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Abstract

Task and Motion Planning (TAMP) has progressed significantly in solving intricate manipulation tasks in
recent years, but the robust execution of these plans remains less touched. Particularly, generalizing
to diverse geometric scenarios is still challenging during execution. In this work, we propose a reactive
TAMP method to deal with disturbances and geometric ambiguities by combining an active inference
planner (AIP) for online action selection with a proposed multi-modal model predictive path integral
controller (M3P2I) for low-level control. The AIP generates online alternative plans, each of which is
translated into a cost function to be sampled for the proposed method. The proposed M3P2I then uses
a parallelizable physics simulator for throwing different rollouts, leading to a coherent optimal solution
by averaging the weighted samples based on their costs. Our method empowers real-time adaptation
of action sequences to rectify failed plans, while also computing low-level motions to address dynamic
obstacles or disturbances that could potentially invalidate the existing plan.

Theoretical findings are validated in simulation and in the real world. We show that the framework
exhibits reactiveness in different scenarios, including battery charging, push-pull among obstacles, and
pick-place with disturbances. We show that our framework outperforms an off-the-shelf RL method in
the reactive pick-place task in terms of position error and orientation error. We also show that M3P2I
is generalizable in combining different constraints, such as generating hybrid motions of push and pull
for the mobile robot, and grasping objects with different grasping poses. The real-world experiments
show that the system exhibits reactiveness and robustness against human disturbances in a variety of
manipulation tasks.
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Nomenclature

List of Abbreviations

EFE Expected Free Energy

FEP Free-Energy Principle

GPU Graphics Processing Unit

LHS Left Hand Side

MPC Model Predictive Control

MPPI Model Predictive Path Integral Control

POMDP Partially Observable Markov Decision Process

PRM Probabilistic Roadmap

RHS Right Hand Side

RL Reinforcement Learning

RRT Rapidly-Exploring Random Tree

TAMP Task and Motion Planning

VFE Variational Free Energy

List of Symbols

sτ ∈ Rm Hidden state at time τ , wherem is the number of mutually exclusive values a state can
have

sπτ ∈ Rm Posterior distribution of the hidden state under a plan π, where m is the number of
mutually exclusive values a state can have

oτ ∈ Rr Observation at time τ , where r is the number of values an observation can have

oπ
τ ∈ Rr Posterior distribution of observation at time τ , where r is the number of values an ob-

servation can have

aτ Symbolic action to be performed at time τ

π ∈ Rp Plan specified by a sequence of actions, where p is the number of actions

π ∈ Rp Posterior distribution over plans, where p is the number of actions
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iv

A ∈ Rr×m Likelihood matrix, mapping from hidden states to observations. The columns are cate-
gorical distribution P (oτ |sτ ,A) = Cat(Asτ )

Baτ
∈ Rm×m Transition matrix, indicating the probability of state transition under certain action aτ .

The columns are categorical distribution P (sτ+1|sτ , aτ ) = Cat(Baτ sτ )

C ∈ Rr Prior preferences over observation P (oτ ) = C

D ∈ Rm Prior probability or belief over initial states P (s0) = Cat(D)

F (π) ∈ R Variational free energy

F π ∈ Rp F π = (F (π1), F (π2), . . . , F (πp)))
⊤

G(π, τ) ∈ R Expected free energy

Gπ ∈ Rp Gπ = (G(π1), G(π2), . . . , G(πp)))
⊤

σ Softmax function
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1
Introduction

This introductory chapter focuses on the motivation behind this thesis, narrowing down the research
scope, and posing the fundamental problem we want to address. Subsequently, a brief overview of the
fields related to the research topic is provided. The chapter then summarizes the contributions of the
thesis. Finally, the outline of the document is given.

1.1. Motivation
The promising future of the automation industry requires robots to use a variety of skills to perceive
the environment, navigate in it and perform different tasks. The deployment of these robots could in-
crease overall production, efficiency, and quality in the workplace and could also help human workers
in dealing with dangerous or economically infeasible tasks. Especially for retail stores as shown in
Figure 1.1, mobile manipulators can reduce the workload of store employees by packaging products,
stocking shelves, and cleaning floors. This would in turn lead to improvements in the quality of cus-
tomer service. However, in order to solve these real-world tasks, the robots should operate safely and
efficiently in dynamic and uncertain environments.

Figure 1.1: A mobile manipulator from the AI for Retail (AIR) Lab Delft [1]

This requires sufficiently advanced technology including perceiving the environment through the sen-
sors, creating high-level plans based on the reasoning about the environment, and then efficiently
controlling the actuators to carry out the plans. In this work, the focus is on the latter two aspects,

1



1.2. The state-of-the-art 2

namely task planning and motion planning, and the interdependence in between.

Task and motion planning is a powerful class of methods for solving complex long-term manipulation
problems where logic and geometric variables are influencing each other. TAMP [2] has been suc-
cessfully applied in many domains such as table rearrangement, stacking blocks, or solving the Hanoi
puzzle. Despite impressive recent results [3], the environments in which TAMP plans are executed
are usually not dynamic and the plan is executed in open-loop [4]. Recent works [5–7] recognized the
importance of robustifying the execution of TAMP plans in order to be able to reliably carry them out
in the real world. However, these works either rely only on the adaptation of the action sequence in a
plan [7–10] or only on the motion planning problem in a dynamic environment given a fixed plan [5, 6]

A key challenge in reactive TAMP is the handling of geometric constraints that might not be known at
planning time. For instance, moving a block to a desired location may necessitate pulling rather than
pushing if the block is situated in a corner. This is challenging since the outcome of pushing and pulling
actions can be hard to predict accurately even assuming full knowledge of the scene at planning time.
Planning a sequence of push-pull actions a priori and then executing it is also prone to fail. Another
scenario involves the classic pick-and-place task with sequential actions: reaching the cube, closing
the gripper, lifting the cube to a pre-grasp position, and releasing the cube. However, distinct grasp-
ing poses are necessary for diverse locations, it is challenging to abstract a generalizable and robust
grasping pose constraint capable of accommodating various locations while considering the fact that
dynamic obstacles or human disturbances might invalidate initially planned grasping poses.

These research gaps bring to the formulation of the questions that this work aims to address:

• How can Task and Motion Planning (TAMP) incorporate reactive behaviors from both high-level
action selection and low-level motions in multi-task, contact-rich and dynamic environments?

• How to address geometric ambiguities, which are hard to determine at planning time, within a
reactive TAMP framework?

1.2. The state-of-the-art
This section provides a brief overview of the fields that entail the topic of the thesis.

1.2.1. Task Planning

Task planning community has focused on planning in discrete domains using representations and al-
gorithms that exploit underlying patterns in the large state space for a long period. Ghallab et al. [11]
provides a comprehensive guide to task planning from the AI perspective. Karpas and Magazzeni [12]
review task planning in the context of planning robot actions. In this survey, the main effort is to review
the robotics-relevant topics of task planning, especially concentrating on generating action plans, while
the basic methods of knowledge representation and symbolic reasoning in the classical sense of artifi-
cial intelligence behind the scene are omitted.

However, themajority of the task planning literature paid toomuch attention to developing offline search-
ing techniques, while underestimating the importance of the deliberation capabilities needed to carry
out the actions. Authors in [13, 14] pinpointed this issue and advocated changing the focus to the roles
of actors instead of planners. Actors here should not be mere action executors, instead, they should
be able to take intelligent decisions and adapt their behaviors to the dynamically changing environment
online. This is especially beneficial when mobile manipulators work in dynamic environments, where
actions planned offline are prone to fail. More specifically, the actors should possess two properties,
as summarized in [13–15]:

• Hierarchical deliberation: each action in a plan may be a task that may need further refinement.
The hierarchical deliberation should go beyond the scope of the current hierarchical planning
techniques so that the different modules should be integrated effectively.
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• Continual online planning and reasoning: the actor will monitor, refine, extend, update, change,
and repair its plans throughout the acting process and generate activities dynamically at run-time.

To achieve such actors, various scholars have conducted extensive research on understanding human
intelligence in decision-making. One of the most influential theories in neuroscience is the so-called
active inference, which tries to explain how information is processed by the human brain [16]. The math-
ematical framework of active inference was constructed on the Free-Energy Principle (FEP) proposed
by Karl Friston [17]. It has shown its potential in the domain of adaptive control such as controlling
manipulators [18] and fault tolerant systems [19, 20] and also in the domain of symbolic reasoning [21].
The main idea of Friston’s neuroscience theory is that the brain’s cognition and motor control functions
can be described as free energy minimization so that agents can select those actions that maximize the
”well-being” and minimize the ”surprise” based on Bayesian inference and gradient descent schemes.
The brain will also maintain an internal (generative) model that can incorporate the sensor data and up-
date the belief as a posterior in an approximated Bayesian framework. Active inference suits our case
considering its appealing aspects, namely the efficiency in continual online planning and the flexibility
in encoding parameterized habits and preferences.

1.2.2. Motion Planning

The problem of motion planning was formulated by Lozano-Pérez [22] as a search for paths in the
robot’s configuration space from one state to another without colliding with any obstacles. LaValle [23]
provides an overall introduction to the field of motion planning. Motion planning methods can be cate-
gorized into two subgroups, global motion planning which computes a trajectory from the initial to the
goal configuration directly, and local motion planning which generates a feasible trajectory within short
time periods at a higher frequency. The most popular, general, and effective methods are based on
sampling [24–26] or constrained optimization [27–29]. Besides, machine learning techniques [30, 31]
have also been applied to generate a motor skill trajectory.

Recently, the Model Predictive Path Integral (MPPI) control algorithm has emerged as a powerful and
efficient approach that shows promising performance in real-time non-linear dynamics and high dimen-
sional robotic systems [32–35]. The key idea of MPPI is to sample control sequences from a given
distribution and forward simulate them in parallel (e.g. on a GPU) using the system’s dynamics to
generate trajectories. Each simulated trajectory is then evaluated against a cost function. The cost
of each trajectory is then converted to importance sampling weights, which will be used to update the
cost-weighted average control sequences. However, the clarity of dynamic modeling of the problem
remains a challenge, and there is no open-source implementation available. In general, the aforemen-
tioned works have been applied for single-skill execution, such as pushing or reaching a target point,
and never in the context of a longer task that requires sequential decision-making.

Interestingly, [36] presents an open-source application based on MuJoCo physics for real-time predic-
tive control. Among the challenges and future work, the authors suggested the use of learned policies
when rolling out samples, and the use of a high-level agent to set the cost function of the predictive con-
troller for long-horizon cognitive tasks. We follow this line of thought and propose a method to perform
the composition of cost functions for long-horizon tasks in a reactive fashion.

1.2.3. Integrated Task and Motion Planning

Considering that high-level actions could vary depending on the low-level motions and execution of the
motions also rely on the high-level actions, especially in dynamically changing environments, high-level
actions and low-level motions should be formulated in an integrated way. This introduces the problem
of Task and Motion Planning (TAMP). The problem of TAMP can be described as a robot taking actions
in environments containing many objects to achieve some goals and changing the states of the objects.
It contains components of the aforementioned discrete task planning and continuous motion planning,
and thus it should be considered as a hybrid discrete-continuous search problem. A review of classical
TAMP can be found in [37].
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Classical TAMP approaches can solve complex integrated task and motion tasks, but they are not de-
signed to generate reactive behaviors against changing environments and perturbations. It might be
true some of them can achieve reactive properties via online re-planning, but this is computationally in-
efficient if re-planning occurs too often and the task to solve is too complicated. The reactive properties
are essential in our research problem considering that the robots will be operated in a dynamic environ-
ment which may involve unexpected disturbances and events. In recent years, the TAMP communities
have also focused on creating robust, reusable, and reactive behaviors for manipulation tasks, which
can be called Reactive TAMP.

In [5], the authors provide a reactive MPC strategy to execute a TAMP plan as a given linear sequence
of constraints. Instead of composing primitive skills, [5] derive the control law from a composition of
constraints for MPC. The reactive nature of the approach allows coping with disturbances and dynamic
collision avoidance during the execution of a TAMP plan. The work in [6] formulates a TAMP plan in
object-centric Cartesian coordinates, showing how this allows coping with perturbations such as mov-
ing a target location. Both [5, 6], however, do not consider adaptation at the symbolic action level if a
perturbation invalidates the current plan.

On the other hand, a number of papers focused on adapting and repairing high-level action sequences
during execution. Authors in [38] propose to represent robot task plans as robust logical-dynamical
systems. The method can effectively adapt the logic plan in order to deal with external human dis-
turbances. Similarly, [39] presented a method to coordinate control chains and achieved robust plan
execution through plan switching and controller selection. [10] proposed instead to blend task and
action planners by dynamically expanding a behavior tree at runtime through back-chaining. Similarly,
[40] presents a reactive task allocation framework based on behavior trees and linear temporal logic for
multi-robot systems. In [7], behavior trees and linear temporal logic have been combined into a reactive
TAMP method against a cooperative or adversarial human operator which might invalidate the current
plan. A recent work [41] proposes to use Monte Carlo Tree Search in combination with Isaac Gym to
speed up task planning for multi-step object retrieval from clutter, where complex physical interaction
is required. This is a promising direction, but [41] only focuses on high level reasoning and executes
pre-defined motions in open-loop.

In [8], active inference and behavior tree were combined to provide reactive action selection in long-term
tasks in partially observable and dynamic environments. Thismethod achieves hierarchical deliberation
and continual online planning, which makes it particularly appealing for the problem of reactive TAMP
at hand. In this thesis, we extend [8] via bridging the gap to low-level reactive control by planning cost
functions instead of symbolic actions.

1.3. Contributions
This thesis presents main contributions in combining active inference and MPPI for reactive TAMP, and
in proposing a novel Multi-Modal MPPI to address geometric ambiguities. They can be detailed as
follows.

• We present a method for reactive TAMP that uses active inference to plan cost functions to be
minimized by MPPI instead of symbolic actions. This enables reactive execution from both high-
level actions and low-level motions since the cost functions can capture both the task objectives
and constraints.

• We propose a Multi-Modal MPPI (M3P2I) that is capable of sampling different alternatives to
achieve a given goal and evaluating them against different costs. This enables a coherent optimal
solution considering potential plans instead of relying on complex heuristics to switch between
these plans.

In addition, a minor contribution is the following.

• We propose a metric for efficiently measuring the difference between two orientations of fully
symmetric objects.
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1.4. Outline
The thesis is organized as follows.

Chapter 2 provides the necessary knowledge of the two building blocks of the thesis: 1) active inference,
a reactive action plan that generates symbolic actions; 2) MPPI, a sampling-based model predictive
controller.

Chapter 3 entails the main body of this thesis, a scientific paper titled ”Multi-Modal MPPI and Active
Inference for Reactive Task and Motion Planning”. We intend to submit it to the IEEE Robotics and
Automation Letters (RA-L). The supporting videos can be found at https://sites.google.com/view/m3p2i-
aip.

Chapter 4 supports the scientific paper with additional information. It first introduces the overall software
structure of this work, and then elaborates on the implementation details and results of an additional
experiment.

Chapter 5 presents the discussion about key aspects of the simulation and real-world experiments.

The final chapter summarizes the contents this work presents and the conclusions are made about the
original questions this survey aims to answer. Potential future directions closely tied to this work are
also delineated.

https://sites.google.com/view/m3p2i-aip
https://sites.google.com/view/m3p2i-aip


2
Background

This chapter provides the necessary knowledge of the two building blocks of the thesis: 1) active infer-
ence, a reactive task planner that generates symbolic actions; 2) MPPI, a sampling-basedmodel predic-
tive controller. We first introduce the free-energy principle in subsection 2.1.1, which was connected to
the Bayesian brain hypothesis to achieve hierarchical deliberation and online reasoning. We then intro-
duce the mathematical description for planning with active inference in subsection 2.1.2, which builds
upon the free-energy principle. Subsequently, we present a general discrete time control scheme and
an information-theoretic interpretation of optimal control in subsection 2.2.1, which will derive the up-
date law of MPPI. We proceed with the importance sampling technique and the complete algorithm for
information-theoretic MPPI in subsection 2.2.2. Finally, discussions will be made about the comparison
between the state-of-the-art methods with the presented methods.

2.1. Active Inference
2.1.1. Free-Energy Principle

Free-energy principle was proposed by Karl Friston[17] to explain how information is processed by the
human brain, which is an ideal technique for our application with regard to hierarchical deliberation and
continual online reasoning. [42] clarifies the connections between FEP and earlier unifying ideas such
as Bayesian inference, predictive coding, and active learning in a more comprehensive way.

Resisting a Tendency Towards a Disorder

The motivation of the free-energy principle is that adaptive biological or artificial systems tend to natu-
rally resist disorder, and any such system that is at equilibrium with the environment must minimize its
free energy, which is an information theory measure limiting the surprise or improbable outcome. The
surprise in information theory describes the atypicality of an event and can be quantified by using the
negative log-probability of its sensory data:

− ln p(o) (2.1)

where p(o) is the probability of observing particular sensory data o in the environment. The more im-
probable an event is, the higher the surprise.

From a biological perspective, the ability of biological systems to maintain their states in the face of
both external and internal rapidly changing environments can be reduced to their homeostasis. And
the states where an agent can be are limited and these define the agent’s phenotype. Mathematically
speaking, the probability of these exteroceptive and interoceptive sensory states must have a low en-
tropy, which means less surprise, and therefore the agent has to minimize the long-term average of a
surprise to ensure that the sensory states remain within physiological bounds. However, an agent can-
not know whether its sensations are surprising and cannot avoid them even if it did know. Therefore,

6
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the free energy comes in as an upper bound on surprise. This means if an agent minimizes the free
energy, it simply minimizes surprise.

Unrestricted Free-Energy Principle

Mathematically, it is also necessary to introduce free energy. Due to the fact that posterior is typically in-
tractable and it is computationally difficult to search over all possible posterior distributions, the key idea
of the FEP is to convert the Bayesian inference into an optimization problem. This idea was first devel-
oped in physics and later in machine learning to handle computationally intractable inference problems.

Assume a family of distributions Q are available and one auxiliary distribution q ∈ Q can be chosen to
approximate p(s|o), this leads to the variational optimization problem:

q∗(s) = argmin
q(s)

KL[q(s)||p(s|o)] (2.2)

It should be noticed that the KL divergence is always non-negative due to Jensen’s inequality, if p(s|o)
is contained in the variational family Q, then the optimum can be achieved with q∗(s) = p(s|o). If the
variational familyQ contains all possible distributions, it is called unrestricted. The optimization problem
can be reformulated in a more computationally practical way, based on the fact that:

KL[q(s)||p(s|o)] =
∑
s

q(s) log q(s)

p(s|o)

=
∑
s

q(s) log q(s)p(o)

p(s, o)

=
∑
s

q(s)

[
log q(s)

p(s, o)
+ log p(o)

]
=
∑
s

q(s) log q(s)

p(s, o)
+ log p(o)

∑
s

q(s)

= F [q(s)] + log p(o) ≥ 0

(2.3)

where the Variational Free Energy (VFE) is defined as:

F [q(s)] =
∑
s

q(s) log q(s)

p(s, o)
(2.4)

The free energy is equivalent to the negative of the evidence lower bound, which is common in the
machine learning literature [43]. It can be derived from Equation 2.3 that the free energy is the upper
bound of the negative log probability of sensory data, which is exactly the surprise that has been defined
in Equation 2.1:

F [q(s)] ≥ − log p(o) (2.5)
Note that the free energy only requires the knowledge of p(s, o), which is easy to compute given the
prior p(s) and likelihood p(o|s) of any state. Thus minimizing the free energy will also minimize the
surprise. In addition, minimizing the free energy of unrestricted variational family is equivalent to exact
Bayesian inference.

Restricting the Variational Family

When the variational family Q does not contain the posterior p(s|o), FEP is no longer equivalent to
Bayesian inference, and thus the distribution minimizing free energy will deviate from Bayes-optimality:
q∗(s) ̸= p(s|o). In order to make the optimization tractable, approximations have to be made for the
auxiliary density q(s).

The widely used ”mean field” approximation assumes that the variables of s are statistically independent
of each other and thus the density can be factorized, which can be used to approximate the posterior:

p(s|o) ≈ q(s) =
∏
i

qi(si) (2.6)
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When s is continuous, another common approximation, which is called Laplace approximation, as-
sumes the distribution is Gaussian, specified by a mean µ and covariance matrix Σ:

q(s) ∼ N (s;µ,Σ) (2.7)

2.1.2. Active Inference

Inheriting from the free-energy principle, Active Inference was proposed by Karl Friston for describing
and explaining how adaptive systems (biological or artificial) conduct perception, learning, planning,
and decision making [16, 44]. Active inference uses free energy to describe the properties of an agent
in an environment, and by minimizing expected free energy at run time, Bayes-optimal behavior can
be obtained. This section provides the necessary mathematical descriptions for planning and decision
making with active inference, and a detailed derivation can be found in [45].

Generative Model

In active inference, the real world is described internally as a simplified generative model, which can
be framed as a Markov Decision Process to infer the environmental states, to predict the actions and
observations. The generative model can be expressed as a joint probability distribution P (o, s,η, π),
where o is a sequence of observations, s is a sequence of states, η is the required model parameters,
and π is a plan. Using the chain rule, the joint probability can be written as:

P (o, s,η, π) = P (o|s,η, π)P (s|η, π)P (η|π)P (π) (2.8)

Since the sequence of observations o is conditionally independent of the parameters η and the plan π
given s and the Markov property guarantees that the next state and current observation only depend
on the current state, it can be written as:

P (o|s,η, π) =
T∏

τ=1

P (oτ |sτ ) (2.9)

Considering that the states s and parameters η are conditionally independent given plan π, it can be
simplified as:

P (s|η, π) =
T∏

τ=1

P (sτ |sτ−1, π) (2.10)

The probability of parameters η given plan π can be described as:

P (η|π) = P (A)P (B)P (D) (2.11)

where the parameters represent the following meanings: A is the likelihood matrix, indicating the prob-
ability of observations given a specific state; B is the transition matrix, indicating the possibility of state
transition under certain action. For specific aτ , Baτ

represents the probability of state sτ+1 after apply-
ing action aτ from state sτ ;D defines the probability about the initial state. Each columns ofA,Baτ

,D
is a categorical distribution Cat(). Combining Equation 2.8, Equation 2.9, Equation 2.10, Equation 2.11,
the generative model can be derived as:

P (o, s,η, π) = P (o, s,A,B,D, π) = P (π)P (A)P (B)P (D)

T∏
τ=1

P (sτ |sτ−1, π)P (oτ |sτ ) (2.12)

Variational Free Energy

The Variational Free Energy (VFE) is used to measure the fit between the internal generative model
and past and current sensory information. It can be expressed as:

F (π) =

T∑
τ=1

sπ⊤τ

[
ln sπτ − lnBaτ−1

sπτ−1 − lnA⊤oτ

]
(2.13)
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where F (π) is a plan-specific free energy and the logarithm operation is considered element-wise.

Perception

Perception and learning can be interpreted as minimizing the variational free energy. The posterior
distribution of the state given a plan can be expressed as:

sπτ=1 = σ
(
lnD + lnB⊤

aτ
sπτ+1 + lnA⊤oτ

)
sπ1<τ<T = σ

(
lnBaτ−1

sπτ−1 + lnB⊤
aτ
sπτ+1 + lnA⊤oτ

)
sπτ=T = σ

(
lnBaτ−1

sπτ−1 + lnA⊤oτ

) (2.14)

where σ is the softmax function and the columns of lnB⊤
aτ

are normalized.

Expected Free Energy

An agent updates beliefs about future states which can be used to calculate the Expected Free Energy
(EFE). The expected free energy is necessary to evaluate alternative plans. Plans that lead to preferred
observations are more likely to be chosen. Preferred observations are specified in the model parameter
C. The expected free energy for a plan π at time τ is given by:

G(π, τ) = oπ⊤τ [ln oπτ − lnC]− diag
(
A⊤ lnA

)
sπτ (2.15)

By minimizing expected free energy, the agent balances reward term oπ⊤τ [ln oπτ − lnC] and information
seeking term diag

(
A⊤ lnA

)
sπτ .

Planning and Decision Making

Planning and decision making can be interpreted as minimizing the expected free energy. The posterior
distribution over p possible plans is obtained by:

π = σ (−Gπ − F π) (2.16)

where F π = (F (π1), F (π2), . . . , F (πp)))
⊤ and Gπ = (G(π1), G(π2), . . . , G(πp)))

⊤.

Given the aforementioned posterior distribution and the plan dependent states sπτ , the overall probability
distribution for the states can be computed through Bayesian Model Average:

sτ =
∑
i

sπi
τ πi, i ∈ {1, . . . , p} (2.17)

where sπi
τ is the probability of a state at time τ under plan i and πi is the probability of plan i.

Finally, the action for the agent to execute is the action with the highest probability:

λ = argmax ([π1,π2, . . . ,πp])

aτ = πλ(τ = 1)
(2.18)

where λ is the index of the most likely plan.

The active inference algorithm [45] can be summarised as pseudo-code in Algorithm 1. The algorithm
starts by setting the prior preferences over observations. Then it enters the loop by getting observations
and computing the VFE for each plan. The posterior state is then updated to compute the EFE for
each plan. Once the terms of free energy are computed, we can obtain the posterior distribution over p
possible plans and the overall probability distribution for the states. Finally, the action with the highest
probability is selected among the p possible plans.
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Algorithm 1 Action selection with active inference [45]
1: Set C ▷ Prior preferences
2: for τ = 1 to T do
3: If not specified, get state from D if τ == 1
4: If not specified, get observation from A
5: Compute F for each plan ▷ Equation 2.13
6: Update posterior state sπτ ▷ Equation 2.14
7: Compute G for each plan ▷ Equation 2.15
8: Bayesian model averaging ▷ Equation 2.17
9: Action selection ▷ Equation 2.18
10: end for
11: Return a ▷ Preferred action

2.2. Model Predictive Path Integral Control
Generalization always remains a major challenge for intelligent decision making and fast execution,
especially when the robots work in dynamic and uncertain environments and thus must react to new
situations. Model Predictive Control (MPC) [46–49] addresses this problem via constrained optimiza-
tion in a receding horizon way. However, most MPC methods rely on convexification of the constraints
and cost functions, which is inflexible for high-dimensional systems such as mobile manipulation. In
addition, manipulation tasks often involve discontinuous contact and complex cost terms which are
hard to differentiate analytically.

A more flexible sampling-based MPC, named Model Predictive Path Integral (MPPI), was proposed
[32–35] to optimize for non-convex, non-linear dynamics, and high-dimensional systems. MPPI [32]
was originally based on a stochastic optimal control framework and was solved by path integral control
theory [50]. However, this approach is only applicable to control-affine systems. In order to scale to a
large class of stochastic systems, information-theoretic MPPI [34, 35] was proposed, where the update
law in MPPI can be derived based on an information-theoretic framework, without making the control
affine assumption. In this paper, we focus on the latter approach.

2.2.1. Information-theoretic Framework

This section will first introduce a general discrete time control scheme and an information-theoretic in-
terpretation of optimal control, which is based on free energy and KL-Divergence. This framework will
derive the update law of MPPI, which will be used in the next section

General Control Scheme

Consider a general discrete-time stochastic dynamical system:

xt+1 = F (xt, vt)

vt ∼ N (ut,Σ)
(2.19)

where xt ∈ Rn represents state vector, ut ∈ Rm represents the commanded control input, vt ∈ Rm

represents the actual input after applying the commanded input and F denotes the nonlinear state-
transition function of the system. A sequence of inputs can be defined over a time horizon T :

V = (v0, v1, . . . , vT−1)

U = (u0, u1, . . . , uT−1)

Then the base distribution P and controlled distribution QU,Σ can be constructed. The density function
for P is denoted as P (V ) and takes the form:

p(V ) =

T−1∏
t=0

1

((2π)m|Σ|)
1
2

exp
(
−1

2
v⊤t Σ

−1vt

)
(2.20)
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The density function for QU,Σ is denoted as q(V |U,Σ) and takes the form:

q(V |U,Σ) =
T−1∏
t=0

1

((2π)m|Σ|)
1
2

exp
(
−1

2
(vt − ut)

⊤Σ−1(vt − ut)

)
(2.21)

Given an initial condition x0 and an input sequence V , the corresponding system trajectory can be
obtained by recursively applying the state-transition function F . Thus a mapping from inputs V to
trajectories τ can be formulated:

Gx0
: ΩV → Ωτ

where Ωτ ⊂ Rn × {0, . . . , T − 1} denotes the space of all possible trajectories. Then consider a state-
dependent cost function for trajectories:

C(x1, x2, . . . , xT ) = ϕ(xT ) +

T−1∑
t=1

q(xt) (2.22)

where ϕ is a terminal cost and q is an intermediate state cost. Thus a cost function over input sequences
can be defined as S(V ) : ΩV → R+:

S(V, x0) = C ◦Gx0
(2.23)

which will be simplified to S(V ) for convenience if it is not ambiguous about the initial condition.

Free energy and Relative Entropy Inequalities

In contrast to the description of free energy in section 2.1, the free energy in this chapter refers to a
mathematical quantity of a control system, which originates from and takes the same form of the ther-
modynamic quantity – Helmholtz free energy.

Definition Given a random variable V that can denote a trajectory starting at initial condition x0, a
cost-to-go function S(V ) of the trajectory, probability measure P over V , and a positive scalar λ ∈ R+

called inverse temperature, the free energy of a control system is defined as:

F (S,P, x0, λ) = −λ log
(
EP

[
exp

(
− 1

λ
S(V )

)])
(2.24)

It should be noticed that the scalar λ and cost-to-go function S(V ) are both positive, and thus the term
− 1

λS(V ) is negative, and thus the term exp
(
− 1

λS(V )
)
is smaller than one, so the free energy is always

positive.

Another quantity that is worth mentioning to describe the difference between two controlled systems is
the relative entropy or called KL-Divergence.

Definition Given two probability distributions P and Q, with density functions p(V ) and q(V ). Suppose
that the two probability distributions are absolutely continuous with each other, which means if one
density is zero, so is the other. Then the relative entropy of Q with respect to P is defined as

KL(Q||P) = EQ

[
log
(
q(V )

p(V )

)]
(2.25)

It should be noticed that though the relative entropy measures the difference between probability dis-
tributions, it is not a distance metric due to its lacking of symmetry, which means KL(Q||P) might be
different from KL(P||Q).

With the definitions of free energy and relative entropy, a lower bound on the cost-to-go of a stochastic
optimal control problem can be derived, shown by the following theorem.

Theorem 3.1 Given two probability measures QU,Σ and P, and suppose that they are absolutely con-
tinuous with each other, then the following inequality holds:

F (S,P, x0, λ) ≤ EQU,Σ
[S(V )] + λKL(QU,Σ||P) (2.26)
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Proof. Start from the free energy of a control systemEquation 2.24. After introducing a secondmeasure
QU,Σ, it can be rewritten with respect to QU,Σ:

F = −λ log
(
EP

[
exp

(
− 1

λ
S(V )

)])
= −λ log

(
EQU,Σ

[
exp

(
− 1

λ
S(V )

)
p(V )

q(V |U,Σ)

]) (2.27)

The original measure P can be understood as some natural base measure for trajectories, such as the
probability of a trajectory under uncontrolled system dynamics. The newly introduced measure QU,Σ

can be thus understood as a controlled distribution, which will be influenced by the system actuation.

Then applying Jensen’s inequality yields:

F = −λ log
(
EQU,Σ

[
exp

(
− 1

λ
S(V )

)
p(V )

q(V |U,Σ)

])
≤ −λEQU,Σ

[
log
(
exp

(
− 1

λ
S(V )

)
p(V )

q(V |U,Σ)

)]
= −λEQU,Σ

[
− 1

λ
S(V ) + log

(
p(V )

q(V |U,Σ)

)]
= EQU,Σ

[S(V )]− λEQU,Σ

[
log
(

p(V )

q(V |U,Σ)

)]
= EQU,Σ

[S(V )] + λEQU,Σ

[
log
(
q(V |U,Σ)

p(V )

)]
= EQU,Σ

[S(V )] + λKL(QU,Σ||P)

(2.28)

which reaches the end of the proof.

The cost-to-go term EQU,Σ
[S(V )] is under the measure QU,Σ, which can be understood as a controlled

distribution. The KL-Divergence between controlled measure QU,Σ and base measure P acts as a con-
trolled cost penalizing deviations from the base distribution.

The Connection Between Free Energy and Optimal Control Problem

To figure out the connection between the free energy and the optimal control problem, a general setting
of the discrete-time optimal control will be given first, then some simplification on the KL-Divergence
between the controlled distribution QU,Σ and base distribution P will be done based on their density
functions.

Definition Given a running cost function L(xt, ut) and a terminal cost ϕ(xT ), the discrete-time optimal
control problem can be defined as to find the optimal control sequence within the set of admissible
control sequences:

U∗ = argmin
U∈U

EQU,Σ

[
ϕ(xT ) +

T−1∑
t=0

L(xt, ut)

]
(2.29)

where U is the set of admissible control sequences. It is also assumed that the running cost can be
made up of an arbitrary state-dependent cost q(xt), which is similar to the intermediate state cost in
Equation 2.22, and a control cost that is a quadratic function with affine term β:

L(xt, ut) = q(xt) +
λ

2

(
u⊤
t Σ

−1ut + β⊤
t ut

)
(2.30)

Now that the density functions of the base distribution P and controlled distribution QU,Σ are already
given by Equation 2.20 and Equation 2.21, and the KL-Divergence term in Equation 2.26 can be sim-
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plified as:

KL(QU,Σ||P) = EQU,Σ

[
log
(
q(V |U,Σ)

p(V )

)]
= EQU,Σ

[
log

(
T−1∏
t=0

exp
(
−1

2
(vt − ut)

⊤Σ−1(vt − ut) +
1

2
v⊤t Σ

−1vt

))]

= EQU,Σ

[
log

(
T−1∏
t=0

exp
(
−1

2
u⊤
t Σ

−1ut +
1

2
u⊤
t Σ

−1vt +
1

2
v⊤t Σ

−1ut

))]

= EQU,Σ

[
T−1∑
t=0

(
−1

2
u⊤
t Σ

−1ut +
1

2
u⊤
t Σ

−1vt +
1

2
v⊤t Σ

−1ut

)]
(2.31)

Thus the free energy and relative entropy inequality Equation 2.26 can be reduced to:

F (S,P, x0, λ) ≤ EQU,Σ
[S(V )] + λKL(QU,Σ||P)

= EQU,Σ
[S(V )] + λEQU,Σ

[
T−1∑
t=0

(
−1

2
u⊤
t Σ

−1ut +
1

2
u⊤
t Σ

−1vt +
1

2
v⊤t Σ

−1ut

)] (2.32)

Based on the fact the covariance matrix Σ is positive-semidefinite and symmetric, it can be further
derived as:

F (S,P, x0, λ) ≤ EQU,Σ
[S(V )] + λEQU,Σ

[
T−1∑
t=0

(
−1

2
u⊤
t Σ

−1ut +
1

2
u⊤
t Σ

−1vt +
1

2
v⊤t Σ

−1ut

)]

≤ EQU,Σ
[S(V )] + λEQU,Σ

[
T−1∑
t=0

(
1

2
u⊤
t Σ

−1ut + v⊤t Σ
−1ut

)]

= EQU,Σ

[
S(V ) +

T−1∑
t=0

λ

2

(
u⊤
t Σ

−1ut + 2v⊤t Σ
−1ut

)]
(2.33)

Substitute Equation 2.23 into the RHS of the above inequality and denote the affine term 2v⊤t Σ
−1 as

β⊤
t , it can be reduced to:

F (S,P, x0, λ) ≤ EQU,Σ

[
S(V ) +

T−1∑
t=0

λ

2

(
u⊤
t Σ

−1ut + 2v⊤t Σ
−1ut

)]

= EQU,Σ

[
ϕ(xT ) +

T−1∑
t=1

q(xt) +

T−1∑
t=0

λ

2

(
u⊤
t Σ

−1ut + β⊤
t ut

)]

= EQU,Σ

[
ϕ(xT ) +

T−1∑
t=0

(
q(xt) +

λ

2

(
u⊤
t Σ

−1ut + β⊤
t ut

))]
(2.34)

where the RHS is exactly the same as the objective function in Equation 2.29. This means that the
free energy provides a lower bound on the standard optimal control objective. Thus, to achieve a low-
cost trajectory, instead of directly minimizing Equation 2.29, the controlled distribution QU,Σ should be
pushed to make the RHS of Equation 2.26 as close as possible to the lower bound of free energy.

Optimal Distribution

Now that the inequality between the cost of a stochastic optimal problem and the free-energy term of
the system has been established, it remains to show an existence of an optimal controlled distribution
Q∗ which achieves the lower bound. This section thus aims to find such optimal distribution which
achieves lower cost than any other distribution via the following theorem.
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Theorem 3.2 Let Q∗ be a distribution whose density function is equal to:

q∗(V ) =
1

η
exp

(
− 1

λ
S(V )

)
p(V ) (2.35)

where
η = EP

[
exp

(
− 1

λ
S(V )

)]
= exp

(
− 1

λ
F (S,P, x0, λ)

)
then Q∗ is the optimal distribution that achieves the lower bound in Theorem 3.1.

Proof. Given Equation 2.35, the KL-Divergence between the optimal distribution Q∗ and base distribu-
tion P can be formulated as:

KL(Q∗||P) = EQ∗

[
log
(
q∗(V )

P (V )

)]
= EQ∗

[
log
(
1

η
exp

(
− 1

λ
S(V )

))]
= EQ∗

[
− 1

λ
S(V )− log (η)

]
= − 1

λ
EQ∗ [S(V )]− log (η)

(2.36)

Substituting it into the right-hand side of the inequality in Theorem 3.1 yields:

EQ∗ [S(V )] + λKL(Q∗||P) = EQ∗ [S(V )]− EQ∗ [S(V )]− λ log (η)
= −λ log (η)
= F (S,P, x0, λ)

(2.37)

which reaches the lower bound of the left-hand side.

Figure 2.1: Pushing the controlled distribution to the optimal one [35]

Therefore, the controlled distribution QU,Σ should be pushed to the optimal distribution Q∗ to achieve
the lower bound of free energy, as shown in Figure 2.1. If QU,Σ is aligned with Q∗, then sampling from
QU,Σ will result in low-cost trajectories.

Push the Controlled Distribution to the Optimal Distribution

The goal of pushing the controlled distribution QU,Σ to the optimal distribution Q∗ can be achieved by
minimizing the KL-Divergence:

U∗ = argmin
U∈U

KL (Q∗||QU,Σ) (2.38)
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where the objective KL-Divergence can be formulated as:

KL (Q∗||QU,Σ) = EQ∗

[
log
(

q∗(V )

q(V |U,Σ)

)]
= EQ∗ [log (q∗(V ))]− EQ∗ [log (q(V |U,Σ))]

(2.39)

Note that the term EQ∗ [log (q∗(V ))] can be considered as a constant with respect to the applied control
input U , thus the minimization can be reduced to:

U∗ = argmax
U∈U

EQ∗ [log (q(V |U,Σ))]

= argmax
U∈U

EQ∗

[
− log

(
((2π)m|Σ|)

1
2

)
− 1

2

T−1∑
t=0

(vt − ut)
⊤Σ−1(vt − ut)

]

= argmin
U∈U

EQ∗

[
1

2

T−1∑
t=0

(vt − ut)
⊤Σ−1(vt − ut)

]

= argmin
U∈U

EQ∗

[
1

2

T−1∑
t=0

(
v⊤t Σ

−1vt + u⊤
t Σ

−1ut − 2u⊤
t Σ

−1vt
)]

= argmin
U∈U

EQ∗

[
T−1∑
t=0

(
1

2
u⊤
t Σ

−1ut − u⊤
t Σ

−1vt

)]

= argmin
U∈U

(
T−1∑
t=0

1

2
u⊤
t Σ

−1ut −
T−1∑
t=0

u⊤
t Σ

−1EQ∗ [vt]

)

(2.40)

Since the objective is concave with respect to each ut, so finding the minimum for each ut in the
unconstrained case (U = Rm) can be done by taking the gradient with respect to each ut and setting
them to zero:

Σ−1u∗
t − Σ−1EQ∗ [vt] = 0,

∀t ∈ {0, 1, . . . , T − 1}

Therefore, the optimal solution in the unconstrained case can be obtained:

u∗
t = EQ∗ [vt] =

∫
q∗(V )vt dV,

∀t ∈ {0, 1, . . . , T − 1}
(2.41)

It can be seen that the optimal open-loop control sequence is the expected actual control input sampled
from the optimal distribution. However, it is still not clear how to sample from the optimal distribution,
which will be covered in the next section using an approximate iterative method to compute the optimal
control input.

2.2.2. Information-theoretic MPPI

After introducing the update law in an interpretation of the information-theoretic framework, this section
aims to provide a complete algorithm for information-theoretic MPPI. This section will first introduce
one common importance sampling technique. Subsequently, the complete information-theoretic MPPI
algorithm is presented.

Iterative Importance Sampling

To estimate the optimal control solution in Equation 2.41, importance sampling technique could be used
to generate the required samples [51]. Given an importance sampling control sequence U , the optimal
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control solution can be rewritten as:

u∗
t =

∫
q∗(V )vt dV =

∫
q∗(V )

q(V |U,Σ)
q(V |U,Σ)vt dV

=

∫
ω(V )q(V |U,Σ)vt dV

= EQU,Σ
[ω(V )vt]

(2.42)

where the importance sampling weight term ω(V ) enables to compute expectations with respect to Q∗

by sampling trajectories from the system with QU,Σ. The weighting term ω(V ) can be further split into
two terms if the base distribution is involved:

ω(V ) =
q∗(V )

p(V )

p(V )

q(V |U,Σ)

=
1

η
exp

(
− 1

λ
S(V )

)
p(V )

q(V |U,Σ)

(2.43)

where the first term q∗(V )
p(V ) depends on the state cost of a trajectory, and the second term p(V )

q(V |U,Σ) acts
like a control cost between the controlled distribution and the base distribution. Similar to the calculation
in Equation 2.31, the second term can be simplified to:

p(V )

q(V |U,Σ)
=

exp
(
− 1

2

∑T−1
t=0 v⊤t Σ

−1vt

)
exp

(
− 1

2

∑T−1
t=0 (vt − ut)⊤Σ−1(vt − ut)

)
= exp

(
T−1∑
t=0

(
1

2
u⊤
t Σ

−1ut − v⊤t Σ
−1ut

)) (2.44)

Rewriting vt = ut + ϵt yields further simplification:

p(V )

q(V |U,Σ)
= exp

(
T−1∑
t=0

(
1

2
u⊤
t Σ

−1ut − (ut + ϵt)
⊤Σ−1ut

))

= exp

(
T−1∑
t=0

(
−1

2
u⊤
t Σ

−1ut − ϵ⊤t Σ
−1ut

))

= exp

(
−1

2

T−1∑
t=0

(
u⊤
t Σ

−1ut + 2ϵ⊤t Σ
−1ut

))
(2.45)

Substituting it into Equation 2.43 finally yields:

ω(V ) =
1

η
exp

(
− 1

λ

(
S(V ) +

λ

2

T−1∑
t=0

(
u⊤
t Σ

−1ut + 2ϵ⊤t Σ
−1ut

)))
(2.46)

u′
t = EQU,Σ

[ω(V )vt] , ∀t ∈ {0, 1, . . . , T − 1} (2.47)
u∗ = u′

0 (2.48)

η = EP

[
exp

(
− 1

λ
S(V )

)]
=

∫
exp

(
− 1

λ
S(V )

)
p(V )dV (2.49)

Equation 2.46 describes the importance sampling weight between the current induced distribution and
the optimal distribution. Equation 2.47 updates the importance sampling sequence. Equation 2.48 is
the first element of the importance sampling sequence which can be used to approximate the stochas-
tic optimal control problem. Equation 2.49 is the constant related to the expected cost-to-go of the
trajectory with respect to the uncontrolled system dynamics, and it is also a good indicator to repre-
sent the free energy. These equations describe the optimal information-theoretic control law for a
given distribution, which is information theoretically global optimal if the expectation can be perfectly
evaluated. In practice, however, it can be locally optimal due to insufficient sampling in the state space.
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Algorithm

The full algorithm of information-theoretic MPPI [35] is described below. The algorithm starts by getting
the current state from a state estimator and throws K trajectory samples in parallel (from line 10 to
line 23). Each trajectory is sampled by generating a random control sequence using forward dynamics,
and the cost is updated for each trajectory. Once the costs for each trajectory are computed, they are
transformed into probability weights (from line 24 to line 30). Finally, the control update is smoothed
via a convolutional filter and the first control is sent to the actuators while the remaining sequence will
be used at the next time instance (from line 31 to line 40).

Algorithm 2 Model Predictive Path Integral Control [35]
1: Given:
2: F, g: Dynamics and clamping function;
3: K,T : Number of samples and timesteps;
4: U : Initial control sequence;
5: Σ, ν, λ: Parameters
6: ϕ, q: Cost functions;
7: SGF : Savitsky-Galoy convolutional filter;
8: while task not completed do
9: x← GetStateEstimate();
10: /* Begin parallel sampling */
11: for k = 0 to K − 1 do
12: S̃k ← 0;
13: Sample εk = (ϵk0 , . . . , ϵ

k
T−1), ϵ

k
t ∼ N (0,Σ);

14: for t = 0 to T − 1 do
15: vt = ut + ϵkt ; ▷ Equation 2.19
16: x += F (x, g(vt))∆t;
17: // Update state cost and importance sampling weights
18: S̃k += q(x) + λ

2

(
u⊤
t Σ

−1ut + 2u⊤
t Σ

−1ϵt
)
; ▷ Equation 2.46

19: end for
20: // Add terminal cost
21: S̃k += ϕ(x);
22: end for
23: /* End parallel sampling */
24: /* Begin computing trajectory weights */
25: ρ← min S̃0, S̃1, . . . , S̃K−1;
26: η ←

∑K−1
k=0 exp

(
− 1

λ (S̃k − ρ)
)
; ▷ Equation 2.49

27: for k = 0 to K − 1 do
28: ωk ← 1

η exp
(
− 1

λ (S̃k − ρ)
)
; ▷ Equation 2.46

29: end for
30: /* End computing trajectory weights */
31: /* Begin control update with smoothing */
32: for t = 0 to T − 1 do
33: U ← SGF ∗

(
U +

∑K−1
k=0 ωkε

k
)
;

34: end for
35: SendToActuators(u0);
36: for t = 1 to T − 1 do
37: ut−1 ← ut;
38: end for
39: uT−1 ← Initialize(uT−1);
40: /* End control update with smoothing */
41: end while
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2.3. Discussion
Compare Active Inference with POMDP

Active inference can be formulated as a POMDP problem. The current POMDP solvers can be divided
into offline solvers and online solvers.

The offline solvers will first solve the policy offline and then use it for online decision making. This suits
the case when the tasks are fixed and there are no unexpected events occurring and the transition
matrices or the rewards can be determined or trained beforehand, as can be shown in [52–54]. The
challenges in these problems are often that the state space or action space is too large and approxi-
mations are needed. However, this approach can not deal with the newly added symbolic actions or
changes in environments. Thus, when considering an easily extendable system, the active inference
is more suited than offline POMDP solvers.

Online POMDP planning interleaves planning and plans execution and chooses an optimal action for
the current belief only. The survey [55] lists three main ideas for online POMDP planning via belief
tree search, including heuristic search, branch-and-bound pruning, and Monte Carlo sampling. The
proposed algorithm Determinized Sparse Partially Observable Tree (DESPOT) leverages the ideas of
sampling and heuristic search to approximate the standard belief tree for online planning under uncer-
tainty. And DESPOT scales up better than other algorithms.

In this survey, much interest is put into active inference due to its flexible and unifying framework that
connects to different branches of control theory, which also enables decision making with guarantees.
In addition, computing probabilistic plans using active inference is cheaper and requires less memory,
as shown in [56], especially in dynamic environments. Moreover, active inference allows embedding
common sense ontology knowledge within discrete decision making via model parameters, where the
prior preference over different plans can be used to encode habits and present the intrinsic curiosity of
the agent.

Compare Active Inference with RL

Planning with active inference using expected free energy has strong connections with RL [16] since
both approaches attempt to solve the optimal plan selection problem in unknown environments.

The major difference between these two approaches is the fundamental objectives, namely minimiza-
tion of EFE in active inference and reward-maximization in RL [57]. To be specific, only the extrinsic
term of EFE is present in RL, however, the intrinsic term is not present, which means that RL is an op-
timization technique based on maximizing expected reward without considering the ”intrinsic curiosity”
of the agent. The essence of the intrinsic informational objective shows promising results in driving the
robot to perform tasks in sparse, well-shaped, and no rewards cases [58].

In addition, active inference’s enabling goals as a prior over observations is more flexible than using
rewards in RL. Since RL implicitly assumes the prior distribution is Boltzmann, the active inference is
more flexible when specifying goals by using any prior distribution. Unlike the way of defining reward
function in RL, which is difficult to define sometimes, active inference updates the agent’s belief until
the observed outcomes match prior preferences. This is beneficial when the agents have imprecise
prior preferences, and active inference enables the agents to learn prior preferences from interacting
with the environment itself [57].

Compare MPPI with MPC

In order for the robot to operate in the real world safely and efficiently, the robot needs to generate
an efficient trajectory to complete tasks and avoid obstacles. The most popular methods for motion
planning can be categorized into sampling-based, optimization-based, and learning-based. Some of
them are good alternatives but they lack some aspects for our case. For instance, MPC formulates
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the planning problem as constrained optimization. However, it may become infeasible in scenarios
with many constraints and it is also hard to formulate the non-convex cost functions and discontinuous
dynamics. These issues leave the robot without an actionable plan. One can avoid infeasibility by re-
laxing constraints when necessary, but deciding which constraints to break adds additional complexity
to the problem.

Sampling-based optimization methods are proposed to offer significant advantages in terms of flexi-
bility in dealing with the constraints and cost functions. MPPI was proposed in this sampling-based
optimization framework based on an information-theoretic interpretation of optimal control, and it has
demonstrated its effectiveness in the domain of aggressive autonomous driving. The sampling-based
nature allows the possible consideration of discontinuous dynamics and cost functions and does not
require linear and quadratic approximations. This is especially beneficial in our case since we want
to apply to a multi-contact and dynamic scenario. In addition, the advanced use of GPU enables fast
control loop frequency in parallel sampling.



3
Scientific Paper

This chapter includes the research paper that has resulted from this thesis work, which we intend to
submit to the IEEE Robotics and Automation Letters (RA-L) soon. The supporting videos can be found
at https://sites.google.com/view/m3p2i-aip.
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Multi-Modal MPPI and Active Inference for
Reactive Task and Motion Planning

Yuezhe Zhang, Corrado Pezzato, Elia Trevisan, Chadi Salmi, Carlos Hernández Corbato, Javier Alonso-Mora

Abstract—Task and Motion Planning (TAMP) has progressed
significantly in solving intricate manipulation tasks in recent
years, but the robust execution of these plans remains less
touched. Particularly, generalizing to diverse geometric scenarios
is still challenging during execution. In this work, we propose a
reactive TAMP method to deal with disturbances and geometric
ambiguities by combining an active inference planner (AIP)
for online action selection with a proposed multi-modal model
predictive path integral controller (M3P2I) for low-level control.
The AIP generates online alternative plans, each of which is
translated into a cost function to be sampled for the proposed
method. The proposed M3P2I then uses a parallelizable physics
simulator for throwing different rollouts, leading to a coherent
optimal solution by averaging the weighted samples based on
their costs. Our method empowers real-time adaptation of action
sequences to rectify failed plans, while also computing low-level
motions to address dynamic obstacles or disturbances that could
potentially invalidate the existing plan. Theoretical findings are
validated in simulation and in the real world.

Index Terms—Reactive Task and Motion Planning, Model
Predictive Path Integral Control, Active Inference

I. INTRODUCTION

Task and motion planning is a powerful class of methods for
solving complex long-term manipulation problems where logic
and geometric variables are influencing each other. TAMP
[1] has been successfully applied in many domains such as
table rearrangement, stacking blocks, or solving the Hanoi
puzzle. Despite impressive recent results [2], the environments
in which TAMP plans are executed are usually not dynamic
and the plan is executed in open-loop [3]. Recent works [4]–
[6] recognized the importance of robustifying the execution of
TAMP plans in order to be able to reliably carry them out in
the real world. However, these works either rely only on the
adaptation of the action sequence in a plan [6]–[9] or only on
the motion planning problem in a dynamic environment given
a fixed plan [4], [5]. This paper thus aims to achieve reactive
execution from both high-level actions and low-level motions.

A key challenge in reactive TAMP is the handling of
geometric constraints that might not be known at planning
time. For instance, moving a block to a desired location
may necessitate pulling rather than pushing if the block is
situated in a corner. This is challenging since the outcome of

∗ This research was supported by Ahold Delhaize. All content represents
the opinion of the author(s), which is not necessarily shared or endorsed by
their respective employers andor sponsors.

The authors are with the Cognitive Robotics De-
partment, TU Delft, 2628 CD Delft, The Netherlands
y.zhang-130@student.tudelft.nl, {c.pezzato,
e.trevisan, c.salmi, c.h.corbato, j.alonsomora
}@tudelft.nl

pushing and pulling actions can be hard to predict accurately
even assuming full knowledge of the scene at planning time.
Planning a sequence of push-pull actions a priori and then
executing it is also prone to fail. Another scenario involves the
classic pick-and-place task with sequential actions: reaching
the cube, closing the gripper, lifting the cube to a pre-grasp
position, and releasing the cube. However, distinct grasping
poses are necessary for diverse locations, it is challenging to
abstract a generalizable and robust grasping pose constraint
capable of accommodating various locations while considering
the fact that dynamic obstacles or human disturbances might
invalidate initially planned grasping poses.

We address these challenges by proposing a control scheme
that jointly addresses reactive action selection and robust low-
level motion planning during execution. This paper builds
upon two of our recent works: 1) active inference, a reac-
tive action planner [7] that plans symbolic actions, and 2)
a sampling-based model predictive controller [10]. In this
paper, we explore the idea of connecting active inference and
a sampling-based MPC by planning cost functions instead
of symbolic actions. We extend the previous AIP to plan
possible alternative plans to achieve the current goal. Then,
we propose a Multi-Modal Model Predictive Path Integral
controller (M3P2I) that samples in parallel these alternatives
to blend different robot capabilities.

A. Related work

We now report relevant works with a focus on reactive
TAMP and Sampling-based MPC.

a) Reactive TAMP: In [4], the authors provide a reactive
MPC strategy to execute a TAMP plan as a given linear
sequence of constraints. Instead of composing primitive skills,
[4] derive the control law from a composition of constraints
for MPC. The reactive nature of the approach allows coping
with disturbances and dynamic collision avoidance during the
execution of a TAMP plan. The work in [5] formulates a
TAMP plan in object-centric Cartesian coordinates, showing
how this allows coping with perturbations such as moving a
target location. Both [4], [5], however, do not consider adap-
tation at the symbolic action level if a perturbation invalidates
the current plan.

On the other hand, a number of papers focused on adapting
and repairing high-level action sequences during execution.
Authors in [11] propose to represent robot task plans as
robust logical-dynamical systems. The method can effectively
adapt the logic plan in order to deal with external human
disturbances. Similarly, [12] presented a method to coordinate
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control chains and achieved robust plan execution through
plan switching and controller selection. [9] proposed instead
to blend task and action planners by dynamically expanding a
behavior tree at runtime through back-chaining. In [6], behav-
ior trees and linear temporal logic have been combined into
a reactive TAMP method against a cooperative or adversarial
human operator which might invalidate the current plan. A
recent work [13] proposes to use Monte Carlo Tree Search
in combination with Isaac Gym to speed up task planning
for multi-step object retrieval from clutter, where complex
physical interaction is required. This is a promising direction,
but [13] only focuses on high-level reasoning and executes
pre-defined motions in open-loop. In [7], active inference and
behavior tree were combined to provide reactive action selec-
tion in long-term tasks in partially observable and dynamic
environments, which makes it particularly appealing for the
problem of reactive TAMP at hand. In this paper, we extend [7]
via bridging the gap to low-level reactive control by planning
cost functions instead of symbolic actions.

b) Sampling-based MPC: To robustly operate in dy-
namic and uncertain environments, the robot must react to new
situations with intelligent planning and execution. Model Pre-
dictive Control (MPC) addresses this problem via constrained
optimization in a receding horizon way and has been widely
used on real robotic systems [14]–[17]. However, most MPC
methods rely on convexification of the constraints and cost
functions, which is inflexible for high-dimensional systems
such as mobile manipulation.

Sampling-based MPCs, such as MPPI [18] and STORM
[19], offer promising alternatives. These algorithms make no
restrictions on the convexity, non-linearity, discontinuity of the
dynamics, and costs. In [20], the authors propose ensemble
MPPI, a variation capable of handling complex tasks and
adapting to parameter uncertainty. However, the aforemen-
tioned works have been applied for single-skill execution, such
as pushing or reaching a target point, and never in the context
of a longer task that requires sequential decision-making.

As pointed out in [21], one could use a high-level agent
to set the cost function of the predictive controller for long-
horizon cognitive tasks. We follow this line of thought and
propose a method to perform the composition of cost functions
for long-horizon tasks in a reactive fashion.

B. Contributions

The contributions of this work include:
• We present a method for reactive TAMP that uses active

inference to plan cost functions to be minimized by
MPPI instead of symbolic actions. This enables reactive
execution from both high-level actions and low-level
motions since the cost functions can capture both the task
objectives and constraints.

• We propose a Multi-Modal MPPI (M3P2I) that is capable
of sampling different alternatives to achieve a given
goal and evaluating them against different costs. This
enables a coherent optimal solution considering potential
plans instead of relying on complex heuristics to switch
between these plans.

II. METHODOLOGY

The working principle of the proposed method is depicted
in Figure 1. After a more general overview, in the following,
we discuss the three main parts of the scheme: action planner,
motion planner, and plan interface.

Hard-coded knowledge

Planning algorithms

Utilities

IsaacGym

Low frequency

High frequency

Active 
Inference

Action planner

Behavior
Tree Symbolic

Observer

System

Motion planner

M3P2I

Plan interface

Cost
Selector

Set of costs

symbolic plans

Fig. 1. Proposed control scheme. The behavior tree encodes the skeleton
solution of a task. The BT sets the current desired state for Active Inference.
The latter computes N alternative symbolic plans based on the current
symbolic state. The plan interface links each action ai in a plan to a cost
Si. These are sent to M3P2I that samples the control inputs using IsaacGym,
and computes an action u0. All processes are running continuously during
execution, at different frequencies.

A. Overview

We first give an overview of the whole control scheme in
Algorithm 1. At the initial phase, we will construct an MDP
structure, which requires a manually defined action template.
The action template is specific to the task and defines states,
names of actions, preconditions of actions, and transition
matrices corresponding to the actions. The code enters into
the loop until the task is completed. We need symbolic ob-
servers to translate continuous states into discretized symbolic
observations o. Then, we will feed the MDP structure and
current observations o to the action planner to get the current
alternative action plans P . After the plans are generated by
the task planner, they will be translated to the corresponding
cost functions S, which will be fed into the M3P2I motion
planner to execute the control commands.

Algorithm 1 Whole Control Scheme
1: /* Define MDP structure */
2: mdp task = AIP.agent(ActionTemplate)
3: while task not completed do
4: /* Get states from symbolic observers */
5: o← GetSymbolicObservation
6: /* Get current action plans from active inference */
7: P ← AIP.parell act sel(mdp task, o) ▷ Alg 2
8: /* Translate action plan to cost function */
9: S ← Interface(P)

10: /* Execute motion commands */
11: M3P2I.command(S) ▷ Alg 4
12: end while
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B. Action planner

In this work, we operate in a continuous environment with
the ability of sensing and acting through symbolic decision
making. In the general case, the decision making problem
will include multiple sets of states, observations, and actions.
Each independent set of states is a factor, for a total of nf

factors. For a generic factor fj where j ∈ J = {1, ..., nf},
the corresponding state factor is:

s(fj) =
[
s(fj ,1), s(fj ,2), ..., s(fj ,m

(fj))
]⊤

,

S =
{
s(fj)|j ∈ J

}
(1)

where m(fj) is the number of mutually exclusive symbolic
values that a state factor can have. Each entry of s(fj) is a
real value between 0 and 1, and the sum of the entries is 1.
This represents the current belief state.

Then, we define x ∈ X the continuous states of the world
and the internal states of the robot are accessible through the
symbolic observer. The role of this observer is to compute the
symbolic observations based on the continuous state x, such
that they can be manipulated by the discrete active inference
agent. Observations o are used to build a probabilistic belief
about the current state. Assuming one set of observations per
state factor with r(fj) possible values, it holds:

o(fj) =
[
o(fj ,1), o(fj ,2), ..., o(fj ,r

(fj))
]⊤

,

O =
{
o(fj)|j ∈ J

}
(2)

Additionally, the robot has a set of symbolic skills to modify
the corresponding state factor:

aτ ∈ α(fj) =
{
a(fj ,1), a(fj ,2), ..., a(fj ,k

(fj))
}
,

A =
{
α(fj)|j ∈ J

}
(3)

where k(fj) is the number of actions that can affect a specific
state factor fj . Each generic action a(fj ,·) has associated a
symbolic name, parameters, pre- and postconditions:

Action a(fj ,·) Preconditions Postconditions
action_name(par) prec

a
(fj,·) post

a
(fj,·)

where prec
a(fj,·) and post

a(fj,·) are first-order logic pred-
icates that can be evaluated at run-time. A logical predicate is
a boolean-valued function B : X → {true, false}.

Finally, we define the logical state l(fj) as a one-hot
encoding of s(fj). We indicate as Lc(τ) =

{
l(fj)|j ∈ J

}
the (time varying) current logical state of the world. Defining
a logic state based on the probabilistic belief s built with active
inference, instead of directly using the observation of the states
o, increases robustness against noisy sensor readings.

In contrast to our previous work [7], this work uses active
inference to generate plan alternatives. This allows the robot
to perform a variety of possible plans at the same time. For
example, we want the robot to push or pull an object to a goal
location. But there is no prior knowledge of when to execute
push or pull. If the object happens to be in the corner, the
action push may fail, and the pull may work. Generating plan
alternatives can be integrated with a parallel motion planner so

that different actions can be evaluated in parallel in real-time.
This decreases the necessity of encoding complex heuristics
to reveal the spatial relationship between the objects and the
environments.

Algorithm 2 Generate alternative plans using active inference
1: /* Get current action plans from active inference */
2: a← Algorithm from [7]
3: /* Create a list to store parallel plans */
4: Set P ← ∅
5: /* Parallelize current applicable actions */
6: while a /∈ P or P == ∅ do
7: P.append(a)
8: a← Algorithm from [7]
9: end while

10: Return P

The pseudocode of using active inference to generate alter-
native plans is shown in Algorithm 2. After the first action is
found and constructed in the list P , the algorithm will continue
to search for other possible actions, if they are not extant in
the current list, they will be added to the list. The algorithm
will cease when no new actions are found.

C. Motion planner - Multi-Modal Model Predictive Path In-
tegrate Control (M3P2I)

In order to solve the issue of geometric ambiguities, we
propose a Multi-Modal MPPI that introduces different control
and weight distributions when integrating a set of alternative
plans and associated different cost functions. Assume we
consider N alternative plans, each of which has K rollouts,
and the cost function of plan i, i ∈ [0, N) can be formulated
as:

Si(Vk) = γT−1ϕi(xT−1,k, vT−1,k) +
T−2∑
t=0

γtqi(xt,k, vt,k),∀k ∈ κ(i)

(4)

where Vk = [v0,k, v1,k, · · · , vT−1,k] defines the control inputs
for trajectory k over a time horizon T . State xt,k and control
input vt,k are indexed based on the time t and trajectory k. ϕi

and qi are terminal costs and intermediate state costs for plan
i. The discount factor γ ∈ [0, 1] is to calculate the discounted
cost in the future. κ(i) is the integer set of ranging from i ·K
to (i+ 1) ·K − 1

For each cost function Si(Vk), its associated weights are
calculated as ωi:

ωi(Vk) =
1

ηi
exp

(
− 1

λi
(Si(Vk)− βi)

)
,∀k ∈ κ(i) (5)

ηi =
∑

k∈κ(i)

exp

(
− 1

λi
(Si(Vk)− βi)

)
(6)

βi = min
k∈κ(i)

Si(Vk) (7)

We use the insight in [10] to automatically tune the inverse
temperature λi to maintain the normalization factor ηi within
certain bounds. This is useful since ηi indicates the number



4 IEEE ROBOTICS AND AUTOMATION LETTERS. DRAFT VERSION.

of samples assigned significant weights. If ηi is close to the
number of samples K, an unweighted average of sampled tra-
jectories will be taken. If ηi is close to 1 then the best trajectory
sample will be taken. We observe that setting 10 < ηi < 30
generates smooth trajectories for the manipulators and setting
3 < ηi < 10 generates smooth trajectories for the mobile
robot.

Algorithm 3 Update inverse temperature λi

1: Given:
2: i: index of alternative plan;
3: ηl, ηu: the lower bound and upper bound for η.
4: while ηi /∈ [ηl, ηu] do
5: βi ← mink∈κ(i) Sk; ▷ Equation 7
6: ηi ←

∑
k∈κ(i) exp

(
− 1

λi
(Sk − βi)

)
; ▷ Equation 6

7: if ηi > ηu then
8: λi = 0.9 ∗ λi

9: else if ηi < ηl then
10: λi = 1.2 ∗ λi

11: end if
12: end while
13: Return βi, ηi, λi

We use µi to denote a sequence of mean actions of plan i
over a time horizon µi = [µi,0, µi,1, · · · , µi,T−1], leading to
the following expression:

µi =
∑

k∈κ(i)

ωi(Vk) · Vk (8)

At every iteration for plan i, we will sample Halton splines
[19] from the computed mean actions µi to update the control
sequences and feed them to the IsaacGym forward dynamics
function.

In order to fuse the different motions, we also need the
weights and mean for the whole control sequence. We con-
catenate the N cost functions Si(Vk), i ∈ [0, N) and simply
represent it as S̃(Vk). We also use κ to denote the integer set
of ranging from 0 to N · K − 1. Therefore, the weights for
the whole control sequence can be calculated as:

ω̃(Vk) =
1

η
exp

(
− 1

λ

(
S̃(Vk)− β

))
,∀k ∈ κ (9)

η =
∑
k∈κ

exp

(
− 1

λ

(
S̃(Vk)− β

))
(10)

β = min
k∈κ

S̃(Vk) (11)

The overall mean action over time horizon T is denoted as
u = [u0, u1, · · · , uT−1]. The mean action at current timestep
t is calculated as:

ut = (1− αu)ut−1 + αu

∑
k∈κ

ω̃(Vk) · vt,k (12)

where αu is the step-size that regularizes the current solution
to be close to the previous one ut−1.

Algorithm 4 Multi-Modal Model Predictive Path Integral
Control (M3P2I)

1: Parameters: N,K, T ;
2: Initialize: µi = 0, u = 0,∀i ∈ [0, N)
3: while task not completed do
4: x← GetStateEstimate();
5: /* Begin parallel sampling */
6: for i = 0 to N − 1 do
7: for k ∈ κ(i) do
8: Sk ← 0;
9: Sample εk ← SampleHaltonSplines();

10: µi ← Shift(µi);
11: for t = 0 to T − 1 do
12: x← IsaacGymForwardSimulate(µi + εk)
13: Sk ← UpdateStateCost(x); ▷ Eq 4
14: end for
15: end for
16: end for
17: /* Begin computing trajectory weights */
18: for i = 0 to N − 1 do
19: βi, ηi, λi ← UpdateInvTemp(i); ▷ Alg 3
20: ωi(k)← 1

ηi
exp

(
− 1

λi
(Sk − βi)

)
,∀k ∈ κ(i); ▷ Eq 5

21: µi =
∑

k∈κ(i) ωi(Vk) · Vk ▷ Eq 8
22: end for
23: /* Begin control update */
24: ω̃k = 1

η exp
(
− 1

λ

(
S̃k − β

))
,∀k ∈ κ ▷ Eq 9

25: for t = 0 to T − 1 do
26: ut = (1− αu)ut−1 + αu

∑
k∈κ ω̃k · vt,k ▷ Eq 12

27: end for
28: ExecuteCommand(u0)
29: Shift(u)
30: end while

The pseudocode for this method can be summarized in Al-
gorithm 4. After the initialization and getting the current states,
the algorithm starts parallelizing over alternative plans (Line
6), control sequences (Line 7), and time horizon (Line 11). We
sample halton splines from the current mean distribution and
forward them to IsaacGym to compute the costs. The costs will
then be used to update the weights for each plan and compute
the means (from Line 18 to Line 22). Later the overall mean
action sequence will be computed (Line 26) and the first action
from the mean will be executed (Line 28).

D. Plan interface

Within this block, a set of cost functions and action tem-
plates of a robot, determine the number of tasks the robot
itself can perform. This block contains every cost function
for a specific robot, which captures the task objectives and
constraints of each action. This relationship can be stored in a
knowledge base as a set of rules, such that given an action, the
knowledge base can be queried to get the set of cost functions
that can possibly achieve the behaviors.

III. EXPERIMENTS

This experimental section aims at highlighting the perfor-
mance and potential of the scheme proposed in this paper. In
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particular, we provide two different scenarios.
First, we showcase the working principle in a simplified

simulation where an omnidirectional mobile robot can navigate
the environment and push or pull objects in order to complete
a task. The task is also transferred to a non-holonomic base,
with minimal effort since there is no modeling of contacts in-
volved. We also show the completion of tasks around dynamic
obstacles as well.

Second, we showcase the application on a 7-DOF real panda
arm. In addition to the normal pick-place task, we want to
highlight the reactiveness of the system, including re-grasping
and manipulation with human disturbances. We also show that
the robot can repair plans by repeating actions or compensating
for non-planned things like obstacles on a goal. We compare
the performance of our methods with the cube-stacking task
in [22].

We first introduce the implementation details for the two
working scenarios, push-pull and pick-place. For each sce-
nario, we report the defined action template, symbolic ob-
servers, and cost functions. We then show the simulation
results for the two scenarios and the real-world experiments.

A. Implementation details
1) Push and pull:

Action template
The action template defines one state factor sloc, one

symbolic observation oloc, and three symbolic actions
moveTo(goal), push(obj, goal), pull(obj, goal). The precon-
dition to execute a push or pull action is that the robot is close
to the object. We do not add complex heuristics to encode the
geometric relations in the task planner to determine when to
push or pull, because this is cumbersome and thus we build
the contact model in the motion planner.

Action Preconditions Postconditions
moveTo(obj) not closeTo(obj) l(obj) =

[
1 0

]⊤
push(obj, goal) closeTo(obj) l(goal) =

[
1 0

]⊤
pull(obj, goal) closeTo(obj) l(goal) =

[
1 0

]⊤
Symbolic observer

We need one symbolic observer to estimate whether the
robot R is getting close to the object O. It is defined as:

oloc =

{
0, |x⃗R − x⃗O| ≤ δ

1, |x⃗R − x⃗O| > δ
(13)

where x⃗R, x⃗O represent the positions of the robot and the
object. δ is related to the size of the robot and the object.

Cost functions
At the motion planning level, the cost function of making

robot R move close to the object O can be formulated as:

Smove(R,O) = Sdist(R,O) = ωdist · |x⃗R − x⃗O| (14)

The cost function of making the robot R push object O to
the goal G can be formulated as:

Spush(R,O,G) = Sdist(R,O) + Sdist(O,G) + Sori(O,G)

+ Salign push(R,O,G) + Sdyn obs(R,D)
(15)

General case

Object

Goal

Push configuration Pull configuration

Fig. 2. Push and pull ideal configurations. The robot R has to push or pull
the object O to the goal G. d1 is the robot-object distance, while d2 is the
object-goal distance.

where minimizing Sdist(O,G) makes the object O close to
the goal G. Sori(O,G) = ωori · ϕ(ΣO,ΣG) defines the
orientation cost between the object O and goal G, and ϕ is
given by the metric proposed in Equation 33. The align cost
Salign push(R,O,G) makes the object O lie at the center
of robot R and goal G so that robot can push it, which is
illustrated in Figure 2. The cost is related to the angle θ and
function f , which are defined as:

cos(θROG) =
(x⃗R − x⃗O) · (x⃗G − x⃗O)

|x⃗R − x⃗O||x⃗G − x⃗O)|
(16)

f(x) =

{
0, x ≤ 0

x, x > 0
(17)

Therefore, the align cost of push can be formulated as:

Salign push(R,O,G) = ωalign push · f(cos(θROG)) (18)

Similarly, the cost function of making the robot R pull
object O to the goal G can be formulated as:

Spull(R,O,G) = Sdist(R,O) + Sdist(O,G) + Sori(O,G)

+ Salign pull(R,O,G) + Sact pull(R,O,G) + Sdyn obs(R,D)
(19)

where the align cost Salign pull(R,O,G) makes the robot R
lie at the center of object O and goal G, and the cost is
also related to the angle θ and function f as defined above.
The action cost Sact pull(R,O,G) allows only sample control
inputs that are in the opposite direction against the object. The
two costs are defined as:

Salign pull(R,O,G) = ωalign pull · f(−cos(θROG)) (20)

Saction pull(R,O,G) = ωaction pull · f(
(x⃗O − x⃗R) · u⃗
|x⃗O − x⃗R||u⃗|

)

(21)

Moreover, in order to model pull action in the simulation,
we need to exert a certain force between the object and the
robot. The force is applied when the robot gets close to the
object and is implemented in the IsaacGym simulator.
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In addition to avoiding the collision between the obstacle
and the robot, we also demonstrate collision avoidance be-
tween the block and the obstacle. This is done by using a
constant velocity model to predict the position of the dynamic
obstacle D in the coming horizons and by maximizing the
distance between the dynamic obstacle and the robot. It can
be formulated as:

Sdyn obs(R,D) = ωdyn obs · e−|x⃗R−x⃗Dpred
| (22)

where x⃗Dpred
is the predicted position of dynamic obstacle.

2) Pick and place:
Action template

The action template defines 4 state factors
sreachable, sholding, spreplace, ssuccess, 4 symbolic obser-
vations oreachable, oholding, opreplace, osuccess, and 4 symbolic
actions reach(obj), pick(obj),move2place(obj, goal), place(obj).

Action Preconditions Postconditions
reach(obj) not success l(reachable) =

[
1 0

]⊤
pick(obj) reachable(obj) l(holding) =

[
1 0

]⊤
move2place(obj, goal) holding(obj) l(preplace) =

[
1 0

]⊤
place(obj) atPreplace(obj) l(success) =

[
1 0

]⊤
Symbolic observers

We need 4 symbolic observers to estimate 4 state factors.
To estimate whether the gripper is close enough to the cube,
we get the observation via:

oreachable =

{
0, lreach ≤ 0.012

1, lreach > 0.012
(23)

where lreach = |x⃗ee− x⃗O| measures the distance between the
end effector ee and the object O.

To estimate whether the robot is holding the cube, we need:

oholding =

{
0, lgripper < 0.065 and lgripper > 0.058

1, lgripper ≥ 0.065 or lgripper ≤ 0.058
(24)

where lgripper = |x⃗ee l−x⃗ee r| measures the distance between
the two grippers.

To estimate whether the cube reaches the pre-place location,
we need:

opreplace =

{
0, Sdist(O,P ) < 0.01 and Sori(O,P ) < 0.01

1, Sdist(O,P ) ≥ 0.01 or Sori(O,P ) ≥ 0.01

(25)

where Sdist(O,P ) and Sori(O,P ) measure the distance and
the orientation between the object O and the pre-place location
P . They are defined the same as in Equation 15. The pre-
place location is a few centimeters higher than the target cube
location.

Similarly, to estimate whether the cube is successfully
placed on top of the target cube, we need to check:

osuccess =

{
0, Sdist(O,G) < 0.01 and Sori(O,G) < 0.01

1, Sdist(O,G) ≥ 0.01 or Sori(O,G) ≥ 0.01

(26)

where Sdist(O,G) and Sori(O,G) measure distance and the
orientation between the object O and the goal location G.
It is worth mentioning that the goal location is calculated
directly on top of the the target cube location.

Cost functions
At the motion planning level, the cost functions of 4 actions

can be formulated as:

Sreach(ee,O, θ) = ωreach · |x⃗ee − x⃗O|

+ ωtilt · (
z⃗ee · z⃗O
|z⃗ee||z⃗O|

− θ)
(27)

Sgripper(ee) = ωgripper · lgripper (28)
Smove2place(O,P ) = Sdist(O,P ) + Sori(O,P ) (29)
Splace(O,P ) = ωgripper · (1− lgripper) (30)

where Sreach(ee,O, θ) makes the end effector get close to the
object with a grasping tilt constraint θ. When θ is close to -1,
the gripper will be perpendicular to the object, when θ is close
to 0, the gripper will be parallel to the plane that the object
stands.

B. Simulation on mobile robots

1) Rearranging the blocks via push and pull:
We simulate rearranging the blocks via push and pull among

dynamic obstacles. We use the cost functions as developed
in Equation 15 and Equation 19 for push and pull. We also
demonstrate collision avoidance with the dynamic obstacle.

TABLE I
SIMULATION RESULTS OF PUSH AND PULL

Skill # of trials Mean(std)
pos error

Mean(std)
ori error

# of
collisions

Mean(std)
time

Push 60 0.0560
(0.0137)

0.0042
(0.0056)

0.0500
(0.2179)

5.3530
(3.0473)

Pull 60 0.0777
(0.0762)

0.0202
(0.0519)

0.0167
(0.1280

9.9746
(5.8125)

The simulation results can be found in Table I. We conduct
60 trials for push and pull separately and show the perfor-
mance with respect to the position error, orientation error of
the blocks, number of collisions, and completion time. Push
outperforms pull with respect to position error and orientation
error. The average number of collisions for push and pull is
0.05 and 0.0167, which means there are only 3 and 1 collisions
in total for the overall 60 trials. The completion time for push
and pull ranges from 5 to 9 seconds.

2) Hybrid motions of push and pull:
The emergence of hybrid motions of push and pull is due

to the issue that the block might be located in a corner, and
thus one single motion cannot solve the task entirely. And
it is always hard to determine heuristics that can capture the
geometric information. Therefore, it is important to achieve a
smooth transition between these two motions. We model the
hybrid motions of push and pull by using the proposed M3P2I
and incorporating both the cost functions of push and pull.
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TABLE II
SIMULATION RESULTS OF HYBRID MOTIONS OF PUSH AND PULL

Case Skill # of trials Mean(std)
pos error

Mean(std)
ori error

Mean(std)
time

Push 20 0.1061
(0.0212)

0.0198
(0.0217)

6.2058
(6.8084)

One
corner Pull 20 0.1898

(0.0836)
0.0777

(0.1294)
25.1032

(13.7952)

Hybrid 20 0.1052
(0.0310)

0.0041
(0.0045)

3.7768
(0.8239)

Push 20 7.2679
(3.2987)

0.0311
(0.0929) time-out

Two
corners Pull 20 0.3065

(0.1778)
0.1925

(0.2050)
32.8838
7.9240

Hybrid 20 0.1375
(0.0091)

0.0209
(0.0227)

9.9473
(3.4591)

We test and compare these three motions (hybrid, push, and
pull) in two cases, as shown in Table II. The first case is to
move an object, which is originally not in the corner, to the
corner. The pull action will mostly fail in this case, which is
shown by the large completion time and high position error,
because the align cost in Equation 20 will force the robot to
be in the corner and makes it hard to move out of the corner.
The second case is to move an object, which is originally
in one corner, to another corner. The push action will fail in
this case, because the walls occlude the robot from reaching
the other side of the object, which violates the constraint in
Equation 18.

The table shows that the hybrid motions outperform push
and pull in both cases, namely a lower position error, a
lower orientation error, and a shorter completion time. The
screenshots of push and pull can be seen at Figure 3.

Fig. 3. Screenshots of pushing (left), pulling (right).

C. Simulation on a robot arm

1) Reactive pick and place:
In the case of a 7-DOF panda arm, we first consider the

vanilla pick-and-place under disturbances. We want to pick
the red cube and place it on top of the green cube. In
the simulation, we model the disturbances by controlling the
movements of the cubes using the keyboard during pre-grasp,
placing, and after placement.

We compare the performance of our method and the off-the-
shelf Actor-Critic RL method [22] in normal pick-and-place
and reactive pick-and-place against disturbances. The table
configuration, robot arm, and cube size in our case remain the

TABLE III
SIMULATION RESULTS OF REACTIVE PICK AND PLACE

Task Method Training
Epochs # of trials Mean(std)

pos error
Mean(std)
ori error

Ours 0 50 0.0075
(0.0036)

0.0027
(0.0045)

Normal RL 1500 50 0.0042
(0.0019)

0.2470
(0.1740)

RL 2000 50 0.0052
(0.0067)

0.2224
(0.1591)

Ours 0 50 0.0117
(0.0166)

0.0088
(0.0330)

Reactive RL 1500 50 0.0246
(0.0960)

0.2216
(0.1501)

RL 2000 50 0.0348
(0.1263)

0.2508
(0.1554)

same as in [22]. It should be noticed that the cube-stacking
task in [22] only considers moving the cube on top of the
other cube while neglecting the action of opening the gripper
and releasing the cube. In contrast, our method exhibits fluent
transitions between pick and place and also shows robustness
to interferences. The results can be found in Table III, where
our method is compared with the RL methods that have trained
for 1500 epochs and 2000 epochs. Even though our method
shows relatively inferior performance in the normal task with
respect to the position error, our method outperforms the
RL methods in the reactive task with respect to the average
position error and orientation error.

2) Hybrid motions considering different grasping poses:
In this case, we consider grasping the object with different

grasping poses. When the object is on the table, we want the
end effector to pick the object on top. When the object is on
the boxes, we want the end effector to pick it on its side and
also avoid collision with the boxes.

To make the motion planning generalize to different object
locations, we use the proposed M3P2I and incorporate the
cost functions of Spick(O,G, θ = 0) and Spick(O,G, θ = 1)
as shown in Equation 27. The only difference between these
two cost functions is the different constraints for the reaching
poses. The screenshots can be found at Figure 4.

Fig. 4. Screenshots of picking an object on the table (left), and picking an
object on the boxes while avoiding a moving obstacle (right).

D. Real-world experiments

We demonstrate our framework in a reactive pick-and-place
scenario in real-world experiments as shown in Figure 5. The
task is to pick one cube and stack it on top of the other
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cube. We have shown that the robot is capable of avoiding
a moving obstacle and adapting to human disturbances. The
experimenter may move or rotate the cube, and steal the cube
when it is in hand so that the robot will re-pick. We have
also shown that M3P2I enables grasping cubes with different
grasping poses, and the robot can also reach and pick the cube
when it is on the boxes.

Fig. 5. Real-world experiments of picking a cube on the table (top left),
picking a cube on the boxes (top right), and picking with collision avoidance
and human disturbance (bottom left and right).

IV. CONCLUSIONS

In this paper, we proposed a reactive TAMP framework
that combines active inference and a sampling-based MPC
planner through the planning of cost functions instead of
symbolic actions. In order to integrate a set of alternative
plans and associated cost functions, we proposed a Multi-
Modal MPPI (M3P2I) to achieve a smooth transition between
these cost functions via weights updating. This novel approach
allows for a more adaptable and robust control system, leading
to a coherent optimal solution. We have shown that M3P2I
is generalizable in combining different constraints, such as
pushing and pulling for the mobile robot, and grasping objects
with different grasping poses. The simulations and real-world
experiments showed that the system exhibits reactiveness
and robustness against human disturbances in a variety of
manipulation tasks.
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APPENDIX

It has been an essential issue to correctly represent 3D
rotations and to efficiently evaluate the distance between them.
[23] provided a detailed analysis of six metrics for measuring
the distance between orientations, including Euclidean dis-
tance between the Euler angles, norm of the difference of
quaternions, inner product of unit quaternions, and so on.
However, these can not handle symmetric objects, which is
challenging since different orientations may generate identical
observations. [24] introduced ShapeMatch-Loss to focus on
matching the orientations for symmetric objects. Although it
does not require the specification of symmetries, it is not
efficient to compute for the fully symmetric objects, such as
the cubes, as we will mainly use in the experiments to interact
with.

Therefore, we propose a new metric to efficiently evaluate
two orientations for fully symmetric objects in a general way.
We will first give the definition of general equivalence for fully
symmetric objects. And then we will try to derive a proposition
that meets the definition and prove it to be sufficient and
necessary. Finally, we will show the proposed metric given
the proved proposition.

Definition 1 We say two three-dimensional Cartesian coor-
dinates are in general equivalence if it holds that:

|u⃗1 · v⃗i| = 1, i ∈ {1, 2, 3}
|u⃗2 · v⃗j | = 1, j ∈ {1, 2, 3}
|u⃗3 · v⃗k| = 1, k ∈ {1, 2, 3}

(31)

where i ̸= j ̸= k, {u⃗1, u⃗2, u⃗3} and {v⃗1, v⃗2, v⃗3} form the
orthogonal bases of the two coordinates respectively.

Proposition 1 There are two vectors (axes) in one coor-
dinate that are collinear with some two vectors in another
coordinate such that:

|u⃗m · v⃗i| = 1,m, i ∈ {1, 2, 3}
|u⃗n · v⃗j | = 1, n, j ∈ {1, 2, 3}

(32)

where m ̸= n, i ̸= j. We will show that proposition 1 is
equivalent to definition 1.

Theorem 1 Proposition 1 and definition 1 are equivalent.

Proof.
1) We will first show proposition 1 is a sufficient condition

of definition 1. We assume {u⃗m, u⃗n, u⃗p} and {v⃗i, v⃗j , v⃗k} form
the orthogonal bases of the two coordinates respectively. If
there are two vectors u⃗m, u⃗n that are collinear with v⃗i, v⃗j ,
then u⃗p is orthogonal to the plane these vectors span. So is
v⃗k. Thus u⃗p, v⃗k are collinear. Thus it meets Equation 31 and
thus meets definition 1.

2) Proposition 1 is also a necessary condition of definition 1.
This is because if the two coordinates meet definition 1, there
must be 4 vectors in the same plane. They are collinear.

Theorem 1 allows us to simplify definition 1 and ignore a
specific mapping between the vectors of coordinates, which
would be difficult to find due to the flipping of cubes.
Proposition 1 allows us to only focus on finding two pairs
of collinear vectors in the two coordinates. Using this, we

can derive our proposed metric to measure the difference in
orientations of two symmetric objects.

Metric
ϕ(Σu,Σv) = min

i,j∈{1,2,3}
1− |u⃗1 · v⃗i|+ 1− |u⃗2 · v⃗j |

= min
i,j∈{1,2,3}

2− |u⃗1 · v⃗i| − |u⃗2 · v⃗j |
(33)

where Σu = {u⃗1, u⃗2, u⃗3},Σv = {v⃗1, v⃗2, v⃗3} form the orthog-
onal bases of two coordinates.

The major difference of our metric and ShapeMatch-Loss
in [24] is the simplification of only choosing two axes in one
coordinate to match with the axes in another coordinate, which
is supported by theorem 1.



4
Additional Implementation Details

and Experiments

This chapter provides additional information on the scientific paper. It first introduces the overall soft-
ware structure of this work, and then elaborates on the implementation details and results of one addi-
tional experiment.

4.1. Software Structure

Client Server

Configuration

Objectives

Initial state
Goal state
Cost function
Metric

Zerorpc

Planner
parameters

Planner

Robot
 parameters

Rollouts

Environment

Main environment
(real-world or simulated)

Simulated rollout environments

Obstacles Objects Surroundings

Update
envs

Update
command

YAML

YAML

Figure 4.1: Software structure. Red and yellow components are provided. Green components should be passed before the
code runs. Blue components should be implemented by the user, and they are updated at run-time.

The code structure of this work is split up into two main files as can be seen in Figure 4.1. The server
file mainly reflects the setting in the main environment, which can be a real-world or simulated one,
while the client file mainly simulates the planning sequences in the rollout environments. These two
files communicate via the zerorpc [59], a light-weight library for distributed communication. This com-
munication layer allows the server to update the changes in the real-world environment to the client
file and allows the client to update the optimal control command to the server file to be executed in the
real-world environment. This real-time planning and execution pipeline differentiates from the normal
training and testing procedures in [60]. Normal RL tasks are split into the offline training phase and
testing phase in IsaacGym environments separately, which are often susceptible to changes in the real
dynamic world. Our work allows us to simulate real-world scenarios and populate them in the rollout
environments and thus achieving planning and execution at run-time.

In addition to the communication layer, each of the other components has a clearly defined modularity:

• The PARAMETERS specifying specific configurations of the robot and planner are defined outside
of the code using YAML-FILES.

• The OBJECTIVES define some important properties that a planner requires to complete the tasks,
including the initial state, goal state, cost function, and metric. This component should be imple-
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mented by the users. The initial state and goal state can be overridden by the YAML file and they
can also be updated at run-time by the task planner.

• The PLANNER class encapsulates the reactive task and motion planning framework we intro-
duced in chapter 3.

• The ENVIRONMENT is created by the user to run the main simulation or to reflect the real-world
experiments. If it is in the physics simulator, it defines the types of obstacles, manipulated objects,
and surroundings. If it is done in a real-world scenario, it should be equipped with sensors to
represent the perceived world. The changes in the environment will be updated in the client file
to run parallel simulations.

4.2. Navigation with Battery Requirements
We want the robot to navigate to a certain goal location while considering its battery capacity and
avoiding obstacles. The battery capacity is handled by the task planner and collision avoidance is
handled by the motion planner. If the battery is not enough to achieve the task, it will go to recharge at
the recharging location, otherwise, it will directly go to the goal. The scenario is shown in Figure 4.2.

Robot

Charging
Location

Goal

Figure 4.2: Navigation with charging scenario. The robot is an omnidirectional robot that locates at the center of the figure.
The charging location is in green and the goal location is in berry.

4.2.1. Implementation

To model the navigation task with battery capacity, the complete control scheme is shown in Algorithm
3. At the initial phase, we will construct an MDP structure, which requires a manually defined action
template. The action template is specific to the task and defines states, names of actions, preconditions
of actions, and transition matrices corresponding to the actions. The code enters into the loop until the
goal is reached. At every iteration, the battery level should be modeled and simulated. We also need to
design symbolic observers to translate continuous states into discretized symbolic observations. Then,
we will feed the MDP structure and current observations to the algorithm of adaptive action selection in
[45] to get the current action plans. After the plan is generated by the task planner, it will be translated
to the corresponding cost function, which will be fed into the MPPI motion planner to execute the control
commands.
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Algorithm 3 Navigation with battery tasks
1: /* Define MDP structure */
2: mdp_task = AIF.agent(ActionTemplate)
3: sbatt = 100
4: while goal not reached do
5: /* Update battery level */
6: sbatt ← SimulateBattery()
7: /* Get states from symbolic observers */
8: oloc ← GetObsMotion(sloc)
9: obattery ← GetObsBattery(sbattery)
10: obs = [oloc, obattery]
11: /* Get current action plans from active inference */
12: A ← AIF.adapt_act_sel(mdp_task, obs) ▷ Algorithm from [45]
13: /* Translate action plan to cost function */
14: S ← Interface(A)
15: /* Execute motion commands */
16: MPPI.command(S)
17: end while

Action Templates
The action templates define two state factors sloc, sbattery, two symbolic observations oloc, obattery, and
three symbolic actionsmoveTo(goal) , goRecharge(loc), idle. Each action is associated with its precon-
ditions and post-conditions and they are defined in the action templates below. If the current battery is
enough to complete the task, the robot will directly move to the goal location, otherwise, it will go to the
charging location to recharge. The robot will recharge until the battery level is estimated to be enough
to complete the task and then it will move to the goal. Finally, if the robot is close to the goal location,
we will set zero velocity for the robot.

Action Preconditions Postconditions
moveTo(goal) batteryEnough l(goal) =

[
1 0

]⊤
goRecharge(loc) batteryNotEnough l(batteryEnough) =

[
1 0

]⊤
idle at(robot, goal) -

Simulate Battery
We simulate the battery level by assuming the fact the battery level will decline if the robot is not charging
and it will increase if it is charging. It can be shown as:

sbatt =

{
sbatt + αbatt, |x⃗R − x⃗C | ≤ 0.5

sbatt − αbatt, |x⃗R − x⃗C | > 0.5
(4.1)

where x⃗R and x⃗C represent the positions of the robot and the charging location. αbatt represents the
consumption rate of the battery, the higher the value, the faster it will decline. It should also be noticed
that the battery level is always bounded between 0 and 100.

Symbolic Observers
We need two symbolic observers to estimate whether the goal has been reached and to estimate
whether the current battery level is sufficient to complete the task. They are defined as:

oloc =

{
0, |x⃗R − x⃗G| ≤ 0.5

1, |x⃗R − x⃗G| > 0.5
(4.2)

obattery =


0,
|x⃗R − x⃗G| · αdist · αbatt

sbatt − 60
< 1 and sbatt > 60

1,
|x⃗R − x⃗G| · αdist · αbatt

sbatt − 60
≥ 1 or sbatt ≤ 60

(4.3)
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where x⃗G represents the positions of the robot and the navigation goal. sbatt represents the current
battery level ranging from 0 to 100. αdist represents the parameter related to distance efficiency, where
we assume the distance the robot can run is proportional to its battery consumption, so the higher the
value, the shorter distance the robot can run given a certain battery level.

Cost function
At the motion planning level, the cost function of making robot R move to the goal G can be formulated
as:

Smove(R,G) = Sdist(R,G) + Sori(R,G) + Scoll(R) (4.4)

where the functions can be defined as:

Sdist(R,G) = ωdist · |x⃗R − x⃗G| (4.5)
Sori(R,G) = ωori · ϕ(ΣR,ΣG) (4.6)

Scoll(R) = ωcoll ·
∑

i∈Inon−move

Fcontact(R, i) (4.7)

where Sdist(R,G) minimizes the distance between the robot R and the goal G. ϕ(ΣR,ΣG) defines the
orientation cost between the robot R and goal G, and ϕ is given by the metric proposed in the paper.
The collision avoidance is modeled by Fcontact(R, i), which defines the contact force between the robot
R and the non-moveable object i, and the function is provided by the IsaacGym simulator.

Similarly, the constraint of goRechage(loc) can be formulated as:

Srecharge(loc) = Sdist(loc) + Sori(loc) + Scoll (4.8)

4.2.2. Experimental Results

We simulate the fusion of internal needs and external goals, including behavior shaping according to
internal battery needs, and navigation among obstacles. We use the control scheme as shown in Algo-
rithm 3 and test it in IsaacGym. The simulation results can be divided into 2 cases considering different
values of battery consumption rate αbatt.

Figure 4.3: Screenshots of navigation with battery capacity in case 1. The screenshots are placed in chronological order (top
left, top right, bottom left, bottom right).

In the first case, we set the battery consumption rate relatively low (αbatt = 0.8). This suggests that the
battery level declines at a low speed so that the battery estimator will estimate that the current battery
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is enough to complete the whole task without the need to recharge. The screenshots of the simulation
process for this case are shown in Figure 4.3. The screenshots are placed in chronological order (top
left, top right, bottom left, bottom right). In the initial phase, the robot is at the center with a battery level
of 100 as shown in the top left figure. As time goes by, figures in the top right and bottom left show that
the battery level declines to 91.0 and 71.0. Now the battery estimator guesses the robot would arrive
at the goal location with a battery level larger than 60, so obattery is set to 0. Since the robot is not close
to the goal yet, oloc is set to 1. These two observations will lead to active inference to select moving to
the goal as the current optimal action instead of going to recharge. Therefore, in the final bottom right
figure, the robot arrives at the goal location with a battery level of 61.0. This means the robot succeeds
in completing the task and will be set to 0 velocities.

Figure 4.4: Screenshots of navigation with battery capacity in case 2. The screenshots are placed in chronological order (top
left, top right, middle left, middle right, bottom left, bottom right).

In the second case, we set the battery consumption rate relatively low (αbatt = 1.2), indicating that the
battery level declines at a relatively high speed. The screenshots of the simulation process for this
case are shown in Figure 4.4. The screenshots are placed in chronological order (top left, top right,
middle left, middle right, bottom left, bottom right). In the initial phase, the robot is at the center with
a battery level of 100 as shown in the top left figure. When the robot starts to move, the figure in the
top right shows that the battery level declines to 90.1 and the robot is heading towards the charging
location directly. This is the major difference from the first case mainly because the battery estimator
guesses the robot can not arrive at the goal location with a battery level larger than 60, so obattery is
set to 1. Since the robot is not close to the goal yet, oloc is set to 1. These two observations will lead to
active inference to select going to recharge as the current optimal action instead of moving to the goal.
In the next time step, the robot arrives at the charging location with a battery level of 70.3 as shown
in the figure middle left. Later it gets recharged until the battery is estimated to be enough to arrive at
the goal location, which is shown in the middle right figure with battery 87.9. Then the robot moves
towards the goal location as shown in the bottom left figure and finally arrives at the goal location with
a battery level of 72.5 as shown in the bottom right figure.



5
Discussion

In this chapter, we discuss key aspects of the simulation and real-world experiments.

5.1. Sim-to-real Issues
Sim-to-real is known as transferring robot skills acquired in the physics simulator to the real world. It
draws attention since it is cheaper, safer, and more informative to perform experiments in simulation
than in the real world. However, uncertainties and discrepancies between simulated and real-world
environments could present challenges for achieving precise movements and manipulation. In our
experiments, we found these issues worth noticing.

5.1.1. Mismatching of Gripper Control Modes

In the simulation, the actions of closing and opening the grippers are controlled by setting the continu-
ous velocity commands. When we set the velocity of one gripper to be positive, it is opening, and when
we set the velocity to be negative, it is closing. Therefore, in our sampling-based MPC algorithm for
the simulation, we only need to sample the control inputs of velocities ranging from -0.8 to 0.8m/s. In
addition, we can control the movements of the left gripper and the right gripper separately.

However, there are two firsthand issues when we use the real 7-DOF Panda arm. First, there is only
one degree-of-freedom for the two grippers. In addition, opening or closing the grippers is set by the
discrete ROS actions instead of by the continuous velocity.

To solve the mismatching of the degree-of-freedom of the grippers, we only sample one control input
of one gripper in the simulation and set the same velocity to the other gripper. To address the issue of
sending commands in the real grippers, we use two action clients. One action client sendsMoveAction
to close the grippers, and the other action client sends GraspAction to open the grippers. The two ac-
tions are sent with a constant speed 0.1 and different widths. TheGraspAction is associated with a goal
of width 0.38 to open the grippers. This means opening the gripper through the GraspAction makes the
finger having an aperture of 7.6 cm. The cube to grasp is roughly 6cm so that we can easily place it.
TheMoveAction is associated with a width of 0 to make the the grippers closed. This will make the two
grippers fully closed if there is no cube in hand, and will make the grippers grasp the cube if it is in hand.

We further found that if we send the close commands many times and send an open command once,
the gripper will open only once and close again. This is because multiple close commands are stored
in a queue, when the open command is sent, the gripper will open first since it has a higher priority, but
the original commands are still in the queue and are not canceled, so they will trigger the close action
again. To solve the issue, we set a flag to send only one close command until an open command is
sent. Similarly, we set another flag to send only one open command until a close command is sent.
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5.1.2. Mismatching of Physical Properties

Another issue we encounter is the imprecise physical parameters and properties in the real world.
For example, the size, mass, friction, and gravity of the cubes do matter in the pick-and-place task.
We manually set these parameters in the simulation but online system identification is not performed.
Ensembling rollouts with parameter variations, as demonstrated in [61], could further improve the per-
formance.

In addition, resetting the position and velocity of the cube via OptiTrack cameras is also very essential
at every iteration step. It might also be challenging when the cubes get close to each other or the cube
is grasped in hand, their associated markers will result in unstable and flashing perception in the Op-
tiTrack. To alleviate the issue, we focus on redistributing the markers and recalibrations of the motion
capture system. Future work could focus on a combination of other sensors such as cameras and
lidars to obtain precise geometric information.

5.2. Collision Avoidance and Computation Efficiency
The computational demands of planning and control with our method can be high when extending the
time horizon to several seconds. To keep the time horizon limited for real-time control while preventing
being trapped in local minima, future work should incorporate global planning techniques such as A*,
RRT, and Probabilistic Roadmaps (PRM) to guide the local planner. In addition, incorporating additional
sensor support such as lidars and composite signed distance fields could be highly beneficial. This
would enable, for instance, collision avoidance without the need for complex simulated worlds.



6
Conclusion

This conclusive chapter summarizes the content presented in this work, and the answers to the initial
research questions. Potential future directions closely tied to this work are also delineated.

6.1. Summary
In pursuit of reliable reasoning and robust execution of robot actions in dynamic environments, TAMP
methods render a powerful framework for complex long-term manipulation skills. However, previous
works either rely on the adaption of the action sequence in a plan or only on the motion planning prob-
lem given a fixed plan. Less attention has been paid to robustifying the execution of TAMP plans. In
addition, a key challenge in reactive TAMP is the handling of geometric constraints. Since tasks can
be carried out in multiple ways depending on the geometry of the problem, these geometric ambigui-
ties remain especially when the correct set of geometric constraints is hard to determine at planning
time. Section 1.1 motivated this aspect in two scenarios, namely a push-pull scenario and a pick-place
scenario.

Section 1.2 presented an overview of the fields that entail the topic of the thesis, and chapter 2 provided
the necessary knowledge of the two building blocks of the thesis. Active inference uses free energy
to describe the properties of an agent in an environment, and by minimizing expected free energy at
run time, Bayes-optimal behavior can be obtained. POMDP methods are also capable of generating
reactive behaviors in uncertain, dynamic environments, but offline POMDP solvers only suit the case
when the tasks are fixed and there are no unexpected events and additional actions. There are also
some good alternatives of online POMDP solvers, but active inference suits our case considering its
appealing aspects, namely the efficiency in continual online planning and the flexibility in encoding pa-
rameterized habits and preferences. Among a variety of motion planning methods, MPPI attracts our
attention due to its flexibility in dealing with constraints and cost functions. Moreover, massive sam-
pling allows the robot to have more opportunities to explore the environments and thus is beneficial to
generate efficient contact-rich manipulation skills.

Chapter 3 encapsulated the main body of this work in the form of a scientific paper. In the paper, we
proposed a reactive TAMP framework that combines active inference and MPPI through the planning of
cost functions instead of symbolic actions. This enables reactive execution from both high-level actions
and low-level motions since the cost functions can capture both the task objectives and constraints. Be-
sides, to address the issue of geometric ambiguities, we proposed a Multi-Modal MPPI (M3P2I) that
is capable of sampling different alternatives and evaluating them against different costs. This enables
smooth transitions between these cost functions via weights updating, which reduces the number of
required heuristics in the task planner and results in a coherent optimal solution. In addition, we pro-
posed a new metric to efficiently evaluate two orientations for fully symmetric objects in a general way.
This was to fix the geometric issues for fully symmetric objects, such as the cube, whose different orien-
tations may generate identical observations. We showed that this metric is more simplified compared
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with the ShapeMatch-Loss in [62].

We have demonstrated that the framework exhibits reactiveness in different scenarios, including battery
charging as shown in section 4.2, push-pull among obstacles, and pick-place with disturbances as
shown in 3. We showed that our framework outperforms the off-the-shelf RL method in the reactive
pick-place task in terms of position error and orientation error. We have also shown that M3P2I is
generalizable in combining different constraints. In the push-pull case, the robot was able to smoothly
switch the actions between push and pull in order to make the object to the corner. The results showed
that the hybrid motions were better than any individual action of push or pull in terms of task time
efficiency, position errors, and orientation errors of the object. In the pick-place case, we demonstrated
the robot was able to generalize to either reach the cube on the boxes or reach the cube on the table
with the end effector perpendicular to the table. The real-world experiments showed that the system
exhibits reactiveness and robustness against human disturbances in a variety of manipulation tasks.

6.2. Answers to the Research Questions
How can Task and Motion Planning (TAMP) incorporate reactive behaviors from both high-level
action selection and low-level motions in multi-task, contact-rich and dynamic environments?

This work aimed at providing a solution in robustifying the execution of TAMP plans in order to reliably
carry them out in the real world. We proposed a reactive TAMP framework that combines active infer-
ence and a sampling-based MPC planner through the planning of cost functions instead of symbolic
actions. The cost functions can capture not only the task objectives but also the constraints, including
requirements of grasping poses, smooth motions, and collision avoidance with obstacles. This schedul-
ing of costs is flexible in both high-level decision-making and low-level motions, enabling the robot to
achieve both long-term and short-term cognitive aspects of the tasks.

How to address geometric ambiguities, which are hard to determine at planning time, within a
reactive TAMP framework?

The geometric ambiguities refer to the selection of correct geometric constraints at run-time as moti-
vated in 1.1. We demonstrated these in two cases, including a hybrid push-pull task for a mobile robot
and a pick-place task with different grasping poses for a manipulator. Even assuming full ethic knowl-
edge of the scene at planning time, since the outcome of pushing and pulling actions can be hard to
predict accurately, planning a sequence of push-pull actions a priori and then executing it is prone to fail.
Instead, we seek a solution capable of blending at runtime different robot capabilities to achieve smooth
transitions between skills without hard-coded switching. We extended previous active inference to plan
possible alternative plans, which will be integrated into the motion planner as associated cost functions.
Further, we proposed a Multi-Modal MPPI (M3P2I) to achieve a smooth transition between these cost
functions via weights updating. This was done by updating the weight distributions of different plans at
first and by incorporating different weight distributions into a cohesive distribution of actions. This novel
approach allows for a more adaptable and robust control system, leading to a coherent optimal solution.

6.3. Future Work
This work followed the line of thought as pointed out in [36] to use a high-level agent to set the cost
function of the predictive controller for long-horizon cognitive tasks. The cost functions are represented
as a linear sum of multiple functions that encapsulate task objectives and motion constraints. It would
be nice to explore more complex combinations and compositions of these building blocks of constraints
or skills to engender sophisticated and intelligent behaviors. Undoubtedly, tuning suitable weights for
optimal performance is tricky and time-consuming. It would be desirable to design an algorithm that
can automatically tune these hyperparameters and check the performance effortlessly. [63] provides
a solution to frame the parameter tuning as a constrained optimization problem. It conducts different
trials under different parameter sets. After each trial is simulated, the performance is evaluated under
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an objective function, which is made up of a sum of metrics, and a new parameter set is suggested
based on the history of trials. Finally, the best parameter set is extracted from all trials. However, it
only tests it for the trajectory generation using optimization fabrics, more tests need to be done for
sampling-based MPC.
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A
Additional Figures

A.1. Additional Figures for Push and Pull
In the experiments of rearranging the blocks via push and pull in chapter 3, the screenshots of push
and pull can be shown in Figure A.1 and Figure A.2, which are placed in chronological order (from top
left to top right, and from bottom left to bottom right). The purple object is the one to manipulate (push
or pull), the red object is the dynamic obstacle to avoid, and the green area is the goal location. The
green lines are the sampled trajectories. In the pushing scenario, the robot first tries to approach the
object and pushes the object in the goal direction. Considering that the dynamic obstacle is nearby,
the robot is conservative in pushing as shown in the top right figure in Figure A.1. The robot pushes the
object directly to the goal location until the dynamic obstacle is moving away, as shown in the bottom
right figure in Figure A.1.

Figure A.1: Screenshots of push action.

In the pulling scenario, the robot first tries to circumvent the dynamic obstacle as shown in the top figure
in Figure A.2 and then approaches the object. Then it pulls the object to the goal location as shown in
Figure A.2.
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Figure A.2: Screenshots of pull action.
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A.2. Additional Figures for Hybrid Push and Pull
In the experiments of hybrid motions of push and pull in chapter 3, the metrics that are used to depict
the process of push, pull, and hybrid actions are shown in Figure A.3, Figure A.4, and Figure A.5. The
first column of the metrics depicts the trajectories of the object in blue and the robot in orange. The
second column of the metrics depicts the distance between the robot and the object in pink and the
distance between the object and the goal in purple. The third column of the metrics depicts the cosine
of the angle between the robot, object, and goal.

Figure A.3: Metrics of push action.

Figure A.4: Metrics of pull action.

Figure A.5: Metrics of hybrid action.


	Title Page
	Preface
	Abstract
	Nomenclature
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	The state-of-the-art
	Task Planning
	Motion Planning
	Integrated Task and Motion Planning

	Contributions
	Outline

	Background
	Active Inference
	Free-Energy Principle
	Active Inference

	Model Predictive Path Integral Control
	Information-theoretic Framework
	Information-theoretic MPPI

	Discussion

	Scientific Paper
	Additional Implementation Details and Experiments
	Software Structure
	Navigation with Battery Requirements
	Implementation
	Experimental Results


	Discussion
	Sim-to-real Issues
	Mismatching of Gripper Control Modes
	Mismatching of Physical Properties

	Collision Avoidance and Computation Efficiency

	Conclusion
	Summary
	Answers to the Research Questions
	Future Work

	References
	Additional Figures
	Additional Figures for Push and Pull
	Additional Figures for Hybrid Push and Pull


