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Abstract. Assessing flood risks on road infrastructures is critical for the definition of mitigation
strategies and adaptation processes. Some efforts have been made to conduct a regional flood risk
assessment to support the decision-making process of exposed areas. However, these approaches focus
on the physical damage of civil infrastructures without considering indirect impacts resulting from
social aspects or traffic delays due to the functionality loss of transportation infrastructures. Moreover,
existing methodologies do not include a proper assessment of the uncertainties involved in the risk
quantification. This work aims to provide a consistent quantitative flood risk estimation and influence
factor modelling for road infrastructures. To this end, a Flood Risk Factor (FRF) is computed as a
function of hazard, vulnerability, and infrastructure importance factors. A Bayesian Network (BN) is
constructed for considering the interdependencies among the selected input factors, as well as accounting
for the uncertainties involved in the modelling process. The proposed approach allows weighting the
relevant factors differently to compute the FRF and improves the understanding of the causal relations
between them. The suggested method is applied to a case study located in the region of Santarem
Portugal, allowing the identification of the sub-basins where the road network has the highest risks and
illustrating the potential of Bayesian inference techniques for updating the model when new information
becomes available.

Keywords: Bayesian networks, decision-making, flood risk assessment, road networks.

1. Introduction
The efficient and rational management of natural haz-
ards is a concern that has become of increasing im-
portance for decision-makers, generating the need for
a strategy that explicitly addresses the uncertainties
and consequences involved in the occurrence of these
extreme events. A concurrent event of importance
for management is the flooding risk of road networks,
which is related to a variety of natural, economic, and
social factors such as climate change, use and coverage
soil, deficient drainage systems, population explosion,
among others [1]. Therefore, exploring the relation-
ship between these factors and how they directly or
indirectly influence the flood risk of road networks is
of great relevance to this study. However, each factor
constitutes a complex system, and they also interact
with each other. On the other hand, the flood events
occurrence leads to social insecurity, undermining the
economic development of the impacted regions and
affecting ecosystems [2]. Not to mention that its fre-
quency is expected to increase more in the future [3].
Due to that, global economic risks are also increasing,
along with the need for proper potential flood risk
assessment and management tools to avoid or man-

age the level of disaster and minimize the potential
damage.
Existing research on risk assessment can be clas-

sified into two main categories. On the one hand,
qualitative assessment methods. For example, the
analytical hierarchy process (AHP) or multi-criteria
method [4–7] allows integrating multiple factors (e.g.,
hazard, vulnerability, and exposure) for flood risk
assessment. On the other hand, the quantitative eval-
uation methods, normally based on historical data [8]
and scenarios simulation based on the hydrological-
hydraulic model [9] or hydrodynamic [10], as well as
flood risk simulation models, such as random forest,
decision trees, genetic algorithms, among others [11–
14]. Qualitative methods are normally criticized for
their subjective nature, which results from excessive
dependence on empirical knowledge. Therefore, they
are considered high uncertainty and low credibility
models in risk assessment. On the other hand, quan-
titative evaluation methods require a large amount of
data with high precision, which limits their applica-
tion in some cases due to the reduced availability of
data [15]. Additionally, none of the aforementioned
methods define the mutual relationships between the
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Figure 1. Geographical location and specification of the study area.

factors that influence risk, which is often interdepen-
dent in a complex and uncertain way [1]. Therefore,
it is evident the need for simplifications to establish a
model that adequately evaluates the flooding risk in
the road network, but that effectively considers the
relationship between the different risk factors without
requiring much data availability.
A Bayesian network (BN) is considered a simpli-

fied model that allows uncertainty estimation during
risk assessment, contemplating the probabilities of the
random variables and their joint probability distribu-
tion [16]. One of its advantages is that it enables the
identification of relevant factors and their interrela-
tionships with flood risk using previous knowledge,
which can be inferred and reasoned from real data
[17]. BNs have been implemented in urban flood risk
assessment [1], river basins [18], coastal hazards [19],
early warning of floods [20], among others. On the
other hand, the geographic information system (GIS)
that has powerful spatial data processing techniques
allows greater data accessibility. Therefore, there are
studies in which the GIS and BN models have been
integrated to estimate the probability of hazards, for
instance [21–23]. However, there is not enough re-
search on the chains of disaster-causing factors based
on the BN model to explore the path through which
the factors affect flooding in the road network.

This work aims to provide a consistent quantitative
flood risk estimation and influence factor modelling
for road infrastructures. Therefore, a flood risk factor

(FRF) is computed as a function of hazard, vulner-
ability, and infrastructure importance factors, using
a relative flood risk classification method as a prac-
tical and measurable process in terms of inputs and
application. Moreover, a Bayesian network (BN) is
constructed to consider the interdependencies between
the selected input factors, as well as to consider the
uncertainties involved in the modelling process. The
proposed approach allows the relevant factors to be
weighted differently to calculate the FRF and im-
proves the understanding of the causal relationships
between them, as shown in the case study application,
located in the region of Santarem, Portugal. In this
case study, it was possible to identify and quantify the
sub-basins where the road network is most at risk and
illustrates the potential of Bayesian inference tech-
niques to update the model when new information
becomes available.

2. Methodology
The proposed approach in this study consists of four
main steps: (1) identification of the main factors
that may affect or influence (directly or indirectly)
flood disaster occurrence and the data collection from
the different data sources associated with the factors
previously identified; (2) assessing flood risk of road
infrastructures (FRF index) and (3) development of
the BN structural graph and calculation of probability
distribution tables based on the BN structure, and (4)
sensitivity analysis.
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Figure 2. Factors affecting the risk of floods on road infrastructures.

The case study is located in Portugal, between 7◦57’
and 9◦9’ eastern longitudes and between 38◦42’ and
39◦54’ northern latitude, which comprises an area
of approximately 7044.4 km2. The system bound-
aries that were specified for the implementation of the
framework consist of 32 municipal councils from the
Santarem district, as shown in Figure 1.
The case study covers a section of one of the most

important rivers in Portugal, the Tagus River; there-
fore, the closest sub-basins are low elevation and tend
to be a flood-prone area. These lowlands are char-
acterized by an average altitude of 103.5 m and an
average slope of 8.4%. The region has an average pop-
ulation of 40.842 inhabitants, with densely populated
regions such as Santarem municipality. The Tagus
hydrographic basin presents significant differences in
annual precipitation through its spatial distribution,
with low rainfall in the upper Tagus and higher rainfall
in the middle. Thus, in this latter region, e.g., in the
Sorraia sub-basin, flood events occur more frequently.
According to the historical flood records dated from
1865 to 2015, the sub-basin with the highest number
of flood records are "Rio Tejo (HMWB - Jusante Bs.
Castelo do Bode e Belver)" and "Tejo (HMWB - Ju-
sante B. Belver)" (Figure 3), with 21 records and more
than 2000 people affected.

2.1. Factors affecting the flood risk of
road infrastructures

For flood risk assessment of road infrastructures, it is
important to consider the main causing factors, such
as the likelihood of the flood occurrence, the structure
vulnerability to flooding, and the infrastructure im-
portance. Additionally, each factor is constituted by a

series of sub-factors, which directly or indirectly influ-
ence flood risks on road infrastructures. For instance,
among the causes of flood occurrences, the magnitude
of rainfall, the number of storms days, or the rain
intensity is usually considered. Moreover, the environ-
ment nature where the flooding occurs is focused on
the combination of climatic variables and exposure
surfaces (i.e., factors such as land cover, topography,
rivers distribution in regions). Therefore, elevation,
slope, river network, and road density should be con-
sidered as some of the most important factors for flood
risk assessment.

On the other hand, to consider the damage caused
by floods in social terms, factors such as population
density are required because the higher the population
density, the more serious economic and social dam-
age. Road density is also an important factor, due to
regions with greater transport having greater adapt-
ability to disasters. In addition to the factors that
reflect the exposure characteristics (buildings, people,
or others), past flood records including information
on damages and losses is a relevant factor to take into
consideration.
The evaluation factors considered in this study

are related to the danger of flooding by sub-basin
and it is important to clarify that the factors are
decided based on the results of previous studies such
as [1, 15, 24, 25] and expert judgment. Summarizing,
the parameters and sub-parameters that affect the
flooding risk of road networks and that are considered
in this study are summarized in Figure 2.
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Figure 3. Data collection for the likelihood of flood occurrence: EPSI and historical records. Large values of EPSI
indicate larger susceptibility.

2.1.1. Factors affecting the likelihood of
the flood risk occurrence

The data collection and processing are discussed
below.

Extreme precipitation susceptibility index
(EPSI)
EPSI is regarded in this study as a principal factor for
considering flood hazards. This index which ranges
from 1 to 4 was proposed by Santos, Fragoso, and
Santos [26], and considers the following extreme pre-
cipitation indices:

• R× 1day and R× 5days: Annual highest daily pre-
cipitation and annual highest 5 consecutive precipi-
tation days, respectively. Describe the precipitation
associated with periods of extreme rain;

• SDII: Annual total precipitation divided by the
number of wet days (precipitation ≥ 1 mm) in the
year, which reflects daily intensity;

• R20: Number of heavy precipitation days ≥ 20 mm,
i.e., moderate to high amounts of daily precipita-
tion;

• CWD: Number of consecutive wet days (daily pre-
cipitation ≥ 1 mm), and

• R95PTOT: Fraction of annual total precipitation
exceeding the 95th percentile. It is used to evaluate
the contribution of extreme daily precipitation to

the total precipitation.

EPSI considers a return period of 10 years, (i.e., it
has a 10% probability of occurring within any year)
which makes it a suitable and balanced indicator of
extreme precipitation. Its calculation involves GIS
technology justified by the strong seasonality of the
precipitation regime, and it was developed for both
annual data and the meteorological season considering
records between 1950 and 2003. EPSI was calculated
from four main stages: (1) selection of the most
relevant indices chosen from a sensitivity analysis
using different combinations; (2) normalization pro-
cess for all variables; (3) EPSI calculation using the
previously normalized indices, and (4) definition of
four classes of susceptibility, based on a classification
by quantiles. For more details about EPSI see Santos,
Fragoso, and Santos [26]. EPSI indices for each
sub-basin are shown in Figure 3. It should be noted
that sub-basins are identified in correspondence with
the codes used by the Portuguese Environmental
Agency [27].

Historical Flood records In addition to EPSI, it
is also important to consider the areas where floods
occurred in the past, giving greater relevance to basins
that have historical records and therefore greater prob-
ability of flood risk. The data was obtained from the
national database of hydro-geomorphologic-related
disasters (landslides and floods) in Portugal, built
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and maintained since 2009 as part of the DISASTER
project [28].
The data of the factors affecting the likelihood of

flood risk occurrence are shown in Figure 3.

2.1.2. Vulnerability Factors
Topographic characteristics
Flood occurrences and redistribution are heavily
influenced by topography aspects such as elevation
and slope. The elevation is characterized by the
vertical distance between a given surface and the
reference basement, and the slope is an average rate
of elevation change in a particular domain. The
elevation and slope data were calculated using a
Digital Elevation Model (DEM), derived from the
Shuttle Radar Topographic Mission (SRTM) in a
resolution of 3 arc-seconds, processed for Portugal
[29]. Block statistics and grid algebra calculations
were used to divide both components, elevation, and
slope, into four levels which were then reclassified
(as shown in Appendix A - Figure 9a and Figure 9b,
respectively).

River network
The distribution of the river network has an important
role in the flood risk of road networks, especially
the river density and the distance to the river. In
this work, the study area is mainly focused on the
Tagus River, which has its origin in the Sierra de
Albarracín, Spain, with a length of 1,100 km, of
which 230 km are in Portugal. In the national
territory, its main tributaries are the Zezere river and
the Sorraia river. Information regarding the river
network was collected from the Portuguese Environ-
mental Agency [30]. River density was calculated
as the length of rivers per unit area, using Line
Density function, and river proximity as the closest
distance to a river, which was obtained using the
Multiple Buffer operator on rivers of order 3 onwards,
as shown in Appendix A - Figure 10 (a, b) respectively.

Land cover and toil type
Environmental factors influencing flood risks are con-
sidered in terms of land cover and soil type. The land
cover information was obtained from the global map
of land use/land cover (LULC), acquired from ESA
Sentinel-2 imagery at a 10-meter resolution [31], avail-
able in [32] (Figure 11). From this map, the impervi-
ous area percentage was calculated, assuming three
categories of importance: buildings and paved surfaces
as areas with more flooding risk; tree/wooded areas
as medium flooding risk; and other surfaces (such
as Water (W), grass (G), Flooded vegetation (FV),
Crops, (C), Scrub(S) and Bare ground (BG)) as low-
risk flood areas. Regarding soil type, the information
was obtained from the Topsoil physical properties for
Europe, based on the LUCAS topsoil database [33].
The data were classified according to NRCS Soils Tri-
angle and discretized using the hydrologic soil group

(HSG) classification according to soil properties pro-
posed by Zeng et al. [34], as shown in Appendix A -
Figure 11.

2.1.3. Infrastructure importance factors
When a high-traffic-density road collapses or becomes
blocked, it can affect the whole traffic system due to
the use of alternate routes, resulting in social and
economic losses. The higher the traffic density, the
greater the road importance and the higher the repair
cost due to lack of availability. A high road density
usually allows alternative routes in case of disaster.
On the other hand, the higher the population density,
the greater the damage caused by floods. Therefore,
in this study, the road traffic density, expected re-
pair cost, road density, and population density are
considered sub-parameters for measuring the infras-
tructure’s importance in social and economic terms.
The traffic demand and road data of the case study
were obtained from Infraestruturas de Portugal (IP),
the Portuguese transportation infrastructures man-
ager, and the population density data were collected
from the National Statistical Institute [35]. Daily traf-
fic density was divided into light and heavy traffic,
and road density was calculated as the length of roads
per unit area, using the Line Density function. Re-
garding the repair cost, the average construction costs
per kilometer of the European Court of Auditors were
taken into account, which depends on the road type
and the country, referred to in [36]. These factors are
presented in Appendix A - Figure 12.

The following step consists in discretizing all the con-
sidered sub-factors due to each node of the BN model
being assigned to a finite set of state values based on
discrete probabilities. According to current studies
[1, 15], and expert knowledge, the sub-factors impact-
ing flood risk were categorized into three groups, as
shown in Table 1.

3. Determining the flood risk of
road infrastructure

Expert knowledge and the approach implemented by
Kim et al. [37] were used to assign weights according
to each factor’s importance in the flood risk occur-
rence. In this case, each evaluation sub-factor was
assigned a weight to represent the degree of related
flood risk. The weights are assigned using a scale of 1
to 3 through intuitive judgment, where a weighting
factor of 1 represented the lowest risk and a weighting
value of 3 the highest flood risk. The final risk of
each category (hazard, vulnerability, and infrastruc-
ture importance) was obtained by adding the weighted
average of the total of sub-factors that compose it,
also assuming a scale of 1 to 3. Finally, the Flood
Risk Factor (FRF) values are assumed as follows: a
final risk value less than 2 is a low-risk degree, high
risk is considered from a final value greater than 2.5,
and medium risk between 2 to 2.5.
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Categ. Factors Classes
Low Medium High

Hazard EPSI 1 2 > 2
Historical records 0 0 - 3 > 3

Vulnerability

Elevation (m) > 150 76 - 150 ≤ 75
Slope (%) > 10 5 - 10 ≤ 5
River density (km/km2) ≤ 0.15 0.15 - 0.25 > 0.25
River Proximity (m) > 1500 500 - 1500 ≤ 500

Soil typea Co, S, LS or SL L, SiL, Si, SCL CL, SiCL, SC,
SiC or C

Land Cover Build area Trees Other surfaces

Structure
Importance

Light Traffic (vehicles) ≤ 40.000 40.000 - 150.000 > 150.000
Heavy Traffic (vehicles) ≥ 5.000 5.000 - 20.000 ≥ 20.000
Road density (km/km2) ≤ 1 0.5 - 1.0 ≤ 0.5
Repair cost (€) ≤ €500 M €500 M - €1.500 M ≥ €1.500 M
Population density ≤ 20.000 20.000 - 35.000 > 35.000

a Co (coarse), LS (Loamy sand) SL (Sandy loam); L (Loam) SiL (Silt loam) Si (Silt) SCL (Sandy Clay
Loam); CL (Clay Loam) SiCL (Silty clay loam) SC (Sandy Slay) SiC (Silty Clay) or C (Clay)

Table 1. Classification of different risk factors.

Figure 4. FRF results by sub-basin.

3.1. Flood Risk calculation
The average weights for the three main categories (�i),
namely the likelihood of flood occurrence, vulnerabil-
ity, and infrastructure importance, were calculated
using weights for their sub-factors. Essentially, �i can
be calculated as Equation 1.

�i =
PNk

k=1 Fk

Nk
; k = 1; 2; : : : Nk (1)

where, Fk represents the corresponding sub-factor
for each category; Nk represents the number of sub-
factors for each category, and the subscript k is the

index of each sub-factor. The final FRF is obtained
by calculating the average weights of the categories
as Equation 2.

FRF =
PNi

i=1 �i �k

�i
; i = 1; 2; : : : Ni (2)

Where, Ni represents the number of categories and,
�i are the weights of each category. In this case, the
weights were set equivalently to 1, assuming that all
have equal importance for the final probability of flood
risk.
The weights were applied using the classification
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Figure 5. Distribution of the flood risk in the case study.

Figure 6. BN model for flood risk assessment of road infrastructures y.

proposed in section 2.2.3, specifically Table 1. For
example, a weighting factor 3 was assigned if the EPSI
exceeded 2, i.e., it was classified as high; a weighting
factor 1 was assigned if the EPSI value was less than
or equal to 1, i.e., classified as low; and a weighting

factor of 2 was assigned if the EPSI was between 1
and 2, i.e., classified as medium.
Flood risk assessment was conducted on 67 sub-

basins in the Center and South of Portugal. Figure 4
illustrates the results of the evaluation, and Figure 5
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Figure 7. FRF Sensitivity Analysis: a) High, b) Medium and c) Low.
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illustrates the distribution of the results. From the
assessment results, it can be observed that 9% of the
sub-basins received a high-risk rating, which suggests
that the road network in these regions has a greater
probability of suffering large impacts due to flooding
events. On the other hand, 61% of the sub-basins (41)
received a low-risk rating, while approximately 30%
of the total study area is likely to have medium-risk
flood events.

4. BN model
The structure of a Bayesian network consists of two
components. On the one hand, the Directed Acyclic
Graph (DAG) where the random variables are denoted
as nodes of eigenvectors and the arc represents the
probabilistic dependency between nodes. The other
component is Conditional Probability Tables (CPTs)
used to specify dependency relationships encoded in
a DAG [22], [38]. The BN model construction for the
flood risk evaluation of the road network is based on
the defined hazardous factors in Section 2.2, which are
used as nodes in the BN structure graph. The network
construction procedure consisted of three main steps:
(1) review of the structure and potential relationships
between the different factors (nodes), (2) parameter
learning to obtain conditional probability table (CPT),
and (3) sensitivity analysis.
For the first step, the potential relationships be-

tween different factors were first determined based
on the scientific literature and expert knowledge and
were subsequently verified using learning algorithms
such as Bayesian estimation and maximum likelihood
estimation (MLE). Regarding the parameter learning,
the training was made from the sample data collected
from the factors in the study area, once the respective
discretization was used to determine the conditional
probability distribution for each sub-factor. For this
methodology, the GeNIe software [39] was utilized,
which allows importing data directly from CSV or txt
format. Additionally, GeNIe software has a great vari-
ety of useful algorithms in the learning structures and
parameters process, as well as facilitating sensitivity
analysis in simple graphs to calculate their impact on
the results. For this study PC and Bayesian Search
structure learning algorithm was implemented .
The developed BN model is presented in Figure 6,

which consists of all nodes (sub-factors) with their
corresponding states.
The categorical classification employed in Section

2.2 can be also visualized, i.e., flood risk is represented
with the white node, hazard factors with blue nodes,
vulnerability factors with orange nodes, and factors
to consider the infrastructure importance with green
nodes. The nodes states (discretization) are estab-
lished according to the classes shown in Table 1 (e.g.,
the "Elevation" node has different altitudes, such as
low, medium, or high) and each square represents the
state probabilities in terms of percentage. Figure 6
also shows that the 13 sub-factors considered affect

directly or indirectly the occurrence of flood risk in the
road network. The nodes connected with arrows rep-
resent a potential relationship between sub-factors, in
which the initial node (arrow beginning) is the cause,
while the pointed node (arrow end) is the effect. Each
potential relationship is expressed through conditional
probabilities calculated from the data collected.
The developed BN model can objectively evaluate

links among diverse influencing factors and statisti-
cally infer the likelihood of flood risk based on in-
formation obtained from QGIS, presenting a novel
method for assessing flood risk for road networks.

4.1. Sensitivity Analysis
The sensitivity in the flood risk assessment was eval-
uated to identify the influence of sub-factors on the
obtained results. For this, another tools available in
GeNle was used, which performs a simple sensitivity
analysis of Bayesian networks using the algorithm
proposed by Kjaerulff and van der Gaag [40]. Which
efficiently calculates a complete set of derivatives of the
posterior probability distributions on the target nodes
on each of the numerical parameters of the Bayesian
network from a set of target nodes. It means, the BN
model learning and recording the relative importance
of the input variables to predict the output.

The sensitivity value of the 10 most dominant sub-
factors influencing each of the three states of the
target node "Flood Risk" are shown in the tornado
graph in Figure 7 a, b, c, for high, medium, and low
levels, respectively. It is worth mentioning that the
bar color indicates the change direction in the target
node; red indicates a negative change, while green
indicates a positive change. For instance, according to
the sensitivity values of different factors, the greatest
impact on the high FRF is the EPSI factor (related to
the causes of the hazard) with a state "Medium" and
the Light Traffic (Low), relative to the importance
of the infrastructure, and Soil (Medium), related to
vulnerability. Meanwhile, variables such as Population
Density and Repair Cost have a lower influence on
the high flood probability.
On the other hand, in Figure 7b, the sensitivity

analysis for FRF with state "Medium" is shown, pre-
senting a different order of the sensitive factors, in
which the most sensitive factor is Light Traffic (Low),
followed by EPSI (Medium) and Soil type (Medium).
The same sub-factors order is present for the more
influents of FRF (Medium) but not for the less sen-
sitive, which are population density (Low) and Light
Traffic (High) as shown in Figure 7c.

Once the network has been established and vali-
dated, it is possible to evaluate cases. For instance, the
road network of the Vala de Azambuja basin presents
a final probability of 17% of low flood risks, 17 %
moderate, and 67 % probability of high risk (rounded
values), based on the data evidence introduced in the
BN as shown in Figure 8. In the analyzed scenario,
the flood risk of the road network is most likely to be
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Figure 8. BN analysis FRF results of Vala da Azambuja road network .

"High" given that this state has obtained the highest
probability. If additional information regarding any
sub-factor is collected, this new evidence can be easily
used for updating the model and reassessing the flood
risk.

5. Conclusions
This work developed a consistent quantitative flood
risk estimation and influence factor modelling for road
infrastructures. Several factors affecting the flood
risks were identified, and weights were assigned to
each factor based on expert knowledge and relevant
literature in order to quantify a flood risk factor (FRF).
Moreover, a BN model was introduced to examine the
potential relationships between the factors. It was
constructed based on the strength of the relationships
found and the probability distribution tables were ob-
tained employing parameter learning algorithms. By
using the BN model, it is possible to account for the
uncertainties in the input factors and their relation-
ships and propagate them throughout the model to
obtain a probability of flood risk. This characteristic is
distinct from some previous works where the final risk
estimation is computed deterministically. Moreover,
the proposed approach has the advantages of enhanc-
ing the understanding of the interdependencies among
the influencing factors and being flexible for updating
the model when new information becomes available.
This framework may provide a basis for a decision
analysis and decision support with the quantification
of expected categorized consequences.

The flood risk in road infrastructures was evaluated

based on the proposed methodology in the region of
Santarém, Portugal. The case study showed that 61%
of the sub-basins present a low flood risk, 30% present
a medium flood risk, and 9% present a high flood risk.
Moreover, the sensitivity analysis revealed that the
most influential sub-factors on a high flood risk were
the EPSI factor, light traffic vehicles, and soil type.
Thus, the obtained results enabled the identification
of the sub-basins where the road infrastructures are
heavily exposed to the risk of flooding and provided
insights to decision-makers on how the network can
be improved to prevent high impacts during flood
events and prioritize available resources. The proposed
approach can be implemented in other case study areas
with similar data availability and can be revised for
those with less information available.

There are some limitations to the proposed method-
ology. First, the established BN model accounted
for the most influencing factors of flood risks in road
infrastructures, but it was constrained by data avail-
ability. In other words, more influencing factors can
be included for a more comprehensive risk assessment.
For instance, only the reconstruction cost of the roads
is included, while indirect impacts originated due to
the lack of availability of the roads (e.g., additional
travel time) are not accounted for. Additional limi-
tations from the proposed approach are data quality
and the fact that certain steps from the method in-
volve subjectivity. For the former issue, the focus
of future research will be on how to gather data at
a higher spatial resolution to improve the accuracy
of the obtained results. For the latter, future work
can be oriented towards performing subsequent analy-
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ses regarding the effect of the decisions made by the
experts in the model.
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A. Appendices
A.1. Data collection of vulnerability factors

a) b)

Figure 9. Data collection of vulnerability factors: a) Elevation and b) Slope.

a) b)

Figure 10. Data collection of vulnerability factors: a) River density and b) River proximity.

a) b)

Figure 11. Data collection of vulnerability factors: a) Land Cover and b) Soil Type.

45



E. Arango, M. Santamaria, M. Nogal et al. Acta Polytechnica CTU Proceedings

A.2. Data collection of infrastructure importance factors

a) b)

c) d)

Figure 12. Data collection of infrastructure importance factors: a) Heavy Traffic Vehicles, b) Road density, c)
Repair Cost and d) Population Density.
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