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Abstract

It is well known that the existence of traveling wave solutions (TWS) for many partial differential equa-
tions (PDE) is a consequence of the fact that an associated planar ordinary differential equation (ODE) 
has certain types of solutions defined for all time. In this paper we address the problem of persistence of 
TWS of a given PDE under small perturbations. Our main results deal with the situation where the asso-
ciated ODE has a center and, as a consequence, the original PDE has a continuum of periodic traveling 
wave solutions. We prove that the TWS that persist are controlled by the zeroes of some Abelian integrals. 
We apply our results to several famous PDE, like the Ostrovsky, Klein-Gordon, sine-Gordon, Korteweg-de 
Vries, Rosenau-Hyman, Camassa-Holm, and Boussinesq equations.
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1. Introduction

Traveling wave solutions (TWS) are an important class of particular solutions of partial dif-
ferential equations (PDE). These waves are special solutions which do not change their shape 
and which propagate at constant speed. They appear in fluid dynamics, chemical kinetics involv-
ing reactions, mathematical biology, lattice vibrations in solid state physics, plasma physics and 
laser theory, optical fibers, etc. In these systems the phenomena of dispersion, dissipation, dif-
fusion, reaction and convection are the fundamental physical common facts. We refer the reader 
to some interesting sources to know more details about the first appearance of this kind of solu-
tions in the works of Russell (1834), Boussinesq (1877), Korteweg and de Vries (1895), Luther 
(1906), Fisher (1937), Kolmogorov, Petrovskii and Piskunov (1937), and to find several exam-
ples of applications and further motivation to study them: see [12,14–16,18,20,23,26,28] and the 
references therein.

When studying ordinary differential equations (ODE), especially when they are modeling 
real world phenomena, it is very important to take into account whether the ODE are structurally 
stable. In a few words this means that if we fix a compact set K in the phase space it is said that 
an ODE is structurally stable on K when any other close enough (in the C1-topology) differential 
equation has a conjugated phase portrait. This concept is relevant for applications because it 
implies that the observed behaviors are qualitatively robust with respect to small changes of 
the model, see for instance [1,24,27] for more details, in particular concerning the planar case. 
Recall that the boundary of the sets of structurally stable differential equations is precisely where 
bifurcations (that is, qualitative changes of the phase portraits) may occur.

It is well-known that for many PDE the existence of TWS is established by proving the exis-
tence of a particular solution of a planar ordinary differential equation. These particular solutions 
must be defined for all time and, in the light of the previous definition, can roughly be classified 
into two categories:

• TWS created by a dynamical behavior that is structurally stable. Examples of this situation 
are hyperbolic limit cycles or heteroclinic connections where both critical points are hyper-
bolic and one of them is a node.

• TWS created by a dynamical behavior that is not structurally stable, as for instance continua 
of periodic orbits, or homoclinic or heteroclinic solutions connecting hyperbolic saddles.

In the first situation, simply take as the set K a compact neighborhood of the orbit that gives 
rise to the TWS for a given PDE. Then it can be easily seen that a small enough C1 perturbation of 
the original PDE with the same order will still have a TWS. This is so because all the structurally 
stable phenomena in ODE are robust under C1-perturbations. The only condition that must be 
checked is that the C1-closeness between the two PDE’s is translated into a C1-closeness in K of 
the corresponding ODE.

An example corresponding to the first situation is the Fisher-Kolmogorov PDE, ut = uxx +
u(1 − u), where the existence of several TWS of front type with different speeds is associated 
to the existence of a heteroclinic connection between a hyperbolic saddle and a node, see [2,13]
and references therein. Therefore, all PDE of the form ut = uxx + u(1 − u) + εg(u, ux, ut , ε)
for ε small enough have such type of TWS. In fact, the same result holds for many perturbed 
Fisher-Kolmogorov PDE with a perturbation term of the form εg(u, ux, ut , uxx, uxt , utt , ε). As 
a second example of the first situation mentioned above, for some PDE of the form ut = uxx +
49
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h(u)ux + g(u) there are periodic TWS which are associated to the existence of hyperbolic limit 
cycles, see for instance [8,22] and the references therein.

In this paper we address the second, more delicate, situation. More specifically, we consider 
several PDE having a continuum of periodic TWS associated to a center of a second order ODE 
associated to the PDE, and we study which conditions have to be imposed on the perturbation of 
the PDE to be able to ensure that TWS persist and to quantify them.

We split our main results into two theorems, which we state in Section 2 after giving some pre-
liminary definitions and notations. Our first result deals with second order PDE, see Theorem A, 
and applies to a wide range of equations. Our second result, Theorem B, is more restrictive on the 
one hand because it only considers some special perturbations, but on the other hand it applies 
to higher order PDE. In Section 3 we study a particular class of Abelian integrals that will often 
appear in the analysis of the perturbations in Section 4. For these Abelian integrals our main 
result is given in Theorem C. Finally, in Section 4 we detail some applications of our results. 
First, in Section 4.1, we apply Theorem A to perturbations of TWS of second order equations 
such as the Ostrovsky, Klein-Gordon and sine-Gordon equations. Afterwards, in Section 4.2 we 
use Theorem B to study perturbations of higher order PDE given by the Korteweg-de Vries, 
Rosenau-Hyman, Camassa-Holm, and Boussinesq equations.

2. Definitions and main results

Consider m-th order partial differential equations of the form

P
(
u,

∂u

∂x
,
∂u

∂t
,
∂2u

∂x2 ,
∂2u

∂x∂t
,
∂2u

∂t2 , . . . ,
∂mu

∂xm
,

∂mu

∂xm−1∂t
, . . . ,

∂mu

∂tm
, ε

)
= 0, (1)

where W ⊂ R(m+1)(m+2)/2 is an open set, I is an open interval containing 0, P : W × I → R is 
a sufficiently smooth function and ε is a small parameter. Recall that the traveling wave solutions 
of (1) are particular solutions of the form u = U(x − ct) where U(s) is defined for all s ∈ R
and satisfies certain boundary conditions at infinity. It is well-known that the existence of such 
solutions is equivalent to finding solutions defined for all s of the m-th order ordinary differential 
equation

Pc(U,U ′,U ′′, . . . ,U(m), ε) :=
P

(
U,U ′,−cU ′,U ′′,−cU ′′, c2U ′′, . . . ,U(m),−cU(m), . . . , (−c)mU(m), ε

) = 0, (2)

satisfying these conditions. Here the prime denotes derivative with respect to s and Pc : Wc(ε) ×
I → R, where Wc(ε) is an open subset of Rm+1.

We will distinguish two cases according to whether (1) is a second order equation (m = 2) or 
a higher order equation (m > 2).

Second order equations. Our main result applies to a certain class of perturbed PDE that sat-
isfy three conditions (i)–(iii) that we detail below. Succinctly, it requires the existence of a 
certain wave speed c ∈ R such that: (i) the associated ODE has the form U ′′ = fc(U, U ′) +
εgc(U, U ′, ε); (ii) after a time reparameterization if necessary the planar system associated with 
this ODE can be written as a perturbation of a Hamiltonian system; and (iii) this Hamiltonian 
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system has a center, and the Melnikov-Poincaré-Pontryagin function associated with the pertur-
bation has � simple zeroes, see [4, Part II] for further details.

More precisely, we will say that the PDE (1) with m = 2 satisfies Property A if there exists 
c ∈R such that the following three conditions hold:

(i) There exist C1 functions fc : Vc(ε) → R and gc : Vc(ε) × I ⊂ R3 → R, with Vc(ε) ⊂ R2

and Vc(ε) × I ⊂ R3 open sets, such that, for ε small enough,

{(x, y) ∈ Vc(ε) : z = fc(x, y) + εgc(x, y, ε)} ⊂ {(x, y, z) ∈ Wc(ε) : Pc(x, y, z, ε) = 0}.

Moreover, if Uc is the limit of the sets Vc(ε) when ε → 0, the only solution of fc(x, 0) = 0
in Uc is x = xc.

(ii) There exists a C2 function Hc : Vc ⊂ R2 →R+ ∪ {0} such that Hc(xc, 0) = 0,

∂Hc(x, y)

∂y
= y

sc(x, y)
,

∂Hc(x, y)

∂x
= −fc(x, y)

sc(x, y)
,

for some C1 function sc : Vc ⊂ R2 → R+. Notice that sc is such that

∂

∂x

(
y

sc(x, y)

)
+ ∂

∂y

(
fc(x, y)

sc(x, y)

)
≡ 0.

(iii) For each h ∈ (0, hc), where hc ∈R+ ∪ {∞}, the set

γc(h) := {(x, y) ∈ Vc : Hc(x, y) = h}

is a closed oval surrounding (xc, 0) and the function Mc : (0, hc) → R, defined as the line 
integral

Mc(h) =
ˆ

γc(h)

gc(x, y,0)

sc(x, y)
dx,

has � ≥ 1 simple zeroes in (0, hc).

Theorem A. Assume that the second order PDE

P(u,ut , ux, utt , utx, uxx, ε) = 0, (3)

satisfies Property A for some c ∈ R. Then:

(a) For ε = 0 the PDE (3) has a continuum of periodic TWS, u = Uh(x − ct), for h in an open 
real interval.

(b) For ε small enough it has at least � periodic TWS, u = Uh (x − ct, ε), j = 1, 2, . . . , �.

j
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Proof of Theorem A. From the discussion at the very beginning of this section, a function U(s)

is a TWS for the PDE (1) if it is defined for all time and

Pc(U(s),U ′(s),U ′′(s), ε) = 0, (4)

where Pc is defined in (2). By using (i) of Property A we can write the above expression as

U ′′(s) = fc(U(s),U ′(s)) + εgc(U(s),U ′(s), ε),

for some suitable fc and gc. In other words, (x, y) = (U(s), U ′(s)) is a solution of the planar 
ODE ⎧⎪⎪⎨⎪⎪⎩

x′ = dx

ds
= y,

y′ = dx

ds
= fc(x, y) + εgc(x, y, ε).

By item (ii) of Property A we can parameterize U by a new time, say τ , with dτ/ds = sc(x, y), 
and then x = U(τ) satisfies the equivalent planar ODE⎧⎪⎪⎨⎪⎪⎩

ẋ = dx

dτ
= dx

dτ

dτ

ds
= y

sc(x, y)
= ∂Hc(x, y)

∂y
,

ẏ = dy

dτ
= dy

dτ

dτ

ds
= fc(x, y)

sc(x, y)
+ ε

gc(x, y, ε)

sc(x, y)
= −∂Hc(x, y)

∂x
+ ε

gc(x, y, ε)

sc(x, y)
.

(5)

When ε = 0 the above system is Hamiltonian, and by (i) and (iii) of Property A the continuum of 
curves γc(h) for 0 < h < h are periodic orbits of system (5) with ε = 0 that surround the center 
(xc, 0). The functions Uh(s, c) = xh(τ (s), c), where (xh(τ, c), yh(τ, c)) is the parameterization 
of γc(h), give rise to the continuum of periodic traveling wave solutions of (3).

When ε �= 0 is small enough we are in the setting of the perturbations of Hamiltonian systems, 
[4,9]. Recall that for general perturbed C1 Hamiltonian systems,⎧⎪⎪⎨⎪⎪⎩

ẋ = ∂H(x, y)

∂y
+ εR(x, y, ε),

ẏ = −∂H(x, y)

∂x
+ εS(x, y, ε),

(6)

its associated Melnikov-Poincaré-Pontryagin function is

M(h) =
ˆ

γ (h)

S(x, y,0) dx − R(x, y,0) dy,

where the curves γ (h) form a continuum of ovals contained in {H(x, y) = h, for h ∈ (h0, h1)}. 
Then, it is known that each simple zero h∗ ∈ (h0, h1) of M gives rise to a limit cycle of (6)
that tends to γ (h∗) when ε → 0. For system (5), M(h) = Mc(h) and so, each simple zero hj ∈
(0, hc), j = 1, 2, . . . , � of Mc(h) gives rise to a limit cycle of system (5). Each of these limit 
cycles correspond to a periodic TWS of (3). �
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Higher order equations (m > 2). In this situation our approach only works for a particular class 
of differential equations. Again, fixed (c, k) ∈ R2, we will define a property similar to Property 
A which will consist of four conditions. The first one, that we will call condition (o), is the 
most restrictive one and it is totally different to the ones imposed when m = 2. It states that 
the associated ODE can somehow be reduced to a second order equation, or that some of the 
solutions of the associated ODE are also solutions of a related second order ODE. The rest of the 
conditions are quite similar to the ones of the planar case.

More precisely, we say that a PDE satisfies Property B if there exist c, k ∈ R such that:

(o) There exists a function Qc : Wc × I → R, where Wc ⊂ R3 is open and Qc is sufficiently 
smooth, such that

dm−2

dsm−2

(
Qc(U,U ′,U ′′, ε)

) = Pc(U,U ′,U ′′, . . . ,U(m), ε),

where Pc is defined in (2) and U = U(s).
(i) There exist two C1 functions fc,k : Vc,k(ε) → R and gc,k : Vc,k(ε) ×I →R with Vc,k(ε) ⊂

R2 and Vc,k(ε) × I ⊂ R3 open sets, such that, for ε small enough,

{(x, y) ∈ Vc,k(ε) : z = k + fc,k(x, y) + εgc,k(x, y, ε)}
⊂ {(x, y, z) ∈Wc,k(ε) : Qc(x, y, z, ε) = k}.

Moreover, if Uc,k is the limit of the sets Vc,k(ε) when ε → 0, the only solution of fc(x, 0) =
k in Vc,k is x = xc,k .

(ii) There exists a C2 function Hc,k : Vc,k ⊂ R2 → R+ ∪ {0} such that Hc,k(xc,k, 0) = 0,

∂Hc,k(x, y)

∂y
= y

sc,k(x, y)
,

∂Hc,k(x, y)

∂x
= −fc(x, y) + k

sc,k(x, y)
,

for some C1 function sc,k : Vc,k ⊂ R2 →R+. Notice that the function sc,k is such that

∂

∂x

(
y

sc,k(x, y)

)
+ ∂

∂y

(
fc(x, y) + k

sc,k(x, y)

)
≡ 0.

(iii) For each h ∈ (0, hc,k), where hc,k ∈ R+ ∪ {∞}, the set

γc,k(h) := {(x, y) ∈ Vc,k : Hc,k(x, y) = h}

is a closed oval surrounding (xc,k, 0) and the function Mc,k : (0, hc,k) → R, defined as the 
line integral

Mc,k(h) =
ˆ

γc,k(h)

gc,k(x, y,0)

sc,k(x, y)
dx,

has � ≥ 1 simple zeroes in (0, hc,k).
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Theorem B. Assume that the m-th order PDE (1), with m > 2, satisfies Property B, for some 
c ∈R and k ∈ R. Then:

(a) For ε = 0 the PDE (3) has a continuum of periodic TWS, u = Uh,k(x − ct) for h in an open 
real interval.

(b) For ε small enough it has at least � periodic TWS, u = Uhj ,k(x − ct, ε) for j = 1, 2, . . . , �.

Proof of Theorem B. From condition (o) of Property B, if we restrict our attention to the solu-
tions of (2) contained in

Qc(U,U ′,U ′′, ε) = k, (7)

for the given value of k ∈R, we can find some TWS with speed c and associated to this particular 
value of k. Other values of k give different TWS with the same speed.

Starting from equation (7), instead of equation (4), we can repeat all the steps of the proof of 
Theorem A, point by point, to get the desired conclusion. �
3. Some particular Abelian integrals

This section is devoted to studying a particular class of Abelian integrals for which we prove 
a result quantifying their zeros, see Theorem C. We will use this result in the next section when 
we study the persistence of TWS for several perturbed PDE, which is governed by the number 
of zeros of integrals of this type.

Proposition 3.1. Let A, B and D be analytic functions, defined in an open interval I ⊂ R and 
such that

A(x) =a2 + O(x − x∗), B(x) = (x − x∗)2

b2 + O
(
(x − x∗)3),

D(x) =(x − x∗)2nD0(x) with D0(x) = d + O(x − x∗),

for certain x∗ ∈ I , where a, b, c are real constants with abd �= 0 and n ∈ N ∪ {0}. Consider the 
Hamiltonian function H(x, y) = A(x)y2 + B(x). Then, the following holds:

(a) The Hamiltonian system ẋ = Hy(x, y), ẏ = −Hx(x, y), has a center at (x∗, 0). We will 
denote by γ (h) the periodic orbits contained in {H(x, y) = h}, which exist when h ∈ (0, ̃h)

for some ̃h ∈R.
(b) For h ∈ (0, ̃h) and p, n ∈N , define the Abelian integral

Jp(h) =
ˆ

γ (h)

D(x)yp dx. (8)

Then J2p(h) ≡ 0 and

J2p−1(h) ∼ 2db2n+1

2p−1

(2p − 1)!! (2n − 1)!!π
p+n

hp+n at h = 0+,

a 2 (p + n)!
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where (2k − 1)!! = (2k − 1)(2k − 3) · · ·3 · 1 and (−1)!! = 1!! = 1.

Proof. Without loss of generality we will assume that x∗ = 0. To prove (a), notice that the origin 
is a non-degenerate singular point of the vector field X = (Hy, −Hx) because det(DX(0, 0)) =
2A(0)B ′′(0) = 4a2/b2 > 0. Moreover, since a singular point of a Hamiltonian system can neither 
be a focus nor a node, it is a center.

To study the Abelian integral Jp it is convenient to introduce the new variable w as h = w2. 
Then, by the Weierstrass preparation theorem, see for instance [1,3], in a neighborhood of (0, 0)

the only solutions of equation B(x) − w2 = x2/b2 − w2 + O(x3) = 0 are

x = x±(w) = ±bw + O(w2),

where x±(w) are analytic functions at zero. Moreover, in this neighborhood,

w2 − B(x) = (x − x−(w))(x+(w) − x)U(x,w), (9)

where U(0, 0) = 1/b2 is also analytic at (0, 0). Notice that the points of the oval γ (h) satisfy 
y = ±√

(w2 − B(x))/A(x). When p is even the integral (8) vanishes because of symmetry with 
respect to y = 0. Hence

Jp(w2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, when p is even,

2

x+(w)ˆ

x−(w)

D(x)

(
w2 − B(x)

A(x)

) p
2

dx, when p is odd.

By using (9) we get that

J2p−1(w
2) =2

x+(w)ˆ

x−(w)

D(x)

(
w2 − B(x)

A(x)

) 2p−1
2

dx

=2

x+(w)ˆ

x−(w)

(
(x − x−(w))(x+(w) − x)

) 2p−1
2 D(x)

(
U(x,w)

A(x)

) 2p−1
2

dx

=2(�(w))2p

1ˆ

0

(
z(1 − z)

) 2p−1
2 D(z,w)

(
U(z,w)

A(z,w)

) 2p−1
2

dz,

where in the integral we have introduced the change of variables z = (x − x−(w))/�(w), be-
ing �(w) = x+(w) − x−(w), and for any function E(x, w) or E(x), we denote E(z, w) =
E

(
�(w)z + x−(w), w

)
or E(z, w) = E(�(w)z + x−(w)). In particular,

D(z,w) = (
�(w)z + x−(w)

)2n
D0(z,w) = (�(w))2n

(
z + x−(w)

)2n

D0(z,w),

�(w)
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with D0(0, 0) = d . Hence,

J2p−1(w
2) = (�(w))2p+2n

1ˆ

0

(
z(1 − z)

) 2p−1
2 F(z,w)dz,

where

F(z,w) = 2D0(z,w)

(
z + x−(w)

�(w)

)2n
(

U(z,w)

A(z,w)

) 2p−1
2

.

Since x±(w) = ±bw + O(w2), it holds that �(w) = 2bw + O(w2) and hence limw→0
x−(w)
�(w)

=
− 1

2 . Therefore for all z ∈ [0, 1] and w small enough the function F(z, w) is continuous, and as a 
consequence

lim
w→0

J2p−1(w
2)

w2p+2n
= lim

w→0

(
�(w)

w

)2p+2n
1ˆ

0

(
z(1 − z)

) 2p−1
2 lim

w→0
F(z,w)dz

= (2b)2p+2n 2d

a2p−1b2p−1

1ˆ

0

(
z(1 − z)

) 2p−1
2

(
z − 1

2

)2n

dz.

Now we claim that

K(p,n) :=
1ˆ

0

(
z(1 − z)

) 2p−1
2

(
z − 1

2

)2n

dz = (2p − 1)!! (2n − 1)!!
8p+n(p + n)! π,

and we observe that, from this claim, the result follows.
To prove the claim we observe that by using integration by parts, one easily gets that

K(p,n) = 2p − 1

2n + 1
K(p − 1, n + 1). (10)

Now the claim follows by using induction. First we prove that for any p ∈ N0, K(p, 0) satisfies 
the claim. Indeed, if B is the Euler’s Beta function, and since B(x, y) = 	(x)	(y)/	(x + y), we 
have

K(p,0) =
1ˆ

0

zp− 1
2 (1 − z)p− 1

2 dz = B

(
p + 1

2
,p + 1

2

)
= (	(p + 1

2 ))2

	(2p + 1)
.

Since p is an integer number 	(2p + 1) = (2p)!. On the other hand, it is well known that

	

(
p + 1

)
= (2p)!

p

√
π = (2p − 1)!!

p

√
π.
2 4 p! 2
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Hence,

K(p,0) = (2p − 1)!!
8p p! π

as we wanted to prove.
Now we assume that for n > 0 and for all p ∈ N0, K(p, n) satisfies the claim. By using the 

relation (10), we get that,

K(p,n + 1) = 2n + 1

2p + 1
K(p + 1, n) = (2n + 1) (2p + 1)!! (2n − 1)!!

(2p + 1)8p+n+1(p + n + 1)! π =

= (2p − 1)!! (2n + 1)!!
8p+n+1(p + n + 1)! π,

so the claim follows. �
Before proving the main result of this section, Theorem C, and to motivate one of its hypothe-

ses, we collect some simple observations in the following lemma.

Lemma 3.2. Let γ (h) ⊂ {H(x, y) = h}, h ∈ (0, h) = L, be a continuum of periodic orbits 
surrounding a center, corresponding to h = 0, of the Hamiltonian system associated to a C1

Hamiltonian function H(x, y) and assume that they have a clockwise time parameterization. 
For each p, q ∈ N ∪ {0}, consider the Abelian integral

Jq,p(h) =
ˆ

γ (h)

xqyp dx.

The following holds.

(a) When q is even and p is odd then Jq,p(h) > 0 for all h ∈ L.
(b) When q is even and p is even and H(x, y) = H(x, −y) then Jq,p(h) ≡ 0 on the whole 

interval L.
(c) When q is odd and p is odd and H(−x, y) = H(x, y) then Jq,p(h) ≡ 0 on L.

Proof. Notice that by Green’s theorem

Jq,p(h) =
ˆ

γ (h)

xqyp dx =
¨

Int(γ (h))

pxqyp−1 dx dy,

where Int(γ (h)) denotes the interior of the oval. Then, trivially (a) follows. The other two state-
ments are consequence of the symmetries of H and the function xqyp−1. �

The next proposition will be one of the key results to prove Theorem C, which is stated below.
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Proposition 3.3. ([6]) Set L ⊂ R an open real interval and let Fj : L → R, j = 0, 1, . . . , �, be 
� + 1 linearly independent analytic functions. Assume also that one of them, say Fk, 0 ≤ k ≤ �, 
has constant sign on L. Then, there exist real constants dj , j = 0, 1, . . . , �, such that the linear 
combination 

∑�
j=0 djFj has at least � simple zeroes in L.

Notice that in the next theorem, and due to Lemma 3.2, the monomials of the Abelian integral 
that we consider are of the form x2qy2p−1.

Theorem C. Let H(x, y) = A(x)y2 + B(x), with A and B functions satisfying the hypotheses 
of Proposition 3.1, and denote by γ (h), h ∈ (0, h), the periodic orbits surrounding the origin of 
the corresponding Hamiltonian system. For d0, d1, . . . , dn ∈ R and qj , pj ∈ N, j = 0, 1, . . . , �
consider the family of Abelian integrals

J (h) =
ˆ

γ (h)

�∑
j=0

djx
2qj y2pj −1 dx.

If all values mj = qj + pj , j = 0, 1, . . . , � are different, there exit values of dj , j = 0, 1, . . . , �, 
such that the corresponding function J (h) has at least � simple zeroes in (0, h).

Proof. Notice that

J (h) =
�∑

j=0

djJj (h), where Jj (h) =
ˆ

γ (h)

x2qj y2pj −1 dx.

By Proposition 3.1, for each j = 0, 1, . . . , �, Jj (h) = kjh
mj + o

(
hmj

)
and, by hypothesis, all 

these mj are different. This clearly implies that all these � +1 functions are linearly independent. 
Moreover, by item (a) of Lemma 3.2 we know that none of them vanish in (0, h). Hence we can 
apply Proposition 3.3 to this set of functions and L = (0, h) and the result follows. �
4. Applications

In this section we consider perturbations of several relevant PDE with continua of periodic 
TWS and prove that the perturbations can be tailored such that a prescribed number of TWS 
persist in these perturbed PDE. In many examples, for simplicity, we perturb the PDE with an 
additive term that only contains partial derivatives up to m − 1. For more general perturbations, 
even including terms of order m, most of the results can be adapted.

4.1. Second order PDE

We start with an illustrative toy example for which we give all the details on how a prescribed 
number of periodic TWS can be obtained.
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4.1.1. A toy example
Consider the PDE

u + auxx + buxt + dutt + εg(ux,ut , ε) = 0, (11)

with g a C1 function and take c such that a − bc + dc2 > 0. Then equation (2) can be written as

U + (a − bc + dc2)U ′′ + εg(U ′,−cU ′, ε) = 0.

We define C2 = a − bc + dc2 and gc(U
′, ε) = −g(U ′, −cU ′, ε)/C2. Then it is easy to see 

that this PDE satisfies Property A with Hc(x, y) = x2/(2C2) + y2/2, sc(x, y) ≡ 1 and (0, h) =
(0, ∞). That is, ⎧⎪⎪⎨⎪⎪⎩

ẋ = ∂Hc(x, y)

∂y
= y,

ẏ = −∂Hc(x, y)

∂x
+ εgc(x, y, ε) = − x

C2 + εgc(y, ε).

Moreover

Mc(h) =
ˆ

γ (h)

gc(y,0) dx,

where γ (h) is the ellipse {x2/(2C2) +y2/2 = h}. We parameterize the closed curves Hc(x, y) =
h as (x, y) = (C

√
2h cos θ, 

√
2h sin θ) for 0 ≤ θ ≤ 2π . Then

Mc(h) = −C
√

2h

2πˆ

0

gc(
√

2h sin θ,0) sin θ dθ.

Assume for instance that gc(y, 0) = ∑N
j=0 gjy

j is a polynomial of degree N , and gj ∈ R. Then,

Mc(h) = −C
√

2h

N∑
j=0

gj (
√

2h)j
( 2πˆ

0

sinj+1 θ dθ
)
.

When j is even, by symmetry, the above integrals vanish. Hence

Mc(h) = −2Ch
( [(N−1)/2]∑

i=0

g2i+12iI2i+2h
i
)
,

where [ · ] denotes the integer part and I2n = ´ 2π

0 sin2n θ dθ > 0. Removing the factor h, and 
taking suitable g2i+1, the polynomial Mc(h)/h can be any arbitrary polynomial of degree [(N −
1)/2] in h. Hence, by applying Theorem C, for any � ≤ [(N − 1)/2], there exist coefficients gj

such that the function Mc(h) has � simple zeros and, therefore, by applying Theorem A, the PDE 
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(11) has at least � periodic TWS. We remark that the above computations are essentially the same 
as the ones of the celebrated paper [21] where the authors present the first example of classical 
polynomial Liénard differential system of degree N with [(N − 1)/2] limit cycles.

By doing similar computations we can consider more general perturbations in PDE (11), like 
for instance

u + auxx + buxt + dutt + ε(uuxx + g(u,ux,ut , ε)) = 0,

and similar results hold.

4.1.2. Reduced Ostrovsky equation
We consider perturbations of the reduced Ostrovsky equation, introduced by L. Ostrovsky 

in 1978, which is a modification of the Korteweg-de Vries equation that models gravity waves 
propagating in a rotating background under the influence of the Coriolis force when the high-
frequency dispersion is neglected. More concretely, we take

(ut + uux)x − u + εg(u,ux,ut , ε) = 0, (12)

which satisfies Property A with c > 0, because its associated ODE is

(U − c)U ′′ + (U ′)2 − U + εg(U,U ′,−cU ′, ε) = 0.

Then, taking gc(U, U ′, ε) = −g(U, U ′, −cU ′, ε)/(U − c); Vc = {x < c}; xc = 0; and sc(x, y) =
(x − c)−2, the system that has to be studied to find TWS is

⎧⎪⎪⎨⎪⎪⎩
ẋ = ∂Hc(x, y)

∂y
,

ẏ = −∂Hc(x, y)

∂x
+ (x − c)2εgc(x, y, ε),

with

Hc(x, y) = (x − c)2y2

2
+ cx2

2
− x3

3
.

Consider also the Melnikov-Poincaré-Pontryagin function

Mc(h) =
ˆ

γc(h)

(x − c)2gc(x, y,0) dx, h ∈ (0, c3/3).

As in the toy example, it is not difficult to find a perturbation term g such that the function Mc(h)

has several simple zeroes in (0, c3/3) which, by Theorem C, give rise to periodic TWS of the 
PDE (12).
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4.1.3. Perturbed non-linear Klein-Gordon equation
The Klein-Gordon equation is a wave equation related to the Schrödinger equation, which is 

used to model spinless relativistic particles. It was introduced in 1926 in parallel by O. Klein, 
W. Gordon and V. Fock as a tentative to describe the relativistic electron dynamics. In the one-
dimensional setting we look at a perturbation of this equation of the form

utt − uxx + λup + εg(u,ux,ut , ε) = 0,

with λ ∈ R+ and p an odd integer. It can readily be seen that it satisfies Property A and that the 
system that has to be studied to find TWS is⎧⎪⎪⎨⎪⎪⎩

ẋ = ∂Hc(x, y)

∂y
,

ẏ = −∂Hc(x, y)

∂x
+ εgc(x, y, ε),

where

Hc(x, y) = Cxp+1

p + 1
+ y2

2
,

with C = λ/(c2 − 1), gc(x, y, ε) = −g(x, y, −cy, ε)/(c2 − 1). The associated Melnikov-
Poincaré-Pontryagin function is

Mc(h) =
ˆ

γc(h)

gc(x, y,0) dx, h ∈ (0,∞).

The interested reader can take a look to the papers [5,17] where perturbations of this Hamiltonian 
system and the zeros of its associated Melnikov-Poincaré-Pontryagin function are studied with 
two different approaches.

In particular, the zeroes of the above first integral can be studied in a similar way to the toy 
example considered at the beginning of this section. Notice, however, that when p ≥ 3, instead of 
using trigonometric functions to parametrize the invariant closed curves, one can use the general-
ized polar coordinates introduced by Lyapunov in 1893 in his study of the stability of degenerate 
critical points, [19]. All the details can be found in [5]. Again, Theorem A guarantees that the 
zeros of the function Mc(h) correspond with periodic TWS of the Klein-Gordon equation.

4.1.4. Perturbed sine-Gordon equation
The sine-Gordon equation first appeared in 1862 in the context of differential geometry. 

Specifically in a study by E. Bour on surfaces of constant negative curvature. The equation was 
rediscovered later by J. Frenkel and T. Kontorova in 1939, in their study of crystal dislocations. 
The equation is relevant to the community investigating integrable systems because it has soliton 
solutions. Its perturbation writes as

utt − uxx + sinu + εg(u,ux,ut , ε) = 0.
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Again, it satisfies Property A for c > 1, and its associated planar system is⎧⎪⎪⎨⎪⎪⎩
ẋ = ∂Hc(x, y)

∂y
,

ẏ = −∂Hc(x, y)

∂x
+ εgc(x, y, ε),

where

Hc(x, y) = C(1 − cosx) + y2

2
,

with C = 1/(c2 − 1) > 0 and gc(x, y, ε) = g(x, y, −cy, ε)/(1 − c2). The Melnikov-Poincaré-
Pontryagin function is

Mc(h) =
ˆ

γc(h)

gc(x, y,0) dx, h ∈ (0,2C).

The above type integrals are studied for instance in [11]. There, several condition on g for obtain-
ing many simple zeroes of Mc, and therefore periodic TWS of the considered PDE, are obtained.

4.2. PDE with order greater than 2

In this section we study perturbations of several PDE with order m > 2. We start with the 
following result that helps us to characterize the existence of centers for the unperturbed Hamil-
tonian systems that will appear.

Lemma 4.1. Consider a Hamiltonian system of the form⎧⎪⎪⎨⎪⎪⎩
ẋ = ∂H(x, y)

∂y
= y m(x, y),

ẏ = −∂H(x, y)

∂x
= f (x, y)m(x, y),

where H ∈ C2, m(x, y) > 0 and such that ∂
∂x

(ym(x, y)) + ∂
∂y

(f (x, y)m(x, y)) ≡ 0. Then, a 
singular point of the form (x∗, 0) is a center if

∂

∂x
f (x, y)

∣∣∣
(x∗,0)

< 0. (13)

Furthermore, if m(x, y) depends only on x, condition (13) holds, and H is analytic, then the 
Hamiltonian H satisfies the hypotheses of Proposition 3.1.

Proof. Consider the vector field X = (Hy, −Hx). Since

det(DX(x∗,0)) = −m2(x∗,0)
∂

(f (x, y))

∣∣∣ ,

∂x (x∗,0)
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then equation (13) implies that det(DX(x∗, 0)) > 0 and therefore (x∗, 0) is a center (once 
more, remember that a singular point of a Hamiltonian system cannot be neither a focus nor 
a node).

If m(x, y) = m(x), then H(x, y) = y2 m(x)/2 + B(x) for some analytic function B . Since 
m(x) > 0 we can write m(x) = 2a2 + O(x − x∗) near x = x∗. Suppose that condition (13)
holds, then Hxx(x∗, 0) = −fx(x∗, 0)m(x∗) > 0, and we can write 1/b2 = B ′′(x∗) = Hxx(x∗, 0), 
obtaining B(x) = (x − x∗)2/b2 + O

(
(x − x∗)3

)
. So H fulfills the hypotheses of Proposi-

tion 3.1. �
Observe that condition (13) is equivalent to the fact that Hxx(x∗, 0) > 0 and det(HH (x∗, 0)) >

0 (where H is the hessian matrix), which implies that H has a non-degenerate local minimum at 
(x∗, 0).

4.2.1. Perturbed generalized Korteweg-de Vries equation
We consider a perturbation of a family of PDE which for certain values of the parameters 

contains the celebrated Korteweg-de Vries and Benjamin-Bona-Mahony equations appearing in 
several domains of physics (non-linear mechanics, water waves, etc.). More concretely, we con-
sider the family of PDE

ut + aux + buux + duut + puxxx + quxxt + ruxtt + suttt

+ ε∇g(u,ux,ut , ε) · (ux,uxx, uxt ,0)t = 0. (14)

Notice that the KdV equation corresponds to ε = 0 and a = d = q = r = s = 0, b = −6 and 
p = 1. The ODE associated to (14) is

(
(a − c)U + b − dc

2
U2 + CU ′′ + εg(U,U ′,−cU ′, ε)

)′ = 0,

where C = p−qc+ rc2 − sc3. Notice that then, for any function U satisfying previous equation, 
it holds that there exists k ∈R, such that

(a − c)U + b − dc

2
U2 + CU ′′ + εg(U,U ′,−cU ′, ε) = k (15)

Thus we have to study the equivalent planar system

⎧⎪⎪⎨⎪⎪⎩
ẋ = y = ∂Hc,k(x, y)

∂y
,

ẏ = αc,k + βcx + γcx
2 + εgc(x, y, ε) = −∂Hc,k(x, y)

∂x
+ εgc(x, y, ε),

where

Hc,k(x, y) = −αc,kx − βc
x2 − γc

x3 + 1
y2,
2 3 2
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with

αc,k = k

C
, βc = c − a

C
, γc = dc − b

C
,

and gc(x, y, ε) = −g(x, y, −cy, ε)/C. Hence, using Lemma 4.1, it is not difficult to see that 
the PDE (14) satisfies Property B when equation αc,k + βcx + γcx

2 = 0 has two different real 
solutions (that correspond to a center and a saddle of the planar system). Then, by Theorem B, 
the periodic TWS that persist for ε small enough correspond to the simple zeroes of the elliptic 
integral

Mc,k(h) =
ˆ

γc,k(h)

gc(x, y,0) dx

in a suitable open interval of energies. This kind of Abelian integrals are studied in detail in the 
classical paper of Petrov ([25]) and more recently in the Chapter 3 of Part II of the book [4]. 
Again, it is not difficult to impose conditions on g to get a prescribed number of TWS for (14)
for ε small enough and different values of c and k.

4.2.2. Perturbed Rosenau-Hyman equation
The Rosenau-Hyman equation is a generalization of the KdV equation. It was introduced in 

1993 by P. Rosenau and J.M. Hyman to show the existence of solitary waves with compact sup-
port (compactons) in the context of non-linear dispersive equations. We consider the perturbed 
equation

ut + a(un)x + (un)xxx + ε∇g(u,ux,ut , ε) · (ux,uxx, uxt ,0)t = 0,

where a ∈R and n ∈N . To find TWS for it we have to study the third order ODE

−cU ′ + a(Un)′ + (Un)′′′ + ε∇g(U,U ′,−cU ′, ε) · (U ′,U ′′,−cU ′′,0)t

= ( − cU + aUn + (Un)′′ + εg(U,U ′,−cU ′, ε)
)′

= (−cU + aUn + n(n − 1)Un−2U ′ + nUn−1U ′′ + εg(U,U ′,−cU ′, ε)
)′ = 0.

Thus, we need to find solutions of the second order ODE

−cU + aUn + n(n − 1)Un−2U ′ + nUn−1U ′′ + εg(U,U ′,−cU ′, ε) = k

with k ∈R. It writes as the planar system

⎧⎪⎨⎪⎩
x′ = y,

y′ = k + cx − axn − n(n − 1)xn−2y2

+ ε
gc(x, y, ε)

,

nxn−1 nxn−1
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where gc(x, y, ε) = −g(x, y, −cy, ε). With the new time τ , where dτ/ds = sc,k(x, y) and 
sc,k(x, y) = x2(1−n)/n, we get x = U(τ) satisfies the equivalent planar ODE⎧⎪⎪⎨⎪⎪⎩

ẋ = ∂Hc,k(x, y)

∂y
,

ẏ = −∂Hc,k(x, y)

∂x
+ εxn−1gc(x, y, ε),

where

Hc,k(x, y) = n

2
x2(n−1)y2 − k

n
xn − c

n + 1
xn+1 + a

2n
x2n.

By Lemma 4.1 (see the comment below its statement), if there exists a singular point (x∗, 0) such 
that

∂2Hc,k

∂x2 (x∗,0) = xn−2∗
(
a (2n − 1) xn∗ − c nx∗ − k (n − 1)

)
> 0,

then it is a center. Furthermore, since the Hypothesis of Proposition 3.1 is satisfied, we can apply 
Theorem B and the periodic TWS for the perturbed PDE correspond to simple zeroes of

Mc,k(h) =
ˆ

γc,k(h)

xn−1gc(x, y,0) dx

in a suitable interval of the energy. To get examples of perturbations with several simple zeroes 
we can apply Theorem C.

4.2.3. Camassa-Holm equation and related PDE
The Camassa-Holm equation is a model for the propagation of shallow water waves of mod-

erate amplitude. The horizontal component of the fluid velocity field at a certain depth within the 
fluid is described by the PDE

ut + (2κ + 3u)ux − 2uxuxx + uuxxx − uxxt = 0,

and the parameter κ is positive. Constantin and Lannes derived in [7] a similar PDE for surface 
waves also with moderate amplitude in the shallow water regime,

ut + (
1 + 6u − 6u2 + 12u3)ux + 28uxuxx + 14uuxxx + uxxx − uxxt = 0,

see also [10]. Similarly, the Degasperis-Procesi equation

ut + 4uux − 3uxuxx − uuxxx − uxxt = 0,

which was derived initially only for its integrability properties, has a similar role in hydrodynam-
ics.
65



A. Gasull, A. Geyer and V. Mañosa Journal of Differential Equations 293 (2021) 48–69
In fact, perturbations of the above equations can be written under the common expression

ut + A′(u)ux + buxuxx + duuxxx

+ puxxx + quxxt + ruxtt + suttt + ε∇g(u,ux,ut , ε) · (ux,uxx, uxt ,0)t = 0,

where A is sufficiently smooth and b, d, p, q, r and s are real parameters. Its associated third 
order ODE is

− cU ′ + A′(U)U ′ + bU ′U ′′ + dUU ′′′ + CU ′′′ + ε∇g(U,U ′,−cU ′, ε) · (U ′,U ′′,−cU ′′,0)t

=
(
Ac(U) + b(U ′)2/2 + d

(
UU ′′ − (U ′)2/2

) + CU ′′ + εg(U,U ′,−cU ′, ε)
)′ = 0

where Ac(U) = A(U) − cU , with Ac(0) = 0, and C = p − qc + rc2 − sc3. Hence, for any 
function U satisfying the previous equation, there exists k ∈R, such that

Ac(U) + β(U ′)2 + (C + dU)U ′′ + εg(U,U ′,−cU ′, ε) = k,

where β = (b − d)/2. The above equation can be written as the planar system⎧⎪⎪⎨⎪⎪⎩
x′ = y,

y′ = k − Ac(x) − βy2 + εgc(x, y, ε)

C + dx
,

where gc(x, y, ε) = −g(U, U ′, −cU ′, ε). Then, taking dτ/ds = sc(x),

sc(x) =
{

(C + dx)−2β/d when d �= 0,

e−2βx/C when d = 0,

we get

⎧⎪⎪⎨⎪⎪⎩
ẋ = ∂Hc,k(x, y)

∂y
,

ẏ = −∂Hc,k(x, y)

∂x
+ ε

gc(x, y, ε)

(C + dx)sc(x)
,

with

Hc,k(x, y) = y2

2sc(x)
+

xˆ

0

Ac(w) − k

(C + dw)sc(w)
dw.

By Lemma 4.1, any singular point (x∗, 0) such that Hxx(x∗, 0) > 0, is a center. So by Theorem B, 
the periodic TWS of the perturbed equations correspond with the simple zeros of
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Mc.k(h) =
ˆ

γc,k(h)

gc(x, y,0)

(C + dx)sc(x)
dx.

Again, for some particular examples, the zeroes of the above type of Abelian integrals can 
be obtained by using Theorem C. For instance, we observe that this is trivially the case if 

gc(x, y, 0) = (C + dx)sc(x) 
(∑�

i=0 d2i+1y
2i+1

)
.

4.2.4. Boussinesq-type equations
The Boussinesq equation describes bi-directional surface water waves and reads

utt + uuxx − uxx + (ux)
2 − uxxxx = 0.

Similarly, the modified Boussinesq equation is

utt + uuxx − uxx + (ux)
2 − uxxtt = 0,

and appears in the modeling of non-linear waves in a weakly dispersive medium. We consider 
the following perturbation of the family of PDE

auxx + buxt + dutt + 2e(uuxx + (ux)
2)

+ puxxxx + quxxxt + ruxxtt + suxttt + f utttt + εG = 0, (16)

where a, b, d, e, p, q, r, s, f are suitable real parameters. We do not detail here the perturbation 
G, but it is a function of all the partial derivatives of u up to order four, and such that after 
replacing u by U(x − ct) it holds that there exists a function gc such that G = (

gc(U, U ′, ε)
)′′. 

Hence the ODE associated to (16) is

CU ′′ + e(U2)′′ + DU ′′′′ + ε
(
gc(U,U ′, ε)

)′′ = (
CU + eU2 + DU ′′ + εgc(U,U ′, ε)

)′′ = 0,

where C = a − bc + d2c, D = p − qc + rc2 − sc3 + f c4, and we have used that (u2)xx =
2uux + 2(ux)

2. We are interested in solutions of the above fourth order ODE

CU + eU2 + DU ′′ + εgc(U,U ′, ε) = k, (17)

for some k ∈ R. When D �= 0 we are again under the situation covered by Theorem B. Notice 
that other solutions would satisfy CU + eU2 + DU ′′ + εgc(U, U ′, ε) = k1s + k2, for some k1 �=
0, k2 ∈R, but we do not consider them. In fact, from (17) we arrive at the same ODE that appears 
in the study done in Section 4.2.1 about the perturbed generalized Korteweg-de Vries equation, 
but with a different notation. Indeed, the above ODE is the same as (15) and it can be studied to 
get TWS for (16) exactly like in that case.
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