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1 Introduction 

In spite of the &ct that ship bydroelastici^ has been mvestigated for many years a consistent 
formulation of restoring stifGaess is still an open question [1]. Basically, Üiere are two ^proaches 
to this problem^ a pure bydromechanical one, and the other extended to the contrü>ution of tbe 
structiire. Within ibs former approach, in the well-known Price and Wu fonnuUuioii, only basic 
hydrostatic pressure is considered [2]. Newman formula represents an extension, giving the 
necessary hydrostatic pressure coefficients [3]. However, neither of those formulations gives the 
conqplete restoring stiffiiess coefficients, not even for the rigid body motiOTis, because the gravity 
part is missing. Riggs overcan^ the above shortcoming by specifying new pressure coefßcients 
and adding the gravity term [4], The next two identical expressions are obtained in dtffâent way, 
i.e. by v^àtionâl principle and vector calculus, Malenica and MoHn [5]. 

2 Huang and Riggs formulation 

A noticeable improvement is dbne by Hiüsng and Riggs [6], offering a combined 
hydroelastic and söTJCtural formulation of restoring stiffiiess, Eq. (1) m Table 1, written in ttie 

i n d ^ notation, where hi is tiie k"* coinpdniräit of the i*^ natiû^l mode, and cr^ is the stress tensor 

due to gravity load, psg , ^nd hydros^tic pressure, pgZ. The cotnplete restoring stiffîess is 

defined as sum of hydrostatic patrt and geonietric stif&ess, = + , whCTe results 

&om tfae eternal l o ^ and fixmi the intemal stresses, is obtained as a change of 

hydittstatic force dite to a small displacement by emplóying consisteiit Imearization via the 

directional derivative, [6]. The geometric stiffiiess riiatrix, ky , is obviously symmetric, while 

symmetiy of hydrostatic matrix, , is proved in [6]. 

The geometric stif&ess matrix, Eq. (le), can be transformed via integration by parts [6]: 

i ^ = i ^ + ^ ; + A f . (4) 

where 

S V T 

At the wetted surface, iS", and within the structure volume, V, the following boimdary and 
equiUbrium conditions have to be satisfied, respectively: 

^A=-PgZn„ ö-43t=/3jg, (6) 

while o-j] J = <7^2.k ~ ^ • Substitiitmg Eqs. (6) inito (5) yields 

i f ^- />«ƒƒZ/^A/,«,d5, i f =-g\\\pMßy- (7) 



Table 1. Actual brmulations of motM restoring stiffiiess* 
-Eq.(n Eq.a) Eq.(3) 

CoDtnbudoii from Notation Huang and Riggs [6] 
Riggs [7] 

. &nianovic et aL [81 
Senjanoviä et al. [9] 

a) Pressure 
Ü 

pgShlh{n^iS (la) 
S 

PgShlh^n^âS (2a) 
S 

pgU[hin^àS (3a) 
S 

b) Normal vector and 
mode 

frgïiâi'^h^jnf^àS (lb) 
S 

pg\\Zh[hjjn^àS (2b) 
S 

pgSZh'^hljn^iS (3b) 
S 

c) Gravis load «ps4*3^dK (2c) 

Boundary stress -pgSzhjhljn^àS (ld) 
S 

-pgjfZh'jhljn^óS (3d) 

e) Geometric stiffiiess f'^ti'LAj^^ f'^ki^LAj'^y f̂ '> 

OStiain of wetted surfiice 
,sz Jo 

g) Body strain 

•K-body volume, S-wetted surface, Z-coordinate of wetted surface from the fiee sifffece, w^-

component of wetted surface normal vector (directed towards tfae body). 

la this way another formulation of the complete resttaing stiffiiess is obtained, Eq. (7) in [7], 
whicfa can be specified for rigid body modes. By introducing the zero strain constraint, 

h^j - ~h,j^ and = 0, Eq. (2) is obtained which, strictiy speaking, is only valid fbr rigid body 

modes [7]. 

3 Senjanovió et al. formulation 

lihe restoring stiffiiess ofthe same form as Eq. (2) is derived in [8] by variational principle, 
strictly fqiiowing tiie definition of stiffiiess as the relation between force and displacement After 
estiination, the energy of mvolved forces is varied per displacemoit and mode aiiq)litude. Both 
rigid bo<fy and elastic modes are equally yalitated and, as a r^ult, the consistent formulation of 
restoring stiffiiess is obtained. 

In structural analysis of marine structures conventional stiffoess, I^, is tfae basic stiffiiess, 
while tiie application of K° and C dep^ds on the analysis concerned, as well as on ^e type of 
the stnicture. If botfa and C are used, then their unicm has to be determined since they have 
some termsof equivalent sense as a result of the same extemal load. Hence, one can write [9]: 

k^ = uC„=k^+qj- k^ n C , . (8) 

The torms kf and . Eq. (7), dq)end on pressure, pgZ, and gravity load, gps, as CJ ,"*and 

, Eqs. (2b) and (2c), and therefore the former haye to be excluded from ^e geometric 

stiffiness, , Eq. (Ic). By tising the expanded foim for one can write: 

=q+c; +*ƒ +(-*f )+(c; - i f ) . (9) 
In the above formula, term ky^, Eq. (Id), is added and subtracted in cader to achieve constitution 

of -k^ +kfj^ similar to tiiat of -k^, Eqs. (3f) and (3g), respectively. It is interesting to 



point out that these two terms depend on the linear strain, (Ä^^ + \ j fc) /2, while geometric 

stiffiiess is function ofthe non-linear strain, Ä„ 

4 Illustrative example 

By comp^ing Eqs. (1) and (3), it is obvipus that, due to deformation of the struchü«, Ae 
latter has two more temis than the förmig. For evaluation of their contribiition, let us consider 
vertical vibrations of fi^e pontoon with shear influence on bending included. Fig. 1. The basic 
formulae read: 

GA^ dx' 
-EI 

d;c2 

dw 

dr 

N.L. 

V 0 
fi ff 

1 1 

L 

(10) 

(11) 

Figure 1. Pontoon particulars 
By substituting (11) into (3f), and by using (10) for , the bottom surfece integral, where k = 3 
and Z = -r,reads 

- i f + i f = -pgBT{T^z,)I,. I„ = \ ^ ^ à x . (12) 

Surfece integral for the pontoon heads, where k = 1 and n^=±l for the afl and front, 

respectively, is 2ÖO due to boundffly conditions M = 0 and ß = 0,Eqs. (10). 

Furthermore, by substituting (11) into (3g), for the voliime int^ral, where 
- 7 ' : S Z ^ / f - r , ( m e f m d s 

C;-k^^-p,gBH y - r - z ^ 
H 

(13) 

Based on the equiUbrium of weight and buoyancy for the homogenous pcmtoon p^ = pT/H, so 
that the hy dros te contribution, Eq. (12), is cancelled with one part of Ifae gravity contribution, 
Eq. (13). The integral , Eq. (12), can be transformed iiito the recognizable symmetric form by 

employing (10) for w,, integration by parts and apply mg tfae boimdary condition M = 0 

_ EI M 
(14) 



Since depends on tiie shear deflection, , Eq. (12), which is quite small for the first few 

natural rnodes usually employed in hydroelastic Miîtiysis, the stiffiiess contribution Eqs. (12) and 
(13) cm be neglected. The other temw of the uiiified restoring stiffiiess, Eq. (3), depend on tiie 
total deflection w and rotation of cross-section dw^/dx, and therefore are dominant. 

5 Discussion and conclusion 

Three actual formulations of modal restoring stiffiiess for an elastic body are briefly 
described and compared. The first, so called corapleie formulation one, Eq. (1), is related to 
g e n ^ marme structores. By employing the rigid body relations, Eq. (1) is reduced to Eq. (2) 
valid for rigid body modes only. On the other side, Eq. (2) is derived directly witiiout a i ^ 
resttiction for elastic modes, so it csia be applied for hydroelastic analysis of £^p structures, 
where the contribution of global geometric stifBness is qiiite small. 

The third formulation, Eq. (3), is based on thé union of &e restoring stiffiiess, Eq. (2), and 
geometric stiffiiess. Conq>ared to Eq. (1), it has two moré taras related to the strain pf body and 
wett«l surfece. Illustrative example of vertical pontoon vibrations shows that contribution of 
these two terms to global restoring stiffiiess is quite^nall for the first few natural modes. 

The finlfaer investigation should be focusei on the influence of the additional tenns, Eqs. 
(3f) and (3g), on tiie restoring stiffiiess of 3D F E M models, where substructure vibrations play an 
irnportant role. 
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