u(t))) dt+B(t, u(t)) dW (t), t ∈ [0, T ],
u(0) = u0.

(1.0.1)

A large class of stochastic partial differential equations, which are models of prob-
lems in for instance mathematical physics, biology or finance, can be formulated
as a stochastic evolution equation (1.0.1).

The main goal of this thesis is to extend the theory of stochastic evolution
equations to the setting where the generator is time-dependent and random, i.e.,
A = A(t, ω), and adapted to a filtration (Ft)t∈[0,T ]. Throughout the thesis we
will assume that each operator

A(t, ω) : E ⊃ D(A(t, ω)) → E

is a closed (sometimes unbounded) densely defined linear operator on a Banach
space E.

A formula that is commonly used in the theory of stochastic evolution equa-
tions is the variation of constants formula

u(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, u(s)) ds+

∫ t

0

S(t, s)B(s, u(s)) dW (s). (1.0.2)

Here, (S(t, s))0≤s≤t≤T is the random evolution system that is uniquely deter-
mined by the requirements d

dtS(t, s) = A(t)S(t, s) and S(t, t) = I, where I is the
identity operator.

An extension to the setting where the drift A may be random is not a trivial
one. Indeed, already in the case E = R difficulties arise. Consider for instance
the situation where A = a with a : [0, T ]×Ω → R progressively measurable and
F = 0, B = 1. The random evolution system is then given by

S(t, s) = exp
(∫ t

s

a(σ) dσ
)
.
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From this formula it is clear that S(t, s) is Ft-measurable, but certainly not
Fs-measurable. Therefore, the stochastic integral appearing in the variation of
constants formula

u(t) = S(t, 0)u(0) +

∫ t

0

S(t, s) dW (s),

does not exist as an Itô integral.
Observe that in this situation, and more generally in the situation where

A(t, ω) is a bounded linear operator, a solution can be found directly by inte-
grating equation (1.0.1) and using Banach’s fixed point theorem. For a proof in
the deterministic case, see [104, Theorem 5.1].

The remainder of the introduction is organized as follows: first, we start with
an example of a stochastic partial differential equation from filtering theory, and
we show how to formulate it as a stochastic evolution equation with random drift
A(t, ω); second, we discuss general theory of stochastic evolution equations with
a random drift.

1.1 An example from filtering theory

The example in this section, taken from filtering theory, serves to show how
dependence on the probability space in the drift occurs naturally in applications.

Let (Ω,F ,P) be a complete probability space with a filtration (Ft)t∈[0,T ].
Suppose there is given a real-valued signal process X = X(t, ω), (t, ω) ∈
[0, T ]×Ω. The signal process is assumed to be unobservable, and instead what
is observed is a function h(X(t, ω)) perturbed by an observational error n(t, ω)
called the noise. As common in the literature, we suppress the letter ω in the
notation. The observation y = y(t, ω) can be described by

y(t) = h(X(t)) + n(t). (1.1.1)

Heuristically, the noise n(t) is thought of as the time derivative of a Brownian
motion W (t), although in fact W (t) is nowhere differentiable a.s. To overcome
this problem, one can interpret equation (1.1.1) in an integrated sense, and con-

sider the accumulated observation process Y (t) =
∫ t

0
y(s) ds. This is described

by

Y (t) =

∫ t

0

h(X(s)) ds+W (t). (1.1.2)

Usually, one writes equation (1.1.2) as

dY (t) = h(X(t)) dt+ dW (t).

We will make the following assumptions on the signal process X. Let us as-
sume that it is an R-valued process satisfying the stochastic differential equation
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dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dB(t).

Here, B is a Brownian motion independent of W , and we assume b : [0, T ]×Ω×
R → R and σ : [0, T ]×Ω × R → R are both measurable, adapted and Lipschitz
continuous functions. Finally, we assume h : R → R is bounded and Lipschitz
continuous.

The goal is to estimate the signal X(t) based on the available information
up to time t, i.e., based on the σ-algebra Gt := σ(Y (s) : s ∈ [0, t]). This means
that we need to ‘filter out’ the noise, and therefore this example is commonly
referred to as the filtering equation or the filtering model.

Recall that for a sub-σ-algebra G ⊂ F , the conditional expectation E(·|G )
is the orthogonal projection of L2(Ω;F ) onto L2(Ω;G ). It follows that for a
random variable ξ ∈ L2(Ω;F ), the conditional expectation E(ξ|G ) is the mini-
mum of the mean square error among all G -measurable square-integrable random
variables. That is,

E(ξ − E(ξ|G )2) = min{E(ξ − η)2 : η ∈ L2(Ω;G )}.

This means that if we want to find the best estimate for X(t), in the sense of
the mean square error, we need to find E(X(t)|Gt). However, in most cases we
would like to estimate f(X(t)), where f is in a suitable class of test functions,
and therefore one would like to calculate E(f(X(t))|Gt). It turns out that

E(f(X(t))|Gt) =

∫
R
f(x) dπt(x),

where πt is the conditional probability distribution of Xt given Gt. This condi-
tional probability distribution πt is called the optimal filter. Suppose that the fil-
tration is generated by the Brownian motions B andW , i.e., Ft := σ(Bs,Ws, s ∈
[0, t]). Suppose that F = FT . Set

Mt := exp
(
−

∫ t

0

h(X(s)) dW (s)− 1

2

∫ t

0

|h(X(s))|2 ds
)
.

Note that Mt is the stochastic exponential of ξ(t) := −
∫ t

0
h(X(s)) dW (s). Con-

sider the measure P̂t := Mt dP, and set P̂ = P̂T . Then, as an application
of Girsanov’s theorem, Y is a Brownian motion with respect to the proba-
bility measure P̂. If we write Ê for the expectation with respect to P̂, and∫
R f(x) dπt(x) = ⟨πt, f⟩, then we obtain the following theorem [140, Theorem
5.3], which is Bayes’ formula in filtering theory, and is called the Kallianpur-
Striebel formula.

Theorem 1.1. For all f ∈ Cb(R), the optimal filter πt satisfies the identity

⟨πt, f⟩ =
Ê(Mtf(Xt)|Gt)

Ê(Mt|Gt)
=

⟨Vt, f⟩
⟨Vt, 1⟩

,

where ⟨Vt, f⟩ := Ê(Mtf(Xt)|Gt).
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This means that, to compute the optimal filter, it suffices to compute the right

hand side ⟨Vt,f⟩
⟨Vt,1⟩ . This is helpful, since it is possible to derive a stochastic evolution

equation for ⟨Vt, f⟩, where f ∈ C2
b (R), using Itô’s formula.

Theorem 1.2. Let f ∈ C2
b (R). The filter Vt satisfies the stochastic differential

equation

d⟨Vt, f⟩ = ⟨Vt, Lf⟩ dt+ ⟨Vt, fh⟩dY (t), (1.1.3)

where

Lf =
1

2
c2f ′′ + bf ′.

If we consider V as a process taking values in the space of finite measures, then
we can make the assumption that Vt has a density Ṽt that is twice continuously
differentiable. Under this assumption, we write

⟨Vt, f⟩ =
∫
R
f(x)Ṽt(x) dx.

In this case, one can formally rewrite (1.1.3) as a stochastic evolution equation
for Ṽt, given by

dṼt = L∗Ṽt dt+ hṼt dY (t).

Here, L∗ is formally the adjoint of L and is given by

(L∗φ) =
d2

dx2
(c2φ)− d

dx
(bφ)

As the functions c and b are assumed to be random and time-dependent, one
notices that the above evolution equation is a special case of (1.0.1).

1.2 Stochastic integration in Banach spaces: the Itô
integral

In [52], Itô extended Wiener’s theory of stochastic integration [139] in such a
way that random processes ϕ : Ω × [0, T ] → R that are adapted to a filtration
(Ft)t∈[0,T ] can be integrated with respect to a Brownian motion (W (t))t∈[0,T ]

adapted to the same filtration. The latter means that not only W (t) is Ft-
measurable, but also that W (t) −W (s) is independent of Fs if s ≤ t. In the
same paper, he proved that for all t ∈ [0, T ],

E
∣∣∣ ∫ t

0

ϕ(s) dW (s)
∣∣∣2 = E

∫ t

0

|ϕ(s)|2 ds.

which by now is generally referred to as the Itô isometry.
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The Itô integration theory extends to the Hilbert case setting in the follow-
ing way. The Brownian motion W may be replaced by an H-cylindrical Brow-
nian motion WH , where H is a Hilbert space, and the adapted process may be
L2(H,K)-valued, where K is another Hilbert space. The isometry should then
be regarded in a Hilbert-Schmidt setting, i.e.,

E
∥∥∥∫ T

0

ϕ(s) dWH(s)
∥∥∥2
K

= E∥Rϕ∥2L2(L2(0,T ;H),K), (1.2.1)

where Rϕ : L2(0, T ;H) → K is given by

Rϕ(f) =

∫ T

0

ϕ(t)f(t) dt. (1.2.2)

To extend this theory to the Banach space setting, new tools are needed.
Firstly, let H be a separable Hilbert space and E be a Banach space. For h ∈ H
and x ∈ E, we denote by h ⊗ x the rank one operator in L (H , E) given by
(h⊗ x)(h′) = [h, h]H x, h′ ∈ H . We will call an operator R ∈ L (H , E) a finite
rank operator if it is a linear combination of rank one operators. For any finite
rank operator, we define the norm

∥∥∥ N∑
n=1

hn ⊗ xn

∥∥∥
γ(H ,E)

:=
(
E
∥∥∥ N∑

n=1

γnxn

∥∥∥2)1/2

.

Here, the sequence (γn)
N
n=1 is a sequence of independent standard Gaussian

random variables. The Banach space γ(H , E) is defined as the completion of
all finite rank operators with respect to the norm ∥ · ∥γ(H ,E), and is called the
space of γ-radonifying operators. More on γ-radonifying operators can be found
in [85] and the references therein.

Secondly, we call a Banach space E a umdp Banach space, p ∈ (1,∞), when-
ever the following geometric property holds: there exists a constant C such that
for all martingale difference sequences (dn)

N
n=1 in E and all εn = ±1,

E
∥∥∥ N∑

n=1

εndn

∥∥∥p ≤ Cp
∥∥∥ N∑

n=1

dn

∥∥∥p.
The term umd stands for “unconditionality of martingale differences”. It turns
out that the property is independent of p ∈ (1,∞), and is therefore referred
to as the umd property. More on umd spaces can be found in the papers by
Burkholder [23] and by Rubio de Francia [114]. The following Banach spaces are
umd spaces:

• every Hilbert space,
• every Lp(S, µ)-space for p ∈ (1,∞) and (S, µ) a σ-finite measure space,
• Reflexive Sobolev spaces, Besov spaces and Hardy spaces,
• Reflexive Orlicz space
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Also:

• Every closed subspace of a umd space is again a umd space,
• Every quotient space of a umd space is again a umd space,
• The dual of a umd space is again a umd space,
• For an interpolation couple (E0, E1) of umd spaces, the real and complex

interpolation spaces (E0, E1)θ,p and [E0, E1]θ, for 1 < θ < ∞, 1 < p < ∞,
are again umd spaces,

• The space Lp(E), 1 < p <∞ is a umd space whenever E is a umd space.

In [91], van Neerven and Weis extended the stochastic integral to L (H,E)-
valued functions ϕ : [0, T ] → L (H,E) for which the operator Rϕ : L2(0, T ;H) →
E given by (1.2.2) belongs to γ(L2(0, T ;H), E). An isometry similar to (1.2.1)
holds:

E
∥∥∥ ∫ T

0

ϕ(s) dWH(s)
∥∥∥2
E
= E∥Rϕ∥2γ(L2(0,T ;H),E)

Later, van Neerven, Veraar and Weis [86] extended this to adapted processes
ϕ : Ω × [0, T ] → L (H,E), with the assumption that E is a umd Banach space.
Here, an isometry fails, but an Itô isomorphism still holds, i.e.,

E
∥∥∥ ∫ T

0

ϕ(s) dWH(s)
∥∥∥p
E
h E∥Rϕ∥pγ(L2(0,T ;H),E), 1 < p <∞.

1.3 The Skorohod integral and Malliavin calculus

The Skorohod integral is one of several possible extensions of the Itô integral
and it allows us to integrate non-adapted processes. These are interesting as
we consider equations where the stochastic integral is not well-defined as an Itô
integral due to the non-adaptedness of the integrand.

The Skorohod integral was first introduced by Skorohod [129] and is well
connected to Malliavin calculus. The Malliavin calculus is a mathematical the-
ory introduced by Malliavin [76], originally called “the stochastic calculus of
variations” and designed to give an independent proof of a theorem by Hörman-
der [49]. In [128], Shigekawa reformulates the theory of Malliavin calculus and
introduces the notion of a derivative D on a Wiener space. The adjoint of the
derivative, denoted by δ, can be identified with the Skorohod integral, as proved
in [46].

Since the paper [76], Malliavin calculus has played an influential role in prob-
ability theory (see the monographs [12,15–18,31,53,77,95,98,137] and references
therein). In particular, it has played an important role in the study of stochas-
tic (partial) differential equations (S(P)DE) and mathematical finance (see the
monographs [24,38,43,51,79,123] and references therein).

As one considers the Skorohod integral operator δ as an adjoint operator, it
is not clear whether for a Skorohod integrable process f the truncated process
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1[0,t]f is again in the domain of δ. Such a property is evidently true for the Itô
integral and for the Lebesgue integral, but it turns out to be false in the case
of the Skorohod integral. This is already stated as an exercise in [95, Exercise
3.2.1]. In Chapter 3, which is based on [109], we give an alternative proof. This
proof is based on the construction of a counterexample, which is the main result
of [109].

Theorem 1.3. There exists a process u ∈ Dom(δ) such that 1[0, 12 )
u ̸∈ Dom(δ).

From Meyer’s inequalities, it follows that the Sobolev space of Malliavin differ-
entiable L2(0, 1)-valued random variables, denoted by D1,2(L2(0, 1)), is included
in the domain of δ. Consequently, considering the fractional Sobolev spaces in-
troduced by Watanabe [138], one readily obtains that Ds,2(L2(0, 1)) ⊂ Dom(δ)
for all s ≥ 1. As a corollary of the construction made in Chapter 3, we find that
the above result is sharp in the sense that Ds,2(L2(0, 1)) ⊂ Dom(δ) if and only
if s ≥ 1.

Malliavin calculus can be generalized to the setting of Hilbert space valued
stochastic processes, see [24,43,47,68] and references therein. As an application of
the theory of γ-radonifying operators, Maas [74] and Maas and van Neerven [75]
extended Malliavin calculus and Skorohod integration to the umd Banach space
setting and proved that the umd-valued Skorohod integral is again an extension
of the Itô stochastic integral. In Chapter 2 we present further extensions of
this theory. In particular we obtain a non-adapted version of the chain rule for
Lipschitz functions and an Itô formula.

An Itô formula for a Hilbert spaces valued Itô process can be found in [32].
A version of Itô’s formula for adapted processes taking values in a 2-uniformly
smooth Banach spaces was proved in [92], and where the processes take values
in a umd Banach space in [21]. In the anticipating case, a finite-dimensional
Itô’s formula for the Skorohod integral and Stratonovich integral is stated and
proved in [95, 96]. A generalization of the Itô formula for the Skorohod integral
to Hilbert space valued processes can be found in [47]. The Itô formula is one of
the main results from Chapter 2, which is based on [112], and we will present its
formulation here.

Let E be a umd space with type 2, U be a separable Hilbert space and let
WU be a U -cylindrical Brownian motion. Consider the following assumptions:

ζ0 ∈ D1,2(E), Dζ0 ∈ L2(Ω;L2(0, T ; γ(U,E)))

u ∈ D2,2(L2(0, T ; γ(U,E))), Du ∈ L2(0, T ;D1,2(γ(U, γ(H,E)))), (1.3.1)

v ∈ D1,2(L2(0, T ;E)), Dv ∈ L1(0, T ;L2((0, T )×Ω; γ(U,E))).

Consider the process ζ : Ω × [0, T ] → E given by

ζt = ζ0 +

∫ t

0

v(r)dr +

∫ t

0

u(r) dWU (r). (1.3.2)

Then we have the following theorem:
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Theorem 1.4 (Itô’s formula). Let E be a umd Banach space with type 2.
Suppose that the conditions (1.3.1) hold and let ζ : [0, T ] × Ω → E be as in
(1.3.2). Assume ζ has continuous paths. Let F : E → R be a twice continuously
Fréchet differentiable function. Suppose that F ′ and F ′′ are bounded. Then

F (ζt) = F (ζ0) +

∫ t

0

F ′(ζs)(v(s)) ds+ δ(
⟨
F ′(ζ),1[0,t]u

⟩
)

+
1

2

∫ t

0

⟨u(s), F ′′(ζs)(u(s))⟩Tr ds+
∫ t

0

⟨
u(s), F ′′(ζs)((D

−ζ)(s))
⟩
Tr
ds.

(1.3.3)

Here, the pair ⟨·, ·, ⟩Tr is the trace duality pairing defined in equation (2.2.1).
Compared to the Itô formula in the adapted setting, the extra term∫ t

0

⟨
u(s), F ′′(ζs)((D

−ζ)(s))
⟩
Tr
ds

appears. The operator D− is defined by

(D−ζ)(s) = (Dζ0)(s) +

∫ s

0

(Dv(r))(s)dr + δ(1[0,s]IU,H((Du)(s))),

where IU,H is the isomorphism

IU,H : γ(U, γ(H,E)) → γ(H, γ(U,E)).

In the case that ζ is adapted, D−ζ = 0 and (1.3.3) becomes the Itô formula for
adapted processes.

1.4 The forward integral

In [117, 118], Russo and Vallois initiated a theory of stochastic integration via
regularization procedures. This theory has been further developed by the same
authors (see [119–122]) and by other authors (see [25, 42, 54, 58, 93, 116, 133]
and the references in [122]). Their theory allows integration with respect to
integrators more general than semimartingales, and it also allows integration of
non-adapted processes. Applications arise for instance in the theory of fractional
Brownian motion.

One of the stochastic integrals defined in [118] is the forward integral. In the
case that the integrator is a Brownian motion, the definition is as follows. For a
measurable process G : [0, T ] × Ω → R that belongs to L2(0, T ) a.s., we define
the sequence (I−(G,n))∞n=1 given by

I−(G,n) = n

∫ T

0

G(s)(W (s+ 1/n)−W (s)) ds.
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If the sequence (I−(G,n)) converges in probability, then G is called forward
integrable. Its limit is called the forward integral and is denoted by

δ−(G) :=

∫ T

0

GdW− =

∫ T

0

G(s) dW−(s).

Applications of the forward integral can be found in mathematical finance, see
Chapter 8 of [38] and its references. In [36,37,99] the authors consider the forward
integral in the setting of Lévy processes.

Although in the case of the Skorohod integral many authors have considered
the infinite dimensional setting, in the case of the forward integral only few results
are available. In [34], the integration via regularization has been generalized to
separable Banach spaces. In [68], León and Nualart have introduced the forward
integral in the operator valued setting.

In chapter 4, which is based on [110], we examine several properties of the
forward integral in the operator valued setting, where the integrator is a cylin-
drical Brownian motion. We will prove that in this setting, as in the real valued
case, the forward integral is an extension of the Itô integral. In particular, for
adapted processes G, the forward integral of 1[0,t]G exists for all t ∈ [0, T ]. For
arbitrary G, let us write J−(G,n)(t) for I−(G1[0,t], n). For adapted G, we write

I(G)(t) =
∫ t

0
G dW−. One of the main results of Chapter 4 is the following:

Theorem 1.5. Let E be a umd Banach space with type 2, and let p ∈ [2,∞).

(1) If G ∈ Lp(Ω;Lp(0, T ; γ(H,E))) is adapted, then the sequence of processes
(J−(G,n))∞n=1 converges to I(G) in Lp(Ω;Wα,p(0, T ;E)) for all α ∈ (0, 12 ),
as n→ ∞.

(2) If G ∈ L0(Ω;Lp(0, T ; γ(H,E))) is adapted, then the sequence of processes
(J−(G,n))∞n=1 converges to I(G) in L0(Ω;Wα,p(0, T ;E)) for all α ∈ (0, 12 ),
as n→ ∞.

1.5 Methods for solving stochastic evolution equation

There are many different methods for solving equations of the form (1.0.1). We
would like to point out some of them. First, there is the theory using random
fields due to Walsh [136]. Second, the theory of monotone operators, which is
studied in the case B = 0 by Lions [72] and in the case B = I by Bensoussan [13].
It was further developed and generalized to the stochastic case by Pardoux [101],
Rozovskii [113], Krylov and Rozovskii [63] (see also [108]). Third, there is an Lp-
theory due to Krylov [60], in which the drift is a second order operator on Rd

which is allowed to be dependent on time and on the probability space. Krylov
shows existence and uniqueness in the space W s,p(Rd) for p ≥ 2.

The method we are most interested in, is called the semigroup approach. This
has been studied by Curtain and Falb [30], Dawson [33] and then by Da Prato
an Zabczyk [32] and their collaborators. Here, it is assumed that the drift A(t)
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is the generator of an evolution system S(t, s)0≤s≤t≤T . In the autonomous case
A(t) = A this translates into A being the generator of a semigroup, and hence
the name ‘semigroup approach’.

Crucial in the semigroup approach is the definition of a mild solution. A mild
solution is an adapted and strongly measurable process u : [0, T ]×Ω → E such
that for all t ∈ [0, T ], almost surely,

u(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, u(s)) ds+

∫ t

0

S(t, s)B(s, u(s)) dW (s).

The above cited works are all in the Hilbert space setting, since the stochastic
integral is, in these works, defined only on Hilbert spaces. Generalizations of
(1.0.1) to Banach spaces started with Neidhardt (to 2-smooth Banach spaces)
[92], Brzeźniak (to martingale type 2 Banach spaces) [19], and more recently van
Neerven, Veraar and Weis (to umd Banach spaces) [86], [87], and Veraar [135].
In [86] a theory of stochastic integration in umd Banach spaces is set up, and
in [87] stochastic evolution equations in umd Banach spaces are considered, with
autonomous drift A(t) = A. In [135], the non-autonomous case is covered, where
beside umd it is also assumed that the space has type 2.

As discussed before, the semigroup approach does not work when the stochas-
tic integral is an Itô integral and when A is random. A new approach to solve
problem (1.0.1) is treated in Chapter 5 and is explained in the next section.
Another approach, due to León and Nualart [68], which is based on Malliavin
calculus and forward integration, is improved in Chapter 6. This is explained
briefly in Section 1.7. Let us also mention that in [88] a maximal regularity
approach to (6.7.1) with random A has been developed.

1.6 A new solution concept for stochastic evolution
equations

The method described here is treated in Chapter 5 and is based on the pa-
per [111]. As in [135], we consider umd spaces with type 2. For fixed ω ∈ Ω,
we assume the Acquistapace-Terreni conditions on the drift A = A(t, ω), see
(AT1), (AT2) below in Subsection 5.2.1. Evolution equations with these assump-
tions have been studied, among others, by Acquistapace and Terreni [1–4] and
Schnaubelt [125].

We introduce a new solution concept, and compare this to other solution
concepts. An adapted process u ∈ L0(Ω;Lp(0, T ;E)) is called a pathwise mild
solution to problem (1.0.1) if for all t ∈ [0, T ], a.s.,

u(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, u(s)) ds

−
∫ t

0

S(t, s)A(s)(I(1(s,t)B(·, u(·))) ds+ S(t, 0)I(1(0,t)B(·, u(·)))
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where

I(G) =

∫ T

0

G(s) dW (s).

Note that this solution does not involve any anticipating stochastic integral, as
opposed to the variation of constants formula for the mild solution.

Let us state the first main theorem, Theorem 5.28. The hypotheses can be
found in Chapter 5.

Theorem 1.6. Assume (H1)–(H5), (HF) and (HB). Let δ, λ > 0 be such that
a+ δ+λ < min{1

2 − θB , 1− θF , η+}. Assume that u0 : Ω → E is F0-measurable
and u0 ∈ E0

a,1 a.s. Then the following holds:

1. There exists a unique adapted pathwise mild solution u ∈ L0(Ω;C([0, T ]; Ẽa))
to (1.0.1). Moreover, u− S(t, 0)u0 ∈ L0(Ω;Cλ(0, T ; Ẽa+δ)).

2. If additionally, u0 ∈ E0
a+β,1 a.s. with β > 0 and λ + δ < β, then u ∈

L0(Ω;Cλ(0, T ; Ẽa+δ)).

Assumption (H5) is of special importance here. This assumption implies for
instance that the random evolution system S(t, s) is bounded in the L (E)-norm
uniformly in ω, i.e., there exists a C > 0 such that for all ω ∈ Ω one has
∥S(t, s)∥L (E) ≤ C. Without condition (H5) the constant would depend on ω.
Many other estimates are uniformly in ω as a consequence of (H5).

In Subsection 5.5.3 we prove the following existence and uniqueness result
without the uniformity condition (H5), based on a localization argument. Due
to technical reasons we assume (H5)′, a slightly more restrictive condition than
(AT2).

Theorem 1.7. Assume (H1)–(H4), (H5)′, (HF) and (HB). Let δ, λ > 0 be such
that a + δ + λ < min{ 1

2 − θB , 1 − θF , η+}. Assume that u0 : Ω → E is F0-
measurable and u0 ∈ E0

a a.s. Then the assertions (1) and (2) of Theorem 1.6
hold.

1.7 Forward mild solutions to stochastic evolution
equations

When one considers the notion of a mild solution to problem (6.1.1), it seems
that the forward integral and not the Skorohod integral is the right choice for
the extension of the Itô integral. This is mainly because if one interprets the
stochastic integral appearing in the variation of constants formula (1.0.2) as a
forward integral, then a mild solution is always a weak solution (see [68, Proposi-
tion 5.3]). In fact, if one interprets the stochastic integral as a Skorohod integral,
a complementary term appears (see [67]). A mild solution where the stochastic
integral is a forward integral will be called a forward mild solution.
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The proof of the fact that a forward mild solution is a weak solution relies
on a maximal inequality for forward integration. The authors of [68] prove the
latter by first proving a similar result for the Skorohod integral, and then by
comparing the two stochastic integrals. The proof of the maximal inequality for
the Skorohod integral relies on functional analytic techniques and the Itô formula
for the Skorohod integral.

In Chapter 6, we present a new proof of the maximal inequality mentioned
below, in umd Banach spaces with type 2 and some additional assumptions. We
prove the inequality without using the Itô formula for the Skorohod integral, but
instead we use an Itô formula for the forward integral. Apart from the fact that
the proof is more direct, the same result is obtained with fewer assumptions on
the evolution system: the evolution system is only assumed to be in D1,p(L (E))
instead of D2,p(L (E)). This is summarized in the next theorem. Let us denote
by Sa the set of all γ(H,E)-valued processes of the form

G =
N∑

k=1

N∑
n=1

fkn(W (φn
1 ), . . . ,W (φn

N ))⊗ 1(tn,tn+1] ⊗Rk,

where fkn ∈ C∞
b (RN ), 0 ≤ t1 < t2 < . . . < tn+1 ≤ T , φn

j ∈ L2(0, T ) ⊗H with

supp(hnj ) ⊂ [0, tn], and Rk =
∑Nk

i=1 hi ⊗ xi, hi ∈ H, xi ∈ E.

Theorem 1.8. Let E be a umd Banach space that has type 2 and satisfies prop-
erty (D) from section 6.5. Let S(t, s) be a random evolution system satisfying
(H) from section 6.5, and let G ∈ Sa. For all p ∈ (2,∞), we have the estimate

E
(

sup
t∈[0,T ]

∥∥∥∫ t

0

S(t, s)G(s) dW−(s)
∥∥∥p
E

)
≤ CE

∫ T

0

∥G(s)∥pγ(H,E) ds. (1.7.1)

Moreover, the operator S⋄ : Sa → Lp(Ω;C([0, T ];E)) defined by

S⋄(G)(t) =

∫ t

0

S(t, s)G(s) dW−(s)

extends uniquely to a linear bounded operator S⋄ : Lp
a(Ω × [0, T ]; γ(H,E)) →

Lp(Ω;C([0, T ];E)) for which (1.7.1) holds.

Next, we will formulate the concept of a weak solution and a forward mild solu-
tion. Under suitable assumptions on A, F and B, we prove that any mild solution
is a weak solution, and that problem (6.1.1) has a unique mild solution. These
two results use the above theorem, and are the main results of Chapter 6:

Proposition 1.9. Assume hypotheses (A.1) – (A.3). If u is a mild solution, then
it is a weak solution.

Theorem 1.10. Assume hypotheses (A.1) – (A.3). Then problem (6.7.1) has a
unique forward mild solution.
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1.8 Application

Consider the stochastic partial differential equation

du(t, s) =
(
A(t, s, ω,D)u(t, s) + f(t, s, u(t, s))

)
dt

+ g(t, s, u(t, s)) dW (t, s), t ∈ (0, T ], s ∈ S,

C(t, s, ω,D)u(t, s) = 0, t ∈ (0, T ], s ∈ ∂S,

u(0, s) = u0(s), s ∈ S.

(1.8.1)

Here, S is a bounded domain in Rn with C2-boundary and outer normal vector
n(s). The drift operator A is of the form

A(t, s, ω,D) =

n∑
i,j=1

Di(aij(t, s, ω)Dj) + a0(t, s, ω),

C(t, s, ω,D) =
n∑

i,j=1

aij(t, s, ω)ni(s)Dj ,

where Di stands for the derivative in the i-th coordinate. Under suitable as-
sumptions on aij , a0, f and g (see Section 5.6 for precise formulation), one can
rewrite equation (1.8.1) into a stochastic evolution equation of the form (1.0.1),
where each A(t, ω) is a closed linear operator on Lp(S) for p ≥ 2. We obtain the
following existence and uniqueness result, which is Theorem 5.33.

Theorem 1.11. Let p ∈ [2,∞) and suppose u0 : Ω → Lp(S) is F0-measurable.
The following holds under the assumptions just mentioned.

1. There exists a unique adapted pathwise mild solution u that belongs to the
space L0(Ω;C([0, T ];Lp(S))).

2. If u0 ∈ W 1,p(S) a.s., and δ, λ > 0 such that δ + λ < 1
2 , then u belongs to

L0(Ω;Cλ(0, T ;B2δ
p,p(S))).

1.9 Outline of the thesis

This thesis consists of two parts. The first part consists of Chapter 2-4, and
is dedicated to the theory of stochastic integration of non-adapted processes.
In particular, in Chapter 2 we discuss the theory of Malliavin calculus in umd
Banach spaces, and Itô’s formula for the Skorohod integral. Chapter 3 contains
a construction of a process u that is Skorohod integrable on an interval [0, 1] but
which is not Skorohod integrable on [0, 1/2]. In Chapter 4 we obtain convergence
results of the approximating sequence of processes converging to the forward
integral process in the vector valued setting.

The second part consists of Chapter 5 and Chapter 6 and contains the theory
of stochastic evolution equations and applications to stochastic partial differen-
tial equations. Chapter 6 is essentially an extension to the paper by León and
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Nualart [68]. Originally the starting point for this thesis was to extend [68] from
the Hilbert space setting to the umd Banach space setting. However, along the
way we have found two improvements. First, we found that part of the theory
in [68] can be improved in such a way that less Malliavin differentiability needs
to be assumed. For this, we prove Itô’s formula for the forward integral and a
maximal inequality for the forward integral. This is covered in Chapter 6. Sec-
ond, we established a different theory for solving stochastic evolution equations
with adapted drift which is based on a new representation formula for the mild
solution. For that we assume the conditions by Acquistapace and Terreni, and
use the convergence results from Chapter 4. The assumptions are milder than
those in Chapter 6, and also give better regularity results. This is covered in
Chapter 5.



Part I

Stochastic integration of non-adapted processes





2

Tools for Malliavin calculus in umd Banach
spaces

2.1 Introduction

Since the seminal paper [76], Malliavin calculus has played an influential role
in probability theory (see the monographs [12, 15–18, 31, 53, 77, 95, 98, 137] and
references therein). In particular, it has played an important part in the study
of stochastic (partial) differential equations (S(P)DE) and mathematical finance
(see the monographs [24, 38, 43, 51, 79, 123] and references therein). For certain
models in finance and SPDEs, Malliavin calculus and Skorohod integration can
be applied in an infinite dimensional framework. In the setting of Hilbert space-
valued stochastic processes details on this matter can be found in [24,43,47,68]
and references therein. For Banach space-valued stochastic processes, there are
geometric obstacles which have to be overcome in order to extend stochastic
calculus to this setting.

In [86] a new Itô type integration theory for processes with values in a Banach
space E has been developed using earlier ideas from [45, 82]. The theory uses a
geometric assumption on E, called the umd-property, and it allows two-sided
estimates for Lp-moments for stochastic integrals (see Theorem 2.31 below). A
deep result in the theory of umd spaces is that a Banach space E has the umd-
property if and only if the Hilbert transform is bounded on Lp(R;E) (see [23] and
references therein). The class of umd spaces include all Hilbert spaces, Lq-spaces
with q ∈ (1,∞) and the reflexive Sobolev spaces, Besov spaces and Orlicz spaces.
Among these spaces the Lq-spaces with q ∈ (1,∞) are the most important ones
for applications to SPDEs. Recently, the full strength of the stochastic integration
theory from [86] has made it possible to obtain optimal space-time-regularity
results for a large class of SPDEs (see [88, 89]).

In [75], Malliavin calculus and Skorohod integration have been studied in the
Banach space-valued setting. In particular, the authors have shown that if the
space E has the umd-property, the Skorohod integral is an extension of the Itô
integral for processes with values in E (see Theorem 2.26 below). The main result
of [75] is a Clark-Ocone representation formula for E-valued random variables,
where again E is a umd space. A previous attempt to obtain this representation
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formula was been given in [80], but the proof contains a gap (see [81]). Further
developments on Malliavin calculus have been made in [74] and in particular,
the connection with Meyer’s inequalities has been investigated. Here the umd-
property is needed again in order to obtain the vector-valued analogue of the
Meyer’s inequalities (see [74] and [106]). In particular, in [74] a vector-valued
version of Meyer’s inequalities for higher order derivatives has been proved. Also
here there has been a previous attempt to show Meyer’s inequalities for higher
order derivatives in umd spaces (see [78]), but unfortunately the proof contains
a gap since an integral in [78, Theorem 1.17] is not convergent.

In this chapter we proceed with the development of Malliavin calculus in the
umd-valued setting. After recalling some prerequisites, in Section 2.3.2 we will
prove a weak characterization of the Malliavin derivative and extend the Meyers-
Serrin result for Sobolev spaces to the setting of Gaussian Sobolev spaces. In
Section 2.3.3 several calculus facts such as the product and chain rule will be
obtained. Under additional geometric conditions, we further extend the chain
rule to the case of Lipschitz function in Section 2.3.4. Some new results for the
Skorohod integral are derived in Section 2.4. In particular, pathwise properties
of the Skorohod integral are studied in Section 2.4.4. In the final Section 2.5 we
prove a version of Itô’s formula in the non-adapted setting.

This chapter is based on the paper [112].

2.2 Preliminaries

Below all vector spaces are assumed to be real. With minor modifications, most
results can be extended to complex spaces as well. For a parameter t, and real
numbers A and B, we write A .t B to indicate that there is a constant c only
depending on t such that A ≤ cB. Moreover, we write A ht B if both A .t B
and B .t A hold.

2.2.1 γ-Radonifying operators

Let (Ω,F ,P) be a probability space, letH be a separable Hilbert space and let E
be a Banach space. In this section we will review some results about γ-radonifying
operators. For a detailed overview we refer to [39, 55, 85]. For h ∈ H,x ∈ E, we
denote by h⊗ x the operator in L (H,E) defined by

(h⊗ x)h′ := ⟨h, h′⟩x, h′ ∈ H.

For finite rank operators
∑n

j=1 hj ⊗ xj , where the vectors h1, . . . , hn ∈ H are
orthonormal and x1, . . . , xn ∈ E, we define

∥∥∥ n∑
j=1

hj ⊗ xj

∥∥∥
γ(H,E)

:=
(
E
∥∥∥ N∑

n=1

γnxn

∥∥∥2
E

)1/2

.
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Here (γn)n≥1 is a sequence of independent standard real-valued Gaussian random
variables. The space γ(H,E) of γ-radonifying operators is defined as the closure
of all finite rank operators in the norm ∥ · ∥γ(H,E). One can show that a bounded
operator R : H → E belongs to γ(H,E) if and only if the sum

∑
n≥1 γnRhn

converges in L2(Ω;E).
By the Kahane–Khintchine inequalities (see [66, Corollary 3.2]) one has(

E
∥∥∥ N∑

n=1

γnxn

∥∥∥p)1/p

hp

(
E
∥∥∥ N∑

n=1

γnxn

∥∥∥2)1/2

,

and this extends to infinite sums as well, whenever the sum is convergent.
The γ-radonifying operators also satisfy the following ideal property (see

[11, 71,85]).

Proposition 2.1 (Ideal property). Suppose that H0 and H1 are Hilbert spaces
and E0 and E1 are Banach spaces. Let R ∈ γ(H0, E0), T ∈ L (H1,H0) and
U ∈ L (E0, E1), then URT ∈ γ(H1, E1) and

∥URT∥γ(H1,E1) ≤ ∥U∥∥R∥γ(H0,E0)∥T∥.

The following lemma is called the γ-Fubini Lemma, and is taken from [86].

Lemma 2.2. Let (S,Σ, µ) be a σ-finite measure space and let 1 ≤ p < ∞. The
mapping U : Lp(S; γ(H,E)) → L (H,Lp(S;E)), given by ((UF )h)s = F (s)h for
s ∈ S and h ∈ H, defines an isomorphism Lp(S; γ(H,E)) h γ(H,Lp(S;E)).

The following lemma is taken from [55] and for convenience we include a
proof.

Lemma 2.3. Suppose that H0 and H1 are Hilbert spaces. Let R ∈ γ(H0, E) and
S ∈ γ(H1, E

∗). Define the operator ⟨R,S⟩ ∈ L (H1,H0) by

⟨R,S⟩h := R∗(Sh), h ∈ H1.

Then ⟨R,S⟩ is a trace class operator.

Proof. Let (hn)n≥1 and (kn)n≥1 be orthonormal bases for H0 and H1, respec-
tively. Let (εn)n≥1 be such that |εn| = 1 and ⟨Rhn, Sun⟩εn = |⟨Rhn, Sun⟩| for
every n ≥ 1. Then by Hölder’s inequality∑

n≥1

∣∣∣⟨ ⟨R,S⟩un, hn
⟩∣∣∣ = ∑

n≥1

⟨εnRhn, Sun⟩

= E
⟨∑

n≥1

εnγnRhn,
∑
k≥1

γkSuk

⟩
≤

∥∥∥∑
n≥1

εnγnRhn

∥∥∥
L2(Ω;E)

∥∥∥∑
k≥1

γkSuk

∥∥∥
L2(Ω;E∗)

= ∥R∥γ(H0,E)∥S∥γ(H1,E∗).

Now the result follows from [39, Theorem 4.6]. �
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We define the trace duality pairing as

⟨R,S⟩Tr = Tr(R∗S) =
∑
n≥1

⟨Rhn, Sun⟩ . (2.2.1)

From the calculation in the above proof we see that

| ⟨R,S⟩Tr | ≤ ∥R∥γ(H0,E)∥S∥γ(H1,E∗).

Recall the following facts: (details and references on umd and type can be
found in Subsections 2.2.3 and 2.4.4, respectively).

Facts 2.4.

• If E is a Hilbert space, then γ(H,E) coincides with the Hilbert-Schmidt
operators L2(H,E)

• For all p ∈ [1,∞), γ(H,E) is isomorphic to a closed subspace of Lp(Ω;E).

Moreover, the following properties of E are inherited by γ(H,E): reflexivity, type
p ∈ [1, 2], cotype q ∈ [2,∞], umd, separability.

2.2.2 The Malliavin derivative operator

In this section we recall some of the basic elements of Malliavin calculus. We
refer to [95] for details in the scalar situation.

Let {W (h), h ∈ H} be an isonormal Gaussian process associated with H,
that is {Wh : h ∈ H} is a centered family of Gaussian random variables and

E(Wh1Wh2) = ⟨h1, h2⟩, h1, h2 ∈ H.

Under these conditions, W : H → L2(Ω) is a bounded linear operator. We will
assume F is generated by W .

Let 1 ≤ p < ∞, and let E be a Banach space. Let us define the Gaussian
Sobolev space D1,p(E) of E-valued random variables in the following way. Con-
sider the class S ⊗ E of smooth E-valued random variables F : Ω → E of the
form

F = f(W (h1), . . . ,W (hn))⊗ x,

where f ∈ C∞
b (Rn), n ≥ 1 h1, . . . , hn ∈ H, x ∈ E, and linear combinations

thereof. Since S is dense in Lp(Ω) and Lp(Ω) ⊗ E is dense in Lp(Ω;E), it
follows that S ⊗ E is dense in Lp(Ω;E). For F ∈ S ⊗ E, define the Malliavin
derivative DF as the random variable DF : Ω → γ(H,E) given by

DF =
n∑

i=1

∂if(W (h1), . . . ,W (hn))⊗ (hi ⊗ x).

If E = R, we can identify γ(H,R) with H and in that case for all F ∈ S ,
DF ∈ Lp(Ω;H) coincides with the Malliavin derivative in [95]. Recall from [95,
Proposition 1.2.1] that D is closable as an operator from Lp(Ω) into Lp(Ω;H),
and this easily extends to the vector-valued setting (see [75, Proposition 3.3]).
For convenience we provide a short proof.
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Proposition 2.5 (Closability). For all 1 ≤ p < ∞, the Malliavin derivative
D is closable as an operator from Lp(Ω;E) into Lp(Ω; γ(H,E)).

Proof. Let (Fn)n≥1 in S ⊗E and G ∈ Lp(Ω; γ(H,E)) be such that limn→∞ Fn =
0 in Lp(Ω;X) and limn→∞DFn = G in Lp(Ω; γ(H,E)). We need to show that
G = 0. Since G is strongly measurable, it suffices to check that for any h ∈ H
and x∗ ∈ E∗ one has ⟨Gh, x∗⟩ = 0. By the closability of D in the scalar case one
obtains

⟨Gh, x∗⟩ = lim
n→∞

⟨DFnh, x
∗⟩ = lim

n→∞
D(⟨Fn, x

∗⟩)(h) = 0.

�

The closure of the operator D is denoted by D again. The domain of the
closure is denoted by D1,p(E) and endowed with the norm

∥F∥D1,p(E) := (∥F∥pLp(Ω;E) + ∥DF∥pLp(Ω;γ(H,E)))
1/p

it becomes a Banach space. Similarly, for k ≥ 2 and p ≥ 1 we let Dk,p(E) be the
closure of S ⊗ E with respect to the norm

∥F∥Dk,p(E) := (∥F∥pLp(Ω;E) +
k∑

i=1

∥DiF∥pLp(Ω;γi(H,E)))
1/p.

Here γ1(H,E) = γ(H,E) and recursively, γn(H,E) = γ(H, γn−1(H,E)) for
n ≥ 2. Finally let D∞,p(E) =

∩
k≥1 Dk,p(E).

2.2.3 Ornstein-Uhlenbeck operators and Meyer’s inequalities

In this subsection we recall several results from [74] and [95].
Recall the definition of the n-th Wiener chaos

Hn := lin{Hn(W (h)) : ∥h∥ = 1}.

Here, Hn is the n-th Hermite polynomial. Also let P be the set of random vari-
able of the form p(W (h1), . . .W (hn)) where p is a polynomial and h1, . . . , hn ∈
H. This set is dense in Lp(Ω) for all p ∈ [1,∞) (see [95, Exercise 1.1.7]). A
classical result is the following orthogonal decomposition L2(Ω) =

⊕
n≥0 Hn

(see [95, Theorem 1.1.1]). For each n ≥ 1, let Jn ∈ L (L2(Ω)) be the orthogonal
projection onto Hn. The Ornstein-Uhlenbeck semigroup (P (t))t≥0 on L2(Ω) is
defined by

P (t) :=
∞∑

n=0

e−ntJn.

Clearly, P (t)∗ = P (t). Moreover, (P (t))t≥0 extends to a C0-semigroup of positive
contractions on Lp(Ω) for all 1 ≤ p <∞ (see [95, Section 1.4]).
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Let E be a Banach space. By positivity, for any t ≥ 0 the mapping P (t)⊗ IE
extends to a contraction PE(t) ∈ L (Lp(Ω;E)). Moreover, (PE(t))t≥0 is a C0-
semigroup on Lp(Ω;E). Also note that P ⊗E is dense in Lp(Ω;E). Denote the
generator of (PE(t))t≥0 by LE , and set CE := −

√
−LE . Observe that for all

F ∈ P ⊗ E one has CEF =
∑

n≥0

√
nJnF . Whenever, there is no danger of

confusion we will leave out the subscript E from all these expressions. If E has
type p′ > 1, then PE(t) is an analytic semigroup on Lp(Ω;E) for all p ∈ (1,∞).
In this case each Jn is a bounded operator on Lp(Ω;E) for all p ∈ (1,∞). We
refer to [105, Theorem 5.5, Remark 5.9(ii), Identity (5.15)] for details.

Next we recall the vector-valued anlagen of Meyer’s inequalities from [74,
Theorem 6.8]. To do so we need the following Banach space property. A Banach
space E is said to have umd if for some p ∈ (1,∞), there is a constant βp,E such
that for every N ≥ 1, every martingale difference sequence (dn)

N
n=1 in Lp(Ω,E)

and every {−1, 1}-valued sequence (εn)
N
n=1, we have

(
E
∥∥∥ N∑

n=1

εndn

∥∥∥p) 1
p ≤ βp,X

(
E
∥∥∥ N∑

n=1

dn

∥∥∥p) 1
p

. (2.2.2)

umd stands for unconditional martingale differences. It can be shown that if
(2.2.2) holds for some p ∈ (1,∞), then one can show that it holds for all p ∈
(1,∞). We refer to [23] for details. The umd property plays an important role
in vector-valued harmonic analysis, due to the fact that the Hilbert transform
is bounded if and only if E is a umd space. We will also use that the umd
property implies several other useful Banach space properties. If X is a umd
space, then it is reflexive, and hence spaces such as C(K), L1, L∞ do not have
umd. In the reflexive range many of the classical spaces (Lebesgue space, Sobolev
spaces, Besov spaces, Orlicz spaces, Schatten class, etc) are known to be umd.
In applications to SPDEs the most important example is Lq with q ∈ (1,∞).

The case n = 1 of the following result was proved in [106] and used in [74,
Theorem 6.8] to derive the case n ≥ 2 by induction.

Theorem 2.6 (Meyer’s inequalities). Let E be a umd Banach space, let 1 <
p < ∞ and n ≥ 1. Then the domain of the operator Cn on Lp(Ω;E) equals
Dn,p(E). Moreover, for all F ∈ Dn,p(E) we have

∥DnF∥Lp(Ω;γn(H,E)) .p,E,n ∥CnF∥Lp(Ω;E)

.p,E,n ∥F∥Lp(Ω;E) + ∥DnF∥Lp(Ω;γn(H,E)).

Also recall the following vector-valued version of Meyer’s Multiplier Theorem
(see [74, Theorem 6.5], where even an operator-valued version has been obtained).

Theorem 2.7 (Meyer’s Multiplier Theorem). Let 1 < p < ∞. Let E be
a umd Banach space, and let (ak)

∞
k=0 be a sequence of real numbers such that∑∞

k=0 |ak|N−k <∞ for some N ≥ 1. If a sequence of scalars (ϕ(n))n≥1 satisfies
ϕ(n) :=

∑∞
k=0 akn

−k for n ≥ N , then the operator Tϕ defined by
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TϕF :=
∞∑

n=0

ϕ(n)JnF, F ∈ P ⊗ E,

extends to a bounded operator on Lp(Ω;E).

Due to the above results, many of the results in the scalar setting can be extended
to the umd-valued setting. Some results have already been derived in [74], and
we will obtain several other results which will be needed to present some of the
tools in Malliavin calculus in the umd setting.

The following density result is a consequence of the corresponding result in
the scalar case. It will play a minor role in the sequel.

Proposition 2.8. Let E be a Banach space, p ∈ [1,∞) and k ≥ 1. Then P ⊗E
is dense in Dk,p(E).

Proof. It follows from [53, Theorem 15.108] and [95, Corollary 1.5.1] that P is
dense in Dk,p(R). Since Dk,p(R) ⊗ E contains the dense subspace S ⊗ E, the
result follows from the definition of Dk,p(E). �

Below, the space D1,p(γ(K,E)), where K is an arbitrary Hilbert space, will
play an important role for the divergence operator δ. The following result is a
direct consequence of the γ-Fubini lemma 2.2.

Proposition 2.9. Let K be a separable Hilbert space, E be a Banach space and
let 1 ≤ p <∞. Then the map Fub : D1,p(γ(K,E)) → γ(K,D1,p(E)) defined by

((FubF )k)(ω) := F (ω)k, ω ∈ Ω, k ∈ H,

is an isomorphism D1,p(γ(H,E)) h γ(H,D1,p(E)). Here

(D[(FubF )k])h = ((DF )h)k, h ∈ H, k ∈ K.

In particular, this result holds for the case K = H.

2.3 Results on Malliavin derivatives

2.3.1 Poincaré inequality and its consequences

The following Poincaré inequality will be useful to us. A similar result for umd
spaces was obtained [84, Theorem 1] in the discrete setting using entirely different
methods. We extend the scalar-valued proof from [95, Proposition 1.5.8].

Proposition 2.10 (Poincaré inequality). Let E be a umd space and let p ∈
(1,∞). For all u ∈ D1,p(Ω;E) one has

∥u− E(u)∥Lp(Ω;E) .p,E ∥Du∥Lp(Ω;γ(H,E)),
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Proof. Let R be the operator on Lp(Ω;E) defined by R =
∑∞

n=1

√
1 + 1/nJn.

We will prove that R is bounded, using Theorem 2.7. With ϕ(n) :=
√
1 + 1/n,

observe that

ϕ(n) =
∞∑
k=0

(
1/2

k

)
n−k =

∞∑
k=0

(1/2)(1/2− 1) . . . (1/2− k + 1)

k!
n−k.

With Stirling’s formula we obtain

∞∑
k=1

∣∣∣(1/2
k

)∣∣∣ = ∞∑
k=1

(2k)!

(2k − 1)(k!)24k
∼

∞∑
k=1

1

k3/2
.

It follows that the above series converges, hence R is bounded.
For any smooth u ∈ S ⊗ E we have

∥(I − L)−
1
2RCu∥Lp(Ω;E) =

∥∥∥ ∞∑
j=1

Jnu
∥∥∥
Lp(Ω;E)

= ∥u− E(u)∥Lp(Ω;E).

With approximation, it follows that the equality holds for all u ∈ D1,p(E). Using
the boundedness of R, (I − L)−1/2 and Meyer’s inequalities, we obtain

∥u− E(u)∥Lp(Ω;E) = ∥(I − L)−1/2RCu∥Lp(Ω;E) ≤ c∥Cu∥Lp(Ω;E)

≤ c′∥Du∥Lp(Ω;γ(H,E)),

�

As a consequence of the Poincaré inequality one has the following:

Corollary 2.11. Let E be a umd space, p ∈ (1,∞) and let k ≥ 1. For all
u ∈ Dk,p(Ω;E) one has

∥u∥Dk,p(E) hp,E,k ∥u∥Lp(Ω;E) + ∥Dku∥Lp(Ω;γk(H,E)).

Proof. By density it suffices to prove the norm equivalence for all u ∈ S ⊗ E.
The part &p,E,k is trivial. For the estimate .p,E , by an iteration argument it
suffices to show that for all i ≥ 1,

∥Diu∥Lp(Ω;γi(H,E)) .p,E,i ∥u∥Lp(Ω;E) + ∥Di+1u∥Lp(Ω;γi+1(H,E)). (2.3.1)

Observe that EDiu = J0D
iu = DiJiu (see [95, Proposition 1.2.2]). Hence by [74,

Theorem 5.3] (applied i− 1 times), one has

∥EDiu∥γi(H,E) = ∥DiJiu∥Lp(Ω;γi(H,E)) hp,i ∥Jiu∥Lp(Ω;E) .p,E,i ∥u∥Lp(Ω;E).

Now Proposition 2.10 and the latter estimate imply that

∥Diu∥Lp(Ω;γi(H,E)) ≤ ∥EDiu∥+ ∥Diu− EDiu∥Lp(Ω;γi(H,E))

.p,E,i ∥u∥Lp(Ω;E) + ∥Di+1u∥Lp(Ω;γi+1(H,E)).

and hence (2.3.1) follows. �
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2.3.2 Independence of p and a weak characterization

The following theorem suggests that for F to be in Dk,p(E), it suffices to check
that F is differentiable in a very weak sense. The result is known in the case
E = R (see [53, Theorem 15.64]). However, in this situation the proof below is
new as well.

Theorem 2.12. Let E be a umd Banach space, let p ∈ (1,∞) and k ≥ 1. Let
F ∈ Lp(Ω;E) be such that for all x∗ ∈ E∗ one has ⟨F, x∗⟩ ∈ Dk,1(R). If there
exists an ξ ∈ Lp(Ω; γk(H,E)) such that for all x∗ ∈ E∗

Dk ⟨F, x∗⟩ = ⟨ξ, x∗⟩ .

Then F ∈ Dk,p(E) and DkF = ξ.

Proof. Since PE is an analytic semigroup, PE(t)F ∈
∩

j≥1 Dom(Lj
E) ⊂ D∞,p(E)

for all t > 0. The inclusion follows from Meyer’s inequalities (see Theorem 2.6).
From [74, Lemma 6.2] we get for all x∗ ∈ E∗,⟨
DkPE(t)F, x

∗⟩ = Dk ⟨PE(t)F, x
∗⟩ = DkPR(t) ⟨F, x∗⟩ = e−ktPγk(H,R)D

k ⟨F, x∗⟩
= e−ktPγk(H,R) ⟨ξ, x∗⟩ =

⟨
e−ktPγk(H,E)ξ, x

∗⟩ .
Hence DkPE(t)F = e−ktPγk(H,E)(t)ξ.

Now, let tn ↓ 0 as n → ∞, and set Fn = PE(tn)F . Then, by the strong
continuity of (P (t))t≥0, we get Fn → F in Lp(Ω;E) and DkFn → ξ in
Lp(Ω; γk(H,E)). From Corollary 2.11 it follows that (Fn)n≥1 is a Cauchy se-
quence in Dk,p(E). Hence by the closedness of D, we get F ∈ Dk,p(E) and
DkF = ξ. �
Remark 2.13. A careful check of the above proof of Theorem 2.12 shows that
we can replace the assumption ⟨F, x∗⟩ ∈ Dk,1(R) by ⟨F, x∗⟩ ∈ D1,1(R) and
iteratively, for all 1 ≤ j ≤ k−1,Dj⟨F, x∗⟩ ∈ D1,1(γj−1(H,E)). As a consequence,
for umd spaces E, one obtains that our definition of Dk,p(E) coincides with the
definition of [74].

Next we will give another definition of a Gaussian Sobolev space. For p ∈
[1,∞) and k ∈ N let

Dk,p
∗ (E) := {F ∈ Dk,1(E) : F ∈ Lp(Ω;E), ∀ 1 ≤ j ≤ k DjF ∈ Lp(Ω; γj(H,E))}.

The next result can be viewed as a Gaussian version of the Meyers-Serrin
theorem for Sobolev spaces. For the scalar setting, a proof is provided in [53,
Theorem 15.64]. There, as in [18], a different definition of Dk,p(R) is given in
terms of differentiability properties. Their definition coincides with our definition,
since P is dense in both spaces (see Proposition 2.8, and [53, Theorem 15.108]).

Corollary 2.14. Let E be a umd Banach space, let p ∈ [1,∞) and k ∈ N. Then
Dk,p

∗ (E) = Dk,p(E).

Proof. First note that the case p = 1 is trivial. Let p > 1. Obviously, one has
Dk,p(E) ⊆ Dk,p

∗ (E). The converse result follows from Theorem 2.12. �
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2.3.3 Calculus results

Next, we will prove several calculus results in the vector-valued setting. The
following product rule will be useful later on.

Lemma 2.15 (Product rule). Let E0, E1 and E2 be Banach spaces. Let b :
E0 × E1 → E2 be a bilinear operator with the property that there is a constant
C such that for all x ∈ E0 and y ∈ E1 one has ∥b(x, y)∥ ≤ C∥x∥ ∥y∥. Let
1 ≤ p, q, r <∞ be such that 1

p + 1
q = 1

r . If F ∈ D1,p(E0) and G ∈ D1,q(E1), then

b(F,G) ∈ D1,r(E) and

D[b(F,G)] = b(DF,G) + b(F,DG). (2.3.2)

Here b(DF,G)h = b((DF )h,G) and b(F,DG)h = b(F, (DG)h) for h ∈ H.

Proof. Using Hölder’s inequality, one sees that for all F ∈ Lp(Ω;E0) and G ∈
Lq(Ω;E1), b(F,G) ∈ Lr(Ω;E2) and

∥b(F,G)∥Lr(Ω;E2) ≤ C∥F∥Lp(Ω;E0)∥G∥Lq(Ω;E1). (2.3.3)

If F ∈ S ⊗ E0 and G ∈ S ⊗ E1, (2.3.2) follows from a straightforward
calculation and the product rule for ordinary derivatives. Moreover, observe that

∥D[b(F,G)]∥Lr(Ω;γ(H,E2)) ≤ ∥b(DF,G)∥Lr(Ω;γ(H,E2)) + ∥b(F,DG)∥Lr(Ω;γ(H,E2))

Now by linearity it follows that pointwise in Ω, we have

∥b(DF,G)∥γ(H,E2) =
∥∥∥b(∑

n≥1

γ̃nDFhn, G
)∥∥∥

L2(Ω̃;E2)

≤ C
∥∥∥∑

n≥1

γ̃nDFhn

∥∥∥
L2(Ω̃;E0)

∥G∥E1 = C∥DF∥γ(H,E0)∥G∥E1 .

Here (γ̃n)n≥1 is a sequence of standard Gaussian random variables on a proba-

bility space (Ω̃, F̃ , P̃).
Similarly, one sees that ∥b(F,DG)∥γ(H,E2) ≤ C∥F∥γ(H,E0)∥DG∥γ(H,E1) point-

wise in Ω. From Hölder’s inequality we obtain

∥D[b(F,G)]∥Lr(Ω;γ(H,E2))

≤ C∥DF∥Lp(Ω;γ(H,E0))∥G∥Lq(Ω;E1) + C∥F∥Lp(Ω;E0)∥DG∥Lq(Ω;γ(H,E1))

≤ 2C∥F∥D1,p(Ω;E0)∥G∥D1,q(Ω;E1).
(2.3.4)

Now let F ∈ D1,p(E0) and G ∈ D1,q(E1). Choose sequences (Fn)n≥1 and
(Gn)n≥1 of smooth random variables such that limn→∞ Fn = F in D1,p(E0) and
limn→∞Gn = G in D1,p(E1). Then by (2.3.3), limn→∞ b(Fn, Gn) = b(F,G) in
Lr(Ω;E2). Moreover, by (2.3.4) (Db(Fn, Gn))n≥1 is a Cauchy sequence and hence
convergent in Lr(Ω; γ(H,E2)). Since D is closed, we obtain b(F,G) ∈ D1,r(E2).
Furthermore, (2.3.2) follows from an approximation argument. �
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Let E be a Banach space. For a sequence (xn)n≥1 in E and x ∈ E we say
that limn→∞ xn = x weakly if for all x∗ ∈ E∗ one has limn→∞⟨xn, x∗⟩ = ⟨x, x∗⟩.
Notation: xn ⇀ x. Recall that if E is reflexive, then for every bounded sequence
(xn)n≥1 in E there is a subsequence (nk)k≥1 and an element x ∈ E such that
xnk

⇀ x as k tends to infinity. Moreover, in this case ∥x∥ ≤ lim inf
n→∞

∥xn∥.

Lemma 2.16 (Compactness). Let E be a reflexive Banach space and let
p ∈ (1,∞). Let (Fn)n≥1 be a sequence in D1,p(E) and F ∈ Lp(Ω;E). Assume
Fn ⇀ F in Lp(Ω;E) and that there is a constant C such that for all n ≥ 1,
∥DFn∥Lp(Ω;γ(H,E)) ≤ C. Then F ∈ D1,p(E) and ∥DF∥Lp(Ω;γ(H,E)) ≤ C. More-
over, there exists a subsequence (nk)k≥1 such that DFnk

⇀ DF .

Proof. Let G = {(ξ,Dξ) : ξ ∈ D1,p(E)} ⊆ Lp(Ω;E) × Lp(Ω; γ(H,E)). Since
D is a closed linear operator, G is a closed linear subspace of Lp(Ω;E) ×
Lp(Ω; γ(H,E)). As E and γ(H,E) are reflexive, the latter space is reflexive,
and hence G is reflexive as well.

As Fn ⇀ F in Lp(Ω;E), the uniform boundedness principle implies that
(Fn)n≥1 is bounded in Lp(Ω;E). Now this together with the assumptions yields
that (Fn, DFn)n≥1 is a bounded sequence in G. Since G is reflexive, it follows
that there is a (ζ,Dζ) ∈ G and a subsequence (nk)k≥1 such that (Fnk

, DFnk
)⇀

(ζ,Dζ). Since Fn ⇀ F , one has that ζ = F , and hence F ∈ D1,p(E) with DF =
Dζ. It follows that DFnk

⇀ DF , and in particular, ∥DF∥Lp(Ω;γ(H,E)) ≤ C. �

Next we extend the chain rule for the Malliavin derivative to the vector-valued
setting.

Proposition 2.17. Let E0 be a Banach space, let E1 be a umd Banach space
and let p ∈ (1,∞). Suppose φ : E0 → E1 is Fréchet differentiable and has a
continuous and bounded derivative. If F ∈ D1,p(E0), then φ(F ) ∈ D1,p(E1) with

D(φ(F )) = φ′(F )DF.

Proof. Observe that for all x, y ∈ E0, ∥φ(x) − φ(y)∥ ≤ C∥x − y∥, where C =
supy∈E0

∥φ′(y)∥L (E0,E1). In particular, for all x ∈ E0, ∥φ(x)∥ ≤ C(1 + ∥φ(0)∥).
Step 1: First assume E1 = R.

Suppose that F is a smooth random variable of the form

F =

M∑
m=1

fm(W (h1), . . . ,W (hn))⊗ xm.

Now consider the isomorphism b : sp{x1, . . . , xM} → RM ′
, M ′ ≤ M , which

sends xi to ei. Then obviously ψ : RM ′ → sp{x1, . . . , xM} given by ψ := φ ◦ b−1

is Fréchet differentiable and has a continuous and bounded derivative given by
ψ′(x)(y) = φ′(b−1(x))b−1(y). Moreover, from the finite dimensional chain rule
(see [95, Proposition 1.2.3]) we get φ(F ) = ψ(b(F )) is in D1,p(R) and D(φ(F )) =
φ′(F )DF .
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Now let F ∈ D1,p(E0). Choose sequence of smooth random variables Fk

converging to F in D1,p(E0). By going to a subsequence if necessary, we can
assume that Fk → F in E0 and DFk → DF in γ(H,E0) almost surely as
k → ∞. Clearly, one has

lim
k→∞

∥φ(Fk)− φ(F )∥Lp(Ω) ≤ C lim
k→∞

∥Fk − F∥Lp(Ω) = 0.

Moreover, by the above, φ(Fk) ∈ D1,p(Ω) for each k ≥ 1 and

∥D(φ(Fk))− φ′(F )DF∥Lp(Ω;H) = ∥φ′(Fk)DFk − φ′(F )DF∥Lp(Ω;H)

≤ ∥φ′(Fk)DFk − φ′(Fk)DF∥Lp(Ω;H) + ∥φ′(Fk)DF − φ′(F )DF∥Lp(Ω;H)

≤ C∥DFk −DF∥Lp(Ω;H) + ∥φ′(Fk)DF − φ′(F )DF∥Lp(Ω;H)

The first term clearly converges to zero. The second term converges to zero by
the continuity and boundedness of φ′ and the Dominated Convergence Theorem.
By the closedness of D it follows that φ(F ) ∈ D1,p(R) and D(φ(F )) = φ′(F )DF.

Step 2: Let E1 be an arbitrary umd space. Let F ∈ D1,p(E0). Fix an y∗ ∈ E∗
1 .

Consider the function Φy∗ : E0 → R defined by

Φy∗(x) = ⟨φ(x), y∗⟩ , x ∈ E0.

Applying step 1 to the function Φy∗ we obtain that Φy∗(F ) ∈ D1,p(R) and

D ⟨φ(F ), y∗⟩ = D(Φy∗(F )) = Φ′
y∗(F )DF = ⟨φ′(F )DF, y∗⟩ .

Since y∗ ∈ E∗
1 was arbitrary, and φ′(F )DF ∈ Lp(Ω; γ(H,E1)), we can use

Theorem 2.12 to obtain that φ(F ) ∈ D1,p(E1) and D(φ(F )) = φ′(F )DF . �

Remark 2.18. It is clear from the proof of Proposition 2.17 that it remains true
if E1 = R and p = 1.

2.3.4 A chain rule for Lipschitz functions

In this section we will study the chain rule for the Malliavin derivative for Lip-
schitz functions ϕ : E0 → E1, where E0 and E1 are Banach spaces with some
additional geometric structure.

Proposition 2.19. Let E0 be a Banach space that has a Schauder basis, let E1

be a umd Banach space and let p ∈ (1,∞). Let ϕ : E0 → E1 be a Lipschitz
function with

∥ϕ(x1)− ϕ(x2)∥ ≤ L∥x1 − x2∥, x1, x2 ∈ E0.

If F ∈ D1,p(E0), then ϕ(F ) ∈ D1,p(E1), and furthermore there exists a bounded
linear operator TF : γ(H,E0) → L∞(Ω; γ(H,E1)) with ∥TF ∥ ≤ L and D(ϕ(F )) =
TF (DF ).
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Observe that for ξ ∈ Lp(Ω; γ(H,E0)), TF (ξ) ∈ Lp(Ω; γ(H,E1)) is well-defined
as the composition of the mappings ω 7→ (ω, ξ(ω)) ∈ Ω×γ(H,E0) and (ω,R) 7→
(TFR)(ω) ∈ γ(H,E1).

Proof. Let (xn)n≥1 be a Schauder basis for E0 and let (x∗n)n≥1 be its associated
biorthogonal functionals. We can assume that ∥xn∥ = 1 for all n ≥ 1. For each
n ≥ 1 consider the projection Sn : E0 → E0 onto the first n basis coordinates.
It is well-known that there is a constant C such that for all n ≥ 1, ∥Sn∥ ≤ C.
Letting, S0 = 0, we see that Pn := Sn − Sn−1 satisfies ∥Pn∥ ≤ 2C for all n ≥ 1.

For n ≥ 1 fixed, consider the map ln : Rn → sp{x1, . . . , xn} that sends the
basis coordinate ei ∈ Rn to xi. We claim that ∥ln∥ ≤

√
n and ∥l−1

n ∥ ≤ 2C
√
n.

Indeed, for α = (α1, . . . , αn) ∈ Rn one has

∥lnα∥ =
∥∥∥ n∑

i=1

αixi

∥∥∥ ≤
n∑

i=1

|αi|∥xi∥ ≤
√
n∥α∥,

and the first part of the claim follows. For x =
∑n

i=1 αixi ∈ sp{x1, . . . , xn} one
has

2C
∥∥∥ n∑

i=1

αixi

∥∥∥ ≥
∥∥∥Pj

n∑
i=1

αixi

∥∥∥ = ∥αjxj∥ = |αj |, j ∈ {1, 2, . . . , n}.

It follows that

2
√
nC

∥∥∥ n∑
i=1

αixi

∥∥∥ ≥
( n∑

j=1

|αj |2
)1/2

= ∥l−1
n x∥.

Hence the second part of the claim follows.
Next, for every n ≥ 1, let ζn : Rn → R be a C∞(Rn)-function such that

ζn ≥ 0, supp(ζn) ⊂ B(0, 1), and

∫
Rn

ζn(x) dx = 1.

Fix n ≥ 1 and fix ε > 0. Let ζεn : Rn → R be given by ζεn(x) := ε−nζn(x/ε).
Define ϕn : E0 → E1 by

ϕn(x) :=

∫
Rn

ζεn
(
y − l−1

n (Snx)
)
ϕ(lny) dy =

∫
Rn

ζεn(y)ϕ
(
Sn(x) + ln(y)

)
dy.

It follows that
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(E∥ϕn(F )− ϕ(F )∥pE1
)1/p =

(
E
∥∥∥ ∫

Rn

ζεn(y)
[
ϕ
(
Sn(F ) + ln(y)

)
− ϕ(F )

]
dy

∥∥∥p
E1

)1/p

≤
(
E
(∫

Rn

ζεn(y)∥ϕ
(
Sn(F ) + ln(y)

)
− ϕ(F )∥E1 dy

)p)1/p

≤ L
(
E
(∫

Rn

ζεn(y)∥Sn(F ) + ln(y)− F∥E0 dy
)p)1/p

≤ L
(
E
(∫

Rn

ζεn(y)∥Sn(F )− F∥ dy
)p)1/p

+ L

∫
Rn

ζεn(y)∥lny∥E0
dy

≤ L(E∥Sn(F )− F∥p)1/p + L
√
n

∫
B(0,ε)

ε−nζn(y/ε)∥y∥Rn dy

≤ L(E∥Sn(F )− F∥p)1/p + Lε
√
n.

By the dominated convergence theorem one has (E∥Sn(F ) − (F )∥p)1/p → 0 as
n → ∞. Therefore, letting ε = 1

n , it follows that limn→∞ ϕn(F ) = ϕ(F ) in
Lp(Ω;E1).

Clearly, x 7→ ζεn(y − l−1
n (Snx)) is Fréchet differentiable, and hence ϕn is

differentiable. We claim that for all x ∈ E0, ∥ϕ′n(x)∥ ≤ CL. Indeed, fix x, h ∈ E0

and note that

ϕ′n(x)h = lim
t→0

ϕn(x+ th)− ϕn(x)

t
.

Now for t ̸= 0 one has∥∥∥ϕn(x+ th)− ϕn(x)

t

∥∥∥
E1

=
1

|t|

∫
Rn

ζεn(y)[ϕ(Sn(x) + Sn(th) + ln(y))− ϕ(Sn(x) + ln(y))] dy
∥∥∥
E1

≤ L

|t|

∫
Rn

ζεn(y)∥tSn(h)∥E0 dy ≤ L∥Snh∥E0 ≤ LC∥h∥E0 .

Therefore, ∥ϕ′n(x)∥ ≤ LC and the claim follows. By Proposition 2.17, we see
that ϕn(F ) ∈ D1,p(E1), with

Dϕn(F ) = ϕ′n(F )DF.

Moreover, by the above claim one obtains that

∥ϕ′n(F )DF∥Lp(Ω;γ(H,E1) ≤ LC∥DF∥Lp(Ω;γ(H,E0)).

Since the latter is independent of n, we can use Lemma 2.16 to conclude that
ϕ(F ) ∈ D1,p(E1). Moreover, taking an appropriate subsequence we can assume
that

lim
n→∞

ϕ′n(F )DF = Dϕ(F ) in the weak topology of Lp(Ω; γ(H,E1). (2.3.5)

Next, we will show that there exists an operator
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T ∈ L (γ(H,E0), L
∞(Ω; γ(H,E1)))

such that D(ϕ(F )) = TDF . Since E0 has a basis, there exists a basis (Rn)n≥1

for γ(H,E0). Set Tn := ϕ′n(F ). Replacing (Ω,F ,P) by the space generated
by F and DF , we can assume Ω is countably generated. Moreover, since for
each n, j ≥ 1, ϕ′n(F )Rj is strongly measurable, we can assume E1 is separa-
ble and hence that γ(H,E1) is separable. Since E1 is reflexive, it follows that
γ(H,E1) is reflexive and hence also γ(H,E1)

∗ is separable. We can conclude
that L1(Ω; γ(H,E1)

∗) is separable. Moreover, once again by the reflexivity of
γ(H,E1), one has L1(Ω; γ(H,E1)

∗)∗ = L∞(Ω; γ(H,E1)).
Recall the following basic fact (see [115, Theorem 3.17]): a bounded se-

quence (x∗n)n≥1 in E∗ where E is a separable Banach space has a weak∗

convergent subsequence, i.e., there is an x∗ ∈ E∗ such that for all x ∈ E,
⟨x, x∗⟩ = limk→∞⟨x, x∗nk

⟩. Moreover, ∥x∗∥ ≤ lim infk→∞ ∥x∗nk
∥.

For every ω ∈ Ω, we can consider a canonical extension Tn(ω) : γ(H,E0) →
γ(H,E1) defined by (Tn(ω)R)h = Tn(ω)(Rh), and this extension satisfies
∥Tn(ω)∥ ≤ LC. For every R ∈ γ(H,E0), the bounded sequence (TnR)n≥1 in
L∞(Ω; γ(H,E1)) contains a weak∗ convergent subsequence. In particular, this
holds for every element Ri with i ≥ 1. By a diagonal argument we can find a sub-
sequence (nk)k≥1 and elements (zi)i≥1 in L

∞(Ω; γ(H,E1)) such that for all i ≥ 1,
limk→∞ Tnk

Ri = zi in the weak∗-topology of L∞(Ω; γ(H,E1)). Let γ0(H,E0) =
sp{R1, R2, . . .}. Define the operator T : γ0(H,E0) → L∞(Ω; γ(H,E1)) by

T
( n∑

i=1

aiRi

)
=

n∑
i=1

aizi.

For each R ∈ γ0(H,E) one has limk→∞ Tnk
R = TR in the weak∗-topology of

L∞(Ω; γ(H,E1)) and therefore,

∥TR∥L∞(Ω;γ(H,E1)) ≤ lim inf
k→∞

∥Tnk
R∥L∞(Ω;γ(H,E1)) ≤ LC∥R∥.

It follows that T has a continuous extension T : γ(H,E0) → L∞(Ω; γ(H,E1)).
Moreover, an approximation argument shows that for all R ∈ γ(H,E0), TR =
limk→∞ Tnk

R in the weak∗-topology. We show that for all ξ ∈ Lp(Ω; γ(H,E0))
and all simple functions η : Ω → γ(H,E1)

∗ one has

E⟨Tξ, η⟩ = lim
k→∞

E⟨Tnk
ξ, η⟩. (2.3.6)

To prove this, note that if ξ is a simple function as well, then by linearity it
suffices to prove (2.3.6) for ξ = 1AR with R ∈ γ(H,E0) and A ∈ F . In that case
one has

E⟨η, Tξ⟩ = E⟨1Aη, TR⟩ = lim
k→∞

E⟨1Aη, Tnk
R⟩ = lim

k→∞
E⟨η, Tnk

ξ⟩.

for all η ∈ L1(Ω; γ(H,E∗
1 )). Now let ξ ∈ Lp(Ω; γ(H,E0)) and let η : Ω →

γ(H,E) be simple function. Let ε > 0 be arbitrary. Choose a simple function
ξ0 : Ω → γ(H,E0) such that ∥ξ − ξ0∥Lp(Ω;γ(H,E0)) ≤ ε. It follows that
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lim sup
k→∞

∣∣E⟨Tξ, η⟩ − E⟨Tnk
ξ, η⟩

∣∣ ≤ lim sup
k→∞

∣∣E⟨Tξ0, η⟩ − E⟨Tnk
ξ0, η⟩

∣∣+ 2LCε

= 2LCε.

Since ε > 0 was arbitrary (2.3.6) follows.
Taking ξ = DF in (2.3.6) and using (2.3.5) it follows that for all simple

functions η : Ω → γ(H,E1)
∗ one has

E⟨TDF, η⟩ = lim
k→∞

E⟨Tnk
DF, η⟩ = lim

k→∞
E⟨ϕ′nk

(F )DF, η⟩ = E⟨Dϕ(F ), η⟩.

By a density and Hahn-Banach argument this yields TDF = Dϕ(F ). Hence we
can take T = TF . �

Remark 2.20. The first part of the proof is based on the idea in [24, Proposition
5.2], where the result has been proved for Hilbert spaces E0 and E1. It is surpris-
ing that this argument can be extended to a Banach space setting. We do not
know if the assumption that E0 has a basis can be avoided. In the final part of the
argument in [24, Proposition 5.2] a compactness argument is used to construct
an operator T ∈ L∞(Ω;L (E0, E1)) such that D(ϕ(F )) = T (DF ). There seems
to be a difficulty in this proof, and at the moment it remains unclear whether
such a T exists. Note that there are subtle (measurability) differences between
the latter space and L (E0, L

∞(Ω;E1)) if E0 and E1 are infinite dimensional.

2.4 The divergence operator and the Skorohod integral

Definition 2.21. Let p ∈ [1,∞). Let Domp,E(δ) be the set of ζ ∈ Lp(Ω; γ(H,E))
for which there exists an F ∈ Lp(Ω;E) such that

E ⟨ζ,DG⟩Tr = E ⟨F,G⟩E,E∗ , G ∈ S ⊗ E∗.

In that case, F is uniquely determined, and we write δ(ζ) = F . The operator δ
with domain Domp,E(δ) is called the divergence operator.

The operator δ is closed and densely defined, which easily follows from the scalar
setting (see [53, p. 274] and [95]). For p ∈ (1,∞), the operator δ coincides with
the adjoint of D acting on D1,q(E∗) where 1

p + 1
q = 1 (see [75]). If there is no

danger of confusion, we will also write Dom(δ) for Domp,E(δ).
The following identity can be found in [75, Lemma 3.2].

Lemma 2.22. We have S ⊗ γ(H,E) ⊆ Dom(δ) and

δ(f ⊗R) =
∑
j≥1

W (hj)f ⊗Rhj −R(Df), f ∈ S , R ∈ γ(H,E).

Here, (hj)j≥1 denotes an arbitrary orthonormal basis of H.
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An important consequence of Meyer’s inequalities and multiplier theorem is
the following sufficient condition to be in the domain of δ (see [74, Proposition
6.10]).

Proposition 2.23. Let E be a umd Banach space and let 1 < p < ∞. The
divergence operator δ is continuous from D1,p(γ(H,E)) to Lp(Ω;E).

For Hilbert spaces H1 and H2, let us denote by IH1,H2 the isomorphism

IH1,H2 : γ(H1, γ(H2, E)) → γ(H2, γ(H1, E)), (2.4.1)

which is defined by ((IH1,H2R)(h2))(h1) = (Rh1)(h2) for h1 ∈ H1 and h2 ∈ H2.
We will write IH1

= IH1,H1
. The following proposition gives a certain commuta-

tion relation between D and δ.

Proposition 2.24. Let E be a umd Banach space. If u ∈ D2,p(γ(H,E)), then
δ(u) ∈ D1,p(E) and we have the relation

D(δ(u)) = u+ δ(IH(Du)).

Proof. First, let E = R, and u = f(W (h1), . . . ,W (hn))⊗h, with h1, . . . , hn ∈ H
orthonormal and h ∈ H such that ∥h∥ = 1. We can use Lemma 2.22 to obtain

D(δ(u)) =
( n∑

j=1

∂jf ⊗ (hj ⊗ h)
)
W (h) + f ⊗ h−

n∑
j,k=1

∂jkf ⊗ ⟨h, hj⟩hk.

Another computation yields

δ(IH(Du)) =
( n∑

j=1

∂jf ⊗ (hj ⊗ h)
)
W (h)−

n∑
j,k=1

∂jkf ⊗ ⟨h, hj⟩hk.

The commutation relation can be extended by linearity. Now let E be a umd
Banach space, u ∈ S ⊗ γ(H,E). The commutation relation holds for ⟨u, x∗⟩ for
all x∗ ∈ E∗, and hence it holds for u. For general u ∈ D2,p(γ(H,E)), the identity
follows from Proposition 2.23 and an approximation argument. �

An immediate consequence is that Proposition 2.23 extends to Dk,p(γ(H,E)) for
k ≥ 1.

Corollary 2.25. Let E be a umd Banach space, 1 < p < ∞, and k ≥ 1. The
operator δ is continuous from Dk,p(γ(H,E)) to Dk−1,p(E).

Another consequence of 2.23 is that [95, Proposition 1.5.8] extends to the
umd-valued setting.

Proposition 2.26. Let E be a umd space and let 1 < p < ∞. For all u ∈
D1,p(γ(H,E)), we have

∥δ(u)∥Lp(Ω;E) ≤ cp(∥E(u)∥γ(H,E) + ∥Du∥Lp(Ω;γ2(H,E))).
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Proof. Since δ is continuous from D1,p(γ(H,E)) to Lp(Ω;E), we have

∥δ(u)∥Lp(Ω;E) ≤ c(∥u∥Lp(Ω;γ(H,E)) + ∥Du∥Lp(Ω;γ2(H,E))).

By the triangle inequality, we have

∥u∥Lp(Ω;γ(H,E)) ≤ ∥E(u)∥γ(H,E) + ∥u− E(u)∥Lp(Ω;γ(H,E)).

Now the result follows from Proposition 2.10. �

2.4.1 Independence of p and weak characterization

One can formulate the following analogue of Theorem 2.12 for the divergence
operator δ.

Theorem 2.27. Let E be a umd Banach space, p ∈ (1,∞) and k ≥ 1. Let
F ∈ Lp(Ω; γk(H,E)) be such that for all x∗ ∈ E∗, ⟨F, x∗⟩ is in Dom1,R(δ

k). If
there exists a ξ ∈ Lp(Ω;E) such that for all x∗ ∈ E∗ one has

δk ⟨F, x∗⟩ = ⟨ξ, x∗⟩ ,

then F ∈ Domp,E(δ
k) and δkF = ξ.

Proof. Since E is a umd Banach space, γk(H,E) is as well, and as in the
proof of Theorem 2.12 we obtain that Pγk(H,E)(t) is an analytic semigroup on

Lp(Ω; γk(H,E)) and

Pγk(H,E)(t)F ∈ ∩j≥1Dom(Lj
γ(H,E)) ⊂ Dk,p(E) ⊆ Domp,E(δ

k)

for all t > 0, where the last inclusion follows from Corollary 2.25.
By the symmetry of (P (t))t≥0 and a duality argument, it follows from [74,

Lemma 6.2] that δk(Pγk(H,R)(t)G) = ektPRδ
kG for all G ∈ Dom1,R(δ). Hence for

all x∗ ∈ E∗,⟨
δk(Pγk(H,E)(t)F ), x

∗⟩ = δk
⟨
Pγk(H,E)(t)F, x

∗⟩ = δk(Pγk(H,R)(t) ⟨F, x∗⟩)
= ektPRδ

k(⟨F, x∗⟩) = ektPR ⟨ξ, x∗⟩ =
⟨
ektPEξ, x

∗⟩ .
Therefore, δk(Pγk(H,E)(t)F ) = ektPE(t)ξ.

Now, let tn ↓ 0 as n→ ∞, and set Fn = Pγk(H,E)(tn)F . Then, by the strong

continuity of (P (t))t≥0, we get Fn → F in Lp(Ω; γk(H,E)) and δkFn → ξ in
Lp(Ω;E). Hence, by closedness of δk, we get F ∈ Domp,E(δ

k) and δkF = ξ. �

Remark 2.28. If H is replaced with L2(0, T ;H) and F : (0, T ) × Ω → L (H,E)
is adapted, a weak characterization of the stochastic integral was given in [86]
without assumptions on the filtration. Theorem 2.27 can be viewed as an exten-
sion to the non-adapted setting, but only under the additional assumption that
the filtration is generated by W .
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2.4.2 Additional results

The next lemma is an integration by parts formula for the divergence operator.

Lemma 2.29 (Integration by parts). Let E be a Banach space, and p, q, r ∈
[1,∞) such that 1

p + 1
q = 1

r . Let u ∈ Lp(Ω; γ(H,E)) and F ∈ D1,q(E∗). If

u ∈ Dom(δ), then ⟨u, F ⟩ ∈ Domr,R(δ) and

δ(⟨u, F ⟩) = ⟨δ(u), F ⟩E,E∗ − ⟨u,DF ⟩Tr .

Proof. Let G ∈ S . Identifying H with its dual, one obtains

⟨DG, ⟨u, F ⟩⟩H = ⟨u,DG⊗ F )⟩Tr .

With Lemma 2.15, we get

E ⟨⟨u, F ⟩ , DG⟩H = E ⟨u,DG⊗ F )⟩Tr
= E ⟨u,D(GF )⟩Tr − E ⟨u,GDF ⟩Tr
= E ⟨δ(u), GF ⟩E,E∗ − E ⟨u,GDF ⟩Tr
= E(G ⟨δ(u), F ⟩E,E∗)− E(G ⟨u,DF ⟩Tr).

Therefore, ⟨u, F ⟩ ∈ Domr,E(δ) and the identity follow. Since G was arbitrary,
this yields the result by a density argument. �

The next lemma gives a relationship between the operators D, δ and L.

Lemma 2.30. Let E be a umd Banach space and p ∈ (1,∞). If u ∈ D2,p(E),
then δ(Du) = −Lu.

Proof. Note that by Meyer’s inequalities, we have u ∈ Dom(L). If u ∈ S ⊗ E,
the claim follows from the scalar case (see [95, Proposition 1.4.3]). The general
case follows from an approximation argument and Proposition 2.23 and Meyer’s
inequalities. �

2.4.3 Preliminaries on the Skorohod integral

In this section we recall the vector-valued Itô integral and its extension to the
non-adapted setting.

AssumeH = L2(0, T ;U) for some separable Hilbert space U , and some T > 0.
The family (WU (t))t∈[0,T ] of mappings from U to L2(Ω) given by

WU (t)u :=W (1[0,t] ⊗ u)

is a U -cylindrical Brownian motion. For any t ∈ [0, T ], we denote by Ft the σ-
algebra generated by {WU (s)u : 0 ≤ s ≤ t, u ∈ U}. Note that F := (Ft)t∈[0,T ] is
a filtration. Let Φ : [0, T ]×Ω → L (U,E) be a finite rank adapted step function:
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Φ(t, ω) :=
m∑
i=1

n∑
j=1

1(ti−1,ti](t)1Aij (ω)
l∑

k=1

uk ⊗ xijk,

where Aij ∈ Fti−1 are disjoint for each j, and (uk) are orthonormal in U . For
such processes, the stochastic integral Int(Φ) ∈ Lp(Ω;E) with respect to WU is
defined by

Int(Φ) :=

∫ T

0

Φ(t) dWU (t) :=
m∑
i=1

n∑
j=1

l∑
k=1

1Aij (W (ti)uk −W (ti−1)uk)⊗ xijk.

Let Lp
F(Ω; γ(H,E)) be the closure of the set of adapted finite rank step functions

in Lp(Ω; γ(H,E)). Recall the following results (see [86, Theorem 3.5] and [75,
Theorem 5.4] respectively).

Theorem 2.31 (Stochastic integral I). Let E be a umd Banach space and
let 1 < p <∞. The stochastic integral uniquely extends to a bounded operator

Int : Lp
F(Ω; γ(H,E)) → Lp(Ω;E).

In this case the process (t, ω) 7→ Int(1[0,t]Φ)(ω) has a continuous version and for
all Φ ∈ Lp

F(Ω; γ(H,E)) we have the two-sided estimate

∥Int(Φ)∥Lp(Ω;C([0,T ];E)) hp,E ∥Φ∥Lp(Ω;γ(H,E)).

In the above result one does not need that F is generated by W . If the above
norm equivalence holds for all Φ ∈ Lp

F(Ω; γ(H,E)), then E has the umd property
(see [45]).

Theorem 2.32 (Stochastic integral II). Let E be a umd space and 1 <
p < ∞. The space Lp

F(Ω; γ(H,E)) is contained in the domain of δ and for all
Φ ∈ Lp

F(Ω; γ(H,E)) one has δ(Φ) = Int(Φ).

Motivated by the above result, we will write∫ T

0

u(t) dWU (t) = δ(u), u ∈ Dom(δ),

and the latter is called the Skorohod integral of u.

2.4.4 Stochastic integral processes

In this section we will assume that H = L2(0, T ;U) for some Hilbert space U and
some T > 0, and we will assume that E is a umd Banach space. With a slight
abuse of notation, we will denote 1A : H → H, A ∈ B[0, T ], as the bounded
linear operator on H = L2(0, T ;U) defined by

(1Ah)(t) := 1A(t)h(t),
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for almost every t ∈ [0, T ].
With another slight abuse of notation, we can in a similar way view 1A as an
operator on γ(H,E). Indeed, for R ∈ γ(H,E) we define (1AR)h := R(1Ah).
From the ideal property yields that 1A is then indeed an operator on γ(H,E).

When u ∈ Dom(δ), it does not generally hold that 1(s,t]u ∈ Dom(δ). Indeed,
already in the case p = 2 and E = R a counterexample can be found in [95]
and [109]. Define

Lp(E) := {u ∈ Domp,E(δ) : 1[0,t]u ∈ Domp,E(δ) for all t ∈ [0, T ]}.

For u ∈ Lp(E) we define the process

ζ(t) := δ(1[0,t]u) :=

∫ t

0

u(s) dWU (s), t ∈ [0, T ].

Note that D1,p(γ(H,E)) ⊂ Lp(E). Indeed, by Theorem 2.9, one obtains that if
u ∈ D1,p(γ(H,E)), then 1[0,t]u ∈ D1,p(γ(H,E)). The inclusion then follows from
Proposition 2.23.

Below we will also need Banach spaces of type 2. Let us recall the definition.
Let p ∈ [1, 2] and consider a Rademacher sequence (rn). The Banach space E has
type p if there is a constant Cp such that for all finite sequences x1, . . . , xN ∈ E,

(
E
∥∥∥ N∑

n=1

rnxn

∥∥∥2)1/2

≤ Cp

( N∑
n=1

∥xn∥p
)1/p

.

An elementary fact is that every Hilbert space has type 2. From the Kahane-
Khintchine inequalities, it follows that every Banach space has type 1. Also, if
a Banach space has type p, then it has type p0 for all p0 ∈ [1, p]. If p ∈ [1,∞),
E has type p0 ∈ [1, 2] and (A,A , µ) is a measure space, then Lp(A;E) has type
min{p, p0}.

Recall from [85, Theorem 11.6] that for type 2 spaces E one has the following
embedding

L2(0, T ; γ(U,E)) ↪→ γ(H,E), (2.4.2)

where again H = L2(0, T ;U). This embedding and Proposition 2.9 yield the
embedding L2(0, T ;D1,p(γ(U,E))) ↪→ D1,p(γ(H,E)). We will show that, under

extra integrability conditions, ζ(t) :=
∫ t

0
u(s) dWU (s) has a continuous version.

Theorem 2.33. Let E be a umd Banach space with type 2, let 2 < p < ∞
and suppose u ∈ L2(0, T ;D1,p(γ(U,E))). If the map r 7→ D(u(r)) belongs to
Lp([0, T ];Lp(Ω; γ(H, γ(U,E))), then the integral process ζ : [0, T ] × Ω → E
defined by

ζ(t) =

∫ t

0

u(s) dWU (s), t ∈ [0, T ],

has a version with continuous paths.
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Proof. Let v ∈ γ(H,E) be given by v = Eu. By Theorem 2.31 the process

Y (t) =
∫ t

0
v dWU has a continuous version. Replacing u by u−Eu, from now on

we can assume ∥E(u)∥γ(H,E) = 0. Proposition 2.26 yields

E∥ζ(t)− ζ(s)∥p = E∥δ(1[s,t]u)∥p

.p,E E∥D(1[s,t]u)∥pγ(H,γ(H,E)) = E∥1[s,t](IH(Du))∥pγ(H,γ(H,E)).

Here, IH is the isomorphism given in (2.4.1). Since E has type 2, also γ(H,E)
has type 2. Hence by (2.4.2)

∥F∥Lp(Ω;γ(H,γ(H,E))) .E ∥F∥Lp(Ω;L2(0,T ;γ(U,γ(H,E)))),

for all F ∈ Lp(Ω × [0, T ]; γ(U, γ(H,E)))). This yields, using Hölder’s inequality,

∥1[s,t](IH(Du))∥pγ(H,γ(H,E)) .p,E E
(∫ t

s

∥IH,U (D(u(r)))∥2γ(U,γ(H,E)) dr
) p

2

≤ |t− s|
p
2−1E

(∫ t

s

∥IH,U (D(u(r)))∥pγ(U,γ(H,E)) dr
)

= |t− s|
p
2−1

∫ t

s

A(r) dr,

where A(r) := E∥D(u(r))∥pγ(H,γ(U,E)). By Fubini’s theorem it follows that for all

θ ∈ (0, 1/2),

E
∫ T

0

∫ T

0

∥ζ(t)− ζ(s)∥pE
|t− s|θp+1

dt ds .p,E

(∫ T

0

∫ T

s

1

|t− s|2−p( 1
2−θ)

∫ t

s

A(r) dr dt ds
)

=

∫ T

0

∫ T

s

∫ T

r

A(r)

|t− s|2−p( 1
2−θ)

dt dr ds

.p,θ

∫ T

0

∫ T

s

(
|r − s|p( 1

2−θ)−1 + |T − s|p( 1
2−θ)−1

)
A(r) dr ds

.p,θ

∫ T

0

(
rp(

1
2−θ) + (T − r)p(

1
2−θ) + T p( 1

2−θ)
)
A(r) dr

.p,θ T
p( 1

2−θ)

∫ T

0

A(r) dr = ∥D(u(r))∥pLp(Ω×[0,T ];γ(H,γ(U,E))) <∞.

Also observe that

E
∫ T

0

∥ζ(t)∥p dt .p,E T p( 1
2−θ)∥Du∥pLp(Ω×[0,T ];γ(H,γ(U,E))).

It follows that (see [10, section 2]) ζ ∈ Lp(Ω;W θ,p(0, T ;E)). If θ ∈ (1/p, 1/2),
it follows from the Sobolev embedding theorem (see [5, Theorem 4.12]) that
ζ ∈ Lp(Ω;C0,γ(0, T ;E)) for all 0 < λ ≤ θ − 1

p and

∥ζ∥Lp(Ω;C0,λ(0,T ;E)) .E,p,λ,θ,T ∥Du∥pLp(Ω×[0,T ];γ(H,γ(U,E))). (2.4.3)

In particular, ζ has a continuous version. �
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Corollary 2.34. Assume the conditions of Theorem 2.33 hold. If additionally
Eu ∈ Lp(0, T ; γ(U,E)), then ζ has a version in Lp(Ω;Cλ([0, T ];E)) for all λ ∈
(0, 12 − 1

p ). Moreover, for every λ ∈ (0, 12 − 1
p ) there is a constant C independent

of u such that

∥ζ∥Lp(Ω;C0,λ([0,T ];E)) ≤ C∥Eu∥Lp(0,T ;γ(U,E)) + C∥Du∥Lp(Ω×[0,T ];γ(H,γ(U,E))).

Proof. By the previous proof and in particular (2.4.3) it suffices to estimate
the Lp(Ω;C0,λ([0, T ];E))-norm of η, where η : [0, T ] × Ω → E is given by

η(t) =
∫ t

0
v dWU and v = Eu. It follows from Theorem 2.31 and (2.4.2) that for

0 ≤ s < t ≤ T one has

(E∥η(t)− η(s)∥p)1/p hE,p ∥1[s,t]v∥γ(H,E)

≤ ∥1[s,t]v∥L2(0,T ;γ(U,E) ≤ |t− s|
1
2−

1
p ∥v∥Lp(0,T ;γ(U,E)).

Therefore, as in the proof of Theorem 2.33 one has that η ∈ Lp(Ω;W θ,p(0, T ;E))
for all 0 < θ < 1/2 and for all λ ≤ θ − 1

p one has

∥η∥Lp(Ω;C0,λ([0,T ];E)) .p,λ,θ,T ∥η∥Lp(Ω;W θ,p(0,T ;E)) .p,E ∥v∥Lp(0,T ;γ(U,E)).

�

2.5 Itô’s formula in the non-adapted setting

In the setting of adapted processes with values in a umd-Banach space E, a
version of Itô’s formula has been obtained in [21]. A version for Banach spaces
with martingale type 2 was already obtained in [92]. Below in Theorem 2.40
we present a version for the Skorohod integral for UMD spaces with type 2. For
Hilbert spaces E the result can be found in [47]. Our proof follows the arguments
in the scalar-valued case of Itô’s formula from [95, Theorem 3.2.2].

Consider the E-valued stochastic process given by

ζt = ζ0 +

∫ t

0

v(s) ds+

∫ t

0

u(s) dWU (s).

where ζ0, u and v are non-adapted, but satisfy certain smoothness assumptions.
We prove an Itô formula for F (ζ), where F : E → R is twice continuously Fréchet
differentiable with bounded derivatives.

2.5.1 Preliminary results for Itô’s formula

Next, we will prove a couple of lemmas that are used in Itô’s formula. Let U be
a Hilbert space, and set H = L2(0, T ;U).
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Lemma 2.35. Let ξ ∈ L2(Ω;H) and h ∈ H. For N ∈ N, consider the partition
(tNn )Nn=0 of (0, T ), where tNn = nT

N . Then

E
N∑

n=1

⟨
1[tNn−1,t

N
n ]h, ξ

⟩2

H
→ 0, N → ∞.

Proof. If h = 1[tKk−1,t
K
k ]⊗φ with φ ∈ U , the result can be checked using Hölder’s

inequality. By linearity it extends to linear combinations of such h. For general
h ∈ H one has that

E
N∑

n=1

⟨
1[tNn−1,t

N
n ]h, ξ

⟩2

H
≤ E∥ξ∥2H

N∑
n=1

∥1[tNn−1,t
N
n ]h∥2H = E∥ξ∥2∥h∥2H . (2.5.1)

Therefore, the case h ∈ H can be proved by approximation and using (2.5.1).�

Lemma 2.36. Let (a, b) be an open interval, and consider a partition (tNn )Nn=1

such that tNn+1 − tNn → 0 as N → ∞ for all n. If u1, u2 ∈ U , then for all
p ∈ [1,∞), limN→∞ ξN = (b− a) ⟨u1, u2⟩ in L2(Ω) as N → ∞., where

ξN =
N∑

n=1

((WU (t
N
n+1)−WU (t

N
n ))u1)((W (tNn+1)−WU (t

N
n ))u2), N ≥ 1.

Proof. Since EξN = (b − a) ⟨u1, u2⟩, it suffices to shows that limN→∞ Eξ2N =
(b− a)2| ⟨u1, u2⟩ |2. This follows from a straightforward computation. �

The next result will be presented and needed only for dyadic partitions, but
actually holds for more general partitions.

Theorem 2.37. Let U be a separable Hilbert space and E a umd Banach space
with type 2. Set tni = iT

2n for n ≥ 1 and i = 0, 1, . . . , 2n. For each n ≥ 1 and
i = 0, 1, . . . , 2n, let σn

i ∈ [tni , t
n
i+1]. Let Z,Z

1, Z2, . . . : [0, T ]×Ω → L (E,E∗) be
processes and assume that

(i) All processes Z,Z1, Z2, . . . have continuous paths.
(ii) Pointwise on Ω one has lim

n→∞
sup

t∈[0,T ]

∥Z(t)− Zn(t)∥L (E,E∗) = 0.

(iii) There is a C > 0 such that for all t ∈ [0, T ] and ω ∈ Ω, one has
∥Zn(t, ω)∥L (E,E∗) ≤ C.

Then for u, v ∈ L2(0, T ;D1,2(γ(U,E))) one has

2n−1∑
i=0

⟨∫ tni+1

tni

u(s) dWU (s), Z
n(σn

i )

∫ tni+1

tni

v(s) dWU (s)
⟩

→
∫ T

0

⟨u(s), Z(s)v(s)⟩Tr ds in L1(Ω) as n→ ∞.

(2.5.2)
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Proof. For notational convenience, let X = L2(0, T ;D1,2(γ(U,E))) in the proof
below. Fix n ≥ 1. Let Φn : X ×X → L1(Ω) be given by

Φn(u, v) =
2n−1∑
i=0

⟨∫ tni+1

tni

u(s) dWU (s), Z
n(σn

i )

∫ tni+1

tni

v(s) dWU (s)
⟩
.

Observe that the stochastic integrals are well-defined in L2(Ω;E) by Proposition
2.23 and (2.4.2). Let Φ : X ×X → L1(Ω) be given by

Φ(u, v) =

∫ T

0

⟨u(s), Z(s)v(s)⟩Tr ds

This is well-defined by Lemma 2.3 and the remarks below it. For proof of (2.5.2)
it suffices to show that limn→∞ Φn(u, v) = Φ(u, v) in Lr(Ω). For this we proceed
in four steps below.

Step 1: Uniform boundedness of the bilinear operator Φn.
We first show that there exists an M ≥ 0 such that for all u, v ∈ X and for

all n ≥ 1 one has
∥Φn(u, v)∥L1(Ω) ≤M∥u∥X∥v∥X . (2.5.3)

One has

∥Φn(u, v)∥ ≤ C
2n−1∑
i=0

∥∥∥∫ tni+1

tni

u(s) dWU (s)
∥∥∥∥∥∥ ∫ tni+1

tni

v(s) dWU (s)
∥∥∥.

Therefore, with ∥ · ∥1 = ∥ · ∥L1(Ω),

∥Φn(u, v)∥1 ≤ C
(
E

2n−1∑
i=0

∥∥∥ ∫ tni+1

tni

u(s) dWU (s)
∥∥∥2) 1

2

×
(
E

2n−1∑
i=0

∥∥∥∫ tni+1

tni

v(s) dWU (s)
∥∥∥2) 1

2

(i)

.E

2n−1∑
i=0

∥1[tni ,t
n
i+1]

u∥D1,2(γ(H,E))

2n−1∑
i=0

∥1[tni ,t
n
i+1]

v∥D1,2(γ(H,E))

(ii)

.E

2n−1∑
i=0

∥1[tni ,t
n
i+1]

u∥X
2n−1∑
i=0

∥1[tni ,t
n
i+1]

v∥X = ∥u∥X∥v∥X .

Here (i) follows from Proposition 2.23, and (ii) follows from (2.4.2) and the fact
that E has type 2.

Step 2: Boundedness of the bilinear operator Φ.
As in Step 1, there exists an M ≥ 0 such that for all u, v ∈ X one has

∥Φ(u, v)∥L1(Ω) ≤M∥u∥X∥v∥X . (2.5.4)



42 Chapter 2. Tools for Malliavin calculus in umd Banach spaces

By Lemma 2.3, one has

|⟨u(s), Z(s)v(s)⟩Tr| ≤ ∥u(s)∥γ(U,E)∥Z(s)v(s)∥γ(U,E∗)

≤ C∥u(s)∥γ(U,E)∥v(s)∥γ(U,E∗).

Hence

∥Φ(u, v)∥L1(Ω) ≤
∫ T

0

C∥u(s)∥L2(Ω;γ(U,E))∥v(s)∥L2(Ω;γ(U,E∗)) ds ≤ C∥u∥X∥v∥X .

Now (2.5.4) follows.

Step 3: Reduction to simple functions of smooth processes.
Let (en)

∞
n=1 denote an orthonormal basis for U . Note that the following func-

tions form a dense subset of X.

2p−1∑
j=0

1[tpj ,t
p
j+1]

⊗ gj(W (e1), . . . ,W (eM ))⊗ (
L∑

l=1

ψjl ⊗ yjl), (2.5.5)

where the gj ’s are smooth, ψjl ∈ U and yjl ∈ E for 1 ≤ l ≤ L and 1 ≤ j ≤ 2p−1.
Now assume (2.5.2) holds for all functions u and v of the form (2.5.5). We will
show that the general case with u, v ∈ X, follows from this by a continuity
argument.

Let u, v ∈ X be arbitrary. Fix ε ∈ (0, 1). Define M̃ = max{∥u∥X , ∥v∥X}+ 1.
Choose ũ, ṽ of the form (2.5.5) and such that

∥u− ũ∥X < ε/(MM̃), ∥v − ṽ∥X < ε/MM̃.

By (2.5.3) and using the bilinearity of Φn and writing ∥ · ∥1 = ∥ · ∥L1(Ω) one
obtains

∥Φn(u, v)− Φn(ũ, ṽ)∥1 ≤ ∥Φn(u, v − ṽ)∥1 + ∥Φn(u− ũ, ṽ)∥1
≤M∥u∥X∥v − ṽ∥X +M∥u− ũ∥X∥ṽ∥X ≤ 2ε.

In a similar way one sees that ∥Φ(u, v)− Φ(ũ, ṽ)∥L1(Ω) ≤ 2ε. It follows that

∥Φn(u, v)− Φ(u, v)∥1
≤ ∥Φn(u, v)− Φn(ũ, ṽ)∥1 + ∥Φn(ũ, ṽ)− Φ(ũ, ṽ)∥1 + ∥Φ(ũ, ṽ)− Φn(u, v)∥1
≤ 4ε+ ∥Φn(ũ, ṽ)− Φ(ũ, ṽ)∥1.

Therefore, taking the lim sup in the above estimate and using (2.5.2) for ũ and
ṽ one obtains that

lim sup
n→∞

∥Φn(u, v)− Φ(u, v)∥1 ≤ 4ε.

Since ε > 0 was arbitrary, it follows that limn→∞ Φn(u, v) = Φ(u, v) in L1(Ω).
This yields the result.
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Step 4 : Convergence for simple functions of smooth processes.
We next prove (2.5.2) for u and v of the form (2.5.5). By linearity it then

suffices to consider u and v of the form

u = f(W (e1), . . . ,W (eM ))⊗ ((1[a,b] ⊗ φ)⊗ x1),

v = g(W (e1), . . . ,W (eM ))⊗ ((1[c,d] ⊗ ψ)⊗ x2),

for some φ,ψ ∈ U , x1, x2 ∈ E and some dyadic intervals [a, b] and [c, d] and
smooth f, g : RM → R. By homogeneity we can assume that ∥φ∥U = ∥ψ∥U = 1.
Moreover, we can assume a = c and b = d. Indeed, if (a, b) ∩ (c, d) = ∅, then
both sides of (2.5.2) vanish for n large enough. If (a, b)∩ (c, d) ̸= ∅, then we can
write u and v as a sum of smaller dyadic intervals which are either identical or
disjoint. Furthermore, for notational convenience we assume that [a, b] = [0, T ].

Let m ≤ n and for i = 0, 1, . . . , n let us denote by t
(m)
i the point of the m-th

partition that is closest to tni from the left. For each n,m and j, let Sn,m
j = {i :

tni ∈ [tmj , t
m
j+1)}. Then

∣∣∣ 2n−1∑
i=0

⟨∫ tni+1

tni

u dWU , Z
n(σn

i )

∫ tni+1

tni

v dWU )
⟩
−
∫ t

0

⟨u(s), Z(s)v(s)⟩Tr ds
∣∣∣

≤
∣∣∣ 2n−1∑

i=0

⟨∫ tni+1

tni

u dWU , (Z
n(σn

i )− Z(t
(m)
i ))

∫ tni+1

tni

v dWU

⟩∣∣∣
+
∣∣∣ 2m−1∑

j=0

∑
i∈Sn,m

j

⟨∫ tni+1

tni

u dWU , Z(t
m
j )

∫ tni+1

tni

v dWU

⟩

−
∫ tmj+1

tmj

⟨
u(s), Z(tmj )v(s)

⟩
Tr

ds
∣∣∣

+
∣∣∣ 2m−1∑

j=0

∫ tmj+1

tmj

⟨
u(s), Z(tmj )v(s)

⟩
Tr

ds−
∫ t

0

⟨u(s), Z(s)v(s)⟩Tr ds
∣∣∣

= a1 + a2 + a3.

For the term a3, pointwise in Ω one can estimate

a3 =
∣∣∣ 2m−1∑

j=0

∫ tmj+1

tmj

⟨
u(s), (Z(tmj )− Z(s))v(s)

⟩
Tr

ds
∣∣∣

≤
2m−1∑
j=0

∫ tmj+1

tmj

∥u(s)∥γ(U,E)∥v(s)∥γ(U,E)∥Z(tmj )− Z(s)∥L (E,E∗) ds

≤ sup
|s−r|≤T2−m

∥Z(r))− Z(s)∥L (E,E∗) ∥u∥L2(0,T ;γ(U,E))∥v∥L2(0,T ;γ(U,E)),
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The latter converges to zero in L1(Ω) as n → ∞ and then m → ∞ by the
path-continuity of Z.

For a1 pointwise in Ω one can estimate

a1 ≤ sup
|s−r|≤T2−m

∥Zn(r)− Z(s)∥
2n−1∑
i=0

∥δ(1[tni ,t
n
i+1]

u)∥∥δ(1[tni ,t
n
i+1]

v)∥

≤ sup
|s−r|≤T2−m

∥Zn(r)− Z(s)∥
( 2n−1∑

i=0

∥δ(1[tni ,t
n
i+1]

u)∥2 +
2n−1∑
i=0

∥δ(1[tni ,t
n
i+1]

v)∥2
)
.

Define the uniformly bounded sequence of random variables (znm) and (zm) by

znm = sup
|s−r|≤T2−m

∥Zn(r)− Z(s)∥, zm = sup
|s−r|≤T2−m

∥Z(r)− Z(s)∥.

Also let the random variables (qn(u))n≥1 and q(u) be given by

qn(u) =

2n−1∑
i=0

∥δ(1[tni ,t
n
i+1]

u)∥2, q(u) =

∫ t

0

∥u(s)∥2 ds.

We find

a1 ≤ znm(qn(u) + qn(v))

≤ zm(q(u) + q(v)) + |znm − zm|(q(u) + q(v))

+ znm
(
|qn(u)− q(u)|+ |qn(v)− q(v)|

)
Since the ranges of u and v are one-dimensional in E we can apply [95, Theorem
3.2.1] to obtain limn→∞ qn(u) = q(u) in L1(Ω) and similarly for v. Clearly,
pointwise on Ω, limn→∞ zmn = zm. Letting n→ ∞, the dominated convergence
theorem gives that

lim sup
n→∞

Ea1 ≤ E(zm(q(u) + q(v))).

Now letting m → ∞ and again applying the dominated convergence theorem,
we can conclude that limm→∞ limn→∞ a1 = 0 in L1(Ω).

We finish the proof once we have shown that a2 → 0 in L1(Ω). For the
moment, fix j. Let us calculate the second part of the summand of a2:∫ tmj+1

tmj

⟨
u(s), Z(tmj )v(s)

⟩
Tr

ds

=

∫ tmj+1

tmj

∞∑
k=1

⟨
f ⊗ ⟨h1(s), ek⟩x1, Z(tmj )(g ⊗ ⟨h2(s), ek⟩x2)

⟩
E,E∗ ds

= fg
⟨
x1, Z(t

m
j )x2

⟩ ∫ tmj+1

tmj

⟨h1(s), h2(s)⟩ ds,
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where h1 := 1[0,t] ⊗ φ, h2 := 1[0,t] ⊗ ψ. Let us compute the first part of a2. For

every n ∈ N, consider an orthonormal basis (h̃i)
∞
i=0 such that

h̃i =
1√

tni+1 − tni
1[tni ,t

n
i+1]

⊗ φ, i = 1, 2, . . . , 2n+1.

Then by Lemma 2.22 one has∫ tni+1

tni

u dWU = ∆n
i Wφf − ⟨1[tni ,t

n
i+1]

φ,Df⟩H)x1.

where ∆n
i W = WU (t

n
i+1) −WU (t

n
i ). A similar identity holds for the truncated

Skorohod integral of v. Therefore, one obtains

∑
i∈Sn,m

j

⟨∫ tni+1

tni

u dWU , Z(t
m
j )

∫ tni+1

tni

v dWU

⟩
=

∑
i∈Sn,m

j

(∆n
i Wφf − ⟨1[tni ,t

n
i+1]

φ,Df⟩H)

× (∆n
i Wψg − ⟨1[tni ,t

n
i+1]

ψ,Dg⟩H)
⟨
x1, Z(t

m
j )x2

⟩
=:

∑
i∈Sn,m

j

(Ai −Bi)(Ci −Di)
⟨
x1, Z(t

m
j )x2

⟩
Thus the convergence would follow if

2m−1∑
j=0

⟨
x1, Z(t

m
j )x2

⟩ [ ∑
i∈Sn,m

j

(Ai −Bi)(Ci −Di)− fg

∫ tmj+1

tmj

⟨h1(s), h2(s)⟩ ds
]

converges to 0 in L1(Ω) as n→ ∞ and then m→ ∞. Pointwise on Ω, the above
expression is dominated by

C∥x1∥∥x2∥
∣∣∣ 2n−1∑

i=0

(Ai −Bi)(Ci −Di)− fg

∫ t

0

⟨h1(s), h2(s)⟩ ds
∣∣∣

Now it suffices to prove that

E
∣∣∣ 2n−1∑

i=0

(Ai −Bi)(Ci −Di)− fg

∫ t

0

⟨h1(s), h2(s)⟩ ds
∣∣∣ → 0, (2.5.6)

as n→ ∞. To prove (2.5.6) note that with ∥ · ∥1 = ∥ · ∥L1(Ω) one has
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∣∣∣ 2n−1∑
i=0

(Ai −Bi)(Ci −Di)− fg

∫ t

0

⟨h1(s), h2(s)⟩ ds
∥∥∥
1

≤
∥∥∥ 2n−1∑

i=0

AiCi − fg

∫ t

0

⟨h1(s), h2(s)⟩ ds
∥∥∥
1

+
2n−1∑
i=0

∥AiDi∥1 + ∥BiCi∥1 + ∥BiDi∥1.

We will show this L1(Ω)-convergence by showing the convergence for each of the
components separately. First,

E
2n−1∑
i=0

|BiDi| ≤
(
E

2n−1∑
i=1

⟨
1[tni ,t

n
i+1]

h1, Df
⟩2 ) 1

2

(
E

2n−1∑
i=0

⟨
1[tni ,t

n
i+1]

h2, Dg
⟩2 ) 1

2 → 0,

by Lemma 2.35. By the same lemma and the properties of W one sees,

2n−1∑
i=0

E|AiDi| =
2n−1∑
i=0

E
∣∣∣∆n

i Wφf ·
⟨
1[tni ,t

n
i+1]

h2, Dg
⟩
H

∣∣∣
≤ ∥f∥∞

( 2n−1∑
i=0

E((∆n
i W )φ)2

) 1
2
( 2n−1∑

i=0

E
⟨
1[tni ,t

n
i+1]

h2, Dg
⟩2

H

) 1
2

≤ ∥f∥∞
√
T
( 2n−1∑

i=0

E
⟨
1[tni ,t

n
i+1]

h2, Dg
⟩2

H

) 1
2 → 0,

and similarly E
∑2n−1

i=1 |BiCi| → 0. By Lemma 2.36 one has

E
∣∣∣ 2n−1∑

i=0

AiCi − fg

∫ t

0

⟨h1(s), h2(s)⟩ ds
∣∣∣

≤ ∥f∥∞∥g∥∞
(
E
( 2n−1∑

i=0

(∆n
i W )(φ)(∆n

i W )(ψ)− T ⟨φ,ψ⟩
)2) 1

2 → 0

as n→ ∞. Hence (2.5.6) follows. �

Let E be a umd space with type 2. Consider the following assumptions:

ζ0 ∈ D1,2(E), Dζ0 ∈ L2(Ω;L2(0, T ; γ(U,E)))

u ∈ D2,2(L2(0, T ; γ(U,E))), Du ∈ L2(0, T ;D1,2(γ(U, γ(H,E)))), (2.5.7)

v ∈ D1,2(L2(0, T ;E)), Dv ∈ L1(0, T ;L2((0, T )×Ω; γ(U,E))).

Note the following two observations regarding the assumptions:
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(1) Clearly, Dζ0 is in L2(Ω; γ(H,E)) whenever ζ0 ∈ D1,2(E). Note that the
assumption (2.5.7) states that Dζ0 ∈ L2(Ω;L2(0, T ; γ(U,E))). The latter
space is smaller due to the type 2 condition. The same applies to Du and
Dv.

(2) If E is a Hilbert space, (2.5.7) is equivalent to the assumptions ζ0 ∈ D1,2(E),
u ∈ D2,2(γ(H,E)), and v ∈ D1,2(L2(0, T ;E)).

Let ζ : [0, T ]×Ω → E defined by

ζt = ζ0 +

∫ t

0

v(r)dr +

∫ t

0

u(r) dWU (r). (2.5.8)

Observe for each t ∈ [0, T ], ζ(t) ∈ L2(Ω;E) is well-defined, by Proposition 2.23.
Moreover,

sup
t∈[0,T ]

∥ζ(t)∥L2(Ω;E) .E ∥ζ0∥L2(Ω;E) + ∥v∥L1(0,T ;L2(Ω;E)) + ∥u∥D1,2(γ(H,E))

≤ ∥ζ0∥L2(Ω;E) + ∥v∥L1(0,T ;L2(Ω;E)) + ∥u∥D1,2(L2(0,T ;γ(U,E))),

where we used (2.4.2) in the last step. In the next lemma we discuss differentia-
bility properties of ζ.

Lemma 2.38. Let E be a umd Banach space with type 2. Assume that (2.5.7)
holds and let ζ be as in (2.5.8). Set Y = L2(Ω;L2(0, T ; γ(U,E))). Then for each
t ∈ [0, T ], ζ(t) ∈ D1,2(E), D(ζ(t)) ∈ Y and

(Dζ(t))(s) = (Dζ0)(s)+

∫ t

0

(Dv(r))(s)dr+1[0,t](s)u(s)+

∫ t

0

D(u(r))(s) dWU (r),

sup
t∈[0,T ]

∥Dζ(t)∥Y .p,E ∥Dζ0∥Y + ∥Dv∥L1(0,T ;Y ) + ∥u∥Y

+∥Du∥L2(0,T ;D1,2(γ(U,γ(H,E)))),

Proof. The fact that ζ(t) ∈ D1,2(Ω;E) and the first identity follow from Propo-
sition 2.24. The estimate follows from Proposition 2.23. �

Define D−ζ as the element in Y = L2(Ω;L2(0, T ; γ(U,E))) given by

(D−ζ)(s) = (Dζ0)(s) +

∫ s

0

(Dv(r))(s)dr + δ(1[0,s]IU,H((Du)(s))),

where IU,H is defined as in (2.4.1). In the scalar case a more general definition
of D− is given in [95, p. 173]. For processes of the form (2.5.8), these definitions
coincide (see [95, Proposition 3.1.1]). Observe that the last term in (2.5.1) can be
written as

∫ s

0
D(u(r))(s) dWU (r). By our assumptions, this term is well-defined

for almost all s ∈ [0, T ], and by continuity of δ, we obtain
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∥s 7→ δ(1[0,s]IU,H((Du)(s)))∥Y ≤ C∥Du∥L2(0,T ;D1,2(γ(H,γ(U,E)))).

Therefore, as in Lemma 2.38 one has

∥D−ζ∥Y .p,E ∥Dζ0∥Y + ∥Dv∥L1(0,T ;Y ) + ∥Du∥L2(0,T ;D1,2(γ(H,γ(U,E)))). (2.5.9)

Lemma 2.39. Let E be a umd Banach space with type 2. Assume that (2.5.7)
holds and let ζ be as in (2.5.8). Suppose that Z : Ω × [0, T ] → L (E,E∗) is
bounded, and has continuous paths. Let w ∈ L2(0, T ;L2(Ω; γ(U,E))) and D−ζ
as in (2.5.1). If we fix t ∈ [0, T ] and set tni := it

2n for i = 0, 1, . . . , 2n, then

2n−1∑
i=0

∫ tni+1

tni

⟨w(s), Z(tni )D(ζ(tni ))(s)⟩Tr ds→
∫ t

0

⟨
w(s), Z(s)((D−ζ)(s))

⟩
Tr
ds,

in L1(Ω), as n→ ∞.

Proof. Let

G(ζ0, v, u) = ∥Dζ0∥Y + ∥Dv∥L1(0,T ;Y ) + ∥Du∥L2(0,T ;D1,2(γ(H,γ(U,E))))

Let ∥Z∥∞ = sups∈[0,T ],ω∈Ω ∥Z(s, ω)∥, η = Dζ and ξ = D−ζ. By Lemma 2.38,
⟨w,Z(tni )(η(tni ))(s)⟩Tr is well-defined a.e. in (0, T )×Ω. Moreover, one has

E
2n−1∑
i=0

∫ tni+1

tni

| ⟨w,Z(tni )(η(tni ))(s)⟩Tr | ds

≤
2n−1∑
i=0

∫ tni+1

tni

E∥w(s)∥γ(U,E)∥Z(tni )(η(tni ))(s)∥γ(U,E∗) ds

≤ C∥Z∥∞∥w∥Y (G(ζ0, v, u) + ∥u∥Y ).

Similarly, by (2.5.9), ⟨w(s), Z(s)((D−ζ)(s))⟩Tr is well-defined a.e. and

E
∫ t

0

|
⟨
w(s), Z(s)((D−ζ)(s))

⟩
Tr

| ds .p,E ∥Z∥∞∥w∥Y G(ζ0, v, u).

Now observe that

E
∣∣∣ 2n−1∑

i=0

∫ tni+1

tni

⟨w(s), Z(tni )(D(ζ(tni ))(s))⟩Tr ds

−
∫ t

0

⟨
w(s), Z(s)((D−ζ)(s))

⟩
Tr
ds
∣∣∣

≤ E
∣∣∣ 2n−1∑

i=0

∫ tni+1

tni

⟨
w(s), Z(tni )((D(ζ(tni )))(s)− (D−ζ)(s))

⟩
Tr
ds
∣∣∣

+ E
∣∣∣ 2n−1∑

i=0

∫ tni+1

tni

⟨
w(s), (Z(tni )− Z(s))(D−ζ)(s)

⟩
Tr
ds
∣∣∣ = T1,n + T2,n
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Let θn = sup|r−s|<T2−n ∥Z(r) − Z(s)∥L (E,E∗). Note that pointwise in Ω,
limn→∞ θn = 0 and θn ≤ 2∥Z∥∞. For each n ≥ 1 one has

T2,n ≤ E
(
θn

∫ t

0

∥w(s)∥γ(U,E) ∥(D−ζ)(s)∥γ(U,E) ds
)

≤ E(θn∥w∥L2(0,T ;γ(U,E))∥D−ζ∥L2(0,T ;γ(U,E))).

Since ∥w∥L2(0,T ;γ(H,U))∥D−ζ∥L2(0,T ;γ(H,U)) ∈ L1(Ω), it follows from the domi-
nated convergence theorem and the properties of (θn)n≥1, that limn→∞ T2,n = 0.

It follows from Lemma 2.38 that

T1,n ≤ ∥Z∥∞E
2n−1∑
i=0

∫ tni+1

tni

∥w(s)∥γ(U,E)∥D(ζ(tni ))(s)− (D−ζ)(s)∥γ(U,E) ds

≤ ∥Z∥∞∥w∥Y
( 2n−1∑

i=0

∫ tni+1

tni

E∥D(ζ(tni ))(s)− (D−ζ)(s)∥2γ(U,E) ds
)1/2

≤∥Z∥∞∥w∥Y
( 2n−1∑

i=0

∫ tni+1

tni

E
∣∣∣ ∫ s

tni

∥(Dv(r))(s)∥γ(U,E)dr
∣∣∣2 ds)1/2

+ ∥Z∥∞∥w∥Y
( 2n−1∑

i=0

∫ tni+1

tni

E∥δ(1[tni ,s]
(Du)(s))∥2γ(U,E)

)1/2
= S1,n + S2,n.

For S1,n one has

S1,n ≤ ∥Z∥∞∥w∥Y
∫ t

0

(∣∣∣ ∫ t

0

1|r−s|<T2−nE∥(Dv(r))(s)∥2γ(U,E) ds
)1/2

dr.

The latter converges to zero by the dominated convergence theorem and the
assumption on v. For S2,n one has

S2,n ≤ ∥Z∥∞∥w∥Y
( 2n−1∑

i=0

∫ tni+1

tni

∥1B(s,T2−n)(Du)(s)∥2D1,2(γ(H,γ(U,E))) ds
)1/2

= ∥Z∥∞∥w∥Y
(∫ t

0

∥1B(s,T2−n)(Du)(s)∥2D1,2(γ(H,γ(U,E))) ds
)1/2

.

The latter converges to zero by the dominated convergence theorem and the
assumption on u. �

2.5.2 Formulation and proof of Itô’s formula

Theorem 2.40 (Itô’s formula). Let E be a umd Banach space with type 2.
Suppose that the conditions (2.5.7) hold and let ζ : [0, T ] × Ω → E be as in
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(2.5.8). Assume ζ has continuous paths. Let F : E → R be a twice continuously
Fréchet differentiable function. Suppose that F ′ and F ′′ are bounded. Then

F (ζt) = F (ζ0) +

∫ t

0

F ′(ζs)(v(s)) ds+ δ(
⟨
F ′(ζ),1[0,t]u

⟩
)

+
1

2

∫ t

0

⟨u(s), F ′′(ζs)(u(s))⟩Tr ds+
∫ t

0

⟨
u(s), F ′′(ζs)((D

−ζ)(s))
⟩
Tr
ds.

(2.5.10)

Note that the term with D− is an additional term which is not present in
the adapted setting. A similar result in the case that E is a Hilbert space can
be found in [47]. Our proof is based on the ideas in [95, Theorem 3.2.2].

Remark 2.41.

1. If F ′ and F ′′ are not bounded, one can usually approximate F with a se-
quence of functions that does satisfy the smoothness and boundedness con-
ditions. In particular, such a procedure works in the important case where
F : E → R, where F (x) = ∥x∥s, s ≥ 2 and E is an Lq-space with q ≥ 2.

2. If the condition (2.5.7) is strengthened to

ζ0 ∈ D1,p(E), Dζ0 ∈ Lp(Ω;L2(0, T ; γ(U,E)))

u ∈ D1,p(L2(0, T ; γ(U,E))), Du ∈ Lp(0, T ;D1,p(γ(H, γ(U,E)))),

v ∈ D1,p(L2(0, T ;E)), Dv ∈ L1(0, T ;Lp(Ω;L2(0, T ; γ(U,E)))),

for some p > 2, then by Lemma 2.15 and Proposition 2.17 one actually has⟨
F ′(ζ),1[0,t]u

⟩
) ∈ D1,p/2(H).

3. Using Theorem 2.27 in the same way as in Proposition 2.17 one could extend
the result to functions F : E → E1, where E1 another umd Banach space.
However, in that case the traces have to be extended to the vector-valued
setting as well.

4. Sufficient conditions for the existence of a continuous version of ζ can be
found in Theorem 2.33.

Proof. Set tni = it
2n , 0 ≤ i ≤ 2n. Consider the Taylor expansion of F (ζt) up to

the second order

F (ζt) = F (ζ0) +

2n−1∑
i=1

F ′(ζ(tni ))(ζ(t
n
i+1)− ζ(tni ))

+
2n−1∑
i=0

1

2

⟨
ζ(tni+1)− ζ(tni ), F

′′(ζ
n

i )(ζ(t
n
i+1)− ζ(tni ))

⟩
E,E∗

.

Here, ζ
n

i denotes a random intermediate point on the line between ζ(tni ) and

ζ(tni+1). It is well known that this can be done in such a way that ζ
n

i is measurable.
Now the proof will be decomposed in several steps.
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Step 1: We show that

2n−1∑
i=0

⟨
ζ(tni+1)− ζ(tni ), F

′′(ζ
n

i )(ζ(t
n
i+1)− ζ(tni ))

⟩
E,E∗

→
∫ t

0

⟨u(s), F ′′(ζs)us⟩Tr ds

in L1(Ω). Note that the increment ζ(tni+1)− ζ(tni ) equals

ζ(tni+1)− ζ(tni ) =

∫ tni+1

tni

v(s) ds+

∫ tni+1

tni

u(s) dWU (s).

Therefore, we can divide

2n−1∑
i=0

⟨
ζ(tni+1)− ζ(tni ), F

′′(ζ
n

i )(ζ(t
n
i+1)− ζ(tni ))

⟩
E,E∗

into 4 parts. Consider the first piece

2n−1∑
i=0

⟨∫ tni+1

tni

v(s) ds, F ′′(ζ
n

i )
(∫ tni+1

tni

v(s) ds
)⟩
.

Pointwise in Ω and for all i, n, one has∣∣∣ 2n−1∑
i=0

⟨∫ tni+1

tni

v(s) ds, F ′′(ζ
n

i )
(∫ tni+1

tni

v(s) ds
)⟩∣∣∣ ≤ ∥F ′′∥∞

2n−1∑
i=0

∥∥∥ ∫ tni+1

tni

v(s) ds
∥∥∥2

≤ ∥F ′′∥∞T2−n∥v∥2L2(0,T ;E)

The latter clearly goes to zero in L1(Ω) as n → ∞. Next, both the second and
the third part are pointwise dominated by

∥F ′′∥∞
2n−1∑
i=0

∥∥∥ ∫ tni+1

tni

v(s) ds
∥∥∥∥∥∥∫ tni+1

tni

u(s) dWU (s)
∥∥∥ =: ξn

We show that limn→∞ ξn = 0 in L1(Ω). Indeed, by Meyer’s inequalities one has

E
2n−1∑
i=0

∥∥∥ ∫ tni+1

tni

v(s) ds
∥∥∥∥∥∥∫ tni+1

tni

u(s) dWU (s)
∥∥∥

≤
√
t2−n∥v∥L2(0,T×Ω;E)

( 2n−1∑
i=0

∥1[tni ,t
n
i+1]

u∥2D1,2(γ(H,E))

) 1
2

.

Now by the type 2 assumption we have

2n−1∑
i=0

∥1[tni ,t
n
i+1]

u∥2D1,2(γ(H,E)) .E

2n−1∑
i=0

∥1[tni ,t
n
i+1]

u∥2D1,2(L2(0,T ;γ(U,E)))

≤ ∥u∥2D1,2(L2(0,T ;γ(U,E))).
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Therefore, we find that limn→∞ ξn = 0 in L1(Ω), from which we see that the
second and third term converge to zero in L1(Ω).

To finish step 1, observe that Z = F ′′ ◦ ζ that continuous paths. More-
over, the process Zn = F ′′ ◦ ζn where ζn is the process obtained by letting
ζn(t

n
i ) = ζ

n

i , i = 0, . . . , 2n, and by linear interpolation at the intermediate
points. Then by the pathwise continuity of ζ, it is clear that pointwise in Ω,
limn→∞ supt∈[0,T ] ∥Zn(t)− Z(t)∥ = 0. Hence, by Theorem 2.37 with σn

i = tni ,

2n−1∑
i=0

⟨∫ tni+1

tni

u(s) dWU (s), F
′′(ζ

n

i )

∫ tni+1

tni

u(s) dWU (s)
⟩

→
∫ t

0

Tr(F ′′(ζs)(us, us)) ds

in L1(Ω) as n→ ∞.

Step 2 : One has

∣∣∣ 2n−1∑
i=0

F ′(ζ(tni ))
(∫ tni+1

tni

v(s) ds
)
−
∫ t

0

F ′(ζs)v(s) ds
∣∣∣

≤
2n−1∑
i=0

∫ tni+1

tni

|(F ′(ζ(tni ))− F ′(ζs))v(s)| ds

≤ sup
|s−r|≤t2−n

∥F ′(ζs)− F ′(ζr)∥
∫ t

0

∥v(s)∥ ds.

By the pathwise continuity of ζ and the dominated convergence theorem the
latter converges to zero in L1(Ω) as n→ ∞.

Step 3 : As in Lemma 2.38 one can show that ζ(t) ∈ D1,2(E) for each t ∈ [0, T ].
Therefore, by Proposition 2.17, we have F ′(ζ(tni )) ∈ D1,2(E∗) for all i, n. By
Proposition 2.23 one has u ∈ Dom(δ), and with Lemma 2.29, we obtain

2n−1∑
i=0

F ′(ζ(tni ))
(∫ tni+1

tni

u(s) dWU (s)
)

=

2n−1∑
i=0

∫ tni+1

tni

⟨u(s), F ′(ζ(tni ))⟩ dWU (s)

+
2n−1∑
i=0

∫ tni+1

tni

⟨u(s), F ′′(ζ(tni ))D(ζ(tni ))(s)⟩Tr ds.

By Lemma 2.39 with Z(s) := F ′′(ζ(s)) one obtains
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2n−1∑
i=0

∫ tni+1

tni

⟨u(s), F ′′(ζ(tni ))D(ζ(tni ))(s)⟩Tr ds

→
∫ t

0

⟨
u(s), F ′′(ζ(s))((D−ζ)(s))

⟩
Tr
ds

in L1(Ω), as n→ ∞. To finish the proof we need to show that∫ t

0

2n−1∑
i=0

1(tni ,t
n
i+1)

(s) ⟨u(s), F ′(ζ(tni ))⟩ dWU (s) →
∫ t

0

⟨u(s), F ′(ζ(s))⟩ dWU (s),

in L1(Ω) as n → ∞. To prove the latter note that because of the identity in
the Taylor development in the beginning of the proof, and the convergence in
L1(Ω) of all other terms, we know that the lefthand side of the previous formula
converges in L1(Ω) to some ξ, and it remains to identify its limit. Since δ is a
closed operator on L1(Ω;H), it suffices to note that

lim
n→∞

∥∥∥s 7→ 2n−1∑
i=0

1(tni ,t
n
i )
(s) ⟨u(s), F ′(ζ(tni ))⟩ − ⟨u(s), F ′(ζ(s))⟩

∥∥∥
L1(Ω;H)

= 0.

where we used the pathwise continuity of ζ. Therefore we can conclude that
ξ =

∫ t

0
⟨u(s), F ′(ζ(s))⟩ dWU (s) and this completes the proof. �
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A note on the truncated Skorohod integral
process

3.1 Introduction and preliminaries

In [95] it is stated that the truncated version of a Skorohod integrable pro-
cess need not be Skorohod integrable. A proof of this fact is left as an exercise
(Exercise 3.2.1), but is given in [94, p.188]. The opposite statement is given
in [38, Proposition 2.6], but personal communications with one of the authors
has shown that this needs a suitable interpretation. In this chapter, we give an
alternative example of the fact that the truncated process is indeed generally
not Skorohod integrable.

First we recall some basic facts and notation from [38], [95]. Consider the
Hilbert space H = L2(0, 1) and let W = {W (h), h ∈ H} be an isonormal Gaus-
sian process associated with H. Here, we assume thatW is defined on a complete
probability space (Ω;F ,P), where F is generated by W .

This chapter is based on the paper [109].

3.1.1 The multiple Wiener-Itô integrals

For a function f : (0, 1)n → R we define its symmetrization, denoted by f̃ , by

f̃(t1, . . . , tn) =
1

n!

∑
σ

f(tσ(1), . . . , tσ(n)), (t1, . . . , tn) ∈ (0, 1)n,

where σ runs over all permutations of {1, . . . , n}. We call f symmetric if f = f̃ .
If f : (0, 1)n+1 → R happens to be symmetric in its first n variables, then

f̃(t1, . . . , tn+1) =
1

n+ 1

n+1∑
i=1

f(t1, . . . , ti−1, tn+1, ti+1, . . . , tn, ti),

(t1, . . . , tn+1) ∈ (0, 1)n+1.

Let fn : (0, 1)n → R, n ≥ 1 be a symmetric and square integrable random
variable. For such a function, we define the multiple Wiener-Itô integral
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In(fn) := n!

∫ 1

0

∫ tn

0

. . .

∫ t2

0

fn(t1, . . . tn) dWt1 . . . dWtn .

We will call f : (0, 1)n → R elementary if it is of the form

f(t1, t2, . . . , tn) =
N∑

i1,...,in=1

ai1...im1Ai1×...×Ain
(t1, . . . , tn), (t1, . . . , tn) ∈ (0, 1)n,

where A1, . . . , An are pairwise disjoint, and such that ai1...im = 0 whenever at
least two of the indices i1, . . . , im are equal. When f and g are elementary, then

E(Im(f)In(g)) =

{
0 if m ̸= n,

n!⟨f̃ , g̃⟩L2((0,1)n) if m = n.

The following theorem is called the Wiener chaos expansion.

Theorem 3.1 (Theorem 1.1.2, [95]). Any square integrable random variable
F ∈ L2(Ω) can be expanded into a series of multiple stochastic integrals

F =

∞∑
n=0

In(fn).

Here I0(f0) = f0 = E(F ). Moreover, the functions fn ∈ L2((0, 1)n) are symmet-
ric and uniquely determined by F .

3.1.2 The Malliavin derivative and the divergence operator

Consider the Malliavin derivative operator D : S ⊂ L2(Ω) → L2(Ω;H), where
S is the class of smooth random variables. The set D1,2 is the closure of S ⊂
L2(Ω) with respect to the norm

∥F∥D1,2 = [E|F |2 + E∥DF∥2H ]1/2.

The adjoint of D is denoted by δ, which is called the Skorohod integral operator
for the following reason. If we put Wt := W (1[0,t]), then (Wt)t∈[0,T ] becomes a
Brownian motion. Let (Ft)t∈[0,T ] be a filtration with respect to the Brownian
motion, and let L2

a(Ω×[0, T ]) be the space of all (Ft)-adapted, square-integrable
processes. Then for every u ∈ L2

a(Ω × [0, T ]) we have u ∈ Dom(δ) and∫ T

0

u(t) dWt = δ(u).

Hence δ(u) can be viewed as an extension of the Itô-integral, and is called the
Skorohod integral. Hence for every u ∈ Dom(δ), we will use the notation as in
(3.1.2). Using Theorem 3.1, we get that any process u ∈ L2((0, 1) × Ω) has a
Wiener chaos expansion
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u(t) =
∞∑

n=0

In(fn(·, t)),

where for each n ≥ 1, fn ∈ L2((0, 1)n+1) is symmetric in the first n variables.
For a process u ∈ L2((0, 1)×Ω) to be in the domain of δ, one has the following
proposition.

Proposition 3.2 (Identity (1.53), [95]). Let u ∈ L2((0, 1) × Ω) have the
Wiener expansion (3.1.2). Then u ∈ Dom(δ) if and only if

∞∑
n=0

(n+ 1)!∥f̃n∥2L2((0,1)n+1) <∞.

In this case, the series equals E(δ(u)2).

3.2 Results

Theorem 3.3. There exists a process u ∈ Dom(δ) such that 1[0, 12 )
u ̸∈ Dom(δ).

To prove this theorem, we need the following elementary identities

n∑
k=1

(
n

k

)
k = n2n−1,

n∑
k=1

(
n

k

)
k2 = n(n+ 1)2n−2.

These can be derived by differentiating (1 + x)n =
∑n

k=0

(
n
k

)
xk with respect to

x once and twice.

Proof. For n ≥ 1, consider the function fn ∈ L2((0, 1)n+1) given by

fn(t1, . . . tn, tn+1) =
1

n
√
n!
(1[0, 12 ]

(tn+1)− 1[ 12 ,1]
(tn+1)),

(t1, . . . , tn+1) ∈ (0, 1)n+1.

Observe that fn is symmetric in the first n variables. Let u : Ω × (0, 1) → R be
defined by (3.1.2). We will show that u is in L2(Ω × (0, 1)). After that, we will
show that u ∈ Dom(δ) and 1[0, 12 ]

u ̸∈ Dom(δ).

To show that u is in L2(Ω × (0, 1)), note that

∥u∥2L2(Ω×(0,1)) = E
∫ 1

0

∣∣∣ ∞∑
n=1

In(fn(·, t))
∣∣∣2dt = ∞∑

n=1

n!

∫ 1

0

⟨f̃n, f̃n⟩L2((0,1)n)dt

=
∞∑

n=1

n!

∫ 1

0

. . .

∫ 1

0

( 1

n
√
n!
(1[0, 12 ]

(t)− 1[ 12 ,1]
(t))

)2

dt1 . . . dtndt =
∞∑

n=1

1

n2
.

Next, in order to show that u ∈ Dom(δ), we use Proposition 3.2. Observe that
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f̃n(t1, . . . , tn+1) =
1

n(n+ 1)
√
n!

n+1∑
i=1

(1[0, 12 ]
(ti)− 1[ 12 ,1]

(ti)).

One has

∥f̃n∥2L2((0,1)n+1)

=
1

n2(n+ 1)2n!

∫ 1

0

. . .

∫ 1

0

( n+1∑
i=1

(1[0, 12 ]
(ti)− 1[ 12 ,1]

(ti))
)2

dt1 . . . dtn+1.

Now, for every i = 1, . . . , n+1, we will split up the integral into a [0, 12 ]-part and
a [ 12 , 1]-part, giving us a total of 2n+1 parts. Integrating over [0, 12 ]

n+1 gives us∫ 1/2

0

. . .

∫ 1/2

0

(fn(t1, . . . , tn+1))
2 dt1 . . . dtn+1

=
1

n2(n+ 1)2n!

∫ 1/2

0

. . .

∫ 1/2

0

( n+1∑
i=1

1[0, 12 ]
(ti)

)2

dt1 . . . dtn+1

=
1

n2(n+ 1)2n!

[ 1

2n+1
(n+ 1)2

]
.

If we compute the case where all integrals are on [0, 12 ], except one interval,
then a similar computation yields 1

n2(n+1)2n! (
1

2n+1 (n − 1)2). The case where all

integrals are on [0, 12 ] except two intervals results in 1
n2(n+1)2n! (

1
2n+1 (n − 3)2),

and so forth. In total, we obtain

∥f̃n∥2L2((0,1)n+1) =
1

n2(n+ 1)2n!

1

2n+1

n+1∑
i=1

(
n+ 1

i

)
(n+ 1− 2i)2.

By (3.2), one has

n+1∑
i=1

(
n+ 1

i

)
(n+ 1− 2i)2 =

n+1∑
i=1

(
n+ 1

i

)
((n+ 1)2 − 4(n+ 1)i+ 4i2)

= (n+ 1)22n+1 − 4(n+ 1)22n + 4(n+ 1)(n+ 2)2n−1 = (n+ 1)2n+1.

From this, we conclude that

∞∑
n=1

(n+ 1)!∥f̃n∥2L2((0,1)n+1) =
∞∑

n=1

1

n2
.

Hence u ∈ Dom(δ) by Proposition 3.2.
Now consider the process 1[0, 12 ]

u : Ω × (0, 1) → R. Using (3.1.2), we have

1[0, 12 ]
(t)u(t) = 1[0, 12 ]

(t)
∞∑

n=1

In(fn(·, t)) =
∞∑

n=1

In(gn(·, t)),
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where gn = gn(t1, . . . , tn, t) = 1[0, 12 ]
(t)fn(t1, . . . , tn, t). Since gn is symmetric in

its first n variables, we see that

g̃n(t1, . . . , tn+1) =
1

n(n+ 1)
√
n!

n+1∑
i=1

1[0, 12 ]
(ti).

Similar to f̃n, we get

∥g̃n∥2L2((0,1)n+1) =
1

n2(n+ 1)2n!

∫ 1

0

. . .

∫ 1

0

( n+1∑
i=1

1[0, 12 ]
(ti)

)2

dt1 . . . dtn+1.

Similar as before, one can show that

∥g̃n∥2L2((0,1)n+1) =
1

n2(n+ 1)2n!

1

2n+1

n+1∑
i=1

(
n+ 1

i

)
(n+ 1− i)2.

Now (3.2) gives

n+1∑
i=0

(
n+ 1

i

)
(n+ 1− i)2

= (n+ 1)22n+1 − 2(n+ 1)
n+1∑
i=0

(
n+ 1

i

)
i+

n+1∑
i=0

(
n+ 1

i

)
i2

= (n+ 1)22n+1 − 2(n+ 1)22n + (n+ 1)(n+ 2)2n−1

=
1

4
2n+1(n+ 1)(n+ 2).

Hence
∞∑

n=1

(n+ 1)!∥g̃n∥2L2((0,1)n+1) =
1

4

∞∑
n=1

n+ 2

n2
= ∞.

By Proposition 3.2, 1[0, 12 ]
u is not Skorohod integrable. �

Finally, we discuss some additional results. Recall from [95, Proposition 1.3.1],
that D1,2(L2(0, 1)) ⊆ Dom(δ). Moreover, from [95, p. 180], one has that if v ∈
D1,2(L2(0, 1)), then 1[a,b]v ∈ D1,2(L2(0, 1)). In particular, Theorem 3.3 shows
that, from the above proof, the process u satisfies u ̸∈ D1,2(L2(0, 1)). We will now
show that u ∈ Ds,p(L2(0, 1)) if and only if s < 1. Here, Ds,p(L2(0, 1)) is defined
as follows. Consider for each n ≥ 1 the closed subspace Hn of L2(Ω) generated
by {Hn(W (h)), h ∈ L2(0, 1), ∥h∥ = 1}, where Hn is the nth Hermite polynomial.
Let Jn be the projection onto Hn. Define the operator L : L2(Ω) → L2(Ω) by

LF =
∞∑

n=0

−nJnF,
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provided this series converges in L2(Ω). Let P be the class of random variables of
the form F = f(W (h1), . . . ,W (hn)), where f is a polynomial, and h1, . . . , hn ∈
H. For s ∈ R and F ∈ P, we define the following seminorm

|||F |||s,p := ∥(I − L)s/2F∥Lp(Ω), F ∈ P.

Note that (I−L)s/2F =
∑∞

n=0(1+n)
s/2JnF. Now define Ds,p(L2(0, 1)) to be the

completion of P with respect to ||| · |||s,p. Using orthogonality, one derives that
F ∈ Ds,2(L2(0, 1)) if and only if F ∈ L2(Ω) and

∑∞
n=0(1 + n)s∥JnF∥2 < ∞.

Moreover, one has Ds,2(L2(0, 1)) = Dk,2(L2(0, 1)), whenever s = k ∈ N, where
the latter is defined using the derivative operator. (See also [95, Remarks: 1].)
It follows that u from our counterexample cannot be in the space Ds,2(L2(0, 1))
with s ≥ 1. One actually has the following theorem.

Theorem 3.4. Let u be the process from Theorem 3.3. Then u and 1[0, 12 ]
u belong

to Ds,2(L2(0, 1)) if and only if s < 1. Consequently, Ds,2(L2(0, 1)) ⊆ Dom(δ) if
and only if s ≥ 1.

Proof. Write u(t) =
∑∞

n=0 In(fn(·, t)) and In maps into Hn, hence Jk(u(t)) =
Ik(fk(·, t)). To obtain |||u|||s,2 we use the proof of Theorem 3.3 to find

E
(∥∥∥ ∞∑

n=0

(1 + n)s/2Jnu
∥∥∥2
L2(0,1)

)
= E

∫ 1

0

( ∞∑
n=0

(1 + n)s/2In(fn(·, t))
)2

dt

=

∫ 1

0

∞∑
n=0

n!(1 + n)s⟨f̃n(·, t), f̃n(·, t)⟩L2((0,1)n) dt =
∞∑

n=1

(1 + n)s

n2
.

A similar computation yields

|||1[0, 12 ]
u|||2s,2 =

∫ 1

0

∞∑
n=0

n!(1 + n)s⟨g̃n(·, t), g̃n(·, t)⟩L2((0,1)n) dt =
1

2

∞∑
n=1

(1 + n)s

n2
.

Hence, |||u|||s,2 <∞ and |||1[0, 12 ]
u|||s,2 <∞ exactly when s < 1. From the latter we

see Ds,2(L2(0, 1)) ̸⊆ Dom(δ) when s < 1. Also, Ds,2(L2(0, 1)) ⊂ D1,2(L2(0, 1)) ⊂
Dom(δ) for s ≥ 1. �
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Forward integration, convergence and
nonadapted pointwise multipliers

4.1 Introduction

In [117] and [118] Russo and Vallois initiated a theory of stochastic integration
via regularization procedures. In later years this was further developed by them
and several other authors (see [25, 42, 54, 58, 93, 116, 133], and also the lecture
notes [122] and its references). The regularization procedure is connected to
the celebrated forward and backward integrals which can be used to integrate
with respect to more general processes than semimartingales. Applications arise
for instance in the case where the integrator is a fractional Brownian motion.
Another feature is that the forward and backward integrals allow to integrate
non-adapted processes.

Since the development of the Skorohod integral in [129], integration of non-
adapted integrands is used in the theory of SDEs (see [38,95,103,122] and refer-
ences therein). A basic example where non-adapted integrands naturally occur
is when the initial value of an SDE depends on the full paths of the underlying
stochastic process (see [22, 83]). In many situations the forward integral is eas-
ier to work with than the Skorohod integral as a difficult correction term can
often be avoided (see the Itô formula in [120], [38, Theorem 8.12]). The forward
integral is used widely in the modeling of insider trading, which was introduced
in [14]. Since then, this has been further developed (see [38, Chapter 8] and
its references). In particular, in [36, 37, 99] the authors generalized the forward
integral to the setting of Lévy processes.

In the infinite dimensional setting several authors have worked on stochastic
calculus for the Skorohod integral (see [75, 80, 96, 112] and references therein).
However, only few results are available for the forward integral in infinite dimen-
sions. In [34], Di Girolami and Russo present a general set-up for an Itô formula
and covariation formulas. In [68] León and Nualart have introduced the forward
integral in the operator-valued setting and used it to study stochastic evolution
equations in Hilbert spaces with an adapted (unbounded) drift.

In this chapter we study several properties of the forward integral where the
integrand is an operator-valued process and the integrator a cylindrical Wiener
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process. We will prove a new approximation result for the forward integral (see
Theorem 4.16 and Corollary 4.18 below). In the one-dimensional setting this
result takes the following form:

Theorem 4.1. Let w be a standard Brownian motion and let g be an adapted
and measurable process with almost all paths in Lp(0, T ) with p ≥ 2. Then the
pathwise defined process

t 7→ n

∫ t

0

g(s)(w(s+ 1
n )− w(s)) ds, t ∈ [0, T ]

converges to the Itô integral process t 7→
∫ ·
0
g dw in Wα,p(0, T ) in probability for

every α ∈ [0, 12 ).

The above result will be a particular case of two more general results on
forward integration in umd Banach spaces. The class of umd Banach spaces was
extensively studied in the work of Burkholder (see [23] and references therein).
The umd property plays an important role in both vector-valued stochastic and
harmonic analysis. Stochastic integration and calculus in Banach spaces is nat-
urally limited to the class of umd Banach space (see [21, 86]). Applications to
stochastic evolutions equations have been given in [87] and several works after-
wards (see the recent survey [90] for further references).

As an application of the convergence result we derive a new pointwise multi-
plier result for the forward integral (see Section 4.5). It can be interpreted as an
integration by parts formula. The main novelty is that we can multiply adapted
Itô integrable processes with a process M which is smooth in time but not nec-
essarily adapted. Moreover, it is allowed to have a non-integrable singularity at
t = T . This result will be obtained in the operator-valued setting. It is particulary
interesting in the study of mild solutions of non-autonomous stochastic evolution
equations with adapted drift, where indeed the multiplier has a non-integrable
singularity. A well-known obstacle in non-autonomous stochastic evolution equa-
tions is that the stochastic convolution term is not well-defined as an Itô integral
due to adaptedness problems. In [68] this problem has been investigated using
integration by parts for the Skorohod integral. This formula for the Skorohod
integrals can be obtained in the case M is constant in time and satisfies certain
Malliavin differentiability. In chapter 5 we will use the integration by parts for-
mula to give a new approach to non-autonomous stochastic evolution equations
with adapted drift.

This chapter is based on the paper [110].

4.2 Preliminaries

In this chapter we let H be a separable Hilbert space and we fix an orthonormal
basis (hn)n≥1. The number T ∈ (0,∞) will be a fixed time and X is a umd
Banach space. All vector spaces will be assumed to be defined over the real
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scalar field, but with minor adjustments one can also allow complex scalars.
We refer to [23] for details on umd Banach spaces. The space (Ω,F ,P) will
be a probability space with filtration (Ft)t≥0 and expectation is denoted by E.
Moreover, we write L0(Ω;X) for the strongly measurable functions ξ : Ω → X
with the topology of given by convergence in probability. In the sequel C will be
a constant which may vary from line to line.

4.2.1 Radonifying operators

Let H be a real separable Hilbert space (below we take H = L2(S;H)).
We refer to [39, Chapter 12] and the survey paper [85] for an overview on γ-
radonifying operators and unexplained terminology below. The Banach space of
γ-radonifying operators from H into X will be denoted by γ(H , X). It is a sub-
space of L (H , X). It satisfies the left- and right-ideal property. In particular,
for R ∈ γ(H , X), U ∈ L (X) and T ∈ L (H ), one has URT ∈ γ(H , X) and

∥URT∥γ(H ,X) ≤ ∥U∥ ∥R∥γ(H ,X) ∥T∥.

A simple consequence of the right-ideal property is that every operator T : H →
H has an extension to an operator

T̃ : γ(H , X) → γ(H , X),

R 7→ RT ∗,
(4.2.1)

and ∥T̃∥ = ∥T∥.
Let (S,Σ, µ) be a σ-finite measure space. A function G : S → L (H,X)

will be called H-strongly measurable if for all h ∈ H, s 7→ G(s)h is strongly
measurable. Moreover, for p ∈ (1,∞), G will be called weakly Lp(S;H) if for
all x∗ ∈ X∗, s 7→ G(s)∗x∗ is in Lp(S;H). For G : S → L (H,X) which is H-
strongly measurable and weakly L2(S;H) we can define, RG : L2(S;H) → X as
the (Pettis) integral operator

⟨RGf, x
∗⟩ =

∫
S

⟨G(s)f(s), x∗⟩ dµ(s), f ∈ L2(S;H), x∗ ∈ X∗. (4.2.2)

Note that
∥RGf∥X ≤ ∥RG∥γ(L2(S;H),X)∥f∥L2(S;H). (4.2.3)

We will say G ∈ γ(S;H,X) if RG ∈ γ(L2(S;H), X) and write ∥G∥γ(S;H,X) =
∥RG∥γ(L2(S;H),X). It is well-known that the step functions G : S → L (H,X) of
finite rank are dense in γ(S;H,X).

For many operators T : L2(S;H) → L2(S;H) one has the property that
T̃RG = RF for a certain function F . In this case it will be convenient to write
TG = F .

An easy consequence of the definitions and the ideal property is that
∥G1S0∥γ(S;H,X) = ∥G|S0∥γ(S0;H,X). We will also use the following property.
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Example 4.2. For G ∈ γ(S;H,X) and b ∈ L∞(S) one has bG ∈ γ(S;H,X) and

∥bG∥γ(S;H,X) ≤ ∥b∥L∞(S)∥G∥γ(S;H,X). (4.2.4)

This is immediate from the right-ideal property with operator Tb : L2(S;H) →
L2(S;H) given by Tbf = bf .

Finally we recall that in the special case that X is a Hilbert space, one has

γ(S;H,X) = L2(S; S2(H,X)), (4.2.5)

where S2(H,X) denotes the space of Hilbert-Schmidt operators.

Lemma 4.3 (γ-Integration by parts). Let M ∈W 1,1(0, T ;L (X)). Then for
every f ∈ γ(0, T ;X) one has Mf ∈ γ(0, T ;X) and for all 0 ≤ a < b ≤ T ,∫ b

a

M(s)f(s) ds =M(a)F (a) +

∫ b

a

M ′(s)F (s) ds, (4.2.6)

where F (t) =
∫ b

t
f(s) ds.

Proof. By [64, Example] the family {M(t) : t ∈ [0, T ]} is R-bounded by C.
Therefore, by the Kalton–Weis γ-multiplier theorem (see [85, Theorem 5.2]),
one has that Mf ∈ γ(0, T ;X) again and ∥Mf∥γ(0,T ;X) ≤ C∥f∥γ(0,T ;X). One
also has

∥F (t)∥ ≤ ∥f∥γ(0,T ;X)∥1(t,b)∥L2(0,T ) ≤ T 1/2∥f∥γ(0,T ;X)

and hence ∫ T

0

∥M ′(t)F (t)∥ dt ≤ ∥M∥W 1,1(0,T ;L (X)) sup
t∈[0,T ]

∥F (t)∥

≤ ∥M∥W 1,1(0,T ;L (X))T
1/2∥f∥γ(0,T ;X).

For step functions f : (0, T ) → X, the identity (4.2.6) is easy to verify. Now
the general case follows from the above estimates and a density argument. �

4.2.2 Integration with respect to a cylindrical Brownian motion

Let H = L2(0, T ;H), where H is a separable real Hilbert space. For details on
stochastic integration in umd Banach space we refer to [86,90]. The operatorW :
H → L2(Ω) will be called a cylindrical Brownian motion if for all choices h ∈ H
, Wh is a centered Gaussian random variable and for h, h̃ ∈ H , E(WhWh̃) =
[h, h̃], where [·, ·] denotes the inner product on H .

A process G : (0, T ) × Ω → L (H,X) will be called H-strongly adapted if
for all t ∈ (0, T ) and h ∈ H, ω 7→ G(t, ω)h is strongly Ft-measurable. If G is H-
strongly measurable and adapted, then from the separability of H and [100, The-
orem 0.1], one can derive that G has a version which is H-strongly progressively
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measurable, i.e. for each h ∈ H, (t, ω) 7→ G(t, ω)h is strongly progressively mea-
surable. This will be used below without further notice.

Recall from [29,86,90] that ifX is a UMD space and G ∈ L0(Ω; γ(0, T ;H,X))

adapted, one can define a stochastic integral I(G) =
∫ T

0
GdW in a natural

way. We also let J(G)(t) =
∫ t

0
GdW , and recall that J(G) has a version with

continuous paths. Moreover, for all p ∈ (0,∞) the following two-sided estimate
for the stochastic integral holds:

C−1∥G∥Lp(Ω;γ(0,T ;H,X)) ≤ ∥J(G)∥Lp(Ω;C([0,T ];X)) ≤ C∥G∥Lp(Ω;γ(0,T ;H,X)).(4.2.7)

Remark 4.4. All results below hold under the slightly weaker assumption that
the right-hand side of (4.2.7) holds. This includes spaces such as X = L1. For
details on such spaces we refer to [26,29].

4.2.3 Function spaces

For α ∈ (0, 1), p ∈ [1,∞) and a < b, recall that a function f : (a, b) → X is said
to be in the Sobolev space Wα,p(a, b;X) if f ∈ Lp(a, b;X) and

[f ]Wα,p(a,b;X) :=
(∫ b

a

∫ b

a

∥f(t)− f(s)∥p

|t− s|αp+1
ds dt

)1/p

<∞.

Letting ∥f∥Wα,p(a,b;X) = ∥f∥Lp(a,b;X) + [f ]Wα,p(a,b;X), this space becomes a Ba-
nach space. A function f : (a, b) → X is said to be in the Hölder space Cα(a, b;X)
if

[f ]Cα(a,b;X) = sup
a<s<t<b

∥f(t)− f(s)∥
|t− s|α

<∞.

Letting ∥f∥Cα(a,b;X) = supt∈(0,T ) ∥f(t)∥X + [f ]Wα,p(a,b;X), this space becomes
a Banach space. Moreover, every f ∈ Cα(a, b;X) has a unique extension to a
continuous function f : [a, b] → X.

If 0 < α < β < 1, then trivially,

Cα(a, b;X) ↪→Wα,p(a, b;X)

One of the main results in the theory of fractional Sobolev spaces is the following
Sobolev embedding: if α > 1

p , then

Wα,p(a, b;X) ↪→ Cα− 1
p (a, b;X). (4.2.8)

Here the embedding means that each f ∈ Wα,p(a, b;X) has a version which is

continuous and this function lies in Cα− 1
p (a, b;X). The embedding (4.2.8) can

be found in the literature in the scalar setting and the standard proofs extend
to the vector-valued setting. We refer to [70, 14.28 and 14.40] and [35, Theorem
8.2] for detailed proofs.
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4.3 Forward integral

Recall that H is a separable real Hilbert space with orthonormal basis (hn)n≥1.
Let Pn be the projection onto the first n basis coordinates.

Definition 4.5. Let G : [0, T ] × Ω → L (H,X) be H-strongly measurable and
weakly in L2(0, T ;H). Define the sequence (I−(G,n))∞n=1 by

I−(G,n) =

n∑
k=1

n

∫ T

0

G(s)hk(W (s+ 1/n)hk −W (s)hk) ds,

where the integral is defined as in (4.2.2)
The process G is called forward integrable if (I−(G,n))n≥1 converges in prob-

ability. In that case, the limit is called the forward integral of G and its limit is
denoted by

I−(G) =

∫ T

0

G dW− =

∫ T

0

G(s) dW−(s).

Note that the above definition does not require any adaptedness properties of G.
Unfortunately, it is unclear whether I− is a closable operator. For the Skorohod
integral this is indeed the case (see [95, Section 1.3]).

Observe that if G is forward integrable, then so is 1[0,t]G for t ∈ (0, T ]. We
write J−(G,n) for the process given by

J−(G,n)(t) = I−(G1[0,t], n). (4.3.1)

Then J−(G,n) ∈ L0(Ω;C1/2(0, T ;X)). Indeed, by (4.2.3) we have a.s. for s < t,

∥J−(G,n)(t)− J−(G,n)(s)∥ ≤
n∑

k=1

n
∥∥∥∫ t

s

G(r)hk(W (r + 1/n)hk −W (r)hk) dr
∥∥∥

≤
n∑

k=1

n∥Ghk∥γ(0,T ;X)∥r 7→ 1[s,t](r)(W (r + 1/n)hk −W (r)hk)∥L2(0,T )

≤ 2(t− s)1/2
n∑

k=1

n∥Ghk∥γ(0,T ;X) sup
r∈[0,T+1/n]

|W (r)hk|,

and hence the result follows.
If for every t ∈ [0, T ], (J−(G,n)(t))n≥1 converges in probability, we write

J−(G) for the process given by J−(G)(t) =
∫ t

0
GdW−. In general it seems to be

unclear whether 1[0,t]G is forward integrable when G is forward integrable.
First we show that the forward integral extends the Itô integral of Section

4.2.

Proposition 4.6. Assume G ∈ L0(Ω; γ(0, T ;H,X)) is adapted.
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(1) For every n ≥ 1, the process Gn := n1[0, 1
n ] ∗ (1[0,T ]PnG) is adapted and in

L0(Ω; γ(0, T ;H,X)) and the following identity holds

I−(G,n) =

∫ ∞

0

Gn dW =

∫ T+ 1
n

0

Gn dW. (4.3.2)

(2) For every t ∈ [0, T ], 1[0,t]G is forward integrable and stochastically integrable
and

J−(G)(t) =

∫ t

0

G dW.

Motivated by the above result, we will write J(G) for J−(G) in the adapted
case. Recall that J(G) always has a continuous version and we will use this
version without further notice. It is unclear to us whether J−(G,n) → J(G)
in L0(Ω;C([0, T ];X)) for all G ∈ L0(Ω; γ(0, T ;H,X)). In the literature there
are several attempts to prove such a result in the setting H = X = R, but
we could not follow these arguments. In Theorem 4.16 we will give sufficient
conditions on G for convergence in L0(Ω;Wα,p([0, T ];X)) and in particular in

L0(Ω;Cα− 1
p ([0, T ];X)).

Proof. Choose an H-strongly progressively measurable version of G and extend
G as zero on (T,∞). Let the operator Sn on L2(R+;H) be given by Snf =
n1[0, 1

n ] ∗ Pnf . Then ∥Sn∥ ≤ 1 and it extends by (4.2.1) to a contraction on

γ(L2(0, T ;H), X). By duality and (4.2.2), this extension equals RGn . It follows
that Gn is in L0(Ω; γ(R+;H,X)) and for every t ∈ R+ and x∗ ∈ X∗ one has

Gn(t)
∗x∗ =

∫ t

0

n1[0, 1
n ](t− s)PnG(s)

∗x∗ ds

and since G is progressive measurable, the latter is Ft-measurable and thus Gn

is H-strongly adapted. It follows that Gn is stochastically integrable and by the
stochastic Fubini theorem we obtain that for all x∗ ∈ X∗,

⟨∫ T+ 1
n

0

Gn dW, x
∗
⟩
=

∫ ∞

0

G∗
nx

∗ dW

= n

∫ ∞

0

∫ T

0

1[0, 1
n ](σ − s)PnG(s)

∗x∗ ds dW (σ)

= n

∫ T

0

∫ ∞

0

1[0, 1
n ](σ − s)PnG(s)

∗x∗ dW (σ) ds

= n
n∑

k=1

∫ T

0

⟨G(s)hk, x∗⟩(W (s+ 1/n)−W (s))hk ds

= ⟨I−(G,n), x∗⟩.

By the Hahn-Banach theorem this yields (1).
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Next we prove (2). Replacing G by 1[0,t]G it suffices to consider t = T . Note
that by [86, Proposition 2.4] Gn → G in γ(R+;H,X) pointwise on ω. Therefore,
with [86, Theorem 5.5] we find that I−(G,n) =

∫∞
0
Gn dW →

∫∞
0
GdW in

L0(Ω;X) and (2) follows. �

In the following lemma we collect some elementary properties of the forward
integral.

Lemma 4.7. Let X0, X1 be Banach spaces and let F,G : [0, T ]×Ω → L (H,X0)
be forward integrable processes.

(1) For α, β ∈ R, a.s.∫ T

0

αF + βG dW− = α

∫ T

0

F dW− + β

∫ T

0

G dW−.

(2) If A : Ω → L (X0, X1) is such that for every x ∈ X0, Ax is F -measurable,
then AG is forward integrable and a.s.

A

∫ T

0

G dW− =

∫ T

0

AG dW−.

In particular, for any x∗ ∈ X∗
0 , G

∗x∗ is forward integrable, and a.s.⟨∫ T

0

G dW−, x∗
⟩
=

∫ T

0

G∗x∗ dW−.

(3) If (A,D(A)) is a closed linear operator on X0 such that G ∈ D(A) a.e., AG
is weakly in L2(0, T ;H), H-strongly measurable and adapted and forward

integrable, then
∫ T

0
G dW− is in D(A), AG is forward integrable, and a.s.

A

∫ T

0

G dW− =

∫ T

0

AG dW−.

The property (3) is a stochastic version of Hille’s theorem (see [40, Theorem
II.6]). A version for the Itô integral can be found in [27, Lemma 2.8].

Proof. (1) and (2) are straightforward from the definition. To prove (3), note
that by Hille’s theorem,

A

∫ T

0

(G(s)hk)(W (s+ 1
n )−W (s))hk ds =

∫ T

0

A(G(s)hk)(W (s+ 1
n )−W (s))hk ds.

It follows that A(I−(G,n)) = I−(AG,n) →
∫ T

0
AG dW− in probability. Also,

I−(G,n) →
∫ T

0
G dW in probability. Hence one can find a set Ω0 ∈ F with

P(Ω0) = 1 and a subsequence (nk)k≥1 such that for all ω ∈ Ω0, I
−(G,nk)(ω) →( ∫ T

0
G dW−

)
(ω) and A(I−(G,nk)(ω)) →

( ∫ T

0
AG dW−

)
(ω). Now the result

follows from the assumption that A is closed. �
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Using the forward integral it is easy to deduce local properties of the stochas-
tic integral.

Remark 4.8. From Lemma 4.7 it follows that for a forward integrable process G
and a set B ∈ F , 1BG is forward integrable and∫ T

0

1BG dW− = 1B

∫ t

0

G dW−(s).

In particular, if G ∈ L0(Ω; γ(0, T ;H,X)) is adapted and for all x∗ ∈ X∗, G∗x∗ =
0 on a set (0, T )×B, then a.s.

0 =

∫ t

0

1BG
∗x∗ dW− =

⟨
1B

∫ t

0

G dW−, x∗
⟩
, x∗ ∈ X∗, t ∈ [0, T ].

In particular, we deduce that
∫ ·
0
G dW− = 0 on B a.s.

4.4 Convergence and path regularity

In this section we will give conditions under which for adapted G one has
J−(G,n) → J(G) in the Sobolev norm. Before we start we introduce a use-
ful class of functions.

Definition 4.9. For β ∈ [0, 12 ) and p ∈ [1,∞), let V β,p(0, T ;H,X) denote the
space of H-strongly measurable G : (0, T ) → L (H,X) for which for almost all
t ∈ [0, T ], r 7→ (t− r)−βG(r) is in γ(0, t;H,X) and

∥G∥V β,p(0,T ;H,X) :=
(∫ T

0

∥r 7→ (t− r)−βG(r)∥pγ(0,t;H,X) dt
)1/p

<∞.

The spaces V β,p(0, T ;H,X) were introduced in [87] in order to study stochastic
evolution equations of semilinear type. They also play a major role in [28] and
[65], where results on approximation of SPDEs have been derived. Although the
spaces V α,p look rather involved at first sight they are quite useful and not too
difficult to work with. Many properties of Bochner spaces are inherited by the
spaces V β,p(0, T ;H,X). The main motivation for the weight inside the γ-norm is
that it increases the integrability properties of G without leaving the γ-setting.

The following embedding results are straightforward from the definition and
(4.2.4)

V β,p0(0, T ;H,X) ↪→ V β,p1(0, T ;H,X) if 1 ≤ p1 < p0 <∞.

V β0,p(0, T ;H,X) ↪→ V β1,p(0, T ;H,X) if 0 ≤ β1 < β0 <
1

2
.

The next proposition gives several embedding properties for V β,p(0, T ;H,X).
In particular they give new insights for results in [28], [65] and [87]. Details on
(co)type properties of a Banach space can be found in [39, Chapter 11]. Recall
that every Hilbert space has type 2, and X = Lq (or X = W s,q) has type 2 if
and only if q ∈ [2,∞). Moreover, for q <∞, Lq has cotype q ∨ 2.
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Proposition 4.10. Let p ≥ 1 and β ∈ [0, 12 ).

(1) If G ∈ V β,1(0, T ;H,X), then for all ε ∈ (0, T ) one has G ∈ γ(0, T−ε;H,X))
and

∥G∥γ((0,T−ε);H,X) ≤
T β

ε
∥G∥V β,1(0,T ;H,X).

Moreover, if β > 1
p , then

V β,p(0, T ;H,X) ↪→ γ(0, T ;H,X).

(2) If X has cotype p ∈ [2,∞) and β ∈ [0, 1p ), then

γ(0, T ;H,X)) ↪→ V β,p(0, T ;H,X).

(3) If X has type 2 and p ∈ [2,∞), then

Lp(0, T ; γ(H,X)) ↪→ V β,p(0, T ;H,X).

Under type p assumptions one can show that V β,p(0, T ;H,X) contains certain
fractional Sobolev spaces or Hölder spaces, but we will not go into details on this
(see [87, Lemma 3.3] and [65, Lemma 3.8] for some details in this direction).

Note that for G ∈ V β,p(0, T ;H,X), the function u 7→ 1[0,u]G is continuous

from [0, T ] into V β,p(0, T ;H,X) (see [87, Section 7]).

Proof. (1): For every s ∈ [0, T ), we can write

G(s) =

∫ T

0

(t− s)−βG(s)(T − s)−1(t− s)β1[0,t](s) dt,

it follows that for ε ∈ [0, T ] one has

∥G∥γ((0,T−ε);H,X) ≤
∫ T

0

∥(t−s)−βG(s)(T−s)−1(t−s)β1[0,t](s)∥γ((0,T−ε);H,X) dt.

(4.4.1)
If ε ∈ (0, T ) and s ∈ [0, T − ε), then (T − s)−1(t − s)β ≤ ε−1T β , and thus by
(4.2.4)

∥G∥γ((0,T−ε);H,X) ≤ ε−1T β∥G∥V β,1(0,T ;H,X).

Next assume β > 1
p and take ε = 0 in (4.4.1). Note that for all t ∈ [0, T ) and

s ∈ [0, t], (T − s)−1(t − s)β ≤ (T − t)β−1. Therefore, by (4.2.4), and Hölder’s
inequality,

∥G∥γ(0,T ;H,X) ≤
∫ T

0

∥(t− s)−βG(s)1[0,t](s)∥γ(0,t;H,X)(T − t)β−1 dt

≤ ∥G∥V β,p(0,T ;H,X)

(∫ T

0

(T − t)(β−1)p′
dt
)1/p′

≤ C∥G∥V β,p(0,T ;H,X).
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(2): Let G ∈ γ(0, T ;H,X). Let ϕt(r) = 1(0,t)(r)(t− r)−β and Mβ : (0, T ) →
L (X,Lp(0, T ;X)) be given by Mβ(t)x = ϕtx. Observe that by the γ-Fubini
isomorphism (see [86, Proposition 2.6]) and the definition of V β,p

c−1∥G∥V β,p(0,T ;H,X) ≤ ∥MβG∥γ(0,T ;H,Lp(0,T ;X)) ≤ c∥G∥V β,p(0,T ;H,X)(4.4.2)

For β < 1
p and t ∈ (0, T ), one has

K : =

∫ ∞

0

sup
t∈(0,T )

µ
(
{r ∈ (0, t) : ϕt(r) > s}

)1/p
ds

=

∫ ∞

0

sup
t∈(0,T )

(t ∧ s−
1
β )1/p ds =

∫ ∞

0

T
1
p ∧ s−

1
βp ds <∞.

Therefore, it follows from [50, Lemma 3.1] that {Mβ(t) : t ∈ (0, T )} is R-bounded
by CK, and hence by the Kalton–Weis γ-multiplier theorem (see [85, Theorem
5.2]), we find that

∥MβG∥γ(0,T ;H,Lp(0,T ;X)) ≤ CK∥G∥γ(0,T ;H,X),

where we used the fact that Lp(0, T ;X) does not contain a copy of c0 as it
has finite cotype (see [39, page 212 and Theorem 11.12]). Combining the latter
estimate with (4.4.2), the required result follows.

(3): From L2(0, T ; γ(H,X)) ↪→ γ(0, T ;H,X) (see [85, Theorem 11.6]) and
Young’s inequality for convolutions we obtain

∥G∥p
V β,p(0,T ;H,X)

=

∫ T

0

∥r 7→ (t− r)−βG(r)∥pγ(0,t;H,X) dt

= C

∫ T

0

(∫ t

0

(t− r)−2β∥G(r)∥2γ(H,X) dr
)p/2

dt

≤ C
(∫ T

0

r−2β dr
)p/2

∫ T

0

∥G(r)∥pγ(H,X) dr

= C ′∥G∥pLp(0,T ;γ(H,X)).

�

Example 4.11. Let X be a Hilbert space. In the case that p = 2 and β ∈ [0, 12 ),
by (4.2.5) and Fubini’s theorem, one has

V β,2(0, T ;H,X) = L2((0, T ), µα,T ; S
2(H,X)) (4.4.3)

where and dµα,T (r) = (T − r)1−2β dr. Moreover, by Proposition 4.10 one has

Lp(0, T ; γ(H,X)) ↪→ V β,p(0, T ;H,X) for all p ≥ 2 and β ∈ [0, 12 )

L2(0, T ; S2(H,X)) ↪→ V β,p(0, T ;H,X) for all p ≥ 2 and β ∈ [0, 1p )

V β,p(0, T ;H,X) ↪→ L2(0, T ; S2(H,X)) for all p ≥ 2 and β ∈ ( 1p ,
1
2 )
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Proposition 4.12. Let p ∈ [1,∞) and suppose 0 < α < β < 1
2 . If G ∈

L0(Ω;V β,p(0, T ;H,X)) is adapted, then J(G) ∈ L0(Ω;Wα,p(0, T ;X)). Further-
more, the following assertions hold:

(1) There exists a constant C independent of G such that

∥J(G)∥Lp(Ω;Wα,p(0,T ;X)) ≤ C∥G∥Lp(Ω;V β,p(0,T ;H,X)).

(2) For every n ≥ 1, assume that Gn ∈ L0(Ω;V β,p(0, T ;H,X)) is an adapted
process. If Gn → G in L0(Ω;V β,p(0, T ;H,X)), then

J(Gn) → J(G) in L0(Ω;Wα,p(0, T ;X)).

Remark 4.13. Note that by under the above assumptions by Proposition 4.10 (1),
one has G1[0,t] ∈ L0(Ω; γ(0, T ;H,X)) for all t ∈ [0, T ), and therefore, J(G)(t) is
well-defined for every t ∈ (0, T ).

Remark 4.14. If 1
p < α < 1

2 , we can use the Sobolev embedding theorem (4.2.8),

to replace Wα,p(0, T ;X) by Cα− 1
p (0, T ;X) in the above result.

Example 4.15. Let X be a Hilbert space. From Example 4.11, we see that by
(4.4.3) and Proposition 4.12, for every G ∈ L0(Ω;L2((0, T ), µα,T ; S

2(H,X)))
adapted, one has J(G) ∈ L0(Ω;Wα,p(0, T ;X)). Note that such a process G is
not necessarily in L0(Ω;L2(0, T ; S2(H,X))). In the case H = X = R an example

is given by G(t) = (T − t)−
1
2−ε with ε > 0.

Indeed, one easily checks that G ∈ L2((0, T ), µα,T ) if and only if ε+α < 1/2,
and in that case J(G) ∈Wα,p(0, T ;X) a.s. However, G /∈ L2(0, T ). This singular
behavior can only occur at the point t = T as follows from Proposition 4.10 (1).

Proof (Proof of Proposition 4.12). To prove (1), note that for 0 ≤ s ≤ r < t ≤ T ,
one has 1 ≤ (t− s)β(t− r)−β , and hence by (4.2.7) and (4.2.4), we have

E∥J(G)(t)− J(G)(s)∥p ≤ CE∥G∥pγ(s,t;H,X)

≤ C(t− s)βpE∥r 7→ (t− r)−βG(r)∥pγ(s,t;H,X)(4.4.4)

≤ C(t− s)βpE∥r 7→ (t− r)−βG(r)∥pγ(0,t;H,X).

By Fubini’s theorem we find that

E[J(G)]pWα,p(0,T ;X) = 2

∫ T

0

∫ t

0

E∥J(G)(t)− J(G)(s)∥p

(t− s)αp+1
ds dt

≤ CE
∫ T

0

∫ t

0

∥r 7→ (t− r)−βG(r)∥pγ(0,t;H,X)

(t− s)1−(β−α)p
ds dt

≤ CT (β−α)pE
∫ T

0

∥r 7→ (t− r)−βG(r)∥pγ(0,t;H,X) dt

= CT (β−α)p∥G∥p
Lp(Ω;V β,p(0,T ;H,X))

,
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where we used β > α. Taking s = 0 in (4.4.4), one also obtains

E∥J(G)∥pLp(0,T ;X) ≤ CT βpE
∫ T

0

∥r 7→ (t− r)−βG(r)∥pγ(0,t;H,X) dt

= T βp∥G∥p
Lp(Ω;V β,p(0,T ;H,X))

.

Combining the estimates yields that J(G) ∈ Lp(Ω;Wα,p(0, T ;X)) and (1) holds.
Before we continue to the proof of (2), we claim that for adapted G ∈

L0(Ω;V β,p(0, T ;H,X)), one has J(G) ∈ L0(Ω;Wα,p(0, T ;X)). Indeed, let the
stopping time τ be given by

τn = inf{t ∈ [0, T ] : ∥1[0,t]G∥V β,p(0,T ;H,X) ≥ n},

where we put τn = T if the infimum is taken over the empty set. Then
1[0,τn]G ∈ Lp(Ω;V β,p(0, T ;H,X)) and hence t 7→ J(G)(t ∧ τn) = J(1[0,τn]G)(t)
is in L0(Ω;Wα,p(0, T ;X)). Since for almost every ω ∈ Ω, we can find an n ≥ 1
with τn(ω) = T , we find that J(G) ∈Wα,p(0, T ;X) almost surely and the claim
follows.

To prove (2) we use another stopping time argument. By linearity we can re-
place Gn by Gn−G and hence it suffices to consider G = 0. Moreover, by a subse-
quence argument it suffices to consider the case that Gn → 0 in V β,p(0, T ;H,X)
almost surely. For n ≥ 1 let τn be the stopping time given by

τn = inf{s ∈ [0, T ] : ∥1[0,s]Gn∥V β,p(0,T ;H,X) ≥ 1},

Since Gn → 0 in V β,p(0, T ;H,X) almost surely, we find that limn→∞ P(τn =
T ) = 1. Since ∥1[0,τn]Gn∥V β,p(0,T ;H,X) ≤ 1, and

∥1[0,τn]Gn∥V β,p(0,T ;H,X) ≤ ∥Gn∥V β,p(0,T ;H,X) → 0 a.s.,

the dominated convergence theorem gives that 1[0,τn]Gn → 0 in the space

Lp(Ω;V β,p(0, T ;H,X)). In particular, by (1) one has J(1[0,τn]Gn) → 0 in
Lp(Ω;Wα,p(0, T ;X)). Choose ε > 0 arbitrary. Then using J(1[0,τn]Gn)(t) =
J(Gn)(t ∧ τn) we find that

P
(
∥J(Gn)∥Wα,p(0,T ;X) ≥ ε

)
≤ P

(
∥J(Gn)∥Wα,p(0,T ;X) ≥ ε, τn = T

)
+ P(τn < T )

≤ P
(
∥J(1[0,τn]Gn)∥Wα,p(0,T ;X) ≥ ε

)
+ P(τn < T ).

≤ ε−pE∥J(1[0,τn]Gn)∥pWα,p(0,T ;X) + P(τn < T ).

Now the result follows by letting n→ ∞. �

The next result is the main result of this chapter and gives convergence of
paths of the forward integral in Sobolev norms. With Remark 4.14 one can derive
convergence in the Hölder norm as a consequence.

Theorem 4.16. Let p ∈ [1,∞) and 0 < α < β < 1
2 .
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(1) If G ∈ Lp(Ω;V β,p(0, T ;H,X)) is adapted, then

J−(G,n) → J(G) in Lp(Ω;Wα,p(0, T ;X)).

(2) If G ∈ L0(Ω;V β,p(0, T ;H,X)) is adapted, then

J−(G,n) → J(G) in L0(Ω;Wα,p(0, T ;X)).

From Remark 4.13 we see that J(G)(t) and J−(G,n)(t) are well-defined for every
t ∈ [0, T ).

Recall from (4.3.2) that

J−(G,n)(t) =

∫ ∞

0

Gn dW, where Gn = n1[0, 1
n ] ∗ (1[0,t]PnG).

Since Gn → G in L0(Ω;V β,p(0, T ;H,X), at first sight it seems that Proposition
4.12 can be used directly to obtain Theorem 4.16. Unfortunately, Proposition
4.12 does not apply because the process Gn also depends on t, and we need to
proceed differently.

Proof. Before proving the assertion we note that if G ∈ L0(Ω;V β,p(0, T ;H,X)),
J(G) ∈ Wα,p(0, T ;X) a.s. by Proposition 4.12. We claim that J−(G,n) ∈
Wα,p(0, T ;X) a.s. Indeed,

∥J−(G,n)(t)− J−(G,n)(s)∥

=
∥∥∥ n∑

k=1

n

∫ t

s

G(r)hk(W (r + 1/n)hk −W (r)hk) dr
∥∥∥

≤
n∑

k=1

n
∥∥∥ ∫ T

0

G(r)hk1[s,t](r)(W (r + 1/n)hk −W (r)hk) dr
∥∥∥ =:

n∑
k=1

nJk

By (4.2.3) we find that

Jk ≤ ∥r 7→ (t− r)−β1[0,r]G(r)∥γ(0,t;H,X)

× ∥r 7→ (t− r)β(W (r + 1/n)hk −W (r)hk)∥L2(s,t).

Since the paths of r 7→W (r + 1/n)hk −W (r)hk are continuous, we have

∥r 7→ (t− r)β(W (r + 1/n)hk −W (r)hk)∥L2(s,t) ≤ C(W,n)(t− s)β+
1
2 .

It follows that

[J−(G,n)]pWα,p(0,T ;X) = 2

∫ T

0

∫ t

0

∥J−(G,n)(t)− J−(G,n)(s)∥p

(t− s)αp+1
ds dt

≤ CW,n

∫ T

0

∫ t

0

∥r 7→ (t− r)−β1[0,r]G(r)∥pγ(0,t;H,X)(t− s)(β−α+ 1
2 )p−1 ds dt

≤ CW,n,α,β,p∥G∥pV β,p(0,T ;X)



4.4 Convergence and path regularity 75

Similarly, one sees that ∥J−(G,n)∥Lp(0,T ;X) <∞ a.s. and the claim follows.
(1): Observe that by (4.3.2) and (4.2.7),

E[J−(G,n)− J(G)]pWα,p(0,T ;X))

≤ CE
∫ T

0

∫ T

0

1[0,t](s)
∥n1[0, 1

n ] ∗ (1[s,t]PnG)− 1[s,t]G∥pγ(R+;H,X)

|t− s|αp+1
ds dt

(4.4.5)

By Young’s inequality one has ∥n1[0, 1
n ] ∗ f∥L2(R;H) ≤ ∥f∥L2(R;H) for f ∈

L2(R;H). Therefore, by the right-ideal property and (4.2.4) for 0 ≤ s ≤ t ≤ T ,

∥n1[0, 1
n ] ∗ (1[s,t]PnG)− 1[s,t]G∥γ(R+;H,X) ≤ 2E∥1[s,t]G∥γ(s,t;H,X)

≤ 2|t− s|β∥(t− r)−βG∥γ(0,t;H,X)

Now the latter is integrable on the space Ω × [0, T ]2 with measure 1[0,t](s)(t −
s)−αp−1 ds dt dP, and it dominates the function 1[0,t](s)∥n1[0, 1

n ] ∗ (1[s,t]PnG) −
1[s,t]G∥pγ(R+;H,X), which depends on 0 ≤ s ≤ t ≤ T and ω ∈ Ω. Moreover,

by [86, Proposition 2.4]

lim
n→∞

∥n1[0, 1
n ] ∗ (1[s,t]PnG)− 1[s,t]G∥γ(R+;H,X) = 0

for all 0 ≤ s ≤ t ≤ T and a.s. on Ω. Therefore, by the dominated convergence
theorem, the right-hand side of (4.4.5) tends to zero as n→ ∞.

A similar argument yields that E∥J−(G,n)−J(G)∥pLp(0,T ;X) → 0 as n→ ∞.

This proves (1).
Next we prove (2) using a stopping time argument. Consider an element

G ∈ L0(Ω;V β,p(0, T ;H,X)). For each m ≥ 1 define

τm = inf{[0, T ] : ∥1[0,t]G∥V β,p(0,T ;H,X) ≥ m},

where we let τm = T if the infimum is taken over the empty set. Let Gm =
1[0,τm]G. Clearly, limm→∞ P(τm = T ) = 1. Observe that almost surely, for all t ∈
[0, T ], J(G)(τm ∧ t) = J(1[0,τm]G)(t) and J

−(G,n)(τm ∧ t) = J−(1[0,τm]G,n)(t).
The latter is trivial as J−(·, n) is defined in a pathwise sense.

Let ε > 0 and δ > 0 be arbitrary and choose m so large that P(τm < T ) < δ.
It follows that for all n ≥ 1,

P
(
∥J(G)− J−(G,n)∥Wα,p(0,T ;X) ≥ ε

)
≤ P

(
∥J(G)− J−(G,n)∥Wα,p(0,T ;X) ≥ ε, τm = T

)
+ P(τm < T ).

≤ P
(
∥J(1[0,τm]G)− J−(1[0,τm]G,n)∥Wα,p(0,T ;X) ≥ ε

)
+ δ.

≤ ε−pE∥J(1[0,τm]G)− J−(1[0,τm]G,n)∥pWα,p(0,T ;X) + δ.

Since 1[0,τm]G satisfies the conditions of (1) it follows that

lim sup
n→∞

P
(
∥J(G)− J−(G,n)∥Wα,p(0,T ;X) ≥ ε

)
≤ δ.

Since δ > 0 was arbitrary, the result follows. �
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If the space X is not only a umd space, but additionally has type 2, one can
obtain further conditions for a process to be in the spaces considered in Theorem
4.16. Both results below follow immediately from the embedding of Proposition
4.10 (2), Proposition 4.12 and Theorem 4.16. Similar corollaries can be deduced
from Proposition 4.10 (3).

Corollary 4.17. Assume X has type 2, and let p ∈ [2,∞) and 0 < α < 1
2 .

If G ∈ L0(Ω;Lp(0, T ; γ(H,X))) is adapted, then J(G) ∈ L0(Ω;Wα,p(0, T ;X)).
Furthermore, the following assertions hold:

(1) There exists a constant C such that independent of G such that

∥J(G)∥Lp(Ω;Wα,p(0,T ;X)) ≤ C∥G∥Lp(Ω;Lp(0,T ;γ(H,X))).

(2) Assume that for every n ≥ 1, Gn ∈ L0(Ω;Lp(0, T ; γ(H,X))) is an adapted
process. If Gn → G in L0(Ω;Lp(0, T ; γ(H,X))), then

J(Gn) → J(G) in L0(Ω;Wα,p(0, T ;X)).

Corollary 4.18. Assume X has type 2, and let p ∈ [2,∞).

(1) If G ∈ Lp(Ω;Lp(0, T ; γ(H,X))) is adapted, then for all α ∈ (0, 12 ),

J−(G,n) → J(G) in Lp(Ω;Wα,p(0, T ;X)).

(2) If G ∈ L0(Ω;Lp(0, T ; γ(H,X))) is adapted, then for all α ∈ (0, 12 ),

J−(G,n) → J(G) in L0(Ω;Wα,p(0, T ;X)).

Again, Remark 4.14 applies to the above results and this will give convergence
in the Hölder norm. The above result contains as a special case Theorem 4.1.

4.5 Nonadapted pointwise multipliers

In the next result we give sufficient smoothness conditions on a possibly non-
adapted operator-valued process M and an adapted process G, such that MG
becomes forward integrable. Moreover we derive a neat integration by parts
formula which yields a very useful representation formula for the forward integral.

Theorem 4.19. Let X and Y be umd Banach spaces. Assume p ∈ (2,∞), δ ∈
[0, 3/2) and β ∈ ( 1p ,

1
2 ) are such that β − 1

p − δ + 1 > 0. Let M : [0, T ] × Ω →
L (X,Y ) be such that

(i) For all x ∈ X, (t, ω) 7→M(t, ω)x is strongly measurable.
(ii) For almost all ω ∈ Ω, t 7→ M(t, ω) is continuously differentiable on [0, T )

and there exists a constant δ ∈ [0, 32 ) such that for almost all ω ∈ Ω, there
is a constant C(ω) > 0 such that

∥M ′(t, ω)∥ ≤ C(ω)(T − t)−δ, t ∈ [0, T )
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Assume G ∈ L0(Ω;V β,p(0, T ;X)) is adapted and assume MG is weakly in
L2(0, T ;H). Then MG is forward integrable, s 7→M ′(s)I(1[s,T ]G) ∈ L1(0, T ;Y )
almost surely and∫ T

0

M(s)G(s) dW−(s) =M(0)I(G) +

∫ T

0

M ′(s)I(1[s,T ]G) ds. (4.5.1)

Note that we do not assume any adaptedness properties on M .

Proof. By Proposition 4.10, (1) G ∈ L0(Ω; γ(0, T ;H,X).
Fix t ∈ (0, T ). Let fk = nGhk(W (·+1/n)hk −W (·)hk). Note that by (4.2.4)

and the path continuity of Whk, we have fk ∈ L0(Ω; γ(0, t;X)). Let Fk : [0, t]×
Ω → X be given by Fk(s) =

∫ t

s
fk(r) dr and note that

n∑
k=1

Fk(s) = I−(1[s,t]G,n).

Fix ω ∈ Ω. By Lemma 4.3 both MG and Mfk are in γ(0, t;H,Y ) and

I−(M1[0,t]G,n) =
n∑

k=1

∫ t

0

M(s)fk(s) ds

=

n∑
k=1

M(0)Fk(0) +

∫ t

0

M ′(s)Fk(s) ds

=M(0)I−(1[0,t]G,n) +

∫ t

0

M ′(s)I−(1[s,t]G,n) ds

Now letting t ↑ T , it follows from the observation below (4.3.1) that

M(0)I−(1[0,t]G,n) →M(0)I−(G,n) and I−(M1[0,t]G,n) → I−(MG,n).

Next we claim that for t ↑ T ,∫ t

0

M ′(s)I−(1[s,t]G,n) ds→
∫ T

0

M ′(s)I−(1[s,T ]G,n) ds (4.5.2)

Indeed, choose α ∈ ( 1p , β) such that α − 1
p − δ + 1 > 0. Note that by Theorem

4.16 and (4.2.8), K := ∥J−(G,n)∥
C

α− 1
p (0,T ;X)

< ∞ for almost all ω ∈ Ω. The

difference of both of the terms in (4.5.2) can be estimated by∫ T

t

∥M ′(s)I−(1[s,T ]G,n)∥ ds+
∫ t

0

∥M ′(s)I−(1[t,T ]G,n)∥ ds

≤ CK
(∫ T

t

(T − s)−δ(T − s)α−
1
p ds+

∫ t

0

(T − s)−δ ds (T − t)α−
1
p

)
≤ CK

(
(T − t)α−

1
p−δ+1 + [T−δ+1 + (T − t)−δ+1](T − t)α−

1
p

)
,
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and the latter goes to zero as t ↑ T .
We can conclude that almost surely for every n ≥ 1

I−(MG,n) =M(0)I−(G,n) +

∫ T

0

M ′(s)I−(1[s,T ]G,n) ds. (4.5.3)

Hence to prove (4.5.1) we let n→ ∞ in the right-hand side of (4.5.3). Obviously,
M(0)I−(G,n) → M(0)I(G). From Theorem 4.16 and (4.2.8) we find that ξn =
[J−(G,n)− J(G)]

C
α− 1

p (0,T ;X)
→ 0 in probability as n→ ∞. It follows that

∫ T

0

∥∥M ′(s)[I−(1[s,T ]G,n)− I−(1[s,T ]G)]
∥∥ ds

≤ C

∫ T

0

(T − s)−δ∥I−(1[s,T ]G,n)− I−(1[s,T ]G)]∥ ds

≤ Cξn

∫ T

0

(T − s)−δ+α− 1
p ds

= C ′ξnT
1−δ+α− 1

p .

Since the latter converges to zero in probability, it follows that the right-hand
side of (4.5.3) converges and hence MG is forward integrable and (4.5.1) holds.
�

Remark 4.20. Assume M satisfies (i) and (ii) of Theorem 4.19.

(1) If δ ∈ [0, 1), then by Lemma 4.3 one hasMG ∈ L0(Ω; γ(0, T ;H,Y )) whenever
G ∈ L0(Ω; γ(0, T ;H,Y )). In particular MG is weakly in L2(0, T ;H).

(2) If 0 ≤ δ < 3
2 − 1

p and G ∈ L0(Ω;Lp(0, T ; γ(H,X))), then we have MG ∈
L0(Ω;L2(0, T ; γ(H,Y ))). Indeed, without loss of generality we can assume
δ > 1. It follows that

∥M(s)∥ ≤ C

∫ t

0

(T − s)−δ ds ≤ C
(
(T − t)1−δ + T 1−δ

)
.

Therefore, by Hölder’s inequality with 1
q + 2

p = 1,

∥MG∥L2(0,T ;γ(H,Y )) ≤ C
(∫ T

0

(
(T − t)1−δ + T 1−δ

)2∥G(t)∥2γ(H,X) dt
)1/2

≤ C∥G∥Lp(0,T ;γ(H,X)).

From Theorem 4.19, Proposition 4.10 and Remark 4.20 we immediately derive
the following:

Corollary 4.21. Assume X and Y are umd Banach space with type 2 and as-
sume M satisfies (i) and (ii) of Theorem 4.19. Assume p > 2 and δ < 3

2 − 1
p .

If G ∈ L0(Ω;Lp(0, T ; γ(H,X))) is adapted, then MG is forward integrable,
s 7→M ′(s)I(1[s,t]G) ∈ L1(0, T ;Y ) almost surely, and (4.5.1) holds.



4.5 Nonadapted pointwise multipliers 79

As an illustration we present a brief indication how the results of this section
can be applied to stochastic evolution equations.

Example 4.22. Assume that for each ω ∈ Ω, (A(t, ω))t∈[0,T ] is a family of un-
bounded operators which generates an evolution family (S(t, s, ω))0≤s≤t≤T,ω∈Ω

on a Banach space X0. Assume that X1 = D(A(t, ω)) does not depend on time
and ω ∈ Ω, and A : [0, T ]×Ω → L (X1, X0) is adapted. In general, ω 7→ S(t, s, ω)
will only be Ft-measurable, and hence the stochastic convolution∫ t

0

S(t, s)G(s) dW (s)

does not exist as an Itô integral. In many situations one can check that
d
dsS(t, s) = −S(t, s)A(s) satisfies

∥∥ d
dsS(t, s, ω)

∥∥ ≤ C(ω)(t − s)−1 (see [4] and
[73]). Therefore, Theorems 4.19 and Corollary 4.21 with M(s) = S(t, s) can be
used to obtain sufficient conditions for the existence of the forward convolution

U(t) :=

∫ t

0

S(t, s)G(s) dW−(s)

= S(t, 0)I(1[0,t]G)−
∫ t

0

S(t, s)A(s)I(1[s,t]G) ds.

(4.5.4)

In [68] León and Nualart have observed that the forward integral gives a weak
solution of the stochastic evolution equation

dU = A(t)U(t) dt+G(t) dW (t), U(0) = 0,

and even more general equations. Using (4.5.4) one can obtain a rather complete
theory for non-autonomous stochastic evolution equations with random drift.
Details can be found in chapter 5.





Part II

Stochastic evolution equations





5

A new approach to stochastic evolution
equations with adapted drift

5.1 Introduction

Let E0 be a Hilbert or Banach space and let H be a separable Hilbert space.
Let (Ω,F ,P) be a complete probability space with a filtration (Ft)t∈[0,T ]. We
study the following stochastic evolution system on E0.{

dU(t) = (A(t)U(t) + F (t, U(t))) dt+B(t, U(t)) dW (t)
U(0) = u0.

(5.1.1)

Here (A(t, ω))t∈[0,T ],ω∈Ω is a measurable and adapted family of unbounded op-
erators on E0. Moreover, F and B are semilinear nonlinearities and W is a
cylindrical Brownian motion.

The integrated form of (5.1.1) often leads to problems as in general A(t)U(t)
is not well-defined or not integrable with respect to time. In the semigroup
approach to (5.1.1) this difficulty does not occur. We refer to the monograph [32]
and references therein for details on the semigroup approach to (5.1.1) in the
Hilbert space setting. Extensions to the class of Banach spaces with martingale
type 2 can be found in [20] in the case A is not depending on time. An extension
to the nonautonomous setting (i.e. A depends on time) can be found in [135].
In the semigroup approach to (5.1.1), the mild formulation is particularly useful
for fixed point arguments. In the time-dependent setting the mild formulation
has the following form:

U(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, U(s)) ds+

∫ t

0

S(t, s)B(s, U(s)) dW (s)︸ ︷︷ ︸
well-defined?

(5.1.2)

Here, given ω ∈ Ω, (S(t, s))0≤s≤t≤T is the evolution system generated by
(A(t, ω))t∈[0,T ]. In this case, there is an obstruction in the mild formulation
of a solution. The problem is that ω 7→ S(t, s, ω) does not satisfy the right
adaptedness properties. In general ω 7→ S(t, s, ω) is only Ft-measurable and not
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Fs-measurable (see Example 5.5). Therefore, the stochastic integral in (5.1.2)
cannot be defined in the sense of Itô. An easy example can be found in Exam-
ple 5.5 below. Equations with random generators arise naturally in the case A
depends on a stochastic process, e.g. in filtering theory (see [140] and references
therein).

There are several different approaches to (5.1.1). In the method of monotone
operators (see [62], [102], [108], [113]) the problem (5.1.1) is formulated on a
Hilbert space and one can use Galerkin approximation well-posedness questions
to reduce the problem to the finite-dimensional setting. In this way no additional
difficulty arises when A is dependent on Ω and time. Also in the Lp-approach of
Krylov [61] one can allow the coefficient of a second order operator A on Rd to be
dependent on Ω and time in a measurable way. The above mentioned approaches
do not use the mild formulation (5.1.2).

Mild formulations can be useful in many type of fixed point arguments. They
are also used to study long time behavior (invariant measures) and time regular-
ity. There have been several attempts to extend the mild approach to (5.1.1) to
the Ω-dependent setting. A possible method for (5.1.1) using mild formulations
is to use stochastic integration for nonadapted integrands and Malliavin calculus.
This has been studied in [6, 7, 68, 69, 97]. This approach is based on Skorohod
integration techniques and it requires certain Malliavin differentiability of the
operators A(t) or S(t, s). Let us also mention that in [88] a maximal regularity
approach to (5.1.1) with random A has been developed.

In this chapter we will develop a new method for the stochastic evolution
equation (5.1.1) with random A. It is based on a new representation formula for
stochastic convolution. In order to explain this representation formula, consider{

dU(t) = A(t)U(t) dt+G dW (t),
U(0) = 0,

(5.1.3)

where G is an adapted and measurable process and A is as before. Our new
representation formula for the solution to (5.1.3) is:

U(t) = −
∫ t

0

S(t, s)A(s)I(1(s,t)G) ds+ S(t, 0)I(1(0,t)G), (5.1.4)

where I(1(s,t)G) =
∫ t

s
GdW . The representation (5.1.4) can basically be ob-

tained using by integration by parts formula for the stochastic convolution. The
advantage of the formulation is that it does not require stochastic integration of
nonadapted integrands. A difficulty in (5.1.4) is that the norm of the operator-
valued kernel S(t, s)A(s) is of order (t− s)−1. Fortunately, the Bochner integral
in (5.1.4) can still be shown to be convergent as the paths of t 7→ I(1(0,t)G) have
additional Hölder or Sobolev regularity.

In order to have evolution families with sufficient regularity properties, we
will restrict ourselves to the parabolic setting. We will assume that the oper-
ators (A(t))t∈[0,T ] satisfy the so-called (AT)-conditions which were introduced
by Acquistapace and Terreni. This is a combination of a uniform sectoriality
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condition and a Hölder condition on the resolvents. We will allow Ω-dependent
Hölder constants in the latter, which is quite reasonable from the point of view
of applications.

This chapter is organized as follows. In Section 5.2 we will discuss the (AT)-
conditions, and extend some of their results to the ω-dependent setting. In the
Section 5.3 we present a new pathwise regularity result, which will allow to
obtain the usual parabolic regularity of the solution to (5.1.3). In Section 5.4 we
discuss the new representation formula (5.1.4) and its relations to other solutions
concepts such as strong, variational, weak and mild solutions. In Section 5.5 we
discuss a general semilinear problem and prove well-posedness with a fixed point
argument. For this we first obtain well-posedness under the assumption that
the constants in the (AT)-conditions are ω-independent Hölder conditions. After
that we localize the Hölder condition and extend the result to the general case.
Finally, we illustrate our results with Examples in Section 5.6.

This chapter is based on the paper [111].

5.2 Stochastic evolutions families

Let E0 be a Banach space. In this section we will be concerned with generation
properties of families of unbounded operators. For t ∈ [0, T ] and ω ∈ Ω fixed, we
consider a closed and densely defined operator

A(t, ω) : E0 ⊃ D(A(t, ω)) → E0

For convenience, we sometimes write A(t) and D(A(t)) instead of A(t, ω) and
D(A(t, ω)), respectively.

We will only consider the parabolic setting (i.e. the case where each A(t, ω)
generates an analytic semigroup). This is well-documented in the literature (see
[9, 73,104,130,131]).

5.2.1 Generation theorem

In this subsection we will consider the conditions introduced by Acquistapace
and Terreni [2] (see also [1, 4, 9, 125, 131, 141, 142] and references therein). An
important difficulty in our situation is that A(t, ω) depends on the additional
parameter ω ∈ Ω.

For ϑ ∈ (π/2, π) we set

Σϑ = {λ ∈ C : | arg λ| < ϑ}.

On A we will assume a sectoriality condition and a Hölder continuity assump-
tion:

(AT1) There exists a ϑ ∈ (π/2, π) andM > 0 such that for every (t, ω) ∈ [0, T ]×Ω,
one has Σϑ ∪ {0} ⊂ ρ(A(t, ω)) and
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∥R(λ,A(t, ω))∥L (E0) ≤
M

|λ|+ 1
, λ ∈ Σϑ ∪ {0}.

(AT2) There exist 0 < ν, µ ≤ 1 with µ + ν > 1 such that for every ω ∈ Ω, there
exists a constant L(ω) ≥ 0 such that for all s, t ∈ [0, T ] and λ ∈ Σϑ,

|λ|ν∥A(t, ω)R(λ,A(t, ω))(A(t, ω)−1 −A(s, ω)−1)∥L (E0) ≤ L(ω)|t− s|µ.

We would like to point out that it will be important that in Hölder continuity
assumption the Hölder constant is allowed to depend on ω. Whenever (AT1)
and (AT2) hold, it is said that (AT) holds. The abbreviation (AT) stands for
Acquistapace and Terreni.

In the sequel we will not write the dependence on ω ∈ Ω explicitly whenever
there is no danger of confusion.

Example 5.1. Assume E1 = D(A(t, ω)) is constant with uniform estimates in
t ∈ [0, T ] and ω ∈ Ω. Assume (AT1) holds. If there is a µ ∈ (0, 1] and a mapping
C : Ω → R+ such that

∥A(t)−A(s)∥L (E1,E0) ≤ C|t− s|µ, s, t ∈ [0, T ],

then (AT2) holds with ν = 1 and L =MC up to a constant multiplicative factor.
The above type of condition is sometimes called the Kato–Tanabe condition
(see [104,130]).

Let ∆ := {(s, t) ∈ [0, T ]2 : s ≤ t}. The following result can be derived by
applying [1, Theorem 2.3] pointwise in Ω.

Theorem 5.2. Assume (AT). There exists a unique map S : ∆ × Ω → L (E0)
such that

1. For all t ∈ [0, T ], S(t, t) = I.
2. For r ≤ s ≤ t, S(t, s)S(s, r) = S(t, r).
3. For every ω ∈ Ω, the map S(·, ω) is strongly continuous.
4. There exist a mapping C : Ω → R+ such that for all s ≤ t, one has

∥S(t, s)∥ ≤ C.
5. For every s < t, one has d

dtS(t, s) = A(t)S(t, s) pointwise in Ω, and there
exist a mapping C : Ω → R+ such that

∥A(t)S(t, s)∥L (E0) ≤ C(t− s)−1.

In the above situation we say that (A(t))t∈[0,T ] generates the evolution sys-
tem/family (S(t, s))0≤s≤t≤T .

5.2.2 Measurability

Throughout this subsection we assume that (AT) holds.
As the domains of D(A(t, ω)) also vary in (t, ω), the most natural way is to

formulate the adaptedness assumption for the resolvent as follows:
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(H1) For some λ ∈ Σϑ ∪ {0}, R(λ,A(·)) : [0, T ]×Ω → L (E0) is strongly measur-
able and adapted.

Here we consider measurability and adaptedness in the uniform operator
topology. The hypothesis (H1) implies that for all λ ∈ Σϑ ∪ {0}, R(λ,A(·)) is
strongly measurable and adapted. This follows from the fact that the resolvent
can be expressed as a uniformly convergent power series (see [41, Proposition
IV.1.3]).

Example 5.3. Assume the conditions of Example 5.1 hold. If A : [0, T ]× Ω →
L (E1, E0) is strongly measurable and adapted, then (H1) holds. Indeed, fix
ω0 ∈ Ω. Since (t, ω) 7→ A(t, ω)A(0, ω0)

−1 is strongly measurable and adapted and
taking inverses is continuous on the open set of invertible operators, it follows
that (t, ω) 7→ A(0, ω0)A(t, ω)

−1 is strongly measurable and adapted. This clearly
yields (H1).

Let r > 0 and η ∈ (π/2, ϑ), and consider the counterclockwise oriented curve

γr,η := {λ ∈ C : | arg λ| = η, |λ| ≤ r} ∪ {λ ∈ C : |λ| = r,−η ≤ arg λ ≤ η}.

For s ∈ [0, T ], consider the analytic semigroup (etA(s))t≥0 defined by

etA(s)x =

{ 1
2πi

∫
γr,η

etλR(λ,A(s))x dλ, t > 0,

x, t = 0.

Proposition 5.4. The evolution system S : ∆×Ω → L (E0) is strongly measur-
able in the uniform operator topology. Moreover, for each t ≥ s, ω 7→ S(t, s, ω) ∈
L (E0) is strongly Ft-measurable in the uniform operator topology.

In Example 5.5 we will show that the above measurability result cannot be
improved in general.

Proof. Fix 0 ≤ s < t ≤ T . The evolution system S(t, s) is given in [1], as follows.
Let Q(t, s) be given by

Q(t, s) = A(t)2e(t−s)A(t)(A(t)−1 −A(s)−1).

Define inductively Qn(t, s) by

Q1(t, s) = Q(t, s), Qn(t, s) =

∫ t

s

Qn−1(t, r)Q(r, s) dr.

Then the evolution system S(t, s) is given by

S(t, s) = e(t−s)A(s) +

∫ t

s

Z(r, s) dr,

where
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Z(t, s) : = A(t)e(t−s)A(t) −A(s)e(t−s)A(s)

+

∞∑
n=1

∫ t

s

Qn(t, r)
(
A(r)e(r−s)A(r) −A(s)e(r−s)A(s)

)
dr

+

∞∑
n=1

∫ t

s

(Qn(t, r)−Qn(t, s))A(s)e
(r−s)A(s) dr

+
∞∑

n=1

Qn(t, s)(e
(t−s)A(s) − 1).

The above series converges in L (E0), see [1, Lemma 2.2 (1)].
Step 1: S(t, s) is Ft-measurable. Note that

A(t)ne(t−s)A(t) =
1

2πi

∫
γr,η

e(t−s)λλnR(λ,A(t)) dλ, n ∈ N.

Also, for n ∈ N, note that λ 7→ e(t−s)λλnR(λ,A(t)) is continuous on γr,η,
and hence Riemann integrable. The random variable e(t−s)λλnR(λ,A(t)) is Ft-
measurable for every λ ∈ γr,η, hence every Riemann sum and thus every Riemann
integral is Ft-measurable. It follows that A(t)ne(t−s)A(t) (as it is the limit of Rie-
mann integrals) is Ft-measurable. In particular this holds for n = 2, and hence
Q(t, s) is Ft-measurable as well. On (s, t), the map r 7→ Qn−1(t, r)Q(r, s) is
continuous, by [1, Lemma 2.1]. Thus, by a similar argument as above, Qn(t, s) is
Ft-measurable, for n ≥ 2. Also e(t−s)A(s) is Ft-measurable. Hence the random
variable

∞∑
n=1

Qn(t, s)(e
(t−s)A(s) − 1)

is Ft-measurable.
Clearly r 7→ A(s)e(r−s)A(s) is continuous. By [1, Lemma 2.1], r 7→ Qn(t, r)−

Qn(t, s) is continuous as well. Hence, as before we see that

∞∑
n=1

∫ t

s

(Qn(t, r)−Qn(t, s))A(s)e
(r−s)A(s) dr

is Ft-measurable.
The map g : r 7→ A(r)e(r−s)A(r) − A(s)e(r−s)A(s) for r ∈ (s, t) is continuous.

Indeed,

∥g(q)− g(r)∥L (E0) ≤ ∥A(q)e(q−s)A(q) −A(r)e(q−r)A(r)∥L (E0)

+ ∥A(r)(e(q−s)A(r) − e(r−s)A(r))∥L (E0)

+ ∥A(s)(e(r−s)A(s) − e(q−s)A(s))∥L (E0).

Now [3, Lemma 1.10(i)] yields the required continuity of g and its integral will
be Ft-measurable again. Combining all terms we deduce that Z(t, s) is Ft-
measurable. By [1, Lemma 2.2(ii)] the map r 7→ Z(r, s) is continuous on (s, t)
and therefore, we can now deduce that S(t, s) is Ft-measurable.



5.2 Stochastic evolutions families 89

Step 2: measurability of the process S. For n ∈ N and k = 0, 1, . . . , n − 1,
consider the triangle

Dk,n = {(s, t) ∈ [0, T ]2 : k
n ≤ t ≤ k+1

n , k
n ≤ s ≤ t}.

Let I be the identity operator on E0. Then for 0 ≤ s ≤ t ≤ T , define Xn :
∆×Ω → L (E0) by

Xn(t, s) :=
n−1∑
k=1

1Dk,n
(s, t)I +

n−2∑
k=0

n−1∑
m=k+1

1( k
n , k+1

n ]×(m
n ,m+1

n ](s, t)S
(m
n
,
k

n

)
.

Since S(t, s) : Ω → L (E0) is strongly measurable, by Step 1, it follows that
Xn : ∆×Ω → L (E0) is strongly measurable. Moreover, by strong continuity of
S, pointwise on ∆×Ω, one has Xn → S. Hence S : ∆×Ω → L (E0) is strongly
measurable. �

Example 5.5. Let E0 = R and let A : [0, T ] × Ω → R be a measurable and
adapted process such that supt∈[0,T ] |A(t, ω)| <∞. Then A generates the evolu-
tion system

S(t, s, ω) = exp
(∫ t

s

A(r, ω) dr
)
.

Obviously ω 7→ S(t, s, ω) is only Ft-measurable in general.

5.2.3 Pathwise regularity properties of evolution families

Throughout this subsection we assume that (AT) holds. First we recall some facts
from interpolation theory. An overview on the subject can be found in [9,73,132].

For θ ∈ (0, 1) and 1 ≤ p ≤ ∞ the real interpolation space Et
θ,p :=

(E0, D(A(t)))θ,p is the subspace of all x ∈ E0 for which

∥x∥(E0,D(A(t)))θ,p :=
(∫ ∞

0

sp(1−θ)∥A(t)esA(t)x∥pE0

ds

s

)1/p

<∞,

with the obvious modification if p = ∞. Clearly, the space Et
θ,p and its norm

also depends on ω ∈ Ω, but this will be omitted from the notation. The space
Et

θ,p with the above norm is a Banach space. For convenience we also let Et
0,p :=

(E0, D(A(t)))0,p = E0 and Et
1,p := (E0, D(A(t)))1,p = D(A(t)). By applying

A(t) finitely many times on both sides we extend the definition of the spaces
Et

θ,p := (E0, D(A(t)))θ,p to all θ ≥ 0.
For all θ ∈ [0, α)

Et
α,1 ↪→ Et

α,p ↪→ Et
α,∞ ↪→ Et

θ,1 ↪→ E0. (5.2.1)

Here, the embedding constants only depend on the constants in (AT1) and thus
are independent of time and Ω.

For θ ∈ (0, 1), let (−A(t, ω))−θ be defined by



90 Chapter 5. Stochastic evolution equations with adapted drift

(−A(t))−θ =
1

Γ (θ)

∫ ∞

0

sθ−1esA(t) ds.

and let (−A(t))θ = ((−A(t))−θ)−1 with as domain the range of (−A(t))−θ.
Endowed with the norm ∥x∥D((−A(t))θ) = ∥(−A(t))θx∥E0 , the space D((−A(t))θ)
becomes a Banach space.

For θ ≥ 0, the following continuous embeddings hold:

Et
θ,1 ↪→ D(−A(t))θ ↪→ Et

θ,∞. (5.2.2)

and again the embedding constants only depend on the constants in (AT1).
The next result follows from pointwise application of [125, (2.13), (2.15) and

Proposition 2.4]. Recall that µ, ν ∈ (0, 1] are the smoothness constants from
(AT2).

Lemma 5.6. There exists a mapping C : Ω → R+ such that for all 0 ≤ s < t ≤
T , for all 0 ≤ α < β ≤ 1, η ∈ (0, µ+ν−1), γ ∈ [0, µ), θ ∈ [0, 1] and δ, λ ∈ (0, 1),
the following inequalities hold

∥S(t, s)x∥Et
β,1

≤ C(t− s)α−β∥x∥Es
α,∞

, x ∈ Es
α,∞. (5.2.3)

∥A(t)S(t, s)x∥Et
η,1

≤ C(t− s)−1−η∥x∥, x ∈ E0. (5.2.4)

∥A(t)S(t, s)x∥Et
η,1

≤ C(t− s)−1−η+δ∥x∥Es
δ,∞

, x ∈ Es
δ,∞. (5.2.5)

∥S(t, s)(−A(s))γx∥E0 ≤ C(t− s)−γ∥x∥, x ∈ D((−A(s))γ). (5.2.6)

∥(−A(t))θS(t, s)(−A(s))−θ∥L (E0) ≤ C

and ∆ ∋ (t, s) 7→ (−A(t))θS(t, s)(−A(s))−θ is strongly continuous.

In general C depend on the constants of (AT1) and (AT2). Note that to obtain
(5.2.3) one needs to use reiteration in order to obtain the improvement from
exponent ∞ to 1. Moreover, (5.2.5) follows from interpolation of (5.2.3) and
(5.2.4) and reiteration.

5.2.4 Improved regularity under adjoint conditions

Throughout this section we assume the (AT)-conditions hold. To obtain further
pathwise regularity properties we will assume in this section that E0 is reflexive.
Then (A(t)∗)t∈[0,T ],ω∈Ω is a family of closed densely define operators on E∗

0 .
Moreover, since R(λ,A(t)∗) = R(λ,A(t))∗, (AT1) holds for this family as well.
Furthermore, we will assume that the family of adjoints satisfies (AT2) with
constants µ∗ and ν∗, throughout the rest of this section.

Under the above assumption on the adjoint family, we know that for every
t ∈ (0, T ], the family (A(t− τ)∗)τ∈[0,t] satisfies the (AT)-conditions as well, and
therefore by Theorem 5.2 it generates an evolution family:
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(V (t; τ, s))0≤s≤τ≤T .

Recall from [2, Proposition 2.9], that S(t, s)∗ = V (t; t − s, 0), and by Theorem
5.2 (5) and the chain rule, for s < t

d

ds
S(t, s)∗ = −A(s)∗S(t, s)∗. (5.2.7)

Moreover, for all x ∈ D(A(s)∗) = D(A(t − (t − s))∗) one has s 7→ S(t, s)∗x∗ =
V (t; t− s, 0)x∗ is continuously differentiable on [0, t].

Lemma 5.7. Under the above conditions one has

(1) For every t ∈ (0, T ], the mapping s 7→ S(t, s) belongs to C1([0, t);L (E0)),
and for all x ∈ D(A(s)) one has d

dsS(t, s)x = −S(t, s)A(s)x.
(2) For t > s, 0 ≤ θ < µ∗ + ν∗ − 1 and x ∈ D(−A(s)1+θ), the evolution operator

S(t, s) satisfies

∥S(t, s)(−A(s))1+θx∥E0 ≤ C(t− s)−1−θ∥x∥E0 . (5.2.8)

(3) For t > s, 0 < γ < µ∗ + ν∗ − 1, δ ∈ (0, 1), and x ∈ D((−A(s))1+γ)

∥A(t)−δS(t, s)(−A(s))1+γx∥E0 ≤ C(t− s)−1−γ+δ∥x∥E0 . (5.2.9)

In particular, we see that for every s < t, the operator S(t, s)A(s) uniquely
extends to a bounded operator on E0 of norm C(t− s)−1, which will be denoted
by S(t, s, ω)A(s, ω) again. As before, the constant C depends on the constants
in the (AT)-conditions for A and A∗.

Proof. It follows from (5.2.7) that

d

ds
S(t, s) =

( d

ds
S(t, s)∗

)∗
= (−A(s)∗S(t, s)∗)∗,

where we identify E0 and E∗∗
0 . It follows (−A(s)∗S(t, s)∗)∗ ∈ L (E0). Hence, for

any x ∈ D(A(s)) and every x∗ ∈ E∗
0 , one has

⟨(−A(s)∗S(t, s)∗)∗x, x∗⟩ = −⟨x,A(s)∗S(t, s)∗x∗⟩ = ⟨−S(t, s)A(s)x, x∗⟩.

By a Hahn-Banach argument, we obtain d
dsS(t, s)x = −S(t, s)A(s)x for all x ∈

D(A(s)).
By (5.2.3) and (5.2.4) for the adjoint family we find that

∥(−A(s)∗)1+θS(t, s)∗∥L (E∗
0 )

= ∥((−A(t− (t− s)))∗)1+θV (t; t− s, 0)∥L (E∗
0 )

≤ C(t− s)−1−θ.

Let x ∈ D((−A(s))1+θ) be arbitrary. Then
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∥S(t, s)(−A(s))1+θx∥E0 = sup
∥x∗∥E∗

0
≤1

|⟨S(t, s)(−A(s))1+θx, x∗⟩|

= sup
∥x∗∥E∗

0
≤1

|⟨x, (−A(s)∗)1+θS(t, s)∗x∗⟩|

≤ ∥x∥E0∥(−A(s)∗)1+θS(t, s)∗∥L (E∗
0 )

≤ C(t− s)−1−θ∥x∥E0

and (5.2.8) follows.
The estimate (5.2.9) can be derived in a similar way from (5.2.5). �

5.3 Pathwise regularity of convolutions

In this section we will assume the following hypothesis.

(H2) Assume that both (A(t, ω))t∈[0,T ],ω∈Ω and (A(t, ω)∗)t∈[0,T ],ω∈Ω satisfy the
(AT)-conditions.

5.3.1 A class of time independent spaces and interpolation

The following hypothesis is needed to deal with the time-dependent domains in
an efficient way.

(H3) There exist η+ ∈ (0, 1] and η− ∈ (0, µ∗ + ν∗ − 1) and two family of interpo-
lation spaces (Ẽη)η∈[0,η+) and (Ẽη)η∈(−η−,0] such that
(i) For all η4 ≤ η3 ≤ 0 ≤ η2 ≤ η1 < η+

Ẽη+ ↪→ Ẽη1 ↪→ Ẽη2 ↪→ Ẽ0 = E0 ↪→ Ẽη3 ↪→ Ẽη4 .

(ii) For all η ∈ [0, η+), E
t
η,1 ↪→ Ẽη ↪→ E0, with uniform constants in (t, ω).

(iii) For η ∈ (0, η−), Ẽ−η is dense in E0 and for all x ∈ E0 and ε > 0 one
has

∥(−A(t))−η−εx∥E0 ≤ C∥x∥Ẽ−η
,

where C is independent of (t, ω).

If E1 = D(A(t)) is constant one can just take Ẽη = (E0, E1)η,p for some p ∈
[1,∞). Moreover, in particular it follows from (iii) that (−A(t))−η−ε has a unique
continuous extension to a bounded operator from E0 into Ẽ−η. From Remark
5.9 it will become clear why we assume η− < µ∗ + ν∗ − 1.

Remark 5.8.

1. If A(t) is a differential operator with time dependent boundary conditions,
then in general Et

η will be time dependent as well. In this case one typically

takes Ẽη to be the space obtained by real interpolation from E0 and the
space E1 ⊃ D(A(t)) obtained by leaving out the boundary conditions.
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2. Note that it is allowed to choose Ẽ−η = E0 for all η ∈ (0, η−). However,
usually the spaces will be taken certain extrapolation spaces which makes
the noise term in a stochastic PDE convergent.

Remark 5.9. Assume hypotheses (H2) and (H3). The following observation will
be used throughout the rest of the chapter. Let ε > 0, a ∈ (0, η+). By (5.2.1),
(5.2.2) and (5.2.8) for s < t and x ∈ Ẽ−θ, letting r =

t+s
2 and taking ε > 0 small

enough, we find that for all θ ∈ [0, η−),

∥S(t, s)A(s)x∥Ẽa
≤ C∥S(t, r)∥L (E0,Et

a)
∥S(r, s)(−A(s))1+θ+ε(−A(s))−θ−εx∥E0

≤ C(t− s)−a−ε−1−θ∥x∥Ẽ−θ
.

Note that here we use η− < µ∗+ν∗−1. Similarly, we find that for all θ ∈ (0, η−)

∥S(t, s)x∥Ẽa
≤ C(t− s)−a−ε−θ∥x∥Ẽ−θ

,

where in both estimates C depends on Ω.

The next lemma is taken from [135, Lemma 2.3], and this is the place where
the assumption that (Ẽη)η∈[0,η+] are interpolation spaces, is used.

Lemma 5.10. Assume (H2) and (H3). Let α ∈ (0, η+] and δ, γ > 0 such that
γ + δ ≤ α. Then there exists a constant C > 0 depending on ω, such that

∥S(t, r)x− S(s, r)x∥Ẽδ
≤ C(t− s)γ∥x∥Er

α,1
, 0 ≤ r ≤ s ≤ t ≤ T, x ∈ Er

α.

Moreover, if x ∈ Er
α,1, then t 7→ S(t, r)x ∈ C([r, T ]; Ẽα).

In the above lemma C depends on Ω.

5.3.2 Sobolev spaces

Let X be a Banach space. For α ∈ (0, 1), p ∈ [1,∞) and a < b, recall that
a function f : (a, b) → X is said to be in the Sobolev space Wα,p(a, b;X) if
f ∈ Lp(a, b;X) and

[f ]Wα,p(a,b;X) :=
(∫ b

a

∫ b

a

∥f(t)− f(s)∥p

|t− s|αp+1
ds dt

)1/p

<∞.

Letting ∥f∥Wα,p(a,b;X) = ∥f∥Lp(a,b;X) + [f ]Wα,p(a,b;X), this space becomes a Ba-
nach space. By symmetry one can write∫ b

a

∫ b

a

B(t, s) ds dt = 2

∫ b

a

∫ t

a

B(t, s) ds dt = 2

∫ b

a

∫ b

s

B(t, s) dt ds

where B(t, s) = ∥f(t)−f(s)∥p

|t−s|αp+1 . This will be used often below.

A function f : (a, b) → X is said to be in the Hölder space Cα(a, b;X) if
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[f ]Cα(a,b;X) = sup
a<s<t<b

∥f(t)− f(s)∥
|t− s|α

<∞.

Letting ∥f∥Cα(a,b;X) = supt∈(0,T ) ∥f(t)∥X + [f ]Wα,p(a,b;X), this space becomes
a Banach space. Moreover, every f ∈ Cα(a, b;X) has a unique extension to a
continuous function f : [a, b] → X. For p = ∞ and a Banach space X, we also
write Wα,∞(0, T ;X) = Cα(0, T ;X).

If 0 < α < β < 1, then trivially,

Cα(a, b;X) ↪→Wα,p(a, b;X).

One of the main results in the theory of fractional Sobolev spaces is the following
Sobolev embedding: if α > 1

p , then

Wα,p(a, b;X) ↪→ Cα− 1
p (a, b;X). (5.3.1)

Here the embedding means that each f ∈ Wα,p(a, b;X) has a version which is

continuous and this function lies in Cα− 1
p (a, b;X). The embedding (5.3.1) can

be found in the literature in the scalar setting and the standard proofs extend
to the vector-valued setting. We refer to [70, 14.28 and 14.40] and [35, Theorem
8.2] for detailed proofs.

5.3.3 Regularity of generalized convolutions

We can now present the first main result of this section. It gives a space-time
regularity result for the abstract Cauchy problem:

u′(t) = A(t)u(t) + f(t), u(0) = 0. (5.3.2)

Recall that the solution is given by the convolution:

S ∗ f(t) :=
∫ t

0

S(t, σ)f(σ) dσ.

The next result extends [135, Proposition 3.2], where a space-time Hölder
continuity result has been obtained.

Theorem 5.11. Assume (AT), (H3). Let θ ∈ [0, η−), p ∈ [1,∞) and δ, λ > 0
such that δ + λ < min{1 − θ, η+}. Suppose f ∈ L0(Ω;Lp(0, T ; Ẽ−θ)). Then the
stochastic process S ∗ f is in L0(Ω;Wλ,p(0, T ; Ẽδ)) and satisfies

∥S ∗ f∥Wλ,p(0,T ;Ẽδ)
≤ C∥f∥Lp(0,T ;Ẽ−θ)

a.s.,

where C depends on Ω.

Maximal Lp-regularity results for (5.3.2) can be found in [107].
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Proof. Let ε > 0 be so small that δ + λ + θ + 2ε < η0. By (5.2.6) and (H3) we
find that

∥S ∗ f(t)∥Ẽδ

≤
∫ t

0

∥S(t, t+σ
2 )∥L (E0,Et

δ,1)
∥S( t+σ

2 , σ)(−A(σ))θ+ε∥L (E0)∥f(σ)∥Ẽ−θ
dσ

≤ C

∫ t

0

(t− σ)−δ−θ−ε∥f(σ)∥Ẽ−θ
dσ

(5.3.3)
Therefore, Young’s inequality yields that

∥S ∗ f∥Lp(0,T ;Ẽδ)
≤ C∥f∥Lp(0,T ;Ẽ−θ)

.

Next we estimate the seminorm [S ∗ f ]Wλ,p(0,T ;Eδ). For 0 ≤ s < t ≤ T , we
write

∥(S ∗ f)(t)− (S ∗ f)(s)∥Ẽδ
≤

∫ s

0

∥(S(t, σ)− S(s, σ))f(σ)∥Ẽδ
dσ

+

∫ t

s

∥S(t, σ)f(σ)∥Ẽδ
dσ.

By Remark 5.9 and Lemma 5.10 we obtain∫ s

0

∥(S(t, σ)− S(s, σ))f(σ)∥Ẽδ
dσ ≤ C(t− s)λ+ε

∫ s

0

∥S(s, σ)f(σ)∥Es
δ+λ+ε

dσ

≤ C(t− s)λ+ε

∫ s

0

(s− σ)−δ−λ−θ−2ε∥f(σ)∥Ẽ−θ
dσ

Now it follows from integration over t and then Young’s inequality that∫ T

0

∫ T

s

(t− s)−1−λp
(∫ s

0

∥(S(t, σ)− S(s, σ))f(σ)∥Ẽδ
dσ

)p

dt ds

≤ C

∫ T

0

∫ T

s

C(t− s)−1+εp
(∫ s

0

(s− σ)−δ−λ−θ−2ε∥f(σ)∥Ẽ−θ
dσ

)p

dt ds

≤ C

∫ T

0

(∫ s

0

(s− σ)−δ−λ−θ−2ε∥f(σ)∥Ẽ−θ
dσ

)p

ds

≤ C∥f∥p
Lp(0,T ;Ẽ−θ)

.

For the other term by (5.2.3) we obtain∫ t

s

∥S(t, σ)f(σ)∥Ẽδ
dσ ≤

∫ t

0

1(s,t)(σ)(t− σ)−δ−θ−ε∥f(σ)∥Ẽ−θ
dσ

Integrating over s ∈ (0, t) it follows from Minkowski’s inequality that
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(∫ t

0

(
(t− s)−

1
p−λ

∫ t

0

1(s,t)(σ)∥S(t, σ)f(σ)∥Ẽδ
dσ

)p

ds
)1/p

≤ C
(∫ t

0

(∫ t

0

(t− s)−
1
p−λ1(s,t)(σ)(t− σ)−(δ+θ+ε)∥f(σ)∥Ẽ−θ

dσ
)p

ds
)1/p

≤ C

∫ t

0

(∫ t

0

(t− s)−1−λp1(s,t)(σ)(t− σ)−(δ+θ+ε)p∥f(σ)∥p
Ẽ−θ

ds
)1/p

dσ

≤ C

∫ t

0

(t− σ)−(δ+θ+ε+λ)∥f(σ)∥Ẽ−θ
dσ.

Taking p-th moments in t ∈ (0, T ), it follows from Young’s inequality that∫ T

0

∫ t

0

(
(t− s)−

1
p−λ

∫ t

0

1(s,t)(σ)∥S(t, σ)f(σ)∥Ẽδ
dσ

)p

ds dt

≤ C

∫ T

0

(∫ t

0

(t− σ)−(δ+θ+ε+λ)∥f(σ)∥Ẽ−θ
dσ

)p

dt ≤ C∥f∥p
Lp(0,T ;Ẽ−θ)

.

Combining the estimates, the result follows. �

The second main result of this section looks artificial, but is a major techni-
cal tool to obtain pathwise regularity of the solution to the stochastic Cauchy
problem:

du = A(t)u(t) dt+GdW.

For details on this we refer to Section 5.4 below.
Recall the convention that for a Banach space X, we put Wα,∞(0, T ;X) =

Cα(0, T ;X).

Theorem 5.12. Assume (H2) and (H3). Let p ∈ (1,∞], θ ∈ [0, η−) and α > θ.
Let f ∈ L0(Ω;Wα,p(0, T ; Ẽ−θ)). Let δ, λ > 0 be such that δ+λ < min{α−θ, η+}.
The following assertions hold:

1. The stochastic process ζ defined by

ζ(t) :=

∫ t

0

S(t, σ)A(σ)(f(t)− f(σ)) dσ

belongs to L0(Ω;Wλ,p([0, T ]; Ẽδ)) and

∥ζ∥Wλ,p(0,T ;Ẽδ)
≤ C∥f∥Wα,p(0,T ;Ẽ−θ)

a.s.,

where C depends on Ω.
2. If α > 1/p, assume additionally that the continuous version of f satisfies
f(0) = 0. Then ζ̃ = S(t, 0)f(t) belongs to L0(Ω;Wλ,p(0, T ; Ẽδ)) and

∥ζ̃∥Wλ,p(0,T ;Ẽδ)
≤ C∥f∥Wα,p(0,T ;Ẽ−θ)

a.s.,

where C depends on Ω.
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Note that in (2) the continuous version of f exists in the case α > 1/p by
(5.3.1).

Proof. The proofs in the case p = ∞ are much simpler and we focus on the case
p ∈ (1,∞). Let β = δ + θ + ε.

(1). Let ε > 0 be so small that β+λ+ ε < α. Write ∆tsf = f(t)−f(s). First
we estimate the Lp(0, T ; Ẽδ)-norm of ζ. Note that by Remark 5.9

∥S(t, σ)A(σ)∆tσf∥Ẽδ
≤ C(t− σ)−1−β∥∆tσf∥Ẽ−θ

.

Therefore, by Holder’s inequality applied with measure (t − σ)−1+ε dσ we find
that

∥ζ∥p
Lp(0,T ;Ẽδ)

≤ C

∫ T

0

(∫ t

0

∥∆tσf∥Ẽ−θ

(t− σ)1+β
dσ

)p

dt

≤ C

∫ T

0

∫ t

0

∥∆tσf∥pẼ−θ

(t− σ)1+(β+ε− ε
p )p

dσ dt

≤ C∥f∥Wα,p(0,T ;Ẽ−θ)
.

Observe that

∥ζ(t)− ζ(s)∥Ẽδ
≤

∫ s

0

∥(S(t, σ)A(σ)∆tσf − S(s, σ)A(σ)∆sσf)∥Ẽδ
dσ

+

∫ t

s

∥S(t, σ)A(σ)∆tσf∥Ẽδ
dσ = T1(s, t) + T2(s, t).

We estimate the [·]Wλ,p -seminorm of each of the terms separately. For T2 note
that by Remark 5.9,

∥S(t, σ)A(σ)∆tσf∥Ẽδ
≤ C(t− σ)−β−1∥∆tσf∥Ẽ−θ

=: g(σ, t)

Therefore, it follows from the Hardy–Young inequality (see [48, p. 245-246]) that∫ t

0

(t− s)−λp−1
(∫ t

s

∥S(t, σ)A(σ)∆tσf∥Ẽδ
dσ

)p

ds

≤
∫ t

0

(t− s)−λp−1
(∫ t

s

g(σ, t) dσ
)p

ds

=

∫ t

0

(t− s)−λp−1
(∫ t−s

0

g(t− τ, t) dτ
)p

ds

=

∫ t

0

r−λp−1
(∫ r

0

g(t− τ, t) dτ
)p

dr

≤ C

∫ t

0

rp−λp−1g(t− r, t)p dr

= C

∫ t

0

g(s, t)p

(t− s)−p+λp+1
ds
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Integrating with respect to t ∈ (0, T ) and using the definition of g we find that∫ T

0

∫ t

0

T2(s, t)
p

(t− s)λp+1
ds dt ≤ C

∫ T

0

∫ t

0

(t− s)−(β+1)p∥∆tsf∥pẼ−θ

(t− s)−p+λp+1
ds dt

≤ C

∫ T

0

∫ t

0

∥∆tsf∥pẼ−θ

(t− s)αp+1
≤ C∥f∥p

Wα,p(0,T ;Ẽδ)
.

For T1, we can write

T1(s, t) ≤
∫ s

0

∥S(t, σ)A(σ)∆tsf∥Ẽδ
dσ

+

∫ s

0

∥(S(t, σ)− S(s, σ))A(σ)∆sσf∥Ẽδ
dσ

= T1a(s, t) + T1b(s, t).

For T1a, by Remark 5.9 we have

T1a(s, t) ≤ C

∫ s

0

(t− σ)−1−β∥∆tsf∥Ẽ−θ
dσ ≤ C(t− s)−β∥∆tsf∥Ẽ−θ

It follows that∫ T

0

∫ t

0

T1a(s, t)
p

(t− s)λp+1
ds dt ≤ C

∫ T

0

∫ t

0

∥∆tsf∥pẼ−θ

(t− s)(β+λ)p+1
ds dt

≤ C∥f∥p
Wα,p(0,T ;Ẽ−θ)

.

To estimate T1b let γ = α− ε− β. By Lemma 5.10 and Remark 5.9,

∥(S(t, σ)− S(s, σ))A(σ)∆sσf∥Ẽδ
≤ ∥(S(t, s)− I)S(s, σ)A(σ)∆sσf∥Ẽδ

≤ C(t− s)γ∥S(s, σ)A(σ)1+θ+ε∆sσf∥Es
δ+γ,1

≤ C(t− s)γ∥S(s, τ)∥L (E0,Es
δ+γ,1)

∥S(τ, σ)A(σ)1+θ+ε∥L (E0)∥∆sσf∥Ẽ−θ

≤ C(t− s)γ(s− σ)−1−γ−β∥∆sσf∥Ẽ−θ
,

with τ = (s− σ)/2. It follows that from Hölder’s inequality that

T1b(s, t)
p ≤ C(t− s)γp

(∫ s

0

(s− σ)−1−γ−β∥∆sσf∥Ẽ−θ
dσ

)p

≤ C(t− s)γph(s)p
∫ s

0

∥∆sσf∥pẼ−θ

(s− σ)αp+1
dσ

where by the choice of γ, the function h(s) satisfies

h(s) =
(∫ s

0

[
(s− σ)−1−γ−β+α+ 1

p

]p′

dσ
)1/p′

≤ C.
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Using Fubini’s theorem and γ > λ we can conclude that∫ T

0

∫ T

s

T1b(s, t)
p

(t− s)λp+1
dt ds ≤ C

∫ T

0

∫ s

0

∫ T

s

(t− s)−λp−1+γ dt
∥∆sσf∥pẼ−θ

(s− σ)αp+1
dσ ds

≤ C∥f∥p
Wα,p(0,T ;Ẽ−θ)

.

and this finishes the proof of (1).
To prove (2), we first estimate [ζ̃]Wλ,p(0,T ;Ẽδ)

and write

∥ζ̃(t)− ζ̃(s)∥Ẽδ
≤ ∥S(t, 0)∆tsf∥Ẽδ

+ ∥S(t, 0)− S(s, 0)f(s)∥Ẽδ
.

By Remark 5.9,

∥S(t, 0)∆tsf∥Ẽδ
≤ Ct−β∥∆tsf∥Ẽ−θ

≤ C(t− s)−β∥∆tsf∥Ẽ−θ
.

It follows that∫ T

0

∫ t

0

∥S(t, 0)∆tsf∥pẼδ

(t− s)λp+1
ds dt ≤ C∥f∥Wβ+λ(0,T ;Ẽ−θ)

≤ C∥f∥Wα(0,T ;Ẽ−θ)
.

For the other term we may assume β + λ + ε > 1/p in the case α > 1/p. In
the case α ≤ 1/p, we can assume β + λ+ ε < 1/p. By [35, Theorem 5.4] we can
find an extension of f to a function F in Wα,p(R; Ẽ−θ) and

∥F∥Wα,p(R;Ẽ−θ)
≤ C∥f∥Wα,p(0,T ;Ẽ−θ)

.

Moreover, multiplying F by a suitable smooth cut-off function we can assume
that additionally F = 0 on [T + 1,∞).

We have by Lemma 5.10 and (5.2.3),

∥(S(t, 0)− S(s, 0))f(s)∥Ẽδ
= ∥(S(t, s)− S(s, s))S(s, 0)f(s)∥Ẽδ

≤ C(t− s)λ+ε∥S(s, 0)f(s)∥Es
δ+λ+ε

≤ C(t− s)λ+ε
∥f(s)∥Ẽθ

sβ+λ+ε

Therefore, we find∫ T

0

∫ T

s

∥S(t, 0)− S(s, 0)f(s)∥p
Ẽδ

(t− s)λp+1
dt ds ≤ C

∫ T

0

∫ T

s

(t− s)−1+εp dt
∥f(s)∥p

Ẽθ

s(β+λ+ε)p
ds

≤ C

∫ T

0

∥f(s)∥p
Ẽθ

s(β+λ+ε)p
ds ≤ C

∫
R+

∥F (s)∥p
Ẽθ

s(β+λ+ε)p
ds

Applying, the fractional Hardy inequality (see [57, Theorem 2]) and elementary
estimates we find that the latter is less or equal than
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C∥F∥p
Wβ+λ+ε,p(R+;Ẽ−θ)

≤ C∥F∥p
Wβ+λ+ε,p(R;Ẽ−θ)

≤ C∥f∥p
Wβ+λ+ε,p(0,T ;Ẽ−θ)

≤ C∥f∥p
Wα,p(0,T ;Ẽ−θ)

.

Finally we estimate the Lp-norm of ζ̃. To do so it follows from Lemma 5.6
that

∥ζ̃(t)∥Ẽδ
≤ Ct−β∥f(t)∥Ẽ−θ

.

Taking Lp-norms and applying the fractional Hardy inequality as before we ob-
tain

∥ζ̃∥p
Lp(0,T ;Ẽδ)

≤ C

∫ T

0

t−βp∥f(t)∥p
Ẽ−θ

dt ≤ C∥f∥p
Wα,p(0,T ;Ẽ−θ)

.

This completes the proof of (2). �

5.4 Representation formula for stochastic convolutions

In this section we will introduce a new solution formula for equations of the form:{
dU(t) = (A(t)U(t) dt+G dW (t),
U(0) = 0,

(5.4.1)

Here W is an H-cylindrical Brownian motion and G : [0, T ]×Ω → L (H,E0) is
adapted and strongly measurable. Furthermore, (A(t))t∈[0,T ] satisfies the (AT)-
conditions as introduced before. At first sight one would expect that the solution
to (5.4.1) is given by

U(t) =

∫ t

0

S(t, s)G(s) dW (s). (5.4.2)

However, in general s 7→ S(t, s) is only Ft-measurable (see Proposition 5.4 and
Example 5.5). Therefore, the stochastic integral does not exist in the Itô sense.
We will give another representation formula which provides an alternative to
mild solutions to (5.4.1):

U(t) = −
∫ t

0

S(t, s)A(s)I(1(s,t)G) ds+ S(t, 0)I(1(0,t)G), (5.4.3)

where I(1(s,t)G) =
∫ t

s
GdW . Clearly, there is no adaptedness issue in (5.4.3)

as the evolution family is only used in integration with respect to the Lebesgue
measure. Moreover, the solution U will be adapted and measurable. A difficulty
in the representation formula (5.4.3) is that usually the kernel S(t, s)A(s) has
a singularity of order (t − s)−1, but we will see below that I(1(s,t)G) is small
enough for s close to t to make the integral in (5.4.3) convergent. Moreover, we
will show that the usual parabolic regularity results hold.
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In Section 5.4.1 we first repeat some basic results from stochastic integration
theory. In Section 5.4.2 we show that in the bounded case this yields the right
solution. The space-time regularity of U defined by (5.4.3) is studied in Section
5.4.3. In Section 5.4.4 we show that (5.4.3) leads to the usual weak solutions.
Finally in Section 5.4.5 we prove that there is an interpretation of (5.4.2) in
terms of forward integration. This will not be used in the rest of the chapter,
but provides an interesting connection.

In this section we assume the hypotheses (H1)-(H3) and we impose a further
condition on the spaces in (H3).

(H4) The spaces (Ẽη)η∈(−η−,η+] from (H3) all have umd and type 2.

Details on type and umd can be found in [39] and [23], respectively.

5.4.1 Stochastic integration

Below we briefly repeat a part of the stochastic integration theory in umd
spaces E with type 2. Let H be a separable Hilbert space and let W be a
cylindrical Brownian motion on H. For spaces E with umd one can develop
an analogue of Itô’s theory of the stochastic integral (see [86]). To be more
precise: one can precisely characterize which adapted and strongly measurable
G : [0, T ]×Ω → L (H,E) are stochastically integrable. Moreover, two-sided esti-
mates can be obtained. If additionally the space E has type 2, then there exists
an easy subspace of stochastically integrable processes. Indeed, every adapted
and strongly measurable G ∈ L0(Ω;L2(0, T ; γ(H,E))), the stochastic integral

process
( ∫ t

0
GdW

)
t∈[0,T ]

exists and is pathwise continuous. For convenience we

write

I(G) =

∫ T

0

GdW and J(G)(t) = I(1[0,t]G) t ∈ [0, T ].

Moreover, for all p ∈ (0,∞), there exists a constant C independent of G such
that the following one-sided estimate holds:

∥J(G)∥Lp(Ω;C([0,T ];E)) ≤ C∥G∥Lp(Ω;L2(0,T ;γ(H,E))). (5.4.4)

Here, γ(H,E) is the space of γ-radonifying operators R : H → E. For details on
γ-radonifying operators we refer to [90].

One can deduce Sobolev regularity of the integral process (see [110]).

Proposition 5.13. Assume E has type 2, and let p ∈ [2,∞) and 0 < α < 1
2 .

If G ∈ L0(Ω;Lp(0, T ; γ(H,E))) is adapted, then J(G) ∈ L0(Ω;Wα,p(0, T ;E)).
Furthermore, there exists a constant CT such that independent of G such that

∥J(G)∥Lp(Ω;Wα,p(0,T ;E)) ≤ CT ∥G∥Lp(Ω;Lp(0,T ;γ(H,E))),

where CT → 0 as T ↓ 0. Moreover, if Gn ∈ L0(Ω;Lp(0, T ; γ(H,E))) is adapted,
then
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Gn → G in L0(Ω;Lp(0, T ; γ(H,E)))

=⇒ J(Gn) → J(G) in L0(Ω;Wα,p(0, T ;E)).

By (5.3.1) one can also derive Hölder regularity and convergence in the Hölder
norm in the case α > 1/p.

5.4.2 Motivation in the bounded case

In this section we will motivate the representation formula (5.4.3) and we will
show that the solution U defined by (5.4.3) satisfies the usual space-time regu-
larity results.

Below we will show that in a special case, U , defined by (5.4.3), is a solution
to (5.4.1).

Proposition 5.14. Assume A ∈ L0(Ω;C([0, T ];L (E0)) and A is adapted. If
G ∈ L0(Ω;L2(0, T ; γ(H,E0))) is adapted, then U defined by (5.4.3) is adapted
and satisfies

U(t) =

∫ t

0

A(s)U(s) ds+

∫ t

0

G(s) dW (s).

The above result is only included to show that (5.4.3) leads to the “right”solution.
In the case A is bounded, one can construct solutions in a more direct way using
stopping time techniques and the Banach fixed point theorem.

Proof. By [104, Theorem 5.2], (A(t, ω))t∈[0,T ] generates a unique continuous evo-
lution family (S(t, s, ω))0≤s≤t≤T and pointwise in Ω the following identities hold

∂

∂t
S(t, s) = A(t)S(t, s) and

∂

∂s
S(t, s) = −S(t, s)A(s).

Moreover, from the construction in [104, Theorem 5.2] one readily checks that
for each 0 ≤ s ≤ t ≤ T , ω 7→ S(t, s, ω) is Ft-measurable and thus U defined by
(5.4.3) is adapted. It follows that

U(t) = −
∫ t

0

S(t, s)A(s)I(1(0,t)G) ds

+

∫ t

0

S(t, s)A(s)I(1(0,s)G) ds+ S(t, 0)I(1(0,t)G)

= I(1(0,t)G) +

∫ t

0

S(t, s)A(s)I(1(0,s)G) ds

Therefore, by Fubini’s theorem we obtain∫ t

0

A(r)U(r) dr =

∫ t

0

A(r)I(1(0,r)G) dr +

∫ t

0

∫ r

0

A(r)S(r, s)A(s)I(1(0,s)G) ds dr

=

∫ t

0

A(r)I(1(0,r)G) dr +

∫ t

0

∫ t

s

A(r)S(r, s)A(s)I(1(0,s)G) dr ds

=

∫ t

0

S(t, s)A(s)I(1(0,s)G) ds
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Combining both identities, the result follows. �

Remark 5.15. In the general case that A is unbounded, the integrals in the above
proof might diverge and one needs to argue in a different way. However, if G(s)
is in D((−A(s))β) for β ≥ 0 large enough, and under integrability assumptions
in s ∈ (0, T ), one can repeat the above calculation in many situations.

5.4.3 Regularity

As a consequence of the previous results we will now derive a pathwise regularity
result for U given by (5.4.3).

Theorem 5.16. Let p ∈ (2,∞) and let θ ∈ [0, η− ∧ 1
2 ). Let δ, λ > 0 be such that

δ+λ < min{ 1
2 −θ, η+}. Suppose G ∈ L0(Ω;Lp(0, T ; γ(H, Ẽ−θ))) is adapted. The

process U given by (5.4.3) is adapted and is in L0(Ω;Wλ,p(0, T ; Ẽδ)). Moreover,
for every α ∈ (λ+ δ+ θ, 12 ), there is a mapping C : Ω → R+ which only depends
on δ, λ, p and the constants in (H1)-(H4) such that

∥U∥Wλ,p(0,T ;Ẽδ)
≤ C∥J(G)∥Wα,p(0,T ;Ẽ−θ)

.

Recall from Proposition 5.13 that J(G) ∈Wα,p(0, T ; Ẽ−θ) a.s.

Proof. Let α ∈ (λ + δ + θ, 12 ). By Proposition 5.13, J(G) belongs to the space

L0(Ω;Wα,p(0, T ; Ẽ−θ)). Therefore, by Theorem 5.12 we find the required regu-
larity and estimate for the paths of U . The measurability and adaptedness of U
follows from Proposition 5.4 and approximation. �

5.4.4 Weak solutions

In this section we assume (H1)-(H4).
Formally, applying a functional x∗ ∈ E∗

0 on both sides of (5.4.1) and integra-
tion yields

⟨U(t), x∗⟩ =
∫ t

0

⟨U(s), A(s)∗x∗⟩ ds+
∫ t

0

G(s)∗x∗ dW (s), (5.4.5)

where the last expression only makes sense if x∗ ∈ D(A(s)∗) for almost all
s ∈ (0, T ) and ω ∈ Ω, and s 7→ ⟨U(s), A(s)∗x∗⟩ is in L1(0, T ) almost surely. In
this section we will show that the above identity is satisfied in the special cases
where the domains D(A(t)) and D(A(t)∗) do not depend on time.

In the case the domains are time independent, it is more natural to use time
and Ω-dependent functionals φ : [0, t]×Ω → E∗

0 to derive a weak formulation of
the solution. Here φ will be smooth in space and time, but will not be assumed
to be adapted. Formally, applying the product rule to differentiate and then
integrate the differentiable function ⟨U(t)− I(1(0,t)G), φ(t)⟩, one derives that
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⟨U(t)− I(1(0,t)G), φ(t)⟩

=

∫ t

0

⟨A(s)U(s), φ(s)⟩ ds+
∫ t

0

⟨U(s)− I(1(0,s)G), φ
′(s)⟩ ds

=

∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds+
∫ t

0

⟨U(s), φ′(s)⟩ ds−
∫ t

0

⟨I(1(0,s)G), φ
′(s)⟩ ds.

Adding the stochastic integral term to both sides yields

⟨U(t), φ(t)⟩ =
∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds+
∫ t

0

⟨U(s), φ′(s)⟩ ds

−
∫ t

0

⟨I(1(0,s)G), φ
′(s)⟩ ds+ ⟨I(1(0,t)G), φ(t)⟩.

(5.4.6)

Clearly, (5.4.6) reduces to (5.4.5) if φ ≡ x∗. Below we will show that the represen-
tation formula (5.4.3) is equivalent to (5.4.6). Moreover, in the case the domains
are constant in time, both are equivalent to (5.4.5). Therefore, this provides the
appropriate weak setting to extend the equivalence of Proposition 5.14.

First we define a suitable space of test functions.

Definition 5.17. For t ∈ [0, T ] and β ≥ 0 let Γt,β be the subspace of all φ ∈
L0(Ω;C1(0, t;E∗

0 )) such that

(1) for all s ∈ [0, t) and ω ∈ Ω, φ(s) ∈ D(((−A(s))β+1)∗) and φ′(s) ∈
D(((−A(s))β)∗).

(2) the process s 7→ A(s)∗φ(s) is in L0(Ω;C([0, t];E∗
0 )).

(3) There is a mapping C : Ω → R+ and ε > 0 such that for all s ∈ [0, t),

∥((−A(s))1+β)∗φ(s)∥+ ∥((−A(s))β)∗φ′(s)∥ ≤ C(t− s)−1+ε.

Example 5.18. Let x∗ ∈ D(A(t)∗). Then for all β ∈ [0, µ∗+ ν∗− 1) the process
φ : [0, t]×Ω → E∗

0 defined by φ(s) = S(t, s)x∗ belongs to Γt,β . Indeed, first of all
φ ∈ L0(Ω;C1([0, t];E∗

0 )) (see below (5.2.7)). Moreover, −A(s)∗φ(s) = φ′(s) =
−A(s)∗S(t, s)x∗ is continuous, and by the adjoint version of (5.2.9) the latter
satisfies

∥((−A(s))1+β)∗S(t, s)∗x∗∥ ≤ ∥((−A(s))1+β)∗S(t, s)∗(A(t)−λ)∗∥∥((−A(t))λ)∗x∗∥
≤ C(t− s)−1−β+λ∥((−A(t))λ)∗x∗∥,

for all λ ∈ (0, 1). The later satisfies the required condition when we take λ ∈
(β, 1).

In the next theorem we show the equivalence of the formulas (5.4.3) and
(5.4.6). It extends Proposition 5.14 to the unbounded setting.

Theorem 5.19. Let p ∈ (2,∞) and let G ∈ L0(Ω;Lp(0, T ; γ(H, Ẽ−θ))) be
adapted.
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1. If for all t ∈ [0, T ], (5.4.3) holds a.s., then for all β ∈ (θ, η−) and for all
t ∈ [0, T ] and for all φ ∈ Γt,β the identity (5.4.6) holds a.s.

2. If U ∈ L0(Ω;L1(0, T ;E0)) and there is β ∈ (θ, η−) such that for all t ∈ [0, T ],
for all φ ∈ Γt,β the identity (5.4.6) holds a.s., then for all t ∈ [0, T ], U
satisfies (5.4.3) a.s.

We have already seen that (5.4.3) is well-defined. Also all terms in (5.4.6) are
well-defined. For instance

|⟨I(1(0,s)G), φ
′(s)⟩| = |⟨(−A(s))−βI(1(0,s)G), (−A(s))βφ′(s)⟩|

≤ C sup
r∈[0,T ]

∥I(1(0,r)G)∥E−θ
(t− s)−1−ε

and the latter is integrable with respect to s ∈ (0, t).

Proof. (1): Assume (5.4.3) holds and fix s ∈ [0, T ] for the moment. Let β ∈
(θ, η−) and choose λ ∈ (β, η−). Let x

∗ ∈ D(((−A(s))λ)∗). By (5.2.9),

∥(−A(s))−λS(s, r)(−A(r))1+β∥L (E0) ≤ C(s− r)−1−β+λ.

Since also r 7→ I(1(0,r)G) is in L
0(Ω;L∞(0, T ; Ẽ−θ)) it follows that∫ s

0

|⟨S(s, r)A(r)I(1(r,s)G), x
∗⟩| dr

=

∫ s

0

|⟨(−A(s))−λS(s, r)(−A(r))1+β(−A(r))−βI(1(r,s)G), ((−A(s))λ)∗x∗⟩| dr

≤ CG

∫ s

0

(s− r)−1−β+λ∥((−A(s))λ)∗x∗∥ dr

≤ C ′
G∥((−A(s))λ)∗x∗∥.

Since I(1(r,s)G) = I(1(0,s)G)− I(1(0,r)G), we can write∫ s

0

⟨S(s, r)A(r)I(1(r,s)G), x
∗⟩ dr

=

∫ s

0

⟨S(s, r)A(r)I(1(0,s)G), x
∗⟩ dr −

∫ s

0

⟨S(s, r)A(r)I(1(0,r)G), x
∗⟩ dr.

Noting that ∂S(s,r)
∂r = −S(s, r)A(r), an approximation argument yields that∫ s

0

⟨S(s, r)A(r)x, x∗⟩ dr = ⟨S(s, 0)x, x∗⟩ − ⟨x, x∗⟩, x ∈ Ẽ−θ.

Then by (5.4.3) and using the above identities (with x = I(1(0,s)G)) we find that

⟨U(s), x∗⟩ =
∫ s

0

⟨S(s, r)A(r)I(1(0,r)G), x
∗⟩ dr + ⟨I(1(0,s)G), x

∗⟩. (5.4.7)
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Now let φ ∈ Γt,β . Applying the above with x∗ = A(s)∗φ(s) and integrating over
s ∈ (0, t) we find that∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds−
∫ t

0

⟨I(1(0,s)G), A(s)
∗φ(s)⟩ ds

=

∫ t

0

∫ s

0

⟨S(s, r)A(r)I(1(0,r)G), A(s)
∗φ(s)⟩ dr ds

=

∫ t

0

∫ t

r

⟨S(s, r)A(r)I(1(0,r)G), A(s)
∗φ(s)⟩ ds dr.

(5.4.8)

Since d
dtS(t, s) = A(t)S(t, s), with an approximation argument it follows that for

all x ∈ Ẽ−θ and 0 ≤ r ≤ t ≤ T ,

⟨S(t, r)A(r)x, φ(t)⟩ − ⟨x,A(r)∗φ(r)⟩ =
∫ t

r

⟨S(s, r)A(r)x,A(s)∗φ(s)⟩ ds

+

∫ t

r

⟨S(s, r)A(r)x, φ′(s)⟩ ds.
(5.4.9)

Note that the above integrals converge absolutely. Indeed, for all ε > 0 small,
one has by (5.2.9) and the assumption on φ that

|⟨S(s, r)A(r)x,A(s)∗φ(s)⟩| = |⟨(−A(s))−λS(s, r)A(r)x, ((−A(s))1+λ)∗φ(s)⟩|
≤ C(s− r)−1−θ−ε+λ(t− s)−1+ε.

The latter is clearly integrable with respect to s ∈ (r, t) for ε > 0 small enough.
The same estimate holds with A(s)∗φ(s) replaced by φ′(s).

Using (5.4.9) in the identity (5.4.8) we find that∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds =
∫ t

0

⟨S(t, r)A(r)I(1(0,r)G), φ(t)⟩ dr

−
∫ t

0

∫ t

r

⟨S(s, r)A(r)I(1(0,r)G), φ
′(s)⟩ ds dr.

Therefore, by (5.4.7) applied with s = t and x∗ = φ(t), and Fubini’s theorem we
find that∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds = ⟨U(t), φ(t)⟩ − ⟨I(1(0,t)G), φ(t)⟩

−
∫ t

0

⟨U(s), φ′(s)⟩ ds+
∫ t

0

⟨I(1(0,s)G), φ
′(s)⟩ ds.

This implies that U satisfies (5.4.6).
(2): Assume (5.4.6) holds. Fix t ∈ [0, T ] and x∗ ∈ D(A(t)∗). By Example

5.18 the process φ : [0, t]× Ω → E∗
0 given by φ(s) = S(t, s)∗x∗ is in Γt,β for all

β ∈ [0, η−). Applying (5.4.6) and using that φ′(s) = −A(s)∗φ(s) we find that
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⟨U(t), x∗⟩ =
∫ t

0

⟨S(t, s)A(s)I(1(0,s)G), x
∗⟩ ds+ ⟨I(1(0,t)G), x

∗⟩

and as in part (1) of the proof this can be rewritten as

⟨U(t), x∗⟩ = −
∫ t

0

⟨S(t, s)A(s)I(1(s,t)G), x
∗⟩ ds+ ⟨S(t, 0)I(1(0,t)G), x

∗⟩.

(5.4.10)
The identity (5.4.3) follows from the Hahn-Banach theorem and density of
D(A(t)∗) in E∗

0 . �

Remark 5.20. If φ in (5.4.6) is not dependent of Ω, then the stochastic Fubini
theorem and integration by parts show that (5.4.6) is equivalent with

⟨U(t), φ(t)⟩ =
∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds+
∫ t

0

⟨U(s), φ′(s)⟩ ds

−
∫ t

0

G(s)∗φ(s) dW (s).

(5.4.11)

This solution concept coincides with the one in [135] and is usually referred to
as a variational solution. Using the forward integral one can obtain (5.4.11) from
(5.4.6) for φ depending on Ω in a nonadapted way.

In the next theorem we show the equivalence of the representation formula
(5.4.3) and the weak formulation (5.4.5). It extends Proposition 5.14 to the
unbounded setting.

Theorem 5.21. Let G ∈ L0(Ω;Lp(0, T ; γ(H, Ẽ−θ)) be adapted. Let

F =
∩

t∈[0,T ],ω∈Ω

D((A(t, ω))∗).

(1) Assume D(A(t)) = D(A(0)) isomorphically with uniform estimates in t ∈
[0, T ] and ω ∈ Ω. If for all t ∈ [0, T ], (5.4.3) holds a.s., then for all x∗ ∈ F ,
for all t ∈ [0, T ], (5.4.5) holds a.s.

(2) Assume D(A(t)∗) = D(A(0)∗) isomorphically with uniform estimates in t ∈
[0, T ] and ω ∈ Ω. If for all x∗ ∈ F and t ∈ [0, T ], (5.4.5) holds a.s., then for
all t ∈ [0, T ], (5.4.3) holds almost surely.

Proof. (1): First consider the case where G(t) ∈ D(A(t)) for all t ∈ [0, T ], and
the process t 7→ A(t)G(t) is adapted in L0(Ω;Lp(0, T ; γ(H,E0)). Let x

∗ ∈ F and
take φ ≡ x∗. Unfortunately, φ is not in Γt,0. However, due to the extra regularity
of G, one can still proceed as in the proof of Theorem 5.19 (1). Indeed, the only
modification needed is that (5.4.9) holds for x∗ ∈ F and x ∈ E1. Moreover, since
φ′ = 0, (5.4.5) follows from (5.4.6).

Now let G ∈ L0(Ω;Lp(0, T ; γ(H, Ẽ−θ)) and define an approximation by
Gn(t) = n2R(n,A(t))−2G(t). Let Un be given by (5.4.3) with G replaced by
Gn. Then by the above, Un satisfies
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⟨Un(t), x
∗⟩ =

∫ t

0

⟨Un(s), A(s)
∗x∗⟩ ds+

∫ t

0

Gn(s)
∗x∗ dW (s). (5.4.12)

By the dominated convergence theorem we have almost surely Gn → G in
Lp(0, T ; γ(H, Ẽ−θ)). Therefore, Proposition 5.13 and Theorem 5.16 yield that
Un → U in L0(Ω;Lp(0, T ;E0)). Letting n→ ∞ in (5.4.12), we obtain (5.4.5).

(2): The strategy of the proof is to show that U satisfies (5.4.6). In order to
show this we need to allow the functional x∗ ∈ F to be dependent on s ∈ [0, t]
and ω ∈ Ω. In order to do so, fix t ∈ [0, T ], let f ∈ C1([0, t]) and x∗ ∈ F . Let
φ = f ⊗ x∗. By integration by parts and (5.4.5) (applied twice) we obtain

⟨U(t), φ(t)⟩ − ⟨I(1[0,t]G), φ(t)⟩ =
∫ t

0

⟨U(s), A(s)∗x∗⟩ ds f(t)

=

∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds+
∫ t

0

∫ s

0

⟨U(r), A(r)∗x∗⟩ dr f ′(s) ds

=

∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds+
∫ t

0

⟨U(s), x∗⟩ f ′(s) ds−
∫ t

0

⟨I(1[0,s]G), x
∗⟩ f ′(s) ds

=

∫ t

0

⟨U(s), A(s)∗φ(s)⟩ ds+
∫ t

0

⟨U(s), φ′(s)⟩ ds−
∫ t

0

⟨I(1[0,s]G), φ
′(s)⟩ ds.

This yields (5.4.6) for the special φ as above. By linearity and approximation the
identity (5.4.6) can be extended to all φ ∈ C1([0, t];E∗

0 ) ∩ C([0, t];F ). Clearly,
the identity extends simple functions φ : Ω → C1([0, t];E∗

0 )∩C([0, t];F ) and by
approximation it extends to any φ ∈ L0(Ω;C1([0, t];E∗

0 ) ∩ C([0, t];F )). Now let
x∗ ∈ F be arbitrary and let φ(s) = S(t, s)∗x∗. Then as in the proof of Theorem
5.19 (2) we see that φ ∈ L0(Ω;C1([0, t];E∗

0 ) ∩ C([0, t];F )) and (5.4.10) follows
and the proof can be finished as before. �

5.4.5 Forward integration and mild solutions

In this section we show how the forward integral can be used to define mild
solutions of (5.4.1) and show that they coincide with (5.4.3). The forward integral
was developed by Russo and Vallois in [117], [118] and can be used to integrate
nonadapted integrands and is based on a regularization procedure. We refer
to [122] for a survey on the subject and a collection of references.

For G ∈ L0(Ω;L2(0, T ; γ(H,E0))) define the sequence (I−(G,n))∞n=1 by

I−(G,n) =
n∑

k=1

n

∫ T

0

G(s)hk(W (s+ 1/n)hk −W (s)hk) ds.

The process G is called forward integrable if (I−(G,n))n≥1 converges in proba-
bility. In that case, the limit is called the forward integral of G and its limit is
denoted by

I−(G) =

∫ T

0

G dW− =

∫ T

0

G(s) dW−(s).
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This definition is less general than the one in Chapter 4, but will suffice for our
purposes here.

In Chapter 4 it has been shown that for umd Banach spaces the forward
integral extends the Itô integral from [86]. In particular, the forward integral as
defined above extends the stochastic integral as described in Section 5.4.1.

We will now show that the forward integral can be used to extend the concept
of mild solutions to the case where A(t) is random. The proof will be based on
a pointwise multiplier result for the forward integral from Chapter 4.

Theorem 5.22. Assume (H1)-(H4). Let p ∈ (2,∞). Let θ ∈ [0, 12 ∧η−). Assume

δ < min{1
2 − θ − 1

p , η+}. Let G ∈ L0(Ω;Lp(0, T ; γ(H, Ẽ−θ))) be adapted. Then

for every t ∈ [0, T ], the process s 7→ S(t, s)G(s) is forward integrable on [0, t]
with values in Ẽδ, and

U(t) =

∫ t

0

S(t, s)G(s) dW−(s), (5.4.13)

where U is given by (5.4.3).

The above identity is mainly of theoretical interest as it is rather difficult to
prove estimates for the forward integral in a direct way. Of course (5.4.3) allows
to obtain such estimates. Due to (5.4.13) one could call U a forward mild solution
to (5.4.1).

As a consequence of Theorems 5.21 and 5.22, there is an equivalence between
weak solutions and forward mild solutions. Under different assumptions it was
shown in [68, Proposition 5.3] that every forward mild solution is a weak solution.

Proof. Define M : [0, t] × Ω → L (Ẽ−θ, Ẽδ) by M(s) = S(t, s). Let N : [0, t) ×
Ω → L (Ẽ−θ, Ẽδ) be given byN(s) = −S(t, s)A(s). Then by Lemma 5.7,M(s) =
M(0) +

∫ s

0
N(r) dr for s ∈ [0, t) and thus M is continuously differentiable with

derivative N . By Remark 5.9 there is a mapping C : Ω → R+ such that

∥N(s)∥L (Ẽ−θ,Ẽδ)
≤ C(t− s)−1−δ−θ.

Now by the non-adapted multiplier result for the forward integral from [110] we
find that MG is forward integrable and∫ t

0

S(t, s)G(s) dW−(s) =

∫ t

0

M(s)G(s) dW−(s)

=M(0)I(G) +

∫ t

0

N(s)I(1[s,t]G) ds = U(t).

�
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5.5 Semilinear stochastic evolution equations

In this section we assume Hypotheses (H1)-(H4) are satisfied. We will apply
the results of the previous sections to study the following stochastic evolution
equation on the Banach space E0{

dU(t) = (A(t)U(t) + F (t, U(t))) dt+B(t, U(t)) dW (t),
U(0) = u0,

(5.5.1)

Here F and G will be suitable nonlinearities of semilinear type. In Section 5.5.1
we will first state the main hypotheses on F and G and define what a pathwise
mild solution is. In Section 5.5.2 we will prove that there is a unique pathwise
mild solution under the additional assumption that the constants in the (AT)-
conditions do not depend on ω. The uniformity condition (H5) will be removed
in Section 5.5.3 by localizing the random drift A.

5.5.1 Setting and solution concepts

Recall that the spaces Ẽη were defined in (H3) in Section 5.3. We impose the
following assumptions on F and B throughout this section:

(HF) Let a ∈ [0, η+) and θF ∈ [0, η−) be such that a + θF < 1. For all x ∈ Ẽa,
(t, ω) 7→ F (t, ω, x) ∈ Ẽ−θF is strongly measurable and adapted. Moreover,
there exist constants LF and CF such that for all t ∈ [0, T ], ω ∈ Ω, x, y ∈ Ẽa,

∥F (t, ω, x)− F (t, ω, y)∥Ẽ−θF
≤ LF ∥x− y∥Ẽa

,

∥F (t, ω, x)∥Ẽ−θF
≤ CF (1 + ∥x∥Ẽa

).

(HB) Let a ∈ [0, η+) and θB ∈ [0, η−) be such that a + θB < 1/2. For all x ∈
Ẽa, (t, ω) 7→ B(t, ω, x) ∈ γ(U, Ẽ−θB ) is strongly measurable and adapted.
Moreover, there exist constants LB and CB such that for all t ∈ [0, T ], ω ∈
Ω, x, y ∈ Ẽa,

∥B(t, ω, x)−B(t, ω, y)∥γ(U,Ẽ−θB
) ≤ LB∥x− y∥Ẽa

,

∥B(t, ω, x)∥γ(U,Ẽ−θB
) ≤ CB(1 + ∥x∥Ẽa

).

Let p ∈ (2,∞) and consider adapted processes f ∈ L0(Ω;Lp(0, T ; Ẽ−θF ))
and G ∈ L0(Ω;Lp(0, T ; γ(H, Ẽ−θB ))). In the sequel we will write

S ∗ f(t) :=
∫ t

0

S(t, s)f(s) ds,

S ⋄G(t) := −
∫ t

0

S(t, s)A(s)I(1(s,t)G) ds+ S(t, 0)I(1(0,t)G)

for the deterministic and stochastic (generalized) convolution.

The integral
∫ t

0
S(t, s)A(s)I(1(s,t)G) ds was extensively studied in Section

5.4. Recall from Theorem 5.16 that is it well-defined and defines an adapted
process in L0(Ω;Wλ,p(0, T ; Ẽδ)) for suitable λ and δ.
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Definition 5.23. Let 2 < p < ∞. An adapted process U ∈ L0(Ω;Lp(0, T ; Ẽa))
is called a pathwise mild solution of (5.5.1) if for all t ∈ [0, T ], almost surely,

U(t) = S(t, 0)u0 + S ∗ F (·, U)(t) + S ⋄B(·, U)(t). (5.5.2)

Remark 5.24. A good name for the solution (5.5.2) would be a ‘pathwise singular
representation of the mild solution’. Pathwise appears in the name, since the
representation formula (5.4.3) is defined in a pathwise sense. Also, in defining
the representation formula 5.4.3, it is of great importance that the singularity
of the kernel S(t, s)A(s) appearing in the formula is canceled by the Hölder
continuity of J(G) (see Proposition 5.13). We have chosen to abbreviate this
name to ‘pathwise mild solution’.

Note that the convolutions in (5.5.2) might only be defined for almost all
t ∈ [0, T ]. However, if p ∈ (2,∞) is large enough, then they are defined in a
pointwise sense.

One can extend Proposition 5.14 and Theorems 5.19, 5.21 and 5.22 to the
nonlinear setting. Indeed, this follows by taking G = B(·, U) and including the
terms F and u0. The latter two terms do not create any problems despite the
randomness of A, because the terms are defined in a pathwise way, and therefore
can be treated as in [135]. As a consequence we deduce that (5.5.2) yields the
“right” solution of (5.5.1) in many ways (variational, forward mild, weak).

5.5.2 Results under a uniformity condition in Ω

In this section we additionally assume the following uniformity condition.

(H5) The mapping L : Ω → R+ from (AT2) for A(t) and A(t)∗ is bounded in Ω.

Under Hypothesis (H5), it is clear from the proofs that most of the constants
in Sections 5.2 and 5.3 become uniform in Ω. In Section 5.5.3 we will show how
to obtain well-posedness without the condition (H5).

For a Banach space X, we write B([0, T ];X) for the strongly measurable
functions f : [0, T ] → X. For δ ∈ (−1, η+) and p ∈ (2,∞) let Zp

δ be the subspace

of strongly measurable adapted processes u : [0, T ]×Ω → Ẽδ for which ∥u∥Zp
δ
:=

supt∈[0,T ] ∥u(t)∥Lp(Ω;Ẽδ)
is finite. Define the operator L : Zp

δ → Zp
δ by

(L(U))(t) = S(t, 0)u0 + S ∗ F (·, U)(t) + S ⋄B(·, U)(t).

In the next lemma we show that L is well-defined and is a strict contraction in
a suitable equivalent norm on Zp

a .

Lemma 5.25. Assume (H1)–(H5), (HF) and (HB). Let p ∈ (2,∞). If the pro-
cess t 7→ S(t, 0)u0 is in Zp

a , then L maps Zp
a into itself and there is an equivalent

norm ||| · ||| on Zp
a such that for every u, v ∈ Zp

a ,

|||L(u)− L(v)|||Zp
a
≤ 1

2
|||u− v|||Zp

a
.
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Moreover, there exists a constant C independent of u0 such that

|||L(u)|||Zp
a
≤ C + |||t 7→ S(t, 0)u0|||Zp

a
+

1

2
|||u|||Zp

a
. (5.5.3)

Proof. Choose ε > 0 so small that a + θF + ε < 1 and a + θB + ε < 1/2.
We will first prove several estimates for the individual parts of the mapping L.
Conclusions will be derived afterwards.

For κ ≥ 0 arbitrary but fixed for the moment and define an equivalent norm
on Zp

δ by
|||u|||Zp

δ
= sup

t∈[0,T ]

e−κt∥u(t)∥Lp(Ω;Ẽδ)
.

We also let
|||G|||Zp

δ (γ)
= sup

t∈[0,T ]

e−κt∥G(t)∥Lp(Ω;γ(H,Ẽδ))
.

Deterministic convolution: Let f ∈ Zp
−θF

. By (5.3.3) applied pathwise and
(H5) one obtains

∥S ∗ f(t)∥Ẽa
≤ C

∫ t

0

(t− σ)−a−θF−ε∥f(σ)∥Ẽ−θF
dσ, t ∈ [0, T ]

where C is independent of ω. In particular, taking Lp(Ω)-norms on both sides
we find that

∥S ∗ f(t)∥Lp(Ω;Ẽa)
≤ C

∫ t

0

(t− σ)−a−θF−ε∥f(σ)∥Lp(Ω;Ẽ−θF
) dσ

Using e−κt = e−κ(t−σ)e−κσ, it follows that

|||S ∗ f |||Zp
a
≤ C|||f |||Zp

−θF
sup

t∈[0,T ]

∫ t

0

e−κ(t−σ)(t− σ)−a−θ−ε dσ

≤ Cϕ1(κ)|||f |||Zp
−θF

,

(5.5.4)

where

ϕ1(κ) =

∫ ∞

0

e−κσσ−a−θ−ε dσ.

Clearly, limκ→∞ ϕ1(κ) = 0.
Now let u, v ∈ Zp

a . By the hypothesis (HF), F (·, u) and F (·, v) are in Zp
−θF

and therefore, we find that S ∗F (·, u) and S ∗F (·, v) are in Zp
a again. Moreover,

applying (5.5.4) with f = F (·, u)− F (·, v) it follows that

∥S ∗ F (·, u)− S ∗ F (·, v)∥Zp
a
≤ Cϕ1(κ)|||F (·, u)− F (·, v)|||Zp

−θF
dσ

≤ Cϕ1(κ)LF |||u− v|||Zp
a
.

Stochastic convolution: Let G ∈ Zp
−θB

be arbitrary. Clearly, we can write
∥S ⋄G(t)∥Lp(Ω;Ẽa)

≤ T1(t) + T2(t), where
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T1(t) :=
∥∥∥ ∫ t

0

S(t, s)A(s)I(1(s,t)G) ds
∥∥∥
Lp(Ω;Ẽa)

,

and T2(t) = ∥S(t, 0)I(1(0,t)G)∥Lp(Ω;Ẽa)
. To estimate T1 note that by Remark 5.9

T1(t) ≤ C

∫ t

0

(t− s)−1−a−θB−ε∥I(1(s,t)G)∥Lp(Ω;Ẽ−θB
) ds

By (H5), C is independent of Ω. By (5.4.4) and Minkowski’s inequality we have

∥I(1(s,t)G)∥Lp(Ω;Ẽ−θ)
≤ C∥G∥Lp(Ω;L2(s,t;γ(H,Ẽ−θB

)))

≤ C∥G∥L2(s,t;Lp(Ω;γ(H,Ẽ−θB
)))

≤ C
(∫ t

s

e2κσ dσ
)1/2

|||G|||Zp
−θB

(γ)

= Cκ−1/2(e2κt − e2κs)1/2|||G|||Zp
−θB

(γ)

(5.5.5)

Therefore, we find that

sup
t∈[0,T ]

e−κtT1(t)

≤ C sup
t∈[0,T ]

∫ t

0

(t− s)−1−a−θB−ε ds
(
κ−1(1− e−2κ(t−s))

)1/2|||G|||Zp
−θB

(γ)

= C sup
t∈[0,T ]

∫ t

0

σ−1−a−θB−εκ−1/2(1− e−2κσ)1/2 dσ|||G|||Zp
−θB

(γ)

≤ Cϕ2(κ)|||G|||Zp
−θB

(γ),

where ϕ2 is given by

ϕ2(κ) = κ−
1
2+a+θB+ε

∫ ∞

0

σ−1−a−θB−ε(1− e−2σ)1/2 dσ.

Since a+ θB + ε < 1
2 , the latter is finite. Moreover, limκ→∞ ϕ2(κ) = 0.

To estimate T2(t) note that by Remark 5.9, (H5), Proposition 5.13 and (5.5.5)
with s = 0,

T2(t) ≤ Ct−a−θB−ε∥I(1(0,t)G)∥Lp(Ω;E−θB
)

≤ Ct−a−θB−εκ−1/2(e2κt − 1)1/2|||G|||Zp
−θB

(γ)

Therefore, using supσ≥0 σ
−a−θB−ε(1− e−2σ)1/2 <∞, we find that

sup
t∈[0,T ]

e−κtT2(t) ≤ Cκ−
1
2+a+θB+ε|||G|||Zp

−θB
(γ).

Combining the estimate for T1 and T2 we find that
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|||S ⋄G|||Zp
a
≤ Cϕ3(κ)|||G|||Zp

−θB
(γ), (5.5.6)

where ϕ3(κ) → 0 if κ→ ∞.
Now let u, v ∈ Zp

a . By the hypothesis (HB), B(·, u) and B(·, v) are in Zp
−θB

and therefore, by the above we find that S ⋄ B(·, u) and S ⋄ B(·, v) are in Zp
a

again. Moreover, applying (5.5.6) with G = B(·, u)−B(·, v) it follows that

|||S ⋄B(·, u)− S ⋄B(·, v)|||Zp
a
≤ Cϕ3(κ)|||B(·, u)−B(·, v)|||Zp

−θB
(γ)

≤ Cϕ3(κ)LB |||u− v|||Zp
a
.

Conclusion. From the above computations, it follows that L is a bounded
operator on Zp

a . Moreover, for all u, v ∈ Zp
a ,

|||L(u)− L(v)|||Zp
a
≤ C(LFϕ1(κ) + LBϕ3(κ))|||u− v|||Zp

a
.

Choosing κ large enough, the result follows. Also, (5.5.3) follows when taking
v ≡ 0. �

As a consequence we obtain the following result.

Theorem 5.26. Assume (H1)–(H5), (HF) and (HB). Let p ∈ (2,∞). Let δ, λ >
0 be such that a + δ + λ < min{1

2 − θB, 1 − θF , η+}. Assume the process t 7→
S(t, 0)u0 is in Zp

a . Then there exists a unique pathwise mild solution U ∈ Zp
a of

(5.5.1). Moreover, U −S(t, 0)u0 ∈ Lp(Ω;Wλ,p(0, T ; Ẽδ)) and there is a constant
independent of u0 such that

∥U − S(t, 0)u0∥Lp(Ω;Wλ,p(0,T ;Ẽa+δ))
≤ C(1 + ∥t 7→ S(t, 0)u0∥Zp

a
). (5.5.7)

Of course by Sobolev embedding (5.3.1) one can further deduce Hölder regularity
of the solution.

Proof. By Lemma 5.25 there exists a unique fixed point U ∈ Zp
a of L. Clearly,

this implies that U is a pathwise mild solution of (5.5.1). Moreover, from (5.5.3)
we deduce that

|||U |||Zp
a
≤ 2C + 2|||t 7→ S(t, 0)u0|||Zp

a
.

Next we prove the regularity assertion. From the previous estimate, Theorem
5.11 and (HF) we see that:

∥S ∗ F (·, U)∥Lp(Ω;Wλ,p(0,T ;Ẽa+δ))
≤ C∥F (·, U)∥Lp((0,T )×Ω;Ẽ−θF

)

≤ C(1 + ∥U∥Lp((0,T )×Ω;Ẽa)
)

≤ C(1 + |||U |||Zp
a
) ≤ C(1 + |||t 7→ S(t, 0)u0|||Zp

a
).

Similarly, by Theorem 5.16 (with α ∈ (a+ δ+ θB + λ, 12 )), Proposition 5.13 and
(HB)
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∥S ⋄B(·, U)∥Lp(Ω;Wλ,p(0,T ;Ẽa+δ))
≤ C∥J(B(·, U))∥Lp(Ω;Wα,p(0,T ;Ẽ−θB

))

≤ C∥B(·, U)∥Lp(Ω×(0,T );γ(H,Ẽ−θB
))

≤ C(1 + ∥U∥Lp((0,T )×Ω;Ẽa)
)

≤ C(1 + |||U |||Zp
a
) ≤ C(1 + |||t 7→ S(t, 0)u0|||Zp

a
).

Now the estimate (5.5.7) follows since U − S(t, 0)u0 = S ∗ F (·, U) + S ⋄B(·, U).
�

One can extend the above existence and uniqueness result to the case where
u0 : Ω → Ẽa is merely F0-measurable. For that, we will continue with a local
uniqueness property that will be used frequently.

Lemma 5.27. Assume (H1)–(H5), (HF) and (HB). Let Ã be a second operator
satisfying (H1), (H2), (H3) and (H5) with the same spaces (Ẽη)−η0<η<η+ and let

the evolution family generated by Ã be denoted by (S̃(t, s))0≤s≤t≤T . Let u0, ũ0 :

Ω → E0
a,1 be F0-measurable and such that S(t, 0)u0, S̃(t, 0)ũ0 ∈ Zp

a . Let L̃ be

defined as L, but with (S(t, s))0≤s≤t≤T and u0 replaced by (S̃(t, s))0≤s≤t≤T and
ũ0 respectively. Let Γ ⊂ Ω and τ : Γ → (0,∞).

Suppose for almost all ω ∈ Γ for all t ∈ [0, τ(ω)], A(t, ω) = Ã(t, ω) and
u0(ω) = ũ0(ω). Let U, Ũ ∈ Zp

a be such that

1Γ1[0,τ ]U = 1Γ1[0,τ ]L(U), and 1Γ1[0,τ ]Ũ = 1Γ1[0,τ ]L̃(Ũ).

Then for almost all ω ∈ Γ and all t ∈ [0, τ(ω)] one has U(t) = Ũ(t).

Proof. First we claim that for all u ∈ Zp
a one has

1Γ1[0,τ ]L(u) = 1Γ1[0,τ ]L(v) = 1Γ1[0,τ ]L̃(v) = 1Γ1[0,τ ]L̃(u), (5.5.8)

where v = 1Γ1[0,τ ]u. Indeed, by the (pathwise) uniqueness of the evolution

family one has almost surely on Γ for all 0 ≤ s ≤ t ≤ τ , S(t, s) = S̃(t, s). Now
the identity (5.5.8) can be verified for each of the terms in L and L̃. For instance
for the first part of stochastic convolution term one has

1Γ1[0,τ ](t)

∫ t

0

S(t, s)A(s)I(1[s,t]B(·, u)) ds

= 1Γ1[0,τ ](t)

∫ t

0

1Γ1s≤t≤τS(t, s)A(s)I(1[s,t]B(·, u)) ds
(5.5.9)

Now 1Γ1s≤t≤τS(t, s) = 1Γ1s≤t≤τ S̃(t, s), so we can replace S by S̃ on the right-
hand side of (5.5.9). Moreover, using a property of the forward integral [110,
Lemma 3.3] (or the local property of the stochastic integral) one sees

1Γ1s≤t≤τI(1[s,t]B(·, u)) = I−(1Γ1s≤t≤τ1[s,t]B(·, u))
= I−(1Γ1s≤t≤τ1[s,t]B(·, v))
= 1Γ1[0,τ ](s)I(1[s,t]B(·, v)).
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Thus we can replace u by v on the right-hand side of (5.5.9).
We will now show how the statement of the lemma follows. Writing V =

1Γ1[0,τ ]U and Ṽ = 1Γ1[0,τ ]Ũ , it follows from the assumption, (5.5.8) and Lemma
5.25 that

|||V − Ṽ |||Zp
a
= |||1Γ1[0,τ ](L(U)− L̃(Ũ))|||Zp

a

= |||1Γ1[0,τ ](L(V )− L(Ṽ ))|||Zp
a

≤ |||L(V )− L(Ṽ )|||Zp
a

≤ 1

2
|||V − Ṽ |||Zp

a
,

Therefore, V = Ṽ in Zp
a . Since by Theorem 5.26 and Sobolev embedding, U −

S(·, 0)u0 and Ũ − S̃(·, 0)ũ0 have continuous paths, it follows that a.s. for all
t ∈ [0, T ], V (t) = Ṽ (t). This implies the required result. �

Theorem 5.28. Assume (H1)–(H5), (HF) and (HB). Let δ, λ > 0 be such that
a+ δ+λ < min{ 1

2 −θB , 1−θF , η+}. Assume that u0 : Ω → E0 is F0-measurable
and u0 ∈ E0

a,1 a.s. Then the following holds:

1. There exists a unique adapted pathwise mild solution U ∈ L0(Ω;C([0, T ]; Ẽa))
of (5.5.1). Moreover, U − S(t, 0)u0 ∈ L0(Ω;Cλ(0, T ; Ẽa+δ)).

2. If additionally, u0 ∈ E0
a+β,1 a.s. with β > 0 and λ + δ < β, then U ∈

L0(Ω;Cλ(0, T ; Ẽa+δ)).

Note that because of the above result we can also view L as a mapping from
the adapted subspace of L0(Ω;C([0, T ]; Ẽa)) into itself.

Proof. Choose p ∈ (2,∞) so large that a+ δ+ λ+ 1
p < min{ 1

2 − θB, 1− θF , η+}.
Existence. First observe that ∥u0∥E0

a,1
is F0-measurable. Moreover, by Lemma

5.10, t 7→ S(t, 0)u0 ∈ Ẽa has continuous paths. Define un = u01{∥u0∥E0
a,1

≤n}.

Then un is F0-measurable, and t 7→ S(t, 0)un ∈ Ẽa has continuous paths and

E sup
t∈[0,T ]

∥S(t, 0)un∥pẼa
<∞.

Hence by Theorem 5.26 the problem (5.5.1) with initial condition un admits a
unique pathwise mild solution Un ∈ Lp(Ω × [0, T ]; Ẽa). Moreover, by Theorem
5.26 and (5.3.1) there exists a version of Un such that Un − S(t, 0)un has paths
in

Wλ+ 1
p ,p([0, T ]; Ẽa+δ) ↪→ Cλ([0, T ]; Ẽa+δ).

In particular, Un has paths in C([0, T ]; Ẽa). For 1 ≤ m ≤ n, by Lemma 5.27,
almost surely on {∥u0∥ ≤ m}, one has Un ≡ Um. Moreover, almost surely on
{∥u0∥E0

a,1
≤ m}, for all t ∈ [0, T ], Un(t) = Um(t) when n ≥ m. It follows

that almost surely for all t ∈ [0, T ], the limit limn→∞ Un(t) exists in Ẽa. Define
U : Ω × [0, T ] → Ẽa by
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U(t) =

{
limn→∞ Un(t) if the limit exists,

0 else.

Then U is strongly measurable and adapted. Moreover, almost surely on the
set {∥u0∥E0

a,1
≤ n}, for all t ∈ [0, T ], U(t) = Un(t). Hence, almost surely,

U ∈ C([0, T ]; Ẽa) and one can check that U is a pathwise mild solution to
(5.5.1). By construction of U , there exists a version of U − S(·, 0)u0 with
paths in Cλ([0, T ]; Ẽa+δ) almost surely. In particular, U has almost all paths
in C([0, T ]; Ẽa). If additionally u0 ∈ E0

a+β,1 with δ + λ < β, then by Lemma

5.10, S(t, 0)u0 ∈ L0(Ω;Cλ(0, T ; Ẽa+δ)).
Uniqueness. Suppose U1 and U2 are adapted and in L0(Ω;C([0, T ]; Ẽa)) and

are both pathwise mild solutions to (5.5.1). We will show that almost surely
U1 ≡ U2. For each n ≥ 1 and i = 1, 2 define the stopping times

νin := inf
{
t ∈ [0, T ] : ∥U i(t)∥Ẽa

≥ n
}
,

where we let νin = T if the infimum is taken over the empty set. Let τn = ν1n∧ν2n
and U i

n = U i1[0,τn]. Then U i
n ∈ Zp

a and in a similar way as in Lemma 5.27
one can check that 1[0,τn]U

i
n = 1[0,τn]L(U

i
n) for i = 1, 2. Therefore, from Lemma

5.27, we find that for almost surely for all t ∈ [0, T ], U1
n(t) = U2

n(t). In particular,
almost surely for almost all t ≤ τn, one has U1(t) = U2(t). If we let n → ∞ we
obtain that almost surely, for all t ∈ [0, T ], one has U1(t) = U2(t). �

5.5.3 Results without uniformity conditions in Ω

In this section we will prove a well-posedness result for (5.5.1) without the unifor-
mity condition (H5). The approach is based on a localization argument. Due to
technical reasons we use a slightly different condition than (AT2), which is more
restrictive in general, but satisfied in many examples. Details on this condition
can be found in [3] and [9, Section IV.2]. This condition is based on the assump-
tion that D(A(t)) has constant interpolation spaces Eν,r = (E0, D(A(t)))ν,r for
certain ν > 0 and r ∈ [2,∞), and the fact that the resolvent is µ-Hölder con-
tinuous with values in Eν with µ + ν > 1. Note that in [9, Section IV.2] more
general interpolation spaces are allowed. For convenience we only consider the
case of constant real interpolation spaces.

(CIS) Condition (AT1) holds and there are constants ν ∈ (0, 1] and r ∈ [1,∞] such
that Eν,r := (E0, D(A(t, ω)))ν,r is constant in t ∈ [0, T ] and ω ∈ Ω and there
is a constant C such that for all x ∈ Eν,r,

c−1∥x∥Eν,r ≤ ∥x∥(E0,D(A(t,ω)))ν,r ≤ c∥x∥Eν,r , t ∈ [0, T ], ω ∈ Ω.

There is a µ ∈ (0, 1] with µ + ν > 1 and a mapping K : Ω → R+ such that
for all s, t ∈ [0, T ], ω ∈ Ω,

∥(A(t, ω)−1 −A(s, ω)−1)∥L (E0,Eν,r) ≤ K(ω)(t− s)µ.
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We have allowed ν = 1 on purpose. In this way we include the important case
where D(A(t, ω)) is constant in time.

Clearly, this condition implies (AT2) with constant L(ω) ≤ CK(ω). Indeed,
one has for all λ ∈ Σϑ:

∥A(t, ω)R(λ,A(t, ω))(A(t, ω)−1 −A(s, ω)−1)∥L (E0)

≤ ∥A(t, ω)R(λ,A(t, ω))∥L (Eν,r,E0)∥A(t, ω)
−1 −A(s, ω)−1∥L (E0,Eν,r)

≤ CK(t− s)µ∥R(λ,A(t, ω))∥L (E0,Et
1−ν,r)

≤ CK(t− s)µ|λ|−ν .
(5.5.10)

We will now replace (H5) by the following hypothesis.

(H5)′ Assume E0 is separable. Assume (A(t))t∈[0,T ] and (A(t)∗)t∈[0,T ] satisfy (CIS)
with constants µ+ ν > 1 and µ∗ + ν∗ > 1.

Unlike (H5), the mapping K is allowed to be dependent on Ω.
We can now prove the main result of this section which holds under the

hypotheses (H1)–(H4) and (H5)′, (HF) and (HB).

Theorem 5.29. Assume (H1)–(H4), (H5)′, (HF) and (HB). Let δ, λ > 0 be
such that a + δ + λ < min{ 1

2 − θB , 1 − θF , η+}. Assume that u0 : Ω → E0 is
F0-measurable and u0 ∈ E0

a a.s. Then the assertions (1) and (2) of Theorem
5.28 hold.

Unlike in Theorem 5.26 one cannot expect that the pathwise mild solution has
any integrability properties in general. This is because of the lack of integrability
properties of S(t, s).

Proof. For ε ∈ (0, µ) define ϕ : [0, T ]×Ω → R+ by

ϕ(t) = sup
s∈[0,t)

∥A(t)−1 −A(s)−1∥L (E0,Eν,r)|t− s|−µ+ε, if t > 0,

and ϕ(0) = 0. Define ϕ∗ in the same way for the adjoints (A(t)∗)t∈[0,T ]. It follows
from (H5)′ and Lemma 5.35 that ϕ and ϕ∗ are pathwise continuous. We claim
that ϕ and ϕ∗ are adapted. Since E0 is separable, ∥A(t)−1 − A(s)−1∥L (E0,Eν,r)

can be written as a supremum of countably many functions ∥A(t)−1xn∥Eν,r ,
which are all Ft-measurable by the Pettis measurability theorem. The claim
follows.

Define the stoping times κn, κ
∗
n : Ω → R by κn = inf{t ∈ [0, T ] : ϕ(t) ≥ n},

κ∗n = inf{t ∈ [0, T ] : ϕ∗(t) ≥ n}, and let τn = κn ∧ κ∗n. Consider the stopped
process An given by An(t, ω) = A(t ∧ τn(ω), ω). Then for all for all s, t ∈ [0, T ],

∥An(t)
−1 −An(s)

−1∥L (E0,Eν,r) ≤ n|t− s|µ−ε

and similarly for An(t)
∗, and it follows from (5.5.10) that An and A∗

n satisfy
(H5) with µ− ε instead of µ, and with L(ω) = Cn. Let (Sn(t, s))0≤s≤t≤T be the
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evolution family generated by An. Since An(t) = A(t) for t ≤ τn, it follows from
the uniqueness of the evolution family that Sn(t, s) = S(t, s) for 0 ≤ s ≤ t ≤ τn.

Existence. Let the initial values (un)n≥1 be as in the proof of Theorem 5.28. It
follows from Theorem 5.26 that for each n ≥ 1 there is a unique adapted pathwise
mild solution Un ∈ Lp(Ω;C([0, T ]; Ẽa)) of (5.5.1) with A and u0 replaced by An

and un. Moreover, it also has the regularity properties stated in Theorem 5.28.
We will use the paths of (Un)n≥1 to build a new process U which solves (5.5.1).

For v ∈ Zp
a or v ∈ L0(Ω;C([0, T ]; Ẽa)) we write

L(v)(t) = S(t, 0)u0 + S ∗ F (·, v)(t) + S ⋄B(·, v)(t)
Ln(v)(t) = Sn(t, 0)un + Sn ∗ F (·, v)(t) + Sn ⋄B(·, v)(t).

Let Γn = {∥u0∥E0
a
≤ n}. Note that Ln(Un) = Un for every n. Fix m ≥ 1 and

let n ≥ m. Note that on Γm, un = um and on [0, τ ], An = Am. By Lemma 5.27
we find that almost surely on the set Γm, if t ≤ τm, Un(t) = Um(t). Therefore,
we can define

U(t) =

{
limn→∞ Un(t) if the limit exists,

0 else.

Then U is strongly measurable and adapted. Moreover, almost surely on Γm and
t ≤ τm, U(t) = Um(t). For ω ∈ Ω and m ≥ 1 large enough, τm(ω) = T . Thus
the process U has the same path properties as Um, which yields the required
regularity. One easily checks that U is a pathwise mild solution to (5.5.1).

Uniqueness. Let U1 and U2 be adapted pathwise mild solutions in the space
L0(Ω;C([0, T ]; Ẽa)). We will show that U1 = U2. Let κn and κ∗n be as in the
existence proof. Let

νin := inf{t ∈ [0, T ] : ∥U i(t)∥Ẽa
≥ n}, i = 1, 2.

Set νn = κn ∧ κ∗n ∧ ν1n ∧ ν2n. Define U i
n by U i

n(t) = 1[0,νn](t)U
i(t). Then as before

one sees that 1[0,νn]Ln(U
i
n) = U i

n. Therefore, from Lemma 5.27 it follows that
almost surely, for all t ∈ [0, νn], U

1
n = U2

n. The result follows by letting n → ∞.
�

5.6 Examples

In this section, we will consider the stochastic partial differential equation
from [124, 135]. Let (Ω,F ,P) be a complete probability space with a filtration
(Ft)t∈[0,T ]. Let n ∈ N and let S be a domain in Rn. For p, q ∈ [1,∞] and s ∈ R,
let Bs

p,q(S) be the Besov space (see [132]).

Example 5.30. Set S = Rn, and consider the stochastic partial differential
equation
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du(t, s) =
(
A(t, s, ω,D)u(t, s) + f(t, s, u(t, s))

)
dt

+ g(t, s, u(t, s)) dW (t, s), t ∈ (0, T ], s ∈ Rn,

u(0, s) = u0(s), s ∈ Rn.

(5.6.1)

The drift operator A is assumed to be of the form

A(t, s, ω,D) =
n∑

i,j=1

Di(aij(t, s, ω)Dj) + a0(t, s, ω).

We assume that all coefficients are real, and satisfy a.s.

aij ∈ Cµ([0, T ];C(Rn), aij(t, ·) ∈ BUC1(Rn), Dkaij ∈ BUC([0, T ]× Rn),

a0 ∈ Cµ([0, T ];Ln(Rn)) ∩ C([0, T ];C(Rn)),

for i, j, k = 1, . . . , n, t ∈ [0, T ] and a constant µ ∈ ( 12 , 1]. All coefficients aij
and a0 are PT ⊗ B(S)-measurable, where PT is the progressive σ-algebra.
Moreover, there exists a constant K such that for all t ∈ [0, T ], ω ∈ Ω, s ∈ Rn,
i, j, k = 1, . . . , n,

|aij(t, s, ω)| ≤ K, |Dkaij(t, s, ω)| ≤ K, |a0(t, s, ω)| ≤ K.

We assume there exists an increasing function w : (0,∞) → (0,∞) such that
limε↓0 w(ε) = 0 and such that for all t ∈ [0, T ], ω ∈ Ω, s, s′ ∈ Rn, i, j = 1, . . . , n,

|aij(t, ω, s)− aij(t, ω, s
′)| ≤ w(|s− s′|).

Moreover, we assume that (aij) is symmetric and that there exists a κ > 0
such that

κ−1|ξ|2 ≤ aij(t, s, ω)ξiξj ≤ κ|ξ|2, s ∈ Rn, t ∈ [0, T ], ξ ∈ Rn. (5.6.2)

Let f, g : [0, T ] × Ω × Rn × R → R be measurable, adapted and Lipschitz
continuous functions with linear growth uniformly in Ω × [0, T ]×Rn, i.e., there
exist Lf , Cf , Lg, Cg such that for all t ∈ [0, T ], ω ∈ Ω, s ∈ Rn and x, y ∈ R,

|f(t, ω, s, x)− f(t, ω, s, y)| ≤ Lf |x− y|,
|f(t, ω, s, x)| ≤ Cf (1 + |x|),

|g(t, ω, s, x)− g(t, ω, s, y)| ≤ Lg|x− y|,
|g(t, ω, s, x)| ≤ Cg(1 + |x|).

Let W be an L2(Rn)-valued Brownian motion with respect to (Ft)t∈[0,T ], with
covariance Q ∈ L (L2(Rn)) such that√

Q ∈ L (L2(Rn), L∞(Rn)). (5.6.3)

Let p ≥ 2 and set E = Lp(Rn). On E, we define the linear operators A(t, ω)
for t ∈ [0, T ], ω ∈ Ω, by



5.6 Examples 121

D(A(t, ω)) =W 2,p(Rn),

A(t, ω)u = A(t, ·, ω,D)u.

With integration by parts, one observes that the adjoint A(t, ω)∗ of A(t, ω) is
given by

D(A(t, ω)∗) =W 2,p′
(Rn)

A(t, ω)∗u = A(t, ·, ω,D)u.

The operator A(t, ω) : Lp(Rn) → Lp(Rn) is a closed operator. In fact, from
[59, Theorem 8.1.1], it follows that there exists a constant c depending only on
p, κ,K,w and n, such that

c−1∥x∥W 2,p(Rn) ≤ ∥A(t, ω)x∥Lp(Rn) + ∥x∥Lp(Rn) ≤ c∥x∥W 2,p(Rn), x ∈W 2,p(Rn).

By [104, Theorem 7.3.6], it follows that A(t, ω) is the generator of an analytic
semigroup. In fact, by a careful check of the proof of [104, Theorem 7.3.6], one
can find a sector Σϑ, ϑ ∈ (π/2, π), and a constant M , both independent of t and
ω, such that for all λ ∈ Σϑ,

∥λR(λ,A(t, ω))∥ ≤M.

By [73, Proposition 2.1.11], changing A(t, ω) to A(t, ω) − λ0 and f to f + λ0 if
necessary, it follows that (AT1) holds. Note that the constant Cf may be affected
when replacing f with f + λ0, but it will remain independent of t, ω, s and x. A
proof that also (AT2) holds can be found in [125, Example 2.8]. The operator
A(t, ω) satisfies (CIS) with ν = 1, see [141, Theorem 4.1]. Hence (H2) and (H5)′

are satisfied.
Hypothesis (H1) is verified by Example 5.3.
To verify (H3), take η+ = 1 and for η ∈ (0, η+), set

Ẽη := (Lp(Rn),W 2,p(Rn))η,p = B2η
p,p(Rn).

We do not need to choose an η−, see Remark 5.8. Since B2η
p,p(Rn) is a umd space,

(H4) holds.
Let F : [0, T ]×Ω × E → E be defined by

F (t, ω, x)(s) = f(t, ω, s, x(s)).

Let B : [0, T ]×Ω × E → γ(L2(Rn), E) be defined by

(B(t, ω, x)h)(s) = g(t, ω, s, x(s))(
√
Qh)(s).

By assumption (5.6.3) and [135, Lemma 2.7] it follows that for any x ∈ E,

∥x
√
Q∥γ(L2(Rn),E) ≤ C∥x∥E .
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It follows that (HF) and (HB) are satisfied with choices a = θF = θB = 0. With
the above definitions of A, F and B, problem (5.6.1) can be rewritten as

du(t) = (A(t)u(t) + F (t, u(t))) dt+B(t, u(t)) dW (t),

u(0) = u0.
(5.6.4)

Hence, if δ, λ > 0 such that δ + λ < 1
2 , then Theorem 5.29 can be ap-

plied: there exists a unique adapted pathwise mild solution to (5.6.4) such that
u ∈ L0(Ω;C([0, T ];Lp(Rn))). If additionally u0 ∈ W 1,p(Rn) = Ẽ1/2, then the

solution u belongs to the space L0(Ω;Cλ(0, T ;B2δ
p,2(Rn))). This is summarized

in the next theorem.

Theorem 5.31. Let p ∈ (2,∞) and suppose u0 : Ω → Lp(Rn) is F0-measurable.

1. There exists a unique adapted pathwise mild solution u that belongs to the
space L0(Ω;C([0, T ];Lp(Rn))).

2. If u0 ∈ W 1,p(Rn) a.s., and δ, λ > 0 such that δ + λ < 1
2 , then u belongs to

L0(Ω;Cλ(0, T ;B2δ
p,p(Rn))).

Example 5.32. Let S be a bounded domain in Rn with C2-boundary and outer
normal vector n(s). Consider the equation

du(t, s) =
(
A(t, s, ω,D)u(t, s) + f(t, s, u(t, s))

)
dt

+ g(t, s, u(t, s)) dW (t, s), t ∈ (0, T ], s ∈ S,

C(t, s, ω,D)u(t, s) = 0, t ∈ (0, T ], s ∈ ∂S,

u(0, s) = u0(s), s ∈ S.

(5.6.5)

The drift operator A is of the form

A(t, s, ω,D) =
n∑

i,j=1

Di(aij(t, s, ω)Dj) + a0(t, s, ω), (5.6.6)

C(t, s, ω,D) =
n∑

i,j=1

aij(t, s, ω)ni(s)Dj ,

where Di stands for the derivative in the i-th coordinate. All coefficients are real
and satisfy a.s.

aij ∈ Cµ([0, T ];C(S)), aij(t, ·) ∈ C1(S), Dkaij ∈ C([0, T ]× S),

a0 ∈ Cµ([0, T ];Ln(S)) ∩ C([0, T ];C(S)),
(5.6.7)

for i, j, k = 1, . . . , n, t ∈ [0, T ] and a constant µ ∈ ( 12 , 1]. All other assumptions
from Example 5.30 regarding aij , a0, f and g hold in this example as well.

Let p ≥ 2 and set E = Lp(S). On E, we define the linear operators A(t, ω)
for t ∈ [0, T ], ω ∈ Ω, by
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D(A(t, ω)) = {u ∈W 2,p(S) : C(t, s, ω,D)u = 0, s ∈ ∂S},
A(t, ω)u = A(t, ·, ω,D)u.

With integration by parts, one observes that the adjoint A(t, ω)∗ of A(t, ω) is
given by

D(A(t, ω)∗) = {u ∈W 2,p′
(S) : C(t, s,D)u = 0, s ∈ ∂S},

A(t, ω)∗u = A(t, ·, ω,D)u.

As in the previous example, A(t, ω) is a closed operator on Lp(S), see [59,
Theorem 8.5.6] and the discussion in [59, Section 9.3]. We have

c−1∥x∥W 2,p(S) ≤ ∥A(t, ω)x∥Lp(S) + ∥x∥Lp(S) ≤ c∥x∥W 2,p(S), x ∈ D(A(t, ω)).

where the constant c depends only on p, κ,K,w, n and the shape of the domain
S. As in the previous example, A(t, ω) and A(t, ω)∗ both satisfy (AT1).

Next, we will show (CIS). By [8, Theorem 5.2] and [8, (5.25)], it follows that
for ν < 1

2 + 1
2p ,

(E,D(A(t, ω)))ν,p = B2ν
p,p(S), (5.6.8)

with constants independent of t, ω. For ν < 1
2 + 1

2p′ , we obtain the same result

for the adjoint A(t, ω)∗. Hence, for ν < 1
2 , by (5.6.8), (5.2.1), (5.2.2) and [141,

Theorem 4.1] we obtain for ε > 0 such that ν + ε < 1
2 ,

∥A(t)−1 −A(s)−1∥L (E0,B2ν
p,q)

≤ ∥(−A(t))ν+ε(A(t)−1 −A(s)−1)∥L (E0)

≤ K(ω)|t− s|µ.

A similar estimation holds again for the adjoint. This proves (CIS) and therefore
(H5)′ and (H2) (see also (5.5.10) and its discussion).

The verification of hypothesis (H1) is technical, and is done in the appendix,
see Lemma 5.36.

To verify (H3), take η+ = 1
2 and Ẽη := (E,W 2,p)η,p. Note that in particular,

regarding (5.6.8), (H3)(ii) is satisfied. As in the previous example, we do not need
to consider η−. Also (H4) is satisfied by the choice of Ẽη. Verification of (HF)
and (HB) are done as in Example 5.30. In fact, we can take a = θF = θB = 0
again. This means that problem (5.6.5) can be rewritten as a stochastic evolution
equation

du(t) = (A(t)u(t) + F (t, u(t))) dt+B(t, u(t)) dW (t),

u(0) = u0.
(5.6.9)

Hence, if δ, λ > 0 such that δ + λ < 1
2 , then Theorem 5.29 can be applied:

there exists a unique adapted pathwise mild solution to (5.6.9) such that u ∈
L0(Ω;C([0, T ];Lp(S))). Moreover, if β < 1

2 such that λ + δ < β and if u0 ∈
W 1,p(S) a.s., then u ∈ L0(Ω;Cλ(0, T ;B2δ

p,p)). Summarized, we have the following
result.
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Theorem 5.33. Let p ∈ (2,∞) and suppose u0 : Ω → Lp(S) is F0-measurable.

1. There exists a unique adapted pathwise mild solution u that belongs to the
space L0(Ω;C([0, T ];Lp(S))).

2. If u0 ∈ W 1,p(S) a.s., and δ, λ > 0 such that δ + λ < 1
2 , then u belongs to

L0(Ω;Cλ(0, T ;B2δ
p,p(S))).

Remark 5.34.

1. A first order differential term in problems (5.6.1) and (5.6.5) may be included.
This term may in fact be included in the function f . To handle such a
situation, one needs to consider a > 0, θF > 0.

2. One can also consider the case of non-trace class noise, e.g. space-time white
noise, see for instance [87]. In this situation one needs to take a > 0, θB > 0.
Also in the case of boundary noise or random point masses, one can consider
a > 0, θF > 0 and θB > 0, see [126,127].

5.7 Appendix: A technical result for Hölder continuous
functions

Let X be a Banach space. For a given µ-Hölder function f : [0, T ] → X and
α ∈ (0, µ) let

ϕf,α(t) =

{
sups∈[0,t)

∥f(t)−f(s)∥
|t−s|α , if t ∈ (0, T ],

0 if t = 0,

Lemma 5.35. Let f ∈ Cµ([0, T ];X) with µ ∈ (0, 1]. Then for every α ∈ (0, µ),
the function ϕf,α is in Cµ−α([0, T ];X).

Proof. Let C = [f ]Cµ([0,T ];X). Let α ∈ (0, µ) and write ϕ := ϕf,α. Let ε = µ−α.
Then ε ∈ (0, µ/2). We will prove that there is a constant B depending on µ
and α such that for all 0 ≤ τ < t ≤ T one has |ϕ(t) − ϕ(τ)| ≤ BC(t − τ)ε. Fix
0 ≤ τ < t ≤ T .

Since ϕ is increasing we have ϕ(t) ≥ ϕ(τ). If τ = 0, one can write |ϕ(t) −
ϕ(0)| ≤ C sups∈[0,t)(t− s)ε = Ctε. Next consider τ ̸= 0.

Step 1: Assume that ϕ(t) = sup
s∈[τ,t)

∥f(t)− f(s)∥(t− s)−µ+ε. Then

|ϕ(t)− ϕ(τ)| ≤ ϕ(t) = sup
s∈[τ,t)

∥f(t)− f(s)∥
(t− s)µ−ε

≤ sup
s∈[τ,t)

C(t− s)ε ≤ C(t− τ)ε.

Step 2: Now suppose ϕ(t) = sup
s∈[0,τ)

∥f(t)− f(s)∥(t− s)−µ+ε. Then one has

|ϕ(t)− ϕ(τ)| ≤ sup
s∈[0,τ)

∣∣∣∥f(t)− f(s)∥
(t− s)µ−ε

− ∥f(τ)− f(s)∥
(τ − s)µ−ε

∣∣∣.
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With the triangle inequality, we find that |ϕ(t)− ϕ(τ)| ≤

sup
s∈[0,τ)

∥f(t)− f(τ)∥
(t− s)µ−ε

+ sup
s∈[0,τ)

∥f(τ)− f(s)∥|(t− s)−µ+ε − (τ − s)−µ+ε|

≤ C sup
s∈[0,τ)

(t− τ)µ

(t− s)µ−ε
+ C sup

s∈[0,τ)

(τ − s)µ((τ − s)−µ+ε − (t− s)−µ+ε)

≤ C(t− τ)ε + C sup
s∈[0,τ)

(τ − s)µ((τ − s)−µ+ε − (t− s)−µ+ε) (5.7.1)

We claim that for all s ∈ [0, τ)

(τ − s)µ((τ − s)−µ+ε − (t− s)−µ+ε) ≤ (t− τ)ε (5.7.2)

In order to show this, let u = τ − s and v = t− s. Then v−u = t− τ and (5.7.2)
is equivalent to

uε − vε
(u
v

)µ

≤ (v − u)ε, 0 < u < v ≤ T.

Writing u = xv with x ∈ (0, 1) and dividing by vε, the latter is equivalent to

xε − xµ ≤ (1− x)ε, x ∈ (0, 1).

For all x ∈ [0, 1] one has xε − xµ ≤ 1 − xµ−ε. Thus it suffices to show that
1− xa ≤ (1 − x)b where a = µ − ε ∈ (0, 1) and b = ε ∈ (0, 1). However,
1− xa ≤ 1− x ≤ (1− x)b for all x ∈ [0, 1] and this prove the required estimate.

We can conclude that the right-hand side of (5.7.1) is less or equal than
2C(t− τ)ε. This completes the proof.

�

5.8 Appendix B: measurability of the resolvent

Lemma 5.36. The drift operator A from Example 5.32 satisfies condition (H1).

Proof. We will prove adaptedness of the resolvent. Strong measurability can be
done similarly, and will be omitted. Fix t ∈ [0, T ].

Step 1. Reduction to approximation of the coefficients.
Consider, besides the operator A, the operator A′ satisfying (5.6.6) but with a′ij
and a′0 instead of aij and a0, respectively. We assume that a′ij , a

′
0 are functions

satisfying (5.6.7). Consider the closed operators A(t), A′(t) : Ω → L (Lp(S)).
Let p′ be the Hölder conjugate of p, let f ∈ Lp(S) and g ∈ Lp′

(S). Set u :=
(R(λ,A(t))−R(λ,A′(t)))f ∈W 2,p(S), and v := R(λ,A(t)∗)g ∈ Dom(A(t)∗). By
applying [125, (2.40)] with ν = 0 and A′(t) instead of A(s), we obtain
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⟨(R(λ,A(t))−R(λ,A′(t)))f, g⟩ =
∫
S

u(λ−A(t))v dx

=
n∑

i,j=1

∫
S

(a′ij(t, x)− aij(t, x))(DjR(λ,A
′(t))f)(x)(DiR(λ,A(t)

∗)g)(x) dx

+

∫
S

(a′0(t, x)− a0(t, x))(R(λ,A
′(t))f)(x)(R(λ,A(t)∗)g)(x) dx

Still following the lines of [125], it follows that

|⟨(R(λ,A(t))−R(λ,A′(t)))f, g⟩|
≤ C max

i,j,ω,x
{|aij(t, x)− a′ij(t, x)|, |a0(t, x)− a′0(t, x)|}∥f∥Lp(S)∥g∥Lp′ (S).

Hence

∥R(λ,A(t))−R(λ,A′(t))∥L (Lp(S)) ≤ C max
i,j,ω,x

|aij(t, x)− a′ij(t, x)|.

Consequently, if a′ij(t, x) converges to aij(t, x) uniformly for all i, j, then we have
R(λ,A′(t)) → R(λ,A(t)) in L (Lp(S)).

Step 2. Approximation of the coefficients.
Let us denote the space of all symmetric n × n-matrices by Rn×n

sym , endowed

with the operator norm. Consider a(t) as a map a(t) : Ω → C1(S,Rn×n
sym ). For

i, j = 1, . . . , n and s ∈ S, define x∗i,j,s ∈ C1(S,Rn×n
sym )∗ by the point evaluation

⟨f, x∗i,j,s⟩ = f(s)ij . Let Γ be the subset of C1(S,Rn×n
sym )∗ defined by

Γ := {x∗i,j,s ∈ C1(S,Rn×n
sym )∗ : i, j = 1, . . . , n, s ∈ S}.

Note that Γ is a set separating the points of C1(S,Rn×n
sym ). Since for all s ∈ S,

aij(t, s) : Ω → R is Ft-measurable, by assumption, it follows from Pettis’s
theorem [134, Proposition I.1.10] that a(t) is Ft-measurable. Hence, by [134,
Proposition I.1.9], there exists a sequence of mappings ak(t) : Ω → C1(S,Rn×n

sym ),

such that ak(t) is countably valued and such that ak(t)−1(f) ∈ Ft for all f ∈
C1(S,Rn×n

sym ), with the property that ak(t) → a(t) uniformly in Ω. Let ε > 0
and choose N ∈ N such that for all k > N and all ω ∈ Ω, sups∈S ∥a(t, s) −
ak(t, s)∥Rn×n

s
< ε. Since a(t, s) is invertible, by the uniform ellipticity condition

(5.6.2), it follows that ak(t, s) is invertible whenever k is large enough. In fact, by
estimating the norm ∥ak(t, s)−1∥, one obtains the following result: there exists
a δ > 0 and an Ñ ∈ N such that for all k > N , ak(t, s) satisfies (5.6.2) with a
constant κ̃ such that κ̃ ∈ [κ, κ+ δ].

Consider the operator Ak defined by (5.6.6) but with akij instead of aij .

Note that Ak satisfies (AT1). Since akij is countably valued, R(λ,Ak(t)) : Ω →
L (Lp(S)) is countably valued as well, and hence Ft-measurable. By step 1, we
obtain R(λ,Ak(t)) → R(λ,A(t)) as k → ∞, uniformly in Ω, and therefore it
follows that R(λ,A(t)) is Ft-measurable.
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To prove strong measurability, repeat step 1 but with A : Ω × [0, T ] →
L (Lp(S)) instead of A(t) : Ω → L (Lp(S)). Similarly, in step 2 one considers
a : Ω × [0, T ] → C1(S,Rn×n

sym ) and the σ-algebra F ⊗ B([0, T ]).
�





6

Forward mild solutions to stochastic evolution
equations with adapted drift

6.1 Introduction

In [68], the authors develop techniques to solve stochastic evolution equations of
the form{

dU(t) = (A(t)U(t) + F (t, U(t))) dt+B(t, U(t)) dW (t)
U(0) = u0.

(6.1.1)

in which the drift A = A(t, ω) is adapted to the filtration generated by the
Brownian motion. If for every ω ∈ Ω, the drift A generates an evolution sys-
tem S(t, s)0≤s≤t≤T , then the latter will only be Ft-measurable. Therefore, the
stochastic convolution ∫ t

0

S(t, s)B(s, u(s)) dW (s), (6.1.2)

appearing in the concept of a mild solution, is not well-defined as an Itô integral.
Hence for defining a mild solution to (6.1.1), one has to overcome the restriction
that the integrated process should be adapted.

There are by now several theories in which one is able to integrate processes
that are not adapted. Two stochastic integral that we will use extensively, are the
Skorohod integral and the forward integral. Both of them are generalizations of
the Itô integral, in the sense that if one would integrate an adapted process, both
integrals coincide with the Itô integral. However, neither one is a generalization
of the other. The Skorohod integral was first introduced in [129], and is connected
to Malliavin calculus. The forward integral is an example of stochastic integration
via regularization [118].

When one considers the notion of mild solution, it seems that the forward
integral and not the Skorohod integral is the right choice for the extension of the
Itô integral. This is mainly because if one considers (6.1.2) as a forward integral,
then a mild solution is always a weak solution (see [68, Proposition 5.3]). And
although in the case of the Skorohod integral one can rely on functional analytic
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methods, the forward integral is sometimes easier to work with. For example, the
Itô formula for the forward integral does not have an extra correction term which
the Skorohod integral does; compare Itô’s formula for the Skorohod integral
(2.5.10) with Itô’s formula for the forward integral (6.4.5).

The proof of the fact that a mild solution is a weak solution relies on a max-
imal inequality for forward integration. The authors of [68] prove the latter by
first proving a same result for the Skorohod integral, and then by comparing
the two stochastic integrals. The proof of the maximal inequality for the Skoro-
hod integral relies on functional analytic techniques and the Itô formula for the
Skorohod integral. We present a new proof that does not use the result for the
Skorohod integral, and consequently less assumptions on the evolution system
are needed. Moreover, we will present the results in the setting of umd Banach
spaces having type 2.

6.2 Preliminaries

Consider a Banach spaceX and a separable Hilbert spaceH with an orthonormal
basis (hn)n≥1. We will assume that all vector spaces are defined over the reals.

6.2.1 Radonifying operators

Let H be a real separable Hilbert space (below we take H = L2(S;H)). We refer
to [39, Chapter 12] and the survey paper [85] for an overview on γ-radonifying
operators. The Banach space of γ-radonifying operators from H into X will be
denoted by γ(H , X) and is a subspace of L (H , X). It satisfies the left- and
right-ideal property which includes the result that for R ∈ γ(H , X), U ∈ L (X)
and T ∈ L (H ), one has URT ∈ γ(H , X) and

∥URT∥γ(H ,X) ≤ ∥U∥ ∥R∥γ(H ,X) ∥T∥.

Let (S,Σ, µ) be a σ-finite measure space. A function G : S → L (H,X)
will be called H-strongly measurable if for all h ∈ H, s 7→ G(s)h is strongly
measurable. Moreover, for p ∈ (1,∞), G will be called weakly Lp(S;H) if for all
x∗ ∈ X∗, s 7→ G(s)∗x∗ is in Lp(S;H). For an H-strongly measurable G : S →
L (H,X) that is weakly L2(S;H), we define define RG : L2(S;H) → X as the
(Pettis) integral operator

⟨RGf, x
∗⟩ =

∫
S

⟨G(s)f(s), x∗⟩ dµ(s), f ∈ L2(S;H), x∗ ∈ X∗.

Note that
∥RGf∥X ≤ ∥RG∥γ(L2(S;H),X)∥f∥L2(S;H).

We will say G ∈ γ(S;H,X) if RG ∈ γ(L2(S;H), X) and write ∥G∥γ(S;H,X) =
∥RG∥γ(L2(S;H),X). It is well-known that the step functions G : S → L (H,X) of
finite rank are dense in γ(S;H,X).



6.2 Preliminaries 131

Example 6.1. If the Banach space X has type 2, then L2(S; γ(H,X)) ↪→
γ(S;H,X). See [85, Theorem 11.6]. For more on type and cotype of Banach
spaces, see [39].

Recall that if X is a Hilbert space, then γ(S;H,X) = L2(S;L2(H,X)),
where L2(H,X) denotes the space of Hilbert-Schmidt operators.

Finally, we define the trace-duality pairing between two elementsR ∈ γ(H,X)
and S ∈ γ(H,X∗) by

⟨R,S⟩Tr := tr(S∗R) =
∑
k≥1

⟨Rhk, Shk⟩X,X∗ .

If X is a umd Banach space, then S∗R is of trace class, and we have

|⟨R,S⟩Tr ≤ ∥R∥γ(H,X)∥S∥γ(H,X∗).

6.2.2 Malliavin calculus in umd Banach spaces

Let X be a umd space. Let T > 0 be a fixed time and set H := L2(0, T ;H).
Let (Ω,F ,P) be a complete probability space. Let W be an isonormal Gaussian
process on H , i.e., a map W : H → L2(Ω) such that for all h ∈ H , Wh
is centered Gaussian and such that for all h, h̃, E(W (h)W (h̃)) = [h, h̃]H . Let
(Ft)t∈[0,T ] be the filtration generated by W .

With this setting, one is able to define the space D1,p(X) of Malliavin differen-
tiable processes F ∈ Lp(Ω;X). This can be done via smooth random processes,
and we refer to [75] and [112] for further theory on the spaces Dk,p(X), k ≥ 1,
or to [95] for the Hilbert space case.

Recall from [95] or [74] that the Ornstein-Uhlenbeck semigroup (P (t))t≥0

defined on L2(Ω) is given by

P (t) :=
∞∑

n=0

e−ntJn,

where Jn is the orthogonal projection onto the n-th Wiener chaos Hn. By posi-
tivity, for all t ≥ 0, p ∈ [1,∞), P (t)⊗ IX extends to a contraction on Lp(Ω;X).
The following two results follow from [74, Lemma 6.2], and will be frequently
used in the sequel. For every F ∈ Lp(Ω;X) and t > 0, P (t)F ∈ D1,p(X) and

DP (t)F = e−tP (t)DF,

δ(P (t)F ) = etP (t)δ(F ). (6.2.1)

In particular, if F ∈ Lp(Ω;X) and t > 0, then P (t)F ∈ Dk,p(X) for all k ≥ 1.
The following lemma is a Fubini theorem for the Skorohod integral.

Lemma 6.2. Let G be a σ-finite measure space, and p ∈ (1,∞). Let u ∈ Lp(Ω×
G; γ(H , X)). Suppose that for almost every x ∈ G, the process u(x) belongs to
the domain of δ(X). If
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E
∫
G

∥δ(u(x))∥pX dx <∞

for almost every x, then
∫
G
u(·, x) dx belongs to Dom(δ(X)), and∫ T

0

∫
G

u(t, x) dx dW (t) =

∫
G

∫ T

0

u(t, x) dW (t) dx.

Proof. Let q be the Hölder conjugate of p. It suffices to show that for every
F ∈ D1,q(X∗), one has

E
⟨∫

G

u(x) dx,DF
⟩
γ
= E

⟨∫
G

δ(u(x)) dx, F
⟩
X,X∗

.

A Fubini argument yields

E
⟨∫

G

u(x) dx,DF
⟩
γ
= E

∑
n≥1

⟨∫
G

u(x)hn dx, (DF )hn

⟩
X,X∗

= E
∫
G

∑
n≥1

⟨u(x)hn, (DF )hn⟩X,X∗ dx = E
∫
G

⟨u(x), DF ⟩γ dx

= E
∫
G

⟨δ(u(x)), F ⟩X,X∗ dx = E
⟨∫

G

δ(u(x)) dx, F
⟩
X,X∗

.

�

6.2.3 Malliavin calculus in the space of bounded linear operators

Let X,Y be Banach spaces. As discussed in [32], to avoid non-measurability
issues, we will say that a function F : Ω → L (X,Y )) is X-strongly Bochner
integrable if it is X-strongly measurable and if there exists a Ψ ∈ L (X,Y ) such
that for all x ∈ X, ∫

Ω

F (ω)x dP = Ψ(x).

Define the space Lp
s(Ω;L (X,Y )) consisting ofX-strongly Bochner integrable

random variables F : Ω → L (X,Y ) such that ∥F∥L (X,Y ) ∈ Lp(Ω). We now
give the definition of the corresponding strong Malliavin-Sobolev space.

Definition 6.3. Let X,Y be Banach spaces and F ∈ Lp
s(Ω;L (X,Y )). We say

that F ∈ D1,p
s (L (X,Y )) if the following conditions hold:

(1) For every x ∈ X, Fx belongs to D1,p(Y ).
(2) There exists a map DF ∈ Lp

s(Ω;L(X, γ(H , Y ))) such that for every x ∈ X
we have a.s. (DF )x = D(Fx).
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Remark 6.4. The definition of D1,p
s (L (X,Y )) from [68, Definition 2.1] is slightly

different. There, the authors only define D1,p
s (L (X,Y )) for p = 2, and assume

that DF ∈ L2(0, T × Ω;L (X,L2(H,Y ))), where L2(H,Y ) is the space of
Hilbert-Schmidt operators from H to Y . However, in the Hilbert space setting,
one has L2(H;Y ) = γ(H,Y ), and L2(0, T ; γ(H,Y )) ↪→ γ(H , Y ). Hence ev-
ery F ∈ L2

s(Ω;L (X,Y )) that satisfies the conditions from [68, Definition 2.1]
particularly satisfies the conditions from Definition (6.3).

Remark 6.5. Suppose X is a separable Hilbert space and F : Ω → γ(X,Y ).
Then in particular, F : Ω → L (X,Y ), but as γ(X,Y ) is separable, we do
not need the above definition. Of course one would like that DF = DF in
a suitable sense. This is indeed the case: First, if F ∈ D1,p(γ(X,Y )), then
DF ∈ Lp(Ω; γ(H , γ(X,Y ))). Using γ(H, γ(X,Y )) ≃ γ(X, γ(H,Y )), one could
interpret DF as an element from Lp(Ω; γ(X, γ(H,Y ))). A careful check of both
definitions leads to the conclusion thatDF = DF . Second, if F ∈ D1,p

s (L (X,Y ))
such that DF ∈ Lp(Ω; γ(X, γ(H,Y ))), then one may conclude that F ∈
D1,p(γ(X,Y )), with again DF = DF .

The following lemma is a generalization of [68, Lemma 2.5]. The proof is similar.

Lemma 6.6 (Product rule). Let X,Y be Banach spaces and 1
p + 1

q = 1
r . If

A ∈ D1,p
s (L (X,Y )) and F ∈ D1,q(X), then AF ∈ D1,r(Y ) with

D(AF ) = (DA)F +A(DF ).

The identity should be understood in the following sense: for all h ∈ H one has

D(AF )h = ((DA)F )(h) +A((DF )h).

For any h ∈ H , we will denote (DhA)F for ((DA)F )(h). This is analogous
to the operator Dh : S → Lp(Ω;X) that is defined by DhF = (DF )h. One can
prove that Dh is a closable operator, and one denotes its domain by Dh,p(X).
Concerning these operators, we have the following simple result.

Lemma 6.7. Let X,Y be Banach spaces, 1
p + 1

q = 1
r , F ∈ D1,p

s (L(X,Y )) and

G ∈ Lq(Ω;X). Let t ∈ [0, T ] and suppose that G is Ft-measurable. If h ∈ H is
such that supp(h) ⊂ [t, T ], then FG ∈ Dh,r(Y ) with

Dh(FG) = (DhF )G.

Proof. First suppose G ∈ D1,q(X). By the product rule, we have FG ∈ Dh,r(X)
and

Dh(FG) = (DhF )G+ FDhG.

From the assumption on the support of h, it follows thatDhG = 0 ( [95, Corollary
1.2.1]). Hence the result follows in this special case.

The general case follows from the closedness ofDh, since one can approximate
G by a sequence (Gn)n≥1 of smooth Ft-measurable random variables. �
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6.3 The forward integral

In this section we assume that the Banach space X is umd and has type 2. Recall
that H is a real separable Hilbert space with orthonormal basis (hn). Recall that
W is an isonormal Gaussian process on H .

Definition 6.8. Let ϕ : Ω × [0, T ] → L (H,X) be H-strongly measurable and
weakly in L2(0, T ;H). Let I−(ϕ, n) be defined by

I−(ϕ, n) = n
n∑

k=1

∫ T

0

ϕ(s)hk(W (s+ 1/n)hk −W (s)hk) ds.

If the sequence (I−(ϕ, n))∞n=1 converges in probability, then we say that ϕ is
forward integrable. The limit is called the forward integral of ϕ, and denoted by∫ T

0
ϕ(s) dW−(s).

If ϕ is forward integrable, then we will also say that ϕ ∈ Dom(δ−). If the sequence
(I−(ϕ, n))∞n=1 converges in Lp(Ω;X), then we will write ϕ ∈ Dom(δ−p ).

The forward integral extends the Itô integral, see [110, Proposition 3.2]. One
of the advantages of the forward integral over the Skorohod integral, is that one
may pull any random operator A : Ω → L (X,Y ) out of the integral. That is,
when ϕ is forward integrable on X, and A : Ω → L (X,Y ), then Aϕ is again
forward integrable and ∫ T

0

AϕdW− = A

∫ T

0

ϕdW−. (6.3.1)

More properties on the forward integral, in particular on convergence of the
sequence I−(ϕ, n), can be found in [110].

We will use the following subspace of Malliavin differentiable processes.

Definition 6.9. For p ∈ [2,∞), we denote by M1,p(X) the space of all F ∈
D1,p(Lp(0, T ; γ(H,X))) such that for all t ∈ [0, T ] and h ∈ H, D(F (t)h) ∈
Lp(Ω; γ(0, T ;H,X)). We will say that F ∈ M1,p

a (X) if F ∈ M1,p(X) and it is
adapted to the filtration (Ft)t∈[0,T ].

It follows that M1,p(X) is a subspace of D1,p(Lp(0, T ; γ(H,X))), and it is
dense in Lp(Ω × [0, T ]; γ(H,X)). To see the latter, note that the set smooth
Lp(0, T ; γ(H,X))-valued random variables are dense in Lp(Ω;Lp(0, T ; γ(H,X))).
Consider such an smooth random variable ξ that is of the simplest form

ξ = f(W (φ1), . . . ,W (φn))⊗ ϕ,

where ϕ ∈ Lp(0, T ; γ(H,X)). Since the φi, i = 1, . . . ,m belong to L2(0, T ;H),
one can approximate φi by a sequence (φm

i )m≥1 of simple functions. Observe that
W : L2(0, T ;H) → Lp(Ω) is a continuous linear map, and therefore W (φm

i ) →
W (φi) in L

p(Ω). It follows that ξm, defined by ξm := f(W (φm
1 ), . . . ,W (φm

n ))⊗ϕ,
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converges to ξ in the norm of Lp(Ω;Lp(0, T ; γ(H,X))). Moreover, ξm ∈ M1,p(X).
By linearity, every smooth Lp(0, T ; γ(H,X))-valued random variable can be ap-
proximated by a sequence of elements in M1,p(X). Hence the result follows.

A similar result holds for M1,p
a (X).

Whenever X is a Hilbert space, then M1,p(X) = D1,p(Lp(0, T ; γ(H,X))).
Indeed, let F ∈ D1,p(Lp(0, T ; γ(H,X))). Then for every t ∈ [0, T ] and h ∈ H,
one has F (t)h ∈ D1,p(X). Now recall that D is a closed operator from Lp(Ω;X)
into Lp(Ω;L2(0, T ;L2(H,X))), where L2(H,X) is the space of Hilbert-Schmidt
operators from H to X.

It is well-known (see [118, Theorem 2.1]) that in the case H = X = R, if
F ∈ D1,p(L2(0, T )) and there exists a weak trace-term of DF , then F is forward
integrable. Moreover, the forward integral and the Skorohod integral differ by
the trace of DF . A similar result holds in the infinite-dimensional case. To prove
this, we will first prove the following identity of I−(F, n). This is essentially an
infinite-dimensional generalization of [118, Lemma 2.1]. Let Pn be the projection
onto the first n basis coordinates.

Lemma 6.10. Let p ∈ (1,∞), and F ∈ M1,p(X) ∩ Lp(Ω; γ(0, T ;H,X)). The
convolution Fn := n1[0,1/n] ∗ PnF1[0,T ] belongs to M1,p(X), and we have a.s.

I−(F, n) = δ(Fn) +

n∑
k=1

∫ T

0

n

∫ t+1/n

t

D(F (t)hk)(s)hk ds dt

Proof. The first statement follows directly from Young’s inequality.
Observe that if ϕ = 1[a,b] ⊗ h for 0 ≤ a < b ≤ T and h ∈ H with ∥h∥ = 1,

and R ∈ γ(0, T ;H,X), then

⟨R,ϕ⊗ x∗⟩Tr = ⟨Rϕ, x∗⟩X,X∗ .

Also, for any ϕ ∈ L2(0, T ;H), one has

Fn(ϕ) =

∫ T

0

∫ T

0

n1[0,1/n](s− r)F (r)(Pn(ϕ(s))) dr ds

=

∫ T

0

∫ T

0

n1[r,r+1/n](s)
n∑

k=1

[ϕ(s), hk]HF (r)hk ds dr

=
n∑

k=1

∫ T

0

F (r)hk[ϕ, n1[r,r+1/n] ⊗ hk]L2(0,T ;H) dr.

(6.3.2)

Let G = g⊗ x∗ be a smooth X∗-valued random variable, and let (ϕn)n≥1 be
an orthonormal basis for L2(0, T ;H). Then by (6.3.2),

E⟨G, δ(Fn)⟩ = E
∑
m≥1

⟨Fnϕm, (DG)ϕm⟩

= E
n∑

k=1

∫ T

0

⟨F (r)hk, x∗⟩[n1[r,r+1/n] ⊗ hk, Dg]HS dr.

(6.3.3)
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Moreover, by the integration by parts formula for the divergence operator, see
[112, Lemma 4.9], we obtain a.s.

[n1[r,r+1/n] ⊗ hk, Dg]HS = δ(gn1[r,r+1/n] ⊗ hk)− gδ(n1[r,r+1/n] ⊗ hk). (6.3.4)

By definition of the divergence operator, for the latter we obtain

gδ(n1[r,r+1/n] ⊗ hk) = gn(W (r + 1/n)hk −W (r)hk).

Hence

E
n∑

k=1

∫ T

0

⟨F (r)hk, x∗⟩gn(W (r+1/n)hk−W (r)hk) dr = E⟨I−(F, n), G⟩. (6.3.5)

For the other part of the right hand side of (6.3.4), we use duality again, and
(6.3.2) to obtain

E
n∑

k=1

∫ T

0

⟨F (r)hk, x∗⟩δ(gn1[r,r+1/n] ⊗ hk) dr

= E
n∑

k=1

∫ T

0

⟨D(F (r)hk), (n1[r,r+1/n] ⊗ hk)⊗ x∗⟩Trg dr

= E
n∑

k=1

∫ T

0

⟨D(F (r)hk)(n1[r,r+1/n] ⊗ hk), x
∗⟩g dr

= E
⟨ n∑

k=1

∫ T

0

n

∫ r+1/n

r

D(F (r)hk)(s)hk ds dr,G
⟩
.

(6.3.6)

Now apply the results of (6.3.5) and (6.3.6) to (6.3.3) to obtain

E⟨G, δ(Fn)⟩ = E⟨I−(F, n), G⟩ −E
⟨ n∑

k=1

∫ T

0

n

∫ r+1/n

r

D(F (r)hk)(s)hk ds dr,G
⟩
.

Now the result follows from the Hahn-Banach theorem. �

Now we are ready to present an infinite-dimensional version of [118, Theorem
2.1].

Theorem 6.11. Let F ∈ D1,p(Lp(0, T ; γ(H,X))).

1. The convolution Fn := n1[0,1/n] ∗ PnF1[0,T ] converges to F in the space
D1,p(Lp(0, T ; γ(H,X)));

2. Suppose also F ∈ M1,p(X) ∩ Lp(Ω; γ(0, T ;H,X)), and set

Φn :=
n∑

k=1

∫ T

0

n

∫ t+1/n

t

D(F (t)hk)(s)hk ds dt.
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If Φn is a Cauchy sequence in Lp(Ω;X) (or in probability), then F is forward
integrable, and I−(F, n) converges to δ−(F ) in Lp(Ω;X) (or in probability).
In that case we denote the limit by Φ, and the following identity holds∫ T

0

F (s) dW−(s) =

∫ t

0

F (s) dW (s) + Φ. (6.3.7)

Proof. The first claim follows from the fact that Fn → F in Lp(Ω; γ(0, T ;H,X)),
and DFn → DF in Lp(Ω; γ(H , γ(0, T ;H,X))). Both proofs of these facts are
variations of [44, Theorem 8.14].

The second claim follows from the representation given in Lemma 6.10, and
from the fact that δ : D1,p(γ(0, T ;H,X)) → Lp(Ω;X) is a continuous operator.
�

Remark 6.12. Claim (1) can be improved in the following way: let Φn : [0, T ] →
D1,p(Lp(0, T ; γ(H,X))) be given by the convolution

Φ(t) = n1[0,1/n] ∗ PnF1[0,t],

then Φn(T ) = Fn, and we have Φn → 1[0,t]F in Lp(0, T ;D1,p(Lp(0, T ; γ(H,X)))).

6.4 Itô’s formula for the forward integral

Lemma 6.13. Let ξ ∈ L2(Ω;L2(0, T ;H)) and φ ∈ L2(0, T ;H). We have

1

ε

∫ T

0

⟨
1[s,s+ε]h, ξ

⟩2

L2(0,T ;H)
ds→ 0,

in L1(Ω) as ε ↓ 0.

Proof. Suppose first that φ = 1[a,b]⊗h with h ∈ H. Then with Hölder’s inequality
and Fubini,

1

ε

∫ T

0

⟨
1[s,s+ε]φ, ξ

⟩2

H
≤ 1

ε

∫ b

a−ε

(∫ s+ε

s

⟨h, ξ(r)⟩H dr
)2

ds

≤ ∥h∥2
∫ b

a−ε

∫ s+ε

s

∥ξ(r)∥2H dr ds ≤ ∥h∥2ε
∫ T

0

∥ξ(r)∥2 dr.

Clearly, the latter converges to 0 in L1(Ω) as ε ↓ 0.
For general φ ∈ L2(0, T ;H), one has

E
1

ε

∫ T

0

⟨1[s,s+ε]φ, ξ⟩2L2(0,T ;H) ≤ E∥ξ∥2L2(0,T ;H)∥φ∥
2
L2(0,T ;H).

Therefore, the result follows by an approximation argument. �
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Lemma 6.14. Let (a, b) be an open interval and h ∈ H. We have limε↓0 ξε =
(b− a)∥h∥2H in L2(Ω), where

ξε =

∫ b

a

1

ε
((W (s+ ε)−W (s))h)2 ds. (6.4.1)

Proof. We have Eξε = (b−a)∥h∥2H , and since the right-hand side is independent
of Ω, it suffices to show Eξ2ε = (b−a)2∥h∥4H . To see this, note that one can write

Eξ2ε = E
∫ b

a

∫
(a,b)\[s−ε,s+ε]

1

ε2
((W (s+ ε)−W (s))h)2

× ((W (r + ε)−W (r))h)2 dr ds

+ E
∫ b

a

∫ s+ε

s−ε

1

ε2
((W (s+ ε)−W (s))h)2((W (r + ε)−W (r))h)2 dr ds.

The first part converges to (b− a)2∥h∥4H by the properties of Brownian motion.
For the second part, use Hölder’s inequality and Eγ4 = 3q2 for any Gaussian
variable with variance q, to see that this part converges to 0 as ε ↓ 0. �

Remark 6.15. Following the lines of the above proof, one notices that respectively
the right and left end-point of the integral in equation (6.4.1) can be changed
into a+ ε or b− ε, or both.

Proposition 6.16. Let Y ∈ D1,2(L2(0, T ;H)) be a smooth process of the form
Y = f(W (h1), . . . ,W (hn)) ⊗ 1[a,b] ⊗ φ, with f ∈ C∞

b (Rn), 0 ≤ a < b ≤ T ,
hi ∈ L2(0, T ;H) and h ∈ H with ∥h∥H = 1. We have

1

ε

∫ T

0

∣∣∣ ∫ s+ε

s

Y (r) dW (r)
∣∣∣2 ds→ ∫ T

0

∥Y (s)∥2H ds (6.4.2)

in L1(Ω), as ε ↓ 0.

Proof. Set φ̃1 = 1√
ε
1[s,s+ε] ⊗ h. Note that ∥φ̃1∥L2(0,T ;H) = 1. Consider an or-

thonormal basis for H = L2(0, T ;H) that has φ̃1 as an element. Then, by [112,
Lemma 4.2], we compute∫ s+ε

s

Y (r) dW (r) = f(W ((s+ ε) ∧ b)−W (s ∨ a))h

− ⟨1[s∨a,(s+ε)∧b] ⊗ h,DF ⟩L2(0,T ;H).

Split the integral from 0 to T of the left hand side of (6.4.2) into three parts: the
first one from a− ε to a, the second one from a to b− ε and the third one from
b − ε to b. Then one observes that the first and third integral converge to 0 in
L1(Ω) as ε ↓ 0. For the second integral we estimate pointwise
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∣∣∣1
ε

∫ b−ε

a

∣∣∣ ∫ s+ε

s

Y (r) dW (r)
∣∣∣2 ds− ∫ T

0

∥Y (s)∥2H ds
∣∣∣

≤ C

∫ b−ε

a

f2
(1
ε

(
(W (s+ ε)−W (s))h

)2 − ∥h∥2H
)
ds

+
C

ε

∫ T

0

|⟨1[s,s+ε] ⊗ h,Df⟩L2(0,T ;H)|2 ds

The first and second part both converge to 0 in L1(Ω) by respectively Lemma
6.14 (with Remark 6.15) and Lemma 6.13, respectively. �
Theorem 6.17. Let Y ∈ D1,2(L2(0, T ; γ(H,X))). For ε > 0, let Z0, Zε : Ω ×
[0, T ] → L (X,X∗) be processes such that:

1. all processes Zε, ε > 0 and Z0 have continuous paths,
2. Pointwise on ω one has limε↓0 supt∈[0,T ] ∥Zε(t)− Z0(t)∥L (X,X∗) = 0,
3. There exists a constant C > 0 such that for all t ∈ [0, T ] and all ω ∈ Ω one

has ∥Zε(t, ω)∥L (X,X∗) ≤ C.

Then for all t ∈ [0, T ] we have

1

ε

∫ t

0

⟨∫ s+ε

s

Y (r) dW (r), Zε(s)

∫ s+ε

s

Y (r) dW (r)
⟩
ds

→
∫ t

0

⟨Y (s), Z0(s)Y (s)⟩ ds

in L1(Ω) as ε ↓ 0.

Proof. This is a continuous version of Theorem 2.37. In fact, following the steps
of Theorem 2.37, one can conclude that the first three steps can be copied into
this proof. This means that it suffices to consider the case when Y is a smooth
process. By linearity, we can assume that

Y = f(W (h1), . . . ,W (hn))⊗ (1[a,b] ⊗ h)⊗ x,

where h ∈ H, x ∈ E and f ∈ C∞
b (Rn). We estimate∣∣∣1

ε

∫ t

0

⟨∫ s+ε

s

Y (r) dW (r), Zε(s)

∫ s+ε

s

Y (r) dW (r)
⟩
ds

−
∫ t

0

⟨Y (s), Z0(s)Y (s)⟩ ds
∣∣∣

≤
∣∣∣1
ε

∫ t

0

⟨∫ s+ε

s

Y (r) dW (r), (Zε(s)− Z0(s))

∫ s+ε

s

Y (r) dW (r)
⟩
ds
∣∣∣

+
∣∣∣1
ε

∫ t

0

⟨∫ s+ε

s

Y (r) dW (r), Z0(s)

∫ s+ε

s

Y (r) dW (r)
⟩
ds

−
∫ t

0

⟨Y (s), Z0(s)Y (s)⟩ ds
∣∣∣

=: a1 + a2.
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One can estimate the expectation of a1 to obtain

E|a1| ≤ E sup
σ∈[0,T ]

∥Zε(σ)− Z0(σ)∥L (X,X∗)

×
∣∣∣1
ε

∫ t

0

∥δ(1[s,s+ε]Y )∥2X ds−
∫ t

0

∥Y (s)∥2γ(H,X) ds
∣∣∣

+ E sup
σ∈[0,T ]

∥Zε(σ)− Z0(σ)∥L (X,X∗)

∫ t

0

∥Y (s)∥2 ds

≤ CE
∣∣∣1
ε

∫ t

0

∥δ(1[s,s+ε]Y )∥2X ds−
∫ t

0

∥Y (s)∥2γ(H,X) ds
∣∣∣

+ E sup
σ∈[0,T ]

∥Zε(σ)− Z0(σ)∥L (X,X∗)

∫ t

0

∥Y (s)∥2 ds.

The latter converges to 0 by the dominated convergence theorem. The first con-
verges to 0 by Proposition 6.16. Hence a1 → 0 as ε ↓ 0 in the space L1(Ω).

Finally, for a proof of convergence E|a2| → 0 as ε ↓ 0, we refer to the proof
of [112, (5.7)]. �

The following theorem is an Itô formula for the forward integral. See the
remark below the theorem for a discussion why we call it an Itô formula. Recall
that (P (t))t≥0 is the Ornstein-Uhlenbeck semigroup on Lp(Ω;X).

Theorem 6.18. Let p ∈ (2,∞) and Y ∈ M1,p(X) ∩ Lp(Ω; γ(0, T ;H,X)). Sup-
pose that there exists an element D−Y ∈ Lp(Ω × [0, T ];X) such that for all
t ∈ [0, T ], ∫ t

0

n
n∑

k=1

∫ s+1/n

s

D(Y (s)hk)(r)hk) dr ds→
∫ t

0

(D−Y )(s) ds,

in Lp(Ω;X) as n → ∞. If F : X → R be a twice continuously differentiable
function that is bounded and has bounded derivatives, then:

1. For all t ∈ [0, T ] one has that 1[0,t]Y is forward integrable. The forward

integral process ζ, given by ζ(t) :=
∫ t

0
Y (s) dW−(s), has continuous paths.

Moreover, the following convergence holds:

1

ε

∫ t

0

⟨ζ(s+ ε)− ζ(s), F ′(ζ(s))⟩ ds

→ F (ζ(t))− F (ζ(0))−
∫ t

0

⟨Y (s), F ′′(ζ(s))Y (s)⟩ ds,
(6.4.3)

in L1(Ω) as ε ↓ 0,
2. For all τ ≥ 0 one has
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1

ε

∫ t

0

⟨P (τ)(ζ(s+ ε)− ζ(s)), F ′(P (τ)(ζ(s)))⟩ ds

→ F (P (τ)ζ(t))− F (P (τ)ζ(0))

− e−2τ

∫ t

0

⟨P (τ)Y (s), F ′′(P (τ)ζ(s))(P (τ)Y (s))⟩ ds,

(6.4.4)

in L1(Ω) as n→ ∞.

Remark 6.19. Suppose that besides that assumptions in the theorem we have the
following:

Du ∈ Lp(0, T ;D1,p(γ(L2(0, T ;H), γ(H,E)))),

D−Y ∈ D1,p(Lp(0, T ;E)),

D(D−Y ) ∈ L1(0, T ;Lp(Ω;Lp(0, T ; γ(H,E)))).

Then one can prove that an actual Itô formula holds: the process

s 7→ ⟨1[0,t](s)Y (s), F ′(ζ(s))

is again forward integrable for every t ∈ [0, T ], and we have

F (ζ(t)) = F (ζ(0)) +

∫ t

0

⟨Y (s), F ′(ζ(s))⟩ dW−(s) +

∫ t

0

⟨Y (s), F ′′(ζ(s))Y (s)⟩Tr ds

(6.4.5)
In this case, the limit Φ appearing in Theorem 6.11 applied to 1[0,t]Y is the

Lebesgue integral
∫ t

0
(D−Y )(s) ds, and one can apply the Itô formula in [112,

Theorem 5.7]. Comparing this formula with δ−(s 7→ ⟨1[0, t](s)Y (s), F ′(ζ(s)))
yields (6.4.5). A proof of this can be found in [95, Theorem 3.2.7] for the case
H = X = R. The infinite-dimensional case is similar.

Remark 6.20. The left hand side of (6.4.4) can be rewritten as a sum of three
terms. To prove this, note that by (6.2.1),

P (τ)(ζ(s+ ε)− ζ(s)) = e−τ

∫ s+ε

s

P (τ)Y (r) dW (r) +

∫ s+ε

s

P (τ)(D−Y )(r) dr.

Since P (τ)ζ(s) ∈ D1,p(X), by the integration by parts formula for the divergence
operator (see [112, Lemma 4.9]) we obtain⟨

δ(1[s,s+ε]PτY ), F ′(Pτζ(s))
⟩
= δ(⟨1[s,s+ε]PτY, F

′(Pτζ(s))⟩)
+ ⟨1[s,s+ε]PτY,D(F ′(Pτζ(s)))⟩Tr.

Therefore, we obtain
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1

ε

∫ t

0

⟨Pτ (ζ(s+ ε)− ζ(s)), F ′(Pτζ(s))⟩ ds

=
e−τ

ε

∫ t

0

δ⟨1[s,s+ε]PτY, F
′(Pτζ(s))⟩ ds

+
e−τ

ε

∫ t

0

⟨1[s,s+ε]PτY,D(F ′(Pτζ(s)))⟩Tr ds

+
1

ε

∫ t

0

⟨∫ s+ε

s

Pτ (D
−Y )(r) dr, F ′(Pτζ(s))

⟩
ds.

Proof. Proof of (1). The first claim follows directly from Theorem 6.11. The
second claim can be found in [112, Theorem 4.13]. To prove (6.4.3), we proceed
as follows.

With integration by parts, we have h(1) − h(0) = h′(0) +
∫ 1

0
(1 − t)h′′(t) dt

for any twice continuously differentiable h. For any a, b ∈ X we can apply this
identity to h = FG, where G : [0, 1] → X is given by G(t) = ta + (1 − t)b, and
obtain

F (b)− F (a) = ⟨b− a, F ′(a)⟩+
∫ 1

0

t⟨b− a, F ′′(ta+ (1− t)b)(b− a)⟩ dt. (6.4.6)

Since ζ is a continuous process, the process Yε given by

Yε(t) =
1

ε

∫ t

0

(F (ζ(s+ ε))− F (ζ(s))) ds =
1

ε

∫ t+ε

t

F (ζ(s)) ds− 1

ε

∫ ε

0

F (ζ(s)) ds

converges almost surely to the process t 7→ F (ζ(t))−F (ζ(0)). Since F is bounded,
one can apply the dominated convergence theorem to conclude that the conver-
gence also holds in Lp(Ω;X). By (6.4.6), Yε(t) satisfies

Yε(t) =
1

ε

∫ t

0

⟨ζ(s+ ε)− ζ(s), F ′(ζ(s))⟩ ds

+
1

ε

∫ t

0

∫ 1

0

r⟨ζ(s+ ε)− ζ(s), F ′′(rζ(s) + (1− r)ζ(s+ ε))

× (ζ(s+ ε)− ζ(s))⟩ dr ds

(6.4.7)

The second part of the right hand side can be written as

1

ε

∫ t

0

⟨ζ(s+ ε)− ζ(s), Zε(s)(ζ(s+ ε)− ζ(s))⟩ ds,

where

Zε(s) =

∫ 1

0

rF ′′(rζ(s) + (1− r)ζ(s+ ε)) dr.

If we set Z0(s) :=
1
2F

′′(ζ(s)), then Zε, ε > 0 and Z0 satisfy the three properties
from Theorem 6.17. In particular, we have for all t ∈ [0, T ] and ω ∈ Ω, that
∥Zε(t, ω)∥ ≤ 1

2∥F
′′∥∞.
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By identity (6.3.7) we have

1

ε
⟨ζ(s+ ε)− ζ(s), Zε(s)(ζ(s+ ε)− ζ(s))⟩

=
1

ε

⟨∫ s+ε

s

Y (r) dW (r) +

∫ s+ε

s

(D−Y )(r) dr,

Zε(s)
(∫ s+ε

s

Y (r) dW (r) +

∫ s+ε

s

(D−Y )(r) dr
)⟩
.

(6.4.8)

Theorem 6.17, the assumption on D−Y and the estimate ∥Zε(t, ω)∥ ≤ 1
2∥F

′′∥∞
yield that

1

ε

∫ t

0

⟨ζ(s+ ε)− ζ(s), Zε(s)(ζ(s+ ε)− ζ(s)) ds⟩ →
∫ t

0

⟨Y (s), F ′′(ζ(s))Y (s)⟩ ds,

in L1(Ω;X) as ε ↓ 0. Combining this with equation (6.4.7) gives

1

ε

∫ t

0

⟨ζ(s+ ε)− ζ(s), F ′(ζ(s))⟩ ds

→ F (ζ(t))− F (ζ(0))−
∫ t

0

⟨Y (s), F ′′(ζ(s)Y (s)⟩ ds,

in L1(Ω) as ε ↓ 0.
Proof of (3). The proof of (6.4.4), is similar to the proof of (6.4.3), but with

P (τ)ζ instead of ζ. Note that by identity (6.4.8) and (6.2.1), one obtains

1

ε

∫ t

0

⟨P (τ)ζ(s+ ε)− ζ(s), Zε(s)(P (τ)ζ(s+ ε)− ζ(s)) ds⟩

→ e−2τ

∫ t

0

⟨Y (s), F ′′(ζ(s))Y (s)⟩ ds

which yields the desired result. �

6.5 The random evolution system

Recall that ∆ := {(s, t) ∈ [0, T ]2; s ≤ t}.

Definition 6.21. A random evolution system is a random family of operators
S : ∆×Ω → L (X) such that

1. S : ∆×Ω → L (X) is strongly measurable;
2. S(t, s) is strongly Ft-measurable for each t ≥ s;
3. For each ω, the family {S(t, s, ω) : (t, s) ∈ ∆} is an evolution system, that

is,
a) S(s, s) = I and S(t, r) = S(t, s)S(s, r) for any 0 ≤ r ≤ s ≤ t ≤ T ;
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b) For all x ∈ X, the mapping (t, s) 7→ S(t, s)x is continuous from ∆ into
X.

Let us introduce the following hypotheses on a given random evolution sys-
tem.

(H1) For each (t, s) ∈ ∆, we have S(t, s) ∈ D1,p
s (L (X)). For all x ∈ X, (DS(t, s))x

belongs to γ(0, T ;H,X). There exists a map

D̂S(t, s) : Ω × [0, T ] → γ(H,L (X))),

such that for all ω ∈ Ω, (D̂S(t, s)(r)h)x = (DS(t, s)x)(r)h. We assume that

∥D̂S(t, s)∥ : Ω × [0, T ] → R is measurable. Moreover, for all p > 2 we have

sup
t∈[0,T ]

∫ t

0

[
E∥S(t, s)∥pL (X)+E

(∫ T

0

∥D̂S(t, s)(σ)∥2γ(H,L (X)) dσ
)p/2]

ds <∞.

(6.5.1)
(H2) There exists a map D−S(t, ·) : Ω × [0, T ] → L (X, γ(H,X)) such that for

all ω ∈ Ω and s ≤ t, D−S(t, s) ∈ γ(H,L (X)) with the identification from
(H1). Moreover, for all x ∈ X the limit

lim
ε↓0

DS(t, s− ε)(s)x = D−S(t, s)x,

exists in γ(H,X), and D−S(t, ·) ∈ L2
s(Ω × [0, T ];L (X, γ(H,X))).

(H3) There is a constant M > 0 such that the following estimates hold for almost
all r ≤ s ≤ t:

(H3a) ∥S(t, s)∥L (X) ≤M ;
(H3b) ∥DS(t, r)(s)∥γ(H,L (X)) ≤M ;
(H3c) ∥D−S(t, s)∥γ(H,L (X)) ≤M .

Whenever a random evolution system S(t, s) satisfies the above properties
(H1), (H2) and (H3), then we say that it satisfies (H). From [68, Remark, p158]
it follows that

DS(t, r)(s) = (D−S(t, s))S(s, r), (6.5.2)

whenever r < s < t.
Next, let us introduce the following space Sa(γ(H , X)) consisting of smooth

and adapted γ(H , X)-valued random processes G of the form

G =
N∑

k=1

N∑
m=1

fkm(W (φm
1 ), . . . ,W (φm

N ))⊗ (1(tm,tm+1] ⊗Rk),

where fkm ∈ C∞
b (RN ), 0 ≤ t1 < t2 < . . . < tN+1 ≤ T , φm

k ∈ L2(0, T ) ⊗H with

supp(φm
j ) ⊂ [0, tm] and Rk =

∑Nk

i=1 hi⊗xi ∈ γ(H,X). Observe that 1(tm,tm+1]⊗
Rk ∈ γ(H , X) by the ideal property, using the fact that the multiplication
operator M1(a,b)

: H → H given by M1(a,b)
h = 1(a,b) ⊗ h is a bounded linear

operator. We have that Sa(γ(H , X)) is dense in Lp
a(Ω × [0, T ]; γ(H,X))

Let us state the following technical lemma.
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Lemma 6.22. If A ∈ γ(H,L (X)) and B ∈ γ(H,X), then
∑

n≥1Ahn(Bhn) is
convergent in X. Moreover, for all N ∈ N one has

∥∥∥ N∑
n=1

Ahn(Bhn)
∥∥∥
X

≤ ∥A∥γ(H,L (X))∥B∥γ(H,X).

Proof. Consider the bounded linear operator T : L (X) → L (X∗) defined
by T (Φ) = Φ∗. By the ideal property it follows that TA ∈ γ(H,L (X∗)),
with ∥TA∥γ(H,L (X∗)) ≤ ∥A∥γ(H,L (X)). By the Hahn-Banach Theorem and [85,
Proposition 3.19], it follows that

∥∥∥ N∑
n=1

Ahn(Bhn)
∥∥∥
X

≤ sup
N≥1

∥∥∥ N∑
n=1

Ahn(Bhn)
∥∥∥
X

= sup
N≥1

sup
∥x∗∥X∗=1

∣∣∣ N∑
n=1

⟨Bhn, ((TA)hn)x∗⟩
∣∣∣

= sup
N≥1

sup
∥x∗∥X∗=1

∣∣∣ N∑
n=1

N∑
k=1

E⟨γnBhn, γk((TA)hk)∗x∗⟩
∣∣∣

≤ ∥B∥γ(H,X)∥A∥γ(H,L (X)).

�

The next proposition gives the first setup for forward integrability of the
process

s 7→ Y (t, s) := S(t, s)G(s)(t− s)−α1[0,t](s), (6.5.3)

in the space Lp(Ω;X) with p > 2 and α ∈ [0, 12 ), S(t, s) a random evolution
system satisfying (H) and G ∈ Sa(γ(H , X)).

Theorem 6.23. Let S(t, s) be a random evolution system satisfying (H) and
G ∈ Sa(γ(H , X)), let p > 2 and α ∈ [0, 12 ). Consider the process Y as in
(6.5.3). Then we have

(1) For all (s, t) ∈ ∆,∫ s

0

n∑
k=1

n

∫ r+1/n

r

D(Y (t, r)hk)(σ)(hk) dσ dr

→
∫ s

0

∑
k≥1

(t− r)−αD−S(t, r)hkG(r)hk dr,

(6.5.4)

as n→ ∞ in Lp(Ω;X);
(2) For all t ∈ [0, T ],
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∫ ·

0

n∑
k=1

n

∫ r+1/n

r

D(Y (t, r)hk)(σ)(hk) dσ dr

→
∫ ·

0

∑
k≥1

(t− r)−αD−S(t, r)hkG(r)hk dr,

as n→ ∞ in Lp(Ω × [0, t];X).

Remark 6.24. From this theorem, it follows that for all t ∈ [0, T ], the process
s 7→ Y (t, s) satisfies the conditions of Theorem 6.18, with D−Y (r) =

∑
k≥1(t−

r)−αD−S(t, r)hkG(r)hk.

Proof. (1). By Lemma 6.7 we have for any ϕ ∈ L2(0, T )⊗U with supp(ϕ) ⊂ [s, T ],

D(S(t, s)G(s)hk)ϕ = (D(S(t, s))G(s)hk)ϕ.

Therefore,∫ s

0

n∑
k=1

n

∫ r+ 1
n

r

D(Y (t, r)hk)(σ)(hk) dσ dr

=

∫ s

0

n∑
k=1

n

∫ r+ 1
n

r

(t− r)−α(DS(t, r)(σ)hk)G(r)hk dσ dr

=

∫ s+ 1
n

0

n

∫ s∧σ

0∨(σ−1/n)

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ,

(6.5.5)

where G̃(r) = (t − r)−αG(r). With this notation, the right hand side of (6.5.4)
equals ∫ 1

n

0

∑
k≥1

D−S(t, σ)hkG̃(σ)hk dσ +

∫ s

1
n

∑
k≥1

D−S(t, σ)hkG̃(σ)hk dσ.

Observe that by Lemma 6.22 and (H3c),∫ 1
n

0

∑
k≥1

D−S(t, σ)hkG̃(σ)hk dσ → 0,

in Lp(Ω,X).
We divide the interval (0, s+ 1

n ) from the integral in (6.5.5) into three parts:
(0, 1

n ), (
1
n , s) and (s, s+ 1

n ). We will show that∫ s

1
n

n

∫ σ

σ− 1
n

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ −
∫ s

1
n

∑
k≥1

D−S(t, σ)hkG̃(σ)hk dσ

(6.5.6)
converges to 0 in Lp(Ω;X). By the triangle inequality, we estimate



6.5 The random evolution system 147

E
∥∥∥∫ s

1
n

n

∫ σ

σ− 1
n

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ

−
∫ s

1
n

∑
k≥1

D−S(t, σ)hkG̃(σ)hk dσ
∥∥∥p

≤ E
∥∥∥ ∫ s

1
n

n

∫ σ

σ− 1
n

[ n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk

−
n∑

k=1

D−S(t, σ)hkG̃(σ)hk

]
dr dσ

∥∥∥p
+ E

∥∥∥ ∫ s

1
n

∞∑
k=n+1

D−S(t, σ)hkG̃(σ)hk dσ
∥∥∥p =: a1 + a2.

Note that a2 → 0, by the dominated convergence theorem, using (H3c), and by
Lemma 6.22. Moreover, by the triangle inequality and (6.5.2),

a1 ≤ E
∥∥∥∫ s

1
n

n

∫ σ

σ− 1
n

n∑
k=1

(
D−S(t, σ)[S(σ, r)− I]G(r)hk

)
(hk) dr dσ

∥∥∥p
+ E

∥∥∥∫ s

1
n

n

∫ σ

σ− 1
n

n∑
k=1

D−S(t, σ)hk(G̃(r)− G̃(σ))(hk) dr dσ
∥∥∥p

=: b1 + b2.

The first term, b1, can be estimated by Lemma 6.22 and (H3c). Indeed, we obtain

b1 ≤MpE
(∫ s

0

(t− r)−αn

∫ σ

σ− 1
n

∥(S(σ, r)− I)G(r)∥γ(H,X) dσ dr → 0,

by the dominated convergence theorem, where we use strong continuity of the
evolution system. Likewise, we estimate b2:

b2 ≤MpE
(∫ s

0

n

∫ σ

σ− 1
n

∥G̃(r)− G̃(σ)∥ dr dσ
)p

.

Again using the dominated convergence theorem, we have

lim
n→∞

E
(∫ s

0

n

∫ σ

σ− 1
n

∥G̃(r)− G̃(σ)∥ dr dσ
)p

= E
(∫ s

0

lim
n→∞

n

∫ σ

σ− 1
n

∥G̃(r)− G̃(σ)∥ dr dσ
)p

.

However, for fixed σ ∈ (0, s) such that σ ̸= ti for some i = 1, . . . , N , there exist
an Ñ and an m such that for all n > Ñ , (σ − 1

n , σ) ⊂ (tm, tm+1]. Hence for n
large enough, one has for all r ∈ (σ − 1

n , σ),
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G̃(r)− G̃(σ) = ((t− r)−α − (t− σ)−α)G(σ).

By continuity of r 7→ (t− r)−α, it follows that b2 → 0 as n→ ∞.
Having showed (6.5.6), the proof is finished once we show the following∫ 1

n

0

n

∫ s∧σ

0

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ → 0,

∫ s+ 1
n

s

n

∫ s

0∨(σ− 1
n )

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ → 0,

(6.5.7)

both in Lp(Ω,X). We will show the first convergence. The proof of the second
is similar.

Observe that (H2c) cannot be used directly: The parameter t may be so
small, that t < 1

n and thus σ > t. In such case, (H2c) does not hold. For fixed
t, one can always take n large enough, such that 1

n < t. In that situation, one
can simply use Hölders inequality to prove (6.5.7). However, this cannot be used
when integrating over t, which is done in (2). Therefore, we will prove (6.5.7)
separately, in the case t < 1

n . We only prove the first convergence. The second is
done similarly.

First, note that∫ 1
n

t

n

∫ s∧σ

0

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ

= n

n∑
k=1

∫ s

0

∫ 1
n

t

(DS(t, r)(σ)hk)G̃(r)hk dσ dr = 0,

since S(t, r) is Ft-measurable. Here, we have used that DS(t, s)x ∈ γ(0, T ;H,X).
Second, note that using (H2c) and Lemma 6.22 we obtain

E
∥∥∥ ∫ t

0

n

∫ s∧σ

0

n∑
k=1

(DS(t, r)(σ)hk)G̃(r)hk dr dσ
∥∥∥p

≤ CMp

∫ t

0

n

∫ s∧σ

0

(t− r)−α dr dσ → 0

as n→ ∞.
The proof of (2) follows from the above computations. �

Corollary 6.25. Let S(t, s) be a random evolution system satisfying (H) and
G ∈ Sa(γ(H , X)), let p > 2 and α ∈ [0, 12 ). Let Y be as in (6.5.3). For all t,
the process s 7→ Y (t, s) belongs to Dom(δp) and for all s ≥ t,∫ s

0

Y (t, r) dW−(r) =

∫ s

0

Y (t, r) dW (r)+

∫ s

0

∑
k≥1

(t−r)−αD−S(t, r)hkG(r)hk dr.

Proof. This follows directly from (6.5.4) and (6.3.7). �
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6.6 A maximal inequality for the forward integral

In this section we will assume that the Banach space X is a umd space with type
2, and X satisfies the following geometric property concerning differentiability
of the norm. For p ∈ [2,∞), let np : X → R be defined by np(x) = ∥x∥p.

(D) For some q ∈ [2,∞), the function nq : X → R is twice continuously differ-
entiable, and there is a C > 0 such that for all x, y, z ∈ X,

|⟨y, n′
q(x)⟩X,X∗ | ≤ C∥x∥q−1∥y∥,

|⟨z, n′′q (x)y⟩X,X∗ | ≤ C∥x∥q−2∥y∥∥z∥.

With property (D), one can approximate the np : X → R by a sequence of
bounded C2-functions Fkm, given by

Fkm(x) :=
(
∥x∥q + 1

k

)p/q

ψm(∥x∥q), (6.6.1)

where ψm : R → [0, 1] is a smooth function such that

ψm(x) =

{
1, if |x| ≤ m;
0, if |x| ≥ m+ 1.

Moreover, Fkm satisfies the same bounds as nq, uniformly in k,m:

|⟨y, F ′
km(x)⟩X,X∗ | ≤ C∥x∥q−1∥y∥,

|⟨z, F ′′
km(x)y⟩X,X∗ | ≤ C∥x∥q−2∥y∥∥z∥.

(6.6.2)

Also, if u ∈ Lp(Ω;X) then by the dominated convergence theorem, EFkm(u) →
E∥u∥p.

The following lemma is a version of the lemma proved in [143].

Lemma 6.26. Let ϕ : [0, T ] → R be continuous and non-negative, ψ : [0, T ] →
R be Lebesgue measurable and non-negative such that

∫ T

0
ψ(s) ds < ∞. Let

α ∈ (0, 1). If

ϕ(t) ≤
∫ t

0

(ϕ(s))1−αψ(s) ds, t ∈ [0, T ],

then

ϕ(t) ≤
(
α

∫ t

0

ψ(s) ds
) 1

α

, t ∈ [0, T ].

Proof. The function

Fn : θ 7→
(∫ θ

0

(ϕ(s))1−αψ(s) ds+
1

n

)α

is absolutely continuous for every n ≥ 1. hence it is differentiable almost every-
where, and its derivative satisfies
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F ′
n(θ) = α

(∫ θ

0

(ϕ(s))1−αψ(s) ds+
1

n

)α−1

ϕ(θ)1−αψθ

≤ αϕ(θ)α−1ϕ(θ)1−αψθ = αψ(θ).

If we now integrate both left and right hand side from 0 to t, we get

Fn(t) ≤
∫ t

0

αψ(θ) dθ.

Now let n→ ∞ to obtain the result:∫ t

0

(ϕ(s))1−αψ(s) ds ≤
(∫ t

0

αψ(θ) dθ
) 1

α

.

�

Theorem 6.27. Let S(t, s) be a random evolution system satisfying (H), G ∈
Sa(γ(H , X)), p > 2 and α ∈ [0, 12 ). For all t ∈ [0, T ] we have

E
∥∥∥∫ t

0

(t− s)−αS(t, s)G(s) dW−(s)
∥∥∥p
X

≤ C

∫ t

0

(t− s)−2αE∥G(s)∥pγ(H,X) ds.

(6.6.3)

Proof. Consider the function Fkm from (6.6.1). Let (s, t) ∈ [0, T ]2 and set

B(t, s) :=

∫ s

0

Y (t, r) dW−(r), (6.6.4)

where Y (t, r) := (t − r)−αS(t, r)G(r)1[0,t](r) as in (6.5.3). By Remark 6.24,
r 7→ Y (t, r) satisfies the conditions of Theorem 6.18 for any s ∈ [0, t], and for all
τ > 0 we obtain

n

∫ s

0

⟨Pτ (B(t, r + 1/n)−B(t, r)), F ′
km(PτB(t, r))⟩ dr → Fkm(PτB(t, s))

− Fkm(0)− e−2τ

∫ s

0

⟨PτY (t, s), (F ′′
km(PτB(t, s)))(PτY (t, s))⟩ dr.

(6.6.5)

By Remark 6.20, the left hand side of (6.6.5) equals

n

∫ s

0

⟨Pτ (B(t, r + 1/n)−B(t, r)), F ′
km(PτB(t, r))⟩ dr

= e−τn

∫ s

0

δ⟨1[r,r+1/n]PτY (t, ·), F ′
km(PτB(t, r))⟩ dr

+ e−τn

∫ s

0

⟨1[r,r+1/n]PτY (t, ·), D(F ′
km(PτB(t, r)))⟩Tr dr

+ n

∫ s

0

⟨∫ r+1/n

r

Pτ (D
−Y (t, ·))(σ) dσ, F ′

km(PτB(t, r))
⟩
dr.



6.6 A maximal inequality for the forward integral 151

As the expectation of the Skorohod integral is always zero, it follows directly
that

Ee−τn

∫ s

0

δ⟨1[r,r+1/n]PτY (t, ·), F ′
km(PτB(t, r))⟩ dr = 0.

This combined with the lemmas and proven in the appendix, Lemma 6.43,
Lemma 6.44, we can find a sequence (τi)

∞
i=1 such that τi ↓ 0 as i → ∞, and

such that for all i,

En
∫ s

0

⟨Pτi(B(t, r + 1/n)−B(t, r)), F ′
km(PτiB(t, r))⟩ dr

≤ CE
∫ s

0

(
∥B(t, r)∥p−2

X ∥Y (t, r)∥γ(H,X)

∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X

+ (t− r)−α∥G(r)∥γ(H,X)∥B(t, r)∥p−1
X

)
dr

Next, we estimate the expectation of the last part of (6.6.5): observe that

Ee−2τ

∫ s

0

⟨PτY (t, r), F ′′
km(PτB(t, r))(PτY (t, r))⟩ dr

≤ C

∫ s

0

E∥PτY (t, r)∥2γ(H,X)∥PτB(t, r)∥p−2
X dr

≤ C

∫ s

0

(E∥Y (t, r)∥pγ(H,X))
2
p (E∥B(t, r)∥pX)

p−2
p dr

Finally, E(Fmk(0) = (1/k)p/q. Therefore, combining all of the above compu-
tations, we conclude that for every s ∈ [0, t] and all i ≥ 1,

E(FmkP (τi)B(t, s)) ≤ (1/k)p/q

+ CE
∫ s

0

(
∥B(t, r)∥p−2

X ∥Y (t, r)∥γ(H,X)

∥∥∥∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X

+ (t− r)−α∥G(r)∥γ(H,X)∥B(t, r)∥p−1
X

)
dr

+ C

∫ s

0

(E∥Y (t, r)∥pγ(H,X))
2
p (E∥B(t, r)∥pX)

p−2
p dr

(6.6.6)

Next, note that almost surely,

∥B(t, r)∥ ≤M
∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X
;

∥Y (t, r)∥γ(H,X) ≤M(t− r)−α∥G(r)∥γ(H,X).

Hence we can rewrite estimation (6.6.6) into
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E(FmkPτiB(t, s)) ≤ (1/k)p/q

+ CE
∫ s

0

(t− r)−α∥G(r)∥γ(H,X)

∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥p−1

X
dr

+ C

∫ s

0

(t− r)−2α(E∥G(r)∥pγ(H,X))
2
p

×
(
E
∥∥∥∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥p
X

) p−2
p

dr

(6.6.7)

Set Φ(t, s) :=
∫ s

0
(t− r)−αS(s, r)G(r) dW−(r). Then B(t, s) = S(t, s)Φ(t, s) and

in particular B(t, t) = Φ(t, t). Letting s = t in (6.6.7), we obtain

E(FmkPτiΦ(t, t)) ≤ (1/k)p/q + CE
∫ t

0

(t− r)−α∥G(r)∥γ(H,X)∥Φ(t, r)∥p−1
X dr

+ C

∫ t

0

(t− r)−2α(E∥G(r)∥pγ(H,X))
2
p

(
E∥Φ(t, r)∥pX

) p−2
p

dr

By continuity of Fmk, it follows that

E(FmkPτiΦ(t, t)) → E(FmkΦ(t, t)), i→ ∞.

Recall that
E(FmkΦ(t, t)) → E∥Φ(t, t)∥pX , m, k → ∞.

We conclude

E∥Φ(t, t)∥pX ≤ CE
∫ t

0

(t− r)−α∥G(r)∥γ(H,X)∥Φ(t, r)∥p−1
X dr

+ C

∫ t

0

(t− r)−2α(E∥G(r)∥pγ(H,X))
2
p

(
E∥Φ(t, r)∥pX

) p−2
p

dr

With Hölder’s inequality and notation ∥ · ∥p := ∥ · ∥Lp(Ω;X) and ∥ · ∥p,γ :=
∥ · ∥Lp(Ω;γ(H,X)), we can write

E∥Φ(t, t)∥pX

≤ C

∫ t

0

(t− r)−α∥G(r)∥p,γ∥Φ(t, r)∥p−1
p + (t− r)−2α∥G(r)∥2p,γ∥Φ(t, r)∥p−2

p dr

= C

∫ t

0

(E∥Φ(t, r)∥pX)1−2/p

×
[
(t− r)−α∥G(r)∥p,γ∥Φ(t, r)∥p + (t− r)−2α∥G(r)∥2p,γ

]
dr.

Now use Lemma 6.26 to obtain
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E∥Φ(t, t)∥pX ≤ C
(∫ t

0

(t− r)−α∥G(r)∥p,γ∥Φ(t, r)∥p + (t− r)−2α∥G(r)∥2p,γ dr
)p/2

≤ C
[( ∫ t

0

(t− r)−α∥G(r)∥p,γ∥Φ(t, r)∥p dr
)p/2

+
(∫ t

0

(t− r)−2α∥G(r)∥2p,γ dr
)p/2]

Use inequality ab ≤ 1
2 (a

2 + b2) to obtain

E∥Φ(t, t)∥pX ≤ C
[( ∫ t

0

∥Φ(t, r)∥2p dr
)p/2

+ 2
(∫ t

0

(t− r)−2α∥G(r)∥2p,γ dr
)p/2]

≤ C
(∫ t

0

E∥Φ(t, r)∥pX dr +

∫ t

0

(t− r)−2αE∥G(r)∥pγ(H,X) dr
)
,

where in the last line we have used Hölder’s inequality with respect to the mea-
sure dµ = (t− r)−2α dr. Now use Gronwall’s inequality to obtain

E∥Φ(t, t)∥pX ≤ C

∫ t

0

(t− r)−2αE∥G(r)∥pγ(H,X) dr

Finally, note that t ∈ [0, T ] was chosen arbitrarily, and note that by construction
of Φ we have proved (6.6.3). �

For the maximal inequality in Theorem 6.29 we need the following lemma.

Lemma 6.28. Let S(t, s) be a random evolution system satisfying (H), G ∈
Sa(γ(H , X)), p > 2 and α ∈ [0, 12 ). For every t ∈ [0, T ] and r < t, we have

s 7→ (r − s)−αS(t, s)G(s)1[0,r](s) ∈ Dom(δ2),

and ∫ t

0

∫ r

0

(t− r)α−1(r − s)−αS(t, s)G(s) dW (s) dr

=

∫ t

0

∫ t

s

(t− r)α−1(r − s)−αS(t, s)G(s) dr dW (s).

Proof. The first claim is immediate by hypothesis (H1). By Lemma 6.2, it suffices
to show that

E
∫ t

0

∥∥∥∫ r

0

(t− r)α−1(r − s)−αS(t, s)G(s) dW (s)
∥∥∥2
X
dr <∞. (6.6.8)

By continuity of δ : D1,p(γ(H , X)) → Lp(Ω;X), and using that X has type 2,
we obtain
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E
∫ t

0

∥∥∥∫ r

0

(t− r)α−1(r − s)−αS(t, s)G(s) dW (s)
∥∥∥2
X
dr

≤ C

∫ t

0

(t− r)2(α−1)E
∫ r

0

∥S(t, s)(r − s)−αG(s)∥2D1,p(γ(H,X)) ds dr.

We will now show that there exists a constant C > 0 such that for all r ∈ [0, t),∫ r

0
∥S(t, s)(r − s)−αG(s)∥2D1,p(γ(H,X)) ds ≤ C. First note that

E
∫ r

0

∥S(t, s)(r − s)−αG(s)∥2γ(H,X) ds ≤ CpMpE
∫ r

0

(r − s)−2α ds ≤ C.

Let q > 1 be so small, that 2αq < 1. Let q′ be its Hölder conjugate. Then

E
∫ r

0

∫ T

0

∥DσS(t, s)(r − s)−αG(s)∥2γ(H,γ(H,X)) dσ ds

≤ C
(∫ r

0

(r − s)−2αq ds
)1/q(∫ r

0

(
E
∫ T

0

∥DS(t, s)∥2γ(H,L (X)) dσ
)q′

ds
) 1

q′

≤ C
(∫ r

0

∥S(t, s)∥q
′

D1,q′ (L (X))

) 1
q′ ≤ C

(∫ t

0

∥S(t, s)∥q
′

D1,q′ (L (X))

) 1
q′
<∞.

Finally,

E
∫ r

0

∫ T

0

∥S(t, s)(r − s)−2αDσG(s)∥2γ(H,γ(H,X)) dσ ds ≤ C

by hypothesis (H3a) and the fact that G is bounded. Hence, as we wanted to
show,

E
∫ r

0

∥S(t, s)(r − s)−αG(s)∥2D1,p(γ(H,X)) ds ≤ C,

where we have used the product rule, Lemma 6.6. Now (6.6.8) follows. �

Theorem 6.29. Let S(t, s) be a random evolution system satisfying (H), and
let G ∈ Sa(γ(H , X)). For all p ∈ (2,∞), we have the estimate

E
(

sup
t∈[0,T ]

∥∥∥ ∫ t

0

S(t, s)G(s) dW−(s)
∥∥∥p
X

)
≤ CE

∫ T

0

∥G(s)∥pγ(H,X) ds. (6.6.9)

In particular, the operator J : Sa → Lp(Ω;C([0, T ];X)) defined by

J(G)(t) =

∫ t

0

S(t, s)G(s) dW−(s) (6.6.10)

extends uniquely to a linear bounded operator J : Lp
a(Ω × [0, T ]; γ(H,X)) →

Lp(Ω;C([0, T ];X)) for which (6.6.9) holds.
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Proof. Fix α ∈ (1/p, 1/2). Apply Theorem 6.27 to obtain that the process
s 7→ S(t, s)G(s)(r − s)−α1[0,r](s) belongs to the domain of δ−p . Applying the
factorization method, we have

S(t, s)G(s) = Cα

∫ t

s

S(t, s)G(s)(t− r)α−1(r − s)−α dr,

with Cα = sinπα
π . By Corollary 6.25 and Lemma 6.28, it follows that almost

surely∫ t

0

S(t, s)G(s) dW−(s) = Cα

∫ t

0

∫ t

s

S(t, s)G(s)(t− r)α−1(r − s)−α dr dW−(s)

= Cα

∫ t

0

∫ r

0

S(t, s)G(s)(t− r)α−1(r − s)−α dW−(s) dr

= Cα

∫ t

0

S(t, r)(t− r)α−1

∫ r

0

S(r, s)G(s)(r − s)−α dW−(s) dr.

By choice of α, we have (α − 1) p
p−1 > −1. Therefore, with Hölder’s inequality,

almost surely

sup
t∈[0,T ]

∥∥∥ ∫ t

0

S(t, s)G(s) dW−(s)
∥∥∥
X

≤ M

π
sup

t∈[0,T ]

∫ t

0

(t− r)α−1
∥∥∥ ∫ r

0

S(r, s)G(s)(r − s)−α dW−(s)
∥∥∥
X
dr

≤ M

π
sup

t∈[0,T ]

(∫ t

0

(t− r)(α−1) p
p−1 dr

) p−1
p

×
(∫ T

0

∥∥∥ ∫ r

0

S(r, s)G(s)(r − s)−α dW−(s)
∥∥∥p
X
dr
)1/p

≤ C
(∫ T

0

∥∥∥∫ r

0

S(r, s)G(s)(r − s)−α dW−(s)
∥∥∥p
X
dr
)1/p

.

By Theorem 6.27, we obtain

E
(

sup
t∈[0,T ]

∥∥∥∫ t

0

S(t, s)G(s) dW−(s)
∥∥∥p
X

)
≤ CE

∫ T

0

∥∥∥∫ r

0

S(r, s)G(s)(r − s)−α dW−(s)
∥∥∥p
X
dr

≤ C

∫ T

0

∫ r

0

(r − s)−2αE∥G(s)∥pγ(H,X) ds dr

≤ C

∫ T

0

∫ T

s

(r − s)−2α drE∥G(s)∥pγ(H,X) ds

≤ CE
∫ T

0

∥G(s)∥pγ(H,X) ds.
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This proves estimate (6.6.9). Note that by Theorem 6.18, t 7→ S(t, s)G(s) dW−(s)
has continuous paths. Hence the operator J , given by (6.6.10), maps into
Lp(Ω;C([0, T ];X)). Since Sa(γ(H , X)) is dense in Lp

a(Ω × [0, T ]; γ(H,X)), it
follows that there exists a unique extension to J , also denoted by J , which maps
Lp
a(Ω × [0, T ]; γ(H,X)) into Lp(Ω;C([0, T ];X)), such that (6.6.9) holds. �

6.7 Stochastic evolution equations

Let E0 be a umd Banach space with type 2 that satisfies property (D). Let us
consider the following stochastic evolution equation:{

dU(t) = (A(t)U(t) + F (t, U(t))) dt+B(t, U(t)) dW (t)
U(0) = u0.

(6.7.1)

We assume that u0 is an E0-valued F0-measurable random variable, and impose
the following conditions on A, F and B:

(A.1) For each t ∈ [0, T ] and ω ∈ Ω, we have

A(t, ω) : E0 ⊃ D(A(t, ω)) → E0,

and there exists a Banach space E∗
1 ⊂ E∗

0 which is dense in E∗
0 , such that

E∗
1 ⊂ D(A(t, ω)∗) ⊂ E∗

0 . We assume that for all x∗ ∈ E∗
1 , A

∗(·)x∗ ∈ L2(Ω ×
[0, T ];E∗

0 ), and there exists a random evolution system satisfying (H) such
that

S∗(t, s)A∗(t)x∗ =
d

dt
S∗(t, s)x∗, x∗ ∈ E∗

1 .

(A.2) For every x ∈ E0, the map (t, ω) → F (t, ω, x) ∈ E0 is strongly measurable
and adapted. There exists constants CF and LF such that for all t ∈ [0, T ],
ω ∈ Ω and x ∈ E0 one has:

∥F (t, ω, x)− F (t, ω, y)∥E0 ≤ LF ∥x− y∥E0 ,

∥F (t, ω, x)∥E0 ≤ CF (1 + ∥x∥E0),

(A.3) For every x ∈ E0, the map (t, ω) → B(t, ω, x) ∈ γ(H,E0) is strongly mea-
surable and adapted. There exists constants CB and LB such that for all
t ∈ [0, T ], ω ∈ Ω and x ∈ E0, one has

∥B(t, ω, x)− F (t, ω, y)∥γ(H,E0) ≤ LB∥x− y∥E0 ,

∥B(t, ω, x)∥γ(H,E0) ≤ CB(1 + ∥x∥E0),

Observe that the hypothesis on the drift A(t, ω) is different from the hy-
potheses in Chapter 5. The most important difference is that in this situation,
the evolution system needs to be Malliavin differentiable. Also note that assump-
tions (A.2) and (A.3) coincide with assumptions (HF) and (HB), respectively, in
the case a = θB = θF = 0.
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Definition 6.30. A strongly measurable and adapted process u : Ω×[0, T ] → E0

is called a forward mild solution to problem (6.7.1) if it belongs to the space
Lp(Ω;C([0, T ];E0)) for some p > 2, and if for all t ∈ [0, T ],

u(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, u(s)) ds+

∫ t

0

S(t, s)B(s, u(s)) dW−(s).

Already in Chapter 5 the notion of forward mild solution was introduced, see
Theorem 5.22 and the discussion following the theorem. There we have only
considered the case where G is independent of u, but one can always take
G = B(·, u(·)). In the above definition, however, no interpolation spaces are
considered. In general, one cannot compare this forward mild solution with the
pathwise mild solution, as identity (5.4.3) may not be well defined. However,
if A(t, ω) and A∗(t, ω) satisfy the conditions of Chapter 5 ((H1) - (H4), (HF),
(HB)), then a forward mild solution is always a pathwise mild solution.

Definition 6.31. A strongly measurable and adapted process u : Ω×[0, T ] → E0

is called a weak solution to problem (6.7.1) if it belongs to Lp(Ω;C([0, T ];E0))
for some p > 2, and if for all x∗ ∈ E∗

1 , t ∈ [0, T ],

⟨u(t), x∗⟩E0,E∗
0
= ⟨u0, x∗⟩E0,E∗

0
+

∫ t

0

⟨A∗(s)x∗, u(s)⟩E0,E∗
0
ds

+

∫ t

0

⟨F (s, u(s)), x∗⟩E0,E∗
0
ds

+

∫ t

0

⟨B(s, u(s)), x∗⟩E0,E∗
0
dW (s).

Proposition 6.32. Assume hypotheses (A.1) – (A.3). If u is a mild solution,
then it is a weak solution.

Proof. By the assumptions, we have that B(·, u(·)) ∈ Lp
a(Ω × [0, T ]; γ(H,E)).

Consider a sequence (Bn)n≥1 ⊂ Sa such that Bn → B in Lp
a(Ω×[0, T ]; γ(H,E)).

Then, by definition of J given in (6.6.10), we have∫ t

0

S(t, s)B(s, u(s)) dW−(s) = lim
n→∞

∫ t

0

S(t, s)Bn(s) dW
−(s).

Set

un(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, u(s)) ds+

∫ t

0

S(t, s)Bn(s) dW
−(s),

and

un,m(t) = S(t, 0)u0 +

∫ t

0

S(t, s)F (s, u(s)) ds

+m
m∑
i=1

∫ t

0

S(t, s)Bn(s)ui(W (s+ 1/m)−W (s))ui ds.
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A straightforward computation leads to the equality

un,m(t) = S(t, s)un,m(s) +

∫ t

s

S(t, r)F (r, u(r)) dr

+m
m∑
i=1

∫ t

s

S(t, r)Bn(r)ui(W (r + 1/m)−W (r))ui dr.

For x∗ ∈ E∗
1 and x ∈ E0, we have∫ t

σ

⟨x, S∗(r, σ)A∗(r)x∗⟩E0,E∗
0
dr = ⟨x, S∗(t, σ)x∗ − x∗⟩E0,E∗

0
.

Hence for x∗ ∈ E∗
1 we obtain

m
m∑
i=1

∫ t

s

∫ t

σ

⟨Bn(σ)ui(W (σ + 1/n)−W (σ))ui, S
∗(r, σ)A∗(r)x∗⟩E0,E∗

0
dr dσ

= m
m∑
i=1

∫ t

s

⟨Bn(σ)ui(W (σ + 1/n)−W (σ))ui, S
∗(t, σ)x∗ − x∗⟩E0,E∗

0
dσ

= ⟨un,m(t), x∗⟩ − ⟨S(t, s)un,m(s), x∗⟩ −
⟨∫ t

s

S(t, r)F (r, u(r)) dr, x∗
⟩

−m
m∑
i=1

∫ t

s

⟨Bn(r)ui(W (r + 1/n)−W (r))ui, x
∗⟩ dr.

(6.7.2)

On the other hand, using Fubini’s theorem twice, the top term of (6.7.2) equals
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m
m∑
i=1

∫ t

s

∫ t

σ

⟨Bn(σ)ui(W (σ + 1/n)−W (σ))ui, S
∗(r, σ)A∗(r)x∗⟩E0,E∗

0
dr dσ

= m
m∑
i=1

∫ t

s

⟨∫ r

s

S(r, σ)Bn(σ)ui(W (σ + 1/n)−W (σ))ui dσ,A
∗(r)x∗

⟩
E0,E∗

0

dr

=

∫ t

s

⟨
un,m(r)− S(r, s)un,m(s)−

∫ r

s

S(r, σ)F (σ, u(σ)) dσ,A∗(r)x∗
⟩
E0,E∗

0

dr

=

∫ t

s

⟨un,m(r), A∗(r)x∗⟩E0,E∗
0
dr −

∫ t

s

⟨S(r, s)un,m(s), A∗(r)⟩E0,E∗
0
dr

−
∫ t

s

⟨∫ r

s

S(r, σ)F (σ, u(σ)) dσ,A∗(r)x∗
⟩
E0,E∗

0

dr

=

∫ t

s

⟨un,m(r), A∗(r)x∗⟩E0,E∗
0
dr − ⟨S(t, s)un,m(s), x∗⟩E0,E∗

0

+ ⟨un,m(s), x∗⟩E0,E∗
0
−
∫ t

s

∫ t

σ

⟨S(r, σ)F (σ, u(σ)), A∗(r)x∗⟩E0,E∗
0
dr dσ

=

∫ t

s

⟨un,m(r), A∗(r)x∗⟩E0,E∗
0
dr − ⟨S(t, s)un,m(s), x∗⟩E0,E∗

0

+ ⟨un,m(s), x∗⟩E0,E∗
0
−
∫ t

s

⟨S(t, σ)F (σ, u(σ)), x∗⟩E0,E∗
0
dσ

+

∫ t

s

⟨F (σ, u(σ)), x∗⟩E0,E∗
0
dσ.

(6.7.3)

If we compare the last term of (6.7.2) with the last term of (6.7.3), we obtain

⟨un,m(t), x∗⟩ = ⟨un,m(s), x∗⟩+
∫ t

s

⟨un,m(r), A∗(r)x∗⟩E0,E∗
0
dr

+

∫ t

s

⟨F (σ, u(σ)), x∗⟩E0,E∗
0
dσ

+m

m∑
i=1

∫ t

s

⟨Bn(r)ui(W (r + 1/n)−W (r))ui, x
∗⟩ dr

If we write
⟨unt , y⟩ = ⟨unt − un,mt , y⟩+ ⟨un,mt , y⟩,

then we obtain

⟨unt , x∗⟩ − ⟨uns , x∗⟩ −
∫ t

s

⟨A∗(r)x∗, unr ⟩ dr −
∫ t

s

⟨F (r,X(r)), x∗⟩ dr

=
⟨
−

m∑
i=1

∫ t

0

S(t, s)Bn(s)hi(W (s+ 1/m)−W (s))hi ds
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+

∫ t

0

S(t, s)Bn(s) dW
−(s), x∗

⟩
(6.7.4)

−
⟨∫ s

0

S(s, r)Bn(r) dW
−(r)

−
m∑
i=1

∫ s

0

S(s, r)Bn(r)hi(W (r + 1/m)−W (r))hi dr, x
∗
⟩

(6.7.5)

−
∫ t

s

⟨
A∗(r)x∗,

∫ r

0

S(r, σ)Bn(σ) dW
−(σ)

−
m∑
i=1

∫ r

0

S(r, σ)Bn(σ)hi(W (σ + 1/m)−W (σ))hi dσ
⟩
dr (6.7.6)

+m
m∑
i=1

∫ t

s

⟨Bn(r)hi(W (r + 1/m)−W (r))hi, x
∗⟩ dr. (6.7.7)

We will show that the right hand side of the above equation converges asm→ ∞
to

⟨ ∫ t

s
Bn(r) dW (r), x∗

⟩
. Note that the stochastic integral is an Itô integral.

By Corollary 6.25 with α = 0, we obtain readily that (6.7.4) and (6.7.5)
converge to zero almost surely, as m → ∞. Moreover, (6.7.7) converges to⟨ ∫ t

s
Bn(r) dW (r), x∗

⟩
as m→ ∞. With Hölder’s inequality and the hypotheses

on A∗, we can estimate the L1-norm of (6.7.6),

E
∣∣∣ ∫ t

s

⟨
A∗(r)x∗,

∫ r

0

S(r, σ)Bn(σ) dW
−(σ)

−
m∑
i=1

∫ r

0

S(r, σ)Bn(σ)hi(W (σ + 1
m )−W (σ))hi dσ

⟩
dr
∣∣∣

≤ CE
∫ t

s

∥∥∥ ∫ r

0

S(r, σ)Bn(σ) dW
−(σ)

−
m∑
i=1

∫ r

0

S(r, σ)Bn(σ)hi(W (σ + 1
m )−W (σ))hi dσ

∥∥∥2 dr.
The right hand side converges to zero, by Theorem 6.23 (2) and Remark 6.12.
We obtain

⟨unt , x∗⟩ = ⟨uns , x∗⟩+
∫ t

s

⟨A∗(r)x∗, unr ⟩ dr +
∫ t

s

⟨F (r,X(r)), x∗⟩ dr

+
⟨∫ t

s

Bn(r) dW (r), x∗
⟩
.

Again, writing
⟨ut, x∗⟩ = ⟨ut − unt , x

∗⟩+ ⟨unt , x∗⟩,

we have
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⟨ut, x∗⟩ − ⟨us, x∗⟩ −
∫ t

s

⟨ur, A∗(r)x∗⟩ dr −
∫ t

s

⟨F (r, u(r)), x∗⟩ dr

=
⟨∫ t

0

S(t, s)(B(s, u(s))−Bn(s, u(s))) dW
−(s), x∗

⟩
(6.7.8)

−
⟨∫ s

0

S(s, r)(B(r, u(r))−Bn(r, u(r))) dW
−(r), x∗

⟩
(6.7.9)

−
∫ t

s

⟨∫ r

0

S(r, σ)(B(σ, u(σ))−Bn(σ, u(σ))) dW
−(σ), (6.7.10)

A∗(r)x∗
⟩
dr

+
⟨∫ t

s

Bn(r, u(r)) dW (r), x∗
⟩
.

By Corollary 6.25, it follows that (6.7.8) and (6.7.9) both converge to zero, almost
surely. By the hypotheses on A∗, Hölder’s inequality and Theorem 6.29, it follows
that (6.7.10) converges to zero in L1(Ω). Finally, we also have⟨∫ t

s

Bn(r, u(r)) dW (r), x∗
⟩
→

∫ t

0

⟨B(s, u(s)), x∗⟩E0,E∗
0
dW (s),

as n→ ∞. This proves the result. �

The following theorem states existence and uniqueness of mild solutions. Its
proof is similar to [68, Theorem 5.4] and is therefore omitted.

Theorem 6.33. Assume hypotheses (A.1) – (A.3). Then problem (6.7.1) has a
unique a forward mild solution.

6.8 Examples

6.8.1 Example 1

Let S be either Rn or a bounded domain in Rn with smooth boundary. Consider
the second order stochastic partial differential operator

A(t, s, ω) =
n∑

i,j=1

aij(t, s, ω)∂i∂j +
n∑

i=1

bi(t, s, ω)∂i + c(t, s, ω),

where the coefficients aij , bi and c are all measurable from S × [0, T ] × Ω → R.
Assume that for each s ∈ S, aij(s), bi(s) and c(s) are adapted random variables.
Assume that (aij) is symmetric and that there exists a κ > 0 such that

κ−1|ξ|2 ≤ aij(t, s, ω)ξiξj ≤ κ|ξ|2, s ∈ Rn, t ∈ [0, T ], ξ ∈ Rn.



162 Chapter 6. Forward mild solutions

Also assume that the coefficients are continuous and uniformly bounded in S ×
[0, T ], and they verify the following Hölder condition: there exists a K > 0 and
an α > 0 such that for all s, s′ ∈ S, t, t′ ∈ [0, T ],

|aij(t, s)− aij(t
′, s′)| ≤ K(|s′ − s|α + |t′ − t|α/2),

|bi(t, s)− bi(t, s
′)| ≤ K(|s′ − s|α),

|c(t, s)− c(t, s′)| ≤ K(|s′ − s|)α.

We assume that aij(t, ·) is continuously differentiable with uniformly bounded
partial derivatives. Regarding Malliavin differentiability, we assume that for each
(t, s), aij(t, s), ∂iaij(t, s), bi(t, s) and c(t, s) are all in D1,p, p > 2. Moreover, the
norm of the derivatives

∥Daij(t, s)∥H , ∥D(∂iaij(t, s))∥H , ∥Dbi(t, s)∥H , ∥Dc(t, s)∥H ,

regarded as elements in Lp(Ω;L2(0, T )), are bounded by a nonnegative process
Φ ∈ Lp(Ω;L2(0, T )). Finally, we assume that there exists a C > 0 such that for
all ω ∈ Ω, r ∈ [0, T ],

∞∑
k=1

sup
t,s

(
|Dhk

r aij(t, s)|2+|Dek
r (∂iaij(t, s))|2+|Dek

r bi(t, s)|2+|Dek
r c(t, s)|2

)
≤ C.

Consider the stochastic partial differential equation

du(t, s) =
(
A(t, s, ω)u(t, s) + f(t, s, u(t, s))

)
dt

+ g(t, s, u(t, s)) dW (t, s), t ∈ (0, T ], s ∈ S,

u(0, s) = u0(s), s ∈ S.

Here, f, g andW satisfy the same hypotheses as in Example 5.30. As in Example
5.30, the stochastic partial differential equation can be rewritten to a stochastic
evolution equation, where A(t, ω) is a closed linear operator on Lp(S), p ≥ 2.
By [68, Proposition 6.7], there exists a random evolution system S(t, s) verifying
(H) and such that (A.1) holds. Also in 5.30 it is proved that (A.2) and (A.3)
hold. Hence we obtain the following result.

Theorem 6.34. Let q > 2, p ≥ 2 and u0 : Ω → Lp(S) be F0-measurable. There
exists a unique forward mild solution u ∈ Lq(Ω;C([0, T ];Lp(S))).

6.8.2 Example 2

Let E0, E1 be Banach spaces such that E1 ⊂ E0 is dense. In this example,
we consider problem (6.7.1) where the drift A = A(t, ω) is given by the linear
operator

A(t, ω) =

n∑
j=1

aj(t, ω)Bj ,
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where Bj ∈ L (E1, E0), and aj are L∞(0, T )-valued smooth random variables of
the form

aj =

m∑
k=1

fk(W (hk1), . . . ,W (hkn))⊗ φk

such that fk ∈ C∞
b (Rn) and hji ∈ C([0, T ]) ⊗H) and φi ∈ L∞(0, T ). A special

case is the situation A(t, ω) =
∑n

i,j=1 aij(t, ω)DiDj .
We assume that A : [0, T ] × Ω → L (E1, E0) is uniformly bounded with

bound M , strongly measurable and adapted. Set

A = co{A(t, ω); t ∈ [0, T ], ω ∈ Ω}.

Let θ ∈ (π/2, π) and
Σθ = {λ ∈ C : | arg λ| < θ}.

Let us impose the following assumptions on the drift:

(A1) For all B ∈ A , one has
Σθ ∪ {0} ⊂ ρ(B),

and

∥R(λ,B)∥L (E0) ≤
M

|λ|+ 1
,

(A2) There exists a constant c ≥ 1 such that for all x ∈ E1 and all B1, B2 ∈ A ,

∥B1x∥E0 ≤ c∥B2x∥E0 ,

(A3) There are λ, µ ∈ Σθ ∪ {0} such that for all B1, B2 ∈ A , one has

R(λ,B1)R(µ,B2) = R(µ,B2)R(λ,B1).

The following lemma concerns differentiability of the resolvent.

Lemma 6.35. Let λ ∈ Σθ ∪ {0}. Consider a map B : [0, T ] → L (E1, E0), such
that ∥R(λ,B(t))∥ ≤ M

|λ|+1 for all t ∈ [0, T ]. If B is differentiable in [0, T ], then

R(λ,B) is differentiable in [0, T ], and

d

dt
R(λ,B(t)) = R(λ,B(t))B′(t)R(λ,B(t)).

Proof. First observe that

R(λ,B(t+ h))−R(λ,B(t)) = R(λ,B(t+ h))(B(t+ h)−B(t))R(λ,B(t)).

It follows that R(λ,B(t+ h)) → R(λ,B(t)) as h→ 0. Consequently,

lim
h→0

R(λ,B(t+ h))
B(t+ h)−B(t)

h
R(λ,B(t)) = R(λ,B(t))B′(t)R(λ,B(t)).

�
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For B ∈ A and t > 0, the operator etB : E0 → E0 is defined by

etB :=
1

2πi

∫
γr,η

etλR(λ,B) dλ,

where γr,η, r > 0 and η ∈ (π/2, θ), is the counter-clockwise oriented curve given
by

γr,η := {λ ∈ C : | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : |λ| = r, −η ≤ arg λ ≤ η}.

For t = 0 we set etB = I on E0.
The operator etB satisfies the fundamental properties of the exponential func-

tion: it is well-known that one has d
dte

tB = BetB (see [73, Proposition 2.1.1]).
Moreover, given s, t ∈ R+, one can apply this to the function f : [0, 1] → L (E0)
given by

f(r) = er(tB1+sB2)e(1−r)tB1e(1−r)sB2 ,

and obtain d
drf(r) = 0. Here, we have used (A3). It follows that f is constant,

and in particular f(0) = f(1). The last observation implies etB1+sB2 = etB1esB2 .
By Cauchy’s differentiation formula, i.e.,

f (n)(a) =
n!

2πi

∫
γr,η

f(λ)

(λ− a)n+1
dλ,

applied to the function f(x) = ex and with x = tB, one obtains

etB = f (n)(tB) =
n!

2πi

∫
γr,η

eλR(λ, tB)n+1 dλ, n ∈ N.

Next, we define Ast :=
1

t−s

∫ t

s
A(r) dr for 0 ≤ s < t ≤ T . Note that Ast ∈ A .

Set
S(t, s) := e(t−s)Ast ,

with S(t, t) = I. Recall that ∆ := {(s, t) ∈ [0, T ]2; s ≤ t.}.

Lemma 6.36. The operator S : ∆ × Ω → L (E0) is uniformly bounded: there
exists an M̃ > 0 such that for all s ≤ t and ω ∈ Ω, ∥S(t, s)∥ ≤ M̃.

Proof. Consider the counterclockwise oriented curve γ′r,η in C, where γ′r,η =
γ′1 ∪ γ′2 ∪ γ′3 and

γ′1 := {ρe−iη, −∞ ≤ ρ ≤ r},
γ′2 := {reiα, −η ≤ α ≤ η},
γ′3 := {ρeiη, r ≤ ρ ≤ ∞}.

By Cauchy’s theorem, it follows that

1

2πi

∫
γr,η

e(t−s)λR(λ,Ast) dλ =
1

2πi

∫
γ′
r,η

e(t−s)λR(λ,Ast) dλ.
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The integral is independent of r > 0. Set r = 1
t−s and substitute x = λ(t− s) to

obtain

S(t, s) =
1

2πi

∫
γ′
r,η

e(t−s)λR(λ,Ast) dλ =
1

2πi

∫
γ′
1,η

exR( x
t−s , Ast)

1

t− s
dx.

(6.8.1)
A straightforward calculation leads to the estimate

∥S(t, s)∥ ≤ 1

π

(∫ ∞

1

e−cρ M

ρ+ (t− s)
dρ+

1

2

∫ η

η

ecosα
M

1 + (t− s)
dα

)
=: M̃

�
Proposition 6.37. The map S : ∆×Ω → L (E0), is a random evolution system
as in Definition 6.21. Moreover, A(t) is its generator. In fact, we have

1. d
dtS(t, s) = A(t)S(t, s), t > s, on E0

2. d
dsS(t, s) = −S(t, s)A(s), t > s, on E1

3. A(t)S(t, s) = S(t, s)A(t) and A(s)S(t, s) = S(t, s)A(s), on E1.

Proof. The facts that S(x) : ∆ × Ω → E is measurable, and that S(t, s) is
strongly Ft-measurable, follow from the assumption that A is strongly measur-
able and adapted.
Note that for r ≤ s ≤ t we have (t− s)Ast + (s− r)Ars = (t− r)Ars. Hence by
the properties of the exponential, S(t, s)S(s, r) = S(t, r).
Before we prove strong continuity of S(t, s), we first prove the above three prop-
erties. For this, note that the map f : (s, t) 7→ (t − s)Ast is differentiable a.e.
for t > s, in both variables, and d

dtf(s, t) = A(t), d
dsf(s, t) = −A(s). Again from

the properties of the exponential function, it follows that S(t, s) is differentiable
a.e., in both parameters. In particular, d

dtS(t, s) = A(t)S(t, s) and d
dsS(t, s) =

−S(t, s)A(s). Moreover, by assumption (A3) we obtain A(t)S(t, s) = S(t, s)A(t)
and A(s)S(t, s) = S(t, s)A(s).

For the strong continuity, let x ∈ E1. Fix s ∈ [0, T ] and suppose tn ↓ t. Then,
by Lemma 6.36,

∥S(tn, s)x− S(t, s)x∥ =
∥∥∥ ∫ tn

t

A(r)S(r, t)x dr
∥∥∥ =

∥∥∥ ∫ tn

t

S(r, t)A(r)x dr
∥∥∥

≤ M̃

∫ tn

t

∥A(r)x∥ dr → 0,

as n → ∞. Similarly, as tn ↑ t, we obtain S(tn, s)x → S(t, s)x, in E0. A similar
computation shows that if t is fixed and sn → s, then S(t, sn)x → S(t, s)x as
n → ∞. Combining both results, we can use the triangle inequality to obtain
∥S(tn, sn)x − S(t, s)x∥ → 0, whenever (tn, sn) → (t, s) ∈ ∆ for all x ∈ E1. By
density, the same result holds for general x ∈ E0. �
Remark 6.38. By [56, Theorem 6.22], we can conclude that the adjoint A∗(t, ω)
satisfies (A1) - (A3), but with A ∗ instead of A . Following the proof of Propo-
sition 6.37 therefore leads to the conclusion that d

dtS(t, s)
∗ = S(t, s)∗A(t)∗.
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Now let us prove the following results on Malliavin differentiability of the
resolvent. We start with the bounded case, Lemma (6.39), from which the un-
bounded case, Theorem 6.40, will follow.

Lemma 6.39. Suppose B : Ω → L (E0) is a uniformly bounded random vari-
able. Moreover, assume that Σθ ∪{0} ⊂ ρ(B) and assume there exists an M > 0
such that for all λ ∈ Σθ ∪ {0} and ω ∈ Ω, ∥R(λ,B)∥ ≤M . If B ∈ D1,p

s (L (E0))
such that DB ∈ Lp(Ω; γ(H ,L (E0))), then R(λ,B) ∈ D1,p

s (L (E0)) for each
λ ∈ Σθ ∪ {0} and in that case we have

DR(λ,B) = R(λ,B)(DB)R(λ,B). (6.8.2)

Proof. Let λ ∈ Σθ ∪ {0} be so big, that maxω ∥B(ω)∥ < |λ|. Then we have

R(λ,B) =
1

λ

∞∑
n=0

Bn

λn
.

Define Rk(λ,B) := 1
λ

∑k
n=0

Bn

λn . By a Banach valued extension of [68, Lemma
2.5] it follows that Rk(λ,B) ∈ D1,p

s (L (E0)). In particular, we have

D(Bn) =

n−1∑
i=0

Bi(DB)Bn−1−i.

Fix x ∈ E0. Note that Rk(λ,B)x→ R(λ,B)x in Lp(Ω;E0), as k → ∞. Moreover,
observe that pointwise in ω,

∥D(Bnx)∥E0 ≤ n∥B∥n−1
L (E0)

∥DB∥γ(H ,L (E0))∥x∥E0 .

It follows that for k ≥ m,

∥D(Rkx)−D(Rmx)∥ ≤ ∥x∥E0

∥DB∥γ(H ,L (E0))

|λ|2
k∑

n=m

n
(∥B∥L (E0)

|λ|

)n−1

,

which converges to 0 as k,m → ∞. Hence, by closedness of D, it follows
that R(λ,B)x ∈ D1,p(E0). A similar computation shows that DR(λ,B) ∈
Lp
s(Ω;L (E0, γ(H , E0))). Hence R(λ,B) ∈ D1,p

s (L (E0)).
Next, by assumption we have 1

∥R(µ,B)∥ >
1
M for all µ ∈ Σθ ∪ {0}. Therefore,

given |λ| ∈ Σθ ∪ {0} such that maxω ∥B(ω)∥ < |λ|, for any µ ∈ C that is within
a ball of radius 1

M around λ, one can write

R(µ,B) =

∞∑
n=0

(λ− µ)nR(λ,B)n+1.

By closedness, one concludes that R(µ,B) ∈ D1,p
s (L (E0) for such µ. One can

repeat the above strategy to obtain R(µ,B) ∈ D1,p
s (L (E0)) for all µ ∈ Σθ ∪{0}.

Finally, identity (6.8.2) follows from the product rule

0 = D(R(λ,B)(λ−B)) = (DR(λ,B))(λ−B) +R(λ,B)(D(λ−B)),

by applying R(λ,B) on the right side in the above equation. �
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Theorem 6.40. Assume (A1) - (A3), and suppose B : Ω → L (E1, E0) is
such that B ∈ A almost surely. If B ∈ D1,p

s (L (E1, E0)) such that DB ∈
Lp(Ω; γ(H ,L (E1, E0))), then R(λ,B) ∈ D1,p

s (L (E0)) for each λ ∈ Σθ ∪ {0}.
Moreover, (6.8.2) holds.

Proof. Consider the Yosida approximation Bn(ω) := nB(ω)R(n,B(ω)), where
ω ∈ Ω is kept fixed. We will show that Bn satisfies all properties from Lemma
6.39. First of all, note that Bn : Ω → L (E0) is uniformly bounded: indeed, we
have

∥Bn(ω)∥ = ∥nB(ω)R(n,B(ω))∥ ≤ C∥nB(ω)R(n,B(ω))∥

= C∥n2R(n,B(ω))− nI∥ ≤ C
( n2M
n+ 1

+ n
)
.

Second of all, we have Bn ∈ D1,p
s (L (E0)). Indeed, for any x ∈ E0 we have

R(n,B(ω))x =: y ∈ E1, and hence Bnx = nBy belongs to D1,p(E0). Also, DBn ∈
Lp
s(Ω;L (E0, γ(H , E0))). Moreover, from DB ∈ Lp(Ω; γ(H ,L (E1, E0))) it fol-

lows readily that DBn ∈ Lp(Ω; γ(H ,L (E0))).
Next, we will show that Σθ ∪ {0} ⊂ ρ(Bn). For that, observe that

λ−Bn = (λn− nB − λB(ω))R(n,B(ω)). (6.8.3)

Hence λ ∈ ρ(Bn) if and only if λ ∈ ρ(B+ λ
nB(ω)). Fix λ ∈ Σθ∪{0}. The operator

B̃ := λ
nB(ω) is B − bounded, i.e.,

∥B̃x∥ ≤ c |λ|n ∥Bx∥, x ∈ E1

where c is the constant from (A2). By [41, Lemma III.2.6], for n large enough,
Σθ ∪ {0} ⊂ ρ(B + λ

nB(ω)), and the estimate

∥R(µ,B + λ
nB(ω))∥L (E0) ≤

1

1− c′ |λ|n
∥R(µ,B)∥L (E0), µ ∈ Σθ ∪ {0},

holds. In particular, Σθ ∪ {0} ⊂ ρ(Bn).
Since the domain of B + λ

nB(ω) equals E1, we have

∥x∥E1 ≤ C(∥x∥E0 + ∥(B + λ
nB(ω))x∥E0).

It follows that for µ ∈ Σθ ∪ {0},

∥R(µ,B + λ
nB(ω))∥L (E0,E1) ≤ C(∥R(µ,B + λ

nB(ω))∥L (E0) + C̃) ≤ C ′, (6.8.4)

where C̃, C ′ are constants depending on M . Put µ = λ ∈ Σθ ∪ {0} and use
identity (6.8.3) and inequality (6.8.4) to obtain

∥R(λ,Bn)∥L (E0) =
1

n
∥(n−B(ω))R(λ,B + λ,n

B (ω))∥L (E0)

≤ C ′

n
∥n−B∥L (E1,E0) ≤ C,
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with C ′ independent of n. Consequently, we can apply Lemma 6.39 to Bn. We
conclude that for every λ ∈ ρ(B), there exists an N ∈ N, such that for all n > N ,
λ ∈ ρ(Bn) and ∥R(λ,Bn)∥ ≤ C.

We will show that R(λ,Bn) → R(λ,B) for all λ ∈ ρ(B). Choose λ ∈ ρ(B),
N ∈ N such that ∥R(λ,Bn)∥ ≤ C for all n ≥ N , and choose x ∈ E1 arbitrarily.
For n ≥ N , set yn := (λ − Bn)x and y := (λ − B)x. Then by the triangle
inequality,

∥R(λ,Bn)y −R(λ,B)y∥ ≤ ∥R(λ,Bn)(y − yn)∥
Observe that ∥y − yn∥E0 = ∥Bx − Bnx∥E0 → 0, and hence ∥R(λ,Bn)y −
R(λ,B)y∥ → 0, as n→ ∞. Also, {(λ−B)x; x ∈ E1} is dense in E0, since λ−B is
surjective. By an approximation argument, it follows that R(λ,Bn) → R(λ,B).

Finally, it follows that for every x ∈ E0, R(λ,B)x ∈ D1,p(E0). Indeed,
R(λ,Bn)x → R(λ,B)x in E0, where R(λ,Bn)x ∈ D1,p(E0) by Lemma 6.39.
Moreover, by (6.8.2), one obtains D(R(λ,Bn)x) → R(λ,B)(DB)R(λ,B)x. The
result now follows from the closedness of the operator D. �
Theorem 6.41. The evolution system S(t, s) satisfies hypothesis (H1) - (H3).

Proof. Observe that A(t) ∈ D1,p
s (L (E1, E0)). Also under the assumptions

one can apply Hille’s theorem to obtain Ast ∈ D1,p
s (L (E1, E0)). Moreover,

DAst ∈ Lp(Ω; γ(H ,L (E1, E0))). Hence Theorem 6.40 yields DR(λ,Ast) =
D(Ast)R(λ,Ast)

2. A computation similar to (6.8.1), (6.8.1), proves that λ →
e(t−s)λDR(λ,Ast) is Bochner integrable on γr,n. Therefore, another application
of Hille’s theorem yields S(t, s) is Malliavin differentiable, in the strong sense,
with

DS(t, s) =
1

2πi

∫
γr,n

e(t−s)λDR(λ,Ast) dλ

=
1

2πi

∫
γr,η

e(t−s)λR(λ,Ast)(DAst)R(λ,Ast)dλ

(6.8.5)

By construction of A(r), we have D(A(r)) and consequently DS(t, s) belong to
Lp(Ω;L2(0, T ; γ(H,L (E0)))).

Finally, we prove (6.5.1). By Lemma 6.36, it suffices to show

sup
t∈[0,T ]

E
∫ t

0

∥DS(t, s)∥pγ(H ,L (E0))
<∞.

This can be done by estimating the integral in (6.8.5) with straightforward com-
plex integration techniques.

Finally, by construction of A(t), we see that DS(t, s)(s) is well-defined for
all s ∈ [0, t], and (H2) readily follows. Also (H3) follows by the assumptions on
A(t). �
Theorem 6.42. If F and B satisfy (A.2) and (A.3), respectively, then problem
6.7.1 admits a unique weak solution.

Proof. By Remark 6.38 and the assumptions on A, (A.1) is satisfied. The result
then follows from Proposition 6.32 and 6.33. �
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6.9 Appendix: Two technical lemmas

Here, we prove two technical results that are needed in Theorem 6.27. Recall
that (P (t))t≥0 is the Ornstein-Uhlenbeck semigroup on Lp(Ω;X).

Lemma 6.43. Let S(t, s) be a random evolution system satisfying (H), and let
G ∈ Sa. Let p > 2 and α ∈ ( 1p ,

1
2 ). Consider Y , B and Fkm as in (6.5.3), (6.6.4)

and (6.6.1), respectively. There exists a sequence (τi)i≥1 with τi ↓ 0 as i → ∞,
such that for all s ≤ t and all i,

Ee−τin

∫ s

0

⟨1[r,r+1/n]PτiY (t, ·), D(F ′
km(PτiB(r, t)))⟩Tr dr

≤ CE
∫ s

0

∥B(r, t)∥p−2
X ∥Y (t, r)∥γ(H,X)

∥∥∥ ∫ s

0

(t− r)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X
dr.

(6.9.1)

Proof. First note that for any r ∈ [0, s], we can apply the chain rule [112, Propo-
sition 3.8] to rewrite

n⟨1[r,r+1/n]PτY (t, ·), D(F ′
km(PτB(r, t)))⟩Tr

= ⟨
√
n1[r,r+1/n]PτY (t, ·),

√
nF ′′

km(PτB(r, t))(1[r,r+1/n]D(PτB(r, t)))⟩Tr.

By (6.3.1), we can write B(s, t) = S(t, s)
∫ s

0
(t − σ)−αS(s, σ)G(σ) dW−(σ). It

follows that for any h ∈ H, using Lemma 6.7,

(
√
n1[r,r+1/n]D(PτB(r, t)))h

= D
(
PτS(t, r)

(∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
))

(
√
n1[r,r+1/n]h)

= e−τPτD
√
n1[r,r+1/n]hS(t, r)

(∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
)
.

From (H1) we have that
√
n1[s,s+1/n]D(P (τ)B(s)) belongs to γ(0, T ;H,X), and

we may write

(
√
n1[r,r+1/n]D(PτB(r, t)))h

=

∫ T

0

√
n1[r,r+1/n](ρ)e

−τPτDρS(t, r)

×
(∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
)
h(ρ) dρ.

Therefore, with the properties of Fkm, (6.6.2), we estimate
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e−τEn
∫ s

0

⟨1[r,r+1/n]PτY (t, ·), D(F ′
km(PτB(r, t)))⟩Tr ds

≤ CE
∫ s

0

∥PτB(r, t)∥p−2
X ∥

√
n1[r,r+1/n]PτY (t, ·)∥γ(H ,X)

× ∥
√
n1[r,r+1/n]D(PτB(r, t))∥γ(H ,X)

≤ CE
∫ s

0

∥PτB(r, t)∥p−2
X

(
n

∫ r+1/n

r

∥PτY (t, σ)∥2γ(H,X) dσ
)1/2

×
(
n

∫ r+ 1
n

r

∥∥∥PτDρS(t, r)
(∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
)∥∥∥2

γ
dρ

)1/2

≤ CE
∫ s

0

∥PτB(r, t)∥p−2
X ∥PτY (t, r)∥γ(H,X)∥PτD

−S(t, r)∥γ(H,L (X))

×
∥∥∥∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X
dr

(6.9.2)

Recall that P (τ)ζ → ζ in Lq(Ω;X) for all q ∈ [1,∞) as τ ↓ 0. Therefore, we can
find a sequence (τi)

∞
i=1 with τi ↓ 0 as i→ ∞ such that almost surely,

∥PτiB(r, t)∥p−2
X ∥PτiY (t, r)∥γ(H,X)∥PτiD

−S(t, r)∥γ(H,L (X))

→ ∥B(r, t)∥p−2
X ∥Y (t, r)∥γ(H,X)∥D−S(t, r)∥γ(H,L (X)).

(6.9.3)

Suppose p1, p2, p3, p4 ∈ (1,∞) is such that 1
p1

+ 1
p2

+ 1
p3

+ 1
p4

= 1. Since P (τ) is

a contraction on Lq(Ω;X) for all q ∈ [1,∞), we have by (6.9.2) and hypothesis
(H3),

E
∫ s

0

∥PτB(r, t)∥p−2
X ∥PτY (t, r)∥γ(H,X)∥PτD

−S(t, r)∥γ(H,L (X))

×
∥∥∥∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X
dr

≤ C

∫ s

0

(E∥B(r, t)∥(p−2)p1)
1
p1 (E∥Y (t, r)∥p2)

1
p2

×
(
E
∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥p4

) 1
p4
dr

≤ C

∫ s

0

(E∥B(r, t)∥(p−2)p1)
1
p1

×
(
E
∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥p4

) 1
p4
(t− r)−α dr (6.9.4)

Note that for r ∈ [0, s], by Corollary 6.25 one has
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(
E
∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥p4

) 1
p4

=
(
E
∥∥∥∫ r

0

(t− σ)−αS(r, σ)G(σ) dW (σ)
∥∥∥p4

) 1
p4

+
(
E
∥∥∥ ∫ r

0

(t− σ)−α
∑
k≥1

D−S(r, σ)hkG(σ)hk dσ
∥∥∥p4

) 1
p4

(6.9.5)

If we let q > 1 be so small that 2qα < 1 and let q′ be its Hölder conjugate, then
from Meyer’s inequalities,

E
∥∥∥∫ r

0

(t− σ)−αS(r, σ)G(σ) dW (σ)
∥∥∥p4

≤ E
(∫ r

0

(t− σ)−2α∥S(r, σ)G(σ)∥2γ(H,X) dσ
) p4

2

+ E
(∫ r

0

(t− σ)−2α∥D(S(r, σ)G(σ)∥2γ(H ,γ(H,X)) dσ
) p4

2

≤ C + E
((∫ r

0

(t− σ)−2qα dσ
)1/q(∫ r

0

∥D(S(r, σ)G(r))∥2q
′
dσ

)1/q′) p4
2 ≤ C ′

(6.9.6)

Moreover, from Lemma 6.22 we obtain

E
∥∥∥ ∫ r

0

(t− σ)−α
∑
k≥1

D−S(r, σ)ukG(σ)uk dσ
∥∥∥p4

≤ E
(∫ r

0

(t− σ)−α∥D−S(r, σ)∥γ(H,L (X))∥G(σ)∥γ(H,X) dσ
)p4

≤ C

(6.9.7)

One can obtain a similar estimate for (E∥B(r, t)∥(p−2)p1)
1
p1 , r ∈ [0, s], yielding

boundedness of (6.9.4). Together with observation (6.9.3) we can conclude with
the dominated convergence theorem, that along a sequence (τi)

∞
i=1 with τi ↓ 0 as

i→ ∞ we obtain

lim
i→∞

E
∫ s

0

∥PτiB(r, t)∥p−2
X ∥PτiY (t, r)∥γ(H,X)∥PτiD

−S(t, r)∥γ(H,L (X))

×
∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X
dr

= E
∫ s

0

∥B(r, t)∥p−2
X ∥Y (t, r)∥γ(H,X)∥D−S(t, r)∥γ(H,L (X))

×
∥∥∥ ∫ r

0

(t− σ)−αS(r, σ)G(σ) dW−(σ)
∥∥∥
X
dr

Hence there exists a subsequence which we denote again by (τi)
∞
i=1, such that

for all i ∈ N, (6.9.1) holds. �
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Lemma 6.44. Let S(t, s) be a random evolution system satisfying (H), and let
G ∈ Sa. Let p > 2 and α ∈ ( 1p ,

1
2 ). Consider Y , B and Fkm as in (6.5.3), (6.6.4)

and (6.6.1), respectively. For every sequence (τi)
∞
i=1 such that τi ↓ 0 as i → ∞,

there exists a subsequence, also denoted by (τi)i≥1, such that for all s ≤ t and
all i,

En
∫ s

0

⟨∫ r+1/n

r

Pτ (D
−Y (t, ·))(σ) dσ, F ′

km(PτB(r, t))
⟩
dr

≤ CE
∫ s

0

(t− r)−α∥G(r)∥γ(H,X)∥B(r)∥p−1 dr.

Proof. Observe that, almost surely, we have

n

∫ s

0

⟨∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ, F ′

km(PτB(r, t))
⟩
dr

→
∫ s

0

⟨Pτ (D
−Y (t, r)), F ′

km(PτB(r, t)) dr,

as n→ ∞. Estimations similar to (6.9.5), (6.9.6) and (6.9.7) yield boundedness of
∥B(r, t)∥Lp(Ω) for all r ∈ [0, t]. From (6.6.2) and the fact that Pτ is a contraction
on Lp(Ω;X), we obtain

En
∫ s

0

⟨∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ, F ′

km(PτB(r, t))
⟩
dr

≤
∫ s

0

(
E
∥∥∥ ∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ

∥∥∥p) 1
p (E∥B(r, t)∥p

) 1
p dr

≤ C

∫ s

0

(
E
∥∥∥∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ

∥∥∥p) 1
p

dr.

Furthermore, by hypothesis (H3c), and Minkowski’s inequality,

(
E
∥∥∥ ∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ

∥∥∥p) 1
p ≤ n

∫ r+1/n

r

(
E∥D−Y (t, σ)∥p

) 1
p dσ

≤ Cn

∫ r+1/n

r

(t− σ)−α1[0,t](σ) dσ = C(n1
[− 1

n ,0]
∗ φt)(r),

where φt(σ) = 1[0,t](σ)(t− σ)−α. By Young’s inequality,

C

∫ s

0

(
E
∥∥∥ ∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ

∥∥∥p) 1
p

dr

≤ C∥n1[−1/n,0] ∗ φt∥L1 ≤ C∥φt∥L1 ≤ C ′.

By the dominated convergence theorem, one can conclude that



6.9 Appendix: Two technical lemmas 173

lim
n→∞

En
∫ s

0

⟨∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ, F ′

km(PτB(r, t))
⟩
dr

= E
∫ s

0

⟨Pτ (D
−Y (t, r)), F ′

km(PτB(r, t)) dr,

hence in particular, for n large enough,

En
∫ s

0

⟨∫ r+1/n

r

Pτ (D
−Y (t, σ)) dσ, F ′

km(PτB(r, t))
⟩
dr

≤ CE
∫ s

0

∥Pτ (D
−Y (t, r))∥γ(H,X)∥PτB(r, t)∥p−1

γ(H,X) dr,

(6.9.8)

For every ξ ∈ Lq(Ω;X), q ∈ [1,∞) , we have P (τ)ξ → ξ in Lq(Ω;X) as τ ↓ 0.
Hence, given a sequence (τi)

∞
i=1, with τi ↓ 0 as i→ ∞, we can find a subsequence,

denoted again by (τi)
∞
i=1, such that P (τi)ξ → ξ almost surely. By a similar

dominated convergence argument as above, one can find yet another subsequence
(τi)

∞
i=1 such that for all i,

E
∫ s

0

∥PτD
−Y (t, r)∥γ(H,X)∥PτB(r, t)∥p−1

γ(H,X) ds

≤ CE
∫ t

0

(t− r)−α∥D−S(t, r)∥γ(H,L (X))∥G(r)∥γ(H,X)∥B(r)∥p−1 dr

≤ CE
∫ t

0

(t− r)−α∥G(r)∥γ(H,X)∥B(r)∥p−1 dr.

This estimate combined with (6.9.8) yields the desired result. �





Summary

In this thesis we study stochastic evolution equations in Banach spaces. We re-
strict ourselves to the two following cases. First, we consider equations in which
the drift is a closed linear operator that depends on time and is random. Such
equations occur as mathematical models in for instance mathematical finance
and filtration theory. Second, we restrict ourselves to umd Banach spaces with
type 2. As the theory of Itô stochastic integration is insufficient for studying
equations of this general type, we need to have a proper understanding of sev-
eral extensions to the Itô integral. Two of such extensions that are considered
rigorously in this thesis are the Skorohod integral and the forward integral.

In Chapter 2 we study Malliavin calculus, the theory that is the basis for
Skorohod integration. The main result in this chapter is Itô’s formula for Sko-
rohod integration in Banach spaces. Itô’s formula is one of the most important
results in stochastic integration theory, and it gives in some cases the possibility
to explicitly solve stochastic differential equations.

The Skorohod integral lacks a property that most other integrals, like the
Lebesgue integral and the Itô integral, have. This being the property that pro-
cesses that are integrable on an interval [a, b] are also integrable on any subinter-
val [c, d] ⊂ [a, b]. Fortunately, there exists a large class of processes, namely the
space of Malliavin differentiable processes D1,2(L2(0, T )), for which this prop-
erty does hold. In chapter 3 we construct a stochastic process that is Skorohod
integrable on [0, 1], but which is not Skorohod integrable on [0, 1/2].

In chapter 5 we study stochastic evolution equations of the form{
du(t) = (A(t)u(t) + F (t, u(t))) dt+B(t, u(t)) dW (t), t ∈ [0, T ],
u(0) = u0,

(SEE)

where the drift A(t) is dependent on time and on the probability space, and sat-
isfies the (AT)-conditions by Acquistapace and Terreni. We define a new solution
concept, and show that being a solution is equivalent to being a weak solution,
forward mild solution or variational solution. Under the extra condition that one
of the constants from the (AT)-conditions is uniformly bounded with respect
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to the probability variable (this we call condition (UC)), we prove that there
exists a unique solution to problem (SEE). Furthermore, we prove that if one
of the (AT)-conditions is replaced by a slightly stronger condition, then with a
localization argument it is possible to obtain a unique solution to (SEE) without
condition (UC).

The stochastic integral appearing in the concept of a mild solution is a forward
integral. This integral is defined in Chapter 4. It is a vector-valued extension to
the forward integral defined by Russo and Vallois [118]. We prove that also in
the vector-valued case, the forward integral is an extension to the Itô integral.
Furthermore, we show that the sequence that approximates the forward integral
does not only converge in probability pointwise in [0, T ], but even in probability
in the space Wα,p(0, T ;E), where α ∈ (0, 1/2), p ∈ [2,∞) and where E is a
Banach space. This section can be read independently of the rest of Chapter 5,
and is therefore also interesting for the reader who is interested in the forward
integral and not in problem (SEE).

In Chapter 6 we consider again equations of the form (SEE), but this time
without the (AT)-conditions. Here, we assume that the drift A(t) is the generator
of a random evolution system S(t, s)0≤s≤t≤T that is Malliavin differentiable.
With the help of a relationship between the Skorohod integral and the forward
integral, we prove that for adapted smooth processes Φ : Ω × [0, T ] → γ(U,E),
the process s 7→ S(t, s)Φ(s)1[0,t](s) is forward integrable. Moreover, we deduce
the maximal inequality

E
(

sup
t∈[0,T ]

∥∥∥ ∫ t

0

S(t, s)Φ(s) dW−(s)
∥∥∥p
E

)
≤ CE

∫ T

0

∥Φ(s)∥pγ(U,E) ds, p > 2.

Furthermore, we give the solution concept of a weak solution and prove that
this concept is equivalent to a mild solution. Finally, we prove that there ex-
ists a unique mild solution to problem (SEE). We apply this to the stochastic
partial differential equation from Paragraph 6 in [68] to prove the existence and
uniqueness of a weak solution under less assumptions than done in [68].



Samenvatting

In dit proefschrift bestuderen we stochastische evolutievergelijkingen in Ba-
nachruimten. We specialiseren ons hierbij op twee gebieden. Ten eerste bekijken
we vergelijkingen waarvan de drift-term een gesloten lineaire operator die zowel
afhankelijk is van de tijd als van de kansruimte. Vergelijkingen van deze vorm
komen voor als wiskundige modellen in bijvoorbeeld financiële wiskunde en fil-
tertheorie. Ten tweede beperken we ons tot umd Banachruimten met type 2.
Daar de Itô-theorie in de meeste gevallen tijdens het bestuderen van dit type
vergelijkingen onvoldoende is, is het zaak een goed begrip te hebben van de
verschillende uitbreidingen van de Itô-integraal. Twee uitbreidingen die in dit
proefschrift nauwkeurig worden beschouwd zijn de Skorohod-integraal en de
voorwaartse integraal.

In Hoofdstuk 2 wordt Malliavincalculus bestudeerd; de theorie die de basis
is voor Skorohod-integratie. Het hoofdresultaat in dit Hoofdstuk is Itô’s formule
voor de Skorohod-integraal in umd Banachruimten. Itô’s formule is één van de
belangrijkste formules uit de theorie van stochastische differentiaalvergelijkingen,
en geeft bijvoorbeeld de mogelijkheid stochastische differentiaalvergelijkingen ex-
pliciet op te lossen.

De Skorohod-integraal mist een eigenschap die de meeste andere integralen,
waaronder de Lebesgue-integraal en de Itô-integraal, wel hebben. Deze eigen-
schap zegt dat een proces dat integreerbaar is op een interval [a, b], ook inte-
greerbaar is op een deelinterval [c, d] ⊂ [a, b]. Gelukkig bestaat er een rijke klasse
van processen, de ruimte van Malliavindifferentieerbare processen D1,2(L2(0, T )),
waarop deze eigenschap wel geldt. In Hoofdstuk 3 construeren we een stochastisch
proces dat Skorohod-integreerbaar is op het interval [0, 1] maar niet op het deel-
interval [0, 1/2].

In Hoofdstuk 5 bestuderen we stochastische evolutievergelijkingen van de
vorm{

du(t) = (A(t)u(t) + F (t, u(t))) dt+B(t, u(t)) dW (t), t ∈ [0, T ],
u(0) = u0.

(SEV)
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De niet-autonome drift A(t), die ook afhangt van de kansparameter, voldoet in
dit Hoofdstuk aan de (AT)-condities van Acquistapace en Terreni. We definiëren
een nieuw oplossingsconcept en tonen aan dit concept equivalent is aan andere
concepten, zoals milde oplossing, variationele oplossing en zwakker oplossing. On-
der de extra aanname dat één van de constanten in de (AT)-condities uniform
begrensd is als functie van de kansvariabele (deze noemen we de (UC)-aanname),
bewijzen we dat probleem (SEV) een unieke oplossing heeft. Bovendien tonen
we aan dat indien één van de (AT)-condities wordt vervangen door een ietwat
sterkere conditie, het mogelijk is met een lokalisatie-argument een unieke oploss-
ing van (SEV) te construeren zonder aanname (UC).

De stochastische integraal die opduikt in het milde oplossingsbegrip uit
Hoofdstuk 5 is een voorwaartse integraal. Deze integraal definiëren we in Hoofd-
stuk 4, en is een vectorwaardige uitbreiding op de bestaande definitie. We be-
wijzen daar dat ook in de vectorwaardige context de voorwaartse integraal een
uitbreiding is op de Itô-integraal. Bovendien laten we zien dat de definiërende rij
processen die convergeert naar de voorwaartse integraal niet alleen in kans con-
vergeert voor alle t ∈ [0, T ], maar zelfs in kans in de ruimte Wα,p(0, T ;E), waar
α ∈ (0, 1/2), p ∈ [2,∞) en E een Banachruimte is. Deze sectie is onafhankelijk
van de rest van Hoofdstuk 5, en daarmee ook interessant voor de lezer die wel
gëınteresseerd is in de voorwaartse integraal maar niet in probleem (SEV).

In Hoofdstuk 6 beschouwen we opnieuw vergelijkingen van de vorm (SEV),
maar met andere aannamen dan de (AT)-condities. We nemen hier aan dat de
drift A(t) de generator is van een random evolutiesysteem S(t, s)0≤s≤t≤T , waar-
bij dit evolutiesysteem Malliavin-differentieerbaar is. Met behulp van een relatie
tussen de Skorohod-integraal en de voorwaartse integraal tonen we met Malli-
avincalculus aan, dat voor gladde en aangepaste processen Φ : Ω × [0, T ] →
γ(U,E), het proces s 7→ S(t, s)Φ(s)1[0,t](s) voorwaarts integreerbaar is. Boven-
dien hebben we de volgende maximaalafschatting

E
(

sup
t∈[0,T ]

∥∥∥ ∫ t

0

S(t, s)Φ(s) dW−(s)
∥∥∥p
E

)
≤ CE

∫ T

0

∥Φ(s)∥pγ(U,E) ds, p > 2.

Verder geven we het oplossingsconcept van zwakke oplossing, en tonen aan dat dit
concept equivalent is aan het concept van milde oplossing. Bovendien bewijzen we
dat (SEV) een unieke milde oplossing heeft. We passen dit toe op de stochastische
partiële differentiaalvergelijking uit Paragraaf 6 van [68] om het bestaan van een
unieke zwakke oplossing te bewijzen, onder minder aannamen dan die in [68].
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for an insider in a market driven by Lévy processes. Quant. Finance, 6(1):83–94,
2006.

38. G. Di Nunno, B. Øksendal, and F. Proske. Malliavin calculus for Lévy processes
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Ann. Inst. H. Poincaré Probab. Statist., 39(4):703–742, 2003.

125. R. Schnaubelt. Asymptotic behaviour of parabolic nonautonomous evolution
equations. In Functional analytic methods for evolution equations, volume 1855
of Lecture Notes in Math., pages 401–472. Springer, Berlin, 2004.

126. R. Schnaubelt and M.C. Veraar. Structurally damped plate and wave equations
with random point force in arbitrary space dimensions. Differential Integral Equa-
tions, 23(9-10):957–988, 2010.

127. R. Schnaubelt and M.C. Veraar. Stochastic equations with boundary noise. In
Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl.,
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