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1 Introduction
In spite of the fact that ship hydroelasticity has been investigated for many years a consistent

to this problem, a pure hydromechanical one, and the other extended to the contribution of the
structure, Within the former approach, in the well-known Price and Wu formulation, only basic
hydrostatic pressure is considered [2]. Newman formula represents an extension, giving the
necessary hydrostatic pressure coefficients [3]. However, neither of those formulations gives the
complete restoring stiffness coefficients, not even for the rigid body motions, because the gravity
part is missing. Riggs overcame the above shortcoming by specifying new pressure coefficients
and.adding the gravity term [4]. The niext two identical expressions are obtained in différent way,
i.e, by Variational principle and vector calculus, Malenica and Molin [5].

2 Huang and Riggs formulation

A noticeable improvement is done by Huang and Riggs [6], offering a combined
hydroelastic and structural formulation of restoring stiffness, Eq. (1) in Table 1, written in the
index notation, Where A, is the k™ composient of the i® natiiral mode, and o, is the stress tensor
due to gravity load, pg, and hydrostatic pressure, pgZ . The comiplete restoring stiffiiess is
defiried as sum of Hydrostatic part and geometric stiffess, k;™" =&, +k, , where k] results
from the external load and k, from the internal stresses. k/ is obtained as a change of
hydrostatic force due to a small displacement by employing consistent linearization via the
directional derivative, [6]. The geométric stiffness matrix, kf , is obviously symmetric, while
symmetry of hydrostatic matrix, k! , is proved in [6].

The georetric stiffness matrix, Eq. (1e), can be transformed via integration by parts [6]:

ky =kj+ky +k°, “@
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At the wetted surface, S, and within the structure volume, ¥, the following boundary and
equilibrium conditions have to be satisfied, respectively:

o, =—pgIn, G, = Pk, 6)
while Cip =0ps = 0. Substituting Eqs. (6) into (5) yields

k7 =—pg || ZoH! neS , k7 =—g|[f pskinl av. Q
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Table 1. Actual formulations of modal restoring stiffness*
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*F-body volume, S-wetted surface, Z-coordinate of wetted surface from the free surface, #, -
component of wetted surface normal vector (directed towards the body).

In this way another formmulation of the complete restoring stiffness is obtained, Eq. (7) i [7],
which can be specified for rigid body modes. By introducing the zero strain comstraint;

b, =-h, and h, , =0, Eq. (2) is obtained which, strictly speaking, is only valid for rigid body
modes [7].

3 Senjanovi¢ et.al. formulation

The restoring stiffness of the same form as Eq. (2) is.derived in [8] by variational principle,
strictly followmg the deﬁmtwn of stiffnéss as the relation between force and displacement. After
estimation, the energy of involved forces is varied per displacement and mode amplitude. Both
rigid body and elastic modes are equally valuated and, as a result, the consistent formulation of
restoring stiffaess is obtained..

In structural analysis of marine structures conventional stiffness, K°, is the basic stiffness,
while the application of K° and C depends on the analysis concerned, as well s on the type of

the structure. If both K° and C are used, then their union has to be determined since they have
some terms of equivalent sense as 2 result of the:same external load. Hence, one can write [9]:

kK =kf UG, =k +C;—kj NC,. (®)
The terms & and k,” , Eq. (7), depend on pressure, pgZ , and gravity load, gp,as C;" and
C”' Eqgs. (2b) and (2c), and therefore the former have to be excluded from the geometric
stiffness, & , Eq. (1¢). By using the expanded form for C;, one:can write:

K =CP+C 5 + kS +{~kZ +k° )+(Cp - K7 ®)
In the above formula, term k;'°, Eq. (1d), is added and subtracted in order to achieve constitition
of —k;7 +k,° similar to that of C; —k;”, Eqgs. (30) and (3g), respectively. It is interesting to




point out that these two terms depend on the linear strain, (h,, s+h, ) /2, while geometric
stiffness is function of the non-linear strain, &, A, , /2.

4 [llustrative example
By comparing Egs. (1) and (3), it is obvious that, due to deformation of the structure, the

vertical vibrations of free p_ontoon wltﬁ'-éﬁear influence on bendmg mcluded, Fig. 1. The basic
formulae read:
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Figure 1. Pontoon particulars
By substitutinig (11) into (3f), and by using (10) for w,, the bottom surface integral, where k=3
and Z =-T", reads

—k + k" =—pgBT (T +z,)1,, 1, I dw‘ dw’

(12)
Surface integral for the pontoon heads, where k=1 and n, =1 for the aft and front,
respectively, is zero due to boundary conditions M =0 and Q =0, Egs. (10).

Furthermore, by substituting (11) ito (3g), for the volume integral, where
-TSZ<H-T,one finds

Cy-k7 =-—p,gBH(§—T—zNJI”. (13)

Based on the equilibrium of weight and buoyancy for the homogenous pontoon p, = pT/H , so
that the hydrostatic contribution, Eq. (12), is cancelled with one part of the gravity contribution,
Eq. (13). The integral I, , Eq. (12), can be transformed into the recognizable symmetric form by
employing (10) for w, , integration by parts:and applying the boundary condition M =0

I td*w) d*w/

E
I =— dx.
[ GA_,:[ de dxl (14)




Since I, depends on the shear deflection, w,, Eq. (12), which is quite small for the first few

natural modes ustally employed in hydroeiastlc analysis, the stiffness contribution Egs. (12) and
(13) can be neglected. The other terms of the unified restoring stiffness, Eq. (3), depend on the

total deflection w and rotation of ¢ross-section dw, /dx , and therefore are dominant.

5 Discussion and conchision

Three actual formulations of modal restoring stiffness for an elastic body are briefly
described and compared. The first, so called complete formulation one, Eq. (1), is related to
general marine stractures. By employing the rigid body relations, Eq. (1) is reduced to Eq. (2)
valid for rigid body modes only. On the other side, Eq. (2) is derived directly without any
restriction for elastic modes, so it can be applied for hydroelastic analysis of ship structures,
where the contribution of global geometric stiffness is quite small.

The third formulation, Eq. (3), is based on th¢ anion of the restoring stiffness, Eq. (2), and
geometric stiffoess. Compared to Eq. (1), it has two more terms related to the strain of body and
wetted surface. Illustrative example of vertical pontoon vibrations shows that contribution of
these two terms to global restoring stiffness is quite small for the first few natural modes.

The further investigation should be focused on the influence of the additional terms, Eqgs.
(3f) and (3g), on the restoring stiffness of 3D FEM models, where substructure vibrations play an
important role.
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