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ABSTRACT: Rain-fed agriculture is the main source of food in Ghana therefore improving quan-

titative rainfall estimates is essential for local farmers to predict crop growth using vegetation

models. Rainfall dynamics in the tropics is an ongoing topic of research due to their complexity

and sub-grid precipitation variability. At the same time, tropical areas such as Ghana are the most

affected by a lack of proper rain gauge network coverage. Traditional methods rely on empirical as-

sumptions and statistical theories that require continuous calibration and still struggle to accurately

represent local variability. The aim of this paper is to demonstrate the potential of a Deep Learning

(DL) approach using bi-spectral information of water vapor imagery (WV) and thermal infrared

(TIR) as a starting point to develop an effective alternative to the Cold Cloud Duration (CCD)

method which is a widely applied statistical technique by satellite rainfall products like Climate

Hazards Group InfraRed Precipitation with Station data (CHIRPS) and Tropical Applications of

Meteorology using SATellite data (TAMSAT) that are specifically designed for Africa.

WV inhibition of low-level features assures the correct depiction of strong convective motions

usually related to heavy rainfall which is crucial in tropical areas where convective rainfall is

dominant. The addition of WV 7.3𝜇m is particularly beneficial in North Ghana as tropical systems

are advecting dry air from the nearby Sahara desert creating discontinuities in precipitation events

which translates into dry intrusions and dry slots seen in the images of the WV channel.

The developed Deep learning model showed strong performances in binary classification where

it outperformed IMERG-Final false alarms count resulting in lower rainfall overestimation (FBias

< 2.0), although further research is needed to overcome the very poor relation between GEO-IR

images and actual rainfall estimates at the surface.
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1. Introduction30

Precipitation plays a crucial role in Ghana’s agriculture which accounts for most of the total31

country’s economy: 54% of the total Gross Domestic Product (FAO 2020). This applies to Ghana32

as well as other regions in the world, where rain-fed agriculture is predominant. Rainfall dynamics33

in tropical regions are still an ongoing topic of research due to their complexity and small-scale34

drastic variations of convective precipitation. At the same time, tropical areas are the most affected35

by a lack of proper rain gauge network coverage (Bechtold 2019) (Coz and van de Giesen 2020).36

Tropical rainfall is primarily influenced by seasonality. Northern Ghana has a uni-modal rainfall37

regime, which means there is only one maximum (peak) per seasonal cycle that usually happens38

in the months of July and August. Dry season in this region starts in November until late March,39

during this period of time there are virtually no significant precipitation events (Knippertz and40

Fink 2008). Rainfall in this region is a complex process governed by the seasonal northward41

shift of the Inter-tropical Convergence Zone (ITCZ) and the West African Monsoon (WAM), a42

low-level south westerly moist flow from from the Atlantic ocean.43

Wind shear generated by the monsoonal flow creates a strong temperature contrast between the44

extremely dry hot Sahara desert and the cool moist Guinea coast, this contrast exists mostly45

during the summer months from June to September. This extreme temperature gradient favours46

the formation of the African Easterly Jet, an exceptional tropical feature associated with the West47

African monsoon. It is a unique zonal wind feature located in the mid-level troposphere around48

600 hPa (Figure 1.3) and is most intense at the end of August. The meridional temperature contrast49

previously mentioned induces this jet via thermal wind balance promoting the development of50

the African Easterly waves (AEWs) through baroclininc and barotropic instability. Due to small51

temperature gradients (typically <1 K/1000 km) all the other tropical regions elsewhere are52

generally void of jet streams (Bechtold 2019).53

54

Ground measurements are essential for common tropical rainfall products specifically de-55

signed for Africa such as TAMSAT and CHIRPS (Funk et al. 2015). Both products make use of56

thermal infrared images (TIR) from geostationary satellites and assume there is a positive linear57

correlation between the length of time a cold cloud top resides on a given pixel and the amount of58

rainfall at the surface. This is the basic working principle of the Cold Cloud Statistics. Different59
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temperature thresholds (𝑇𝑏) for the cloud tops are tested within a certain area for a dekadal or60

pentadal (v3.0) period, linear regression is applied between gauge measurements and the cold61

cloud fields for each threshold. Once the optimum 𝑇𝑏 is found, calibration parameters (slope and62

intercept) are derived using the median rainfall rate from the gauge observations (Tarnavsky et al.63

2014). Temporal resolution of such products is daily for TAMSAT and 6-hourly for CHIRPS.64

Results from a calibration of the CCD method applied in the Sahel region has shown inadequate65

results due to spatial averaging and temporal aggregation ass well as low gauge density leading to66

less reliable calibration (Dybkjær 2003).67

68

The most accurate rainfall observations from space are the ones that make use of Passive69

Microwave sensors (PMW), as emission and scattering of MW radiation by rain droplets gives a70

more direct estimation of precipitation-sized particles. Major drawback of this retrieval method is71

that observations in MW spectrum are carried out by LEO satellites, which means there are only72

two observations per day per satellite. Complex algorithms are applied to merge and translate73

infrequent observations into a high-resolution gridded rainfall product, an example is the Tropical74

Rainfall Measuring Mission (TRMM) later evolved into Integrated Multi-satellitE Retrieval for75

GPM (IMERG) (Kidd and Huffman 2011).76

Parametrization of rainfall is a challenging process and susceptible to a huge amount of conditions77

especially in West Africa where higher land temperatures and higher aerosols concentration78

offset conventional precipitation dynamics. Many research (Tomassini et al. 2017) (Tomassini79

2020) (Berry and Thorncroft 2005) have shown that moist convection is the main support for80

the intensification of African Easterly Waves (AEWs), latent heat release from condensation81

of water vapor in the atmosphere is the key promoter together with strong solar irradiation in82

generating unstable atmospheric conditions that leads to sparse precipitation events in the form of83

thunderstorms. Two MSG water vapor channels (WV), 6.2𝜇m and 7.3𝜇m, are sensitive to water84

vapor content at different altitudes dependent on the intrinsic property of water vapor absorption85

spectrum.86

The advent of big data has promoted a spike in machine learning applications within the87

hydrological domain. The objective of Deep learning is to minimize human intervention and88

facilitate automated feature extraction from large raw data sets (Shen et al. 2021). This new89
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data-oriented approach could be a valid method to detect and possibly estimate rainfall when90

theoretical or process-based approaches fail to accurately parameterize such complex atmospheric91

processes. The present study aims to expand and improve the existing RainRunner model that92

currently makes use solely of the MSG SEVIRI 10.8𝜇m (TIR) imagery by adding the 7.3𝜇m93

(WV) channel. The use of WV channels could bring useful information into rainfall dynamics that94

take place in West Africa, considering that there is still a general lack of products that would allow95

an efficient use of these channels in a synoptic scale analysis (Georgiev and Santurette 2009).96

2. Data and study area97

This section briefly introduces the data sources used for this study along with a short description98

of the region of interest.99

a. Input data100

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument that is onboard101

Meteosat Second Generation (MSG) located at 0 degree, captures images every 15 minutes of the102

Earth surface using 12 different spectral bands and has a sampling distance of 3km for the infrared103

channels. The images used in this study are geolocated and radiometrically pre-processed to Level104

1.5 (ESA 2016).105

At 6.2𝜇m (Channel 5), the radiation is promptly absorbed by water vapor as this wavelength is106

located in the center of water vapor absorption band. The use of this channel is only limited to107

observemid-to upper level water vapor dynamics. This researchwill thereforemake use exclusively108

of Channel 6 (7.3𝜇m) radiation. Images in 7.3𝜇m channel are able to detect water vapor content109

further down in the atmosphere and are useful to interpret humidity features associated to mid-level110

jets in strong convective environment (Figure 1). This is valid for Ghana where the rainy season is111

heavily dependant on a mid-level air current that effectively transports moisture horizontally. An112

important characteristic of water vapor imagery is the inability in detecting low-level clouds like113

stratocumulus or nimbostratus clouds in moist environments as they are normally located below114

the effective layer. Only with a very dry troposphere the water vapor channel is able to reach such115

low levels (e.g eastern Sahara desert and Antarctica) (Selami et al. 2021).116
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(a) Eastward moisture transport during boreal summer under the influence of mid-level jets.

(b) Dry low-level Harmattan wind blowing from Sahara desert slightly visible during dry season.

Fig. 1: Difference between rain (a) and dry (b) season as seen in 7.3𝜇m imagery.

b. TAHMO network117

TAHMO stations data are used as target features for this rainfall estimation model. The main118

advantage of such stations is the simple installation process and the robustness while still being119

able to deliver reliable atmospheric measurements without continuous calibration (TAHMO 2016).120

The exact location of the stations in the northern region of Ghana is displayed in Figure 3. Time121

range of ground measurements used for this study starts in July 2018 until December 2020 and the122

temporal resolution of the data before preprocessing is hourly. Faulty measurements and missing123

data could occur if there is no signal or the rain gauge gets clogged. Figure 2 shows the amount of124

missing data per station during the selected time period. Given the high number of missing data in125

certain weather stations, only the ones that have at least two full consecutive years of observations126

will be considered to analyse rainfall patterns in the ground data analysis. However the model is127

still trained using all the available and complete sequences from the eight stations.128
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Fig. 2: Missing data per each TAHMO station in north Ghana in 2018-2019-2020.

c. Reference model129

IMERG: The baseline model used in this study is IMERG. It is a rainfall product developed130

by NASA and its goal is to use as many Low Earth Orbiting (LEO) satellites as possible in131

combination with different geosynchronous earth orbit satellites IR data to fill in gaps between132

PMW measurements. Gauge analysis from the Global Precipitation Climatologic Centre (GPCC)133

are also used to correct any bias at local scale. The GPM Core Satellite is used as both calibration134

and evaluation tool for the PMW and IR-based products in IMERG. The multiple inputs coming135

from different sources are combined into a ’best’ data set, which requires a space and time resolution136

corresponding to PMW spatial scale (0.1◦) and IR temporal scale (30 minutes). The algorithm137

is decomposed in different stages which start with the intercalibration of microwave estimates,138

upsampling to finer scale using Kalman filters and finally use IR estimates to fill missing data139

from PMW products. Gauge data is the final stage and is intended to control local bias. There140

are three different products available and they have different latency starting from IMERG-Early141

with a latency of 4 hours, IMERG-Late has a latency of 12-hours then IMERG-Final adds gauge142

estimates and has a considerable higher latency of 3.5 months (Tan et al. 2019).143

d. Study area: Northern Ghana144

The study area of this research is the northern region of Ghana located within the latitudes 8°N145

and 11°N and longitudes 3°W and 0°30’E. West Africa region considered as a whole has one of146

the most extreme climatic gradients in the world. Rainfall is by far the most significant climatic147

element of West Africa, the mean annual rainfall steadily increases southward towards the equator148
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with extremes ranging from near zero in the arid part of the Sahel up to over 2000mm/year in the149

coastal zones (Nicholson 2013).150

On average, this part of Ghana is more under the influence of the hot and arid North Easterly trade151

wind which blows air that comes from the Sahara desert usually carrying a considerable amount152

of dust, while the southern part of the country receives more maritime influx through moist SW153

winds.154

Vegetation in North Ghana region is mostly a Guinea Savanna with many croplands that relies on155

rain-fed irrigation. Nicholson (2013).

Fig. 3: Digital elevation map of the study area (GRASS QGIS). Overview of the TAHMO
stations. Data retrieved from https://www.usgs.gov/

156

3. Methodology157

Rainfall detection described in this study can be formulated as a supervised imbalanced binary158

classification problem where images from the MSG satellite are used as input into the model and159

TAHMO measurements are the target labels (ground-truth data) to distinguish rain from no-rain160

sequences.161

8



a. Ground data analysis162

The first step of this study is a thorough data analysis of TAHMO hourly data with at least two163

full consecutive years of observations (no missing data for at least 66% of the considered period164

2018-2020) are used to analyse rainfall dynamics within the case study region.165

Four stations were selected for this purpose out of the eight available stations: Daffiama (TA00251),166

Pusiga (TA00264), Bongo (TA00254), Kpandai (TA00259). Analysis of the precipitation patterns167

like seasonality, median rainfall duration and diurnal precipitation cycle play an important role in168

the selection of the temporal scale of the model and for the integration of additional inputs such as169

the timestamp.170

b. Data preprocessing171

Sparse ground data pose a challenge to any ML-based model as they perform best when there172

is a dense grid data network. The methodology described in this section presents a way to173

overcome the lack of ground data by using an image to point approach. The model is trained174

only using point rainfall observations as the large distance between stations prevent us from using175

any type of spatial interpolation without introducing big sampling errors. For this purpose, both176

satellite images of TIR and WV are cropped to create a matrix of 32x32 pixels (covered area177

is 96𝑥96𝑘𝑚) with the TAHMO station located in the central square. The spatial resolution of178

the model corresponds to the pixel size, which is approximately 3.1km (Camarena et. al 2022).179

Cropped images are then grouped together to form 3-hrs sequences, each sequence is made of 12180

images. The chosen temporal resolution is in-line with the rainfall duration pattern explained in181

the previous section. Integrity of the sequences is mandatory, if any sequence includes missing182

data it is discarded from the process.183

Hourly TAHMO ground measurements and IMERG data with 30-minutes temporal resolution184

were accumulated to 3-hrs intervals to match the temporal scale of the sequences. A threshold185

of 1𝑚𝑚/3ℎ following the American Meteorology Society classification has been established to186

distinguish between rain or no-rain sequences which corresponds to the class of moderate drizzle187

or very light rain.188

189

To correctly represent the timestamp as an actual cyclical feature representative of diurnal190
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variability we map each cyclical variable onto a circle such that the lowest value for that191

variable appears right next to the largest value. By doing this we are taking into account jump192

discontinuities (e.g from 11pm to midnight), hence the single value needs to be transformed into a193

two dimensional-array using sine and cosine transformation. The following relations provide the194

correct feature encoding:195

𝑋𝑠𝑖𝑛 = 𝑠𝑖𝑛( 2𝜋 ∗ 𝑋
𝑚𝑎𝑥(𝑋) ) (1)

𝑋𝑐𝑜𝑠 = 𝑐𝑜𝑠( 2𝜋 ∗ 𝑋
𝑚𝑎𝑥(𝑋) ) (2)

c. Dataset construction and division196

The dataset is highly skewed. This means that the number of no-rain sequences is much larger197

than rain sequences. An hybrid approach of data resampling and weighted loss function is applied.198

The dataset is split in such a way that the rain sequences in the training dataset are over-sampled199

with a ratio of 4:1 dry/rain, while both validation and test dataset have a more realistic ratio of200

28.2:1 dry/rain which is representative of the 2020 full data. Training dataset contains sequences201

of 2018, 2019, 2020 while validation and test have only sequences of 2020. The table below shows202

the number of sequences available per dataset.203

Dataset Year Dry samples Rain samples Total n_samples Ratio dry/rain
Training 2018, 2019, 2020 4218 1055 5273 3.998
Validation 2020 6627 235 6862 28.2
Test 2020 6627 235 6862 28.2

Table 1: Number of samples per dataset with respective year.

d. Model development204

1) Architecture design205

The inputs of the model are two different streams of twelve 32𝑥32𝑥1 matrices for a total of 24206

input images, one stream contains the IR channel information while the other one contains WV207

channel.208
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The model used for this study is RainRunner, the architecture of the model is similar to the one209

already described in Camarena et al. 2022 with a few adaptations such as an increase in the number210

of nodes from 8 to 16, this increase is proportional to the number of input images (from 12 to 24).211

Figure 4 illustrates a condensed diagram of the bi-spectral model structure. The inputs of WV and212

TIR are convoluted separately in order to learn information individually from each channel. The213

output of the convolution and pooling layers is a 2-dimensional (8x8x1) single tensor generated214

from each image of the sequence which means two convolutions are applied in series. The tensors215

are flattened and concatenated into a multilayer perceptron. The timestamp (month and time of the216

day) is added directly into the fully connected layer after preprocessing along with the 2-D tensors217

from the convolutional layers. The total numbers of learnable parameters is 11,019,197, the batch218

size is set to 64 and the learning rate is fixed to 0.0001. The number of passes trough the training219

dataset is fixed at 300 epochs with an early stopping callback set to 50 to halt the training in case220

the model was overfitting. The function for the dense layer(s) is a rectified linear function (ReLu)221

while the output layer function is a logistic function, called sigmoid, which returns a probabilistic222

output between 0 and 1, where 1 represents 100% rain and 0 is 100% dry. A decision boundary223

line at 0.5 is used for the classifier to make a distinction between the two classes. Lastly, a weighted224

loss function is applied to deal with the imbalanced dataset where dry sequences have 0.2 and rain225

sequences 0.8 coefficients which reflects the ratio of dry/rain sequences of the training dataset.226

Fig. 4: Schematic overview of the proposed bi-spectral (WV+TIR) RainRunner architecture.
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e. Performance evaluation227

1) Assessment of data contribution228

Four models are tested in this study, in order to assess the contribution of water vapor and229

timestamp they all have the same architecture/hyperparameters and number of samples, the only230

difference is the input source which is intended to highlight the contribution of water vapor imagery.231

The diurnal heating cycle and seasonality patterns are closely tied to rainfall in this region, this is232

the main reason for the inclusion of timestamp information into the model.233

1. RainRunner 10.8𝜇m (TIR)234

2. RainRunner 7.3𝜇m (WV)235

3. RainRunner 10.8𝜇m + 7.3𝜇m (TIR + WV)236

4. RainRunner 10.8𝜇m + 7.3𝜇m (TIR + WV) + Timestamp237

Each model was trained 10 times. Ensemble average is applied to every model in order to reduce238

variance of the output andmake themodel predictions more stable. Model averaging is an approach239

to ensemble learning where each member contributes an equal amount to the final prediction. The240

stochastic nature of a machine learning model makes the probabilistic output subject to fluctuations241

that generate uncertainty within the same prediction, however when applying an ensemble average242

there is more coherence between the input sequence and the output which highlights the underlying243

value of the input sequence. Two different sets of metrics were used to evaluate the models244

performance: the first set of metrics consists of common DL metrics used to benchmark the model245

performance on a given binary classification problem. Accuracy, precision, recall and F1-score246

are all derived from the confusion matrix which shows the number of correctly (Hits and Correct247

negatives) and incorrectly classified sequences(False alarms and Misses). However, accuracy is248

not a good measure when dataset is very imbalanced, as the model might still reach a high level249

of accuracy by only detecting the majority class for all the sequences. F1-score becomes valuable250

in this type of problems, it represents the harmonic mean of precision and recall. Hence, the best251

averaged models are ranked according to the highest F1-score.252

𝐹1 = 2∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+ 12 (𝐹𝑃+𝐹𝑁)
(3)
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Fig. 5: Square confusion matrix used for this rain/no-rain binary classification problem.

The variance of the 10 different runs is shown by means of box plots where the quantiles of a253

probability distribution of a variable is displayed. The box contains the values between the upper254

quartile and lower quartile (50% of the distribution). The second set of metrics aims to compare255

different model performances using categorical evaluation metrics:256

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝑀𝑆
, Range: 0 - 1, Target: 1 (4)

257

𝑆𝑅 = 1−𝐹𝐴𝑅 = 1− 𝐹𝑃

𝑇𝑃+𝑀𝑆
, Range: 0 - 1, Target: 1 (5)

258

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑀𝑆
, Range: 0 - 1, Target: 1 (6)

259

𝐵𝑖𝑎𝑠 =
𝑃𝑂𝐷

𝑆𝑅
, Bias < 1: Under-forecast, Bias > 1: Over-forecast (7)

These metrics are geometrically related and can be used to construct the Roebber diagram, a260

visual assessment of the forecast quality of the four different models which is in general preferable261

for ease of interpreting the statistics (Roebber 2009). The distribution of misclassified sequences262

is also investigated for an in-depth understanding of the models strengths and weaknesses, also263

to pinpoint any improvement brought by the inclusion of the timestamp into the model. On this264

matter, the misclassification analysis consists of misclassifications per time of the day, per month,265

per season and per TAHMO station. Rain sequences were also grouped in different categories266
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according to the rainfall accumulation per hour as recorded by the TAHMO station. Different267

rainfall categories are listed in Section 3f268

2) WV contribution using pixel analysis269

Pixel analysis has a significant role in this study and is intended to demonstrate the actual270

differences between the two spectral channels of the satellite and why it is preferred to use a271

bi-spectral channel approach over single channel. A top-down approach is applied which means272

firstly large scale MSG images from the two satellite channels - 10.8𝜇m and 7.3𝜇m - are compared273

against each other to have a visual aid of the water vapor exclusion of low-level non-convective274

features hidden by the West African monsoon during rain season. The images spans longitudinally275

across West Africa from 20°W to 20°E showing atmospheric conditions at synoptic scale.276

The second part of the pixel analysis is focused on highlighting the differences at smaller scale277

(mesoscale) using cropped MSG images from relevant sequences used to validate the predictions278

of the model. Firstly, the pixel values are normalised between 0 and 1 then the pixel distribution279

of that sequence is shown using a gray-level histogram. A gray-level histogram indicates how280

many pixels of an image share the same pixel value. Each pixel value corresponds to a certain281

measured radiance that can be related to the equivalent brightness temperature of a layer. We know282

that temperature is not constant with height, if the atmosphere is conditionally unstable there is a283

negative temperature lapse rate between the Earth surface and a layer at ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑍 that can be284

simplified using the following relation:285

Γ = −𝑑𝑇

𝑑𝑧
(8)

In raw satellite imagery, pixel radiances with values approaching the unity are bright pixels and286

they translate into absorption at lower levels of the atmosphere, which corresponds to higher287

temperatures. The effective layer is then located at low levels. Darker pixels have values closer288

to 0, which indicates colder temperatures of the effective layer and therefore its location will be at289

higher altitude. Since the gray-level of each pixel in WV imagery gives information about the layer290

depth, an example using 3-dimensional surface plot is aimed at better showing convective motions291

of a violent rain event as seen from both channels that happened in Pusiga is also provided. A292

number of other meaningful events are selected according to the misclassified probabilistic output293

value of the averaged models. A second criterion applied to find more events was to calculate294
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the mean pixel value of TIR sequence and check whether the WV mean pixel value was at least a295

standard deviation away from TIR mean value.296

f. Rainfall intensity estimation297

1) Model setup298

The estimation of rainfall intensity requires a slightly different model setup, since there are299

more than two possible outcomes, the problem becomes a multiclass classification. This type of300

classification requires a function that is able to computes a discrete categorical distribution of K301

possible categories. The most common approach, that is also used in this study, is to apply the302

softmax function in the output layer.303

In order to reduce bias in the model, all the no-rain sequences were discarded from this type of304

classification. Following the definition of rain in the Glossary of Meteorology of the American305

Meteorological Society (AMS), rainfall categories were defined as:306

• Very light rain: 1𝑚𝑚/3ℎ < 𝑅𝑅 < 1𝑚𝑚/ℎ307

• Light rain: 1𝑚𝑚/ℎ < 𝑅𝑅 < 2.5𝑚𝑚/ℎ308

• Moderate rain: 2.5𝑚𝑚/ℎ < 𝑅𝑅 < 7.6𝑚𝑚/ℎ309

• Heavy rain: 𝑅𝑅 > 7.6𝑚𝑚/ℎ310

Very light rain Light rain Moderate rain Heavy rain
Training 412 268 271 104
Validation 79 68 58 30
Test 66 64 70 35

Table 2: Distribution of precipitation events per each rainfall category in training, validation, test.

The category ’Very light rain’ is firstly introduced in (Camarena et al. 2022) and is used here311

as additional category between dry and light rain sequences. The model is trained only using rain312

sequences divided per rainfall category. Results of the multiclass classification can be found in313

Appendix A Figure A1 as additional material.314
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4. Results315

a. Rainfall dynamics in West Africa316

(a)

(b) (c)

(d) (e)

Fig. 6: Rainfall patterns in North Ghana based on hourly data from four TAHMO stations. (a)
Rainfall duration. (b) Precipitation intensity. (c) Rainfall accumulation per time of the day. (d)

Frequency of precipitation events (𝑅𝑅 > 1𝑚𝑚/3ℎ) based on time of the day.

Measurements from TAHMO stations are processed in Figure 6 to visualize the main character-317

istics of the rainfall regime in the region of interest. It can be seen that precipitation resembles the318

main characteristics of a convective rainfall regime which translates into seasonal heavy short-lived319

thunderstorms, Figure 6b and Figure 6c clearly show this. Most of the rainfall events (82%) do not320

last more than 3-hrs and the median value of the heaviest rainfall events is close to 20mm/h which321
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indicates very heavy rainfall regime. 3-hrs is the temporal scale of each sequence and it allows to322

keep track of the development of the storms.323

Figure 6d shows a progressively erratic diurnal cycle of convection during the rain season starting324

from May due to the strengthening of the AEJ consequently enhancing horizontal moisture trans-325

port (visible in 7.3𝜇m) and formation of large mesoscale systems which are propagating overnight326

resulting in large accumulated rainfall values. This pattern culminates in early September where327

almost 1000mm falls during nighttime. Morning hours (6am - 12pm) have generally the least rain-328

fall accumulation as well as fewer numbers of precipitation events, stable atmospheric conditions329

are more often found around this time of the day.330
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b. Model performance for independent test dataset331

Fig. 7: Contingency tables of ensemble averaged RainRunner using different inputs (WV, TIR,
WV+TIR, WV+TIR+Time, the single best run and IMERG-Final.

Confusionmatrices are displayed in Figure 7. InitiallyWV and TIR separated performs similarly,332

TIR model has a slightly lower number of missed rain events whereas the WV model outcome333

showed less false alarms. Combining them together leads to a fewer number of misclassified rain334

and dry sequences. It is observed that the number of false alarms (false positives) is constantly335

decreasing when water vapor and timestamp are included in the model, from 352 down to 255.336

IMERG on the other hand has much lower number of misses (false negatives), which makes sense337

considering the fact that it makes use of a constellation of LEO satellites that have a more direct338
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relationship to rainfall. The best single run has the lowest number of false alarms (229) at the339

expenses of a high number of misses (78), which corresponds to a third of the all rainy sequences.340

c. Roebber performance diagram341

Fig. 8: Roebber performance diagram on the test dataset.

The values shown on the contingency tables are used to construct the Roebber performance342

diagram in Figure 8, where all IMERG products are plotted as reference models.343

A perfect forecast would show values of POD, SR and CSI approaching unity value and it would344

be placed on the upper-right corner of the diagram. IMERG-Final has the highest number of hits345

(true positives) as a consequence it also has the highest POD of all the models, however with346

a bias well above 2.0 it is over-forecasting rainfall. The small performance increase between347

IMERG-Final and IMERG-Early is not enough to justify the great difference in latency time348

between the two products. The benefit of adding WV and timestamp is noticeable in this diagram349

as it progressively leads to higher success ratio (SR) as well as a lower bias compared to all other350

models (1.5 < 𝑏𝑖𝑎𝑠 < 2.0).351

352

353
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Fig. 9: Variance of the performance metrics between different runs of each model.

The variance of the 10 runs in the minority class is shown in Figure 9. Given the highly skewed354

nature of the dataset towards zero (dry events), all models have a high accuracy score that varies355

in a tight range between 93% - 95% except for one outlier in TIR. F1-score is a more indicative356

score for this type of classification problem. The two initial models of WV and TIR have similar357

performances although TIR shows slightly higher F1-scores. The combination of the two channels358

into a single model shows some improvements with a clear upward trend of performances that359

culminate at a 0.50 on the F1-score achieved on the best single run.360

As precision score is inversely proportional to the number of false positives (false alarms), the361

gradual reduction of this number results in an increased precision which in turns improves the362

overall F1-score, being the harmonic mean of precision and recall. Recall is related to the number363

of false negatives and has a median value of approximately 0.70 for all models except for WV and364

IMERG which scored 0.67 and 0.81 respectively.365

These runs are then averaged together to generate an ensemble probabilistic output that gives a366

more stable prediction in accordance to each input sequence of the test dataset.367
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d. Misclassification analysis368

Fig. 10: Misclassification analysis based on selected parameters: Station, time of the day, month,
class, rain category and season.

Figure 10 displays the distribution ofmisclassified sequences using defined parameters of interest.369

Northernmost stations have overall less misclassified sequences compared to stations located in370

central regions. The combination of WV and TIR with timestamp has the least number of371

misclassifications overall. The addition of timestamp is particularly valuable during dry season,372

here the combined model with timestamp has very little number of misclassifications. Rain season373

(boreal summer) shows the poorest performances for all models. It is worth to mention that IMERG374

has the highest number of incorrectly classified sequences during the rain season, highlighting the375

fact that the AEJ influence on rainfall patterns is a true challenge even for the most advanced376
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models. WV model being used to track convective motions is the one struggling the most when it377

comes to light and very light (stratiform) rain detection.

(a) (b)

(c) (d)

Fig. 11: Comparison of the ensemble probabilistic output of the test dataset sequences. (a) TIR
ensemble probabilistic output of dry sequences; (b) TIR + WV + Timestamp ensemble
probabilistic output of dry sequences; DJF is representative of the dry season while JAS is

representative of rain season. (c) TIR (d) TIR + WV + Timestamp ensemble probabilistic output
of rain sequences

378

Figure 11 illustrates the contribution of the timestamp information in the model by comparing the379

probabilistic output of the combined model + Timestamp with RainRunner 10.8𝜇m. The line at 0.5380

is the decision boundary for the rain/no-rain distinction. It is more visible to distinguish seasonal381

changes across every station by looking at the model output that uses timestamp. The addition of382

number of the month makes the predictions for the trimester December-January-February (DJF)383

much lower with values close to 0, the mean predicted value for TIR was 0.14 vs. 0.005 for the384

model using timestamp. On the other hand, dry events during July-August-September (JAS) are the385

still the most difficult to classify on both models. The addition of the time of the day is beneficial386

during early rain season when the AEJ is not yet offsetting the diurnal convective cycle, and rainfall387
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is still occurring during late afternoon hours.388

Figure 11c-d shows how TIR predictions of rain sequences are closer to unity than the combined389

model with timestamp. This is particularly true for some rain events that occurred during the390

shoulder season (March/April or October/November) received a lower probabilistic prediction in391

the model using timestamp. Four heavy rainfall events were misclassified in TIR while only two392

heavy events are misclassified in the combined model. This is probably due to WV capture of393

strong convective motions associated to heavy rainfall.394

e. Pixel analysis comparison395

Fig. 12: Visual assessment of the three relevant SEVIRI infrared channels. From top to bottom:
WV 6.2 𝜇m (Channel 5); WV 7.3 𝜇m (Channel 6); IR 10.8𝜇m (Channel 9).

Satellite images over large areas are useful to understand the differences between the thermal396

window channel 10.8𝜇m and the two water vapor channels. Figure 12 shows a snapshot of West397

Africa atmospheric dynamics on July 23 2020 at noon. Midday is the time at which solar heating398

cycle is at its peak and early convection is visible. The image retrieved at 10.8𝜇m shows a lot of399
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information not always related to rainfall, such as many low-level clouds spread across the whole400

region and where the sky is clear the radiance is an indicator of the land surface temperature (dark401

red area on the upper part of the figure is near Sahara desert). Areas of intense convection are402

highlighted in water vapor imagery and are located within the dark blue areas. The softer red shade403

shown in 7.3𝜇m is clearly the top of the West African Monsoon layer that acts as threshold level404

for this channel, hiding low-level clouds. Above this level the AEJ transport moisture eastward405

and promotes slanted convection. The largest sensitivity range for channel 5 6.2𝜇m is around 350406

hPa, which makes this channel completely blind to the WAM as well as most of the lower level407

features associated with it. It is still a useful channel to locate deep convective motions that takes408

place in the upper-troposphere.409

410

Figure 13 displays some of the analysed misclassified sequences used as input where the411

addition of water vapor proved to be functional for the model and reflected some insightful412

atmospheric dynamics. The images on the left side are extracted directly from the input sequence413

and are representative of the atmospheric event. On the right hand side the gray-level histogram414

shows the pixel distribution of the entire sequence. A grey level histogram indicates the frequency415

of occurrence of each gray-level value in the sequence.416

Starting from top to bottom, Figure 13a shows a clear dry intrusion that happens when a tropical417

system advects air from a dry source, it is visible from the sharp gradient in water vapor imagery.418

Dry intrusions normally happen right after a precipitation event and they are difficult to locate in419

TIR imagery because warmer clouds linger for a longer period of time.420

A dry slot is seen in 13b, dry slots can be a consequence of dry intrusions or they might happen421

along the transition zone between convective and stratiform rain in larger mesoscale convective422

systems. Figure 13c is a sequence from January 2020 (peak dry season) that was misclassified by423

WV but thanks to TIR we know there were no rainy clouds at that moment. This happens when424

an anomalous low level moist southerly circulation peaks up during certain days of the dry season425

while at higher levels dry air is present. This allows the 7.3𝜇m channel to retrieve water vapor426

content from lower levels resulting in incorrect predictions. Two distinct peaks are observable427

in each gray-level histogram meaning that the two channels generate an asymmetric bimodal428
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distribution of pixels at different brightness temperatures, in the case of WV imagery the peak is429

an indication of the most occuring height of the effective layer during the sequence.430

EVENT Groundtruth TIR WV Combined Timestamp
(a) Kpandai_2020.09.30_18 0 0.60 0.18 0.48 0.47
(b) Bimbilla_2020.05.27_09 0 0.51 0.10 0.42 0.21
(c) Tamale_2020.01.23_18 0 0.42 0.64 0.32 0.14
(d) Pusiga_2020.05.27_12 1 0.04 0.16 0.45 0.20

Table 3: Predicted probabilities from each ensemble model for the selected events in Fig 13.
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(a)

(b)

(c)

(d)

Fig. 13: Pixel analysis of relevant atmospheric events. (a) Dry intrusion from North, (b) Dry slot,
(c) Low-level moisture detected in WV, (d) 3D deep convective motions of a heavy precipitation

event as seen in WV and TIR imagery.
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5. Discussion431

This study proposed a bi-spectral approach to tackle the challenge of rainfall detection in a432

tropical region by means of a Deep learning model. Rainfall dynamics in West Africa are complex433

showing erratic behaviour, the African Easterly mid-level Jet plays a crucial role in the formation434

of a favourable thermodynamic environment to develop deep convection. The newly added water435

vapor channel 6 proves to be useful at detecting this mid-level jet and depicting where local436

convective motions are taking place without possible contamination from low-level clouds. The437

WV channel true added value relies in revealing dry intrusions and dry slots in between tropical438

systems (Figure 13a-b, more examples of such events are in the appendix) which translates into439

a reduced value of false alarms in the confusion matrices and a higher success ratio (SR) in the440

Roebber diagram. Certain events are more difficult to identify, that is why the gray-level histogram441

becomes helpful in this situations to see how the combination of the two channels usually generates442

a bimodal pixel distribution where WV pixels mode with respect to TIR is an indicator of either443

dry or wet conditions during dry intrusions and dry slots.444

The addition of water vapor remarkably improved the performance of the model in a binary445

classification context. It is seen in Table 3 that the predicted probabilities of the model using a446

combination of both satellite channels resulted in values that are usually in-between the single447

channels model probabilities or in some cases closer to the true groundtruth binary value, this is448

mostly seen for low-level moisture events. Mesoscale dry intrusions are the most challenging to449

depict because of the sharp gradient present in the image. The probabilities of the dual-channel450

model for this type of event can be misleading as it sometimes struggles to capture the correct451

development of this dry air advection into the rainfall area. Most of the dry slots and dry intrusions452

analysed events (tables in the Appendix.) take place during early or late rain season that is when a453

more dynamical atmospheric situation is found and is reflected by larger values of the combined454

probabilistic output compared to the dry season. The intrusion of dry air into the tropical system455

could also promote the development of ’virga’ which consists of precipitation evaporating before456

reaching the ground due to a dry patch combined with high air temperature, resulting in an actual457

mismatch of predictions. Contribution from the timestamp is mostly observed during the dry458

season where the model using time information is correctly expecting dry sequences most of the459

time.460
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Water vapor channel is not a good channel to retrieve stratiform rainfall. Stratiform or warm rain461

is the precipitation that falls from low-level clouds and usually is associated with light rainfall462

events. However considering that more than 80% of the rainfall in tropical inland areas comes463

from mesoscale convective systems (MCs) and the relationship between low level clouds and464

warm rain is still very uncertain as the presence of low clouds is sporadically linked to rainfall465

events (Liu and Zipser 2009), water vapor imagery could be skillful in focusing the model only466

towards strong convective events. Presence of such low clouds or high clouds like thin iced467

cirrus lead to an over-forecast of precipitation in models that only make use of TIR imagery, this468

overestimation can be seen in the comparison of the probabilistic output of the two models (see469

Figure 11) where TIR ensemble predicted probabilities shows much more uncertainty, as well as470

in the contingency tables, here TIR model has the highest number of false positives.471

On the other hand, the results of the misclassification analysis per month and season tell us that472

the model using only WV images struggles more compared than the other models during dry473

season months. The explanation of this is the variable height of the effective layer: since during474

the dry season there is very dry air aloft it might happen that the satellite sensor is able to detect475

some anomalous low-level moist currents that are not related with any rainfall however the model476

without TIR information about clouds would still classify them as rain sequences, Figure 13c477

shows one example of such event that happened in mid-January 2020.478

The misclassification per rain category also shows that water vapor alone is the worst model in479

detecting both very light and light rain, this type of rain is likely to be found in stratiform clouds480

(not seen in WV channel). The discrepancy in misclassified sequences between northern and481

more southern stations is in agreement with literature and it is most likely due to a progressively482

higher availability of moisture when approaching the coastal areas that leads to a slight increase483

of rain from warm clouds (Reinares Martínez et al. 2020).484

485

The synergy between TIR and WV leads to an important consideration: the inclusion of486

WV channel into a deep learning model can provide the basis to develop a full alternative solution487

to the established CCD method. CCD method is a cloud indexing statistical approach applied488

to the TIR channel to distinguish convective rain clouds from non-rain low clouds. It assumes489

a positive linear relationship between cloud tops and rainfall to find an optimal temperature490
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threshold for a certain area (Domenikiotis et al. 2003). However, because of the complexities of491

convective rainfall, both the temperature threshold and the linear regression relationship depend492

on local characteristics of the area under consideration. Even if the region of interest is divided in493

many calibration sub-areas, the results exhibit several discontinuities in the rainfall estimates.494

Additionally, each calibration area requires a lot of ground measurements. At the moment North495

Ghana gauge coverage is far from sufficient to make this method a viable option. The strengths of496

CCD method relies on its simple approach to get reliable results at very low temporal resolutions497

(POD: 0.69, SR: 0.75, BIAS: 0.9 for wet dekadals detection) (Tarnavsky et al. 2014). Deep learning498

models are more complex algorithms with the advantage of being fully observations-driven, and499

with the inclusion of water vapor imagery they do not have to rely on any a priori assumptions.500

The combination of the two satellite channels automatically excludes non-convective features501

within the whole region of interest. Temporal resolution is higher than, for instance TAMSAT502

(3hrs vs daily) which is very beneficial in a convective precipitation context. Looking at Figure 12503

it is visible that Channel 5 is detecting only upper level WV structures, the adoption of this channel504

offers a way to focus the model even more on deep convective events that are strictly related to505

heavy rainfall events. However, no information on stratiform rain and shallow convection can506

be extracted from this channel and for this reasonWV7.3𝜇mwas the preferred channel in this study.507

508

The model developed in this study is specifically designed for equatorial Africa, similar to509

CHIRPS and TAMSAT. Water vapor channel is expected to be less effective in detecting rainfall510

outside the tropics where convective rainfall is less dominant. Different factors play a role in511

rainfall formation in mid-latitudes, in particular frontal systems. Due to its geographic location,512

North Ghana has frequent intrusions of dry air from the Sahara desert. Dry intrusions are visible513

in water vapor imagery and for this reason the model here performs particularly well.514

515

A promising direction for further development of the presented DL model is to trasform this516

binary rainfall detection into a full gridded rainfall product. Results of the rainfall categorization517

(multiclass classification) has shown promising results given the simplicity of the model, but still518

geostationary (GEO) IR images do not have any meaningful relation with precipitating hydrome-519

teors since they are only able to sense objects like clouds and water vapor based on their thermal520
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emissions. For this reason the model is particularly struggling in differentiating intermediate cat-521

egories like light and moderate rainfall. Passive microwave sensors (PMWs) are the only satellite522

observations capable of retrieving the rainfall rate by receiving the backscattered signal of hy-523

drometeors, however the latency time between consecutive measurements over the same location524

is just too large to give any reliable estimate. It was observed that certain rainfall events are so525

highly localised in space and time that the covered area of the input images (32x32) as well as the526

temporal resolution (3hrs) were still too coarse to make such events detectable by the model, for527

example the heavy rain event in Pusiga in May (Fig. B1) was incorrectly classified by all models528

including IMERG-Final. A well defined small dark blob in WV imagery appears only at the end529

of the sequence while the previous images contained mostly bright pixels, suggesting the model it530

was a total dry sequence. Higher temporal resolution are readily available for both SEVIRI images531

and TAHMO observations, it is advised as part of future development to move to an hourly time532

scale so that heavily localised rainfall has more chances to be detected. Moreover, by applying a533

higher temporal resolution less data will be discarded, because our methodology only considered534

full sequences with 12 images.535

Precipitation estimates have an important operational value, in fact they are crucial to give a quan-536

titative measure of plants development if used as input into any vegetation model that aims to537

predict crop growth. Farmers and local people in Ghana can really benefit from this model, once538

fully-developed, as the latency of rainfall product is near real-time, allowing this model to be used539

in real world applications such as flood and drought monitoring. Models like IMERG-Final have540

way too large time latency (3.5 months) for these kind of applications. IMERG-Late on this matter541

might be more useful, having a latency of 12hrs.542

6. Conclusion and future improvements543

This work showed that a Deep learning model is able to tackle rainfall detection in regions544

where sparse rain gauge networks and erratic precipitation patterns pose a challenge to traditional545

methods. The contribution of water vapor into the model is noticeable and resulted in a reduced546

number of false alarms, rainfall is then less overestimated. Water vapor inability to detect547

non-convective features can be seen as an equivalent of applying a temperature threshold in the548

CCD method. Water vapor imagery true value relies in detecting dry air intrusions into tropical549
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easterly waves which can be very skillful since the region of interest is very close to the Sahara550

desert. Despite their coarse spatial and temporal resolution, the addition of passive microwave551

sensors from LEO satellites seems a promising way to transform this binary rainfall detection552

model into a continuous rainfall product estimate like TAMSAT or CHIRPS. As a starting point,553

rainfall estimates derived from GEO-IR imagery could be locally adjusted whenever a PMW554

observation is available for that region, post-processing calibration is required to account for grid555

mismatch (Hsu et al. 2020).556

Expanding the dataset has already proved to increase the performance of the model, however the557

addition of more data from other stations across West Africa in a binary detection model might558

introduce new local climate variability that will alter the learning algorithm of the rainfall pattern559

distribution. The advances in the field of machine learning is bringing promising applications in560

both data augmentation and samples generation. Generative adversarial network (GAN) are neural561

network models that can replicate the data distribution of the training dataset through a generator562

and a discriminator model, so by using historical satellite rainfall fields it is actually possible to563

generate a spatial dependent probabilistic output of rainfall field for nowcasting purposes.564

565

The combination of multiple SEVIRI channels to enhance low-level features by applying a566

temperature brightness difference between relevant channels might improve the detection of warm567

rainfall, however it is likely that precipitation will be more overestimated unless a better relation568

between the two variables is not defined through a defined 𝑇𝑏−𝑅𝑅 relationship. On the other hand,569

the adoption of the other WV channel 6.2𝜇m would bring more reliable results on the detection of570

heavy rainfall events which they account for most of the accumulated rainfall on the ground. The571

use of 3-hrs temporal scale, even though it is suitable to keep track of the development of storms572

seems too coarse to capture certain short-lived rainfall events. Performances at hourly temporal573

scale are worth to be investigated since both TAHMO and EUMETSAT data are readily available,574

less data will be discarded since the complete sequence requires only four images instead of575

twelve.576

Moreover, using a smaller area centered around the point observation at the expenses of a577

simpler model could be beneficial as precipitation in this region is attributed to localised pockets578

of rapid most air ascent which are sometimes not larger than few kilometers so the covered579
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area of the input images (96𝑥96km) is still way too large. On this matter, the launch of the580

new MTG-I1 scheduled for Q4 2022 is set to deliver higher pixel resolution (2km) and even581

faster image BRC (Baseline Repeat cycle) of 10 minutes (ESA 2021). This would potentially582

allow theWV channel to detect smaller scale rising air motions and keep the input shape untouched.583

584
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APPENDIX A596

Multiclass classification results597

Fig. A1: Results of RainRunner WV+TIR+Timestamp multiclassification of rain sequences in
the test dataset by precipitation intensity [mm/3hrs].
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APPENDIX B598

Pixel analysis599

Fig. B1: Example of a misclassified rain sequence in WV imagery due to coarse temporal
resolution. Pusiga - May 2020
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a. Dry slots600

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. B2: Dry slots observed at TAHMO locations.

EVENT Groundtruth TIR WV Combined Timestamp
(a) Bimbilla_2020.09.07_09 0 0.51 0.03 0.007 0.17
(b) Bimbilla_2020.09.12_06 0 0.56 0.54 0.23 0.39
(c) Han_2020.10.01_15 0 0.73 0.34 0.42 0.33
(d) Bongo_2020.04.10_15 0 0.66 0.28 0.49 0.38
(e) Bongo_2020.05.09_12 0 0.41 0.11 0.32 0.35
(f) Daffiama_2020.05.15_15 0 0.74 0.28 0.47 0.25
(g) Tamale_2020.06.14_12 0 0.52 0.09 0.29 0.23
(h) Navrongo_2020.06.20_15 0 0.45 0.04 0.35 0.50
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b. Dry intrusions601

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. B3: Dry intrusions observed at TAHMO locations.

EVENT Groundtruth TIR WV Combined Timestamp
(a) Bimbilla_2020.03.22_15 0 0.57 0.14 0.67 0.17
(b) Bimbilla_2020.05.06_21 0 0.92 0.45 0.64 0.23
(c) Bimbilla_2020.07.26_12 1 0.51 0.26 0.75 0.78
(d) Bimbilla_2020.09.30_15 0 0.77 0.69 0.46 0.59
(e) Navrongo_2020.05.17_12 0 0.81 0.41 0.69 0.48
(f) Pusiga_2020.05.06_00 0 0.50 0.34 0.24 0.29
(g) Pusiga_2020.07.15_03 0 0.51 0.37 0.46 0.54
(h) Bongo_2020.09.25_12 0 0.62 0.27 0.44 0.44
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c. Low-level moisture602

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. B4: Low-level moisture events observed at TAHMO locations during dry season.

EVENT Groundtruth TIR WV Combined Timestamp
(a) Bimbilla_2020.02.11_18 0 0.42 0.83 0.28 0.30
(b) Bimbilla_2020.12.22_12 0 0.41 0.65 0.37 0.18
(c) Daffiama_2020.01.22_21 0 0.28 0.54 0.20 0.02
(d) Daffiama_2020.01.23_06 0 0.22 0.66 0.14 <0.01
(e) Kpandai_2020.01.25_00 0 0.43 0.58 0.18 0.02
(f) Kpandai_2020.10.21_00 0 0.30 0.63 0.37 0.23
(g) Navrongo_2020.02.12_00 0 0.07 0.50 0.24 <0.01
(h) Pusiga_2020.02.11_18 0 0.08 0.55 0.24 0.05
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