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Prompt, Seed, Generate: Seeding For
Test Case Generator with LLMs

Abstract

Unit test case generation aims to help software developers test programmes. The
evolutionary algorithm is one of the successful approaches for unit test case genera-
tion that evolves problem solutions over time. Previous research on seeding, the use
of previously available information to improve search performance, showed positive
improvements in unit test case generation. However, this approach cannot be used in
the absence of previously available information, such as existing unit test cases.

The recent increased availability of Large Language Models (LLMs), which were
trained on various corpora of previously available data, provides an opportunity to ad-
dress the seed absence problem. We devised an approach involving TestSpark and Evo-
Suite to see the impact of LLM-based seeding on unit test case generation. TestSpark,
an IntelliJ plugin, uses ChatGPT-4o to generate test cases which we later supply as
a seed for EvoSuite’s seeding strategies such as cloning and carving. We evaluated
our approach on a set of 136 Java 11 projects from the GitBug-Java dataset w.r.t. line
coverage, branch coverage, mutation score, and area under the curve.

Our results show that LLM-based seeding has the potential to improve EvoSuite’s
unit test case generation if it manages to extract information from the seed. Our ap-
proach experiences significant struggles to supply LLM-generated tests from which
information can be extracted. We lost 63% of the benchmark classes because LLM
did not generate functional tests for all experiment iterations. Meanwhile, another
24% of the benchmarks are excluded because EvoSuite seeding does not extract any
information from them.
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Chapter 1

Introduction

Software testing is an important part of the software development cycle, as it helps to
discover bugs and possible problems arising due to accidental or intended events. It is
a process through which we can gain more confidence that the developed software will
perform as intended and will not be compromised in various scenarios. However, high-
quality testing can be a time- and resource-intensive process, as it requires the tester to
correctly arrange the testing environment, execute the code under test in that specific en-
vironment, and assert its results. To reduce the burden placed on testers, researchers have
created and improved many automated testing tools [2, 8, 12, 19, 31, 35, 38, 48] over the
decades [6]. Those tools were able to achieve notable results in the area of code coverage
in competitions [17, 22, 24, 25, 35, 43], and some studies even show their ability to find
real-world faults [5, 23]. The search-based approach to software testing is one of the most
well-established and effective approaches [17, 24, 25, 35, 43]. However, it also has its
limitations and areas of improvement, such as the creation of more complex objects and the
improvement of assertions [50]. The emergence of Large Language Models (LLMs) and
their quick adaptation in the area of software development has sparked large interest in the
possibility of using LLMs to improve previously known approaches, test case generation is
no exception.

For decades, the most prevalent approaches in the test case generation community were
random search techniques, search-based (SBST) techniques, and symbolic execution-based
techniques [6]. Each approach has its own advantages and disadvantages, which have been
studied over time. The evolutionary algorithm (EA) belonging to the evolutionary compu-
tation (EC) community is an often used base for building search-based algorithms for unit
test case generation. EA consists of four stages: initialization of a population that represents
solutions to the problem, creation of offsprings through random variation, fitness evaluation
of the solutions, and selection of solutions for the next iteration. The main idea behind EA
is to improve the fitness of the population through different iterations of the search with the
help of a specific fitness function which guides the population to a certain goal over time.
Both communities, EC and SBST, have explored various ways to improve the performance
of their algorithms in finding suitable solutions. One of such research areas was seeding, a
technique that focuses on using previously available knowledge, such as existing solutions,
to benefit the ongoing search process. Seeding techniques were implemented in SBST ap-
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1. INTRODUCTION

proaches and studied. For example, Fraser and Arcuri and Rojas et al. implemented seeding
strategies within EvoSuite [19], a unit test case generation tool for Java-based projects.
Their studies [21, 46] showed that seeding can make a significant difference in the per-
formance of a test case generation tool and explored different seeding strategies, such as
cloning and carving. The main idea behind cloning and caving seeding strategy is to extract
information from already existing tests and, at times, insert them into the EA’s search pro-
cess in hopes of helping it. However, in the absence of previous information, these seeding
techniques are of no use [50].

With the recent increase in availability of LLMs, which were trained on various cor-
pora of previously available data, an interesting question arises; “in the absence of prior
knowledge, can LLMs be used to provide the missing seed information and thus improve
the performance of the test generation algorithm?”

This is the research question which we try to address in this thesis. That is, “What
is the impact of ChatGPT-4o generated tests when supplied as a seed for EvoSuite’s
carving and cloning strategies on test case generation?”

Answering this research question should provide insight into how LLMs can be intro-
duced in existing EA-based unit test case generation tools such as EvoSuite and what kind
of impact LLM-based seed could have on unit test case generation.

Our hypothesis is that the search can reuse the information contained in the seed without
having to discover this information by itself. By reusing the existing information, the search
is able to dedicate more iterations to working on the yet-to-be-uncovered set of objectives.
This should translate into better line coverage and branch coverage, or in the case of con-
vergence to the same coverage, there should be a faster convergence to the final number,
which can be measured through the area under the curve. Additionally, existing test cases
might have better inputs for catching bugs, which would be reflected in the mutation score.

The exact contributions of the thesis are in the research carried out to answer the re-
search question, the modifications to the EvoSuite & TGA-Pipeline1, and a replication
package available on Zenodo with the following doi 10.5281/zenodo.15698634.

TGA-Pipeline is a pipeline produced for paper [3] by Abdullin et al. that simplifies the
process of evaluating tools such as EvoSuite. In our research, we use this pipeline to carry
out our evaluation and make the appropriate changes2 to make this happen, e.g. include the
ability to supply existing test cases and fix several Windows platform-specific bugs.

The remaining parts of the thesis are split into seven chapters. Chapter 2 will inform
you about the background information required to understand the thesis. It will be followed
by a Chapter 3 where we overview the related literature. Next, in Chapter 4 we explain our
proposed idea for LLM-based seeding in the EvoSuite tool. In Chapter 5, having previously
explained our idea and its implementation, we move onto the empirical evaluation. Chap-
ter 6 presents the results and follows with a discussion of them. Lastly, the thesis ends with
Chapter 7 stating the conclusion and suggesting future work.

1Link to the original repo: https://github.com/plan-research/tga-pipeline
2Link to our fork of the pipeline. https://github.com/SergeyDatskiv/tga-

pipeline/tree/SergeyDatskiv/development
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Chapter 2

Background

2.1 Software Testing Metrics

Software testing is an important aspect of software development because it helps us iden-
tify the presence of problems in the program under test [7]. However, as the complexity,
functionality, and size of the program under test expands, so does the difficulty associated
with testing that particular program and knowing if it is tested well [7]. A good test suite
should be able to cover many, if not all, parts of a program and indicate when something
is wrong. To help determine the quality of a test suite, researchers and developers turn to
various metrics which act as proxies to measure the effectiveness of test suites [60]. For
example, a metric that is often used to inform us how much of a program was covered by
execution of a test suite is code coverage [60]. However, code coverage does not inform
testers if the test can reveal faults in the program. To evaluate the quality of a test suite
to reveal faults, we need a metric that attempts to measure whether the assertions of a test
case can detect faults [44]. One of the most commonly used metrics for this is the mutation
score. However, we should remember that testing cannot prove the correctness, as Edsger
W. Dijkstra said it, “Program testing can be used to show the presence of bugs, but never to
show their absence!”

2.1.1 Structured Code Coverage

Structured code coverage metrics indicate the amount of code executed by a given test or
set of tests. This indication can be given on different levels of granularity, from statement
to path coverage. The lowest level is the coverage of statements / lines, where we simply
report the number of statements / lines executed compared to the total number of state-
ments/lines [34]. Then there is branch coverage, which counts the number of executed
branch paths compared to the total possible branches [60]. Branch coverage also subsumes
line/statement coverage, meaning that if we have 100% branch coverage, then we also have
100% statement/line coverage [1]. Regardless of the chosen code coverage metric, its result
split the program into two parts, covered and not covered, thereby informing the testers of
places where the bugs might still be hiding because those parts of code were never reached
during current test execution.
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2. BACKGROUND

1 public static int addition(int x, int y)
2 {
3 return x * y;
4 }

Figure 2.1: Example of an incorrect addition
function. Highlighted is the statement cov-
ered by the test in Figure 2.2.

1 @Test
2 public void TestAddTwoAndTwo()
3 {
4 int x, y = 2;
5 Calculator.addition(x, y);
6 }

Figure 2.2: Example of a test achiev-
ing full statement coverage. Covered
statements are highlighted in Figure
2.1.

Figure 2.3: Example of an incorrect addition function in Java (Figure 2.1) and a test achiev-
ing full statement coverage (Figure 2.2). Green highlighting shows the function’s statement
coverage achieved with the given test.

Unfortunately for testers, having high code coverage, i.e. reaching all parts of the pro-
gram does not give any guarantees that there are no bugs. This is because some bugs might
require specific conditions for them to occur and become visible. For example, consider a
function from Figure 2.1 that adds two numbers together. The function has a typo where a
multiplication is used instead of an addition leading to a correct result in some cases such as
2+2 = 4 since 2∗2 = 4, but not in others. A single test, such as the one in Figure 2.2, will
be enough to achieve full coverage of the statements for this function; however, depending
on the test, it might not reveal the problem. Furthermore, as you might have noticed from
the example in Figure 2.3, the code coverage metric does not account for the presence or
absence of assertions in the tests. That is, even if the bug is found and triggered, it does
not necessarily mean that the test suite caught it. Assertions are a vital part of a test, and
their quality is better captured by the mutation score than by coverage metrics. Neverthe-
less, we still use code coverage metrics like line and branch coverage in practice because
we surely will not be able to find bugs in parts of the programme which tests never execute.
Furthermore, Kochhar et al. showed in [27] that there is a positive correlation between the
coverage metric and the effectiveness of bug kill of a test suite, indicating the value of the
code coverage metric.

2.1.2 Mutation Score

As mentioned above in Section 2.1.1, the code coverage metrics do not directly represent
the fault-detection capability of the tests. Hence, there is a need for another testing strategy
and a metric which would be more informative in that regard. One such metric is a mutation
score that is obtained through mutation testing. Mutation testing is the process of injecting
artificial defects into the source code and then executing the test suite to see if the tests catch
those artificial defects [44]. There are many artificial defects which can be introduced into
the program under test. The typical examples include changes of various operators, such as
arithmetic, logic, relational, and more. The defects are supposed to mimic the real mistake
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2.2. Automated Test Case Generation

that could take place during program development, such as incorrectly placing the value
of “less than or equal (≤)” value instead of “less than (<)” or the one depicted in Figure
2.6 where the original code changes from the equality check, Figure 2.4, to the inequity in
Figure 2.5. After inserting the mutants, the test suite is executed again, and if we can see a
change in the test states, from passing to failing, then we can say that the defect was caught.

1 ...
2 if (a == b) {
3 if (b == c) {
4 return "EQUILATERAL";
5 } else return "ISOSCELES";
6 } else ...

Figure 2.4: A snippet of a original not
mutated function.

1 ...
2 if (a == b) {
3 if (b != c) {
4 return "EQUILATERAL";
5 } else return "ISOSCELES";
6 } else ...

Figure 2.5: Code snippet with the injected
mutant (==→ !=) at line 3.

Figure 2.6: Example of artificial defect injection for mutation testing. Figure 2.4 depicts
the original not mutated function, while Figure 2.5 depicts how the original function could
be changed after injection of an artificial defect, aka. mutant, bug.

2.2 Automated Test Case Generation

Automated test case generation is a mature field in software testing [6] which has already
produced many different tools [2, 8, 12, 19, 31, 35, 38, 48] using different approaches to test
case generation. One of the tools, EvoSuite [19, 42], which iteratively won competitions
[24, 25, 35, 43] led to a genetic algorithm as its main approach to generate test cases. The
genetic algorithm is a subclass of evolutionary algorithms that are inspired by Darwin’s
theory of evolution and principles of natural selection [18].

2.2.1 Evolutionary Algorithm Overview

Figure 2.7: Diagram depicting the cyclic process of an evolutionary algorithm along with
its key stages.

Darwin’s work on evolution is the motivation for the evolutionary algorithm (EA), as it
leverages concepts such as natural selection and survival of the fittest [18]. An EA algorithm

5



2. BACKGROUND

usually has four stages, namely: initialization, offspring creation, evaluation, and selection.
Figure 2.7 visualizes the algorithm and its four stages.

On a high level, the algorithm starts with an initial population, possibly a random one,
and a problem-specific fitness function that determines the fitness of an individual. We
select a number of the fittest individuals1 and exchange their genetic information in hopes
of producing a fitter offspring population. The iteration of this process should produce better
performing individuals and will stop once a termination condition is reached.

To apply an EA to a problem, we need to find a way to represent a solution to that
problem in the form of an individual whose genes (parameters) could be exchanged with
another solution through random variation operations such as crossover and mutation [18].
Furthermore, we need to define a problem-specific fitness function to numerically identify
people closer to achieving the desired goal [18].

2.2.2 Evolutionary Algorithm For Test Case Generation

As mentioned in section 2.2.1, to apply evolutionary algorithms to a problem, we need to
find an encoding for the problem’s solutions and formulate a function to measure the fitness
of each created solution. There are different ways to formulate the test case generation
problem [20, 41], but one of the most successful, as shown in competitions [24, 25, 35, 43],
was in Panichella et al. as a multi-objective optimisation problem [41].

The idea behind Panichella et al.’s many-objective formulation of the problem is that
“test case generation is intrinsically a multi-objective problem, since the goal is covering
multiple test targets (e.g., branches)” [42]. For example, suppose that we chose line cov-
erage as a metric by which we assess the test suite. If you recall section 2.1.1, then you
remember that for line coverage we need to count the total number of lines reached when a
test is executed and divide it by the total number of lines in a program under test. In such
a case, each line of a program under test becomes our target and each test case becomes a
possible solution because it has the potential to cover those targets. Thus, test case gener-
ation is formulated in a way where a test case is an individual of a population, and fitness
functions measure the distance to covering a certain minimal target, e.g. line or branch.

In an evolutionary algorithm, a single individual in a population can be considered as
a solution to the problem. A single test is an individual of a population, as can be seen in
Figure 2.8. A test case can be represented as a list of statements, where each statement is
a piece of executable code. This list of statements is what makes up the test and can be
thought of as the DNA of this individual. This encoding of a test case as a list of statements
allows us to apply several different genetic operations to it, such as selection, crossover, and
mutation.

Selection is the process by which the algorithm chooses suitable individuals from the
current population to produce the offspring, thereby, we hope, guiding the algorithm to
better solutions. Although there are different selection operators, one of which is shown
in Figure 2.9, all serve the same purpose. The operator pairs the selected individuals (test
cases) and prepares to produce an offspring (new test case) based on the parent’s DNA (test
case’s statement list) through the crossover operation.

1A hyper-parameters of an EA algorithm.

6



2.2. Automated Test Case Generation

Figure 2.8: Example of a genetic algorithm population which is a list of test cases, i.e. a
test suite where each individual is a single test case. A test case is a list of statements.

Crossover is a mixing of two DNAs. More concretely, given two lists of statements
(DNA of two different tests), we can create a new list of statements (DNA of a new test).
The example of the process can be found in Figure 2.13. The new list of statements, Figure
2.12, is a partial copy of the original first test up to a certain random point (Figure 2.10), and
the remaining part is the copy of the second test up to the end (Figure 2.11). Similarly, for
the selection operator, there are different crossover approaches, each with its own benefit.
The crossover operation is usually applied to produce new test cases, which are also known
as offsprings of a current, parent, population. Due to the usage of existing DNA to produce
offspring, population diversity is negatively affected, and a mutation operation is applied to
mitigate this consequence [4].

Mutation operations are changes performed to the DNA (list of statements) of an off-
spring to diversify them from the parent population. There are different ways in which it can
be implemented. An example is shown in Figure 2.16, where Figure 2.14 shows the original
solution (test case), while Figure 2.15 shows a possible outcome after mutation. Diversity
is an important concept in an evolutionary algorithm because it helps escape the local op-
timum [4]. Mutation operations aim to change the values of the inherited offspring DNA
through random modifications such as adding new statements, removing old statements, or
changing existing ones. However, a high mutation rate should be avoided to prevent the
search from becoming random due to the loss of good genes.

It should be noted that for each one of the genetic operations there exist several ap-
proaches to how it can be implemented, a nice overview is given by Alhijawi and Awajan in
[4]. Due to the existence of several different approaches, genetic operations can be thought
of as hyperparameters of an EA; however, the study [10] by Arcuri and Fraser showed that
in the area of test case generation the suggested default parameters perform well and further

7



2. BACKGROUND

Figure 2.9: Example of Roulette Wheel selection (a fitness proportionate selection oper-
ator) with six parents two of which have 25% shares each while the remaining four have
12% wheel share each. The shares are calculated basaed on the individuals fitness score in
comparison to others. Parent selectiton happens by spinning the roulette wheel to see which
individuals lands on the selection point. The wheel is spinned twice as many times as the
desired number of offspring individuals since a single offspring requires two parents.

tuning comes at a high cost for little improvement.

The second important part to creating an EA is the ability to evaluate the performance
of each individual in the population, i.e. assess how well the test case does in covering the
desired objectives. For that, we need a fitness function that can evaluate the test with respect
to the desired target. This fitness function is different for each objective of a different type
(e.g., line coverage, branch coverage, etc.) and ideally is supposed to guide the selection
process to better individuals. For example, branch coverage is decomposed into multiple
targets (objectives) where a single target is a possible branch path of a program. Branch
distance formula, f (x) = apl(P(x), t)+ nbd(P(x), t), for a coverage target t with respect
to a generated test case x is a sum of approach level (apl(P(x), t)) and normalized branch
distance (nbd(P(x), t)), where P(x) is an execution trace of a test case x ran on the program
under test P(). The approach level gives us the minimum number of control nodes between
an executed part and the coverage target. To get an approach level value, we identify control
nodes (branches) which need to be covered by the execution path to get to the target. We
then see which is the furthest control node reached by the execution path and count how
many more nodes we need to get to the target node. The normalized branch distance is a
formula specific to each type of branch condition, for more information and examples of
how to compute the branch distance you can see work [42] by Panichella et al. among many
others that covered that topic.
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2.2. Automated Test Case Generation

1 @Test
2 public void parentTest1() {
3 int side1 = 10;
4 int side2 = 10;
5 int side3 = 10;
6 String result;
7 result = determineTriangle(side1,
8 side2,
9 side3);

10 }

Figure 2.10: A test case selected from a par-
ent population of a genetic algorithm for the
crossover function. Highlighted parts indi-
cate which lines will be copied to an off-
spring test case, Figure 2.12, as part of a
single-point crossover operation.

1 @Test
2 public void parentTest2() {
3 int side1 = 10;
4 int side2 = 15
5 int side3 = 8;
6 String result;
7 result = determineTriangle(side1,
8 side2,
9 side3);

10 }

Figure 2.11: A different test case selected
from a parent population of a genetic al-
gorithm for the crossover function. High-
lighted parts indicate which lines will be
copied to an offspring test case, Figure 2.12,
as part of a single-point crossover operation.

1 @Test
2 public void offspringTest() {
3 int side1 = 10;
4 int side2 = 10;
5 int side3 = 8;
6 String result;
7 result = determineTriangle(side1, side2, side3);

Figure 2.12: An example of a produced offspring test based on a single-point crossover
operation between two parent test cases from Figures 2.10 and 2.11.

Figure 2.13: An example of a single-point crossover operation producing an offspring, Fig-
ure 2.12, based on two selected parents from Figures 2.10 and 2.11. Highlighted parts of
the parent’s figures indicate which lines from which parents are copied into an offspring.

2.2.3 Seeding

Evolutionary algorithms can start with a random population, i.e. a set of randomly created
test cases where the list of statements was created by randomly adding new statements to
it. We evaluate those test cases to understand which ones happened to perform better than
others and afterwards apply genetic operations such as crossover and mutations, which are
random in nature, to hopefully produce better test cases. This process of evaluating new test
cases, picking the best performing ones, and applying genetic operators to produce better
individuals is repeated until termination either by completion or out of search budget. The
process is pretty random, but thanks to the evaluation step, it should be making progress
towards better test candidates. The starting point of the algorithm, seed, can play an impor-
tant role in determining the success of an algorithm to produce good tests as was shown by
Fraser and Arcuri in [21]. Naturally, this question of seeding became a topic of interest for
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1 @Test
2 public void originalOffspringTest() {
3 int side1 = 10;
4 int side2 = 10;
5 int side3 = 8;
6 String result;
7 result = determineTriangle(side1,
8 side2,
9 side3);

10 }

Figure 2.14: An example of an offspring test
case generatetd through a crossover opera-
tion between two selected parents.

1 @Test
2 public void muatedOffspringTest() {
3 int side1 = 10;
4 int side2 = -1;
5 int side3 = 8;
6 String result;
7 result = determineTriangle(side1,
8 side2,
9 side3);

10 }

Figure 2.15: A mutated version of an off-
spring test case. Highlighted is the mutation
which changed int side2 from 10 to −1.

Figure 2.16: An example of a mutation operation performed on an offspring test case in
Figure 2.14, the outcome of mutation is presented in Figure 2.15

1 public static String determineTriangle(int a, int b, int c) {
2 if (a == b) {
3 if (b == c) {
4 return "EQUILATERAL";
5 } else return "ISOSCELES";
6 } else {
7 if (a == c) {
8 return "ISOSCELES";
9 } else {

10 if (b == c) {
11 return "ISOSCELES";
12 } else {
13 return "SCALENE";
14 }
15 }
16 }
17 }

Figure 2.17: An example of a function under test. determineTriangle function takes
three integer inputs one for each supposed side of a triangle, compares them, and returns
the type of triangle.

researchers, and they attempted to improve seeding by incorporating previously available
knowledge into the search process through different strategies. Those seeding strategies can
be broadly split into two categories, extracting information from code under test or from
other sources. The former involves approaches such as static, dynamic, and type seeding,
among many others, while the latter includes but is not limited to things like using already
generated tests as a seed. Rojas et al. explored the applicability of those strategies on test
case generation in EvoSuite in [46].

Static seeding, as tried by Rojas et al., involves the idea of extracting static values from
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the code under test in the hope that they can be useful to cover certain goals. It could take
several iterations for the genetic algorithm to arrive at the matching value because, despite
the guiding fitness function, the operations we perform on the individuals are random in
nature. The algorithm won’t know if the change is beneficial until it evaluates the change.
However, what if instead of picking random values, we first analyse the source code and
collect all static values like strings and integers into separate pools of data from which our
algorithm can draw upon when needed. This would mean that instead of having to perform
many random genetic operations, our algorithm might luckily get the correct value from the
existing static pool of values, potentially right at the beginning of the search process.

Dynamic seeding follows the same idea as static seeding, but accounts for the situa-
tions where the algorithm might not know the exact values of a program under test until
it executes it fully. We have a branch condition where instead of comparing a variable to
a constant which can be collected at the start, the program compares two variables. The
exact values of the variables are unknown before the execution occurs, making the static
seeding technique inapplicable. However, what can be done instead is that during the eval-
uation step of the algorithm where we execute the test case to measure its performance, we
can also monitor and record the values of variables. We can add those values to a separate
dynamic pool of data upon which the algorithm can draw upon during the next iteration of
the crossover and mutation operations, potentially speeding up the process of finding the
correct values to satisfy the conditions.

Type seeding attempts to address the problem where the function under test accepts
a parameter of type Object which is the superclass of all objects in Java. This situation
means that the search algorithm does not have enough information regarding what object to
pass to the function. Instead, it will waste iterations on finding the object which will allow
a test to execute as much of the code under test as possible. However, what we could do is
inspect the function which accepts the Object type for presence of casting or instanceof
operations. Those operations could help us understand what specific object the function is
actually expecting even if its signature expects Object type objects. Nonetheless, if the
expected object is complex, i.e. creation of this object requires passing specific parameters
or making certain function calls, then type seeding is not as effective. This is because the
algorithm also needs to spend time to find a way to construct that object correctly.

To address the issue of complex object creation, we could incorporate the knowledge
captured in previous tests by supplying them as seeds. For example, consider that we have
previously generated tests for the program under test or previously human written tests.
Those tests could contain useful information which would otherwise take time and iterations
for an evolutionary algorithm to discover and correctly incorporate into its solutions. Things
like complex object creations where, to test a function, we need to pass a certain object to
it which we first need to create through a factory or other objects. If we already have test
cases which show examples of how to create those objects, we can attempt to carve the list
of statements necessary for creating this object. The algorithm will attempt to reuse this list
of statements to create this object rather than doing it from scratch. This strategy is known
as carving. Another strategy known as cloning, focuses on the idea of copying the exact
statements from previously available tests into newly generated ones. Both strategies are
interesting and were shown to be beneficial to the search [46].
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2.3 Large Language Models

Large Language Models (LLMs) have seen a growth in popularity and usage. Researchers
also became interested in what LLMs can do and how to best work with them. This lead
to the establishment of a new research field known as “Prompt Engineering” and produc-
tion of many papers involving LLMs. The Evolutionary Computation community is no
exception to this trend as it has quickly produced many papers exploring the possibilities of
incorporating LLMs into evolutionary algorithms.

2.3.1 LLM Prompt Engineering

ChatGPT’s main and only user interface was text-based input, a prompt, from the user
to which the model would respond by generating a text-based response. Being the only
means of interaction with the model, people started to wonder how this input could be
constructed in such a way that allows LLM’s output to be the most useful and valuable. This
question became even more pressing as companies began charging users money depending
on the size of their input and the models’ output. This prompt engineering research led
to a discovery of interesting and more effective ways of constructing an LLM prompt. For
example, general prompts often lead to more general responses due to the lack of specificity;
hence a more specific prompt can yield a more precise response [15] saving the user’s
money along with time spent reading the response. Additionally, we can add instructions
on how to format the LLM’s reply to our prompt thereby potentially reducing the amount
of post-processing needed to extract and use the desired information [33]. As an example,
consider asking the LLM to put any code snippets between backticks which are usually
used to define code blocks in Markdown-based systems. By successfully placing all the
code between backticks in the response, we can quickly locate those backticks and extract
the code out of them. Without those backticks acting as identifiers for the code location, we
would not have a clear indication of when the code begins and ends, leading to less efficient
and more bug-prone parsing.

2.3.2 Evolutionary Computation & LLMs

The advances of large language models and their availability sparked the interest of the
evolutionary computation community to explore if and how LLMs can be combined with
evolutionary computation and whether it would be beneficial. A recent survey [56] by
Wu et al. identified that there are two ways in which LLMs could be combined with EAs,
LLM-enhanced EAs and EA-enhanced LLMs. Wu et al. further proposes a roadmap for
the hybrid future of the two approaches, stating that the potential of LLM-enhanced EAs
lies in the ability of an LLM to generate novel solutions and LLM’s ability to generate
optimization algorithms. As for the EA-enhanced LLM approaches, [56] mentions possi-
bilities of EA-based LLM architecture search and prompt engineering. Another work [13]
by Cai et al. explored the possible improvements of evolutionary computation via LLMs,
most of which would belong to the category of LLM-enhanced EAs defined by Wu et al..
The improvements suggested by Cai et al. can be divided into three main categories LLM-
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driven EA algorithms, LLM-based improvement of populations and individuals, and other
improvements.

The category of LLM-driven EA algorithms includes suggestions such as LLM-assisted
Evolutionary Strategy Selection and Evolutionary Operators via LLMs.

LLM-assisted Evolutionary Strategy Selection suggests using the LLM’s knowledge to
decrease the dependency on researcher’s expertise for selecting an evolutionary strategy.
An example of such an approach is work [30] by Liu et al. which introduced an LLM-
Driven EA (LMEA) for solving combinatorial optimization problems such as the Travelling
Salesman Problem (TSP). The LMEA algorithm essentially leaves most of the evolutionary
algorithm work to the LLM and instead focuses on guiding LLM through the EA process.
In each iteration of the search, LLM is instructed by LMEA to select present solutions and
generate new solutions by performing crossover and mutation operation. Afterwards, the
LLM evaluates the newly obtained individuals and chooses to incorporate them into the next
iteration of the search. Experimental results showed promising results of handling instances
of TSP in comparison to traditional methods.

Evolutionary operators via LLMs could take on three different forms, one where LLM
is the evolutionary operator itself, another where LLM guides the genetic operators and
the third form where LLM generates new or modified operators. The suggested reason
by Cai et al. for using LLMs in one form or another in evolutionary operators is that it
could “break the fixed mindset” of an EA caused by explicit and usually fixed mathematical
definitions for operators. Examples of those approaches include but are not limited to works
[11, 26, 29, 36] of Brahmachary et al., Hemberg et al., Liu et al. and Morris et al..

The category of LLM-based improvement of populations and individuals includes points
such as strengthening of population design and assistance in handling complex high-dimensional
data. The idea behind those two suggestions is that LLMs could provide a better starting
point for the initial population by providing better individuals and refining population struc-
tures.

Lastly, Cai et al. suggests other possible improvements for Evolutionary Computation
(EC) methods such as multimodal LLM expansion, adaptation to dynamic environment, and
interactive EC. Cai et al. imagines how using multimodal LLMs that allow combining dif-
ferent types of inputs such as text, images, and sound could greatly expand the applicability
of evolutionary computation. The interactive chat-based nature of LLMs could improve hu-
man interaction with EC algorithms enabling optimization through human input, and LLMs’
extensive knowledge could make EC more adaptable to changes and challenges. Despite
many suggested possibilities, Cai et al. recognizes the limitations of LLMs when facing
issues with increased complexity and high dependency on prompt design and contextual
constrains.
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Chapter 3

Related Work

The previous chapter, Chapter 2, should have given you the necessary background to un-
derstand the key concepts of this study. This chapter will inform you of the related work
surrounding the topic of LLM-based seeding for test case generation. In particular, we will
begin with a result overview of studies comparing LLM generated test cases with the var-
ious existing tools. After comparing the LLM tests to other tests, we will move onto the
hybrid approaches, which we split into sections: LLM-Based Tool Test Case Generation
and Tool-Based LLM Test Case Generation. The distinction lies in whether the article fo-
cuses on improving LLM-generated tests by introducing additional tooling, or whether the
article focuses on improving tool-generated tests through LLM utilization. Lastly, having
introduced all those papers, we will point out the research gap which those papers do not
close.

3.1 LLM vs Test Case Generation Tools Comparisons

One of the related research directions undertaken by various researchers (Abdullin et al.,
Ouedraogo et al., Schäfer et al., Tang et al., [58]) is comparing the performance and quality
of tests generated by LLM’s to those of classic tools like EvoSuite. Their work [3, 39,
49, 52, 58], provides us with the first data to guide our expectations with regard to LLM’s
generation abilities in the area of testing.

TestWars [3] paper by Abdullin et al. is the most recent comparison paper, out of the
ones listed here. It compares different test generation tools to LLM’s test generation ability.
In it Abdullin et al. attempts to address the shortcomings of other papers by expanding the
comparison to a symbolic execution-based tool Kex and using the GitBug data set instead of
Defects4J because it is newer and therefore less likely to have been used in model training,
which would lead to data leakage issues. Additionally, the paper computes several code
feature metrics which impact test generation performance, such as number of dependencies,
condition type, comments, and Java docs to identify the strengths and weaknesses of the
tested tools. The experimentation is done with EvoSuite and Kex as traditional tools as well
as four LLM models, namely ChatGPT-4, ChatGPT-4o, Llama Medium and Code Llama
70b. The results of the paper showed that LLM-based test generation falls behind traditional
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methods in terms of coverage, since only the ChatGPT-4o model achieved a compilation rate
greater than 7% and line coverage greater than 5%. The best metric of ChatGPT-4o was the
median mutation score, where it achieved the highest value, 6.32% out of all competitors.

Other papers such as [39, 49, 52, 58] have focused primarily on evaluating the pure
LLM test generation capability in contrast to other models or existing tools such as Evo-
Suite. For example, [39] conducted a study on four different LLM models (GPT-3.5, GPT-4,
Mistral 7B, Mixtral 8x7B) in which they tried five different prompt engineering techniques
(Zero-shot learning, Few-shot learning, Chain-of-Thought, Tree-of-Thoughts, Guided Tree-
of-Thoughts). They compared their results with each other and also with EvoSuite as the
state-of-the-art algorithm. Their findings were that prompt engineering can greatly impact
the performance of LLMs, but EvoSuite generally continued to outperform LLMs. An-
other paper [49] by Schäfer et al. has investigated the ability of LLMs to generate tests for
JavaScript programs. Additionally, they implemented a re-prompting mechanism in Test-
Pilot for the LLM to try and fix the broken test cases it generates if possible. A study [52]
by Tang et al. focused specifically on comparing ChatGPT’s test generation capabilities
with the EvoSuite’s w.r.t. such as correctness, readability, code coverage, and bug detec-
tion capabilities. Furthermore, there was a study [58] by Yang et al. that performed similar
comparisons but focused on the performance of closed-source models such as ChatGPT
compared to open-source ones such as Code Llama.

3.2 LLM-Based Tool Test Case Generation

There have been several works which decided to make the LLM the core unit driving the
test case generation process and supply it with additional pre- or post-processing steps and
tools to improve the LLM performance. For example, Chen et al., developed a ChatU-
nitTest Core [14] framework which consists of five key steps, the preparation stage featur-
ing the unit under test parsing and analysis, then followed by prompt construction where
a chain-of-thought prompt technique is used. Once all preprocessing has been completed,
the framework moves to the generation phase, where it extracts the tests and attempts to
validate their correctness. If the tests are not functional, then it tries to fix them using a
set of predefined rules, and if that fails the LLM is prompted again with details about the
error and instructions to fix it. They evaluated their approach on a small set of projects w.r.t.
line coverage in comparison to TestSpark and EvoSuite. The results of their approach were
better than those of EvoSuite and TestSpark; however, some questions can be raised about
the selected benchmark projects and the lack of statistical data.

Another paper [16] by Dakhel et al. devised an approach titled MuTAP the aim of which
was to generate test cases with LLMs but then improve their effectiveness in revealing
bugs by using mutation testing. Precisely, upon generating a test case, it was evaluated
w.r.t. mutation score metric and if some mutants survived, the LLM would be prompted
again with the example of a mutant and asked to improve the test case. The study was
implemented for Python language and was evaluated in comparison with Pynguin. Their
findings are that LLMs require specific post-processing, without which its effectiveness is
not as good, and they would struggle to test corner cases or specific types of bugs.

16



3.3. Tool-Based LLM Test Case Generation

Pizzorno and Berger have created an approach titled “CoverUp” [45] that also attempted
to improve the test case generation performance of LLMs with regard to Python programmes.
In their approach, they decided to first identify the code segments or units under tests which
required more testing than what was already done in the existing test suites. Having iden-
tified the specific parts of improvement, they prompt the LLM to generate those test cases.
However, in addition to providing the prompt, they also provide a tool function to the LLM
to request more context if necessary. If LLM generates a new test that still lacks coverage
or fails, the LLM is prompted again to fix the issue. The existing test suite is extended with
successful test cases. Their evaluation shows improved performance compared to that of
the CODAMOSA and MuTap approaches.

The work [47] by Ryan et al. tries to improve the generation of LLM-based test cases
by addressing the approach of using fixed prompting strategies. In their approach, Sym-
Prompt deconstructs the process of test suite generation into a multi-stage sequence. Then
a specific prompt for each of the deconstructed sequences aligns with the execution paths
of the unit under test. Once again, their work targets the Python-based project and showed
improvement over their own baseline; however, there was no comparison with other tools
like Pynguin.

A recent paper [51] by Straubinger et al. instructed the LLM to use the concept of “Sci-
entific Debugging” to better understand how a generated unit test should be changed to
kill the specified mutant. They compared the approach to three baselines, namely Pynguin,
directly asking LLM to generate the test case without repeated querying in case of a fail-
ure, and asking LLM with repeated querying in case of a failure. Their findings show that
despite the higher computational costs of using “Scientific Debugging”, this approach con-
sistently outperforms Pynguin w.r.t. fault detection and coverage. Furthermore, they note
the importance of iterative test case refinement to achieve higher-quality tests.

Lastly, the work [54] by Wang et al. has noted the pattern of other approaches to provide
a complete unit under test to the LLM without providing any assistance in the input analysis.
They hypothesized that this makes it more challenging for the LLM to infer test inputs to
cover all conditions. Hence, resulting in a generated test suite with greater missing line and
branch coverage. Their approach, HITS, tackles this problem by decomposing the methods
into slices and querying the LLM to generate tests on those individual slices rather than the
whole piece. Their approach is designed for a Java-based project and, according to their
results, outperformed ChatUniTest and EvoSuite.

3.3 Tool-Based LLM Test Case Generation

Despite the relative recentness of using LLMs, in the evolutionary algorithm (EA), there
were already several attempts at combining the two approaches in the unit test case genera-
tion field. The first approach, CODAMOSA [28], by Lemieux et al. attempted to escape the
coverage plateaus encountered during the search process by querying an LLM. The main
idea behind this method was that once the algorithm has noticed that it stalled, that is, there
was no improvement for several iterations, it would send a prompt to an LLM, Codex, ask-
ing it to provide an example of a test case for an under-covered function. This approach
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was implemented in Pynguin, a unit test case generation tool for Python programmes, and
was evaluated on 486 benchmark modules over 27 projects assembled from datasets that
were used in the evaluation of Pynguin [32] and BugsInPy [55]. The results of this study
showed improved performance for LLM configurations, and a building block for another
paper exploring the integration of LLMs into test case generation algorithms.

A paper [57] by Xiao et al. investigated how the LLM intervention could be applied in
different parts of the EA. In this paper, an LLM intervention is applied in the three different
stages of the search process, namely the initial stage, the test generation period, and the
test coverage plateaus. It has mostly followed the same approach as the CODAMOSA [28]
paper, for example, by using the same benchmark dataset and the same approach to adopting
Code Llama responses in Pynguin format. Their results showed that the LLM intervention
has a positive impact on the search process in any of the three investigation stages; however,
there must be a reasonable frequency of the LLM intervention in each stage.

Another paper [59] involving Pynguin was written by Yang et al. which focused on the
use of LLMs to address the problem of untyped code in Python. Python being a dynamically
typed language can be more challenging to generate test cases for because of the missing
information regarding the types necessary for the unit under test. The methodology pro-
posed in [59] suggests a method for annotating parameter types in Python through an LLM
in hopes of reducing the search space of the EA. Furthermore, they also experiment with a
new mutation strategy involving Chain-of-Thought prompting. Lastly, they also employ an
LLM for test repair in case the generated test suites contain errors, thereby increasing the
executability of the generated tests. They did not use exactly the same data set as the other
two studies; however, they did take some projects from the Pynguin [32] and added more
from HumanEval1 benchmark evaluation. Their results showed improvements in 16% of
the modules.

Lastly, to our knowledge, the only paper which attempted to integrate LLM functionality
into EvoSuite, a unit test case generation tool for Java projects, is [40] by Ouédraogo et al..
This work attempted to address the problem of generating relevant inputs for the units under
test. In an attempt to generate more relevant input, they proposed a method of extracting the
relevant input from various bug reports and using LLMs to help them do that. According
to their results, their approach, BRMiner, is able to extract more and more relevant inputs,
which when supplied to EvoSuite lead to an increased code coverage of the generated tests.
Their experiment evaluation was conducted on the Defects4J benchmark, which can be
considered a classic benchmark, however, is also more susceptible to being used in LLM
training leading to potential data leakage issues.

3.4 Research Gap

Our research in various related work showed that there were many studies investigating the
ability of an LLM to generate unit tests (Section 3.1), as well as several studies that tried
to change or supplement the LLM with more information to get better tests (Section 3.2).
However, there have only been a few attempts at integrating LLMs into existing evolutionary

1https://github.com/openai/human-eval
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algorithm-based unit test case generation tools, especially EvoSuite, which works with Java
projects (Section 3.3). Therefore, it would be interesting and valuable for the research
community to explore how information from the LLMs can be used in combination with
EvoSuite.
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Chapter 4

LLM-Based Seeding for Test Case
Generation

The main idea was to see how LLM’s code generation ability could be useful at the initial-
ization stage of the genetic algorithm. As discussed in the previous chapter, the initialization
stage is the one where we create the initial population of the algorithm. It plays a crucial
role because it sets the starting point for the search, which could be good or not. The starting
point could be a local optimum rather than a global one, or it might not even be good at all.

We should also recall what it means for our starting population to be good. For that,
remember that our population consists of individual test cases where the quality of a test case
is determined by the custom fitness function measuring how close it comes to covering a
certain goal, like line or branch. For a test case to be successful, it usually has to identify the
right methods to call to reach the given target (line/branch) and the suitable input parameters
or other factors influencing this particular targeted code. (arrange + act)

A random starting point will likely struggle with both of those parts because there are
no guarantees on what kind of statements are inserted into the test case. It could take time
before it inserts the correct method, and even longer before it finds or creates suitable inputs
for the method which would lead to the necessary target.

Previous attempts at solving this problem included things like extracting information
through already generated tests, e.g. by carving or cloning. However, this approach relies
on the existence of those prior tests, which might not always be the case. This is where
LLM’s code generation abilities based on input could come in useful. We can prompt the
LLM to create test cases and then supply them as a seed, and this is what we do on the high
level. However, there are several details which are worth considering.

In essence, there are two parts, the LLM part and EvoSuite part. On the high level what
we do is download the benchmark project which contains classes under test, run TestSpark
for LLM-based test case generation on the downloaded project through a command line and
then supply the generated tests into EvoSuite as a seed for carving or cloning strategies.
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4.1 LLM-Based Test Case Generation Through TestSpark

The first part of the approach involves prompting the LLM to generate the test cases. There
are different ways through which we could interact with an LLM, each providing a different
set of benefits and drawbacks. For our purposes and constraints we chose to use TestSpark,
an IntelliJ plugin, as a mean to interacting with an LLM because of its support for multi-
ple LLM models and powerful code analysis capabilities provided by the headless IntelliJ
IDEA. Headless IntelliJ allows us to run it on the server as a part of a pipeline.

The first advantage of using TestSpark instead of a custom implementation to interact
with an LLM is the availability of different LLM models through different LLM platforms.
Currently, TestSpark offers LLM platforms such as OpenAI, HuggingFace, Google AI, and
JetBrains’ AI Assistant platform. This variety of LLM providers gives us a bigger collection
of LLM models on which we would like to run our experiments.

The second and more powerful advantage of TestSpark is its inherited capabilities of
code analysis and inspection of IntelliJ IDEA, which could be useful for prompt creation. As
discussed in the background chapter, prompt plays a crucial role in LLM’s ability to generate
a good output. Ideally, the prompt is detailed as to provide all the necessary information
to the LLM, but also specific enough to prevent the LLM’s response from going off-topic.
Additionally, the size of the prompt cannot exceed a certain context limit, different for
each model. TestSpark’s code analysis features enable it to extract various code-related
details from the various parts of the project which could be useful for the prompt. But
it also features a check for prompt size limitations and a feedback mechanism checking
compilation of LLM generated test cases.

Generate unit tests in Java for $NAME to achieve 100% line coverage for this class.
Dont use @Before and @After test methods. Make tests as atomic as possible.
All tests should be for JUnit 4. In case of mocking, use Mockito.
But, do not use mocking for all tests.
Name all methods according to the template

[MethodUnderTest][Scenario]Test, and use only English letters.
The source code of class under test is as follows:
$CODE
$METHODS
$POLYMORPHISM

Figure 4.1: Default LLM prompt in TestSpark.

TestSpark’s default prompt listed in Figure 4.1 includes in it details like the actual code
of the class under test $CODE, the method signatures available to it during test genera-
tion ($METHODS), and polymorphic relations ($POLYMORPHISM). It can include information
such as about polymorphic relations in its prompts thanks to the inherited code processing,
analysing, and extraction features of IntelliJ. However, the final size of a prompt like this is
highly dependent on the code under test and its size. In some cases, the source code part
of the prompt itself can easily overflow the context limits. To address this issue, TestSpark
checks the final size of the prompt against the context limit size and, if necessary, reduces
the prompt size by iteratively removing details. For example, it will first try to remove
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the $POLYMORPHISM information; then should this not be enough, it will also remove the
method signatures ($METHODS resulting in only source code ($CODE) being included in the
prompt. If the source code itself is too large for the given model, then the TestSpark stops
the test case generation process with the according error message, otherwise it proceeds to
generate tests.

Having met the prompt’s size constraints of an LLM model, TestSpark sends the gener-
ated prompt and receives the response. However, successful receiving of the response does
not equal to a functional LLM test case or test suite. LLM’s response could be anything
ranging from no code at all to a complete functional test case. Parsing and validating this
response is another advantage of using TestSpark as an engine for LLM-based test case
generation instead of having to implement it ourselves and dealing with various edge cases.
Once the response is received, it is parsed and decomposed into single unit tests rather than
a whole test suite. Individual tests are saved into separate files which attempt to preserve all
the necessary dependencies and imports for the test case to function, but it cannot guarantee
the presence or existence of LLM hallucinated parts. To check for LLM hallucination, or
more precisely for the functionality of the generated tests, TestSpark attempts to compile
each file. If the compilation is successful, the test case is kept, but should it encounter an
error, then TestSpark will attempt to fix it by including the compilation error message in a
new prompt to the LLM. This feedback loop could proceed indefinitely because there are
no guarantees that LLM can arrive at a functional solution, therefore, the user can choose
themselves how many iterations they can afford.

The process described above attempts to generate an entire test suite from a given code
snippet; a potential drawback of such an approach is that size also limits the LLM response,
similar to the input. The LLM could run out of token to complete its response, leading to
an incomplete answer which is hard to parse and is simply discarded. A possible solution
to this problem would be to attempt a more precise LLM prompting approach. Instead of
requesting an entire test suite given all the source code, we could specifically ask for certain
details such as input parameters or objects to cover a certain target. However, the difficulty
with such an approach lies in the fact that it is EvoSuite which is responsible for identifying
targets and integrating LLM prompting capabilities, similar to TestSpark’s, into EvoSuite
is rather challenging given the time constraints. The details of the encountered technical
challenges are detailed in Section ??.

4.2 LLM-based EvoSuite Seeding

Having LLM generated the tests using TestSpark, we now need to provide them as a seed
to the EvoSuite. This should be relatively easy because other researchers, namely, Rojas
et al. have previously implemented such functionality in the EvoSuite when investigating
[46] the carving and cloning strategies. However, the challenge here lies in the fact that the
work of Rojas et al. was done before, Panichella et al. reformulated the test case generation
into a multi-objective problem.

EvoSuite is a mature tool as it started in 2011 [19] and throughout the years it became
highly customizable thanks to the efforts of many researches who have developed various
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improvements to try out new strategies and approaches. However, this scattered among
many researchers development process did not end up in an easy-to-use tool where all op-
tions are compatible with each other. This is particularly true when Panichella et al. began
implementing a multi-objective approach in EvoSuite. In their implementation, Panichella
et al. relied on a random way to create the offspring, and therefore the seeding-based ap-
proach of Rojas et al. involving previously generated tests was not supported. Hence we had
to slightly modify EvoSuite’s codebase to support the seeding approach in the DynaMOSA
algorithm. After implementing our changes and testing them, we found a couple of incon-
sistencies which helped us resolve some issues in our own modifications but also find a bug
in EvoSuite. Specifically, the problem was in target duplication among the uncovered and
covered parts of the archive. When adding a new target of type “exception” to the uncovered
archive, its presence was not checked in the covered archive. This leads to target duplica-
tion where if the target was already covered and placed into the covered archive, it would
be added again into the uncovered. After fixing this issue, the algorithm behaviour became
more consistent.

Having modified EvoSuite to enable carving and cloning strategies to the best test case
generation algorithm, we were now able to use EvoSuite CLI to specify the project under
test along with other properties and supply compiled LLM tests. The carving and cloning
strategies can be chosen by specifying the according flags and parameters.
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Chapter 5

Empirical Evaluation

5.1 Research Questions

As discussed in the previous chapters, the starting point of the genetic algorithm is the initial
population, which has a great impact on the direction the search goes and the discovered
solutions. Previous work attempted to use prior knowledge, such as already generated test
[46], to improve the starting point of the search algorithm. Although the results seemed
promising, one of the encountered issues with this approach was the availability of prior
knowledge in the form of test cases. This is where our investigation comes in, as it aims to
explore the possibility of using an LLM to generate the missing test and use them as a seed
for EvoSuite. Our concrete research question for this study is:

RQ: What is the impact of ChatGPT-4o generated tests when supplied as a seed
for carving and cloning strategy on EvoSuite’s test case generation?

Although it would be interesting to explore the capabilities of different models, previous
work such as [3] showed that due to context size limitations, some models are struggling to
even initiate the generation of those test cases. Thus, we will rely on OpenAI’s ChatGPT-
4o as a starting model for our study because it was shown to have the highest test case
compilation rate in [3].

The impact of the seed in the form of LLM-generated test cases can be measured
through the performance of the newly generated test case via the classic criteria such as
line coverage, branch coverage, and mutation score. However, to answer the question of
“what is the impact” and determine which strategy, cloning or carving, benefited more, we
would need to compare the results. Therefore, to answer this question, it is important to
run four different configurations: baseline, carving, cloning and combination of carving
and cloning referred to as “combined”. The baseline configuration serves as the control
group with the default EvoSuite behaviour using its best performing algorithm. While carv-
ing, cloning, and combined configurations are the experimental groups where we supply
the same LLM-generated tests as a seed but turn on different seeding strategies. Results of
those four configurations can be compared and contrasted with one another, leading to an
understanding if the treatment groups improve over the baseline, therefore signifying the
usefulness of LLM generated test cases or not. Additionally, those results will help us see
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if one of the strategies performs better than the other, giving us the insight into what exactly
was useful about the LLM generated test cases.

5.2 Benchmark

The benchmark we chose for conducting this experiment is the same as in paper by Ab-
dullin et al., namely GitBug. Other related work has mostly used different dataset such as
Defects4J or EvoSuite’s SF110 benchmarks. However, similarly to Abdullin et al. we be-
lieve that using a newer dataset such as GitBug will make the experiment less susceptible
to the data leakage issue.

The GitBug Java data set is a collection of 199 bugs from 55 open-source projects
which were assembled to create a reproducible benchmark of recent Java bugs. For our ex-
perimentation the benchmark is reduced to 136 projects similarly as in [3] the case because
of compatibility issues with the EvoSuite. Specifically, EvoSuite only works on projects
which are developed on Java 11. While some projects in the GitBug data set were written in
Java versions higher than 11. The dataset presents a range of projects with the classes under
test (CUT) ranging in source lines of code (SLOC) from 25 to 2,500 and with the average
cyclomatic complexity of approximately 66. However, it should be noted that there is a
project imbalance caused by the presence of 29 jsoup related CUTs and 70 CUTs related
to the traccar project out of 136 total CUTs.

5.3 Parameters

In our case we need to set parameters for TestSpark and EvoSuite. Additionally we are
using Abdullin et al.’s TGA-Pipeline developed for [3] to run experiments on TestSpark
and EvoSuite.

5.3.1 TestSpark-LLM

The main parameter in the TestSpark important for our experiment is the prompt for the
LLM. In Chapter 4 we discussed in more detail what kind of prompt we are using and why.
Please see that section if you wish to. But in short it is the default TestSpark prompt which
includes things like source code of a CUT, method signatures, and polymorphic relationship,
but shrinks in size if it becomes too big for LLM’s context window. Additionally, we use
default TestSpark settings for the feedback mechanism. Precisely The depth of input
parameters used in class under tests is set to 2, Maximum polymorphism depth
is also 2, while Maximum number of requests to LLM is 3. For completeness it should
be mentioned that LLM capabilities of TestSpark require an authentication token specific to
the chosen AI platform, which we also provide during our experiments. In our case this is
JetBrains’ AI Assistant platform in which we use ChatGPT-4o.
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5.3.2 EvoSuite

EvoSuite also has parameters which we need to set. Similarly to TestSpark, most parame-
ters are set at default values; however, certain adjustments need to be made for the specific
configurations. For the initial population we use the commonly used value of 50 individ-
uals. While the search budget is set at the standard 120 seconds as in many competitions
[24, 25, 35, 43]. We use the default and best performing, according to competitions, genetic
algorithm DynaMOSA as the main search strategy. The goal criteria is the default set of
target consisting of line, branch, exception, weak mutation, output, method, method excep-
tion, and branch objectives. Those parameters make up the baseline configuration and do
not change for the carving and cloning configurations.

For the carving and cloning configurations, the important change we need to make is
to add the canonical names of classes or test cases that we want to use as our seed into the
selected junit CLI parameter. Furthermore, each configuration, carving and cloning,
brings its own set of adjustable parameters.

For example, the carving configuration has a boolean flag carve object pool, which
needs to be set to true, and p object pool probability which is responsible for deter-
mining how often we draw objects from the carved object pool rather than the other pools.
While the cloning configuration has additional parameters such as seed clone and seed mutations.
Former, seed clone, is responsible for determining the probability of how often we insert
statements from the supplied LLM generated test. While the latter, seed mutations, sets
the number of mutations we make to those drawn statements. In our case we use optimal
probabilities suggested by [46] EvoSuite numbers for all those additional adjustable pa-
rameters, concretely p object pool = 0.9, seed clone = 0.9, and seed mutations =
8.

Note that to ensure that cloning is not used during the carving configuration and vice
versa, we specifically set the adjustable parameters of those strategies to 0. In other words,
carving configuration has parameter values like carve object pool=true, p object pool=0.9,
seed clone=0.0, and seed mutations=0. While cloning configuration has parameter
values such as carve object pool=false, p object pool=0.0, seed clone=0.9, and
seed mutations=8.

5.4 Experimental Protocol

Due to the stochastic nature of EvoSuite’s DynaMOSA search algorithm and LLM’s test
case generation it is important to perform several iterations per each configuration, as sug-
gested by [9] and is done in previous related work. Therefore for each one of the four
configurations, baseline, carving, cloning, and combined we run the experiments ten times.
Precisely, we first generate a set of LLM tests through TestSpark where we have 136 bench-
mark projects times 10 iterations to account for LLM randomness. We do not need to do it
three times because the base line configuration does not require LLM tests. While carving
and cloning configurations should use the same LLM tests as seeds to make the comparison
between them fairer. Once we have the LLM generated tests we can move to generating
tests with EvoSuite. We run the baseline configuration 136×10 times. And the same goes
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for carving and cloning configuration, for all of which we supply the same LLM generated
test. Note that a small time optimisation we can do is reuse the already generated ChatGPT-
4o tests from [3] replication package1. To further speed up the computation we run the
experiments on the same server with 128 cores and parallise up to 10 instances of docker
containers (total is 20 containers because we have base and tool). We run TGA-Pipeline’s
analysis to compute line, branch coverage and mutation score.

5.5 Threats to Validity & Reproducibility

5.5.1 Construct Validity

Threats to construct validity refer to the study’s ability to measure what it claims to measure.
In our case, we are interested in finding out if LLM-generated tests are suitable for carving
and cloning strategies and what impact they have as a seed. We measure the impact through
metrics such as line coverage, branch coverage, and mutation score given the same time-
based search budget. This approach is widely adopted in the field of search-based software
testing, as it provides a reasonable estimation of the effectiveness and efficiency of the tried
test case generation technique.

5.5.2 Internal Validity

Internal validity considers factors arising from our implementation that could influence our
results. In our case, we are working on three different open source projects, TestSpark2,
EvoSuite3, TGA-Pipeline4, as well as our own repository containing various utility scripts5,
all available on GitHub. In our study, we have particularly added new functionality to Evo-
Suite’s fork on this branch and TGA-Pipeline fork on this branch. Additionally, we provide
a replication package6 that contains the obtained results. Due to the nature of software
development, each of the projects is susceptible to issues and bugs. The projects cannot
guarantee a bug-free implementation because tests can only show the presence of bugs, not
their absence. Despite our best attempts at checking and verifying the functionality of the
code, we cannot give guarantees but are happy to share our code with others, hence it can
be found on GitHub, for future examination and improvement.

5.5.3 External Validity

External validity attempts to account for factors outside our implementation. One of those
factors that specifically stems from the LLMs is the issue of data leakage. LLMs are trained
on a large corpus of data that covers a wide range of things, and the specific contents of
these training data are rarely disclosed to the public. The LLM performs better when asked

1https://zenodo.org/records/13862019
2https://github.com/JetBrains-Research/TestSpark
3https://github.com/ciselab/evosuite/tree/SergeyDatskiv/thunderdome-MOSuiteStrategy-CarvedTests
4https://github.com/SergeyDatskiv/tga-pipeline/tree/SergeyDatskiv/development
5https://github.com/SergeyDatskiv/TUDelft-MScThesis-PromptSeedGenerate
6Replication Package is stored on Zenodo under the following doi:10.5281/zenodo.15698634
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questions about the data to which it has previously been exposed rather than new informa-
tion. Since we do not know exactly what data were used to train the model, we cannot be
sure that the results of our experiments will be generalized to other datasets or models. Git-
Bug benchmark is a relatively new benchmark, meaning that the likelihood of it being used
in training is smaller compared to classic data sets such as Defects4J and SF110. However,
despite the recency of GitBug, it should be noted that the individual projects that make up
this dataset are not necessarily new. They, too, could have been used in the training of LLM
models as a standalone project or as a part of some other data set.

In addition to the problem of data leakage, there is also the possibility that the bench-
mark is not diverse enough. Lack of diversity in the data set can lead to poor generalisation
of the performance. Projects that are not covered by GitBug may have different character-
istics, and test case generation can perform significantly differently for the better or worse.
Although this concern is true for virtually all benchmarks, it is particularly true for GitBug,
which out of 136 test units has a project imbalance, with 29 units being from the jsoup
project and 70 from the traccar.

We also run our experiments on the same hardware to prevent any differences from
making an impact.

5.5.4 Conclusion Validity

The validity of the conclusion relates to the certainty and reliability of the conclusion we
draw from our results. In our particular case, one of the biggest possible issues is the
stochastic nature of LLMs and EvoSuite’s genetic algorithm. To reduce these concerns, we
repeat the experiments in EvoSuite ten times per configuration per test unit (136×10×3).
In terms of generating LLM test cases through TestSpark, we reuse existing test cases from
the [3] replication package, but they were also repeated ten times per test unit (136× 10).
Furthermore, the tests described by Abdullin et al. in [3] were generated in isolation, that
is, using different prompting sessions, to prevent the LLM from learning from previous
input. Regarding our conclusions, we draw them based on well-established metrics such as
line coverage, branch coverage, and mutation score and compute well-established statistical
values for them such as Mann-Whitney U tests [37] to determine statistical significance and
Vargha-Delaney Â12 [53] statistic for effect size.
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Chapter 6

Results & Discussion

This study aims to investigate the following question.
RQ: What is the impact of ChatGPT-4o generated tests when supplied as a seed

for carving and cloning strategies on EvoSuite’s test case generation?
To answer this question, we performed four different configurations, baseline, carving,

cloning, and combination of carving and cloning, also known as “combined”. The config-
urations follow our LLM-based seeding approach described in Chapter 4. In the following,
we present the results and discuss them.

6.1 Results

6.1.1 Line Coverage Metric

Firstly, let us examine the impact of seeding through carving, cloning, and combined (carv-
ing and cloning together) strategies in comparison to the baseline on line coverage.

Table 6.1 shows the Mann-Whitney U Tests p-value and Vargha-Delaney Â12 effect
sizes for line coverage when comparing the baseline to different seeding configurations.
The highlighted cells show a statistically significant difference from the baseline (p-value ¡
0.05), where an Â12 effect size score greater than 0.5 shows better performance for the corre-
sponding seeding configuration, while a lower score indicates better baseline performance.
From the table, we can see that there are only nine classes that are statistically significant.
Of those nine classes, eight show a positive effect of the seeding configurations, while only
one indicates a better performance for the baseline. In four cases (jsoup-78aeac18c6,
jsoup-eff15210b0 , semver4j-48ffbfd1f6, traccar-ec2b7b64a8) there is a bene-
fit from the three configurations, carving, cloning, and combined. Meanwhile, the other
four results are split into the three configurations with the following distributions: two
for the combined configuration (traccar-074dc016d2, word-wrap-930eb5e91a), one for
cloning (crawler-commons-d8a6126365), and one for carving configurations (jsoup-4864af45af).
As for the result, that shows that the baseline performed better, that is, only when compared
to the combined configuration.

The biggest takeaway from this table is that in about 81% of the cases, the line coverage
does not seem to improve with any of the seeding strategies. Despite that, there are some
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cases where seeding makes the difference for the better and worse. It seems that there is no
single configuration that constantly performs better than others, since for each configuration
there exist cases where at least one class improves only for that configuration. Addition-
ally, there exist classes where any one of the seeding configurations will make a positive
difference.
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6.1. Results

Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-7449db4901 CommentsConfiguration 1.000 0.500 1.000 0.500 1.000 0.500
ConfigMe-cab40d1c3c PropertyListBuilder 0.408 0.400 0.204 0.350 0.083 0.300
aws-java-nio-spi-for-s3-890fdddf30 S3Path 0.786 0.535 0.073 0.715 0.159 0.670
aws-secretsmanager-jdbc-42dc301cc7 AWSSecretsManagerPostgreSQLDriver 1.000 0.500 1.000 0.500 1.000 0.500
crawler-commons-d8a6126365 SimpleRobotRulesParser 0.704 0.555 0.061 0.750 0.007 0.855
crowdin-api-client-java-334d414753 JacksonJsonTransformer 1.000 0.500 1.000 0.500 1.000 0.500
epubcheck-8575a6b1c4 EpubChecker 0.121 0.290 0.568 0.420 0.471 0.400
formatter-maven-plugin-a6994326aa CssFormatter 1.000 0.500 1.000 0.500 1.000 0.500
java-solutions-7a73ea56d0 OnlineStockSpan 1.000 0.500 1.000 0.500 1.000 0.500
java-stellar-sdk-06641953c4 KeyPair 0.328 0.615 1.000 0.505 0.871 0.520
java-stellar-sdk-d6379e9615 Transaction 0.593 0.575 0.791 0.540 0.909 0.520
jsoup-13f7ef9241 DataNode 1.000 0.500 1.000 0.500 1.000 0.500
jsoup-23573ef31c Document 0.102 0.320 0.081 0.285 0.926 0.515
jsoup-23ea77ef4b W3CDom 0.562 0.420 0.938 0.515 0.088 0.725
jsoup-4864af45af Safelist 0.061 0.740 0.015 0.815 0.606 0.430
jsoup-78aeac18c6 CharacterReader 0.001 0.900 0.001 0.900 0.004 0.850
jsoup-9170b1d17b Attributes 0.006 0.140 0.429 0.400 0.108 0.295
jsoup-b129bc9e3b HttpConnection 0.211 0.670 0.405 0.615 0.240 0.660
jsoup-c507588b5c TextNode 1.000 0.500 1.000 0.500 0.368 0.450
jsoup-c61ce94f35 StructuralEvaluator 1.000 0.500 1.000 0.500 1.000 0.500
jsoup-e1880ad73e UrlBuilder 1.000 0.505 0.670 0.460 0.626 0.455
jsoup-eff15210b0 HttpConnection 0.001 0.945 0.0 0.965 0.002 0.905
jsoup-f0eb6bd1cc UrlBuilder 0.583 0.450 1.000 0.500 0.278 0.395
markedj-2881d5b547 Marked 1.000 0.500 1.000 0.500 1.000 0.500
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 1.000 0.500 1.000 0.500 1.000 0.500
semver4j-48ffbfd1f6 XRangeProcessor 0.033 0.760 0.023 0.780 0.001 0.915
semver4j-bf853ab269 Semver 1.000 0.500 1.000 0.500 1.000 0.500
traccar-074dc016d2 MediaFilter 0.026 0.770 0.585 0.570 0.773 0.540
traccar-1a1126d2d3 HuaShengProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-28440b7726 RuptelaProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-2ac77554f7 T55ProtocolDecoder 0.756 0.460 0.691 0.455 0.894 0.480
traccar-2dd48fa51b GatorProtocolEncoder 0.821 0.470 0.966 0.490 0.761 0.540
traccar-3ba077b000 TramigoFrameDecoder 0.063 0.740 0.195 0.670 0.289 0.640
traccar-532c414196 WatchFrameDecoder 0.467 0.405 0.562 0.425 0.784 0.540
traccar-596036dc33 Jt600FrameDecoder 0.466 0.600 0.377 0.620 0.516 0.410
traccar-6e5481ebb1 SuntechProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-7ade92a97f LaipacProtocolDecoder 0.810 0.465 0.707 0.550 0.343 0.375
traccar-94fbc93f8b GalileoFrameDecoder 0.275 0.640 0.155 0.685 0.668 0.560
traccar-9a427527da Minifinder2ProtocolEncoder 0.368 0.550 1.000 0.500 1.000 0.500
traccar-a07e078645 Tk103ProtocolDecoder 0.452 0.600 0.514 0.585 0.269 0.645
traccar-a24d7d5d7a FreematicsProtocolDecoder 0.463 0.595 0.655 0.560 0.592 0.570
traccar-ab801e8565 Tk103ProtocolDecoder 0.141 0.690 0.285 0.630 0.637 0.560
traccar-b3c6e22fc1 BufferUtil 1.000 0.500 1.000 0.500 1.000 0.500
traccar-b5d5ec4318 Gt06ProtocolDecoder 0.084 0.270 0.083 0.270 0.393 0.385
traccar-ec2b7b64a8 Parser 0.005 0.855 0.012 0.810 0.021 0.775
traccar-f1470e5670 WatchFrameDecoder 0.702 0.445 0.620 0.430 0.470 0.600
traccar-f73263da48 WialonProtocolDecoder 0.693 0.550 0.398 0.400 0.693 0.450
word-wrap-930eb5e91a WordWrap 0.035 0.765 0.938 0.515 0.443 0.395

Table 6.1: Table showing the Mann-Whitney U Tests p-value and Vargha-Delaney Â12 effect
size when comparing baseline to different seeding configurations w.r.t. line coverage. High-
lighted p-value indicates a statistically significant difference from the baseline (p-value <
0.05), where a Â12 effect size score greater than 0.5 shows better performance for the corre-
sponding seeding configuration, while a lower score indicates better baseline performance.
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6.1.2 Branch Coverage

Secondly, similar to line coverage analysis, let us examine the impact of seeding strategies
compared to the baseline on branch coverage.

Table 6.2 presents an identical layout to Table 6.1 with the only difference being that
the compared values correspond to branch coverage rather than line coverage. Similarly to
the impact of line coverage, branch coverage does not appear to be influenced by any of the
seeding strategies in 81% of the cases. Branch coverage seems more likely to be negatively
impacted by seeding configurations, since four (aws-java-nio-spi-for-s3-890fdddf30,
jsoup-23573ef31c, jsoup-9170b1d17b, jsoup-c507588b5c) out of nine show better
performance with the baseline. The worse performance seems to occur across different con-
figurations, three times in combined configuration (aws-java-nio-spi-for-s3-890fdddf30,
jsoup-23573ef31c, jsoup-9170b1d17b) and once in carving configuration

(aws-java-nio-spi-for-s3-890fdddf30) and cloning (jsoup-c507588b5c). Re-
garding the remaining five positive improvements for the seeding configurations, we can see
that in three cases (jsoup-78aeac18c6, semver4j-48ffbfd1f6, traccar-ec2b7b64a8)
it is once again that all three configurations show improved performance. While the remain-
ing two positive improvements go, one each for standalone carving (jsoup-4864af45af)
and standalone cloning configurations (crawler-commons-d8a6126365 ).

Once again, the biggest takeaway seems to be that LLM-based seeding makes little
significant difference apart from specific classes where it could benefit or disadvantage the
branch coverage. Not a single configuration seems to clearly stand out as the most or least
beneficial.

34



6.1. Results

Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-7449db4901 CommentsConfiguration 1.000 0.500 1.000 0.500 1.000 0.500
ConfigMe-cab40d1c3c PropertyListBuilder 0.408 0.400 0.204 0.350 0.083 0.300
aws-java-nio-spi-for-s3-890fdddf30 S3Path 0.036 0.250 0.021 0.220 0.670 0.540
aws-secretsmanager-jdbc-42dc301cc7 AWSSecretsManagerPostgreSQLDriver 1.000 0.500 1.000 0.500 1.000 0.500
crawler-commons-d8a6126365 SimpleRobotRulesParser 0.518 0.590 0.157 0.690 0.012 0.835
crowdin-api-client-java-334d414753 JacksonJsonTransformer 1.000 0.500 1.000 0.500 1.000 0.500
epubcheck-8575a6b1c4 EpubChecker 0.270 0.350 0.446 0.605 0.705 0.445
formatter-maven-plugin-a6994326aa CssFormatter 1.000 0.500 1.000 0.500 1.000 0.500
java-solutions-7a73ea56d0 OnlineStockSpan 1.000 0.500 1.000 0.500 1.000 0.500
java-stellar-sdk-06641953c4 KeyPair 0.226 0.640 0.670 0.460 0.871 0.520
java-stellar-sdk-d6379e9615 Transaction 0.760 0.545 0.879 0.525 1.000 0.505
jsoup-13f7ef9241 DataNode 1.000 0.500 1.000 0.500 1.000 0.500
jsoup-23573ef31c Document 0.047 0.250 0.052 0.250 0.865 0.475
jsoup-23ea77ef4b W3CDom 0.937 0.515 0.841 0.470 0.272 0.645
jsoup-4864af45af Safelist 0.062 0.750 0.011 0.840 0.789 0.460
jsoup-78aeac18c6 CharacterReader 0.005 0.860 0.002 0.910 0.004 0.880
jsoup-9170b1d17b Attributes 0.005 0.130 0.814 0.465 0.174 0.320
jsoup-b129bc9e3b HttpConnection 0.937 0.515 0.667 0.440 0.640 0.565
jsoup-c507588b5c TextNode 0.183 0.665 0.259 0.645 0.017 0.195
jsoup-c61ce94f35 StructuralEvaluator 1.000 0.500 1.000 0.500 1.000 0.500
jsoup-e1880ad73e UrlBuilder 0.211 0.370 0.386 0.415 0.386 0.415
jsoup-eff15210b0 HttpConnection 0.190 0.670 0.429 0.605 0.345 0.625
jsoup-f0eb6bd1cc UrlBuilder 0.583 0.450 1.000 0.500 0.255 0.390
markedj-2881d5b547 Marked 1.000 0.500 1.000 0.500 1.000 0.500
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 1.000 0.500 1.000 0.500 1.000 0.500
semver4j-48ffbfd1f6 XRangeProcessor 0.033 0.760 0.023 0.780 0.001 0.930
semver4j-bf853ab269 Semver 1.000 0.500 0.368 0.450 1.000 0.500
traccar-074dc016d2 MediaFilter 1.000 0.500 1.000 0.500 1.000 0.500
traccar-1a1126d2d3 HuaShengProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-28440b7726 RuptelaProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-2ac77554f7 T55ProtocolDecoder 0.520 0.420 0.307 0.380 0.701 0.450
traccar-2dd48fa51b GatorProtocolEncoder 0.681 0.450 0.830 0.470 1.000 0.500
traccar-3ba077b000 TramigoFrameDecoder 0.063 0.740 0.195 0.670 0.221 0.660
traccar-532c414196 WatchFrameDecoder 0.491 0.410 0.562 0.425 0.784 0.540
traccar-596036dc33 Jt600FrameDecoder 0.376 0.620 0.317 0.635 0.444 0.395
traccar-6e5481ebb1 SuntechProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-7ade92a97f LaipacProtocolDecoder 0.429 0.400 0.542 0.580 0.413 0.390
traccar-94fbc93f8b GalileoFrameDecoder 0.275 0.640 0.155 0.685 0.528 0.585
traccar-9a427527da Minifinder2ProtocolEncoder 0.368 0.550 1.000 0.500 1.000 0.500
traccar-a07e078645 Tk103ProtocolDecoder 0.452 0.600 0.660 0.560 0.269 0.645
traccar-a24d7d5d7a FreematicsProtocolDecoder 0.301 0.600 0.301 0.600 1.000 0.500
traccar-ab801e8565 Tk103ProtocolDecoder 0.078 0.730 0.285 0.630 0.738 0.545
traccar-b3c6e22fc1 BufferUtil 1.000 0.500 1.000 0.500 1.000 0.500
traccar-b5d5ec4318 Gt06ProtocolDecoder 0.061 0.250 0.065 0.255 0.360 0.375
traccar-ec2b7b64a8 Parser 0.005 0.855 0.012 0.810 0.021 0.775
traccar-f1470e5670 WatchFrameDecoder 0.758 0.455 0.617 0.430 0.321 0.635
traccar-f73263da48 WialonProtocolDecoder 0.693 0.550 0.398 0.400 0.693 0.450
word-wrap-930eb5e91a WordWrap 0.179 0.680 1.000 0.495 0.969 0.510

Table 6.2: Table showing the Mann-Whitney U Tests p-value and Vargha-Delaney Â12 ef-
fect size when comparing baseline to different seeding configurations w.r.t. branch cover-
age. Highlighted p-value indicates a statistically significant difference from the baseline
(p-value < 0.05), where a Â12 effect size score greater than 0.5 shows better performance
for the corresponding seeding configuration, while a lower score indicates better baseline
performance.
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6.1.3 Mutation Score

Following in line with the previous two sections 6.1.1 and 6.1.2, now we will look at the
p-value and Â12 values for the mutation score metric in Table 6.3.

Once again, there are only a handful of values with statistical significance. In to-
tal, there are 13 benchmark classes that have a p-value less than 0.05. Six of those 13
classes show that the baseline performed better than the seeding configurations. Interest-
ingly enough, not a single one of those six classes corresponds to the standalone carving
configuration. Instead, we have four classes (aws-java-nio-spi-for-s3-890fdddf30,
jsoup-23573ef31c, jsoup-9170b1d17b, traccar-b3c6e22fc1) with better baseline per-
formance for the combined configuration and the remaining two (jsoup-13f7ef9241, jsoup-c507588b5c)
for the cloning configuration. Regarding the positive improvement due to seeding, we
can see two classes (jsoup-78aeac18c6, jsoup-b129bc9e3b) with improvement in all
three configurations. The remaining five classes have improvements in the following con-
figurations: jsoup-4864af45af improved in carving configuration, jsoup-b129bc9e3b
improved in combined and carving configurations, semver4j-48ffbfd1f6 improved in
combined and cloning configurations, semver4j-bf853ab269 improved in cloning con-
figuration, and traccar-ec2b7b64a8 improved in combined and carving configurations.
Overall, we can see once again that there is no obvious pattern in which configuration leads
to which improvement. Sometimes any seeding strategy will help improve the mutation
score metric, in other times it might be more specific to a particular class under test and
could either improve or worsen the score. The one interesting observation is that the only
configuration which seems to not have any downsides w.r.t. mutation score is standalone
carving. Perhaps the reasons for this could be further investigated in the future; however,
as it stands, no concrete conclusions can be drawn from the table as to why this happened.
After all, this pattern could be very specific to the given set of projects.
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Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-7449db4901 CommentsConfiguration 1.000 0.500 1.000 0.500 1.000 0.500
ConfigMe-cab40d1c3c PropertyListBuilder 0.408 0.400 0.204 0.350 0.064 0.280
aws-java-nio-spi-for-s3-890fdddf30 S3Path 0.048 0.235 0.849 0.470 0.761 0.545
aws-secretsmanager-jdbc-42dc301cc7 AWSSecretsManagerPostgreSQLDriver 1.000 0.500 1.000 0.500 1.000 0.500
crawler-commons-d8a6126365 SimpleRobotRulesParser 1.000 0.500 1.000 0.500 1.000 0.500
crowdin-api-client-java-334d414753 JacksonJsonTransformer 0.077 0.350 0.167 0.400 0.368 0.450
epubcheck-8575a6b1c4 EpubChecker 0.285 0.355 0.157 0.310 0.298 0.360
formatter-maven-plugin-a6994326aa CssFormatter 0.204 0.650 0.398 0.600 1.000 0.500
java-solutions-7a73ea56d0 OnlineStockSpan 1.000 0.500 1.000 0.500 1.000 0.500
java-stellar-sdk-06641953c4 KeyPair 0.307 0.620 1.000 0.500 1.000 0.505
java-stellar-sdk-d6379e9615 Transaction 0.789 0.540 0.970 0.510 0.970 0.510
jsoup-13f7ef9241 DataNode 0.137 0.320 0.398 0.400 0.032 0.250
jsoup-23573ef31c Document 0.043 0.260 0.080 0.280 0.257 0.360
jsoup-23ea77ef4b W3CDom 0.619 0.570 0.673 0.560 0.249 0.655
jsoup-4864af45af Safelist 0.150 0.695 0.011 0.840 0.618 0.430
jsoup-78aeac18c6 CharacterReader 0.012 0.835 0.009 0.850 0.006 0.865
jsoup-9170b1d17b Attributes 0.006 0.130 0.424 0.390 0.075 0.260
jsoup-b129bc9e3b HttpConnection 0.037 0.780 0.004 0.885 0.287 0.645
jsoup-c507588b5c TextNode 0.559 0.420 0.906 0.480 0.036 0.225
jsoup-c61ce94f35 StructuralEvaluator 0.584 0.450 0.803 0.530 1.000 0.495
jsoup-e1880ad73e UrlBuilder 1.000 0.500 1.000 0.500 0.583 0.450
jsoup-eff15210b0 HttpConnection 0.003 0.890 0.004 0.880 0.001 0.925
jsoup-f0eb6bd1cc UrlBuilder 0.301 0.600 0.301 0.600 0.651 0.550
markedj-2881d5b547 Marked 0.871 0.475 0.434 0.600 0.062 0.725
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 1.000 0.500 1.000 0.500 1.000 0.500
semver4j-48ffbfd1f6 XRangeProcessor 0.007 0.815 0.144 0.650 0.004 0.850
semver4j-bf853ab269 Semver 0.129 0.700 0.073 0.735 0.005 0.860
traccar-074dc016d2 MediaFilter 1.000 0.500 1.000 0.500 1.000 0.500
traccar-1a1126d2d3 HuaShengProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-28440b7726 RuptelaProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-2ac77554f7 T55ProtocolDecoder 0.815 0.470 0.375 0.400 0.963 0.510
traccar-2dd48fa51b GatorProtocolEncoder 1.000 0.500 0.368 0.450 1.000 0.500
traccar-3ba077b000 TramigoFrameDecoder 0.248 0.655 0.484 0.595 0.393 0.615
traccar-532c414196 WatchFrameDecoder 0.640 0.440 0.671 0.445 0.522 0.580
traccar-596036dc33 Jt600FrameDecoder 1.000 0.495 0.789 0.540 0.193 0.325
traccar-6e5481ebb1 SuntechProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
traccar-7ade92a97f LaipacProtocolDecoder 0.681 0.450 0.451 0.585 1.000 0.500
traccar-94fbc93f8b GalileoFrameDecoder 0.093 0.715 0.196 0.670 0.432 0.605
traccar-9a427527da Minifinder2ProtocolEncoder 0.368 0.550 1.000 0.500 1.000 0.500
traccar-a07e078645 Tk103ProtocolDecoder 0.452 0.600 0.514 0.585 0.269 0.645
traccar-a24d7d5d7a FreematicsProtocolDecoder 0.278 0.640 0.526 0.585 0.254 0.645
traccar-ab801e8565 Tk103ProtocolDecoder 0.055 0.750 0.285 0.630 0.668 0.555
traccar-b3c6e22fc1 BufferUtil 0.038 0.245 0.504 0.420 0.303 0.375
traccar-b5d5ec4318 Gt06ProtocolDecoder 0.302 0.360 0.087 0.270 0.236 0.340
traccar-ec2b7b64a8 Parser 0.005 0.855 0.036 0.765 0.157 0.680
traccar-f1470e5670 WatchFrameDecoder 0.502 0.410 0.507 0.410 0.641 0.435
traccar-f73263da48 WialonProtocolDecoder 1.000 0.500 1.000 0.500 1.000 0.500
word-wrap-930eb5e91a WordWrap 0.472 0.600 0.570 0.580 0.704 0.555

Table 6.3: Table showing the Mann-Whitney U Tests p-value and Vargha-Delaney Â12 ef-
fect size when comparing baseline to different seeding configurations w.r.t. mutation score.
Highlighted p-value indicates a statistically significant difference from the baseline (p-value
< 0.05), where a Â12 effect size score greater than 0.5 shows better performance for the
corresponding seeding configuration, while a lower score indicates better baseline perfor-
mance.
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6.1.4 Area Under The Curve

Lastly, we examine the result for the area under the curve shown in Table 6.4. It is possible
that both the baseline and seeding configurations reach the same total number of targets;
however, the time of when they arrived at that point may differ significantly thanks to the
previously extracted information from the seed. This is an important metric because if the
search algorithm can achieve the same or higher set of coverage goals during the search
faster, then it could either terminate early in case of covering all objectives or spend more
time attempting to cover even more objectives.

Once again, the table shows that in most of the benchmarks, 64%, there is no statistically
significant difference between the baseline and any of the three seeding configurations.
Despite that, AUC is still the metric where we see the most difference, with 17 benchmark
classes, 14 of which show positive improvements for at least one seeding configuration. The
three classes where we see the baseline perform better are jsoup-c507588b5c in cloning
configuration, traccar-b5d5ec4318 in carving configuration, and traccar-f1470e5670
in combined configuration. Those results once again show that any one of the three seeding
configurations could lose to a baseline configuration.

As for the positive performance of seeding configurations, we can see that eight classes
have an improved score in all three configurations, indicating that in certain situations any
seeding strategy will be sufficient to make some difference. The improvement in other six
classes is distributed as follows among the configurations, combined configuration sees im-
provement in two of those classes (java-solutions-7a73ea56d0 , jsoup-4864af45af
), carving configuration sees improvement in two classes (jsoup-4864af45af, traccar-2dd48fa51b),
and cloning configuration sees improvement in

(crawler-commons-d8a6126365, formatter-maven-plugin-a6994326aa, java-solutions-7a73ea56d0,
jsoup-23573ef31c, traccar-2dd48fa51b) five of those classes. Although the standalone
cloning configuration has the most classes which it positively impacts, it does not subsume
all classes which improve in other standalone configurations, therefore, it cannot be consid-
ered best given the data.
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Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-7449db4901 CommentsConfiguration 0.052 0.740 0.078 0.350 0.147 0.675
ConfigMe-cab40d1c3c PropertyListBuilder 0.212 0.670 0.186 0.320 0.623 0.570
aws-java-nio-spi-for-s3-890fdddf30 S3Path 0.623 0.570 0.970 0.510 0.140 0.700
aws-secretsmanager-jdbc-42dc301cc7 AWSSecretsManagerPostgreSQLDriver 1.000 0.500 1.000 0.500 1.000 0.500
crawler-commons-d8a6126365 SimpleRobotRulesParser 0.273 0.650 0.076 0.740 0.045 0.770
crowdin-api-client-java-334d414753 JacksonJsonTransformer 0.003 0.900 0.004 0.890 0.002 0.910
epubcheck-8575a6b1c4 EpubChecker 0.054 0.760 0.385 0.620 0.427 0.610
formatter-maven-plugin-a6994326aa CssFormatter 0.821 0.465 0.650 0.435 0.011 0.840
java-solutions-7a73ea56d0 OnlineStockSpan 0.007 0.840 0.456 0.580 0.001 0.920
java-stellar-sdk-06641953c4 KeyPair 0.791 0.540 0.678 0.560 0.345 0.370
java-stellar-sdk-d6379e9615 Transaction 0.521 0.590 0.850 0.530 0.850 0.530
jsoup-13f7ef9241 DataNode 0.014 0.830 0.005 0.880 0.026 0.800
jsoup-23573ef31c Document 0.241 0.340 0.345 0.370 0.007 0.860
jsoup-23ea77ef4b W3CDom 0.850 0.470 0.571 0.420 0.241 0.660
jsoup-4864af45af Safelist 0.003 0.900 0.004 0.890 0.212 0.670
jsoup-78aeac18c6 CharacterReader 0.002 0.920 0.001 0.940 0.004 0.890
jsoup-9170b1d17b Attributes 0.850 0.470 0.427 0.390 0.140 0.300
jsoup-b129bc9e3b HttpConnection 0.054 0.760 0.162 0.690 0.140 0.700
jsoup-c507588b5c TextNode 0.427 0.610 0.273 0.650 0.045 0.230
jsoup-c61ce94f35 StructuralEvaluator 0.734 0.450 0.850 0.470 0.140 0.300
jsoup-e1880ad73e UrlBuilder 0.850 0.470 0.850 0.470 0.241 0.340
jsoup-eff15210b0 HttpConnection 0.0 0.980 0.002 0.920 0.001 0.930
jsoup-f0eb6bd1cc UrlBuilder 0.054 0.760 0.241 0.660 0.970 0.510
markedj-2881d5b547 Marked 0.005 0.870 0.016 0.820 0.0 0.960
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 0.003 0.900 0.0 1.000 0.0 1.000
semver4j-48ffbfd1f6 XRangeProcessor 0.385 0.620 0.521 0.410 0.623 0.570
semver4j-bf853ab269 Semver 0.002 0.910 0.003 0.900 0.017 0.820
traccar-074dc016d2 MediaFilter 0.345 0.630 0.385 0.620 0.734 0.450
traccar-1a1126d2d3 HuaShengProtocolDecoder 0.678 0.560 0.273 0.650 0.970 0.510
traccar-28440b7726 RuptelaProtocolDecoder 1.000 0.500 0.910 0.480 0.791 0.540
traccar-2ac77554f7 T55ProtocolDecoder 0.427 0.390 0.473 0.400 0.385 0.380
traccar-2dd48fa51b GatorProtocolEncoder 0.104 0.720 0.038 0.780 0.017 0.820
traccar-3ba077b000 TramigoFrameDecoder 0.734 0.450 0.427 0.610 0.970 0.510
traccar-532c414196 WatchFrameDecoder 0.076 0.260 0.212 0.330 1.000 0.500
traccar-596036dc33 Jt600FrameDecoder 0.427 0.390 0.970 0.490 0.970 0.490
traccar-6e5481ebb1 SuntechProtocolDecoder 0.734 0.550 0.910 0.520 0.140 0.300
traccar-7ade92a97f LaipacProtocolDecoder 0.734 0.450 0.850 0.470 0.678 0.440
traccar-94fbc93f8b GalileoFrameDecoder 0.473 0.400 0.970 0.510 0.121 0.710
traccar-9a427527da Minifinder2ProtocolEncoder 0.307 0.640 0.345 0.630 0.850 0.470
traccar-a07e078645 Tk103ProtocolDecoder 0.970 0.510 0.734 0.450 0.473 0.600
traccar-a24d7d5d7a FreematicsProtocolDecoder 0.910 0.480 0.910 0.520 0.791 0.540
traccar-ab801e8565 Tk103ProtocolDecoder 0.521 0.590 0.910 0.520 0.970 0.490
traccar-b3c6e22fc1 BufferUtil 0.054 0.240 0.089 0.270 0.970 0.490
traccar-b5d5ec4318 Gt06ProtocolDecoder 0.140 0.300 0.031 0.210 0.734 0.550
traccar-ec2b7b64a8 Parser 0.001 0.940 0.001 0.940 0.003 0.900
traccar-f1470e5670 WatchFrameDecoder 0.038 0.220 0.054 0.240 0.910 0.480
traccar-f73263da48 WialonProtocolDecoder 0.910 0.520 0.473 0.400 0.734 0.450
word-wrap-930eb5e91a WordWrap 1.000 0.500 0.623 0.430 0.473 0.600

Table 6.4: Table showing the Mann-Whitney U Tests p-value and Vargha-Delaney Â12 ef-
fect size when comparing baseline to different seeding configurations w.r.t. normalized area
under the curve (AUC). Highlighted p-value indicates a statistically significant difference
from the baseline (p-value < 0.05), where a Â12 effect size score greater than 0.5 shows bet-
ter performance for the corresponding seeding configuration, while a lower score indicates
better baseline performance.
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6.2 Discussion

LLM Limitations

As described in Chapter 4, our approach, on a high level, can be split into two parts. The first
is the generation of LLM-based test cases through TestSpark. The second is EvoSuite-based
test case generation, where we supply compiled LLM-based test cases as a seed. In order
for our two-part approach to work properly, it is important that the first LLM-based part
manages to produce tests that can be compiled. If it does not succeed, then our approach
cannot benefit from the seeding and becomes equivalent to the default test case generation
approach. Hence, the first thing we did is check how well the ChatGPT-4o model was
generating test cases for our benchmarks. We can break up this analysis into two parts; the
first part looks at the number of cases where the LLM could not generate any cases at all,
Figure 6.1. The second part will look at the distribution of cases where LLM-generated
tests could not be compiled, Figure 6.2.

From Figure 6.1 we can see that there are 16 benchmark projects for which ChatGPT-4o
could not generate any tests for the ten iterations. The most likely reason for such a failure
is the context-size limitations of the LLM. It could be that either the query or the response
repeatedly exceeds the size limits, leading to an empty or unfinished response. A slightly
more interesting observation from the same figure is that there are seven projects for which
the LLM struggled to generate test cases for only one out of ten iterations. The query size
is an unlikely culprit for this failure, because it should remain the same across all iterations
and, as is evident from the data, it was not a problem for the other nine iterations. Therefore,
the most likely reason is the response size limitation of ChatGPT-4o. If the response of a
model exhausts the available response token amount, then it might not be able to finish the
code snippet, leading to difficulties in parsing and consequently discarding of the entire
response. Exclusion of all of those benchmarks shrinks our dataset from 136 projects to
113.

Figure 6.2 further shows how ChatGPT-4o struggles with consistently producing a test
that can be compiled and used. The histogram places all projects that have zero compiled
tests despite having LLM generate some tests for them into different bins, representing the
number of iterations where tests could not be compiled. From the figure, we can see that
there is more spread in the histogram closer to the lower values of failure, i.e. the model
mostly fails to produce functional tests for one or two iterations out of ten. Nevertheless,
adding up all the failures gives us another 64 benchmarks which can be excluded from
the dataset. It should be noted that one benchmark. traccar-b083371beb, is already
accounted for in the histogram one because it also has one iteration where LLM could not
generate any tests. Thus, our data set size decreases by 63 projects, leading to only 50
projects remaining in which LLM managed to consistently supply EvoSuite with functional
seeds.

In total, we have excluded about 63% of the benchmark projects due to the ChatGPT-4o
instability in the generation of functional tests. The important takeaway we can draw from
the analysis of the first figure, 6.1, the one that examines the number of classes where LLM
did not generate any tests, is that the prompt and response sizes are important. TestSpark,
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Figure 6.1: A histogram showing for how many benchmark iterations ChatGPT-4o strug-
gled to generate tests. The x-axis is the number of iterations for which a benchmark failed
to generate the LLM test. The y-axis is the number of benchmarks that fall into the bins
defined on x-axis.

Figure 6.2: A histogram showing for how many benchmark iterations ChatGPT-4o gen-
erated testc could not be compiled. The x-axis is the number of iterations for which a
benchmark could not compile LLM tests. The y-axis is the number of benchmarks that fall
into the bins defined on x-axis.

41



6. RESULTS & DISCUSSION

the programme we use to generate LLM-based test cases, already attempts to dynamically
adjust LLM’s context size. However, even with this adjustment, we can see several classes
where the prompt size is too large. Thus, suggesting more research in a more precise con-
text collection approach for LLM prompts building for test generation purposes. Another
takeaway is that LLM’s response size could also be a problem and that perhaps the LLM
prompt should not ask for a generation of a whole test suite but rather individual tests. Since
it would be more resource efficient to ask for one test, it would be better to ask for one. case
and get it, rather than asking for more at once and getting nothing.

The second figure, 6.2, the one that examines the case where LLM test cases could not
be compiled, also points us in the direction of better prompt creation or an improved feed-
back loop, although in a less clear way. TestSpark already incorporates a feedback loop
which attempts to fix compilation errors by prompting the LLM to fix them. Although it is
not clear from our data how much this loop improved the test case generation performance,
it is possible that it has greatly improved the number of functional test cases. Perhaps a fur-
ther investigation into the feedback mechanism, the most often compilation failure reasons
and prompt building could further make LLM-based test case generation more stable.

6.2.1 Overall Observations

When examining the four different tables (6.1, 6.2, 6.3, 6.4), corresponding to four differ-
ent metrics, the results appear to show that for most classes, the seeding configurations do
not improve the test generated by EvoSuite. After all, the highest number of individual
benchmark classes that are influenced by any seeding configuration for a specific metric
was 17 out of 48 (35%) for the AUC metric. However, if we count the number of unique
benchmark classes which are influenced by any seeding configuration w.r.t. to any metric,
then we will see that exactly half of the projects, 24 projects out of 48, are actually im-
pacted by the seeding configurations. Furthermore, 18 of those 24 projects actually show
a positive effect on some metrics, while only 8 of the 24 show negative effects of seed-
ing configurations. The reason why the number of negative and positive projects does not
add up to 24 (18+ 8 = 26 ̸= 24) is because we have two projects (jsoup-13f7ef9241,
jsoup-23573ef31c) where for some metrics we have improvement, while for others we
have regression. The fact that jsoup-13f7ef9241 experiences both an improvement in
AUC in the cloning configuration and a regression in the mutation score in the same config-
uration is not contradictory. This is because the AUC is calculated based on the goals cov-
ered during the search process. Those goals are not directly related to the mutation score,
as it is computed later on in the already generated test suite. The algorithm could have
reached the same number of goals faster, but still results in worse assertions, since mutation
is not one of the default criteria, hence leading to a worse mutation score. Furthermore,
the divergent impact on the jsoup-23573ef31c benchmark is also not unexplainable. This
is because improvement and regression occur in different configurations, namely the AUC
is improved in the cloning configuration, while both branch coverage and mutation scores
regress in the combined configuration.

However, the fact that our three different configurations influence half of the benchmark
classes does not validate our LLM-based seeding approach, because we cannot recommend
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to users running all three configurations instead of a single baseline. So, how did the differ-
ent configurations perform individually? To answer this question, we can count the number
of unique benchmark classes with statistically significant results for each particular config-
uration.

The combined configuration in total statistically significantly impacts 19 benchmark
classes, 14 of which are positive and five are negative. The Carving Configuration in total
impacts 14 classes, where 12 of those are positive while only two are negative. Lastly, the
cloning configuration influences 15 benchmark classes, where 14 of them have a positive
impact, while only two show a negative effect. Note that one of the classes in the cloning
configuration with a negative impact is jsoup-13f7ef9241 in the mutation score, but a
positive one in the AUC. As explained in a couple of the paragraphs above, this is not an
impossible situation to be in, given the independence of AUC and mutation score metrics.

Overall, grouping the impact on benchmark classes per configuration allows us to see
that in most cases if seeding makes a difference, it is positive. Both the cloning and the
combined configurations share the most classes with positive impact (14), but cloning seems
to negatively affect only two and not five classes like the combined configuration.

From these data, one could suggest that using any of the three seeding configurations
should provide better or the same results in most cases if LLM-generated tests are available.
However, given poor generalization of this approach to other benchmark classes highlighted
by the fact that only half of the remaining benchmarks (24/48) see any influence and the fact
that we already excluded 88 benchmark classes out of 136 which at any point failed on the
LLM test case generation step, it does not seem like a very certain endeavour. In general, if
the developer has the resources to attempt test generation with LLM’s for their one specific
class, and it produces a set of functional tests, then the developer can also provide those
tests as a seed and use one of the three configurations without expecting much of a negative
influence but perhaps some positive one.

Nevertheless, our study is not over, as an intriguing question arises from all of that
data. Why do we see a statistically significant difference from the baseline in half of the
classes but not in the other? The statistically significant data we collected by comparing the
baseline to different configuration w.r.t. different metrics inform us of whether the results
of a configuration are statistically different from the baseline or whether we can get them by
chance. We see that in half of the cases, the information contained within the provided seed
influenced the search, mostly positively, but with occasional negative side effects. However,
in the other half of the cases, there was no difference with the baseline? Why? What was the
difference between the seed and the information it provided and how was this information
not improving or hindering the search?

6.2.2 EvoSuite’s Carving And Cloning Limitations

This section looks into the questions established a couple of the lines above, namely why
there is no statistical difference for seeding configurations for half of the benchmarks.

To answer this question, we can start by looking at the information contained within the
EvoSuite log files for each benchmark class generation. Those files contain quite a lot of
information, although they can get pretty large and chaotic due to the reported warnings or
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errors. However, all run configurations that use any type of seeding, cloning, carving, or
combination should have the following entries in their logs, as shown in Figure 6.3.

...
* Executing tests from 28 test classes for carving
...
-> Carved 24 tests for class class org.stellar.sdk.KeyPair from existing JUnit tests
-> Carved 12 tests for class class net.i2p.crypto.eddsa.Utils ...
-> Carved 2 tests for class class net.i2p.crypto.eddsa.math.Field ...

...
* Using 24 carved tests from existing JUnit tests for seeding
...

Figure 6.3: Example of seeding related entries in EvoSuite.log for the KeyPair class of
java-stellar-sdk-06641953c4 benchmark.

The EvoSuite log files as shown in Figure 6.3 usually start with some information about
the current run, which we truncated because it is not very relevant for seeding. The first
interesting information for us is the total number of tests executed from the test classes
for carving. This number, in the figure’s example it is 28, is the total number of tests
which are supplied to the EvoSuite for processing as a seed. After that, EvoSuite proceeds
to attempt to extract information from the tests and create their representation within its
system. If successful, EvoSuite will report the results for which classes it managed to
carve objects and how many carved tests it can use for cloning. For example, in the figure,
we have -> Carved 24 tests for class class org.stellar.sdk.KeyPair from
existing JUnit tests line which implies that 24 of the 28 tests supplied were useful for
the class KeyPair and were saved in the carved object pool if the carving option is enabled.
If the carving option is not enabled, then the carving object pool would not be used, but this
information could still be used for cloning. Whether the seed contains information useful
for cloning is seen in the last line shown * Using 24 carved tests from existing
JUnit tests for seeding . This states that 24 carved tests were found by the carving
mechanism to contain useful information for the cloning, and so they could be used in the
cloning process,

Going back to our question, what this information in the log files tells us is how many of
the supplied tests are actually useful for the carving mechanism and the cloning mechanism.
If the supplied tests were not useful at all, then we would not see lines such as -> Carved
24 tests for class class org.stellar.sdk.KeyPair from existing JUnit tests
and * Using 24 carved tests from existing JUnit tests for seeding the search
performance would be equivalent to the baseline configuration.

To extract all this information from the log files, we created a Python script which
matches on those string patterns and extracts the relevant data. Additionally, the script also
records Boolean values if cloning or carving did happen. For example, if a line similar
to * Using 24 carved tests from existing JUnit tests for seeding is present,
then we extract the number 24 from it and record that cloning did happen, otherwise cloning
did not happen. Similar goes for the carving, but with the lines like -> Carved 24 tests
for class class org.stellar.sdk.KeyPair from existing JUnit tests. If lines
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Figure 6.4: Histogram showing the number of benchmarks from carving configuration
which fall into different bins (y-axis) where bins are the amount of iteration where carv-
ing mechanism was actully used (x-axis).

Figure 6.5: Histogram showing the number of benchmarks from cloning configuration
which fall into different bins (y-axis) where bins are the amount of iteration where cloning
mechanism was actully used (x-axis).

similar to that are present, then we consider carving to have happened and extract the infor-
mation regarding how many tests were carved for which classes. To our great surprise, we
get the results in Figures 6.4, 6.5, 6.6.

The results in Figure 6.4 show the number of benchmarks of the carving configuration
which fall into different bins (y-axis) where the bins are the amount of iteration in which
the carving mechanism was used actively (x-axis). From it we can see that the carving
mechanism actually worked in all ten iterations only for 19 cases and not 48 benchmark
cases, like we evaluated. This means that only in those 19 cases the performance of the
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Figure 6.6: Histogram showing the number of benchmarks from combined configuration
which fall into different bins (y-axis) where bins are the amount of iteration where carving
and cloning mechanism was actully used (x-axis).

search was using the seed information; in the other cases it essentially defaulted to the
baseline configuration.

Similar results can be seen in other figures. For example, Figure 6.5 shows the number
of benchmarks of the cloning configuration that fall into different bins (y-axis) where bins
are the amount of iteration where the cloning mechanism was actively used (x-axis). In it
we can see that actually only in 15 cases the cloning mechanism used the seed information
across all ten iterations.

While Figure 6.6 shows the number of benchmarks from the combined configuration
that fall into different bins (y-axis) where bins are the amount of iteration in which the carv-
ing and cloning mechanism was used actively (x-axis). It also shows that only in 15 cases
the cloning and carving mechanisms used the seed information across all ten iterations.

This finding sheds some light on why half of the classes have significant differences
compared to the baseline and others do not. It was because there was actually no differ-
ence since the seeding mechanism, whether carving, cloning, or both, has struggled to get
anything out of those seeds provided.

Note that the above tables have only 14 benchmark classes, not the 15 which overlap be-
cause traccar-fb83a98d33 did not manage to have 10 successful iterations in the baseline
configuration.

If we count the number of statistically significant results per configuration, then we
get the following data. The carving configuration in total had eight classes where we saw
statistical significance, and all eight of them were showing that the carving configuration
performed better than the baseline. The cloning configuration follows the carving configu-
ration with nine classes showing a statistically significant result, one of which showed both
a positive and negative impact compared to the baseline. Lastly, the combined configuration
influenced the most benchmark classes, 11, only one of which showed better performance
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Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-cab40d1c3c PropertyListBuilder 0.408 0.400 0.204 0.350 0.083 0.300
formatter-maven-plugin-a6994326aa CssFormatter 1.000 0.500 1.000 0.500 1.000 0.500
java-solutions-7a73ea56d0 OnlineStockSpan 1.000 0.500 1.000 0.500 1.000 0.500
java-stellar-sdk-06641953c4 KeyPair 0.328 0.615 1.000 0.505 0.871 0.520
jsoup-13f7ef9241 DataNode 1.000 0.500 1.000 0.500 1.000 0.500
jsoup-4864af45af Safelist 0.061 0.740 0.015 0.815 0.606 0.430
jsoup-78aeac18c6 CharacterReader 0.001 0.900 0.001 0.900 0.004 0.850
jsoup-9170b1d17b Attributes 0.006 0.140 0.429 0.400 0.108 0.295
jsoup-eff15210b0 HttpConnection 0.001 0.945 0.0 0.965 0.002 0.905
markedj-2881d5b547 Marked 1.000 0.500 1.000 0.500 1.000 0.500
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 1.000 0.500 1.000 0.500 1.000 0.500
semver4j-48ffbfd1f6 XRangeProcessor 0.033 0.760 0.023 0.780 0.001 0.915
traccar-ec2b7b64a8 Parser 0.005 0.855 0.012 0.810 0.021 0.775
word-wrap-930eb5e91a WordWrap 0.035 0.765 0.938 0.515 0.443 0.395

Table 6.5: Line Coverage

Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-cab40d1c3c PropertyListBuilder 0.408 0.400 0.204 0.350 0.083 0.300
formatter-maven-plugin-a6994326aa CssFormatter 1.000 0.500 1.000 0.500 1.000 0.500
java-solutions-7a73ea56d0 OnlineStockSpan 1.000 0.500 1.000 0.500 1.000 0.500
java-stellar-sdk-06641953c4 KeyPair 0.226 0.640 0.670 0.460 0.871 0.520
jsoup-13f7ef9241 DataNode 1.000 0.500 1.000 0.500 1.000 0.500
jsoup-4864af45af Safelist 0.062 0.750 0.011 0.840 0.789 0.460
jsoup-78aeac18c6 CharacterReader 0.005 0.860 0.002 0.910 0.004 0.880
jsoup-9170b1d17b Attributes 0.005 0.130 0.814 0.465 0.174 0.320
jsoup-eff15210b0 HttpConnection 0.190 0.670 0.429 0.605 0.345 0.625
markedj-2881d5b547 Marked 1.000 0.500 1.000 0.500 1.000 0.500
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 1.000 0.500 1.000 0.500 1.000 0.500
semver4j-48ffbfd1f6 XRangeProcessor 0.033 0.760 0.023 0.780 0.001 0.930
traccar-ec2b7b64a8 Parser 0.005 0.855 0.012 0.810 0.021 0.775
word-wrap-930eb5e91a WordWrap 0.179 0.680 1.000 0.495 0.969 0.510

Table 6.6: Branch Coverage

in the baseline case.
There does not seem to be any single configuration that subsumes others. To further see

the differences between the configurations, we can examine whether they cover the same
parts.

To examine the coverage overlap between different configurations, we can look at the
generated JaCoCo reports, which contain information of covered and missed branches and
instructions per line. Precisely, we make a script that collects the unique line numbers
of covered instructions and branches into a set, and we do this for each class and each
configuration. Afterwards, we find set intersections between them to see how much of an
overlap there is between different configurations.

First, we examine the 12 benchmark classes for which we see statistical signfincae in
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Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-cab40d1c3c PropertyListBuilder 0.408 0.400 0.204 0.350 0.064 0.280
formatter-maven-plugin-a6994326aa CssFormatter 0.204 0.650 0.398 0.600 1.000 0.500
java-solutions-7a73ea56d0 OnlineStockSpan 1.000 0.500 1.000 0.500 1.000 0.500
java-stellar-sdk-06641953c4 KeyPair 0.307 0.620 1.000 0.500 1.000 0.505
jsoup-13f7ef9241 DataNode 0.137 0.320 0.398 0.400 0.032 0.250
jsoup-4864af45af Safelist 0.150 0.695 0.011 0.840 0.618 0.430
jsoup-78aeac18c6 CharacterReader 0.012 0.835 0.009 0.850 0.006 0.865
jsoup-9170b1d17b Attributes 0.006 0.130 0.424 0.390 0.075 0.260
jsoup-eff15210b0 HttpConnection 0.003 0.890 0.004 0.880 0.001 0.925
markedj-2881d5b547 Marked 0.871 0.475 0.434 0.600 0.062 0.725
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 1.000 0.500 1.000 0.500 1.000 0.500
semver4j-48ffbfd1f6 XRangeProcessor 0.007 0.815 0.144 0.650 0.004 0.850
traccar-ec2b7b64a8 Parser 0.005 0.855 0.036 0.765 0.157 0.680
word-wrap-930eb5e91a WordWrap 0.472 0.600 0.570 0.580 0.704 0.555

Table 6.7: Mutation Score

Benchmark File
Baseline vs
Combined

Baseline vs
Carving

Baseline vs
Cloning

p-value Â12 p-value Â12 p-value Â12

ConfigMe-cab40d1c3c PropertyListBuilder 0.212 0.670 0.186 0.320 0.623 0.570
formatter-maven-plugin-a6994326aa CssFormatter 0.821 0.465 0.650 0.435 0.011 0.840
java-solutions-7a73ea56d0 OnlineStockSpan 0.007 0.840 0.456 0.580 0.001 0.920
java-stellar-sdk-06641953c4 KeyPair 0.791 0.540 0.678 0.560 0.345 0.370
jsoup-13f7ef9241 DataNode 0.014 0.830 0.005 0.880 0.026 0.800
jsoup-4864af45af Safelist 0.003 0.900 0.004 0.890 0.212 0.670
jsoup-78aeac18c6 CharacterReader 0.002 0.920 0.001 0.940 0.004 0.890
jsoup-9170b1d17b Attributes 0.850 0.470 0.427 0.390 0.140 0.300
jsoup-eff15210b0 HttpConnection 0.0 0.980 0.002 0.920 0.001 0.930
markedj-2881d5b547 Marked 0.005 0.870 0.016 0.820 0.0 0.960
nfe-ec5ddf7e73 MDFInfoModalRodoviarioVeiculoReboque 0.003 0.900 0.0 1.000 0.0 1.000
semver4j-48ffbfd1f6 XRangeProcessor 0.385 0.620 0.521 0.410 0.623 0.570
traccar-ec2b7b64a8 Parser 0.001 0.940 0.001 0.940 0.003 0.900
word-wrap-930eb5e91a WordWrap 1.000 0.500 0.623 0.430 0.473 0.600

Table 6.8: AUC Normalized

at least one of the metrics in one of the configurations. Among them, we have nine classes
with a complete overlap in coverage. The only three classes which do not overlap are
jsoup-eff15210b0, semver4j-48ffbfd1f6 and traccar-ec2b7b64a8.

jsoup-eff15210b0 combined configuration has three unique entries. Everything else
is overlapped by all configurations.

semver4j-48ffbfd1f6 cloning configuration has seven unique elements to itself. While
combined and cloning configurations overlap in 32-line numbers but other configurations
only in 26-line numbers.

traccar-ec2b7b64a8 combined configuration has 10 unique elements, while carving
and cloning share the biggest overlap of 72-line numbers, while other configs share 63
entries.
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The two classes which did not have any significance are ConfigMe-cab40d1c3c and
java-stellar-sdk-06641953c4.

ConfigMe-cab40d1c3c It appears that coverage overlap analysis shows that there is
no difference between any of the seeding configurations and baseline. Therefore, there
might be no statistical difference because the normal EvoSuite already has a pretty good
performance without seeding for this class due to class-specific characteristics.

Results for java-stellar-sdk-06641953c4, show inconsistencies which in theory
should have not happened. According to the data, different configurations extracted differ-
ent amounts of information from the same set of test cases. This should not be the case
since carving and cloning mechanisms are supposed to be deterministic, i.e. given the same
set of tests, we should always extract the same information. For example, log files for
java-stellar-sdk-06641953c4 iteration four show that in the combined configuration
there were 21 tests carved for KeyPair class and subsequently used for seeding. However,
in the same iteration four but for the cloning configuration, the logs report that 24 tests were
carved. Both configurations were provided the same set of tests on the same iteration. Upon
attempting to replicate the results locally on a machine rather than a server, we did not see
the same inconsistent behaviour.
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Chapter 7

Conclusions & Future Work

7.1 Conclusion

The results and discussion presented in Chapter 6 regarding our research, “What is the
impact of ChatGPT-4o generated tests when supplied as a seed for carving and cloning
strategies on EvoSuite’s test case generation?”, lead us to the following conclusions and
takeaways.

Our approach described in Chapter,4 which, on the high level, consists of first gener-
ating tests using the ChatGPT-4o model and then supplying them to EvoSuite as a seed,
suffers a major loss in benchmarks due to LLM’s instability of generating functional tests.
The initial GitBug benchmark consisted of 136 Java 11 projects. However, our results show
that ChatGPT-4o was able to reliably generate functional tests for all ten iterations of the
evaluation only on 50 benchmarks. The other 86 benchmarks had at least one iteration in
which an LLM could not complete the response due to context size limitations, or the given
response contained code that could not be compiled. This 63% benchmark loss occurs de-
spite the TestSpark attempts to reduce the prompt size and the feedback loop that prompt the
LLM to fix the compilation issues. Those observations contribute to our research question
by showing that the impact of the ChatGPT-4o test as a seed for EvoSuite can be non-
existent because LLM produces an unusable by the tool response. Future research could
examine how our approach could be changed with respect to prompt building, the chosen
model, and the desired output to increase the consistency of information extracted from
LLM’s responses.

Apart from suffering a great loss in the number of benchmarks due to ChatGPT-4o’s
struggles to produce functional tests, our results show that there exists another loss of in-
formation related to the EvoSuite’s seeding mechanism and the supplied tests. Specifically,
according to the EvoSuite logs, the tool was unable to extract any information to use in the
search process for other 29/331 benchmarks. This marks another discovered problem of our
approach, which could be explored further in future work.

Having excluded all benchmark classes that failed for LLM or seed extraction reasons,

1The carving configuration worked in 19 cases while the cloning and carving worked only in 15 cases.
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we get only 142 benchmark classes which successfully worked across all configurations.
In general, we can see some improvement in line coverage, branch coverage, or mutation
score in six out of 14 benchmark classes across all seeding configurations. Additionally,
there are five classes which achieve the same line coverage for all iterations but improved
areas under the curve scores, thereby indicating a faster convergence. In total, we can see
positive improvements on 11 of 14 benchmarks. As for the negative improvement, there
are only two such cases; one of them is jsoup-9170b1d17b which consistently performs
better in the baseline configuration than in the combined configuration. The second case is
jsoup-13f7ef9241 which performed better w.r.t. mutation score in cloning configuration.
There are only two classes which show complete indifference across all metrics, namely
ConfigMe-cab40d1c3c and java-stellar-sdk-06641953c4. The former seems to have
a complete overlap with respect to line coverage across all four configurations; the latter, ac-
cording to the logs, appears to have some inconsistencies across the different configurations
w.r.t. how much seeding has happened.

Furthermore, we observe little difference between the performance of different seeding
configurations. The coverage overlap analysis shows a difference for only three classes with
some wins for different configurations, i.e. no single configuration that always outperforms
others.

To summarize our findings and answer the above-stated research question, we can see
that LLM-based seeding can improve test case generation performance, with little draw-
backs, w.r.t. to line coverage, branch coverage, mutation score, and area under the curve.
No single seeding strategy, cloning, carving, or combination seem to consistently outper-
form other strategies, and many improvements seem to overlap across all three strategies.
However, our results also show the limitations and areas for improvement for our LLM-
based seeding approach. Almost 90% of the initial benchmark classes were lost due to the
ChatGPT-4o’s struggles at generating functional tests or EvoSuite’s seeding mechanism not
being able to extract any information out of the provided tests. Those limitations indicate
areas for future research and caution for researchers and developers implementing similar
approaches.

7.2 Future work

Our work has shown several limitations of our approach and led us to more unanswered
questions that can be explored further. In this section, we will discuss some potential ideas
which can be further researched in the future.

The first struggle our approach encountered was in LLM’s ability to complete the reply
with a set of test cases that can be compiled. That is the struggle that happened despite
TestSpark’s mechanism for reducing the prompt size and the feedback loop for asking LLM
to fix compilation errors. Future research could investigate what should go into the prompt
so that its size can be reduced to a manageable amount. Additionally, it would be beneficial
to investigate what compilation failures are the most frequent and whether there are any

2One benchmark out of 15 which worked across all three seeding configurations is excluded because it
failed in the baseline case.
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prompt engineering techniques or other repair methods that could increase the amount of
functional code extracted from LLM.

The second area of struggle was in EvoSuite’s ability to extract information from the
provided LLM-generated tests. From our results, it is not clear whether this happened due to
the peculiarities of LLM-generated tests or specifics of the EvoSuite’s seeding mechanism,
or both. Therefore, it would be informative to examine the difference between the LLM
tests generated from which EvoSuite successfully extracted the information and from which
it did not manage it. This insight could be useful for improving the LLM prompt to make
the response more specific to the needs of the seeding mechanism or to improve the seeding
mechanism itself.

A new study with a larger benchmark and more consistent seeding information can
be conducted to further examine the impact of seeding and similarities between seeding
strategies, as our study managed to do that only in 14 classes. A bigger study could also
introduce new configurations in which, in addition to the LLM-based test, it also investigates
the performance of available human written tests as a seed. Those comparisons could give
us data on the quality of the LLM-generated tests as a seed in contrast to the available human
written ones.

Lastly, it would be interesting to see test case generation tools that are directly integrated
with the LLMs, thereby allowing for more granular and precise querying. The current
approach struggles with getting the information out of an LLM and into the EvoSuite’s
system, where this information is correctly represented. Instead, if LLM capabilities were to
be directly integrated into EvoSuite or other test case generation tools, this would potentially
allow for more precise LLM requests. For example, if EvoSuite identifies a need for a
complex object, then it could decide to query the LLM rather than spend time searching for
how to create this object through the iteration of an evolutionary algorithm. This could lead
to better efficiency and effectiveness, as the LLM query would focus specifically on asking
for this specific single object instead of a whole test suite.
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