A comparison study of DL SCA attacks against HW and

SW AES and a novel methodology

\VVolfgang Buboerman

Haraware-paseo
mplementations In

Side-Channel Analysis

A comparison study of DL SCA attacks against
HW and SW AES and a novel methodology

by

VWolfgang Bubberman

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on August 24th, 2022 at 14:00.

Student number: 4704673
Project duration: November 22nd, 2021 — August 24th, 2022

Thesis committee: Dr. ir. S. Picek, TU Delft, supervisor
Prof. dr. ir. I. Lagendijk, TU Delft
Dr. E. Isufi, TU Delft

This thesis is confidential and cannot be made public until August 24th, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Abstract

Side-Channel Attacks (SCA) attempt to recover the secret cryptographic key from an electronic
device by exploiting the unintended physical leakages of said device. With the devices that
are being attacked becoming more sophisticated, so is SCA. In the past few years, the focus
of the research in the field of SCA shifted towards the application of the powerful method of
Deep Learning (DL). DL SCA methods can operate in a similar way as before seen methods in
the profiled setting, such as Template Attack. In the profiled setting, SCA first creates a profile
on a copy of the target device, to then subsequently use that same profile to perform a more
powerful attack on the target device. DL SCA has proven to be quite the effective method,
even showcasing its success against implementations utilising countermeasures. However,
as DL SCA is fairly novel there still exist gaps in the knowledge we have of how to make
DL SCA effective in all possible situations. Most research bases itself on software-based
implementations, whilst rarely hardware-based implementations are discussed as they are
often seen as more difficult to attack. Our contribution in this work is to showcase the difference
in difficulty between hardware-based implementations and software-based implementations
that both use countermeasures. We explore the attack performance of several state-of-the-
art methods on hardware-based implementations with countermeasures and give insight into
why their performance is the way it is. We also attempt to make a base methodology for
attacking hardware-based implementations, both with and without countermeasures, as the
current field of research is lacking this. Showcasing our suggested methodology, we achieve
better than state-of-the-art results on a hardware-based implementation with countermeasures
and competitive with the state-of-the-art results on a hardware-based implementation without
countermeasures.

Wolfgang Bubberman
Delft, August 2022

Preface

First and foremost, | would like to thank Stjepan, my supervisor. The weekly meetings we
had and his sagacious insights made all of this possible. Thank you for putting up with my
stupid questions and prodding me in the right direction at the right times. | would also like to
thank Sengim, who has been a partner throughout my studies of Computer Science, both in
the bachelor and the master. The days and nights we worked together on courses, projects
and finally our own theses were a pleasure to have been spent with you. You have taught
me more than you think you did and encouraged me to better at the worst of times. Most
of all you have been an amazing friend. Last, and certainly not least, | would like to thank
my friends, my mother and my girlfriend for being interested in my work, and putting up with
my rambles about Side-Channel Analysis whilst not understanding a single word | said due
to my somewhat chaotic way of explaining things. The work on this thesis was at times hard
but rewarding, the many struggles | had gave me lessons and experiences | am grateful for.
Doing this work forced me to take a step back and realize that | can have it all, but at the cost
of many things | value indirectly. This all-in-all was a life changing event and | hope it to be
a closure of one of the most tempestuous chapters of my life, and the beginning of the next
chapter. | would like to close this preface by saying that | am saddened by the fact my father
cannot see how far | have made it due to his untimely departure of this life, but | am hopeful
that he would have been proud of me.

Wolfgang Bubberman
Delft, August 2022

Contents

Abstract
Preface

List of Figures
List of Tables

1 Introduction

2 Background
21 Deeplearning
2.1.1 Training Deep Learning Networks
2.1.2 Deep Learning Architecture Types
2.2 Cryptography. e
2.2.1 Advanced Cryptography Standard
222 Countermeasures. i e
2.3 Side-Channel Analysis e
231 LeakageModels
2.3.2 Non-profiled Attacks
233 ProfiledAttacks
2.3.4 Side-ChannelMetrics
24 Datasets e
241 ASCAD. e
242 AES HD e
243 AES_HD MM e
244 Datasetrelatedterms

3 Related work
3.1 Deep learning in Side-Channel Analysis.
3.2 State-of-the-art methods in the deep learning of Side-Channel Analysis
3.3 Lack of research into hardware-based implementations.
3.4 Research Questions.

4 Software-based vs. hardware-based implementations
4.1 Motivation. e
4.2 Experimentalsetup
421 AutoSCA e
4.2.2 Reinforcement Learning for Profiled Side-Channel Analysis.
4.3 Results e
431 Breaking AES HD MM
4.3.2 Applying AutoSCA e
4.3.3 Applying Reinforcement Learning for Profiled Side-Channel Analysis . .
4.4 DIisCUSSION L e

Viii Contents

5 Constructing a novel attack method for hardware-based implementations 31
5.1 Motivation. e 31
5.2 Experimental Setup 31

521 MCNNapproach 32
522 ResNetapproach. 33
53 Results e 36
531 AES_HD e 36
532 AES_HD MM 37
5.4 Discussion 38

6 Conclusions 41
6.1 Summary of Scientific Contributions 42
6.2 Limitations 43
6.3 Future Work e 43

Bibliography 45

List of Figures

2.1 Anillustration of a neuron in a Deep Learning network.
2.2 An illustration of an MLP with an input layer with 6 features, one hidden layer
consisting of 3 neurons and an output layer of 4 classes.
2.3 An illustration of a convolutional layer with a kernel size of 3 by 3 and a stride
of 1.
2.4 Anillustration of a max pooling layer and an average pooling layer, both with a
kernel sizeof2by2andastrideof2.
2.5 Anillustration of a residual block with 2 convolutional layers, and a ReLU acti-
vationlayer.

4.1 Guessing entropy results for the BNy, model on the AES_HD_MM data set,
reproduced fromWonetal..

22

4.2 Guessing entropy results for the AES_HD model from Zaid et al. onthe AES_HD_MM

4.3 Guessing entropy results for AutoSCA using MLP models and the HW leakage
model on ASCADr. e
4.4 Guessing entropy results for AutoSCA using CNN models and the ID leakage
model on ASCADr. e
4.5 Guessing entropy results for AutoSCA using CNN models and 10 epochs on
AES_HD MM.
4.6 Guessing entropy results for AutoSCA using CNN models and 50 epochs on
AES_HD MM. e
4.7 Guessing entropy results for AutoSCA using MLP models and 10 epochs on
AES_HD MM. e
4.8 Guessing entropy results for AutoSCA using MLP models and 50 epochs on
AES_HD MM. e
4.9 Guessing entropy results for AutoSCA using CNN models and an extended
versionof AES_ HD MM.
4.10 Guessing entropy results for AutoSCA using MLP models and an extended ver-
sionof AES_HD_MM.
4.11 Guessing entropy results for ASCADr when using the Reinforcement Learning
for Profiled Side-Channel Analysis model. Figure is taken directly from [51] . .
4.12 Guessing entropy results for AES_HD_MM when using the Reinforcement Learn-
ing for Profiled Side-Channel Analysismodel.

5.1 Different MCNN setups onthe AES_HD MMdataset.
5.2 ResNet architecture usedfor AES_HD.
5.3 ResNet architecture used for AES_ HD MM.
5.4 Guessing entropy results for our ResNeton AES_HD.
5.5 Guessing entropy results for our ResNeton AES_ HD MM.

22

27

28

2.1

5.1
5.2
5.3
54
5.5

List of Tables

Overview of the structure of the AES symmetric block cipher. The Sbox is a non-
linear substitution table used in several byte substitution transformations and in
the Key Expansion routine to perform a one-for-one substitution of a byte value. 8

Table showcasing the comparison of different architectures sizes on AES_HD . 35
Table showcasing the comparison of different architectures sizes on AES_HD_MM 35
Table showcasing the comparison of different architectureson AES_ HD 36
Table showcasing the comparison of different architectures on AES_HD_MM . 38
Grid search optimisation on hyper-parameters for our suggested ResNet archi-

tecture. e 38

Xi

Introduction

In the past few years, the prevalence of security measures in cyberspace has increased dra-
matically [22, 49]. One of the most used forms of security measurements is the usage of
encryption. Encryption is used in small embedded devices and on the internet to secure infor-
mation transport. Encryption algorithms, like AES and RSA, are theoretically secure [37], as
their keys cannot be derived from just the input and output of the devices using them. How-
ever, due to the leakages coming from the devices using these encryption algorithms [1, 41],
this guarantee of security might not be as strong as one might think.

Making use of Side-Channel Attacks (SCA), attackers can use the physical leakages to derive
leaked information during the execution of the method of encryption. The hardware execut-
ing the computations needed for the cryptography generates these physical leakages and the
leakages can exist in many different forms. Forms such as: electromagnetic (EM) emanation
[48], power consumption [33], sound [3], cache-timings [66], or even heat [27]. Many different
forms of SCA exist; since the first Differential Power Analysis (DPA) by Kocher et al. [33], we
have seen the Correlation Power Analysis (CPA) [6], Template Attack (TA) [11] and many more.

While DPA and CPA are direct attacks, and therefore directly attack the physical leakages
to find some statistical connection between the traces and the sensitive values generated by
a secret key, there also exist profiled (non-direct) attacks, of which the Template Attack was
the first [12]. When using profiled SCA, the attacker has a copy of the device they want to
attack and can therefore model the expected behaviour of the target device. This expected
behaviour model can then be used to gain additional information, which subsequently leads
to a significantly stronger attack than DPA or CPA can provide with their direct attack.

With the evolution of the different forms of SCA, the encryption side of things evolved as well.
Countermeasures were introduced to impede the SCA. These countermeasures came in the
forms of hiding countermeasures, which hide important features in the physical leakages, and
masking countermeasures, which attempt to hide the correlation of the physical leakage with
the intermediate values. To overcome these introduced countermeasures, the usage of ma-
chine learning emerged in the domain of SCA [30, 36, 44, 47, 48, 51, 67]. Machine Learning
proved to be effective at overcoming the countermeasures, and especially Deep Learning
(DL) has seen widespread application and success in the past few years [36]. An advantage
of using DL is that there is less of a need for feature engineering and feature selection, as the
nature of DL allows it to deal with countermeasures automatically.

2 1. Introduction

When SCA first came around, the field struggled with finding the right metrics to use for Deep
Learning, as standard metrics were found to be misleading for the domain of Side-Channel
Analysis [46]. However, that has changed, and several different metrics have been developed
specifically for Side-Channel Analysis that are proven to be effective. Namely, the Success
Rate (SR) and Guessing Entropy (GE) metrics are commonly used within the domain now with
widespread success.

Several approaches and even methodologies [23, 67] regarding developing Deep Learning
methods for software-based implementations in the domain of Side-Channel Analysis have
been proposed. However, there is not a straightforward approach available for their hardware-
based counterparts. Itis uncertain if the same approaches are as practical on hardware-based
implementations as on software-based implementations, and papers that compare both types
of implementations when employing countermeasures do not exist. This lack of comparison
makes it unclear if hardware-based implementations are harder to attack or whether current
methods are tailored to software-based implementations, as they are more prevalent in the
literature.

Looking into the differences between these two types of encryption implementations and the
effectiveness of current state-of-the-art approaches could give critical insights into the sub-
ject of how we approach creating models for attacking specific implementations. Analyzing
this further could help us understand why hardware-based implementations are often seen
as more challenging to attack and allow us to construct our own methodology of approaching
said hardware-based implementations with more success than ever before.

To be able to compare the hardware-based implementations to their software-based counter-
parts, we formulate our first research question as the following:

What is the difference in the attack performance between software-based implementations
and hardware-based implementations?

From this, we want to establish an approach on how to attack and analyze hardware-based
implementations successfully. Therefore, we formulated our second research question as:

Which novel design elements can we introduce to improve the attack performance on higher-
order hardware-based data sets?

We focused on higher-order protected data sets for our second question. We believe that if
we can successfully attack data sets that include some form of countermeasures, we are likely
to be effective in attacking data sets that do not.

After discussing some needed background material on Deep Learning, Cryptography, Side-
Channel Analysis, and the data sets used throughout this work in chapter 2, we will discuss the
related work in chapter 3. We restate our research questions and propose our sub-questions
in chapter 3 to aid in answering the main research questions. Following these sections, we will
showcase our work in answering our first research question in chapter 4. Then we continue
with the proposal of our novel attack method based on the conclusions found in chapter 4 in
chapter 5. Finally, we answer our research questions in the last chapter, chapter 6. In this final
chapter, we also aim to address the limitations of our work and options for future research.

Background

This chapter aims to introduce and explain the background principles of the research pre-
sented in this work. First, we will discuss Deep Learning, what it is, how we train Deep Learn-
ing networks, and what kind of Deep Learning networks are there. After that, we will discuss
cryptography. This section is critical for understanding what kind of environment everything
is taking place in. Then, we will move on to Side-Channel Analysis and, finally, the data sets
used within this work.

2.1. Deep Learning

Deep Learning (DL) is a form of Machine Learning (ML) that uses multiple layers of neurons,
which are interconnected, creating a network to model underlying patterns in a data set. These
neural networks that DL creates, attempt to simulate the way brains work and learn from the
data inserted into the network. These types of networks allow DL to work with unstructured
data, as opposed to ML, which needs to know the hierarchy of the features in the data inserted
into it [20].

In the past few years, the field of Deep Learning has seen many leaps in its adoption and
development. It has seen adoption in many different fields, fields such as image classification
[35, 43], speech recognition [15, 68] and even medical diagnosis [21, 57]. DL has shown that
it can be a powerful tool for classification tasks.

Classification with DL is done using a supervised learning environment. A supervised learning
environmentis an environment where the network has to label or classify unlabeled data based
on a set of already labelled data [9]. In the domain of SCA, the labelled data is often called
the profiling set, and the unlabeled data the attack set. This is as we profile our network with
the labelled data and “attack” the unlabeled data by trying to label it using the network.

2.1.1. Training Deep Learning Networks

As hinted above, we need to train our DL network to classify incoming data. We do this by
training the DL network for a certain amount of epochs, which is a frame of time used to de-
scribe the amount of time needed for the DL network to process all profiling data once. All the
data processed by the network is split up in batches of equal size. The splitting in batches is
done so that the network can make slight modifications in its classification while it is training.
How to modify itself, the network is based upon comparing the predictions of a processed
batch with the data labels in that same batch. This comparison is made with a loss function,

3

4 2. Background

and this loss function describes how good or bad the network is performing in its predictions.
During training, the network tries to minimize the loss found by this loss function. The network
does this by finding the gradient of the loss function. Using an optimizer, the network can
then update its weights to the correct amount based on this gradient. The network also con-
trols how significant these updates to the weights based on the gradient are via the learning
rate of the network. A higher learning rate means that the network would update its weights
more than the network would with a lower learning rate.

Input Neuron Activation Output
function

Figure 2.1: An illustration of a neuron in a Deep Learning network.

There exist several different options for the choice of optimizer, examples are Stochastic Gradi-
ent Descent (SGD) [5], RMSprop [14], and Adam [31]. SGD is the first known optimizer, simply
updating the weights in the direction of the gradient. RMSprop and Adam are more modern
optimizers and employ more advanced techniques such as the decaying moving average and
adaptive learning rate. These optimizations of the optimizer lead to faster convergence and
are therefore more popular in their usage.

What are we training? As quickly mentioned above, we train the neurons’ weights in our
network. These neurons take the sum of their inputs, multiply these inputs with the respective
weights of each input, add a bias and then pass all that to an activation function to produce
its output for the next layer. Figure 2.1 showcases this process, and it can be described as a
function as well:

OutputNeuron(xq, Xy, ., Xn) = ActivationFunction(x; * wy; + x5 * w, + ... + x,, * w,, + bias)
(2.1)

Here x; describes the input and w; the weights of each respective input of the neuron.

As the input of an activation function is a linear combination of the inputs, weights, and the
bias, and we might have non-linear patterns in the data we are training with, activation func-
tions come in many different, often non-linear, forms. Four activation functions used through-
out this work are:

ReLU [19]: one of the most straightforward activation functions, it takes the input or O if the
input is smaller than 0.

relu(x) = max(0, x) (2.2)

Tanh [56]: the Hyperbolic Tangent function which is the hyperbolic analogue of the Tan circular
function used throughout trigonometry. The output of this activation function will always be

2.1. Deep Learning 5

between [-1, 1].

sinh(x) e*—e™

tanh(x) = cosh(x) eX+e™X

(2.3)

SELU [32]: here the scale (1) and alpha are predefined most of the time as 1.05070098 and
1.67326324 respectively, but they can be inferred from the input data.

A *x, ifx>0
selu(x) =

: (2.4)
Axalexp(x)—1), ifx<O0

SoftMax [17]: is an activation function often used for the output neurons of the network. All
its outputs are between and including [0, 1] and sum to 1. Here n represents the amount of
neurons within in the layer.
e*i
softmax(x); = oz fori=1,2, .., nand x = (x1,x3,.., x,) € R" (2.5)
j=1€"

2.1.2. Deep Learning Architecture Types
There are different DL architecture types, and in this subsection, we will discuss the three main
architecture types used within this work.

Multilayer Perceptron

Multilayer Perceptrons (MLPs) is a network that consists of an input layer, a certain amount of
hidden layers, and an output layer [18]. Every layer is a fully connected layer, which means
that every neuron in each layer connects to every other neuron of the previous layer. The
number of neurons in the first layer of an MLP is the number of features of the input data.
Similarly, the amount of neurons in the output layer is decided. However, this time the amount
of neurons is based on the number of different classes we want our MLP to distinguish. This
simplistic design makes the MLP a popular choice in the field of DL [8] and relatively easy to
implement. When implementing an MLP for a certain classification task, the main two hyper-
parameters varied and played with are the number of hidden layers and the activation function
used within these aforementioned hidden layers. See Figure 2.2 for a depiction of an MLP.

Convolutional Neural Networks

However, fully connected layers are not the only layers one can use when creating a network
that uses DL. Convolutional layers are a common type of layer used within the field of DL
[2], and when a network uses at least one of these layers, we call the network a Convolutional
Neural Network (CNN). These convolutional layers are composed of filters or kernels, which
are a lot like neurons as they have sets of weights for specific inputs, but they only operate
on a subset of the input each time. The larger the kernel size, the larger the input subset will
be. The stride of the convolutional layer describes how many data points are between the
application of each filter and, in turn, creates a new feature map every time. An example of
such a layer can be seen in Figure 2.3.

Another commonly used layer used within CNNs is a pooling layer. These layers reduce the
input size for the next layer as they do not learn any parameters. These pooling layers divide
the input into overlapping subsets and reduce each of these subsets into a single value. This
reduction is often made by either averaging the subsets, called average pooling or taking the
maximum of each subset, called max pooling. These pooling layers are often used right after

6 2. Background

Input Hidden Output
Layer Layer Layer

Figure 2.2: An illustration of an MLP with an input layer with 6 features, one hidden layer consisting of 3 neurons
and an output layer of 4 classes.

1{0f1Jo|1]o0 1(10(1 1(2(3 31
of1]|1]o|1f1 > o[1f{1]*k[4|[5|6|—p
1{0|1jo0o| 1|0 1101 71819
1{0f1]|1(1]0 Image patch Kernel
ol1l1lol1l1 (Local receptive field) (filter) Output
110|1(o0 1|0

Input

Figure 2.3: An illustration of a convolutional layer with a kernel size of 3 by 3 and a stride of 1.

a convolutional layer to stabilize the output generated by the convolutional layers.

An example of pooling layers can be found in Figure 2.4. An interesting type of pooling layer
that is sometimes used is the global pooling layer. This pooling layer takes the average or
maximum of the entire feature map and returns that as a singular output.

Residual Neural Networks

This work will also discuss a particular type of CNN, a Residual Neural Network (ResNet).
These networks are constructed similarly to a CNN but significantly deeper. When a CNN gets
very deep, the effect of the gradient vanishing problem becomes too large, and the weights in
the layers at the beginning of the network struggle to update accordingly [25]. ResNets aim to
resolve this problem by using shortcuts throughout the network to skip layers in the network
and propagate the gradient. They do this by dividing the network’s structure into residual
blocks, which are blocks made up of several convolutional layers. Then to the output of this
block, a shortcut is added from the output from a previous block, which helps alleviate the
gradient vanishing problem. An example of how this looks can be found in Figure 2.5.

2.2. Cryptography 7

i —y
___max pooling 8 9
5 1 0 9
kernel size = 2 by 2
stride = 2
8 2 4 9
ey ; 2 5
|
average pool |ng)
4 3 1 1

Figure 2.4: An illustration of a max pooling layer and an average pooling layer, both with a kernel size of 2 by 2
and a stride of 2.

2.2. Cryptography

In this section, we will discuss the specifics of cryptography. We will also give an overview of
the Advanced Cryptography Standard (AES). It is the type of cryptographic algorithm used in
this work and the most common symmetric-key algorithm. To conclude this section, we will
discuss the countermeasures as they are a vital factor in some of our research.
Cryptography aims to construct protocols that can still accomplish the task of conveying in-
formation even in the presence of an adversary. This is done by encrypting the input, or
plaintext, of the cryptographic algorithm with an encryption key. This process of encryption
results in a ciphertext which later can be decrypted by using the same encryption key in the
case of a symmetric-key encryption algorithm or a different key in the case of a symmetric-key
encryption algorithm. Applying this to a setting where an adversary is present, the adversary
cannot get to the data of the input after the input has been encrypted, therefore enabling confi-
dential communication between two points. Cryptographic algorithms have another distinction
as well: there exist block ciphers, which operate on blocks of input data, and stream ciphers,
which operate on individual bits of data.

2.2.1. Advanced Cryptography Standard

The Advanced Encryption Standard (AES) [42] is the replacement of the Data Encryption
Standard (DES), which was deemed unsafe due to its relatively short 56-bit key size [54],
and comes in a variety of forms. All AES implementations are symmetric-key block ciphers
operating on blocks of 128 bits. There exist three main variations: the 128-, 192-, and 256-bit
key variants, where the variants take up 10, 12, and 14 rounds in total, respectively. These
rounds are made up of certain operations acting on an internal state of a four-by-four grid, with
each cell being 1 byte or 8 bits and thus totalling 128 bits. An overview of the AES versions
discussed can be seen in Table 2.1.

2.2.2. Countermeasures

With people attempting to break cryptography methods, for example, using Side-Channel
Analysis, which will be covered in the next section, countermeasures are developed to coun-
teract these attacks. Many different types of countermeasures can be used in cryptography.
However, we will discuss only masking and hiding countermeasures, as we have found
these to be the most prevalent in our work and the field of Side-Channel Analysis.

8 2. Background

Input

A 4
Convolutional
Layer

RelLU

Convolutional
Layer

Output

Figure 2.5: An illustration of a residual block with 2 convolutional layers, and a ReLU activation layer.

| Operation Description Number of rounds |
AddRoundKey Internal state @ round key 1. Not applicable.
SubBytes Substitute each internal state value in the Sbox.
ShiftRows Shift the rows of the internal state.

MixColumns Mix the columns of the internal state. 9, 11, or 13 rounds.

AddRoundKey Internal state @ current round key.

SubBytes Substitute each internal state value in the Sbox.
ShiftRows Shift the rows of the internal state. 1 round.
AddRoundKey Internal state @ last round key.

Table 2.1: Overview of the structure of the AES symmetric block cipher. The Sbox is a non-linear substitution
table used in several byte substitution transformations and in the Key Expansion routine to perform a one-for-one
substitution of a byte value.

Masking countermeasures

Masking countermeasures attempt to hide the correlation of the physical leakage with the
intermediate values by applying a mask to these intermediate values in our cryptographic al-
gorithms.

When applying a masking countermeasure, we use the XOR operation with the output of the
Sbox operation and a mask to get the new, masked output of the Sbox. This applying of a mask
can be done multiple times to achieve higher-order masking but requires specific masking
values to be effective [53, 55]. We can write an example of first-order Boolean Masking out
as:

Shox = Shox[k; @ input;] @ mask; (2.6)

where k; is the round key, input; is the input for this round, mask; is the mask for the input of
this round and i is the round number.

There also exists arithmetic masking, which does not use the XOR operation, but the arithmetic

2.3. Side-Channel Analysis 9

modulo operation. However, this is less prevalent in use, and we are not aware of any usage
of arithmetic masking within the data sets that we used in this work.

Hiding countermeasures

Hiding countermeasures are countermeasures that try to hide interesting features in the phys-
ical leakage completely by either creating random or constant noise in the physical leakage to
prevent correlation with the intermediate values. Many forms of hiding countermeasures exist,
and therefore we will not discuss all of them. However, the most interesting and applicable
ones are the desynchronization, additive noise, and the clock jitter hiding countermeasures.

With the desynchronization hiding countermeasure, the alignment of the traces is disturbed.
This alignment of the traces is critical for an adversary. It allows them to distinguish patterns
in the traces and find where the physical leakage operation occurs, which is vital information
for figuring out the secret key. We can mess with the alignment and make the adversary’s job
significantly harder by waiting for a random amount of time before certain sensitive operations.
Applying this countermeasure with other countermeasures is a good idea and could be done
without any interference.

By applying dummy operations or using a component that generates much noise, we can uti-
lize the countermeasure of additive noise. This extra noise complicates an adversary’s attack
by making it harder to find a correlation between the physical leakage and the intermediate
values due to the amount of noise in the traces. Therefore, the Signal-To-Noise (SNR) ratio is
lowered by this countermeasure and can be pretty effective in thwarting an adversary. Note
that this countermeasure is also applied a posteriori and can either be done by using Gaussian
noise or a uniform distribution. The former is a more realistic simulation, and the latter is easier
to apply. We do not make use of this in our work, but it is an important countermeasure to know.

The addition of a clock jitter to the traces is often seen as a bad thing in many implementa-
tions, but it is not in the field of SCA. This is due to the introduction of randomness in the time
domain of the traces [7]. Unlike the desynchronization countermeasure, it does not disturb
the alignment of traces globally but does this locally. Therefore, realigning the traces after
introducing a clock jitter makes it so that an adversary would not have enough information
to create a connection between the physical leakages and the intermediate values. A clock
jitter is simulated by randomly adding and removing features within the traces and cannot be
applied a posteriori, unlike the desynchronization mentioned above and additive noise coun-
termeasures.

It should be noted that hiding countermeasures are not always intentionally generated by cryp-
tography designers. There are cases where hiding countermeasures simply happen because
the device is extremely low power, which leads to noise in the amplitude domain. It could also
happen that the acquisition of SCA traces has difficulties to measure a window that always
starts at the same time, which leads to desynchronization.

2.3. Side-Channel Analysis

Going over all possible key values for the AES 128-bit version, we have 2128 possible key
options. Using an implementation of attack that only looks at the input and output of AES,
this can be brought down to 2126 [60]. However, this still is too large a search space. Luckily,
Side-Channel Analysis, or Side-Channel Attacks in the context of an adversary, can bring
this search space down dramatically. Side-Channel Analysis is the analysis of the physical

10 2. Background

leakages that come from a device. These leakages can come in many different forms, forms
such as: electromagnetic (EM) emanation [48], power consumption [33], sound [3], cache-
timings [66], or even heat [27]. This section will go deeper into what SCA utilizes to obtain its
results, different forms of SCA, and the metrics used within the domain.

2.3.1. Leakage Models

To make use of the physical leakages, SCA creates a leakage model based upon the obser-
vations made of the implementation it is attacking. Three of the most commonly used leakage
models used by SCA methods are the hamming weight (HW), the hamming distance (HD)
and identity (ID) model.

The HW model models the physical leakages in correlation to the hamming weights of the
intermediate values dependent on the secret key of the cryptographic algorithm. The hamming
weight of a binary number can be defined as the number of bits that are 1 in that particular
binary number. The HD model finds the correlation between intermediate value and secret key
by using the hamming distance between those respective two values. The hamming distance
between two binary numbers can be seen as the number of bits between two numbers that
have been flipped. Therefore we can write the hamming distance using a function of the
hamming weight of a number:

HammingDistance(x,,x,) = HammingWeight(x; @ x,) (2.7)

where x; and x, are the two numbers we want the hamming distance between of. The identity
model is the most straightforward model, was it models the physical leakage to be in direct
correlation with the intermediate values.

2.3.2. Non-profiled Attacks

Non-profiled SCA is the most basic form of SCA. In these types of implementations of SCA,
the physical leakages of a device are attacked directly, without first building up a profile. These
forms are easier to implement due to not needing a copy of the device that needs to be at-
tacked, but they deliver less successful results and need more input data to function. Some
examples of non-profiled attacks are Differential Power Analysis (DPA) [33], Correlation Power
Analysis (CPA) [6], and Simple Power Analysis (SPA) [33]. SPA is one of the most basic forms
of a non-profiled attack, as it exploits the information of the power usage directly and tries to
obtain the key this way. SPA often is not strong enough, and DPA can be used to obtain better
results, as demonstrated by Kocher et al..

2.3.3. Profiled Attacks

As hinted towards in the former subsection, using a copy of the device that an adversary wants
to attack, the adversary can first build up a profile of the device. This first stage is often called
the profiling stage or phase, followed by a stage where the intended device is attacked with the
usage of the profile obtained in the profiling stage. This second stage is called the attacking
stage or phase. The main difference between the versions of profiled attacks is how the first
stage is executed and thus how the profile is created.

The first, and most known, profiled attack is the Template Attack (TA) [12, 50]. Template At-
tack uses the Bayes Theorem in combination with assuming that the physical leakages follow
a multivariate Gaussian distribution due to the leakages for consecutive features not being
fully independent. While TA has been quite successful in the past, it has been outperformed
by machine learning and especially deep learning techniques. Especially when countermea-
sures are introduced, TA performance seems to drop off in comparison to other more advanced

2.3. Side-Channel Analysis 11

techniques [30, 36, 44, 47, 48]. TA is also significantly more sensitive to desynchronization,
as it requires feature selection beforehand.

The comparison between the classification that machine learning does and the profiling stage
of a profiled SCA can quickly be drawn. This is the case, as we can see the profiling stage as a
classification problem, where the adversary needs to classify intermediate values based on the
leakage traces. This similarity between the two does not mean we can directly apply known
machine learning techniques to the domain of SCA, but using the ideas of known machine
learning techniques promising results can be obtained [45]. The community has demonstrated
several different machine learning techniques, techniques such as Support Vector Machines
(SVM) [24, 45] and random forests [45, 46]. One of the main advantages of using machine
learning techniques over TA is that often, but not always, significantly fewer traces could be
used in the profiling stage to obtain similar results.

One specific branch of machine learning, deep learning, has shown to be the most successful
at implementing the profiling stage of profiled SCA. When the complexity of an implementation
rose, TA and general machine learning started to struggle. However, the application of deep
learning seemed promising due to its nature of filtering out the most important features [34].
Deep learning proved to be successful where other methods were not [30, 36, 47, 64] but did
introduce new problems to the field; now the correct hyper-parameters needed to be picked,
and the correct architecture of the neural network needed to be constructed to obtain optimal
results. Zaid et al. introduced a methodology to overcome these new caveats [67], which in
turn got some critique by Wouters et al. [63]. Kim et al. also proposed a novel deep learning
approach of using the VGG architecture from the image classification domain for SCA [30] to
optimize deep learning in SCA for CNNs.

2.3.4. Side-Channel Metrics

While the machine learning domain has a lot of different metrics to give an idea of how well
the classification of a method is performing, these machine learning metrics do not seem to
apply that well to the domain of SCA [46]. These machine learning metrics fall short of being
successful in the domain SCA because these machine learning metrics only consider the
classification of a specific trace, not a group of traces. In SCA, the information from a group
of traces is responsible for the secret key of the data set under attack. Another reason is that
most of these machine learning metrics only have a positive or negative classification, while
in SCA, we tend to rank our guesses in order of success. For these reasons, different metrics
have been developed specifically for SCA, two of which are quite popular within the domain,
and those are Guessing Entropy and Success Rate.

Guessing Entropy

One of the ways to measure the vulnerability of encryption against a side-channel analysis
(SCA) is the Guessing Entropy (GE), proposed originally by Massey et al. [38]. GE measures
the average number of key candidates to test after the side-channel attack [58]. The higher the
GE, the more wrong key guesses must be checked before the correct key value is considered.
Therefore, GE measures the average computation cost required for a successful side-channel
attack and is a good leakage evaluation metric [69].

Guessing Entropy can be defined as:

GE(Ng) = E(gs, (k"))

12 2. Background

where E is the mean function, N, is the set of the attack traces, g, is a vector of key guesses
ordered by their predicted log-likelihood, for a random subset S, < N,, and gg_ (k™) is the index
of the correct key hypothesis k*. Definition based on Massey et al. [38].

Success Rate

Success rate (SR) is also a commonly used metric in SCA [58]. Success rate measures the
probability that an attacker guesses the correct key within a certain number of leakage mea-
surements [52]. Anintuitive way of assessing the Success Rate is to perform the attack several
times and estimate the Success Rate based on this. However, this might be too expensive,
both time and computation-wise. Therefore, suggestions have been made for approximations
of the Success Rate, for example, the one by Standeart et al. [59].

Success Rate can be defined as:
SR(Ng) = Pr[gs, (k") = 1]

where Pr[x] is the probability of x, N, is the set of the attack traces, gg, is a vector of key
guesses ordered by their predicted log-likelihood, for a random subset S, < N,, and g5 (k™) is
the index of the correct key hypothesis k* [40]. Note that if gs (k™) = 1 the attack is successful
because the correct key is the highest ranked key.

2.4. Data sets

Throughout the field of SCA, many different data sets are used in academic research. Some
are made publicly available such that consistency throughout the literature can exist. The
data sets we consider in this work are described in this section and are the following: ASCAD,
AES_HD and AES_HD_MM.

2.41. ASCAD

The ASCAD database [48] consists of several different protected software implementations
of AES on an ATMega8515. Most notably ASCAD with fixed key and ASCAD with random
keys. The sensitive value that is attacked for these implementations is the output of the first
Sbox and can be described as the following:

Leakage(k;) = SBox(p; @ k; D 1) D 1pur (2.8)

where i describes the i'th byte of the plaintext (p) or key (k) and r;,, and r,,,; are the masking
schemes.

The fixed key version of ASCAD has 50 000 profiling traces, and 10 000 attacking traces where
all of these traces were measured with the same key and random plaintexts. The depth of
these traces was limited to a pre-selected window of 700 features of the original 100 000 fea-
tures by the authors to attack the third key byte.

The random key version of ASCAD has 200 000 profiling traces, and 100 000 attacking traces
where all of these traces were measured with the random keys and random plaintexts. The
depth of these traces was limited to a pre-selected window of 1400 features of the original
250000 features by the authors to attack the third key byte.

2.4. Data sets 13

2.4.2. AES _HD

The AES_HD data set is an unprotected hardware-based implementation of AES on a Xilinx
Virtex-5 FGPA. Due to it being a hardware-based implementation, there is significantly more
noise than on software-based implementations like the ASCAD implementations.
Throughout the research, different leakage models were considered. A common leakage
model of hardware implementations exploits the register update from the last round to output
ciphertext. This can be defined as the following:

Leakage(C;, C;, k™) = InverseSBox|[C; ® k*] © C; (2.9)

where C; and C; denote the two ciphertexts, with i and j describing the inverse ShiftRows op-
erations of AES. For this, i = 7 and j = 11 are commonly picked when starting from 0, papers
like [67], [64] and [28] for example do this. It should be noted that this leakage model can be
used for a version of AES_HD which only contains traces and labels, but then i = 15 and
j = 11 should be picked, with the key byte being 15 instead of 0.

This data set consists of 100000 traces with 1250 features for each trace and can be split
however the user likes into a group of profiling and attacking traces.

2.4.3. AES_HD_MM

AES_HD_MM is the protected implementation version of AES_HD. It makes use of the mul-
tiplicative masking countermeasure and uses the same leakage model as AES_HD. The im-
plementation of the data set performed masked AES on a SASEBO-GII FPGA board. As it
uses the same leakage model, this means that the data set is a second-order hardware-based
implementation [16].

The data set is quite large, with 5600 000 traces consisting of 3 125 features.

2.4.4. Data set related terms
Here is a rundown of terms you will often see paired with the description of a data set.

Hardware-based implementation: is an implementation of AES which is made with hardware
as the name might indicate, this means that no software is used to make the circuit encrypt
and decrypt but it does this via interconnected registries and circuits.

Software-based implementation: is an implementation of AES which does make use of
software. Of course, a software-based implementation still needs to run on hardware, but via
the usage of software, the encryption and decryption can be implemented.

First-order protection: is the protection of AES implementations by having a mask that is
XORed with the sensitive values. An example of this is Equation 2.6.

Higher-order protection: applies the same principle as first-order masking schemes, but with
more parts to the mask, ensuring attacks have to learn to predict all of these parts of the mask
to get to the raw sensitive value. Higher-order protection is therefore more secure.

Related work

Since the first time machine learning was applied to the field of Side-Channel Analysis by
Hospodar et al. [26], the field of SCA has changed into a more deep learning-focused field.
Many papers in the field of SCA find novelties and different approaches, and even develop
methodologies on how to approach designing a network for SCA [30, 36, 48, 63, 67]. In the
past two years, we have seen some interesting papers that produce results that are better
than state-of-the-art and introduce approaches which have not been applied to the field of
SCA before [561, 64]. However, most papers discuss software-based implementations when
introducing their novelty or approach. Papers discussing hardware-based implementations
[28, 67], let alone hardware-based implementations that employ countermeasures [62], are
few and far between.

3.1. Deep learning in Side-Channel Analysis

The first time deep learning was applied to the field of SCA was in the paper [36] by Maghrebi
et al. in 2016. Since then, the field has exploded, and many improvements in the application
of MLPs and especially CNNs to the field of SCA have been made. One of the significant steps
since then was the introduction of the ASCAD database by Prouff et al. [48]. This data set has
been used as a benchmark for varying deep learning methods in SCA. Prouff et al. introduced
not only the base version of this ASCAD data set but also a 50desync and 100desync version,
which have a shift of 50 and 100 traces per window frame, respectively, making the attack on
the data sets harder than before. Later on, Prouff et al. added a variant of ASCAD with a
variable key, which is used as a benchmark for software-based implementations that have a
countermeasure.

Another pillar in the SCA community is the methodology paper by Zaid et al. [67]. This method-
ology suggested ways we can create networks of minimal size for standard public data sets
with state-of-the-art performance. At the time, the networks that Zaid et al. proposed signifi-
cantly improved the known results of these data sets mentioned above. With the added benefit
of the networks being relatively small, the paper gained much cognizance in the community of
SCA. Shortly after the publication of Zaid et al.’s, Wouters et al. [63] revisited this methodol-
ogy and made several improvements to it, lowering the trainable parameters significantly and
maintaining similar performance by applying pre-processing instead of using convolutional
layers with a filter size of one. Wouters et al. explain several misconceptions in their paper in
detail as well, and with that, they are a notable addition to the knowledge base we have so far
in the field of SCA.

15

16 3. Related work

In 2018, Picek et al. published a deeper look into the impact of the class imbalance inherent
in the hamming weight model [46]. They showcased that the trace labels correspond to the
hamming weight of the intermediate value under attack. Using SMOTE, Picek et al. were able
to reduce the amount of needed attack traces to have a successful attack significantly. In this
paper, Picek et al. also made a showcase on how traditional machine learning metrics can be
quite deceptive in the context of SCA and how we can use metrics that are specific to SCA to
obtain more reliable, and with that, better results.

3.2. State-of-the-art methods in the deep learning of Side-Channel
Analysis

The state-of-the-art for deep learning SCA has evolved significantly over these past few years.
Recently, the methodology from Zaid et al., [67] has been surpassed. One of the more inter-
esting new state-of-the-art methods is the AutoSCA paper by Wu et al. [64]. In this paper,
Wu et al. automate the finding of the hyper-parameters using Bayesian Optimisation. Using
this automated method, Wu et al. find well-performing networks regardless of the data set,
leakage model, or neural network type.

Another relatively new approach that achieves state-of-the-art results is in a paper from Rijs-
dijk et al. [51]. In their paper, Rijsdijk et al. showcase how one can use the original findings
of Baker et al. [4] for designing neural network architectures using reinforcement learning in
the field of SCA. For this, a few adjustments were made to the work of Baker et al.; new,
SCA-specific reward functions based on Guessing Entropy were used, and SCA-field-specific
assumptions were made. This SCA-field-specificity resulted in minimal networks with state-
of-the-art performance seen in the data sets showcased throughout the work.

Recently, we have seen different works pop up that make use of ResNets [28, 29, 39, 70] and
have interesting results. However, the work done by Zhou et al. is hard to reproduce due
to the lack of clarification on how exactly their architecture is constructed and the usage of
proprietary data sets. The work done by Masure et al. also has some points of critique, as,
while it attacks the new data set ASCAD_v2, it makes this attack easier by allowing some
knowledge of the masks during the profiling phase. On top of this, the results are hard to
compare due to this paper being the first to publish results regarding the ASCAD_v2 data set.
The ResNet paper that gained the most traction from the above is the one done by Jin et al..
They claim that they can achieve better than state-of-the-art performance due to the usage of
an attention mechanism. While the explanation of how they did their work is fairly clear, and
we could reproduce their results, a motivation regarding why and when to use their ResNet of
choice is unclear. The paper by Karayalgin et al. builds upon the work of Jin et al., modifying
the residual blocks to minimize the amount of tuning to be done. Their results indicate that
ResNets work especially well when the number of profiling traces and features in a trace is
large. However, in their work, the usage of hardware-based implementations is missing.

3.3. Lack of research into hardware-based implementations

While there are published results of research into hardware-based implementations, like those
of AES_HD and AES_HD_MM, they are far and few between. For example, the results that
Zaid et al. published for AES_HD might seem promising. However, it later came to light that
the results most likely were obtained by using a different version of AES_HD, as reproductions
showed that the same results were not obtainable using the known leakage model of AES_HD

3.4. Research Questions 17

and the version of the data set published by Picek et al..

The paper “Back to the Basics: Seamless Integration of Side-Channel Pre-Processing in Deep
Neural Networks” by Won et al. [62] is the only paper we are aware of that evaluates the
performance of profiled side-channel analysis between hardware-based and software-based
implementations which both employ countermeasures. However, this paper leaves several
open questions, such as; how does the performance of state-of-the-art networks differ in both
types of implementations, why is there a difference in performance, and what can be done to
optimize for hardware-based implementations outside of the suggested network. We think the
paper does not make the comparison entirely, as the paper is more of a demonstration of their
novel design for CNN, the Multi-scale Convolutional Neural Networks (MCNN).

There is currently a piece of research published that performs a complete comparison of
hardware-based and software-based implementations. Such research could give critical in-
sights into how we should approach both types of implementation and their key differences.
It also could explain the differences in results we see for the two types of implementations.
In the next section, section 3.4, we will propose research questions that do aim to give these
insights, as mentioned earlier.

3.4. Research Questions
Based on the research done in this chapter, the existing related work, and the field of interest
of this paper itself, the following research questions have been formulated:

* Research question 1: What is the difference in the attack performance between software-
based implementations and hardware-based implementations?

— Is it possible to break a higher-order hardware-based implementation using deep
learning SCA, and what kind of attack performance can we expect?

— What is the impact on attack performance of the usage of different state-of-the-art
models on a hardware-based higher-order implementation?

— Do the countermeasures we see in hardware-based implementations prove to be
more effective in lowering attack performance than the countermeasures we find in
software-based implementations?

* Research question 2: Which novel design elements can we introduce to improve the
attack performance on higher-order hardware-based data sets?

— Is there a consensus or methodology on approaching higher-order hardware-based
data sets?

— Can we improve the results from state-of-the-art models for higher-order hardware-
based data sets with some adjustments, and how can we do this?

— How does the network size of our novel design element compare to other methods
regarding its trainable parameters?

Ouir first research question will narrow the current gap in knowledge about the difference in
attack performance of higher-order software-based implementations and hardware-based im-
plementations. Our second research question will build upon this by giving insight into how we
used the obtained information from the first research question to create novel design elements.
The basis on which we will answer our first research question will be done in the next chapter,
chapter 4. The research into answering our second research question will be done in the

18 3. Related work

chapter after that, chapter 5. Both research questions and their respective sub-questions will
be answered in our concluding chapter, chapter 6.

Software-based vs. hardware-based
Implementations

In this chapter, we review the differences between software-based and hardware-based im-
plementations and how the attack performance between the two differs. First, we look at the
current approaches used throughout the literature to attack higher-order implementations and
evaluate the effectiveness of those methods. The data sets we specifically use for this are AS-
CADr and AES_HD_MM. Then, we look into applying different state-of-the-art methods to a
hardware-based implementation with countermeasures and evaluate the attack performance
of the different state-of-the-art methods. Finally, we evaluate the effectiveness of counter-
measures between software-based and hardware-based implementations and try to conclude
if we can deem one of the two more difficult to break.

4.1. Motivation

In chapter 3, we found that while throughout the literature, hardware-based implementations
are sometimes evaluated and discussed within the field of profiled side-channel analysis, it
is hardly the norm. This part of the field is nearly non-existent. It is an interesting part to
evaluate for developing a better methodology regarding how and why we should construct our
networks in specific ways. Zaid et al. [67] gave practical advice on how to create efficient
CNN architectures for profiled attacks by publishing their methodology. However, a critical
review by Wouters et al. [63] showed that Zaid et al. did not always give the optimal solution.
On top of this, neither of the two evaluated more complex hardware-based implementations
and only limited themselves to the software-based implementations; ASCAD, DPAv4 and
AES_RD, and the hardware-based implementation AES_HD. We consider just AES_HD not
to be enough regarding analysis of hardware-based implementations, as it is an unprotected
implementation, unlike a hardware-based implementation such as AES_HD_MM, which uses
multiplicative masking. The paper by Won et al. [62] does evaluate the performance of pro-
filed side-channel analysis between hardware-based and software-based implementations,
which both employ countermeasures, but only as a demonstration of their own novel design
element. Therefore, we deemed it necessary to write a comprehensive analysis of the at-
tack performance of hardware-based and software-based implementations, which both em-
ploy countermeasures, to illustrate the difference between them and the difficulties of attacking
the two different forms of implementation.

19

20 4., Software-based vs. hardware-based implementations

4.2. Experimental setup

To properly compare hardware-based and software-based implementations, we want to look
at different applications of state-of-the-art models and see how those applications impact the
attack performance of the aforementioned implementations. Therefore, we first looked at
finding an implementation that was able to defeat AES_HD_MM and tried to reproduce and
improve upon these results to see if it was feasible to break this data set and what kind of
attack-performance one might expect. The next steps for our comparison were to attempt and
use different state-of-the-art models on both AES_HD MM and ASCAD to see if the attack
performance was comparable and in which situations one proved to be easier to attack and
overcome than the other. Two state-of-the-art models that seemed promising were chosen,
AutoSCA [64] using Bayesian Optimization and Reinforcement learning for tuning the hyperpa-
rameters [51]. We will discuss the former in subsection 4.2.1 and the latter in subsection 4.2.2
later in this section.

4.2.1. AutoSCA

AutoSCA is a tool created by Wu et al. that tries to automate the deep learning hyper-
parameter tuning using Bayesian Optimization. This Bayesian Optimization seems to per-
form well, regardless of the data set, leakage model, or neural network type. Therefore, it
is an interesting candidate for us, as it could effectively break hardware-based implementa-
tions that employ countermeasures. The paper connected to the tool itself also illustrates a
comparison between Bayesian Optimization and Random Search for hyper-parameter tuning.
Moreover, it concludes that while Random Search performs quite well, this is most likely due
to the relatively easy data sets used within the paper and that many architectures can reach
top performance. Because of this, we limited the usage of AutoSCA in our context to Bayesian
Optimization as the search space for Random Search would get too large.

The original code' was modified by us in such a way that experiments with varying leakage
model, model type, epochs, number of attacks, number of attack traces, number of profiling
traces and batch-size could be run. We picked ID and HW for the leakage model, CNN and
MLP for model type, 3 for the number of attacks, 10 and 50 for the epochs, 5 000 attack traces,
45 000 profiling traces, and a batch size of 50. All three different objective functions AutoSCA
offers for Bayesian Optimization were used as well; L,,[65], key rank, and Accuracy.

4.2.2. Reinforcement Learning for Profiled Side-Channel Analysis

Reinforcement learning can be used to tune the convolutional neural network hyperparam-
eters for profiled side-channel analysis, as shown by Rijsdijk et al.. The product that they
presented was a modification of MetaQNN by Baker et al. [4] that uses two different reward
functions employing the side-channel metric Guessing Entropy and has some assumptions
that we know to be correct in the domain of side-channel analysis to speed up the computa-
tion of the model. This way, it was shown that state-of-the-art attack performance could be
achieved with less trainable parameters than other well-known models. All in all, this seems
like a promising method to use for the hardware-based implementations that use countermea-
sures, as it can deliver state-of-the-art attack performance for commonly used software-based
implementations that use countermeasures like ASCAD with random keys (ASCADT).

For our setup, the original code? by Rijsdijk et al. needed only the addition of a model folder
for AES_HD_MM with a hyper-parameter file and a state-space-parameters file. This model

'https://github.com/AlSyLab/AutoSCA/blob/main/Auto_SCA.py
2https://github.com/AlSyLab/Reinforcement-Learning-for-SCA

https://github.com/AISyLab/AutoSCA/blob/main/Auto_SCA.py
https://github.com/AISyLab/Reinforcement-Learning-for-SCA

4 .3. Results 21

folder was created by copying another model folder and then modifying the needed parameters
such as the input size to 3 125, the traces per attack to 5000, the names to AES_HD_MM and
the paths to the right files and folders.

4.3. Results

In this section, we will discuss the results that the experiments which were described in sec-
tion 4.2 gave and analyze each of these results.

4.3.1. Breaking AES_HD_MM

In the paper by Won et al. [62] it is shown that breaking AES_HD_MM is possible, but to verify
this, we chose to reproduce this result. To defeat AES_HD_MM, they used several different
models; the Big Network (BN) from the ASCAD paper [48] by Prouff et al., that same model
BN but with the applied moving average technique with n=700, BN with Principal Component
Analysis (PCA) applied and their own Multi-Scale Convolutional Neural Networks (MCNN).
The one we chose to reproduce was the PCA version of the BN as we thought it out of the
scope of the research to use the MCNN in our comparison, and the PCA version of the BN
proved to perform the best of the three BN versions.

As can be seenin Figure 4.1, itis possible to break the AES_HD_MM data set with a generally
extensive network that is proven to generalize well. However, the attack performance is far
from ideal. We needed roughly 5000 attack traces to reach a Guessing Entropy (GE) of be-
low 10. While it is known that we can break data sets like ASCAD fixed key (ASCADf) within
less than a few hundred traces with relative ease (note that this is also illustrated by Won et al.).

The reason why we see this kind of performance is that the BN used is not optimized for a
higher-order hardware-based data set like AES_HD_MM. Logically, this leads to a somewhat
disappointing performance with a lot of room for improvement. To realize this is because of
the optimized model is important, as it gives us the indication that, by using networks that are
optimized for higher-order hardware-based implementations, we can obtain significantly better
attack performance.

By applying a model that was optimized for AES_HD by Zaid et al., we were expecting to ob-
tain better results than Won et al. were able to for AES_HD_MM. The best results we obtained
experimenting with this model are presented in Figure 4.2.

It can be seen that while the model optimized for AES_HD by Zaid et al. works quite well for
AES_HD as itreaches a Guessing Entropy of 0 after roughly 600 traces, it does not work for the
AES_HD_ MM data set. The results we obtained showed that we could not break the data set
when using 45 000 profiling traces and 5000 attack traces, while this was previously enough
when applying the BN. A reason why we assumed this might be, is that the BN is quite a bit
larger than the AES_HD model from Zaid et al., this would allow it to be more generalizable
and thus be more effective at attacking a seemingly challenging data set like AES_HD_MM.
This illustrates at ASCADf is easier to break than AES_HD_MM.

Something that was discovered after running these experiments and observing their results
was that the model that is used for AES_HD by Zaid et al. is most likely based on a different
version of AES_HD that is significantly easier. We came to this conclusion when reproduc-
ing the work of Zaid et al. and saw significantly worse attack performance. As mentioned in
subsection 2.4.2, there are different versions of AES_HD and it looks like the original results

22 4., Software-based vs. hardware-based implementations

were obtained with the version that was already pre-labelled. Zaid et al. most likely did not
know this when doing and publishing their research, and therefore the model they suggest
for AES_HD is not as applicable to our situation as we initially thought, as we are using the
version of AES_HD that only has traces and labels.

250 A

—— AES_HD_MM with BN_PCA

200 A

150 A

100 A

Guessing Entropy

50 A

T T T T T
1000 2000 3000 4000 5000
Attack Traces

o 4

Figure 4.1: Guessing entropy results for the BN, model on the AES_HD_MM data set, reproduced from Won
etal.

2501 —— AES_HD_MM with optimised AES_HD model

200 A

150

Guessing Entropy

100 A

50 A

T T T T T
1000 2000 3000 4000 5000
Attack Traces

o 4

Figure 4.2: Guessing entropy results for the AES_HD model from Zaid ef al. on the AES_HD_MM data set.

4 .3. Results 23

4.3.2. Applying AutoSCA

As discussed in subsection 4.2.1, AutoSCA is a promising state-of-the-art method that tunes
a model towards the data set it is attacking. In the paper that introduces this method, results
are displayed for attacking a software-based implementation that uses countermeasures: AS-
CADr. We chose to compare against the best performing variants of ASCADr with AutoSCA
to give a most-fair comparison later on against our results from attacking AES_HD_MM with
AutoSCA.

ASCAD with random keys

200

Lm with 10 epochs
175 4 —— Lm with 50 epochs
Key Rank with 10 epochs
—— Key Rank with 50 epochs
Accuracy with 10 epochs
—— Accuracy with 50 epochs

Jary

[%]

o
|

[

M

wu
!

Guessing Entropy
=]
5 3
1 1

T T T T
0 1000 2000 3000 4000 5000
Number of attack traces

Figure 4.3: Guessing entropy results for AutoSCA using MLP models and the HW leakage model on ASCADr.

As can be seen in Figure 4.3 with all the objective functions and the MLP models that AutoSCA
offers it is possible to break ASCADr. All of our results, except for the result with the Accuracy
objective function and 50 epochs, can break the data set in under 1000 attack traces, with
the best results being delivered by the L, objective function. This objective function with 50
epochs only needs roughly 500 attack traces to reach the coveted 0 Guessing Entropy. The
aforementioned outlier, the Accuracy objective function with 50 epochs, only seems to con-
verge to 0 Guessing Entropy after 3 000 attack traces. It even seems to go up afterwards and
then settle again. However, this is most likely a result of some inherent randomness, as the
results presented by Wu et al. showcase that Accuracy with 50 epochs should converge to O
Guessing Entropy at around 1 500.

The rest of our results for this architecture do not differ too much from the original results ob-
tained by Wu et al., apart from the fact that we outperform their results with, of course, the
exception of the Accuracy objective function at 50 epochs. Their best result was the L,,, ob-
jective function at 10 epochs, which resulted in a Guessing Entropy of 0 at roughly 800 attack
traces.

In Figure 4.4 we see that AutoSCA does not always prove successful when employing CNN
architectures regarding ASCADr. None of the configurations of the CNN variants seemed
to work in our experiments, except for the results we obtained with the Accuracy objective

24 4., Software-based vs. hardware-based implementations

200

Lm with 10 epochs
—— Lm with 50 epochs

Key Rank with 10 epochs
—— Key Rank with 50 epochs

Accuracy with 10 epochs
—— Accuracy with 50 epochs

175

150

Jury
[
w

100

Guessing Entropy
[, e |
(=] w
L L

%]
w
!

[=]
|

T T T T
0 1000 2000 3000 4000 5000
Number of attack traces

Figure 4.4: Guessing entropy results for AutoSCA using CNN models and the ID leakage model on ASCADT.

function at 50 epochs. In our experiments, this setting did not go to 0 Guessing Entropy but
reached a Guessing Entropy of just under 10 and kept hovering there. This incessant hover-
ing is an interesting contrast to the results we obtained for the MLP variants of AutoSCA we
experimented with, as in that case, Accuracy with 50 epochs seemed to perform the worst.
The same hyper-parameters were searched for as Wu et al. did in their work.

The results that Wu et al. present for the CNN variants of AutoSCA are a lot different from ours,
as they can break the data set with the Key Rank objective function, which we are not. They
need roughly 3000 attack traces for this, and there seems to be no real difference between
the 10 and 50 epoch variants. The results of the L,,, and the Accuracy objective functions they
report are within the domain of random guessing, which is similar to our results for the L,, and
the Key Rank objective functions.

To conclude the results of the ASCADT, it seems to be more than possible to break this data
set with the AutoSCA model, with the MLP variants seeming to be the most effective. This
conclusion is confirmed by both our results and the original results published by Wu et al..
It is a good showcase of the state-of-the-art performance of the model for software-based
implementations with countermeasures.

AES_HD_MM

However, as can be seen in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8, the results we
obtained for AES_HD_MM with AutoSCA are not as successful as the ones that were obtained
for the ASCAD data set. We used 45000 profiling traces for AES_HD_MM and attacked it
with 5000 traces in these following experiments. These are the same amounts as used in
subsection 4.3.1 where we were able to successfully attack AES_HD_MM with the BN model.

In Figure 4.5, we see that when we attack AES_HD_MM with AutoSCA using CNN-type mod-
els and train the best-obtained model for 10 epochs, all three objective functions are not able
to break the data set. The Accuracy objective function seems to do the best, being the only

4 .3. Results

25

—— Key Rank
—— Accuracy
— Lm

—— Key Rank
—— Accuracy
— Lm

200 + 200 1

,_.
7]
=1
=
o
=1

Guessing Entropy
Guessing Entropy

,_.
=)
=1
=
o
=1

50 4 50 4

T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Attack Traces Attack Traces

Figure 4.5: Guessing entropy results for AutoSCA
using CNN models and 10 epochs on AES_HD_MM.

Figure 4.6: Guessing entropy results for AutoSCA
using CNN models and 50 epochs on AES_HD_MM.

objective function that steadily decreases, all be it slowly. This trend of Accuracy outperform-
ing the other objective functions continues when training the final model for 50 epochs, as can
be seen in Figure 4.6.

Here in Figure 4.6, it can be seen that Accuracy outperforms the other objective functions but
still does not break the data set. At best, it seems to hover around 50 Guessing Entropy, which
can be explained by random variance.

2501 —— Key Rank 2501 —— Key Rank

—— Accuracy —— Accuracy
— Lm — Lm
200 A 200 1

,_.
o
=1
=
o
=1

,_.
=]
S

Guessing Entropy
=
[=]
[=]

Guessing Entropy

50 4 50 4

T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Attack Traces Attack Traces

Figure 4.7: Guessing entropy results for AutoSCA
using MLP models and 10 epochs on AES_HD_MM.

Figure 4.8: Guessing entropy results for AutoSCA
using MLP models and 50 epochs on AES_HD_MM.

When AES_HD_MM is attacked with AutoSCA using MLPs, the results are not that much bet-
ter, and we are not able to successfully attack the data set. However, the Key Rank objective
function outperforms the other two instead of Accuracy. As can be seen in Figure 4.7, around
3000 attack traces, the performance of the Key Rank objective function increases somewhat,
and it starts to be performing better than the other two and hitting the lowest Guessing En-
tropy of 50 it obtains around 4 000 traces. This difference in attack performance is most likely
caused by random variance, and not a result of Key Rank being a suitable objective function
for this situation, as the attack performance decreases again and does not settle at a GE of
lower than 10.

26 4., Software-based vs. hardware-based implementations

When we increase the number of epochs we train to 50, the performance of Key Rank be-
comes significantly more consistent as compared to when training with 10, which can be seen
in Figure 4.8. However, this still does not result in a successful attack. The best result ob-
tained is still far above the desired 0 Guessing Entropy at roughly 55 Guessing Entropy at its
best.

Experiments with an increased number of traces

As the results presented in this subsection show that it is not possible to break AES_HD_MM
with AutoSCA and the number of traces chosen, we decided to increase the amount of profiling
and attack traces. We did this to see if it would be possible to successfully attack AES_HD_MM
with the objective functions that performed the best for CNN and MLP models, respectively.

We decided to quadruple the total amount of traces used roughly; instead of 45000 profiling
traces, we used 200000 as this is the amount that ASCADr uses. Furthermore, instead of
the 50 000 traces for testing, we used 100 000 for the same reason as the increase in profiling
traces. We also increased the amount of used attack traces from 5000 to 20 000 to ensure
that if it converges to 0 Guessing Entropy after 5000 attack traces, as was used previously,
we will now see that happen in our results.

2507 —— Accuracy with 10 epochs

—— Accuracy with 50 epochs
—— Accuracy with 100 epochs
200 4

150 A

100 -

Guessing Entropy

50

0 T T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000

Attack Traces

Figure 4.9: Guessing entropy results for AufoSCA using CNN models and an extended version of AES_HD_MM.

However, something interesting happened here, instead of the expected result of the added
traces improving the performance of AutoSCA for CNN models, the models still do not seem to
converge, as can be seen in Figure 4.9. All three of the train epoch variants we tested seem to
result in a performance that is only slightly better than random guessing. The best performing
variant of the three was the 50 epoch variant, ending with a Guessing Entropy of just under
100. Interestingly, the 50 epoch variant also has a significant drop around 3 000 traces and
slowly goes up again from this point. The 100 epoch variant has similar erratic behaviour
initially and then stabilizes around a Guessing Entropy of 126. Only the 10 epochs variant
seems to decrease somewhat consistently, but as it starts with the highest Guessing Entropy

4 .3. Results 27

of the three, and the increase in performance mellows out around 12500 attack traces, the
final result of this variant is still barely better than random guessing. All in all, a successful
attack was not possible with the CNN models AutoSCA created for AES_HD_MM.

2501 —— Key Rank with 10 epochs

—— Key Rank with 50 epochs
—— Key Rank with 100 epochs
200 4

150 A

100 -

Guessing Entropy

50 1

O T T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000

Attack Traces

Figure 4.10: Guessing entropy results for AutoSCA using MLP models and an extended version of
AES_HD_MM.

When analyzing the results we obtained in Figure 4.10, we can see that an erratic behaviour
can be found in the beginning for all three epoch variants, which stops when all three hit a
Guessing Entropy just below 200 around 2600 attack traces. From that point out, the 50
epoch variant stays roughly the same until 7500 attack traces and slowly decreases to a
guessing Entropy of 126 when it reaches the final 20000 attack traces. After showcasing
similar behaviour, the 100 epoch variant arrives at a Guessing Entropy of 160. Similar to the
CNN models variant of this extended version of AES_HD_MM, the 10 epoch variant seems to
perform the most consistent with a slight but steady decrease in Guessing Entropy after peak-
ing. When using MLP models, the 10 epochs variant performs the best and reaches a final
Guessing Entropy of roughly 80. However, again, we need to deem it not possible to break
AES_HD_MM using MLP architectures produced by AutoSCA. The reason for the behaviour
shown in Figure 4.9, is that the network AutoSCA provided is most likely too small, and cannot
generalize the complexities of AES_HD_MM well enough, leading to this unsuccessful attack
performance.

Something of note to say about AutoSCA is that when selecting the final model to train with,
it selects the model that performs the best according to its objective function and which is the
smallest. This process often resulted in relatively small models, and as was seen in subsec-
tion 4.3.1, a bigger model seems to generalize better and obtain better results. However, one
of the advantages of smaller models is that they seem to be less prone to overfitting [10]. A
hypothesis we have is that the amount of profiling traces is potentially so large in our extended
version of AES_HD_MM that it does not result in a successful attack.

However, the more likely scenario is that the earlier results we obtained with the original version

28 4., Software-based vs. hardware-based implementations

of AES_HD_MM would not converge, and thus increasing the amount of attack traces used
would not improve the results of the model. With this being most likely the case, we need to
find another method of attack to have a successful attack.

4.3.3. Applying Reinforcement Learning for Profiled Side-Channel Analysis
The following results that will be presented are all generated using the Reinforcement Learning
for Profiled Side-Channel Analysis model, which was discussed in subsection 4.2.2. Some-
thing of note about this approach is that it takes significantly longer to compute these models.
When running these models and using an NVIDIA RTX 3080 Ti GPU, the time consumption
was upwards of three days to complete the process. This time consumption was significantly
lower for the other approaches so far, as the most intense thus far was AutoSCA with roughly
twelve hours for its most extensive run.

ASCAD with random keys

200

—— HW Model

HW Model (RS)
—— ID Model
—— 1D Model (RS)

= =
ul ~
o w

=
N
w

w ~
o w

Mean rank of correct key guess
N S
w o

o

0 250 500 750 1000 1250 1500 1750 2000
Number of traces

Figure 4.11: Guessing entropy results for ASCADr when using the Reinforcement Learning for Profiled
Side-Channel Analysis model. Figure is taken directly from [51]

As shown in Figure 4.11, a result from [51], it is clear that it is possible to break a software-
based implementation that uses a countermeasure. Both the leakage models and their reward
function variants perform well and can break the data set. The ID leakage model that uses the
regular reward function instead of the small reward function (RS) offers the best performance
out of the four configurations. It already reaches the desired 0 guessing entropy around 300
traces, while the other three take roughly 600 traces.

AES_HD_MM

When we attacked AES_HD_MM, we were sceptical of the success of the results we thought
we would obtain. This scepticism came from the fact that we noticed that small architectures
had not been very successful thus far, and the Reinforcement Learning for Profiled Side-
Channel Analysis model delivers relatively small architectures, as can be seen in the work
that Rijsdijk et al. present. However, we were pleasantly surprised by the results that we
received, which can be seen in Figure 4.12. The Reinforcement Learning for Profiled Side-
Channel Analysis models were able to break the AES_HD_MM data set and obtain the best
performance we had seen for this data set. The variant that uses the normal reward function
seems to perform the best. It reaches the desired 0 Guessing Entropy at around 3 500 attack
traces, roughly 800 traces earlier than the RS variant.

We noted that the RS variant was less erratic in the changing of Guessing Entropy as com-
pared to the standard reward function. This stability might be because the reward function

4 4. Discussion 29

200

—— AES_HD_MM with Reinforcement Learning (RS)
175 4 —— AES HD MM with Reinforcement Learning

150 -
125 -
100 -

75 1

50 A

Mean rank of correct key guess

251

T T T T
0 1000 2000 3000 4000 5000
Number of traces

Figure 4.12: Guessing entropy results for AES_HD_MM when using the Reinforcement Learning for Profiled
Side-Channel Analysis model.

rewards smaller, high-performing networks more as compared to the standard reward func-
tion. As these networks are smaller, they might behave more consistently.

4.4. Discussion

When comparing all the results we obtained for both software-based and hardware-based im-
plementations using countermeasures, we came to the following conclusion; it is always pos-
sible to obtain a successful attack result on the former when using state-of-the-art approaches
like AutoSCA or Reinforcement Learning for Profiled Side-Channel Analysis, while it is not with
the latter. The performance of the ASCADr varied throughout the state-of-art-approaches,
with the best AutoSCA approach offering us a successful attack within 800 traces, and Re-
inforcement Learning for Profiled Side-Channel Analysis taking roughly 300 traces. These
results seem to significantly outperform the results we obtained for the hardware-based imple-
mentation that uses countermeasures, AES_HD_MM, when using the same state-of-the-art
methods. We needed more than ten times the attack traces to successfully attack this data set
compared to ASCADr when using Reinforcement Learning for Profiled Side-Channel Analy-
sis, and we were unable to break this data set using AutoSCA.

This is because said methods are not optimized for attacking hardware-based implementations
and therefore do not perform well. A hypothesis we have that might explain their substandard
performance is that the size of the architectures that AutoSCA and Reinforcement Learning
for Profiled Side-Channel Analysis provide are relatively small, and hardware-based imple-
mentations with countermeasures require larger-scale models.

From our point of view, this is due to what we had seen in subsection 4.3.1; there, the larger
model (BN) significantly outperformed the smaller model (the one optimized for AES_HD).
These results lead us to believe that the smaller models fail to model the complexities and the
noise that hardware-based implementations with countermeasures have and are therefore not
suited for attacking hardware-based implementations.

The figures we provided regarding our results with AutoSCA and AES_HD_MM clearly reflect

30 4., Software-based vs. hardware-based implementations

this. The models AutoSCA generates with their method end up being too small and cannot
obtain successful attack results. Even when the size of the profiling traces is dramatically in-
creased, like in Figure 4.9 and Figure 4.10 AutoSCA is not able to deliver a successful attack,
showcasing this problem.

We think that because the Reinforcement Learning for Profiled Side-Channel Analysis method
is more flexible in the sizes of the networks it provides, due to its reward function, it is able to
deliver successful attacks as can be seen in Figure 4.12. It must be noted that it is interesting
that the RS reward function somewhat outperforms the normal reward function, as the RS re-
ward function tends to deliver smaller network sizes. Therefore, we think that the RS reward
function does not inhibit the size of the network too much if it comes to a better performing
network in the case of hardware-based implementations and can actually deliver better results
due to its stability improvements.

The results we obtained in this chapter, both good and bad, give us a direction to go into for
our next chapter, as we can start to experiment with larger networks and aspects of AutoSCA
or Reinforcement Learning for Profiled Side-Channel Analysis to create a novel attack method
that works well on higher-order hardware-based implementations.

Considering our results and other results in the field of Profiled Side-Channel Analysis, we
deem it more challenging to obtain a successful attack on hardware-based implementations
that use countermeasures than on software-based implementations that use countermea-
sures.

Constructing a novel attack method for
hardware-based implementations

This chapter considers a novel method for attacking hardware-based implementations with
and without countermeasures. We hope to establish a base methodology with this chapter
that describes a plan of attack for these hardware-based implementations. The methodology
should be constructed so that it can be improved upon in the future. Similarly to chapter 4 we
start with motivating why this needs to be examined, and a methodology could prove to be a
helpful addition to the field of SCA. We will also discuss what our novelty is, why it is novel and
why it makes sense to try out this novelty. Afterwards, we discuss our experimental setups
to clarify how we came to our suggestion for the finalised method to attack hardware-based
implementations. Finally, we analyze the results of the experiments and discuss them in detail.

5.1. Motivation

In chapter 4, we showcased that often hardware-based implementations are more difficult to
attack and analyze than their software-based counterparts. A methodology or a plan of attack
for when a new hardware data set needs to be analyzed would be a great addition to the current
field of knowledge of SCA. To our knowledge, no such methodology exists currently, and we
hope to give at least a basis for one in this chapter. Our proposed methodology will be based
on the novelty of using multiple pre-processing branches in the network and a significantly
increased depth in our network via the usage of ResNets. Whilst both methods have been used
before in the domain of SCA, they never have been applied in a direct manner to hardware-
based implementations and optimized for them. Therefore, we think it makes sense to see if
we can use the success of these methods on software-based implementations in tandem with
what we found in chapter 3 and chapter 4 to create a novel approach for attacking higher-order
hardware-based data sets. We will discuss the method we found in the end, and how one can
apply it to hardware-based implementations with state-of-the-art performance. Therefore this
could be useful to build upon for future research. At the time of writing, this method is a novelty
in its application to hardware-based higher-order data sets. Therefore, it could pave the way
for improved attack methods for these aforementioned data sets.

5.2. Experimental Setup

The two ways we considered to be effective in attacking hardware-based implementations,
both in our experiments and the research we did, were the size (especially depth) of the net-
work and the pre-processing of the data sets. We look into both directions, by first creating an

31

32 5. Constructing a novel attack method for hardware-based implementations

approach based on the MCNN of Won et al., and afterwards, we propose the application of
ResNets, which are known for their sizable depth and thus the size of the network. Both are
novel in their application of being directly optimized for hardware-based implementations. We
built and customized our methods for the AES_HD and AES_HD_MM data sets to showcase
that if our methods are successful, they can be both effective for hardware-based implemen-
tations that both use and do not use countermeasures.

5.2.1. MCNN approach

Seeing the success of the MCNN introduced by Won et al. we thought that by modifying their
approach, we could create a optimized version of their network for hardware-based imple-
mentations. As Won et al. also published their work with the results of their network on the
AES_HD and AES_HD_MM data sets, we do not deem our own approach completely novel,
but we see it as a step towards finding an approach for successfully attacking hardware-based
implementations.

In our experiments with MCNN variations we decided to try out the following types of prepro-
cessing:

* MA: The moving average is a statistic that captures the average of a data set over the
span of several sliding windows of certain sizes. This allows us to reduce the number of
inputs to consider but still get a good estimate of what the data is supposed to represent.
This pre-processing technique was used in the paper by Won et al. as well, here we
decided to use the 50/100/400 window size variations.

» PCA: Principal Component Analysis is the process of reducing its input to its most im-
portant features. This is used by Won et al. to reduce the input to the 50 most important
features, we decided to test a reduction to 100 features as well.

» EA: Elastic Alignment attempts to counteract desynchronization caused by jitter or de-
lays. It is based on a dynamic time warping algorithm adopted from speech recognition
and has seen some success in its application to DPA [61]. This type of pre-processing
was mentioned by Won et al. but it is unclear how much they experimented with this.

* SMOTE: The Synthetic Minority Oversampling Technique is a well-known re-sampling
method that oversamples by generating synthetic minority class instances [13]. This can
be used to balance the data and hopefully improve the performance, this pre-processing
technique was not utilised by Won et al. but explored with some success by Picek et al..

In the experiments done by Won et al. the combination of MA and a branch of unaltered input
(called “original”) seems to work well and returns in almost all their experiments. For this,
they chose an MA window size of 100 and PCA with a feature reduction of 50. We, therefore,
assumed this approach to already have been validated to a degree and took this with us in
the experiments that we ran. We in the end ran the following combinations of pre-processing
for our MCNN:

“Original”, MA-100, PCA-100

“Original”’, MA-400, PCA-50

“Original”, MA-100, PCA-50, SMOTE

L]

MA-50, SMOTE

5.2. Experimental Setup 33

* “Original”, SMOTE

“Original”, MA-400, SMOTE

“Original”, MA-100, PCA-50, SMOTE

L]

“Original”’, MA-100, PCA-50, SMOTE, EA

Note that this list of experiments is far from exhaustive, but we deemed these experiments to
be the most interesting as they were either close to the original MCNN by Won et al. or in a
completely different direction. An exhaustive search over all the combinations of the chosen
pre-processing methods could be performed but we ran out of time to do this.

(} 2 P
& 125 =N
S
=
&
&, 100 A
=
a L.
@ 75 | — Original, MA-100, PCA-100
a —— Original, MA-400, PCA-50

Original, SMOTE, EA
50 7 — original, MA-100, PCA-50, SMOTE, EA
—— Original, MA-400, SMOTE
25 - Original, MA-100, PCA-50, SMOTE

MA-50, SMOTE
—— Original, MA-100, PCA-50, SMOTE

0 -
T T T T
0 1000 2000 3000 4000 5000
Number of attack traces

Figure 5.1: Different MCNN setups on the AES_HD_MM data set.

As can be seen in Figure 5.1, in some cases our MCNN setups come close to that of those
of Won et al.. However, we do not deem this approach an improvement upon their work and
far from a successful approach to hardware-based implementations. Of course, it could be
that we did not try out the right combinations of pre-processing techniques and to fully validate
this, an exhaustive approach could be taken. We deem with the current results the usage
of different branches of pre-processing a promising, yet not good enough for being the new
state-of-the-art, approach in attacking hardware-based implementations.

5.2.2. ResNet approach

We considered using a variant of the residual blocks that Jin et al. used for our ResNet. Vary-
ing versions of these blocks were tested, but in the end, we settled on using a version that did
not use batch normalization with a kernel size of 2 for both AES_HD and AES_HD_MM.

The number of residual blocks for the two different data sets ended up being slightly different
from what we expected. We expected to use the maximal amount of residual blocks while
reducing the feature map size by a factor of two for each block, leading to |log,(1250)| = 10

34 5. Constructing a novel attack method for hardware-based implementations

and |log,(3125)] = 11 respectively for the two data sets as was done by Karayalgin et al.
[29]. However, we ended up using 8 residual blocks for AES_HD and 9 for AES_HD_MM, re-
sulting in 16 and 18 convolutional layers, respectively. The number of filters that were chosen
in each convolutional layer was computed by min(2i~%, 256) with i being the number of the
residual block, starting from 1. We also varied neurons a bit and came to the conclusion that

10 neurons worked best for AES_HD and 16 neurons worked best for AES_HD_MM.

Both architectures can be seen in more detail in Figure 5.2 and Figure 5.3.

1250, 1

Residual block 1

Convultional layer, 1
filter, kernel size 2

Convultional layer, 1
filter, kernel size 2

v

Residual block 2

v

Residual block 3

Convultional layer, 1
filter, kernel size 1

3251

¥

Residual block 1

filter, kernel size 2

Convultional layer, 1 |

Convultional layer, 1
filter, kernel size 2

=

v

Residual block 2

v

| Average Pooling [2.2)|

v

Residual block 4

v

Residual block 5

v

Residual block 6

v

Residual block 7

v

Residual block 8

Residual block 3

Convultional layer, 1
filter, kernel size 1

| Average Pooling (2,2) |

v

Residual block 4

v

Residual block 5

¥

Residual block &

v

Residual block 7

Convultional layer, 128
filters, kernel size 2

Convultional layer, 128|
filters, kernel size 2

v

| Global Average Poeling |

v

Dense layer, 10 neurons,
selu activation

v

Dense layer, 10 neurons,
selu activation

v

Dense layer, 9 neurons,
softmax activation

Figure 5.2: ResNet architecture used for AES_HD.

We came to the conclusion of using this particular network setup, by performing grid search op-
timisation on hyper-parameters we pre-selected. These hyper-parameters were partly based

=

Convultional layer, 128
filters, kernel size 1

v

Residual block 8

v

Residual block 9

Convultional layer, 256,
filters, kernel size 2

Convultional layer, 256
filters, kernel size 2

v

| Average Pooling [2.2)|

Global Average Pooling

v

Diense layer, 16 neurons,

selu activation

Convultional layer, 256
filters, kernel size 1

Average Pooling (2,2)

v

Dense layer, 16 neurons,

selu activation

v

Dense layer, 9 neurons,
sofimax activation

Figure 5.3: ResNet architecture used for
AES_HD_MM.

5.2. Experimental Setup 35

on the findings of Zaid et al. in their methodology as we thought that to be a good starting point
for our own approach. The table of this grid searchTable 5.5 can be found in the discussion,
and we would like to note that, as the trend goes for grid-based searches, far from all the
results of this grid search were successful.

Size comparison of network

The size of the networks that we found is also something to consider. For example, do these
networks have many trainable parameters and do they over-fit their respective data sets? Are
they unnecessarily large, and do they cost too many resources to train as there might be better
and smaller alternatives? To consider this, we analyzed the size of our networks and com-
pared them to networks of similar and varying sizes.

For AES_HD, there are considerably more networks published that are successful in their at-
tack of the data set than for AES_HD_MM. This abundance of results leads to that comparison
being more in-depth and will give a better view of the performance related to the size of the
network, which needs to be held into consideration.

Our ResNet
78723

Wouters et al.[63]
2020

Zaid et al.[67]
3282

Zaid et al. (BN)
142044

Jin et al.[28]
~300000

Trainable params

Table 5.1: Table showcasing the comparison of different architectures sizes on AES_HD

As we can see in Table 5.1, the two networks made for AES_HD by Wouters et al. and Zaid
et al. are considerably smaller, so outperforming these networks is something we can hope
to expect with a network that is 38,97 and 23,99 times larger respectively. The BN which we
saw used in chapter 4 is 1,8 times as large, and the estimated size of the Jin ef al. network
is roughly four times as large. Therefore if we can outperform those networks for AES_HD, it
would showcase that we can improve current results with smaller networks. We could sadly
not find a network of similar size to our own network to compare against.

Rijsdijk et al.[51] | Our ResNet | Wu et al.[64] | Zaid et al. (BN)[67]
Trainable parameters 192105 311905 349596 142044
Non-trainable parameters | 0 0 1344 0
Total parameters 192105 311905 350940 142044

Table 5.2: Table showcasing the comparison of different architectures sizes on AES_HD_MM

For AES_HD_MM we found it hard to make this comparison, as there are not many known re-
sults for the data set. We chose to compare to the results we knew the total amount of trainable
parameters to, this being the results that Wu et al. and Rijsdijk ef al. obtained. Our network
is not the largest, being 0, 89 times the size of the network by Wu et al., as can be seen in
Table 5.2, but itis larger than the other two networks of which we know the results. Due to the
network of Wu et al. having their unique three different branches that use pre-processing, they
also have some non-trainable parameters, which we chose to showcase in our comparison.
Therefore, if we can have comparable results to the network of Wu et al. for AES_HD_MM,
we showcase that the current state-of-the-art for AES_HD_MM can be improved upon with-
out increasing the size of the network. The best performing network that we were able to get
with Rijsdijks et al. method is smaller by a significant amount, roughly 120 000. Therefore we
expect to outperform it based on our results so far.

36 5. Constructing a novel attack method for hardware-based implementations

We also chose to make a comparison against the architecture we used to first successfully
break the AES_HD_MM data set with to give a frame of reference for what someone can
expect when using an architecture that was not made with attacking hardware-based imple-
mentations in mind.

5.3. Results

In this section, we will present the result we obtained for AES_HD and AES_HD_MM using
the models and method described in section 5.2.

5.3.1. AES_HD

Applying the ResNet we developed for the AES_HD to the AES_HD data set, we gain results
that are better than the former state-of-the-art presented by Zaid et al. and the improvement
thereof presented by Wouters et al. as can be seen in Figure 5.4. Our ResNet network reaches
a Guessing Entropy of 0 around the 4 000 attack traces mark. To obtain this result, we used
50000 profiling traces, 5000 validation traces and 5000 attack traces.

—— Best Resnet from experiments with AES_HD

75 4

Guessing Entropy
=
[=]
(=]
L

50 1

251

T T T T
0 1000 2000 3000 4000 5000
Number of attack traces

Figure 5.4: Guessing entropy results for our ResNet on AES_HD.

Something of note is that while our network seems to perform better than the former state-of-
the-art of Zaid et al. and the improved state-of-the-art of Wouters et al., in [28], Jin et al. show
that with their application of a Convolutional Block Attention Module (CBAM) to ResNets they
can reach a Guessing Entropy of 0 within 2 100 attack traces. They speculate this is because
the attention network can focus on the leakage regions and ignore the unnecessary points by
using CBAM. This attention network reduces the influence of the environmental and algorith-
mic noise, which are very prevalent in AES_HD and thus improves performance.

An overview of this comparison can be seen in Table 5.3

Jin et al.[28] | Our ResNet | Wouters et al.[63] | Zaid et al.[67] | Zaid et al. (BN)
NoT for GE <1 | 2100 3900 5800 5900 11300

Table 5.3: Table showcasing the comparison of different architectures on AES_HD

5.3. Results 37

Taking these performance results in mind, we can also now reflect on the sizes of the networks
we listed in Table 5.1. We outperform the two smaller networks, those by Wouters et al.
and Zaid, by roughly 2 000 attack traces each. A sizeable improvement but smaller than we
hoped for the increase in the size of the network. We also outperformed the BN originally
introduced by Zaid et al. This was expected as this network is not optimized for hardware-
based implementations. However, it is still good to see that we outperform this network with
roughly a third of the attack traces and half the size. The network by Jin et al. outperformed
our network with quite a margin. However, the network uses roughly four times the trainable
parameters and is, because of that, significantly more expensive to train. Therefore, we deem
our network to give good results for its relative size.

5.3.2. AES_HD_MM

When using our ResNet on AES_HD_MM, we receive results that are significantly better than
the original publishing of the data set, which used DPA [16] as can be seen in Figure 5.5. This
makes sense, as the application of profiled attacks is a lot more sophisticated than a direct
attack, and the field of profiled Side-Channel Analysis has evolved and changed a lot since
2014 when this attack was performed. Ding et al. could only reach a success rate of 90%
with 500 000 traces, which showcases the difficulty of attacking a masked hardware AES im-
plementation.

However, comparing our results to more recent results, such as the ones published in [64], we
still see a significantimprovement in results. When using our extended version of AES_HD_MM
we can reach a Guessing Entropy of 0 within 2 200 attack traces, while the best result we could
find was from Wu et al., taking roughly 4 500 attack traces.

—— Best Resnet from experiments with AES_HD_MM_extended

Guessing Entropy

T T T T
0 1000 2000 3000 4000 5000
Number of attack traces

Figure 5.5: Guessing entropy results for our ResNet on AES_HD_MM.

An overview of the comparison between different architectures can be seen in Table 5.4.

Regarding the size of the networks that obtained the results we can see in Table 5.4, we refer to
the parameters we found in Table 5.4. Our ResNet optimized for AES_HD_MM outperforms
the network by Wu et al. in both size and amount of attack traces needed for a success-
ful attack. It also significantly outperforms the BN, the smallest network we have results for

38 5. Constructing a novel attack method for hardware-based implementations

Our ResNet | Rijsdijk et al.[51] | Wu et al.[64] | Zaid et al. (BN) | Ding et al.[16]
NoT for SA | 2200 3500 4500 6200 500000

Table 5.4: Table showcasing the comparison of different architectures on AES_HD_MM

AES_HD_MM. The factor of the difference in needed attack traces is greater than the factor of
the difference in the size of the networks. These factors are 2,82 and 2, 05, respectively. While
the ratio of size and attack performance is similar to that which we obtained with the method
from Rijsdijk et al., our ResNet can be trained significantly faster. Therefore, we deem our
ResNet to be better than the state-of-the-art for AES_HD_MM.

5.4. Discussion

In this chapter, we found that we could obtain results competitive with the state-of-the-art for
hardware-based implementations with our ResNets. This result showcases the power of the
novel design element in our method. With the modification that Karayalgin et al. did of the
residual blocks of Jin et al., we showcased that by making some hyper-parameter adjust-
ments and taking ideas of state-of-the-art models, we can get good results and even improve
state-of-the-art results for specific data sets. The sizes of our proposed networks are not the
smallest nor the largest networks that perform well for their data sets, and we consider their
size-to-performance ratio more than acceptable. As mentioned in section 5.1, there is cur-
rently no consensus or methodology on how to approach higher-order hardware-based data
sets, which is something we will create here now.

We also presented our experiments with various setups of MCNN. With the results that Won
et al. presented in their work, we expected that with slight modifications, and novel pre-
processing methods in these setups, we could improve upon their work. However, this was not
the case and our best results were less successful at attacking AES_HD_MM than the origi-
nal MCNN. We still think this approach of using a neural network with multiple pre-processing
branches an interesting choice for attacking hardware-based implementations, and we think
that with more experiments and a more in-depth look it could be made successful, but deemed
this out of the scope of the research and decided to focus on our ResNets.

Hyper-parameter Value

Optimizer {SGD, RMSprop, Adam}
Weight initialization {Uniform distribution, He uniform}
Learning rate {0.01, 0.001, 0.0001} with One-Cycle Policy
Batch size {50, 64, 128, 256, 512}
Epochs {10, 25, 50, 75, 100, 125, 150}
Activation function dense layers {tanh, ReLU, SelLU}

n° of neurons dense layers {10, 16, 32, 64, 128, 256}

n° of layers dense layers {1,2, 3,4, 5}

Starting filter size res block {1, 2, 4, 8, 16, 32}

Kernel size res block {2,4, 8,12, 16}

n° of convolutional layers res block {1,2,3,4,5}

Table 5.5: Grid search optimisation on hyper-parameters for our suggested ResNet architecture.

As hinted towards in subsection 5.2.2, the majority of the strength of our proposed ResNets
lies in their depth, which is decided by the number of residual blocks. This was suggested by

5.4. Discussion 39

Karayalgin et al. and in our experiments, this proves to be true for hardware-based implemen-
tations. The number of residual blocks we propose to use for a data set can be calculated by
taking the log, of the number of features of that data set and then flooring that. This number
should be the highest amount of residual blocks one needs for their data set. We then propose
that one can try and decrease the number of trainable parameters by lowering this number
until the results start to deteriorate.

We propose performing a grid search optimization on the hyper-parameters for the rest of
our parameters, just like Zaid et al. did in their methodology. See Table 5.5 for the hyper-
parameters that we propose for the grid search optimization.

We realize that this is far from a conclusive methodology. However, we hope to lay the ground-
work for a future consensus on how to approach designing the architectures for hardware-
based data sets of a higher order.

We did consider, but thought to be out of scope for the research, applying Bayesian optimiza-
tion as AutoSCA does, or even random search optimization instead of the grid-based search
optimization we used. As the amount of hyper-parameters is quite large and might grow with
improvements to our base methodology as we learn more about the field, these other opti-
mization forms could prove helpful.

Conclusions

In this final chapter, we will answer our research questions, as stated in section 3.4. Then we
will discuss the limitations of our work. And finally, we will propose how these limitations could
be addressed and additional future work to improve on the work done.

In chapter 4 we evaluated the differences between higher-order software-based and hardware-
based implementations using state-of-the-art methods. Here we confirmed the prevalent hy-
pothesis throughout the SCA field; higher-order hardware-based implementations are more
challenging to attack than their software-based counterparts. In chapter 5, we introduced our
novel attack method of applying ResNets to hardware-based implementations and showcased
excellent results, even improving upon the best-known results for AES_HD_MM.

Research question 1: What is the difference in the attack performance between software-
based implementations and hardware-based implementations?

Answer: The difference in attack performance we see is that hardware-based implemen-
tations, both with and without countermeasures, need more attacking traces on average to
recover the correct key. We showed this in chapter 4 with the usage of two state-of-the-art
methods, by applying said methods to hardware-based implementations and reproducing re-
sults that were had for software-based implementations. The state-of-the-art method AutoSCA
was very successful at attacking software-based implementations. However, we could not ob-
tain a successful attack on a hardware-based implementation with AutoSCA.

We also showcased that it is possible to break higher-order hardware-based implementations
using deep learning SCA with even naive approaches like using a known successful large
network that would most likely fit itself towards the data set well enough. This was done by
attacking the AES_HD_MM data set using the Big Network (BN) from Zaid et al. and PCA
as pre-processing. This resulted in the attack performance of 6 200 attack traces to reach a
Guessing Entropy of below 1. Whilst this attack might have been succesfull in recovering the
correct key, it does, however, take a significant amount of attack traces and we can do better
as showcased in our later experiments.

Running our experiments, we found out that while the reinforcement learning method devel-
oped by Rijsdijk et al. was decently effective at breaking AES_HD_MM, AutoSCA was not.
The performance we saw with the reinforcement learning method was the best we had seen
so far, with 3500 attack traces needed to get a Guessing Entropy of below 1, AutoSCA was
not able to break the data set at all. AutoSCA being unable to break the data set indicates

41

42 6. Conclusions

that these state-of-the-art methods are not all applicable to every data set out there and that
even with a significant amount of tweaks and improvements, they do not necessarily work.

Finally, as our results indicated that attacking a software-based implementation using coun-
termeasures like ASCAD with random keys is significantly easier than attacking a hardware-
based implementation using countermeasures like AES_HD_MM, we concluded that the coun-
termeasures in the latter data sets seemingly prove more effective than in the former data sets.

Research question 2: Which novel design elements can we introduce to improve the attack
performance on higher-order hardware-based data sets?

Answer: We can improve the attack performance on higher-order hardware-based data sets
using our novel design element of ResNets. We showed this in chapter 5 by showcasing how
our proposed ResNets were constructed, what their amount of trainable parameters and then
comparing their needed amount of traces to attack a hardware-based data set successfully.
Using our proposed novel attack method, we could also obtain good results on hardware-
based data sets that do not employ countermeasures, which was something we did not fully
expect.

While working towards a new novel design element for attacking higher-order hardware-based
data sets, it became apparent that there is no consensus or methodology on approaching these
data sets, as mentioned earlier. We make the first attempt at this in chapter 5 by showcasing
the structure of our novel design element and how we choose critical parameters for this.

The grid-search part of our novel design element is heavily inspired by the approach of Zaid
et al. [67], which employs a similar grid-search tactic. The idea of ResNets came from Jin et
al. and Karayalgin et al., and as our results are better than their results, we deem it so that
improvements can be made on attack performance by making adjustments to state-of-the-
art models or previous state-of-the-art models. We also mention in section 5.4 that applying
the Bayesian Optimization that AutoSCA uses might improve our novel design element even
more, which would show this too, but this needs to be researched before we can claim this.

Our novel design element compares decently to other network sizes. For AES_HD it seems
to be of average size, and for AES_HD_MM, one of the larger ones. Taking the performance
of other networks into account, we deem the sizes of our novel design element good. They
might not be the smallest networks available with good results, but they perform like one of
the best networks or better than the state-of-the-art by a significant amount.

6.1. Summary of Scientific Contributions
An overview of the main scientific contributions of this work is as follows:

» We showcase that it is more challenging to successfully attack hardware-based imple-
mentations than software-based implementations using state-of-the-art results and em-
pirical results.

* We find that state-of-the-art methods have varying amounts of success in hardware-
based implementations that incorporate countermeasures.

» We show the effectiveness of ResNets by introducing a novel design method for attack-
ing hardware-based implementations that uses ResNets.

6.2. Limitations 43

* We show that we can create a novel design element that performs better than state-
of-the-art with an analysis of successful networks and modifications to state-of-the-art
methods.

6.2. Limitations

A shortcoming of our comparison of hardware-based and software-based implementations us-
ing countermeasures is that we only used ASCAD with variable keys and AES_HD_MM. The
comparison would be better, and a more concrete answer could be drawn if more data sets
were used. However, currently, there are no other hardware-based implementations using
countermeasures publicly available than AES_HD_MM, so it is unclear how to resolve this
part of the limitation at this time.

While we do use two different state-of-the-art methods in our analysis of hardware-based and
software-based implementations, this does not represent the full spectrum of state-of-the-art
profiled SCA methods available at the moment.

A caveat of our methodology is that we suggest finding the number of residual blocks by taking
the log, of the number of features of the data set and then flooring that number. After this,
improvement can be made by lowering this floored number until the network’s performance
goes down, but of course, this adds extra time and computation to finding the ideal network.

Another limitation is that the grid search hyper-parameters we suggest for our novel method
were successful for the data sets we used within this work; they might not be for other hardware-
based implementations. While careful consideration went into choosing these hyper-parameters,
many other options exist and could prove to be even more effective.

6.3. Future Work

The limitations in the previous section provide many different options for future work, and we
suggest a few options for this here in this section.

The comparison and analysis of the difference in attack performance between hardware-based
and software-based implementations could improve if more different data sets were used. This
is a clear step for future work and could be done by using other data sets like ASCAD with
a desync or the new ASCADv2. Other hardware-based implementations using countermea-
sures than AES_HD_MM are not publicly available at the time of writing, but they could be
created and made publicly available to resolve this. This would also be a great addition to the
field of research, as it would allow for other research into hardware-based implementations
using countermeasures.

A clear step for more future work in comparing the difference in attack performance between
hardware-based and software-based implementations is using other state-of-the-art methods.
The method proposed by Jin et al. could be used, methods that are not published or invented
yet, and even our method could be used in this future work. This would make the comparison
findings more complete and a better basis for future hypotheses or improvements to the liter-
ature.

Significant improvements to our suggested novel method can be made; we suggest applying
Bayesian Optimization like AutoSCA does, which could optimize run times and results dras-

44 6. Conclusions

tically for larger search spaces. Another improvement to our novelty would be improving the
choice of residual blocks. This could be done by creating a method that would suggest sev-
eral options for the number of residual blocks by using our log, method or a more advanced
concept and then using that in the hyper-parameter optimization.

Finally, a possible direction for future work is looking into the application of our novel method in
software-based implementations. Our methodology that we developed specifically for hardware-
based implementations could potentially prove successful in this domain, but that remains to
be seen.

Bibliography

[1] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. The em

(2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

side—channel (s). In International workshop on cryptographic hardware and embedded
systems, pages 29—-45. Springer, 2002.

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolu-
tional neural network. In 2017 international conference on engineering and technology
(ICET), pages 1-6. leee, 2017.

S. Abhishek Anand and Nitesh Saxena. A sound for a sound: Mitigating acoustic side
channel attacks on password keystrokes with active sounds. In Jens Grossklags and
Bart Preneel, editors, Financial Cryptography and Data Security - 20th International Con-
ference, FC 2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected
Papers, volume 9603 of Lecture Notes in Computer Science, pages 346-364. Springer,
2016. doi: 10.1007/978-3-662-54970-4_21. URL https://doi.org/10.1007/
978-3-662-54970-4 21.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network
architectures using reinforcement learning. CoRR, abs/1611.02167, 2016. URL http:
//arxiv.org/abs/1611.02167.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade,
pages 421-436. Springer, 2012.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leak-
age model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer
Science, pages 16—29. Springer, 2004. doi: 10.1007/978-3-540-28632-5_2. URL
https://doi.org/10.1007/978-3-540-28632-5 2.

Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural networks with
data augmentation against jitter-based countermeasures. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 45-68. Springer, 2017.

MT Camacho Olmedo, Martin Paegelow, Jean-Frangois Mas, and Francisco Escobar.
Geomatic approaches for modeling land change scenarios. an introduction. In Geomatic
Approaches for Modeling Land Change Scenarios, pages 1-8. Springer, 2018.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on Machine
learning, pages 161-168, 2006.

Rich Caruana, Steve Lawrence, and C. Lee Giles. Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping. In Todd K. Leen, Thomas G. Diet-
terich, and Volker Tresp, editors, Advances in Neural Information Processing Systems
13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO,

45

https://doi.org/10.1007/978-3-662-54970-4_21
https://doi.org/10.1007/978-3-662-54970-4_21
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167
https://doi.org/10.1007/978-3-540-28632-5_2

46

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

USA, pages 402—408. MIT Press, 2000. URL https://proceedings.neurips.cc/
paper/2000/hash/059fdcd96baeb75112f09faldcc740cc-Abstract.html.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski
Jr., Cetin Kaya Kog, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science, pages
13-28. Springer, 2002. doi: 10.1007/3-540-36400-5_3. URL https://doi.org/
10.1007/3-540-36400-5_ 3.

Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 13-28. Springer,
2002.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16:321-357,
2002. doi: 10.1613/jair.953. URL https://doi.org/10.1613/jair.953.

Yann N. Dauphin, Harm de Vries, Junyoung Chung, and Yoshua Bengio. Rmsprop and
equilibrated adaptive learning rates for non-convex optimization. CoRR, abs/1502.04390,
2015. URL http://arxiv.org/abs/1502.04390.

Li Deng and John C. Platt. Ensemble deep learning for speech recognition. In Haizhou
Li, Helen M. Meng, Bin Ma, Engsiong Chng, and Lei Xie, editors, INTERSPEECH
2014, 15th Annual Conference of the International Speech Communication Associa-
tion, Singapore, September 14-18, 2014, pages 1915-1919. ISCA, 2014. URL http:
//www.isca-speech.org/archive/interspeech 2014/i14 1915.html.

A. Adam Ding, Liwei Zhang, Yunsi Fei, and Pei Luo. A statistical model for
higher order DPA on masked devices. In Lejla Batina and Matthew Robshaw, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th In-
ternational Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of Lecture Notes in Computer Science, pages 147-169. Springer,
2014. doi: 10.1007/978-3-662-44709-3_9. URL https://doi.org/10.1007/
978-3-662-44709-3 9.

Rob A Dunne and Norm A Campbell. On the pairing of the softmax activation and cross-
entropy penalty functions and the derivation of the softmax activation function. In Proc.
8th Aust. Conf. on the Neural Networks, Melbourne, volume 181, page 185. Citeseer,
1997.

M.W Gardner and S.R Dorling. Artificial neural networks (the multilayer perceptron)—a
review of applications in the atmospheric sciences. Atmospheric Environment, 32(14):.
2627-2636, 1998. ISSN 1352-2310. doi: https://doi.org/10.1016/S1352-2310(97)
00447-0. URL https://www.sciencedirect.com/science/article/pii/
S1352231097004470.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudik, editors, Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceed-
ings, pages 315-323. JMLR.org, 2011. URL http://proceedings.mlr.press/
vl5/glorotlla/glorotlla.pdf.

https://proceedings.neurips.cc/paper/2000/hash/059fdcd96baeb75112f09fa1dcc740cc-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/059fdcd96baeb75112f09fa1dcc740cc-Abstract.html
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1613/jair.953
http://arxiv.org/abs/1502.04390
http://www.isca-speech.org/archive/interspeech_2014/i14_1915.html
http://www.isca-speech.org/archive/interspeech_2014/i14_1915.html
https://doi.org/10.1007/978-3-662-44709-3_9
https://doi.org/10.1007/978-3-662-44709-3_9
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://www.sciencedirect.com/science/article/pii/S1352231097004470
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

Bibliography 47

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Ling Guan, Lei Gao, Nour EI-Din EI-Madany, and Chengwu Liang. Statistical machine
learning vs deep learning in information fusion: Competition or collaboration? In IEEE
1st Conference on Multimedia Information Processing and Retrieval, MIPR 2018, Miami,
FL, USA, April 10-12, 2018, pages 251-256. IEEE, 2018. doi: 10.1109/MIPR.2018.
00059. URL http://doi.ieeecomputersociety.org/10.1109/MIPR.2018.
000509.

Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. A survey of deep learning techniques
for medical diagnosis. In Information and communication technology for sustainable de-
velopment, pages 161-170. Springer, 2020.

AMA Hawamleh, Almuhannad Sulaiman M Alorfi, Jassim Ahmad Al-Gasawneh, and
Ghada Al-Rawashdeh. Cyber security and ethical hacking: The importance of protecting
user data. Solid State Technology, 63(5):7894—7899, 2020.

Benjamin Hettwer, Stefan Gehrer, and Tim Gilineysu. Applications of machine learning
techniques in side-channel attacks: a survey. Journal of Cryptographic Engineering, 10
(2):135-162, 2020.

Annelie Heuser and Michael Zohner. Intelligent machine homicide. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages 249-264.
Springer, 2012.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02):107-116, 1998.

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos
Vandewalle. Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng.,
1(4):293-302, 2011. doi: 10.1007/s13389-011-0023-x. URL https://doi.org/
10.1007/s13389-011-0023-x.

Michael Hutter and Jorn-Marc Schmidt. The temperature side channel and heating fault
attacks. In International Conference on Smart Card Research and Advanced Applica-
tions, pages 219-235. Springer, 2013.

Minhui Jin, Mengce Zheng, Honggang Hu, and Nenghai Yu. An enhanced convolutional
neural network in side-channel attacks and its visualization. CoRR, abs/2009.08898,
2020. URL https://arxiv.org/abs/2009.08898.

Sengim Karayalcin and Stjepan Picek. Resolving the doubts: On the construction and
use of resnets for side-channel analysis. Cryptology ePrint Archive, Paper 2022/963,
2022. URL https://eprint.iacr.org/2022/963. https://eprint.iacr.
0rg/2022/963.

Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic. Make
some noise. unleashing the power of convolutional neural networks for profiled side-
channel analysis. [ACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):148-179,
2019. doi: 10.13154/tches.v2019.i3.148-179. URL https://doi.org/10.
13154/tches.v2019.13.148-179.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015. URL http://arxiv.org/abs/1412.6980.

http://doi.ieeecomputersociety.org/10.1109/MIPR.2018.00059
http://doi.ieeecomputersociety.org/10.1109/MIPR.2018.00059
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://arxiv.org/abs/2009.08898
https://eprint.iacr.org/2022/963
https://eprint.iacr.org/2022/963
https://eprint.iacr.org/2022/963
https://doi.org/10.13154/tches.v2019.i3.148-179
https://doi.org/10.13154/tches.v2019.i3.148-179
http://arxiv.org/abs/1412.6980

48 Bibliography

[32] Glinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 971-980, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/5d44ee6f2c3f71b73125876103c8f6¢c4-Abstract.html.

[33] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO 99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 388-397.
Springer, 1999. doi: 10.1007/3-540-48405-1_25. URL https://doi.org/10.
1007/3-540-48405-1 25.

[34] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and Frangois-
Xavier Standaert. Template attacks vs. machine learning revisited (and the curse of di-
mensionality in side-channel analysis). In International Workshop on Constructive Side-
Channel Analysis and Secure Design, pages 20-33. Springer, 2015.

[35] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, and Jon Atli
Benediktsson. Deep learning for hyperspectral image classification: An overview. IEEE
Trans. Geosci. Remote. Sens., 57(9):6690-6709, 2019. doi: 10.1109/TGRS.2019.
2907932. URL https://doi.org/10.1109/TGRS.2019.2907932.

[36] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic
implementations using deep learning techniques. In Claude Carlet, M. Anwar Hasan, and
Vishal Saraswat, editors, Security, Privacy, and Applied Cryptography Engineering - 6th
International Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Pro-
ceedings, volume 10076 of Lecture Notes in Computer Science, pages 3—-26. Springer,
2016. doi: 10.1007/978-3-319-49445-6_1. URL https://doi.org/10.1007/
978-3-319-49445-6_1.

[37] Prerna Mahajan and Abhishek Sachdeva. A study of encryption algorithms aes, des and
rsa for security. Global Journal of Computer Science and Technology, 2013.

[38] James L Massey. Guessing and entropy. In Proceedings of 1994 IEEE International
Symposium on Information Theory, page 204. IEEE, 1994.

[39] Loic Masure and Rémi Strullu. Side channel analysis against the anssi’s protected AES
implementation on ARM. IACR Cryptol. ePrint Arch., page 592, 2021. URL https:
//eprint.iacr.org/2021/592.

[40] Loic Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study of deep
learning for side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 348-375, 2020.

[41] Amir Moradi. Side-channel leakage through static power. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 562-579. Springer, 2014.

[42] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin,
James Foti, and Edward Roback. Report on the development of the advanced encryption
standard (aes). Journal of Research of the National Institute of Standards and Technol-
ogy, 106(3):511, 2001.

https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/TGRS.2019.2907932
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://eprint.iacr.org/2021/592
https://eprint.iacr.org/2021/592

Bibliography 49

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifi-
cation using deep learning. CoRR, abs/1712.04621, 2017. URL http://arxiv.org/
abs/1712.04621.

Stiepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley, Do-
magoj Jakobovic, and Nele Mentens. Side-channel analysis and machine learning:
A practical perspective. In 2017 International Joint Conference on Neural Networks,
IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, pages 4095-4102. IEEE, 2017.
doi: 10.1109/IJCNN.2017.7966373. URL https://doi.org/10.1109/IJCNN.
2017.7966373.

Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A Ludwig, Sylvain Guilley, Domagoj
Jakobovic, and Nele Mentens. Side-channel analysis and machine learning: A practical
perspective. In 2017 International Joint Conference on Neural Networks (IJCNN), pages
4095-4102. IEEE, 2017.

Stijepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. The curse of class imbalance and conflicting metrics with machine learning for
side-channel evaluations. IACR Cryptol. ePrint Arch., page 476, 2018. URL https:
//eprint.iacr.org/2018/476.

Stjepan Picek, loannis Petros Samiotis, Jaechun Kim, Annelie Heuser, Shivam Bhasin,
and Axel Legay. On the performance of convolutional neural networks for side-
channel analysis. In Anupam Chattopadhyay, Chester Rebeiro, and Yuval Yarom,
editors, Security, Privacy, and Applied Cryptography Engineering - 8th International
Conference, SPACE 2018, Kanpur, India, December 15-19, 2018, Proceedings,
volume 11348 of Lecture Notes in Computer Science, pages 157-176. Springer,
2018. doi: 10.1007/978-3-030-05072-6_10. URL https://doi.org/10.1007/
978-3-030-05072-6_10.

Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile Dumas.
Study of deep learning techniques for side-channel analysis and introduction to ASCAD
database. IACR Cryptol. ePrint Arch., page 53, 2018. URL http://eprint.iacr.
org/2018/053.

Nurul Amirah Abdul Rahman, | Sairi, NAM Zizi, and Fariza Khalid. The importance of
cybersecurity education in school. International Journal of Information and Education
Technology, 10(5):378-382, 2020.

Christian Rechberger and Elisabeth Oswald. Practical template attacks. In International
Workshop on Information Security Applications, pages 440—456. Springer, 2004.

Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel analysis. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(3):677—707, 2021. doi: 10.46586/tches.v2021.
13.677-707. URL https://doi.org/10.46586/tches.v2021.i3.677-707.

Matthieu Rivain. On the exact success rate of side channel analysis in the gaussian
model. In International Workshop on Selected Areas in Cryptography, pages 165—183.
Springer, 2008.

Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of aes.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages
413—-427. Springer, 2010.

http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
https://doi.org/10.1109/IJCNN.2017.7966373
https://doi.org/10.1109/IJCNN.2017.7966373
https://eprint.iacr.org/2018/476
https://eprint.iacr.org/2018/476
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-030-05072-6_10
http://eprint.iacr.org/2018/053
http://eprint.iacr.org/2018/053
https://doi.org/10.46586/tches.v2021.i3.677-707

50 Bibliography

[54] Edward F Schaefer. A simplified data encryption standard algorithm. Cryptologia, 20(1):
77-84, 1996.

[55] Kai Schramm and Christof Paar. Higher order masking of the aes. In Cryptographers’
track at the RSA conference, pages 208-225. Springer, 2006.

[56] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural
networks. fowards data science, 6(12):310-316, 2017.

[57] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image anal-
ysis. Annual review of biomedical engineering, 19:221-248, 2017.

[58] Francois-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework for the
analysis of side-channel key recovery attacks. In Annual international conference on the
theory and applications of cryptographic techniques, pages 443-461. Springer, 2009.

[59] O-X Standaert, Eric Peeters, Gaél Rouvroy, and J-J Quisquater. An overview of power
analysis attacks against field programmable gate arrays. Proceedings of the IEEE, 94
(2):383-394, 2006.

[60] Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis of aes. In Aus-
tralasian Conference on Information Security and Privacy, pages 39-56. Springer, 2015.

[61] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improving differential
power analysis by elastic alignment. In Aggelos Kiayias, editor, Topics in Cryptology - CT-
RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA,
USA, February 14-18, 2011. Proceedings, volume 6558 of Lecture Notes in Computer
Science, pages 104—-119. Springer, 2011. doi: 10.1007/978-3-642-19074-2_8. URL
https://doi.org/10.1007/978-3-642-19074-2_8.

[62] Yoo-Seung Won, Xiaolu Hou, Dirmanto Jap, Jakub Breier, and Shivam Bhasin. Back to
the basics: Seamless integration of side-channel pre-processing in deep neural networks.
IEEE Trans. Inf. Forensics Secur., 16:3215-3227, 2021. doi: 10.1109/TIFS.2021.
3076928. URL https://doi.org/10.1109/TIFS.2021.3076928.

[63] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a
methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2020(3):147-168, 2020. doi: 10.13154/tches.v2020.i3.
147-168. URL https://doi.org/10.13154/tches.v2020.i3.147-168.

[64] Lichao Wu, Guilherme Perin, and Stjepan Picek. | choose you: Automated hyperparam-
eter tuning for deep learning-based side-channel analysis. IACR Cryptol. ePrint Arch.,
page 1293, 2020. URL https://eprint.iacr.org/2020/1293.

[65] Lichao Wu, Léo Weissbart, Marina Kréek, Huimin Li, Guilherme Perin, Lejla Batina, and
Stjepan Picek. On the attack evaluation and the generalization ability in profiling side-
channel analysis. Cryptology ePrint Archive, Report 2020/899, 2020. https://ia.cr/
2020/899.

[66] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack. In Kevin Fu and Jaeyeon Jung, editors,
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014, pages 719-732. USENIX Association, 2014. URL https:
//www.usenix.org/conference/usenixsecurityl4/technical-sessions/
presentation/yarom.

https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.13154/tches.v2020.i3.147-168
https://eprint.iacr.org/2020/1293
https://ia.cr/2020/899
https://ia.cr/2020/899
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

Bibliography 51

[67]

[68]

[69]

[70]

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology for
efficient CNN architectures in profiling attacks. /ACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(1):1-36, 2020. doi: 10.13154 /tches.v2020.i1.1-36. URLhttps://doi.
org/10.13154/tches.v2020.11.1-36.

Zixing Zhang, Jurgen T. Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu Jin,
and Bjorn W. Schuller. Deep learning for environmentally robust speech recognition: An
overview of recent developments. ACM Trans. Intell. Syst. Technol., 9(5):49:1-49:28,
2018. doi: 10.1145/3178115. URL https://doi.org/10.1145/3178115.

Ziyue Zhang, A Adam Ding, and Yunsi Fei. A fast and accurate guessing entropy estima-
tion algorithm for full-key recovery. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 26—48, 2020.

Yuanyuan Zhou and Frangois-Xavier Standaert. Deep learning mitigates but does not
annihilate the need of aligned traces and a generalized resnet model for side-channel
attacks. J. Cryptogr. Eng., 10(1):85-95, 2020. doi: 10.1007/s13389-019-00209-3.
URL https://doi.org/10.1007/s13389-019-00209-3.

https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1145/3178115
https://doi.org/10.1007/s13389-019-00209-3

	Abstract
	Preface
	List of Figures
	List of Tables
	Introduction
	Background
	Deep Learning
	Training Deep Learning Networks
	Deep Learning Architecture Types

	Cryptography
	Advanced Cryptography Standard
	Countermeasures

	Side-Channel Analysis
	Leakage Models
	Non-profiled Attacks
	Profiled Attacks
	Side-Channel Metrics

	Data sets
	ASCAD
	AES_HD
	AES_HD_MM
	Data set related terms

	Related work
	Deep learning in Side-Channel Analysis
	State-of-the-art methods in the deep learning of Side-Channel Analysis
	Lack of research into hardware-based implementations
	Research Questions

	Software-based vs. hardware-based implementations
	Motivation
	Experimental setup
	AutoSCA
	Reinforcement Learning for Profiled Side-Channel Analysis

	Results
	Breaking AES_HD_MM
	Applying AutoSCA
	Applying Reinforcement Learning for Profiled Side-Channel Analysis

	Discussion

	Constructing a novel attack method for hardware-based implementations
	Motivation
	Experimental Setup
	MCNN approach
	ResNet approach

	Results
	AES_HD
	AES_HD_MM

	Discussion

	Conclusions
	Summary of Scientific Contributions
	Limitations
	Future Work

	Bibliography

