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Abstract 

Nowadays, urban areas are exposed to various challenges such as climate change, social 
inequalities, and congestion. Mobility hubs present the opportunity to reshape our cities and mitigate the 
previously mentioned problems by contributing to a more sustainable and equitable transport system. 
This thesis defines mobility hubs as places where shared cars, mopeds, and e-bikes are offered to 
improve connectivity and ameliorate mobility options. Given a limited budget, cities would like to optimize 
the locations of mobility hubs to maximize benefits. This problem is solved in this thesis by presenting an 
optimization model that allows the distribution of mobility hubs and allocation of shared cars, mopeds, 
and e-bikes to maximize social welfare. The algorithm can provide the optimal locations for the hubs and 
their respective capacity in terms of vehicles, while accounting for multimodal trips. It focuses on 
maximizing the utility of the population rather than the operators’ profits. The model is divided into several 
modules: computational modules that calculate the number of people that would like to use a mobility 
hub; a mathematical optimization module to optimize the capacity, availability, and relocation of shared 
vehicles; and finally, a genetic algorithm that performs several iterations to find the optimal distribution 
of hubs. The model developed is applied in a case study for the city of Amsterdam. Several scenarios 
are performed to assess how the distribution of hubs varies depending on the budget provided to 
construct them. The results show that having more hubs with a lower number of shared vehicles is more 
beneficial than having fewer with more vehicles. Areas with higher population density are prioritized 
when lower budgets are invested in building the hubs. Additionally, the shift towards shared modes and 
the travel time savings are minimal. The benefits increase considerably when investments lead to 
complete coverage of the area by the network of mobility hubs. A modal split of 5% for the shared modes 
is expected when Amsterdam is fully covered by 288 hubs. From an environmental point of view, only 
32 % of the shared trips replace trips previously made by car, leading to a limited CO2 emissions 
reduction of 1.27%. To conclude, the model developed is one of the first models that optimizes the 
location and capacity of multimodal hubs to maximize social welfare by considering multimodal trips. It 
has the ability to quantify the benefits of introducing mobility hubs depending on the investments made.  
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1. Introduction 

Nowadays, urban areas face multiple challenges such as climate change, social inequalities, 
and congestion. From the environmental point of view, transport is responsible for nearly 30% of 
the EU’s CO2 emissions, of which 60.7% comes from private car transport (European Parliament, 
2019). Furthermore, from the inequality and accessibility aspects, transportation plays a 
significant role in creating or attenuating social inequalities. Therefore, the design of its systems 
contributes to the main goal of increasing the population’s accessibility, regardless of their 
income, origins, or education. Currently, the whole concept of cities is being redefined, putting 
people rather than vehicles in the center of the design. 

Mobility hubs present an opportunity to reshape our cities and contribute to a more sustainable 
and equitable transport system. Aono (2019) defines them as “a place where different sustainable 
transportation modes are integrated seamlessly to help promote connectivity”. The list of modes 
at a mobility hub includes but is not limited to shared cars, shared mopeds, shared scooters, and 
shared bikes. Multimodal hubs have the potential to improve accessibility in urban areas by linking 
new emerging modes with the existing traditional public transport system. The emerging modes 
include but are not limited to shared micro-mobility (e-bikes, e-scooters, e-mopeds) and shared 
cars. In addition, mobility hubs can adapt over time to include new modes and services such as 
autonomous shuttles. Having all these modes in the same space would allow seamless intermodal 
travels by facilitating transfers and would open new opportunities to strengthen local 
neighborhoods and assemble commercial assets. Furthermore, the travel experience of many 
people would be enhanced by avoiding traffic jams and shifting towards more sustainable on-
demand modes.  

This modal shift would create new opportunities to repurpose public spaces, for example, by 
getting rid of car parking spaces and making the streets more suitable for active modes of travel. 
For these reasons, mobility hubs are gaining much momentum in European cities. Additionally, 
enhancing the multimodal links would lead to better social cohesion, connecting people from 
different socio-economic backgrounds to different opportunities. Areas where multimodal 
connections are absent, and people rely primarily on one mode suffer from several segregation 
issues. Hence, installing multimodal mobility hubs would partially heal the social fabric (Carpio-
Pinedo, 2021). 

  
Figure 1.1. Mobility hubs illustration (comouk, 2019) 
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1.1. Context 

Many future mobility hubs will develop around existing transport nodes such as railway stations 
and bus stops. Their size can vary from a combination of bus stops and bike sharing parking to 
mega hubs at transport interchanges.  

To distribute the multimodal mobility hubs, several decisions should be made about the 
location, offered mobility services, infrastructure, and capacity. Traditionally, the allocation of 
shared mobility mainly focused on maximizing the demand covered and the operator’s revenues 
while neglecting aspects related to socio-economic equity, accessibility, and spatial distribution 
(Jaramillo et al., 2012). The focus on maximizing efficiency might favor specific social classes 
(especially higher-income ones) and disfavor areas with lower demand and population density. 
From the policymaker’s point of view, accessibility is one of the ultimate goals set for any project, 
and locating mobility hubs should focus on increasing the social welfare of the citizens (Grengs, 
2014). Hence, the decisions pertaining to the installation of mobility hubs are complex, and 
decision support tools are needed to assist decision-makers in their choices.  

Qualitative and quantitative models have been developed to locate mobility hubs or shared 
mobility stations. Most of the models developed in the literature focus on locating stations for 
unimodal mobility services, mainly bike sharing services. The models aim to maximize profits for 
operators, maximize spatial coverage, or minimize travel costs for users by considering unimodal 
trips done using the shared modes. However, there is a lack of models focusing on maximizing 
users' multimodal accessibility and social welfare. Caggiani, Colovic, et al. (2020) considered 
accessibility in the objective function; however, they limited the analysis to bike sharing systems 
rather than multimodal mobility hubs. Frank et al. (2021) did not consider the users' behavior and 
generalized travel costs but focused on the travel time accessibility gains. Their model is mainly 
applied to a rural environment. Hence, no models optimized the location and capacity of 
multimodal mobility hubs to maximize social welfare while considering multimodal trips.  

1.2. Objective and Research Scope 

The previous sections highlighted the importance and possible effects of mobility hubs in 
providing a more sustainable mobility solution, improving the livability of urban spaces, and 
increasing the accessibility of different social groups. These benefits emphasize the importance 
of developing suitable and complete tools to locate mobility hubs and allocate the different 
services from a policy-makers point of view.  

This thesis aims to develop an optimization model that would allow the distribution of mobility 
hubs and the allocation of shared modes to maximize social welfare. Hence, the model would be 
able to provide the optimal locations of mobility hubs and their capacity. All this while taking into 
account multimodal trips.  

This thesis considers three shared modes: shared cars, mopeds, and e-bikes. The 
classifications of the hubs are not considered; the model sets the capacity of each hub without 
further classification per type or services provided. Although mobility hubs can provide other 
services, this thesis focuses only on the mobility services provided by the three shared modes 
mentioned previously.  
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1.3. Research Questions 

The following research questions are answered in this thesis: 

What is the most suitable model structure to find the optimal location and capacity of mobility 
hubs?   

Finding the optimal locations and capacity of mobility hubs while considering multimodal trips 
presents several challenges in terms of computation power and acceptable assumptions. Hence, 
a model structure is presented in this thesis to determine the locations and capacity of mobility 
hubs to maximize social welfare. The model is divided into several modules: computational 
modules that calculate the utilities corresponding to the multimodal trips made using shared 
modes and the demand for shared modes; a mathematical optimization module to optimize the 
capacity, availability, and relocation of shared vehicles; and finally a genetic algorithm to iterate 
over the different activated mobility hubs to find the optimal distribution. 

What are the optimal distributions of shared multimodal mobility hubs to maximize social 
welfare depending on the amount of investment allocated to build the hubs? 

The budget allocated to build the mobility hubs is the primary determinant of the optimal 
number and location of mobility hubs in the system. Therefore, for each budget allocated, different 
results are obtained.  

What are the impacts of additional investment to build mobility hubs on the service level and 
mobility indicators?  

This thesis presents the effects of mobility hubs distributed by maximizing social welfare. 
Several indicators are analyzed, including the modal split, the total travel time experienced, the 
percentage of people covered by mobility hubs’ service areas, and the reduction in emissions. 
These indicators vary depending on the investment allocated to build the hubs.  

1.4. Thesis Outline 

The following thesis includes in chapter 2 a literature review of the mobility hubs’ definitions 
and the research conducted to locate mobility hubs or shared mobility stations. Then, in chapter 
3, the methodology and model framework are detailed and explained. The developed model is 
then applied in a case study, presented in chapter 4. Next, the results and limitations are 
discussed in chapter 5. Finally, a conclusion is presented in chapter 6.  
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2. Literature Review 

The following chapter presents a review of the literature. First, the definition and categorization 
of mobility hubs are presented. Second, the methodologies developed to locate shared mobility 
stations are presented. 

2.1. Mobility Hubs Definition 

A variety of definitions for mobility hubs have been used in the literature, all having common 
themes and keywords highlighting the ability to transfer between different transportation modes. 
These hubs are often perceived as a space where new transportation modes and technologies 
can be integrated to increase transportation options and enhance the overall experience. Aono 
(2019) defines mobility hubs as “A place where different sustainable transportation modes are 
integrated seamlessly to help promote connectivity”. Alta (2020) defines mobility hubs as: “A 
location where mobility options are intentionally linked to one another and to amenities to make 
getting around more convenient, seamless, and enjoyable for the purpose of advancing mobility, 
climate, and equity goals”. LA Urban Design Studio (2016) considers that “Mobility Hubs provide 
a focal point in the transportation network that seamlessly integrates different modes of 
transportation, multimodal supportive infrastructure and place-making strategies to create activity 
centers that maximize first-mile last-mile connectivity. An integrated suite of mobility services is 
provided at defined locations around existing and new transit stations, allowing transit riders to 
seamlessly access other modes of transportation once they arrive at the station” (LA Urban 
Design Studio, 2016). 

The different keywords used in the 
reports and definitions of mobility hubs are 
processed to create the word cloud 
presented in Figure 2.1. The function of 
integrating different modes and presenting 
a “seamless” way to transfer between 
modes is one of the main characteristics of 
mobility hubs. Mobility hubs have the 
potential to increase accessibility by 
providing shared mobility options which 
would make the shift from the usage of 
personal vehicles more attractive. In the long run, this would enable more efficient usage of public 
space. These hubs can differ in their size and the services offered. The following section presents 
the different types and categories of mobility hubs.   

 

 

Figure 2.1. Word cloud for the definitions of mobility 
hubs 
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2.1.1. Mobility Hubs Categorization  

Mobility hubs are categorized according to their size, location, and purpose. Several reports 
classify mobility hubs similarly (APPM & Goudappel Coffeng, 2020; comouk, 2019; Steer, 2020). 
The types are presented below:  

- Large city hubs: These hubs are designed to serve high passenger numbers traveling to 
the city or connecting between the different modes of transport. These hubs include main 
public transport links such as national and regional rail, tram, buses, taxis, and shared 
mobility modes. A significant challenge when designing such hubs is the limited space 
available in the inner city.  

- Transport corridor hubs: These hubs link residents with public transport services by 
providing several first and last-mile options. Additionally, shared mobility provided in these 
hubs can fill the gaps in services to link the population with public transport.  

- Neighborhood hubs: These hubs are located in the urban environment in combination with 
a small public transport stop or independently.  

- Business park hubs: These hubs offer commuting links for the high density of users present 
at those locations. 

- Suburbs hubs: These hubs are located on the city's outskirts, in areas with lower density 
and higher private car ownership. These hubs can also house national or regional railway, 
shared mobility, and car parking facilities, providing a seamless transfer between the 
different modes.  

- Rural hubs: These hubs can provide a range of services since there is ample space 
available, as long as there is a critical mass to ensure the financial viability of services. 
These areas are usually underserved by traditional public transport modes. Mobility hubs 
can connect the service-limited areas to other areas using new mobility options.  

Additionally, the hubs can be subdivided into categories depending on the scale at which they 
operate. The scale relates to the services provided and the willingness of the users to travel to 
reach them. APPM and Goudappel Coffeng (2020) subdivide the hubs into (Inter)national, 
(Inter)regional, City, and Neighborhood/village scales. APPM and Goudappel Coffeng (2020) 
present a figure to relate the different mobility hub types, geographical locations, and scales. The 
schematic is adapted to fit the previously discussed categorization and is presented in Figure 2.2.  

 
Figure 2.2. Categorization of mobility hubs (APPM & Goudappel Coffeng, 2020) 
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2.1.2. Available Modes at Mobility Hubs 

Mobility hubs can house different transportation modes, traditional public transport modes, 
and emerging shared mobility. Traditional public transport modes include but are not limited to 
the railway, light rail, metro, tram, bus, and ferry. Roukouni and Correia (2020) presented a 
scheme summarizing the different shared modes. This scheme has been adapted to fit the 
mobility hub’s definition adopted in this thesis, as seen in Figure 2.3. Only cars, mopeds, and e-
bikes will be considered in this thesis. However, alternative transit and on-demand services are 
described in the following section since they can be incorporated into such a model in the future. 
Additionally, the system adopted in this thesis is a one-way station-based system which means 
that a user can only access these modes from designated hubs, but the pick-up and drop-off 
hubs can be different.  

 
Figure 2.3. Shared mobility modes (Roukouni & Correia, 2020) 

Car sharing  

Car sharing systems allow individuals to use available cars on an on-demand basis and without 
owning them. The primary differentiation that can be made is whether the service is a business-
to-consumer (B2C) service or a peer-to-peer (P2P) service. In the case of a B2C system, the 
shared cars are owned and operated by a car sharing company, while in the case of a P2P 
system, individual car owners rent out their private vehicles. This enables the service to be scaled 
up quickly with limited investments. In addition, the services can be either round-trip services 
which means that the trip must start and end at the exact location, or one-way services, which 
means that the trip can start and end in different locations. P2P systems are usually operated as 
round-trip services since the vehicles have to be brought back to their owner; the vehicles are 
parked in either private or public parking. In contrast, B2C systems can be either round-trip or 
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one-way services. In the case of a round-trip service, the vehicle must be returned to the same 
facility after usage. One-way services can be station-based or free-floating (Shaheen et al., 2020).   

Personal vehicle sharing is divided into several subtypes: peer-to-peer (P2P), hybrid P2P, P2P 
marketplace, and fractional ownership. In a P2P car sharing system, car owners make available 
their private vehicles to be used by the clients of a P2P carsharing company. Some companies 
choose to have private P2P carsharing and traditional carsharing services, classifying the services 
as hybrid P2P carsharing. In the case of the P2P marketplace, the vehicle owners provide the 
vehicles to the users while setting their terms and conditions; the company is just a platform that 
connects vehicle owners to users. Finally, fractional ownership refers to a vehicle owned by 
several individuals (Shaheen et al., 2020).     

Bicycle sharing 

Bicycle sharing is one of the first shared modes deployed in cities. Bicycle sharing can be 
station-based or free-floating. In the case of a station-based system, the operation might differ if 
a trip must start and end at the same station (round-trip), or it is possible to start a trip from a 
station and end it in another one (one-way). In the Netherlands, one of the most used bicycle 
sharing services is the OV-fiets. These bikes are unlocked at train stations and returned to the 
same station after usage. The aim of providing such a service is to expand the catchment area of 
train stations and provide a first-mile, last-mile solution to new and existing users. In the case of 
free-floating services, users can unlock and park the bicycle at any location in the operational 
zone (Roukouni & Correia, 2020; Shaheen et al., 2020). Lately, electric bicycles and electric 
cargo bicycles have been introduced. The electric engine allows users to travel longer distances 
with less effort. This benefit increases the competitiveness of bike sharing services. Additionally, 
providing cargo vehicles attracts new users such as families and users transporting goods. 

On-demand ride services 

Users can request on-demand ride services using digital applications. These applications 
connect drivers with passengers. On-demand ride services can be divided into ride sourcing, ride 
splitting, and e-hail. In the case of ride-sourcing, drivers transport passengers to the location 
specified by the passenger on the digital platform. Ride sourcing has been fast-growing during 
the last decade. The only difference between ride sourcing and ride splitting is that in the latter 
case, passengers having a similar origin and destination share the sourced ride to save on the 
fee. Finally, e-hail services allow users to ask for a taxi through an application. However, the price 
is fixed and is not demand-driven, as in the case of ride sourcing (Roukouni & Correia, 2020; 
Shaheen et al., 2020).  

Shared scooters and mopeds 

Multiple light electric vehicles can be shared, such as the e-scooters (e-steps) and e-mopeds. 
These modes can constitute a good mobility alternative for short and medium-length trips with a 
speed that can reach 25 km/h or 45 km/h for some e-mopeds.  
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Alternative transit services 

Alternative transit services refer to either shuttle services or micro-transit. These services 
operate in parallel and complement public transport options. They can operate either on a fixed-
route or demand-responsive basis providing high flexibility in itinerary and schedule (Shaheen et 
al., 2020).   

2.1.3. Mobility Hubs Definition Adopted in this Thesis  

The developed optimization model aims to choose which locations to install mobility hubs and 
how many vehicles to provide at each hub. The main focus of this thesis is the urban mobility 
hubs. These can be located near public transport stations, on the city's outskirts, or in different 
neighborhoods. Hence, there is no further differentiation in the type of mobility hub. The hub’s 
sizes are then a result of the model developed rather than a parameter associated with the hub 
type. The maximum hub capacity set in this thesis is 33 vehicles which means that no major 
structures need to be constructed to accommodate them in the urban environment.  Furthermore, 
this thesis does not consider additional facilities related to mobility hubs, such as parking spaces 
or package delivery points.  

A one-way station-based system is considered, which means that the shared vehicle should 
be unlocked at a hub but does not have to be returned to the same facility after usage. The shared 
modes considered in this thesis are shared e-cars, e-mopeds, and e-bikes, as seen in Figure 2.4.  

 
Figure 2.4. Shared modes considered in this thesis (Go Sharing, 2022) 
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2.2. Optimization Models for Planning Locations of Shared Mobility 
Services  

Several models and approaches have been investigated to better design shared systems. The 
different approaches can be categorized depending on the method adopted, the objective, and 
the purpose of the model. 

The first differentiation is done depending on the method adopted, whether a mathematical 
algorithm, multi-criteria decision making, or geographic information system. The second 
differentiation is done depending on the objectives of the model. Some papers focus on the 
system's profitability from an operator's point of view by maximizing, for example, the demand 
covered or the profits generated from the services. In contrast, few others assess the problem 
from a policy-maker point of view by focusing on maximizing spatial coverage, decreasing 
distribution inequality between zones, or minimizing travel costs for users. Any of the methods 
presented previously can be used to locate the stations, whether from an operator or policy-maker 
point of view.   

In the following subsections, the models are divided based on their purpose into (1) planning 
new shared mobility systems and (2) improving the operations of existing systems.  

2.2.1. Planning and Design of New Systems  

A multitude of models has been developed for unimodal shared mobility services while 
considering the concerns of users and operators. The first category is the models that distribute 
and optimize the location of the bike sharing stations spatially using mathematical formulation. 
Caggiani, Camporeale, et al. (2020) developed a mathematical formulation to minimize the daily 
bike sharing costs, including operation, maintenance, and user’s system costs. Constraints to 
satisfy the expected demand and ensure spatial equity were set. The second sub-constraint is 
achieved by setting limits on the difference between the districts regarding the available bikes per 
one demanded ride and the walking distances to and from the docking stations (Caggiani, 
Camporeale, et al., 2020). Frade and Ribeiro (2015) solved the design problem from the 
operator’s perspective by maximizing the benefits in the design and operation processes. Lin et 
al. (2013) proposed a greedy heuristic method to find a near-optimal distribution of stations and 
inventory of bikes at each station. The objectives were to minimize total travel costs, minimize 
walking distance, and guarantee the availability of bicycles. Finally, Duran-Rodas et al. (2021) 
developed a heuristic model to distribute stations by maximizing spatial fairness, considering 
spatial equity, efficiency, and equality. Decision-makers input in the model weights for both 
demand and equity. An equity deprivation index was developed to assess the equity aspect. This 
index is a ratio of the percentage of the underprivileged population and the walking accessibility 
to essential opportunities (Duran-Rodas et al., 2021).  

Guler and Yomralioglu (2021) developed a workflow that combines GIS and MCDM methods 
to determine the location of bicycle sharing stations and bike lanes, then applied it to the case of 
Istanbul, Turkey. The criteria used were the closeness to bus lines, parks, public transport 
stations, leisure, educational centers, population density, and land type. Similar methods have 
been applied to Catania, Italy, using as criteria the public transport accessibility, socio-economic 



12 

data, and location of points of interest (Fazio et al., 2021). García-Palomares et al. (2012) used 
location-allocation models to distribute the stations and determine their capacity. The authors 
tested the model intending to maximize coverage, which means maximizing the number of people 
covered within a particular radius from the station, or to minimize impedance, which means 
minimizing the distance walked to reach the stations. It is essential to note the point that increasing 
the number of stations leads to an increase in the demand covered and the accessibility benefits, 
however with diminishing returns: the more developed the network is, the more significant 
increase in costs can be obtained with minimal improvements (García-Palomares et al., 2012). 

Models were not only limited to the location of stations but also included the optimization of the 
number and size of carsharing depots (Correia & Antunes, 2012) or the rebalancing of vehicles 
between stations based on the demand (Huang et al., 2018; Jorge et al., 2014; Li et al., 2016; 
Nikiforiadis et al., 2021). In addition to that, several papers assessed the optimal number of docks, 
bikes, and trips per station. For example, Chou et al. (2019) optimized the location of the stations 
as well as the number of bikes by using train and bus operator's data. Wuerzer et al. (2012) 
performed an analysis that combines mathematical formulation and GIS to locate the stations and 
optimize the number of bikes. The parameters considered were the population density, the biking 
infrastructure, employment density, the public transport stations, and other points of interest.  

Only a few models were developed to optimally locate multimodal mobility hubs. Nair and 
Miller-Hooks (2014) developed a bi-level framework to minimize total travel times and the 
installation costs of the multimodal hubs that include shared bicycles, cars, or electric vehicles. 
However, this model did not integrate public transport. Petrović et al. (2019) developed a 
methodology for planning the locations of urban intermodal terminals along a railway line. The first 
phase included finding the number of citizens in each catchment area using GIS. The second 
phase included optimizing the location while considering travel time, construction costs, and 
impact on the environment. However, this approach did not consider multimodal traveling. Steiner 
and Irnich (2020) introduce a model to optimize the use of line segments and hubs where on-
demand mobility modes are provided. The goal of the model is to minimize total costs while 
considering the intermodal trips linking the on-demand legs to complement traditional links. 
However, the model developed does not differentiate between the on-demand modes. Caggiani, 
Colovic, et al. (2020) developed a model that distributes the bike sharing stations while 
considering the accessibility of the populations. A mathematical function has been developed, 
having as an objective the minimization of inequalities between advantaged and disadvantaged 
groups in terms of accessibility to public transport and intermodal travel itineraries while ensuring 
coverage. Frank et al. (2021) developed a decision support tool to locate multimodal mobility 
hubs in rural areas. The model aims to improve the accessibility to different points of interest by 
maximizing the number of points of interest categories that the residents can access within a 
certain travel time threshold and improving the accessibility to workplaces by maximizing the ratio 
of car travel time to intermodal travel time. The model includes decisions related to the location 
of the hubs, the required equipment, and the available on-demand modes per hub. Finally, Tran 
and Draeger (2021) developed an evaluation framework to assess the impacts of hubs in cities 
by considering three different scenarios of choosing ten mobility hubs to prioritize (1) current 
modal split, (2) high transit capacity, or (3) multimodal services.  
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2.2.2. Improvement of Existing Systems 

Studies modeled how to improve existing bike sharing systems by locating additional stations 
and managing their capacity. Several indicators were used to demonstrate how to prioritize new 
locations for stations or other biking facilities (Kabak et al., 2018; Larsen et al., 2012). Banerjee 
et al. (2020) used a combination of GIS and mathematical formulation to identify the optimal 
location for new stations while considering the closeness to public transport, attractions, and 
existing bike stations. Kurniadhini and Roychansyah (2020) developed a model based on spatial 
multi-criteria analysis to identify the best location for new bike sharing stations in Yogyakarta, 
Indonesia. The model considered 13 criteria and aimed to induce a shift in the transport patterns 
of this city. Kanjanakorn and Piantanakulchai (2013) used experts’ knowledge to rank suitable 
solutions and evaluate different parameters such as walkability to destinations and land type. 
Finally, Bhuyan et al. (2019) developed a spatial GIS approach that maps the areas according to 
the density-based bike equity index. This index includes disadvantaged demographic groups 
(youth, elderly, minorities, low-income, and zero-car households) and a level of traffic stress 
related to the safety of bikeable roads. The results help prioritize bike share infrastructure (Bhuyan 
et al., 2019).  

Other methods include the utilization of mathematical formulations. For example, a mixed-
integer linear programming model was used for a case in Beijing, China, to maximize the demand 
(Sun et al., 2019). Another objective was to minimize the distance traveled to reach the stations 
(Zuluaga et al., 2018) or minimize travel time and costs using a hybrid greedy evolutionary 
algorithm (Ali-Askari et al., 2017). Conrow et al. (2018) developed an approach that includes the 
use of GIS and a spatial bi-objective optimization model. The model aims to maximize potential 
user demand and total bicycle network coverage. Weights are assigned to each sub-objective, 
with a higher weight given to the potential user demand coverage to achieve equitable station 
siting (Conrow et al., 2018). Besides locating the stations, Jin et al. (2018) developed a model to 
find the optimal distribution of service sites for an operator in Fuzhou, China. Density-based 
clustering and ant colony algorithms were used to plan the shortest circuit between service sites 
while considering population density. 

2.2.3. Summary 

The literature review presented the different methods researchers have adopted to locate and 
distribute mobility hubs or shared mobility stations. The options used are the following: 
mathematical optimization, multi-criteria decision making, and GIS-based analysis. Most of the 
models developed in the literature focus on locating stations for unimodal mobility services, mainly 
bike sharing services. The models aim to either maximize profits for operators or maximize spatial 
coverage. There is a lack of models focusing on maximizing social welfare by considering 
travelers’ costs in a multimodal network. Most of the models do not consider the relation with 
other traditional modes of transport, which might influence the choices made in the network and 
the overall traveler’s welfare. The two options of multi-criteria decision making and GIS-based 
analysis do not adequately suit this thesis’ purpose. Multi-criteria decision making can include 
more qualitative inputs such as the inputs of policy-makers and citizens' preferences without 
translating those inputs into quantitative mathematical values. This same advantage can also be 
considered a disadvantage due to the loss of precision and mathematical basis. GIS allows 
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gathering and analyzing geographical data that includes demand, land use, and distances. An 
analysis based on GIS would allow relating the geographical data to the spatial distribution of the 
hubs, which would give more approximative results. 

In conclusion, no model has been presented in the literature to optimize the location and 
capacity of multimodal mobility hubs in a multimodal network to maximize social welfare. The 
previously discussed studies that were performed in the field of locating shared bike and shared 
car facilities are summarized in Table 2.1. The abbreviations used in this table are presented 
below:  

B: biking infrastructure, BS: bike sharing, CS: car sharing, ES: electric vehicle sharing, MH: 
multimodal mobility hubs 

MO: mathematical optimization, GIS: geographic information system, MCDM: multi-criteria 
decision making 

Table 2.1. Literature overview 
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Goal Method Case Study 
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(Ali-Askari et al., 
2017) 

BS  × Minimize total costs, which 
include stations construction 
costs, lanes construction costs, 
bike holding costs, traveling 
costs, and penalty for missed 
demand 

Distribution of 
new stations 

×   Illustrative 
Example 

(Banerjee et al., 
2020) 

BS  × Location allocation model to 
maximize market share 
(considering existing stations and 
demand points) while considering 
a suitability score that includes the 
distance to attractions and 
restaurants 

Distribution of 
new stations 

× ×  Baltimore, US 

(Bhuyan et al., 
2019) 

BS  × Prioritizing new stations 
considering a bike equity index 
that includes parameters related 
to the age of the population, the 
car ownership levels, the 
presence of minorities, and the 
income levels 

Distribution of 
new stations 

 ×  Baltimore, US 

(Caggiani, 
Camporeale, et 
al., 2020) 

BS ×  Minimize the implementation, 
operations, and users’ costs while 
balancing the level of service for 
all users  

Distribution of 
stations, bikes, 
and racks 

×   Illustrative 
Example 

(Caggiani, 
Colovic, et al., 
2020) 

BS ×  Minimize the inequalities in bike-
public transport mobility while 
maintaining levels of accessibility 
and coverage. Inequality is 
represented by the Theil index 
combined with multimodal BS-PT 
accessibility measure 

Distribution of 
new stations 

×   Illustrative 
Example 
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(Chou et al., 
2019) 

BS 
CS 

×  Maximize the utilization rate of the 
system using transit data 

Distribution of 
stations and 
bikes 

×   Punggol, 
Singapore 

(Conrow et al., 
2018) 

BS  × Maximize total bicycle network 
coverage and potential user 
demand using a bi-objective 
weighted optimization  

Distribution of 
stations 

× ×  Phoenix, US 

(Correia & 
Antunes, 2012) 

CS ×  Maximize the profits of the 
operator  

Distribution of 
depots 

×   Lisbon, 
Portugal 

(Duran-Rodas et 
al., 2021) 

BS ×  Distribute the stations by weighing 
both demand and/or equity. 

Distribution of 
stations 

×   Munich, 
Germany 

(Fazio et al., 
2021) 

B ×  Prioritizing locations based on a 
bicycle-oriented development 
index. The index considers socio-
economic data, public transport 
accessibility, and attractiveness 
of points of interest 

Distribution of 
stations  

 × × Catania, Italy 

(Frade & Ribeiro, 
2015) 

BS ×  Maximize the demand covered 
with a budget constraint 

Distribution of 
stations, bikes, 
and relocation  

×   Coimbra, 
Portugal 

(Frank et al., 
2021) 

MH ×  Improve the multimodal 
accessibility by: 
Maximizing the share of points of 
interest categories reachable 
within a certain time threshold 
Maximizing the ratio of travel time 
by car to travel time by multiple 
modes 

Distribution of 
multimodal 
mobility hubs 
and availability of 
on-demand 
modes 

×   Heinsberg, 
Germany 

(García-
Palomares et al., 
2012) 

BS ×  Location-allocation model to: 
Minimize impedance (costs to 
reach the stations)  
Maximize coverage within 200 m 
of each station 

Distribution of 
stations and 
docks 

 ×  Madrid, 
Spain 

(Guler & 
Yomralioglu, 
2021) 

B ×  Ranking of locations using factors 
such as population density, slope, 
and proximity to points of interest, 
public transport, and bike lanes 

Distribution of 
stations 

 × × Istanbul, 
Turkey 

(Huang et al., 
2018) 

CS ×  Maximize operator’s profit: the 
revenue is generated from the 
fees paid by the users; and the 
costs from the vehicles’ fixed and 
variable costs, relocation costs, 
and parking spot rental costs 

Distribution of 
stations, their 
capacity, and 
fleet size 

×   Suzhou, 
China 

(Jin et al., 2018) BS  × Cluster the bikes into service sites 
Identify the shortest circuit 
between the service sites using 
the ant colony algorithm 

Distribution of 
service sites 

× ×  Fuzhou, 
China 
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(Kabak et al., 
2018) 

BS  × Ranking of locations using 
different spatial criteria 

Distribution of 
new stations 

 × × Karsiyaka, 
Turkey 

(Kanjanakorn & 
Piantanakulchai, 
2013) 

BS  × Ranking of locations using factors 
such as land types, accessibility 
to biking infrastructure, 
walkability, and space availability  

Distribution of 
new stations 

  × Illustrative 
example 

(Kurniadhini & 
Roychansyah, 
2020) 

BS  × Ranking of locations using factors 
such as availability of biking 
infrastructure, public transport 
stations, points of interest, and 
population density 

Distribution of 
new stations 

 × × Yogyakarta, 
Indonesia 

(Li et al., 2016) ES ×  Minimize construction, vehicle 
charging, and rebalancing costs 

Distribution of 
stations and fleet  

×   Illustrative 
example 

(Lin et al., 2013) BS ×  Minimize total costs, which 
include travel costs, setup costs 
for the bike stations and lanes, 
penalty costs for uncovered 
demand, investment costs, and 
bike safety costs 

Distribution of 
stations and 
network 
structure of bike 
lanes 

×   Illustrative 
example 

(Nair & Miller-
Hooks, 2014) 

MH ×  Maximize revenues for the 
operator and minimize user travel 
and waiting times using a bi-level 
mixed-integer model 

Distribution of 
stations, their 
capacity, and 
occupancy 

×   Illustrative 
example 

(Nikiforiadis et al., 
2021) 

BS ×  Maximize the demand and area 
coverage and minimize the need 
for redistribution throughout the 
day using a multi-objective 
optimization 

Distribution of 
stations 

×   Thessaloniki, 
Greece 

(Petrović et al., 
2019) 

MH ×  Maximize the population covered 
by the service areas of the 
stations 

Distribution of 
stations 

× ×  Zagreb, 
Croatia 

(Steiner & Irnich, 
2020) 

MH ×  Minimize operation costs for the 
operating fixed-route segments in 
addition to the variable and fixed 
costs for the on-demand mobility 
services 

Determination of 
fixed-route 
network 
integrated with 
mobility-on-
demand 

×   Gottingen, 
Germany 

(Sun et al., 2019) BS  × Maximize the satisfied user 
demand  

Distribution of 
virtual stations 
and bikes 

×   Beijing, China 

(Wuerzer et al., 
2012) 

BS ×  Maximize an index that includes 
population covered, employment, 
availability of bike infrastructure, 
and availability of points of interest 

Distribution of 
stations 

× ×  Boise, US 

(Zuluaga et al., 
2018) 

BS  × Minimize the total access costs for 
users using a location-allocation 
problem 

Distribution of 
new stations 

× ×  Caldas, 
Columbia 



17 

                            P
ho

to
 ta

ke
n 

by
 t

he
 a

ut
ho

r 
– 

V
al

en
ci

a,
 J

ul
y 

20
21

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



18 

3. Methodology  

The model developed uses the outputs of a macroscopic transport model. A macroscopic 
model simulates the aggregate behavior of traffic flows. It aggregates the network's trips into 
several zones with similar attributes and properties. These zones are represented in the model as 
if all the characteristics are concentrated into single points called zone centroids. The centroids 
are not physical locations on the map but representative elements in space that are attached to 
the network using centroid connectors. The connectors represent the average costs to join the 
system (de Dios Ortúzar & Willumsen, 2011). They influence the route followed when using any 
mode and hence affect the total costs of traveling from an origin to a destination.  

The attractiveness of different mobility alternatives is modeled using the concept of utility, 
which represents what an individual seeks to maximize. The utility includes two parts: the 
observable and random parts. The observable part is usually a linear combination of variables 
that represent attributes related to the mobility option, such as travel time, or to the individual, 
such as income. These variables are multiplied by coefficients that represent the contribution of 
these variables to the overall satisfaction produced by the alternative. The random part of the 
utility represents the particular tastes of each individual or parameters that are not considered in 
the model. The utility values of the different alternatives are contrasted and transformed into a 
probability of choosing a specific alternative (de Dios Ortúzar & Willumsen, 2011). The utilities are 
used to distribute the trips over different modes and routes to finally reach equilibrium in the 
system. The processes are not detailed in this paragraph since they are not the focus of this 
thesis. What is essential for this thesis are the exported elements from the transport model. In this 
case, the transport model allows obtaining the skim matrices representing the travel distance and 
travel time to go from an origin to a destination using a specific mode and the OD-matrix, which 
includes the number of trips performed between origin and destination centroids. 

The model developed allows to optimally locate the mobility hubs and determine their capacity. 
The framework adopted for the development of the model is presented in Figure 3.1. The model 
is divided into several modules: computational modules that calculate the number of people that 
would like to use a mobility hub; a mathematical optimization module to optimize the capacity, 
availability, and relocation of shared vehicles; and finally, a genetic algorithm that performs several 
iterations to find the optimal distribution of hubs. In the initial Utilities Computation module, the 
utilities per mode and OD-pair are computed using skim matrices exported from a macroscopic 
transport model. The Genetic Algorithm activates some mobility hubs from a set of pre-chosen 
candidates. The utilities computed and the activated hubs are used in the Path and Usage module 
to find the multimodal shortest paths by maximizing utilities. As a result, the mobility hubs used by 
these paths are recorded. The utilities obtained for each OD-pair and path are used to compute 
the demand for each shared mode available at the hubs. This demand is inputted into the Capacity 
module to optimize the hubs’ capacities and eventually obtain the ratio of satisfied demand. The 
objective function of the Capacity module is to maximize social welfare. This objective function 
also represents the fitness function used by the Genetic Algorithm to iterate over the different 
activated mobility hub locations. Hence, after several iterations, the optimal distribution and 
capacities of the mobility hubs are obtained. This framework is detailed in the following sections.   
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Figure 3.1. Model framework 
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3.1. Utilities Computation Module 

In the initial step of the model, the skim matrices and the number of trips done per OD-pair are 
obtained from an existing transport model, in the case of this thesis Urban Strategy. Urban 
Strategy allows exporting the travel time and distance matrices per mode for the different OD-
pairs. A more detailed description of Urban Strategy is presented in Appendix A. The advantage 
of using the skim matrices from a transport model is to reduce the complexity related to 
congestion and public transport modeling. The network is then simplified into a combination of 
centroids and links with specific travel times and distances depending on the modes. These 
matrices are used to compute the utilities to travel from an origin to a destination. The utilities are 
calculated for the traditional modes of transport, which include: walk, bicycle, car, public 
transport; and the shared modes, which include: shared cars, shared mopeds, and shared e-
bikes. The following utility function is used for that purpose with different parameter values per 
mode:  

𝑈𝑈 =  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +  𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐𝑡𝑡 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑐𝑐𝑡𝑡𝑠𝑠_𝑝𝑝𝑡𝑡𝑠𝑠_𝑘𝑘𝑘𝑘)  + (𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑑𝑑𝑘𝑘𝑡𝑡 ×  𝑡𝑡𝑠𝑠𝑡𝑡𝑢𝑢𝑡𝑡_𝑐𝑐𝑓𝑓_𝑐𝑐𝑑𝑑𝑘𝑘𝑡𝑡 )
+ (𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑑𝑑𝑘𝑘𝑡𝑡 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑐𝑐𝑡𝑡𝑠𝑠_𝑝𝑝𝑡𝑡𝑠𝑠_ℎ𝑐𝑐𝑢𝑢𝑠𝑠 )  +  𝑘𝑘𝑐𝑐𝑑𝑑𝑡𝑡_𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑑𝑑𝑓𝑓𝑑𝑑𝑐𝑐_𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐   

The parameters used in Urban Strategy are adopted in this thesis. These parameters were 
estimated using OViN data (Onderzoek Verplaatsing in Nederland), for example, the travel diary 
data of the Netherlands. However, shared mopeds and e-bikes do not have estimated 
parameters; hence they are approximated. The literature presents different parameters and 
elements to be included in utilities of shared modes, such as walking distance, searching time, 
pricing, battery levels, and availability (Li & Kamargianni, 2019, 2020; Papu Carrone et al., 2020; 
Reck et al., 2021; van Kuijk et al., 2021). However, a simplified utility structure is adopted to match 
the utilities used in the transport model Urban Strategy. Additionally, the parameters estimated in 
the literature for different cities can not be used for Amsterdam because of the differences in user 
behavior.  

The data from the transport model is used to calculate the total number of trips per OD-pair 
which is used at a later stage to find the new modal split when the shared modes are introduced. 
The total number of trips done per OD-pair is computed by summing up the number of trips done 
per traditional mode for each OD-pair.  

Assumptions: the assumptions made in this module are listed below:  
- It is assumed that a simplified utility function sufficiently represents the individual’s 

considerations when choosing to use shared modes. 
- It is assumed that the parameters of the utility functions do not vary depending on the 

individual characteristics.  

To summarize this module, the following inputs were used to generate the outputs used in the 
other modules: 

- Inputs: Skim matrices per mode, trips per OD-pair per traditional mode. 
- Outputs: Utility matrices per traditional mode, utility matrices between hubs per shared 

mode, total trips per OD-pair. 
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3.2. Path and Usage Module 

This module aims to find the shortest paths for different mode combinations by maximizing the 
utilities of these paths. Additionally, for each path, the mobility hubs used are recorded. The 
traditional modes considered are walking, bicycle, car, and public transport. While the shared 
modes considered are shared mopeds, shared bikes, and shared cars. The utilities per OD-pair 
per mode, which are outputs of the previous module, are used to compute the total utilities for 
each multimodal path. These paths link OD-pairs by including also transfers at mobility hubs from 
one mode to another. In this thesis, a simplification is made by limiting the number of legs in a 
multimodal trip to three. Trips with more than three legs are considered rare (Wörle et al., 2021). 
Considering four traditional modes and three shared modes, the total possible alternatives for a 
three-leg trip is equal to 4 x 3 x 4 = 48. The different possible multimodal combinations are 
presented in Table 3.1. The mode combinations that are not considered are presented in a light 
font.  

Table 3.1. Possible mode combinations for multimodal trips 

1. Walk – Shared Bike – Walk   2. PT – Shared Bike – PT 
3. Walk – Shared Moped – Walk 4. PT – Shared Moped – PT 
5. Walk – Shared Car – Walk 6. PT – Shared Car – PT 
7. Car – Shared Bike – Car 8. Bike – Shared Bike – Bike 
9. Car – Shared Moped – Car 10. Bike – Shared Moped – Bike 
11. Car – Shared Car – Car 12. Bike – Shared Car – Bike 
13. Bike – Shared Bike – PT 14. PT – Shared Bike – Bike 
15. Bike – Shared Moped – PT 16. PT – Shared Moped – Bike 
17. Bike – Shared Car – PT 18. PT – Shared Car – Bike 
19. Bike – Shared Bike – Car 20. Car – Shared Bike – Bike 
21. Bike – Shared Moped – Car 22. Car – Shared Moped – Bike 
23. Bike – Shared Car – Car 24. Car – Shared Car – Bike 
25. Car – Shared Bike – PT 26. PT – Shared Bike – Car 
27. Car – Shared Moped – PT 28. PT – Shared Moped – Car 
29. Car – Shared Car – PT 30. PT – Shared Car – Car 
31. Walk – Shared Bike – PT 32. PT – Shared Bike – Walk  
33. Walk – Shared Moped – PT 34. PT – Shared Moped – Walk  
35. Walk – Shared Car – PT 36. PT – Shared Car – Walk  
37. Walk – Shared Bike – Bike 38. Bike – Shared Bike – Walk  
39. Walk – Shared Moped – Bike 40. Bike – Shared Moped – Walk  
41. Walk – Shared Car – Bike 42. Bike – Shared Car – Walk  
43. Walk – Shared Car – Car 44. Car – Shared Car – Walk  
45. Walk – Shared Moped – Car 46. Car – Shared Moped – Walk  
47. Walk – Shared Car – Car 48. Car – Shared Car – Walk  

  

It is essential to mention that other access/egress legs might be included in the public transport 
leg since the transport model considers walking, for example, as an access/egress mode to public 
transport, as seen in Figure 3.2. Considering all the 48 possible combinations of modes for a 
three-leg trip is computationally heavy. Hence, the combinations that are less probable or more 
complex to model are not considered in the case study. The mode combinations 2, 4, and 6 are 
not considered since using shared mobility between two public transport trips is relatively rare; 
people would prefer to transfer using public transport. Combinations 7 to 12 that have the car or 
bike as access/egress to the shared modes are disregarded because such encounters are rare. 
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The person should then have two vehicles located at different places, which is possible but 
constitutes a negligible amount of trips. The previously mentioned combinations can be modeled 
easily; however, they are disregarded to reduce computation time. Finally, all the combinations 
that include a car or a bike as access or egress are not considered due to the increase in 
complexity and computation time to model the vehicle ownership and its spatial availability. 
However, disregarding the paths that have the car as access or egress excludes the cases where 
the person parks the car on the city's outskirts and uses public transport or shared modes to 
access or leave the city. Hence, the cases where the hub is used as a park and ride facility are 
not considered in this thesis, especially that the case study focuses on the urban area of 
Amsterdam.  

 
Figure 3.2. Comparison between real-life multimodal paths and Urban Strategy paths used 

To compute the shortest path between OD-pairs while considering shared modes, the location 
of mobility hubs for the specific iteration should be inputted into this module from the heuristic. 
The shortest path computation varies depending on the mobility hubs activated. The utilities are 
used to find these shortest paths. For the mode combinations 1, 3, and 5 (mode combinations in 
which the first and last legs are walking and a shared mode is considered the main mode), the 
closest mobility hubs to the origin and destination are found for each OD-pair. The utility of the 
whole path is computed by adding the utilities of the walking legs and the shared modes. It is 
essential to note that the walking leg can be equal to zero if the centroid is also an activated hub.    
In the case of the mode combinations 31 to 36 (mode combinations that include public transport), 
the shortest path is found by maximizing the total utility of the path. The latter is computed by 
adding the utility of the walking, shared mode, and public transport legs. Adding the different 
utilities for the different legs of the trip is inspired by the super network concept (Carlier et al., 
2002). A supernetwork comprises networks specific to different modes interconnected using 
transfer links (Carlier et al., 2002).  

Mode-specific constants can be included in the path’s utility depending on the role of the mode 
in the entire trip (van Eck et al., 2014). Hence, for the paths that include only walking and a shared 
mode, the mode-specific constant for the walking legs is not considered since it is not the main 
mode. Likewise, for the mode chains that include walking, shared modes, and public transport, 
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only the mode-specific constant of the public transport is considered since it is the main mode in 
this path, and the other two modes are just access or egress modes.  

Assumptions and Limitations: the assumptions made and limitations present in this module are 
listed below:  

- When computing the utility of the multimodal paths, only the shortest path is considered in 
this model. However, in real life, the shortest path is not always used while using active 
modes (Koch et al., 2021). Additionally, other parameters affect the choice of which 
mobility hub to use, such as the services and shared modes present at that hub (Nogal & 
Jiménez, 2020). It is essential to mention that the legs forming the shortest path consider 
congestion (before introducing shared modes) since they are exported from the transport 
model.  

- Only the mode-specific constant of the main mode is considered when computing the total 
utility of the multimodal path. Due to the lack of stated or revealed preference data, a new 
mode-specific constant for the mode combination is not estimated.  

- It is assumed that trips with more than three legs are rare and are disregarded.  
- Only nine multimodal paths are considered. The combinations that include a bike or car as 

an access or egress mode are disregarded due to the increased complexity of modeling 
personal vehicles' ownership and spatial availability.  

- It is assumed that the congestion is not affected by the shift from traditional modes of 
transport to shared modes. This assumption is made because it is computationally heavy 
to compute the congestion for the whole network at each iteration. Hence, the skim 
matrices of the initial state are used for all the iterations. Many studies have proved that 
the effect of shared modes is limited; in some cases, there is either a minor increase or a 
decrease in congestion (Fan & Harper, 2022).  

To summarize this module, the following inputs are used to generate the outputs used in the 
other modules: 

- Inputs: Utilities per mode and OD-pairs, set of activated mobility hubs. 
- Outputs: Utilities per multimodal path and OD-pair; and mobility hubs usage per path and 

OD-pair (record of which hubs are used per path for each OD-pair).  

3.3. Demand Estimation Module 

The Demand Estimation module estimates the travel demand per shared mode for every pair 
of mobility hubs. For each OD-pair 𝑘𝑘, the utilities 𝑈𝑈 of all the paths 𝑝𝑝 ∈ 𝒫𝒫 are used to compute the 
ratio of trips performed using a multimodal path 𝑝𝑝. The utilities are multiplied by a logit parameter 
𝛽𝛽. The equation of the logit ratio used for this purpose is presented below: 

𝑠𝑠𝑝𝑝𝑘𝑘 =
exp�−𝛽𝛽 × 𝑈𝑈𝑝𝑝𝑘𝑘�

∑ exp�−𝛽𝛽 × 𝑈𝑈𝑝𝑝𝑘𝑘�𝑝𝑝∈𝒫𝒫
 

However, the logit model assumes that all alternatives are independent, which is not the case 
when considering different paths that include public transport. Several solutions are presented in 
the literature to overcome this problem.  

The first one is using a probit model. The utilities are decomposed into observed and 
unobserved parts. In the probit model, it is considered that the unobserved part follows a normal 
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distribution with a specific variance. Hence, every path alternative would have a different variance, 
and this variability allows to find the distribution of individuals over the different paths (Train, 2009). 
However, the probit model can not be computed analytically (Hoogendoorn-Lanser & Bovy, 
2007). This makes probit computationally heavy, especially since several iterations need to be 
performed for every OD-pair.  

Another solution is to use a nested model. In such a model, public transport is treated as the 
main mode with a shared mode and walking as the access/egress mode (Krajzewicz et al., 2018). 
However, in that case, several nesting parameters need to be estimated, which is difficult, 
especially if no data is available. Furthermore, the nests only consider the correlation between the 
choices without considering the length of the correlated paths. Additionally, the computation of 
the probabilities with the nesting parameters needed consumes much CPU time, making it critical 
for a model with many OD-pairs (Krajzewicz et al., 2018).  

The third option is using a path size overlap factor. The path size overlap factor is used to 
increase the disutility of an alternative in case of overlap. It varies between 0 and 1. If the path of 
an individual is unique, then the path size factor is equal to 1; hence the utility remains constant. 
On the other hand, if there is partial overlap, then the path size factor is smaller than 1, leading to 
an increase in disutility and a decrease in the attractiveness of this path (Hoogendoorn-Lanser & 
Bovy, 2007). The probability of choosing path 𝑝𝑝 is given by the following equation:  

𝑠𝑠𝑝𝑝𝑘𝑘 =
exp �−𝛽𝛽 × �𝑈𝑈𝑝𝑝𝑘𝑘 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 ln𝑃𝑃𝑃𝑃��

∑ exp �−𝛽𝛽 × �𝑈𝑈𝑝𝑝𝑘𝑘 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 ln𝑃𝑃𝑃𝑃��𝑝𝑝∈𝒫𝒫
 

Where,  

𝑃𝑃𝑃𝑃 = 1 −
𝑡𝑡𝑃𝑃𝑃𝑃 (𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆 𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑠𝑠)

𝑁𝑁 × 𝑡𝑡𝑆𝑆𝑆𝑆 𝑝𝑝𝑜𝑜𝑝𝑝ℎ
 

𝑡𝑡𝑃𝑃𝑃𝑃 (𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆 𝑝𝑝𝑜𝑜𝑝𝑝ℎ𝑠𝑠) corresponds to the length of the public transport leg in the path that includes 

shared modes, 𝑁𝑁 corresponds to the total number of paths that include public transport legs, and 
𝑡𝑡𝑆𝑆𝑆𝑆 𝑝𝑝𝑜𝑜𝑝𝑝ℎ corresponds to the length of the whole path that includes walking, shared mode, and 

public transport. The logarithm of the path size factor appears to account for statistical and 
behavioral overlaps effects (Hoogendoorn-Lanser & Bovy, 2007). To properly model how the 
overlap affects choice behavior, a parameter 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 is needed. This parameter is estimated from 

obvservations (Hoogendoorn-Lanser & Bovy, 2007). Since no data is available to estimate 
𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝, it is approximated. The impact of the parameter 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 on the modal split and hubs 

usage is analyzed in the case study. A positive 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 is chosen to reflect that the overlap would 

lead to a disutility, meaning that a path overlapping with public transport is not as attractive as if 
the same path was considered an independent one. Dixit et al. (2021) found a positive perception 
of route overlap for public transport due to the availability of alternative travel options in case of 
disruptions. However, in the case of this thesis, the overlap is assumed to be negatively perceived. 
It adds to the disutility due to the assumed identical paths used.  

A significant issue is that in the case where the mode combination “walk – shared mode – 
public transport” and the path of public transport are compared together, it might happen that the 
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public transport leg used is not physically the same in both cases. The macroscopic model uses 
the public transport lines available to compute the travel time and distance between the OD-pair 
but does not provide which paths are used. In this case, the path size overlap parameter is used 
to account for the physical and modal overlap, although the physical overlap is not sure due to 
the inability to check which lines are used by the model for each OD-pair. As seen in Figure 3.2, 
other public transport lines can be used.  

The split of trips over the multimodal paths is multiplied by the total number of trips per OD-
pair to obtain the demand for shared modes. Finally, the demand for shared modes per OD-pair 
is combined with the usage matrix to obtain the number of trips demanding the use of the different 
mobility hubs and shared modes. The usage matrix provides information on which mobility hubs 
are used for each path and OD-pair and is the output of the previous module. 

If individuals want to use a shared mode, but no vehicles are available, then it is assumed that 
they are rejected access and are redistributed over traditional modes of transport. The utility 

𝑈𝑈𝑃𝑃𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝑘𝑘  is the utility experienced by the individuals of OD-pair 𝑘𝑘 that have been rejected access 

to mobility hubs. It is computed by multiplying the logit ratio of each traditional mode 𝑘𝑘′ ∈ ℳ′ by 
the utility of using it. ℳ′ includes the four traditional modes of transport. 

𝑈𝑈𝑃𝑃𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝑘𝑘 = �
exp�−𝛽𝛽 × 𝑈𝑈𝑚𝑚′

𝑘𝑘 �
∑ exp�−𝛽𝛽 × 𝑈𝑈𝑚𝑚′′

𝑘𝑘 �𝑚𝑚′′∈ℳ′
×

𝑚𝑚′∈ℳ′ 

𝑈𝑈𝑚𝑚′
𝑘𝑘  

Assumptions: the assumptions made in this module are listed below:  
- It is assumed that the path size overlap factor can translate the individual’s perception of 

overlaps in paths.  
- It is assumed that the OD matrix that includes the number of trips done between each OD-

pair does not vary when the shared modes are introduced to the network. In a more 
advanced model, the OD matrix should be computed again in an iterative manner using 
the skim matrices of all the available modes.  

To summarize this module, the following inputs are used to generate the outputs used in the 
other modules: 

- Inputs: Utilities per mode path and mobility hubs usage per OD-pair. 
- Outputs: Number of trips using the different mobility hubs and shared modes per OD-pair, 

number of trips using traditional modes of transport, and the total utility experienced by 
each OD-pair when using shared modes, traditional modes, or in the case they are rejected 
access to shared modes.  
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3.4. Capacity Module 

The Demand Estimation module generates the demand for each shared mode and each 
mobility hub pair. The demand is then inputted into the linear optimization model that maximizes 
social welfare. Social welfare can be effectively modeled by using the utilities experienced by the 
individuals in the system (Wu et al., 2012). In this model, social welfare is represented by the sum 
of utilities for the trips using shared modes and the trips using traditional modes. The latter include 
the trips that are using traditional modes initially and the trips that are rejected the use of shared 
modes due to the lack of available vehicles. It is assumed that the individuals who are rejected 
access to one shared mode at a mobility hub are redistributed over the traditional modes of 
transport without considering the other shared modes or mobility hubs as options. The model’s 
basis is inspired by models developed for carsharing systems (Correia & Antunes, 2012; Huang 
et al., 2018) and bike sharing systems (Frade & Ribeiro, 2015). The model notation and 
description are presented in Table 3.2.  

Table 3.2. Model Notation 

 Sets   
 𝒦𝒦  Set of OD-pairs  
 ℳ  Set of available shared modes (shared cars, shared mopeds, and shared e-bikes) 
 𝒩𝒩  Set of centroids  
 𝒯𝒯  Set of timesteps  
    
 Parameters   
 𝐵𝐵𝑖𝑖𝑖𝑖𝑜𝑜  Investment budget  
 𝐶𝐶𝑓𝑓𝑖𝑖𝑓𝑓𝑜𝑜𝑇𝑇  Fixed investment costs to build a mobility hub   
 𝐶𝐶𝑇𝑇𝑜𝑜𝑑𝑑𝑘𝑘𝑚𝑚   Investment cost to construct or install a dock for shared mode 𝑘𝑘 ∈ ℳ  
 𝐶𝐶𝑜𝑜𝑝𝑝𝑚𝑚   Operational cost per vehicle of type 𝑘𝑘 per year  
 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑚𝑚   Relocation cost per vehicle of type 𝑘𝑘 per timestep  
 𝐶𝐶𝑜𝑜𝑜𝑜ℎ𝑚𝑚   Investment cost to acquire a vehicle of type 𝑘𝑘  
 𝑑𝑑𝑖𝑖𝑇𝑇𝑚𝑚𝑘𝑘  Demand for vehicles of type 𝑘𝑘 needed for OD-pair 𝑘𝑘 ∈ 𝒦𝒦 from mobility hub 𝑑𝑑 ∈

𝒩𝒩 to mobility hub 𝑗𝑗 ∈ 𝒩𝒩 
 𝑀𝑀  Big number  
 𝑝𝑝𝑝𝑝  Demand fraction at time step 𝑐𝑐 ∈ 𝒯𝒯  
 𝑅𝑅𝑚𝑚  Revenue generated per vehicle of type 𝑘𝑘 per timestep  
 𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚  Timesteps needed to travel from mobility hub 𝑑𝑑 to mobility hub 𝑗𝑗 using shared 

mode 𝑘𝑘  
 𝑈𝑈𝑚𝑚𝑘𝑘  Total utility experienced by the OD-pair 𝑘𝑘 using shared mode 𝑘𝑘  
 𝑈𝑈𝑃𝑃𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑜𝑜𝑇𝑇  Total utility experienced by all the OD-pairs using traditional modes of transport 
 𝑈𝑈𝑃𝑃𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝑘𝑘   Total utility experienced by the OD-pair 𝑘𝑘 that have been rejected access to a 

shared mode due to lack of capacity and used traditional modes instead 
 𝑦𝑦𝑚𝑚𝑜𝑜𝑓𝑓𝑚𝑚   Maximum number of docks or spaces for shared mode 𝑘𝑘 per mobility hub  
 𝑦𝑦𝑚𝑚𝑖𝑖𝑖𝑖

𝑚𝑚   Minimum number of docks or spaces for shared mode 𝑘𝑘 per mobility hub  
 𝑧𝑧𝑖𝑖  Binary: 1 if mobility hub is activated at node 𝑑𝑑, which is the chromosome obtained 

from the genetic algorithm 
 

 Decision variables   
 𝑠𝑠𝑖𝑖𝑇𝑇𝑚𝑚𝑝𝑝  Number of repositioned or relocated vehicles of type 𝑘𝑘 from mobility hub 𝑑𝑑 to 

mobility hub 𝑗𝑗 at the beginning of time step 𝑐𝑐 
 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝  Number of vehicles of shared mode 𝑘𝑘 present at timestep 𝑐𝑐 in mobility hub 𝑑𝑑 
 𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝  Ratio of satisfied demand for shared mode 𝑘𝑘 at timestep 𝑐𝑐 in mobility hub 𝑑𝑑 
 𝑦𝑦𝑖𝑖𝑚𝑚  Number of docks or spaces for shared mode 𝑘𝑘 available in mobility hub 𝑑𝑑  
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 Objective Function  
 max𝐶𝐶   
 

𝐶𝐶 = � � ��𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝 × � �𝑑𝑑𝑖𝑖𝑇𝑇𝑚𝑚𝑘𝑘 × 𝑝𝑝𝑝𝑝 × 𝑈𝑈𝑚𝑚𝑘𝑘

𝑘𝑘∈𝐾𝐾

 
𝑇𝑇∈𝒩𝒩

�
𝑝𝑝∈𝑃𝑃𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

+ � � ���1 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝� × � �𝑑𝑑𝑖𝑖𝑇𝑇𝑚𝑚𝑘𝑘 × 𝑝𝑝𝑝𝑝 × 𝑈𝑈𝑃𝑃𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝑘𝑘

𝑘𝑘∈𝐾𝐾

 
𝑇𝑇∈𝒩𝒩

�
𝑝𝑝∈𝑃𝑃𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

+ 𝑈𝑈𝑃𝑃𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑜𝑜𝑇𝑇 
 

3.1 

 Subject to  
 𝑡𝑡𝑖𝑖

𝑚𝑚(𝑝𝑝+1) = 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝 × � �𝑑𝑑𝑖𝑖𝑇𝑇𝑚𝑚𝑘𝑘 × 𝑝𝑝𝑝𝑝
𝑘𝑘∈𝐾𝐾𝑇𝑇∈𝒩𝒩

+ � � �𝑥𝑥𝑇𝑇𝑚𝑚𝑝𝑝′ × 𝑑𝑑𝑇𝑇𝑖𝑖𝑚𝑚𝑘𝑘 × 𝑝𝑝𝑝𝑝′

𝑘𝑘∈𝐾𝐾𝑝𝑝′∈𝒯𝒯 | 𝑝𝑝′+𝑃𝑃𝑗𝑗𝑗𝑗
𝑚𝑚=𝑝𝑝 

 
𝑇𝑇∈𝒩𝒩

− � 𝑠𝑠𝑖𝑖𝑇𝑇𝑚𝑚𝑝𝑝

𝑇𝑇∈𝒩𝒩

+ � � 𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑝𝑝′

𝑝𝑝′∈𝒯𝒯 | 𝑝𝑝′+𝑃𝑃𝑗𝑗𝑗𝑗
𝑚𝑚=0=𝑝𝑝 

 
𝑇𝑇∈𝒩𝒩

 ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ (𝒯𝒯 − 1) 

3.2 

 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 ≥ 𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝 × � �𝑑𝑑𝑖𝑖𝑇𝑇𝑚𝑚𝑘𝑘 × 𝑝𝑝𝑝𝑝
𝑘𝑘∈𝐾𝐾𝑇𝑇∈𝒩𝒩

 ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ 𝒯𝒯 3.3 

 � 𝑠𝑠𝑖𝑖𝑇𝑇𝑚𝑚𝑝𝑝

𝑇𝑇∈𝒩𝒩

≤ 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝            ∀ 𝑑𝑑 ∈ 𝒩𝒩, 𝑐𝑐 ∈ 𝒯𝒯,𝑘𝑘 ∈ ℳ𝑆𝑆𝑆𝑆 3.4 

 𝑠𝑠𝑖𝑖𝑖𝑖𝑚𝑚𝑝𝑝 = 0                     ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ 𝒯𝒯 3.5 

 𝑠𝑠𝑖𝑖𝑇𝑇𝑚𝑚𝑝𝑝 ≤ 𝑀𝑀 × 𝑧𝑧𝑇𝑇             ∀ 𝑑𝑑 ∈ 𝒩𝒩, 𝑗𝑗 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ 𝒯𝒯 3.6 

 𝑠𝑠𝑖𝑖𝑇𝑇𝑚𝑚𝑝𝑝 ≤ 𝑀𝑀 × 𝑧𝑧𝑖𝑖             ∀ 𝑑𝑑 ∈ 𝒩𝒩, 𝑗𝑗 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ 𝒯𝒯 3.7 

 𝑦𝑦𝑖𝑖𝑚𝑚 ≤ 𝑦𝑦𝑚𝑚𝑜𝑜𝑓𝑓𝑚𝑚 × 𝑧𝑧𝑖𝑖         ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ 3.8 

 𝑦𝑦𝑖𝑖𝑚𝑚 ≥ 𝑦𝑦𝑚𝑚𝑖𝑖𝑖𝑖
𝑚𝑚 × 𝑧𝑧𝑖𝑖         ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ 3.9 

 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 ≤ 𝑦𝑦𝑖𝑖𝑚𝑚                   ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ 𝒯𝒯 3.10 

 𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝 ≤ 𝑧𝑧𝑖𝑖𝑚𝑚                    ∀ 𝑑𝑑 ∈ 𝒩𝒩,𝑘𝑘 ∈ ℳ, 𝑐𝑐 ∈ 𝒯𝒯 3.11 

 � � 𝑦𝑦𝑖𝑖𝑚𝑚 × 𝐶𝐶𝑇𝑇𝑜𝑜𝑑𝑑𝑘𝑘𝑚𝑚

𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

+ �𝑧𝑧𝑖𝑖 × 𝐶𝐶𝑓𝑓𝑖𝑖𝑓𝑓𝑜𝑜𝑇𝑇  
𝑖𝑖∈𝒩𝒩

≤ 𝐵𝐵𝑖𝑖𝑖𝑖𝑜𝑜 3.12 

 � � �𝑅𝑅𝑚𝑚 × 𝑥𝑥𝑖𝑖𝑚𝑚𝑝𝑝 × � �𝑑𝑑𝑖𝑖𝑇𝑇𝑚𝑚𝑘𝑘 × 𝑝𝑝𝑝𝑝 × 𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚

𝑘𝑘∈𝐾𝐾

 
𝑇𝑇∈𝒩𝒩𝑝𝑝∈𝑃𝑃𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

−� � � �𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑚𝑚 × 𝑠𝑠𝑖𝑖𝑇𝑇𝑚𝑚𝑝𝑝 × 𝑇𝑇𝑖𝑖𝑇𝑇𝑚𝑚

𝑝𝑝∈𝑃𝑃𝑚𝑚∈ℳ

 
𝑇𝑇∈𝒩𝒩𝑖𝑖∈𝒩𝒩

−� � 𝑡𝑡𝑖𝑖
𝑚𝑚(𝑝𝑝=0)

𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

× �
1

LifeExp × TimePeriod
× 𝐶𝐶𝑜𝑜𝑜𝑜ℎ𝑚𝑚 +

1
TimePeriod

× 𝐶𝐶𝑜𝑜𝑝𝑝𝑚𝑚� ≥ 0 

3.13 
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The objective function is to maximize social welfare by maximizing the total travel utility 
experienced by the individuals in the system. It is divided into three elements: the first represents 
the sum of utilities for the trips using a shared mode and are satisfied by the available vehicles. 
The second part of the objective function represents the sum of utilities for the trips which are 
rejected access to the shared modes due to lack of capacity. These trips are then split over the 
traditional modes of transport and experience the utilities of the traditional modes. Finally, the 
utilities of the trips performed using the traditional modes of transport are added to compute the 
total social welfare. The model is subject to 13 constraints that are detailed below.  

Constraint 3.2 is an equilibrium constraint. It represents the conservation constraint of 
available shared vehicles of type 𝑘𝑘 over timestep 𝑐𝑐 at mobility hub 𝑑𝑑. The number of vehicles of 
type 𝑘𝑘 at timestep 𝑐𝑐 + 1 is equal to the number of present vehicles at timestep 𝑐𝑐 minus the number 
of vehicles that leave the mobility hub at timestep 𝑐𝑐, plus the number of vehicles that arrive at 
timestep 𝑐𝑐 from any mobility hub to hub 𝑑𝑑, minus the number of vehicles relocated from mobility 
hub 𝑑𝑑 to any other hub at timestep 𝑐𝑐, plus the number of vehicles relocated from any mobility hub 
to hub 𝑑𝑑 arriving to hub 𝑑𝑑 at timestep 𝑐𝑐. To find the arrival times of the used shared vehicles, the 
travel time for each shared mode 𝑘𝑘 from OD-pairs 𝑗𝑗 to 𝑑𝑑 is used. However, to find the arrival times 
of the relocated shared vehicles, the travel time for a car is used since all the shared modes are 
relocated using the road network with travel times similar to the car.  

Constraint 3.3 ensures that a higher number of vehicles of type 𝑘𝑘 is present at mobility hub 𝑑𝑑 
at moment 𝑐𝑐 than the demand satisfied. This constraint is translated by the need to have more 
vehicles present at a mobility hub compared to the number of vehicles leaving from that hub. It is 
essential to mention that the ratio of satisfied demand 𝑥𝑥 is a variable related to the mobility hub 𝑑𝑑 
rather than the OD-pairs. Hence, all the OD-pairs that use mobility hub 𝑑𝑑 have the same ratio of 
satisfied demand. This is more logical than finding a ratio of demand satisfied for each OD-pair 
since the operator can not choose which trips to serve. Therefore, everyone that arrives at the 
exact moment to the mobility hub has the same chance of using the shared modes regardless of 
their origin or destination.  

Constraint 3.5 ensures that no vehicles are rebalanced within the same mobility hub to avoid 
relocations that are not needed in the system. Constraints 3.6 and 3.7 ensure that no vehicles of 
type 𝑘𝑘 are rebalanced from mobility hub 𝑑𝑑 to 𝑗𝑗 if those hubs are not activated. Constraints 3.8 
and 3.9 ensure that no active hubs house more (or less) docks or spaces than the set limits. 
Constraint 3.10 guarantees that the model does not assign more vehicles of shared mode 𝑘𝑘 than 
the available docks or spaces at a mobility hub 𝑑𝑑. Constraint 3.11 ensures that the ratio of satisfied 
demand is lower than one if the mobility hub is activated or is zero if it is not activated.  

Finally, constraints 3.12 and 3.13 are budget constraints. The first one ensures that the 
investment costs are smaller than the investment budget. It computes the costs of installing the 
docks/spaces and the fixed costs of constructing a mobility hub. These costs are found by 
multiplying the installation costs per dock/space for shared mode 𝑘𝑘 by the number of docks 
needed, plus the number of mobility hubs activated times their construction costs. The second 
constraint ensures that the operation of the services is profitable. These profits are computed by 
subtracting the operator’s costs from their revenues. The latter are computed from the total trips 
performed, which are found by multiplying the duration of the trips performed by the rate of using 
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the shared mode. The operational costs equal the sum of relocation costs, the vehicle’s 
acquisition costs, and maintenance costs. The relocation costs are computed by multiplying the 
timesteps needed to relocate by the cost of relocation per timestep, while the total acquisition and 
maintenance costs are computed by multiplying the total number of vehicles by their acquisition 
and maintenance costs. The acquisition costs are divided by the time period in which the vehicles 
will operate. For example, if the modeled period is a 2 hours interval, and the vehicles are assumed 
to be operational 20 hours per day, then the time period used is 365 days/year x 20 hours/day /2 
hours = 3650, and their life expectancy is 5 years. While the maintenance costs are divided by 
the time period to convert the yearly costs into 2-hour costs. 

Assumptions: the assumptions made in this module are listed below:  
- It is assumed that rebalancing can happen at each timestep. However, other constraints 

such as the availability of employees and trucks might limit the ability to rebalance at every 
timestep.  

- It is assumed that the trips that are not satisfied due to the unavailability of vehicles are 
distributed back to traditional modes of transport. However, in real life, when individuals 
are rejected access to a shared mode due to its unavailability, they might consider several 
alternative options of which: shifting to another shared mode or walking to another mobility 
hub, for example.  

- Individuals have a particular learning experience. For example, suppose there are no 
vehicles to satisfy their trips in a particular mobility hub. In that case, using this hub might 
not be considered in the following days, or this will discourage those individuals from using 
shared modes again. Hence, this model does not consider long-term behavior and choice 
changes. 

- The pricing is set as a value per travel time. However, many operators are proposing 
subscriptions that allow the users to get further discounts. In this thesis, the subscriptions 
are not taken into consideration.  

- No discount rates are considered when converting all the costs to costs per period.    

To summarize this module, the following inputs are used to find the capacity of the mobility 
hubs and compute the objective function : 

- Inputs: Parameters and data mentioned in Table 3.2. 
- Outputs: Capacity of mobility hubs, number of vehicles of each type in each mobility hub 

at different timesteps, percentage of satisfied demand at each timestep, objective function, 
and the rebalancing performed during the period. 
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3.5. Genetic Algorithm  

Two elements must be inputted to compute the utility of each multimodal path in the Path and 
Usage module: the utilities matrix per mode and the activated mobility hubs. The utilities are 
computed in the Utilities Computation module presented previously. While the hubs are activated 
from a set of candidate locations by a heuristic. According to different pieces of literature, the 
genetic algorithm is one of the most suitable heuristics to perform such a task. Most papers that 
use a heuristic to locate shared modes stations use a genetic algorithm (Caggiani, Colovic, et al., 
2020; Liu et al., 2015; Nair & Miller-Hooks, 2016; Romero et al., 2012). Chen et al. (2015) 
proposed a genetic simulated annealing algorithm to locate urban refueling stations. Ali-Askari et 
al. (2017) mention different genetic algorithm applications, such as the location-allocation 
problem of shared modes stations. In this thesis, a genetic algorithm is used to find the optimal 
distribution of hubs due to its ability to search for the best solution probabilistically.   

The genetic algorithm is inspired by the theory of evolution. It is mainly based on the idea of 
the survival of the fittest. Individuals with better traits will survive and inherit those traits through 
the generations, while individuals with less adaptive traits have a lower chance of survival. Over 
the different generations, the traits that enable the individuals to survive become more frequent, 
leading to the evolution of the population (Mirjalili, 2019). The genetic algorithm is initiated by 
generating a population of 𝑁𝑁 individuals which represents a set of solutions. The fitness of each 
individual is assessed using a specific objective function. Pairs of individuals from the initiated 
population are selected to be the parents and reproduce the next generation of the population. 
The children are generated by taking genes from both parents in a process named crossover and 
by randomly modifying some genes in a process named mutation. Having a small part of genes 
changed randomly increases the algorithm's exploratory behavior and maintains diversity in the 
population. Then the fitness of the new individuals is assessed using the objective function in a 
cyclic process until the stopping criteria are met. Like natural selection, this algorithm allows one 
to obtain better solutions over the generations, bringing it closer to the optimum (Mirjalili, 2019).    

 
Figure 3.3. Genetic algorithm steps 
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The genetic algorithm is implemented in this thesis by following the steps below (Mirjalili, 2019; 
Romero et al., 2012).  

1. In the initial phase, a set of 𝑑𝑑′ possible mobility hub locations is identified, taking different 
parameters into account, such as spatial availability and spatial coverage. The initial 
population is generated with a size of 𝑁𝑁 individuals. Each individual is constituted of an 
array of 1s and 0s representing whether a mobility hub is active at a specific location or 
not. This array is identified as a chromosome with a length of 𝑑𝑑′. The chromosome of each 
individual is initially generated completely randomly or with a certain proportion of 1s and 
0s. Setting a certain proportion of 1s and 0s in each chromosome depending on the 
available budget leads to faster convergence. Several initialization mechanisms are 
presented in the literature (Hassanat et al., 2018). These are used to create a custom 
initialization mechanism in the case study. 

2. Each individual's fitness is computed using the objective function explained in the Capacity 
Module. The individual with the best fit is saved as the Best Solution.  
Two conditions are set to avoid computing for each individual, the objective function, and 
avoid excessive computational time. If one of the conditions is met, then the fitness value 
is set to – 99999999. The first condition checks whether the solution proposed exceeds 
the budget set even if the minimum number of vehicles is allocated to each hub. Hence 
the following equation should be satisfied to set the fitness to –99999999 and avoid 
performing all the computations: 

�𝑧𝑧𝑖𝑖 × �𝐶𝐶𝑓𝑓𝑖𝑖𝑓𝑓𝑜𝑜𝑇𝑇 + � 𝑦𝑦𝑚𝑚𝑖𝑖𝑖𝑖
𝑚𝑚 × 𝐶𝐶𝑇𝑇𝑜𝑜𝑑𝑑𝑘𝑘𝑚𝑚

𝑚𝑚∈ℳ

� 
𝑖𝑖∈𝒩𝒩

> 𝐵𝐵𝑖𝑖𝑖𝑖𝑜𝑜  

The second condition set checks whether the solution maximizes benefits with the 
available resources. Since adding mobility hubs and shared vehicles always increases the 
social welfare, the number of vehicles should be maximized using the budget allocated. In 
the case where the costs of installing the maximum number of vehicles plus the fixed costs 
are less than the budget with the buffer of having one station filled less than the minimum, 
then the fitness is set to – 99999999: 

�𝑧𝑧𝑖𝑖 × �𝐶𝐶𝑓𝑓𝑖𝑖𝑓𝑓𝑜𝑜𝑇𝑇 + � 𝑦𝑦𝑚𝑚𝑜𝑜𝑓𝑓𝑚𝑚 × 𝐶𝐶𝑇𝑇𝑜𝑜𝑑𝑑𝑘𝑘𝑚𝑚

𝑚𝑚∈ℳ

� 
𝑖𝑖∈𝒩𝒩

< 𝐵𝐵𝑖𝑖𝑖𝑖𝑜𝑜 − � 𝑦𝑦𝑚𝑚𝑖𝑖𝑖𝑖
𝑚𝑚 × 𝐶𝐶𝑇𝑇𝑜𝑜𝑑𝑑𝑘𝑘𝑚𝑚

𝑚𝑚∈ℳ

 

3. The following steps are repeated 𝑑𝑑𝑔𝑔𝑜𝑜𝑖𝑖 times :  

a. Two parents are selected to generate a child using a tournament selection 
procedure. In this procedure, two individuals are chosen randomly from the 
population. Then the fittest individual is selected as the first parent. The same 
procedure is repeated to select the second parent. Two individuals are chosen 
randomly from the population, and the fittest is selected as the second parent. The 
advantage of performing a tournament-based selection is that its implementation 
is efficient while preserving the diversity of the population, which is essential to 
explore the different solution spaces (Yadav & Sohal, 2017). The tournament 
method is presented in Figure 3.4. In this example, the aim is to maximize the 
objective function. Hence, from each two randomly chosen individuals, the one 
with a fitness of -500 is selected as the first parent, and the one with a fitness of -
750 is selected as the second parent.  



32 

 
Figure 3.4. Tournament example 

b. A child solution is generated by crossing over the selected parents. The crossover 
function takes two parents and the crossover rate. A crossover procedure is 
performed with a probability equaling the crossover rate; otherwise, the parents 
are copied to the next generation. If a crossover is to be performed, a split point is 
randomly chosen to take 𝑝𝑝 bits from the first parent and 𝑑𝑑′ − 𝑝𝑝 from the second 
parent. A high crossover is generally used to allow the creation of diverse children. 
In this thesis, a crossover rate of 0.9 is used since it provides better performance 
(Mirjalili, 2019).  
Another method of crossover is also considered, which is a two-point crossover. If 
a crossover is to be performed, two split points are randomly chosen, and the 
contents between these points are exchanged between the selected parents (Kaya 
et al., 2011). The crossover methods are presented in Figure 3.5.  

 
Figure 3.5. Crossover methods 

c. For each generated child, a mutation procedure occurs. For each bit from the 
chromosome, there is a probability 𝑠𝑠𝑚𝑚𝑚𝑚𝑝𝑝 inputted initially that the bit is modified.  

d. The population is then updated with the new children generated and their fitness 
computed as described in step 2. If one of the individuals has a better fitness than 
the Best Solution, then it becomes the Best Solution. 
One possibility that is also considered is to transfer the best 10% of the individuals 
to the next generation. The elites are transferred to the next generation to preserve 
valuable individuals leading to faster convergence (Rani et al., 2019).  

To summarize this module, the following inputs are used to generate the outputs used in the 
other modules: 

- Inputs: Set of potential mobility hub locations, genetic algorithm parameters. 
- Outputs: Activated mobility hubs for each iteration; at the end of the iterations, the optimal 

distribution of hubs is obtained. 
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4. Case Study 
In the following chapter, the methodology proposed previously is applied in a case study for 

the city of Amsterdam. Section 4.1 presents a description of the city of Amsterdam. Section 4.2  
presents how the potential locations of mobility hubs are generated. Section 4.3 presents the 
parameters inputted in the model. The model developed and presented previously is run for the 
different scenarios in section 4.4, and the results obtained are presented in section 4.5. A 
sensitivity analysis is performed in section 4.6 to assess the impact of the assumptions and 
parameters chosen. Finally, a validation is performed in section 4.7 to check whether the genetic 
algorithm can converge toward a global optimum.  

4.1. The City of Amsterdam 

This thesis aims to find the optimal location and capacity of mobility hubs in the city of 
Amsterdam. The distribution of trips and modal adoption is unique in the world. Each household 
in Amsterdam has an average of 1.98 bicycles. In addition to that, a high share of trips is made 
using active modes: 38% and 10% of the residents’ and visitors’ trips, respectively, are made 
using a bicycle with an average modal split for the bicycle of 28% (Gemeente Amsterdam, 2021). 
This is also stimulated due to the presence of a well-developed cycling infrastructure with more 
than 2336 km of isolated cycling and shared paths. While the share of mopeds is growing but is 
still limited to 2%. However, the city is also facing rapid growth, which increases pressure on 
public spaces and reduces accessibility. To curb these issues, the municipality of Amsterdam is 
working on improving traffic flow by diverting traffic from the center to the outskirts of the city. In 
addition to that, the municipality aims to make the city more livable by reducing the space 
available for personal cars to move from individual to collective forms of mobility. In its 2030 
mobility plan, the city will work on improving the already-extensive bike network by introducing 
new cycle bridges and completing missing sections of cycle routes (Gemeente Amsterdam, 
2021).  

Hence, the main public goals are to improve mobility while decreasing the pressure on public 
spaces. Mobility hubs are a good solution to achieve the goals mentioned since they decrease 
reliance on personal vehicles and shift mobility from owning to sharing. It is essential then to 
assess how these mobility hubs will be installed and how they will be distributed in the city to 
maximize accessibility and improve mobility while creating a more livable and sustainable city. 

  
(Felyx, 2022) 
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4.2. Potential Location of Mobility Hubs  

Mobility hubs can have different sizes and include different modes, as previously discussed in 
paragraph 2.1. The main focus of this thesis is urban mobility hubs, whether neighborhood 
mobility hubs or mobility hubs associated with public transport stations. One of the main goals of 
the model developed is to distribute the hubs to maximize social welfare rather than just focusing 
on the profitability of the service. Therefore, it is essential to have potential locations that do not 
include any bias when establishing the optimal locations. Considering the demand and attractions 
while generating the candidate locations creates a bias that the optimization model would 
accentuate. Hence, as a starting point, the public transport stations and stops are considered 
potential locations for mobility hubs. First, all the stops are inputted, and the ones that overlap 
due to the presence of multiple modes are cleaned to have only one stop at each location. This 
results in obtaining 589 points. The next step is to assess whether it is spatially possible to 
construct mobility hubs in these locations using Google Street View. If there is insufficient space 
to install a mobility hub, this point is deleted or moved to a parallel street. It is essential to note 
that any bias in the distribution of stations and stops should be avoided. So the 250, 500, and 
750 m service areas of the hubs are generated using ArcGIS Pro. Then the service areas are 
overlayed on top of the 100m x 100m population density map. If the service areas generated do 
not cover a part of the population from the map, potential mobility hub locations are added. The 
potential locations generated consider the different possibilities of locating mobility hubs 
independently in neighborhoods, or in combination with major mobility points such as train 
stations, or in the city’s outskirts in combination with a park and ride facility. The service areas of 
the final potential mobility hub locations are presented in Figure 4.1. It is essential to note that the 
service areas are not uniform since the walking distance is computed using the available road 
network.  

 
Figure 4.1. Service areas of potential mobility hub locations 
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To model the mobility hubs and obtain the skim matrices needed, either new centroids can be 
added to the transport model or available ones are used. The latter option of using the available 
centroids is adopted for the following reasons. First, the Amsterdam transport model has a high 
density of centroids with over 3,035 centroids (as seen in Figure 4.2), allowing the association of 
the suggested mobility hub locations to respective centroids without increasing the walking time. 
Associating the possible mobility hub locations to an already available centroid is a logical solution 
since the centroid already aggregates several trips. However, a disadvantage of this technique 
compared to adding new centroids is that the walking distances between the population centroids 
and the proposed mobility hub locations might affect the results. To decrease the variation in this 
parameter, the possible mobility hub locations are only associated with centroids within a distance 
of 150 m. This decreases the discrepancies between the actual walking distances and the 
computed ones using the model. Some centroids are dummy centroids used only to model 
parking demand and patterns. Hence, the mobility hub locations are associated with non-dummy 
centroids. If no centroids are available within 150 m from a proposed location of mobility hubs, 
then this location is moved within the neighborhood. After associating all the proposed mobility 
hub locations to the respective centroids, the service areas are computed again to ensure that 
the mobility hubs’ service areas cover all of the population. If some areas are not covered, then a 
mobility hub is added.  

 
Figure 4.2. Centroids and potential locations of mobility hubs 
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The steps performed to generate the potential mobility hub locations are summarized in Figure 
4.3. 

 
Figure 4.3. Potential mobility hub locations generation steps 

After performing the presented steps, 288 possible mobility hub locations are proposed as 
potential ones for the case study.  

 
Figure 4.4. Final potential mobility hub locations 
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4.3. Model’s Parameters  

The model parameters used to perform the case study for the city of Amsterdam are presented 
in the following section. The 2030 morning peak transport data is used for the runs.  

4.3.1. Utilities  

The following utility function is used with different parameter values per mode:  

𝑈𝑈 =  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +  𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐𝑡𝑡 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑐𝑐𝑡𝑡𝑠𝑠_𝑝𝑝𝑡𝑡𝑠𝑠_𝑘𝑘𝑘𝑘)  + (𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑑𝑑𝑘𝑘𝑡𝑡 ×  𝑡𝑡𝑠𝑠𝑡𝑡𝑢𝑢𝑡𝑡_𝑐𝑐𝑜𝑜_𝑐𝑐𝑑𝑑𝑘𝑘𝑡𝑡 )
+ (𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑑𝑑𝑘𝑘𝑡𝑡 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑐𝑐𝑡𝑡𝑠𝑠_𝑝𝑝𝑡𝑡𝑠𝑠_ℎ𝑐𝑐𝑢𝑢𝑠𝑠 )  +  𝑘𝑘𝑐𝑐𝑑𝑑𝑡𝑡_𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑑𝑑𝑜𝑜𝑑𝑑𝑐𝑐_𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐   

The utilities of traditional modes and shared cars are present in the transport model Urban 
Strategy and have been estimated using transport data. However, the utilities for shared mopeds 
and shared e-bikes are missing. As previously mentioned, several studies have estimated the 
utilities’ parameters for these modes in different cities by using revealed or stated preference data. 
However, the parameters are approximated to match the utility functions already present in Urban 
Strategy for this case study. 

The bicycle's mode-specific constant is used to estimate the parameters for the shared moped 
and shared e-bike. The value of time parameter used for these modes is 7.5€/hr, which is the 
value of time adopted in the LMS national model for an electric bicycle (Rijkswaterstaat, 2021). 
The user costs per hour are estimated by examining the rates set by the operators in Amsterdam 
and the Netherlands. The following prices are obtained: Go Sharing prices 0.23€ per minute for 
the shared e-bike services, Felyx and GoSharing prices 0.3€ per min and 0.29 € per minute 
respectively for shared mopeds. For this case study, no subscriptions are considered.  

The different parameter values for each mode are presented in Table 4.1. The travel time and 
distance for the traditional modes (walk, bicycle, car, and public transport) are obtained from the 
transport model. The car travel times and distances are used for the shared car, while for the 
shared moped and e-bike, the bicycle’s travel distances are used. However, for the travel time, 
the bicycle’s travel times are divided by 3 and 2 for the moped and e-bike, respectively. The 
average speed of the bike used in the model is 10 km/h. For the moped and e-bike, it is assumed 
to be 30 km/h and 20 km/h, respectively.  

Table 4.1. Utilities parameters 

Mode Cost start Cost user 
per km 

Cost user 
per hour 

Value of 
time 

Mode-specific 
constant 

Walk 0 0 0 9 2 
Bicycle 0 0 0 9 9.5 
Car 0 0.17 0 9 0 
Public Transport 0.87 0.142 0 6.75 10.5 
Shared Car 0 0.6 0 9 5 
Shared Moped 0 0 17.7 7.5 9.5 
Shared e-Bike 0 0 13.8 7.5 9.5 
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4.3.2. Overlap Parameter 

As previously mentioned in the Demand Estimation module, the overlap factor is used to 
account for the disutility related to overlapping legs. It is assumed that in the case of this thesis, 
overlapping paths are less attractive than independent paths. The probability of choosing path 𝑝𝑝 
is given by the following equation:  

𝑠𝑠𝑝𝑝𝑘𝑘 =
exp �−𝛽𝛽 × �𝑈𝑈𝑝𝑝𝑘𝑘 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 ln𝑃𝑃𝑃𝑃��

∑ exp �−𝛽𝛽 × �𝑈𝑈𝑝𝑝𝑘𝑘 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 ln𝑃𝑃𝑃𝑃��𝑝𝑝∈𝒫𝒫
 

The same logit parameter 𝛽𝛽 = 0.5 adopted in Urban Strategy is used in this case study. To 
choose the overlap parameter 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝, a sensitivity analysis is conducted. The sensitivity analysis 

allows to assess the impact of 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝 on the modal split and the demand distribution over the 

mobility hubs. However, it is impossible to conduct a sensitivity analysis on the overall model due 
to the long computation time. Hence, it is performed when all the mobility hubs are activated. The 
impact of the overlap parameter is assessed on the demand modal split by varying it between 0 
and 19.5. The graph presented in Figure 4.5 highlights the effect of the overlap parameter on the 
modal split of each shared mode. It is essential to mention that the modal split presented is the 
demand for shared modes rather than the trips satisfied. Hence, the real modal split is smaller 
than what is presented in this graph. The main paths that are affected by this change are the 
paths that include public transport since only the overlap with public transport is considered. The 
overlap parameter has a negligible effect on the split over the paths that only include a shared 
mode combined with walking. Increasing the overlap parameter from 0, which means that the 
overlap is not considered, to 20, decreases the modal split of shared modes-public transport 
combinations from 0.6% to 0.18%, as seen in Figure 4.5.  

 
Figure 4.5. Effect of the overlap factor on the demand modal split 
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The overlap parameter chosen is 15 due to the stability seen after that point and the smaller 
slope in the interval 15 – 19.5 compared to the interval 0 – 15. To conclude, the overlap parameter 
is predicted to have a negligible effect on the results of optimal locations since the demand split 
for the public transport – shared modes combinations is minimal, and only a split of it will be 
served. 

The change in demand distribution over the mobility hubs is assessed depending on the 
change in the overlap parameter. This gives a better understanding of the effects of the overlap 
parameter on the results. The average and standard deviation of the change in demand over the 
mobility hubs is presented in Figure 4.6 for the three shared modes. When the overlap parameter 
is increased from 0 to 20, the average change in the demand for shared cars for all the mobility 
hubs is approximatively constant, around 0.1%, with a maximum standard deviation of 2%. This 
means that the variation in the overlap parameter leads to a uniform change in demand for shared 
cars over the different mobility hubs. In the case of shared mopeds, the change in overlap 
parameter leads to a maximum of -1.5% decrease in demand for all the mobility hubs. In the case 
of the shared mopeds, the maximum standard deviation of the change in demand is higher, 
around 5%. This means that not all the mobility hubs are affected in the same way. However, 
since the average change is small and the standard deviation is also small, then the effects on 
the results are minimal. In the case of the shared e-bikes, both the average change and standard 
deviation are more affected than the other shared modes. Since the share of the paths that include 
shared bikes is less than 0.07% (Figure 4.5), then the effect of this variation on the final results is 
negligible.  

        
Figure 4.6. Effect of the overlap factor on the demand for mobility hubs 
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The Capacity module is also run with the different overlap parameters. As seen in Figure 4.7, 
the social welfare decreases by 0.017 % when the overlap factor is increased from 0 to 20. This 
is mainly because the number of trips that include a combination of public transport and shared 
modes are limited (less than 0.7%), and the results are mainly affected by the most significant 
part of the demand related to the combination of shared modes and walking which is independent 
of the overlap factor. To conclude, it is essential to include the overlap parameter to account for 
the disutility of overlapping paths. However, the value of the overlap parameter is not expected to 
have a significant effect on the final results since all the mobility hubs have a similar decrease in 
demand for the shared cars and mopeds, while the split of shared bikes – public transport is 
negligible.  

 
Figure 4.7. Effect of the overlap factor on the social welfare when all mobility hubs are activated 
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4.3.3. Capacity Module’s parameters  

The Capacity module needs several parameters to be inputted, primarily related to the costs 
of constructing mobility hubs, acquiring the vehicles, and operating the system. First, the fixed 
construction costs (𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓) are set to be 5000 € per mobility hub. These costs include the 

installation of signs and information related to the hub and services offered, the standard 
amenities of bus stations are used for this estimation (SMARTNET). The costs to construct/install 
a dock or space for all the shared modes (𝐶𝐶𝑓𝑓𝑜𝑜𝑐𝑐𝑘𝑘𝑚𝑚 ) are set to 500€/space (Frade & Ribeiro, 2015). 
It is assumed that the charging will not be done on-site; hence, no significant installations are 
needed, mainly repurposing the space and applying surface painting. Regarding the revenue 
generated for each shared mode (𝑅𝑅𝑚𝑚), the following prices are used:  

- For the shared car services, the Sharenow price is used (0.28 € per minute) 
- For the shared moped services, the average of Felyx (0.3€ per minute) and GoSharing 

(0.29 € per minute) prices is used. 
- For the shared e-bike services, the Go Sharing price is used (0.23€ per minute) 

The revenue parameters are inputted in the model in euros per timestep, which is 10 minutes. 
Hence, the parameters inputted are 2.8 €, 2.95 €, and 2.3 € per timestep for the shared car, 
moped, and e-bike, respectively.   

The shared car’s relocation costs per hour are assumed to be equal to the average hourly 
wage in the Netherlands (Correia & Antunes, 2012). The relocation costs for the shared scooters 
and e-bikes equal a tenth of the average hourly wage, assuming that each employee can take ten 
vehicles in a truck. The average wage in the Netherlands is assumed to be 20 € per hour, 
considering the salary and allowances. This brings the relocation costs to 3.33 € per 10 minutes 
per shared car relocated and 0.33 € per 10 minutes per shared moped or e-bike relocated. The 
operational costs of e-vans and electricity consumption are considered in the operational costs 
presented below. 

To find the capital costs needed to initiate an e-moped sharing company, Wortmann et al. 
(2021) simulated the usage of e-mopeds in Berlin and combined it with the user’s data. For an 
active fleet of 2,500 vehicles, the capital costs totaled 15,612,793 €. This amount includes the 
costs related to acquiring the e-mopeds (71.5%), the additional batteries in the depot (14.8%), 
marketing costs (5.9%), e-vans (2.7%), the charging infrastructure (0.9%), the helmets (0.7%), 
the app development (0.5%), the e-cargo bikes for battery swapping (0.4%), and finally other 
costs (0.2%). Some of the costs included in the capital costs are fixed costs such as the app 
development. However, it is assumed that the capital costs for one active e-moped are equal to 
the total lifetime capital costs divided by the size of the active fleet, which gives 6,245 € per e-
moped. Additionally, it is assumed that the same parameters hold for the users in Berlin and 
Amsterdam.  

To compute the investment costs for the e-bikes, a methodology close to the one used by 
Wortmann et al. (2021) is adopted by modifying only the cost of buying an e-bike. It is assumed 
that a shared e-bike costs 750 €, which is the average price of the e-bikes currently available in 
the market. The ratio of the total fleet over the active fleet is assumed to be the same for e-bikes 
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and e-moped, in that case, 1.35 (Wortmann et al., 2021). This is due to decay, vandalism, and 
theft. Hence the total capital costs per active e-bike are the sum of the acquisition of 1.34 e-bikes 
and the fixed costs, which brings it to 2800 € per e-bike. For both e-mopeds and e-bikes, no 
salvage value is considered.   

To compute the investment costs for the shared car, it is assumed that the car is an average 
electric car costing 20,000 € and can be salvaged after five years for a value of 26.5 % of the 
initial investment, which gives a present value of 14,700 € (Belastingdienst, 2022). The fixed 
investment costs accounted for in the calculation of the e-mopeds are added to the present value. 
These costs include the marketing costs (5.9% of 6245 €), the charging infrastructure (0.9% of 
6245 €), the app development (0.5% of 6245 €), and finally, other costs (0.2% of 6245 €). This 
brings the total investment costs for a shared car to 15,170 €. 

Regarding the operational costs, Wortmann et al. (2021) calculate the yearly operational costs 
for an active fleet of 2,500 e-mopeds to be 4,757,641 € which brings it to 1900 € per year per 
moped, assuming that the fixed costs can be distributed evenly over the vehicles. This operational 
cost includes the costs for the personnel (68.3%), the electric consumption of the e-mopeds (8%), 
the maintenance (7.4%), connectivity fee (7.3%), office rent (2.7%), e-moped insurance (2.2%), 
e-moped decay (2%), warehouse rent (1.3%), app infrastructure (0.5%), electric consumption of 
the e-vans (4%), and other elements (0.03%). The costs related to the personnel constitute the 
majority of the operating costs. It is assumed that the operator incurs the same operational costs 
for all the shared modes, 1900 € per year. Although the shared e-car has higher maintenance 
and insurance costs, it is assumed that these costs can be compensated by the decrease in costs 
related to the warehouse and e-vans.   

A maximum number of docks/spaces is set to limit the spatial usage of the mobility hubs. The 
maximum capacity is 3 shared cars and 15 shared mopeds and e-bikes. Most of the suggested 
mobility hub locations can house this number of vehicles, corresponding to approximately six car 
parking spaces. A minimum number of docks/spaces is also set to avoid having a mobility hub 
with a capacity of 1 or 2 vehicles. The minimum capacity is 1 shared car and 3 shared mopeds 
and e-bikes per mobility hub. 

The parameters used in the Capacity module are summarized in Table 4.2. 

Table 4.2. Capacity module's parameters 

 Fixed Shared Car Shared Moped Shared E-bike 
𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓  5,000 €    
𝐶𝐶𝑓𝑓𝑜𝑜𝑐𝑐𝑘𝑘𝑚𝑚    500 € 500 € 500 € 
𝐶𝐶𝑜𝑜𝑝𝑝𝑚𝑚    1900 €/year 1900 €/year 1900 €/year 
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑚𝑚    3.33 €/10 min 0.33 €/10 min 0.33 €/10 min 
𝐶𝐶𝑜𝑜𝑜𝑜ℎ𝑚𝑚    15,170 €  6,245 € 2,800 € 
𝑅𝑅𝑚𝑚   2.8 €/10 min 2.95 €/10min 2.3 €/10 min 
𝑦𝑦𝑚𝑚𝑜𝑜𝑓𝑓𝑚𝑚    3 15 15 
𝑦𝑦𝑚𝑚𝑓𝑓𝑚𝑚
𝑚𝑚    1 3 3 

 



44 

4.3.4. Demand Distribution  

The model at hand is a macroscopic model that aggregates the trips spatially and temporally. 
The 2030 transport data is exported from Urban Strategy to perform the analysis because this is 
a long-term planning problem, and mobility hubs will be implemented in the following years. Since 
the optimization model distributes the vehicles and simulates how the shared vehicles are located 
in space and time, the aggregated trips obtained from Urban Strategy should be divided into 
smaller time intervals. The case study is performed for the 2-hour morning peak with timesteps of 
10 minutes. Hence, the demand distribution every 10 minutes during the 2 hours is needed. This 
demand distribution is inputted in the Capacity module as 𝑝𝑝𝑡𝑡.  

The ratio of demand per timestep is found using the ODiN data. ODiN (Onderweg in 
Nederland) is a yearly questionnaire sent out by the Central Bureau of Statistics to around 60,000 
respondents. Respondents record their travel behavior on one particular day of the year. The 
collected data is corrected according to background characteristics and additional non-response 
among holidaymakers (CBS, 2022).  

The 2019 ODiN data is used to find the demand distribution in the morning peak. First, to 
assess the departure time of the whole trip, only the trips are selected, not the trip legs. Then, the 
trips with departure times between 7:00 and 9:00 AM are selected. Finally, the trips originating 
from a postal code within the region of Amsterdam are selected (between longitudes 52.272359 
– 52.467305 and latitudes 4.715881 – 5.068130). After filtering the trips needed, the demand 
distribution over the morning peak is found and presented in Figure 4.8. Although the 2030 
transport data is inputted to run the model, the 2019 temporal demand distribution is used to 
divide the aggregated data into smaller time intervals. Hence, it is assumed that the temporal 
demand distribution does not vary between 2019 and 2030.  

 
Figure 4.8. Demand distribution over the morning peak 
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4.4. Model Runs  

The genetic algorithm includes several parameters that affect the algorithm's ability to explore 
the solution space. Therefore, different genetic algorithm parameters have been modified while 
keeping the inputs related to the budget constant to assess which combination leads to a 
convergence towards optimality. The parameters modified are the following: the mutation rate, 
the mechanism of initiation of the population, and the introduction of elitism. 

In the initial runs, a budget of 1 M€ is used with mutation rates of 0.1 and 0.3. When running 
the genetic algorithm with higher mutation rates, it is clear that it does not converge towards any 
optimum. Increasing the mutation rate to 0.1 and 0.3 leads to a more randomized search, which 
has the advantage of finding other solutions that are not in the current local solution space of the 
optimum found, but this leads to losing the strong traits of the individuals. The graphs presented 
in Figure 4.9 show the evolution of the best solutions over the different generations. A higher 
mutation rate allows reaching a solution that meets the conditions to compute the fitness 
(mentioned in section 0 point 2) faster than when a lower mutation rate of 0.1 is used. The first 
solution that meets the conditions set is found at generations 17 and 33 for the mutation rates 0.3 
and 0.1, respectively. However, in this case study, a higher mutation rate led to the shift towards 
a randomized search of solutions. After 35 generations, the whole population has a fitness of -
99999999 which means that the search became random and that a high mutation rate does not 
suit this problem. The fitness of these random solutions was not assessed since they did not satisfy 
the conditions mentioned previously. This is why it is possible to assess 1000 generations rapidly 
without computing any fitness function.   

 
Figure 4.9. Evolution of the best solutions over the generations with different mutation rates 
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elitism is used in the subsequent runs since it can conserve the best solutions (5 in that case) 
through the generations, which avoids losing the best traits. In some cases where elitism is not 
used, the population diverges toward solutions with a fitness of -99999999.  

Four computers and servers are used to perform the runs. The computation time for each 
individual varies mainly depending on the device used and the number of hubs activated. The 
specifications of the devices used are presented below, along with the average computation time 
per individual:  

- I9 – 9900X CPU @3.5 GHz 20 Logical cores, 64 GB RAM with a 24 GB NVIDIA Titan RTX 
GPU. The average computation time is 180 seconds per individual. 

- Google Collab Pro Servers, 25 GB RAM with K80, T4, or P100 GPU. The average 
computation time is 220 seconds per individual.  

- I7 – 9750H CPU @ 2.6 GHz 12 Logical cores, 16 GB RAM with a 4 GB NVIDIA Quadro 
P2000 GPU card. The average computation time is 305 seconds per individual. 

- I7 – 6820 HK CPU @ 2.7 GHz 8 Logical cores, 16 GB RAM with a 1 GB NVIDIA GeForce 
GTX 980M. The average computation time is 330 seconds per individual. 

The computations performed at each iteration are heavy since the different paths, utilities, and 
demands are computed for more than 9 million OD-pairs. However, the computation time has 
been severely reduced and optimized to reach the above values. The Path and Usage and 
Demand Estimation modules are performed on the GPU, which reduces that computation time by 
an order of 104. Additionally, all the sums present in the Capacity module are processed on the 
GPU to save computation time and then inputted into the Xpress library as variables. Furthermore, 
the centroids that can not use any shared mode because they are only dummy centroids are not 
part of the shortest path computation, which saves computation time. It is essential to mention 
that the computation time also varies depending on the number of activated hubs. The 
computation time can sometimes reach more than 3000 seconds per individual solution. Before 
introducing those measures, the computation time of each individual was around 55 days, leading 
to a total computation time of hundred years for the overall algorithm. Hence, taking advantage 
of GPU computing technology offers substantial benefits. For each scenario, the convergence is 
reached after approximately 150 generations, with each generation having 50 individuals. 
Considering the average computation times per individual, each scenario took around 20 days to 
run.  

Three scenarios are run with different budgets of 0.5, 1, and 1.5 million euros. For each 
scenario, two runs are performed to assess whether they converge towards the exact optimum. 
That way, the chance of being stuck at a local optimum is reduced, and it can be considered that 
the optimum reached is a global optimum. It is essential to mention that the two runs have the 
same parameters but are initiated with different populations. In some cases, the two runs do not 
converge to the same value due to minor rounding errors in the computation.   

The first run is performed by initiating a population constituted of the first half with entirely 
random individuals and the second with random individuals following a certain proportion of 
activated hubs. The proportion of activated hubs is set depending on the budget used. It is equal 
to the number of hubs that can be activated with the set budget if a maximum of shared cars are 
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assigned to each hub: 
𝐵𝐵𝐵𝐵𝑓𝑓𝐵𝐵𝑜𝑜𝑡𝑡

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
0 ×𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

0 +𝐶𝐶𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑑𝑑 
. The choice of shared mode in the initiation process does 

not affect the result; it just orients the genetic algorithm towards a solution space that meets the 
preliminary conditions to compute the fitness function. The second run is performed by initiating 
a completely random population. The evolution of the best solutions over the different generations 
is presented in Figure 4.10. The algorithm is assumed to converge toward the optimal solution 
since a plateau has been observed over the last 70 generations. It is important to note that when 
the initiated population is entirely random, the convergence rate is slower (28 days) than when 
half of it is initiated with a certain proportion of activated hubs (19 days).  

 
Figure 4.10. Evolution of the best solutions over the generations for a budget of 1 M€ 
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Figure 4.11. Evolution of the best solutions over the generations for a budget of 0.5 M€ 
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For the third scenario with a higher budget of 1.5 M€, the evolution of best solutions over the 
different generations is presented in Figure 4.12. Again, the algorithm is assumed to converge 
towards the optimal solution since a plateau has been observed for both runs over the last 81 and 
73 generations. This scenario takes approximately 25 days to run. 

 
Figure 4.12. Evolution of the best solutions over the generations for a budget of 1.5 M€ 
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4.5. Results 

After running the algorithm for several generations, it is assumed that the global optimum is 
reached. The distribution of hubs obtained for a budget of 1 M€ is presented in Figure 4.13. The 
buttons under the figure can be used to check maps that include the respective service areas, 
the average neighborhood income, the population density, the locations of train stations, and the 
capacities of the hubs. The algorithm activates 116 hubs and distributes them uniformly over the 
different neighborhoods. More hubs are located in the central part of Amsterdam compared to 
Amsterdam South-East, North, and West. The distribution of activated hubs is compared with the 
population density map (Figure B.7) and the average neighborhood’s income (Figure B.4). It can 
be seen that a considerable number of mobility hubs are activated mainly in highly dense areas 
having an average yearly income smaller than 60,000 €. Another important indicator is that the 
model locates the mobility hubs near main train stations, as seen in Figure B.10. Except for some 
stations in Amsterdam South-East (Amsterdam-Zuidoost). 

 
 

 

Figure 4.13. Distribution of activated mobility hubs for a budget of 1 M€ 
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For a lower budget of 0.5 M€, the algorithm activates 58 hubs, as seen in Figure 4.14. The 
service areas cover mainly the areas in the central part of Amsterdam, as seen in Figure B.2. The 
same pattern of activating the hubs in dense areas and lower to medium-income neighborhoods 
is seen in Figure B.5 and Figure B.8.    

 
 

 

Figure 4.14. Distribution of activated mobility hubs for a budget of 0.5 M€ 
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The distribution of hubs obtained for an allocated investment budget of 1.5 M€ is presented in 
Figure 4.15. This investment leads to extensive coverage of the Amsterdam area while distributing 
the hubs evenly.   

 
 

 

Figure 4.15. Distribution of activated mobility hubs for a budget of 1.5 M€ 

The variation in the capacity of the mobility hubs is presented in Table 4.3. In all the scenarios, 
the hubs have capacities close to the minimum capacities set for each shared mode. This is also 
reflected in the averages obtained. Few hubs have capacities exceeding the minimum. Higher 
capacities are set for the shared mopeds compared to the shared e-bikes.  

Table 4.3. Statistics of the mobility hubs’ capacities depending on the budget allocated 

 Budget (M€) 0.5 1 1.5 
Shared Car Average 1.16 1.12 1.01 

Minimum 1 1 1 
Maximum 3 3 2 

Shared Moped Average 3.14 3.06 3.13 
Minimum 3 3 3 
Maximum 11 5 13 

Shared E-bike Average 3.00 3.07 3.05 
Minimum 3 3 3 
Maximum 3 8 9 
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The algorithm provides the distribution of mobility hubs that maximizes social welfare for the 
different budgets. This distribution is used to compute the following indicators: the modal split, the 
total travel time experienced, the kilometers traveled per mode, the percentage of people covered 
by mobility hubs’ service areas, the average income of the population covered by the mobility 
hubs’ service areas, the ratios of demand satisfied, and the reduction in emissions. This allows 
having a better understanding of the impact of mobility hubs and how the indicators vary 
depending on the allocated budget to install the mobility hubs.  

 
Figure 4.16. Indicators assessed 

The indicators are computed for five scenarios: the first one with no mobility hubs activated, 
the following three scenarios with an allocated budget of 0.5, 1.0, 1.5 M€, and a final scenario 
with all the 288 mobility hubs activated, which needs a budget of 6.192 M€. It is essential to note 
that the indicators related to the base scenario, where no mobility hubs are activated, are 
computed using the skim matrices and OD-matrix rather than exported directly from Urban 
Strategy. This is because Urban Strategy considers some variation between population groups, 
making the comparison with other scenarios less reliable. 

The modal splits for the five scenarios are presented in Table 4.4 and Figure 4.17. When 
installing mobility hubs with different allocated budgets, there is a decrease in the modal split of 
the bike, car, and public transport, while the walking modal split remains the same. The most 
significant decrease is seen for the bike: around 0.11 % and 3% for allocated budgets of 0.5 M€ 
and 6.2 M€, respectively. This result is logical since shared modes can substitute bike trips and 
provide faster means of transport. The second highest decrease is seen for the personal cars: 
around 0.07% and 1.55% for budgets of 0.5 M€ and 6.2 M€ respectively. Finally, the public 
transport split decreases by 0.027% and 0.523% for budgets of 0.5 M€ and 6.2 M€. Around 55%, 
32%, and 13 % of the trips made using shared modes replace trips previously made using bike, 
car, and public transport, respectively (as seen in Figure C.1).  

Table 4.4. Modal split (%) for the different budget scenarios 

Budget (M€) 0 0.5 1 1.5 6.2 
Walk 20.758 20.758 20.758 20.758 20.758 
Bike 28.321 28.211 28.117 27.634 25.329 
Car 43.757 43.691 43.649 43.419 42.208 
Public Transport 7.164 7.137 7.116 7.035 6.641 
Shared Car - 0.021 0.018 0.167 0.683 
Shared Moped - 0.125 0.223 0.730 3.859 
Shared E-bike - 0.036 0.090 0.212 0.410 
Shared Car + Public Transport - <0.001 <0.001 0.001 0.006 
Shared Moped + Public Transport - 0.003 0.004 0.012 0.066 
Shared E-bike+ Public Transport - 0.018 0.025 0.032 0.041 
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Shared moped takes the largest share of trips (0.13% and 3.92% for allocated budgets of 0.5 
and 6.2 M€, respectively) since they are faster than e-bikes and the fare difference is relatively 
small. The modal split for the shared cars slightly decreases when comparing the scenarios with 
budgets of 0.5 and 1 M€. This is explained by the fact that mobility hubs serve fewer shared car 
trips, but those served are longer, as seen in Figure C.6. The modal split for the shared modes is 
relatively small for the scenarios with lower budgets of 0.5 and 1 M€. However, it increases 
significantly when higher investments are made.  

 
Figure 4.17. Comparison of modal splits of shared modes for different budget scenarios 

The significant benefits gained by higher investments are also highlighted in Figure 4.18. The 
higher reductions in total travel time are seen with investments higher than 1 M€. The same effect 
is confirmed when looking at the total traveled kilometers using shared modes in Appendix C 
(Figure C.6. - Figure C.8).   

 
Figure 4.18. Decrease in total travel time depending on the budget allocated to build the mobility hubs 
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Another interesting indicator to assess is the average percentage of demand satisfied over the 
different time periods, presented in Table 4.5. The average percentage of demand satisfied 
decreases between the scenario of 0.5 and 1 M€ since increasing the budget increases the 
demand that can be satisfied. The mobility hubs might not be able to satisfy this increase in 
demand. Nevertheless, an overall trend can be noticed: increasing the allocated budget leads to 
higher percentages of demand satisfied. The high standard deviation proves a high fluctuation 
between the different time periods, which is also highlighted by the extremums (0 and 100%).  

Table 4.5. Statistics of the percentages of demand satisfied depending on the budget allocated 

 Budget (M€) 0 0.5 1 1.5 6.2 
Shared Car Average - 5.6 4.8 26.9 71.3 

Standard Deviation - 16.0 16.7 30.6 36.9 
Minimum - 0.0 0.0 0.0 0.0 
Maximum - 100.0 100.0 100.0 100.0 

Shared Moped Average - 9.6 7.4 16.7 61.6 
Standard Deviation - 13.8 10.7 15.6 40.4 
Minimum - 0.0 0.0 0.0 0.0 
Maximum - 99.6 95.5 100.0 100.0 

Shared E-bike Average - 87.4 82.7 92.1 90.3 
Standard Deviation - 31.6 36.8 24.3 28.7 
Minimum - 0.0 0.0 0.0 0.0 
Maximum - 100.0 100.0 100.0 100.0 

 
To assess whether the shared modes are used for short or long trips, the percentages of trips 

traveled using a shared mode for each travel time interval are presented in Figure C.9 to Figure 
C.16. First, the weighted average travel time is computed prior to introducing the shared modes 
for each OD-pair. Next, the number of trips performed using a shared mode is computed for each  
OD-pair. Then the percentages of trips performed using a shared mode are computed for each 
travel time interval and each scenario. In all the scenarios, the same patterns are seen. Shared 
modes are combined with public transport, mainly when the average initial trip length is higher 
than 40 minutes. 60% of the trips combining shared modes and public transport are longer than 
40 minutes. In contrast, shared modes are used independently for trips between 10 and 50 
minutes. Shared mopeds cover the highest percentage of trips having a travel time between 20 
and 30 minutes. In comparison, shared cars and shared e-bikes cover the highest percentage of 
trips with a travel time between 10 and 20 minutes.  

After assessing the effects of mobility hubs using mobility indicators, the spatial distribution of 
the hubs is analyzed. The percentages of residents covered by the 0 – 250 m, 250 – 500 m, 500 
– 750 m, and higher than 750 m are presented in Figure 4.19. It is clear that when increasing the 
budget allocated to mobility hubs, a higher percentage of the population is closer to a mobility 
hub. It is also interesting to note how the percentage of the population within 250 m of a mobility 
hub is equal to 17% for a budget of 1.5 M€ and 30% for a budget of 6.2 M€ which means that 
initial budgets (lower than 1.5 M€) focus on maximizing coverage and additional investments have 
diminishing returns in terms of coverage. For the service area of 250 – 500 m, the increase in 
budget always increases the coverage. However, it is not the case for the service area of 500 – 
750 m. Increasing the budget from 0.5 to 1 M€ shifted a percentage of people that were outside 
of the 750 m service area to the area within 500 to 750 m of a mobility hub. While maximizing the 
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budget leads to a decrease in the population covered by a service area larger than 500 m since 
a high percentage is now 500 m away from a mobility hub. 

 
Figure 4.19. Comparison of the percentage of residents covered by the mobility hubs’ service areas depending on the 

budget allocated 

Further insights can be obtained when relating the spatial coverage with the current socio-
economic data of the neighborhoods. The average income for the residents covered by the 0 – 
250 m, 250 – 500 m, 500 – 750 m, and higher than 750 m are presented in Figure 4.20. When 
the budget is maximized, the average yearly income of the population covered decreases which 
means that the service areas of the mobility hubs cover more lower-income areas. Increasing the 
budget always decreases the average income of the population covered by the 250 m service 
area. In contrast, this is not always the case for the service areas between 250 and 750 m. This 
can be explained by the fact that increasing the allocated budget leads to higher coverage of 
areas that might have a higher average income. In most scenarios, the population not covered by 
a 750 m service area always has a smaller income than the population within 500 m of a mobility 
hub.  

 
Figure 4.20. Comparison of the average income of the population covered by the mobility hubs’ service areas 

depending on the budget allocated 
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Finally, the effect of the mobility hubs on the environment is assessed. To compute the net 
reduction in emissions for the different scenarios, the emissions generated by the shared modes 
from the traveled kilometers and relocation operations are added. Then the emissions generated 
from the reduction in traditional modes of transport are subtracted. The emissions are obtained 
by multiplying the kilometers traveled by the CO2 emissions per mode per passenger-kilometer. 
These values are obtained from the “Effect of shared electric mopeds on CO2 emissions” report 
(CE Delft, 2021). For the relocation operations of shared cars, the emissions of an electric car are 
used. While for the relocations of shared mopeds and shared e-bikes, the emissions for an electric 
van are used, and it is assumed that each van can relocate ten vehicles at a time (as mentioned 
in paragraph 4.3.3). The CO2 emissions per mode might vary depending on the assumptions 
made in the calculation process. The assumptions can be related to the vehicle type, speed 
traveled, the electricity generation mix, the usage patterns of the vehicles, and the vehicle's 
occupancy (OECD/ITF, 2020). The reduction in emissions is computed for all the scenarios by 
comparing them to the base scenario with no mobility hubs. It is calculated for two cases; the first 
one considers that the electric cars constitute 8 % of the total fleet of cars and the electric buses 
50% of the total fleet of buses. In contrast, the second case considers that all vehicles are electric.  

It can be concluded that the reductions in CO2 emissions are limited, with a maximum of 1.27% 
for the case where all mobility hubs are activated, and a mixed composition of cars is still available. 
The reduction is even more limited when all the vehicles traveling in Amsterdam are electric. The 
results obtained refer to the emissions while using the vehicles.  

Table 4.6. Reduction in emissions per scenario 

 CO2 emissions per 
mode (CO2 -eq g/pkm) 

Budget (M€) 
0.5   1  1.5   6.2   

Traveled kilometers (km) 
Shared cars 80 390 426 4014 17587 
Shared mopeds 16 6374 10948 35588 199653 
Shared e-bikes 6 1531 3123 6815 12871 
Relocated vehicles.kilometers (veh.km) 

 

Shared cars 80 369 530 283 5853 
Shared mopeds 106 457 722 2688 47876 
Shared e-bikes 106 803 1797 4879 9741 
Variation in kilometers traveled using traditional modes of transport (km) 
Walk 0 +704 +857 +3200 +8716 
Bike 0 -4364 -8382 -27405 -129453 
Car 217 (80 for all electric) -7286 -9821 -24094 -106445 
Public Transport 88 (84 for all electric) -3132 -4451 -10232 -41520 
Emissions Reduction  
Total Reduction in Emissions (CO2 – eq T) -1.67 -2.23 -5.10 -21.02 
Percentage reduction in CO2 emissions (%) -0.10 -0.14 -0.31 -1.27 
Total Reduction in Emission for the case 
where all vehicles are electric (CO2 – eq T) 

-0.66 -0.86 -1.75 -6.23 

Percentage reduction in CO2 emissions for 
the case where all vehicles are electric (%) 

-0.04 -0.05 -0.11 -0.38 
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However, the net emission variation differs if the life-cycle emissions are considered. 
Therefore, the average values presented by OECD/ITF (2020) are used to compute these life-
cycle emissions. OECD/ITF (2020) presents central values estimates of life-cycle greenhouse gas 
emissions for urban transport modes. These include vehicle, fuel, infrastructure, and operational 
components. The values used are the following: for shared cars: 125 CO2-eq g/pkm, for e-
mopeds: 79, for e-bikes: 83, for all relocation operations: 125, for personal bikes: 17, for personal 
cars: 135, for public transport: an average of 72. Using these values leads to a reduction in CO2 
emissions of 0.05% for the scenarios with budgets of 0.5 to 1.5 M€. In comparison, introducing 
shared modes on a large scale (scenario with a budget of 6.2 M€) leads to an increase of 0.09 % 
in life-cycle CO2 emissions. The life-cycle emissions numbers are not precise since the values 
used to compute them are global averages with an average energy mix rather than the Dutch 
energy splits.  
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4.6. Sensitivity Analysis 

The model includes several parameters that might affect the model’s results. A sensitivity 
analysis is performed on the operation costs (𝐶𝐶𝑜𝑜𝑜𝑜𝑚𝑚 ), relocation costs (𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑚𝑚 ), and vehicle 

acquisition costs (𝐶𝐶𝑣𝑣𝑟𝑟ℎ𝑚𝑚 ). It is impossible to assess the parameters' impact on the results due to 
the high computational time. Hence, to perform the sensitivity analysis, all the mobility hubs are 
activated, and the different parameters are modified accordingly. The relocation costs have been 
varied between 2, 2.5, 3, 3.33, 4, 4.5 € per 10 minutes timestep for shared cars and between 
0.20, 0.25, 0.30, 0.33, 0.40, 0.45 € per 10 minutes timestep for shared e-bikes and mopeds. 
Hence, 36 instances are computed to assess the impact of the relocation costs on the social 
welfare and ability to relocate. All the instances have fitness functions varying between -
10,180,460 and -10,180,553. The variation is negligible, which means that this parameter does 
not influence the results. The same method is adopted to assess the impact of the acquisition 
costs by varying those costs between 15000, 17000, 19000, 21000 € per shared car and 5000, 
6000, 6245, 7000 € per shared moped and 1500, 2000, 2811, 3500 € per shared e-bike. Hence, 
64 instances are computed and the fitness function varies between -10,180,462 and 10,180,555. 

The operational costs are also varied to obtain the same result: these parameters do not affect 
the results and distribution of vehicles. The main reason behind these results is that the revenue 
generated from these services is considerably higher than the costs. In addition, the positive net 
revenue (presented in constraint 3.13) is a sum of the net revenues for all the services provided; 
hence if one of the shared modes is not profitable, the other shared modes can compensate for 
these losses to keep the net revenue positive. This explains that varying the parameters presented 
does not affect the final results.  

To assess how much the costs can be increased without impacting the final results, an 
additional variable is subtracted from constraint 3.13. This variable represents the gross profit 
that the operator receives. The initial constraint 3.13 has the general form of Revenues – Costs≥0; 
the gross profit corresponds to the amount of money the operator makes, which is added as a 
separate variable to obtain the following general constraint: Revenues – Costs – Gross Profit≥0. 
The sensitivity analysis is performed on the gross profit by adopting the same procedure of 
activating all the mobility hubs. The results obtained show that social welfare remains constant if 
the gross profit varies between 0 and 80% of the total revenues. However, the problem becomes 
not feasible if the gross profit surpasses 81%. This shows that there is a high margin to increase 
the costs assumed in the model, which means that even if additional costs are added, the results 
are not affected. It is essential to note that a gross profit of 80% does not mimic a real-life situation. 
However, no additional costs are added since having additional costs would decrease the 
relocation of vehicles to a relatively same degree in all the runs, which is not expected to change 
the results of optimal locations.  
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4.7. Convergence Validation 

A significant challenge when applying the genetic algorithm is ensuring that the algorithm is 
not stuck on a local optimum. This problem is mainly associated with the fact that the population 
loses genetic diversity, which leads to a focus on one solution space. A mutation rate of 0.01 is 
used in the case study to overcome this challenge, which means that each bit has a 1% probability 
of being changed. Hence, 2 to 3 bits from the 288-bit chromosome are mutated for each 
individual. Two checks are performed to ensure that the genetic algorithm developed reaches the 
global optimum. The first one is by running each scenario twice and ensuring that the algorithm 
converges towards the same solution. The second check is performed by creating a case where 
a specific distribution of hubs is imposed as the best one and ensuring that the genetic algorithm 
reaches it.  

For this purpose, the same network of Amsterdam and the 288 potential mobility hub locations 
are used. Keeping all the modules and interactions in the model makes it impossible to impose an 
optimal solution. Hence, the model is modified to impose one solution as the optimal one. 160 
from the 288 mobility hubs are randomly chosen and stored in an array. All the OD-pairs using 
the other 128 mobility hubs (𝒩𝒩𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) are always rejected access to shared modes, and the 

utility of traditional modes is applied. The fitness function used is the following: 

𝐶𝐶 = � � ��𝑥𝑥𝑖𝑖𝑚𝑚𝑟𝑟 × � �𝑑𝑑𝑖𝑖𝑟𝑟𝑚𝑚𝑚𝑚 × 𝑝𝑝𝑟𝑟 × 𝑈𝑈𝑚𝑚𝑚𝑚

𝑚𝑚∈𝐾𝐾

 
𝑟𝑟∈𝒩𝒩

�
𝑟𝑟∈𝑇𝑇𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

+ � � ���1 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑟𝑟� × � �𝑑𝑑𝑖𝑖𝑟𝑟𝑚𝑚𝑚𝑚 × 𝑝𝑝𝑟𝑟 × 𝑈𝑈𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚

𝑚𝑚∈𝐾𝐾

 
𝑟𝑟∈𝒩𝒩

�
𝑟𝑟∈𝑇𝑇𝑚𝑚∈ℳ𝑖𝑖∈𝒩𝒩

+ 𝑈𝑈𝑇𝑇𝑜𝑜𝑟𝑟𝑇𝑇𝑟𝑟 𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟 

The following constraints are added:  

- 𝑥𝑥𝑖𝑖𝑚𝑚𝑟𝑟 ≤ 𝑧𝑧𝑖𝑖𝑚𝑚 (Constraint to ensure that the ratio of satisfied demand is one if the mobility hub 
is activated or is zero if the mobility hub is not activated) 

- 𝑥𝑥𝑖𝑖𝑚𝑚𝑟𝑟 = 0 for 𝑖𝑖 ∈ 𝒩𝒩𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (Constraint to ensure that the OD-pairs using the 128 chosen 

mobility hubs are always rejected access to shared modes)  
- 𝑥𝑥𝑖𝑖𝑚𝑚𝑟𝑟 ∈ {0,1} (Constraint to ensure that the ratio of demand satisfied is either one or zero) 

Although the capacity module is not included in this trial, the size and variation in the fitness 
function are similar to the model developed. Hence, it is possible to prove that the algorithm 
effectively converges. The evolution of the solution is presented in Figure 4.21. After 252 
generations, the algorithm reaches the imposed optimal solution. Many generations are needed 
to converge towards the imposed optimal solution since the population was generated entirely 
randomly. Additionally, the algorithm reaches solutions close to the global optimum within 120 
generations and spends an equal number of generations to reach the exact global optimum. It is 
clear from the evolution of the best solutions that no intermediate plateaus are present, which 
gives additional confirmation that the global optimum is reached in the case study. It is also 
essential to note that the fitness function is smaller than in the previous scenarios since this 
convergence validation does not consider capacity.  
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Figure 4.21. Evolution of the best solutions over the generations to reach the imposed optimal solution 
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5. Discussion 

In the following chapter, the results obtained for the case study are discussed in section 5.1. 
Next, the model's limitations and the impact of the assumptions made are discussed in section 
5.2. Finally, the generalizability of the model and results is discussed in section 5.3.  

5.1. Discussion of Results 

The model developed is used to distribute the mobility hubs for different investment budgets 
to maximize social welfare. When a low budget is set, the algorithm suggests an even distribution 
of hubs in Amsterdam, with more hubs located in the center. After comparing the solution with 
the population density map, it is concluded that the model prioritizes distributing hubs in highly 
dense areas. More hubs are then located in less dense areas when increasing the budget. From 
the results obtained and the number of hubs activated for a budget of 0.5 M€, the algorithm 
prioritizes activating many hubs with lower capacities rather than larger ones with higher 
capacities. This can be explained by the fact that increasing the mobility hubs' coverage leads to 
covering more demand, serving more OD-pairs, and providing more utility gains. However, 
activating many smaller hubs leads to higher fixed costs, which means fewer vehicles are available 
to satisfy the demand. This is reflected by the low travel time gains and modal split for the shared 
modes when smaller budgets are invested. A more extensive network of hubs provides the ability 
to serve more trips leading to substantial gains in terms of travel time and trips served. With 
smaller budgets, the benefits are limited compared to when the investments are increased. 
Increasing marginal returns are associated with the benefits mentioned. When investing 0.5 M€ 
in building mobility hubs, the travel time savings are equal to 49 minutes per 1,000 € invested, 
while when increasing the budget from 1 M€ to 1.5 M€, the travel time saved accounts for 160 
minutes per 1,000 € (as seen in Figure 4.18). After providing complete city coverage, the marginal 
returns are expected to become constant since every euro invested would be used for additional 
vehicle capacity rather than building a new hub. Therefore, the same amount of money can have 
different benefits depending on the total investment made.  

To understand the reasons behind the algorithm's choices, the demand for each hub and the 
average utility gains per trip are mapped in Figure B.16. These parameters are mapped when all 
the 288 mobility hubs are activated; hence, they are subject to change for a different distribution 
of mobility hubs activated. However, this map gives a good overview of the relation between the 
demand, the utility gains, and the results obtained. In the scenarios with an allocated budget of 
0.5 M€, it can be visually deduced that hubs with higher utility gains are chosen. In some cases, 
adjacent hubs are chosen since the utility gains might vary depending on the network of activated 
hubs. When higher budgets are allocated, both utility gains and demand play a role in selecting 
the optimal distribution of hubs and capacities. It can be seen that many hubs located on the 
outskirts of Amsterdam are activated since they provide significant benefits per trip. In the 
scenario of 1.5 M€, the largest hub in terms of capacity is located in Java-eiland. This can be 
explained by the fact that the utility gains per trip are considerable. When checking on Google 
Maps, a trip from Java-eiland to Rijksmuseum, for example, takes around 17, 21, and 30 minutes 
by bike, car, and public transport, respectively. Hence, shared modes can shorten travel times 
considerably for such trips due to their speed and ease of access.  
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The results related to the distribution of hubs are then used to assess the shift towards shared 
mobility and its impact on the environment. The trips made using shared modes mainly replace 
trips made initially by bike, car, and public transport. Around 55%, 32%, and 13% of the trips 
made using shared modes were to be made by bike, car, and public transport, respectively, if 
shared modes were not introduced. These percentages match with some of the percentages 
found in the literature. Many papers found that more than half of the electric micromobility trips 
seem to substitute public transport and active modes (Liao & Correia, 2022). The shift 
percentages vary depending on the city assessed and the method adopted to measure them 
(Wang et al., 2022), with conflicting evidence on whether shared modes predominantly substitute 
biking or walking (Liao & Correia, 2022). In the Amsterdam case study performed, a negligible 
number of trips shifted from walking to shared modes. This can be explained by the fact that there 
is a high reliance on bikes in Amsterdam, and individuals that want to make their trips faster would 
have shifted previously to biking. Hence shared modes seem a better substitution for bikes than 
walking trips in the case of Amsterdam. The higher percentage shift to shared modes from the 
bike and public transport compared to cars leads to lower emissions benefits. The CO2 emissions 
reductions for lower allocated budgets are limited (around 0.1%), while for the higher allocated 
budget of 6.2 M€, the emissions decrease by 1.27% compared to the base scenario. This 
reduction is even smaller (around 0.38%) when considering the case where all vehicles replaced 
are electric. Hence, the argument that shared modes lead to a significant reduction in CO2 
emissions is debatable. When considering the central estimates of life-cycle greenhouse gas 
emissions rather than just the emissions produced while traveling, the introduction of shared 
modes on a large scale (budget of 6.2 M€) leads to an increase of 0.09% in total emissions. An 
increase in life-cycle emissions was also obtained for a case study applied in Zurich when shared 
modes were introduced (Reck et al., 2022). However, it is essential to keep in mind that the 
numbers used to compute the life-cycle emissions are global averages which hinder the precision 
of the life-cycle emissions obtained. This highlights the need to perform further studies to 
accurately compute the life-cycle emissions of shared modes. The shared modes are expected 
to decrease the NOx and CO2 emissions; however, only the CO2 emissions are calculated in this 
thesis and the reduction is estimated to be limited to a maximum of 1.27%. Although the CO2 
reductions benefits might be limited, the goal of shifting from personal to shared means of 
transport can be achieved, which allows reshaping the urban fabric by, for example, repurposing 
parking spaces and creating more livable cities. The reduction of CO2 emissions can become 
more significant in the case where shared modes are introduced with other policies that 
discourage the use of personal vehicles.  

For all the scenarios analyzed, the modal split for the mode combinations that include shared 
modes and public transport is negligible. Depending on the scenario, around 3 to 10% of the 
shared modes trips are performed in combination with public transport. This is mainly because 
shared modes do not offer significant advantages to access public transport compared to walking 
or cycling. Additionally, the public transport network in Amsterdam is extensive and has good 
coverage of most areas, limiting the benefits that shared modes can provide as access or egress 
modes. Shared modes are mainly used as access/egress modes to public transport for trips 
longer than 40 minutes. Many papers argue whether shared modes complement or compete with 
public transport. It is challenging to come up with generalized conclusions about the relationship 
between shared modes and public transport. Many parameters affect this relationship: public 
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transport coverage, level of service, and the population’s mobility behavior. In the case of Warsaw, 
Nawaro (2021) concluded that e-scooters provide limited support to public transport, especially 
in areas with high public transport usage. Similar results were obtained for the case of 
Indianapolis; Luo et al. (2021) conclude that shared e-scooters can compete with buses in areas 
with high bus coverage and can complement public transport where there is no good coverage. 
These two cases can be compared to the results obtained in the case of Amsterdam, where good 
public transport services cover most parts of the city. The combination of shared modes and 
public transport is not attractive, mainly due to the high fares and lower travel time benefits for 
most OD-pairs when associating shared modes with public transport. This highlights the need for 
better policies to integrate shared modes and public transport since such a combination would 
have several benefits on the social and economic levels. Better fare integration between shared 
modes and public transport might increase the appeal of performing such multimodal trips. In the 
future, if the adoption rate of shared modes increases, then new public transport infrastructure 
can be designed to accommodate the new way of traveling that combines public transport and 
shared modes. The latter can increase the catchment areas of public transport stations, allowing 
the design of new systems with fewer stations and higher speed of services. Further studies can 
assess the factors affecting the attractiveness of combining shared modes and public transport 
to develop policies and strategies that improve modal integration among different social groups.  

Regarding equity and equal distribution, the model aims to maximize social welfare by 
maximizing the utility experienced by the population. Therefore, the model can distribute the hubs 
equitably. To explain this notion, two groups are taken into account, the first one is the better-off 
group and the second one is the disadvantaged group. The better-off group experiences higher 
accessibility levels, and introducing shared modes would provide this group with minor individual 
utility benefits. In contrast, the disadvantaged group would benefit more from shared modes with 
higher utility benefits. Hence, it is possible to maximize benefits for the exact vehicle and amount 
of time by providing many better-off individuals with minor utility benefits or a few disadvantaged 
individuals with significant utility benefits. The model does not have any constraint that might 
induce a stronger preference for one of the groups, which means that the distribution can be 
considered equitable. In addition to that, the ratio of demand satisfied is relative to the mobility 
hub rather than the OD-pair; hence, all the OD-pairs using the same mobility hub have an equal 
probability of accessing shared modes whether they are disadvantaged or better-off individuals. 
This can also be seen in the results obtained, where hubs are activated in the outskirts of 
Amsterdam. These hubs provide significant utility gains per trip but serve a smaller demand. In 
further studies, modeling the actual users of the shared modes would provide better insights into 
the social equity of the services provided. Constraints can then be included in the developed 
model to limit the benefits discrepancies between zones or population groups.   

A special scenario is presented in Appendix D to highlight the impact of different policy 
measures that the municipality of Amsterdam can take. The scenario models the case where the 
municipality focuses only on one neighborhood. Investing 1 M€ in developing hubs in only one 
neighborhood (in this case, Amsterdam-Noord) provides fewer overall benefits than investing the 
same amount in developing hubs in all of Amsterdam. However, higher modal splits for shared 
modes are obtained when looking only at the trips of the neighborhood. Hence, the municipality 
can invest in installing hubs in one neighborhood to ameliorate the accessibility and provide better 
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mobility alternatives. However, it is essential to keep in mind that investing the same amount in all 
of Amsterdam might provide more overall benefits.   

5.2. Discussion of Assumptions and Limitations 

Several assumptions are made in the model to simplify it. These assumptions and their impact 
on the results are discussed in the following section.  

The utilities used for the different modes are simplified versions of what individuals in real life 
consider when making their choices. Other parameters specific to the mode like safety perception 
or specific to the environment like the weather might impact the choices made in the system. The 
use of other utilities would affect the modal split. It might increase or decrease the demand for 
shared mobility depending if these added parameters would make shared mobility more or less 
attractive. For example, in the current model, the personal car always has a better utility than 
shared cars. However, if the parking costs are included in the utility, this might not be the case 
anymore, possibly making the shared vehicles more attractive. An increase in demand does not 
affect the results obtained in this case study since the hubs are already not satisfying all the 
demand. However, if other time periods are modeled, an increase in demand might affect the 
results. In addition to the simplified structure considered, the same utility functions are used for 
all individuals regardless of their characteristics. Varying the utilities depending on the income 
might lead to a smaller demand for shared modes from lower-income individuals than richer ones. 
This will also affect the distribution of mobility hubs if the demand is too small in lower-income 
areas. Additionally, the value of time of disadvantaged individuals might be smaller than well-off 
individuals, which leads to fewer hubs activated in lower-income neighborhoods due to the limited 
utility gains compared to higher-income neighborhoods. The literature describes this problem as 
the income effect of travel time savings, creating an implicit advantage for higher-income groups 
by assigning higher values for their time (Martens & Ciommo, 2017). However, in the case of this 
study, since the same utilities are used for all individuals, no inequalities result from the use of 
utilities to maximize social welfare. Hence, even if a specific mobility hub provides significant travel 
time benefits for only a few individuals, the model may activate this hub. It is essential then to 
estimate the utility parameters for the individuals in the specific city to have a more accurate 
representation of the individual’s behavior while considering the inequalities created due to the 
reliance solely on the utility maximization approach.  

Another limitation that can be noted is that the case study is only performed during the 2 hours 
morning peak. Suppose the other periods have symmetrical demand patterns (for example, 
morning and evening peak hours). In that case, the distribution and capacity of mobility hubs 
should not be affected since the hubs already have space to accommodate the morning peak 
trips. However, modeling the off-peak hours might lead to different results if there are significant 
changes in the demand distribution between work and leisure trips.  

In the model developed, the only access or egress mode for the shared modes is walking. 
Hence, the instances where individuals would park their cars or bikes in a parking facility at a 
mobility hub are disregarded. This means that the distribution of hubs might differ if those trips 
are taken into account. If the car and bike are added as access/egress modes, a possible impact 
would be that the model would activate more mobility hubs on the city's outskirts. This would allow 
individuals to park their cars and reach the city using a shared mode. However, modeling such 
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trips is beyond the scope of this thesis since it needs to have an understanding of the car 
ownership and movement through space and time, in addition to the availability of parking spaces 
in the city and the mobility hubs.  

Several modeling assumptions that affect the distribution of demand over the different mobility 
hubs are made of which: always choosing the shortest path when deciding which mobility hub to 
use, not considering the change in congestion levels, not taking into account the latent demand, 
and finally, assuming that individuals that do not have access to a shared mode due to the lack 
of available vehicles shift back to traditional modes of transport.  

First, regarding the shortest path, it is assumed that the individuals choose the paths with the 
smallest disutility to access mobility hubs. However, other parameters affect the choice of mobility 
hubs of which the services present at the hub and the availability of shared modes. A future 
research topic would be to assess what parameters influence the route choice to access or use 
shared modes. If the research proves that individuals tend not to choose the closest mobility hub, 
then this would have implications on the demand distribution computed in the model. In addition 
to that, using the centroids to compute the shortest path might lead to an overestimation of the 
disutility faced when traveling using multiple modes. However, since Amsterdam’s public 
transport network is very dense, then it is considered that no major detours result from this 
computation.  

Second, the model only considers the congestion when no mobility hubs are introduced. 
However, a more precise approach would be to assess the congestion for each iteration. The 
literature presented some analysis to affirm that the reduction in congestion is not significant when 
introducing shared modes (Fan & Harper, 2022), making this assumption acceptable. If the 
congestion increases, then an increase in the share of modes not using the road network would 
be seen. However, if the variation is negligible, the shared modes will not be affected since mobility 
hubs only satisfy a part of the demand in all the scenarios considered. This means that even if the 
demand varies, the actual usage of shared modes will remain the same.  

Third, the number of trips between OD-pairs is assumed to be constant. However, introducing 
an attractive mobility option possibly leads to an increase in trips. Hence, the OD matrix should 
be computed again in an iterative manner using the skim matrices of the modes introduced. If 
shared modes provide a considerably more attractive mobility option compared to traditional 
modes of transport to travel between certain OD-pairs, then it is expected that demand will be 
induced between this OD-pair. However, in this case study, since only the morning peak is 
considered and no mobility hubs satisfy all the demand, increasing the number of trips does not 
affect the results; this would only lead to a higher ratio of unsatisfied demand. Eventually, this 
unsatisfied demand would increase the pressure on the traditional modes of transport, which 
might reduce the traffic and environmental benefits associated with shared modes.   

Fourth, this model assumes that the people who are rejected access are redistributed to the 
traditional modes of transport rather than them searching for another shared mode available. In 
real life, people might have access to real-time information, which gives them the ability to choose 
which mobility hub to use depending on the availability of the vehicles rather than just choosing 
the closest one. If the shared modes satisfy all the demand and some vehicles are left unused, 
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this would positively affect the redistribution. However, since all the vehicles in the hubs are used, 
this does not affect the results except for the increased ratio of unsatisfied demand. Additionally, 
the individuals will learn which mobility hubs and vehicles are available in the long term. Therefore, 
their behavior might adapt, which decreases the demand and the ratio of unsatisfied demand. 
Hence, the availability of vehicles can also be included in the utility function of the shared modes, 
which leads to a decrease in the attractiveness of shared modes if they are not available. 

To conclude this sub-section, all the modeling assumptions presented might affect the demand 
distribution. However, since the morning peak is modeled in this case study, the ratios of demand 
satisfied are low, which means that a variation in the demand does not affect the final output of 
the model. Any variation would impact the final results if other periods are also modeled and the 
shared modes can satisfy all the demand.  

In addition to the modeling assumptions, the inputted parameters might affect the results. The 
sensitivity analysis was performed previously to assess their impact. It proved that varying the 
relocation, acquisition, and maintenance costs do not affect the results. However, a sensitivity 
analysis for the construction costs was not performed due to the high computation time. The 
construction costs might affect the results of the model developed. If the fixed costs are higher, 
this might lead to having fewer mobility hubs activated and activating larger mobility hubs. If the 
fixed costs are smaller than those used, this might lead to having more small hubs activated, 
providing higher coverage. In the case where the costs of installing a dock are smaller than the 
ones used, then it would be possible to activate more hubs with the same budget. It is essential 
to mention that the results are not altered when the fixed costs of installing a hub, variable 
construction costs per dock, and budget are multiplied by the same number. For example, the 
same results are obtained if the three parameters are set to 2500 €, 250 €, and 0.5 M€ or 5000 
€, 500 €, and 1 M€. 

The algorithm developed can provide the optimal distribution of mobility hubs. It optimizes the 
location and capacity of mobility hubs to maximize social welfare by looking at the travel costs of 
the population. However, when looking at the evolution of the solutions found, two solutions might 
have very close fitness functions but a completely different distribution of hubs. Therefore, 
qualitative parameters can also be considered when comparing different solutions to avoid only 
focusing on the fitness function as an objective. When deciding where to install the hubs in a city, 
decision-makers should consider several other qualitative parameters, such as the residents' 
preference, the attractiveness of the areas, and the spatial distribution of assets in the urban 
fabric. In addition to that, the model developed is very computationally heavy and takes around 
20 days to run. Hence, another application of the model developed can be to compare different 
distributions of mobility hubs. The municipality can first assess the qualitative aspects and present 
different distributions of hubs. Then, the proposed options can be quantitatively assessed using 
the developed model to obtain the best distribution of hubs from the options presented.  
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5.3. Generalizability of the Model and Results 

The model developed is flexible and can be adapted for different scenarios, policies, and 
locations. First, it can use the output of any macroscopic transport model to optimize the location 
and capacity of shared multimodal mobility hubs and compute the effects of the shared modes. 
In this thesis, the output of Urban Strategy was used to perform the case study; however, any 
other model can be used for this purpose. The structure of the developed model would remain 
the same; only the data format needs to be adapted. However, it is essential to note that the 
macroscopic model needs to preferably have a high density of centroids to avoid creating 
significant detours, leading to increased travel costs. Second, the change in behavior and policies 
can be included by modifying the utility functions. Suppose the effect of new policies needs to be 
modeled, for example, increasing parking costs. In that case, the utilities should be modified 
directly in the macroscopic transport model and the developed model to account for these 
adjustments. Third, If other mobility hub candidates need to be chosen or the analysis needs to 
be done on a smaller scale, the candidate mobility hub locations can be modified directly.  

In addition to the model developed, some results are generalizable to other cases and cities. 
The result of prioritizing the installation of many hubs with lower capacities rather than larger ones 
with higher capacities can be considered valid in other cases or cities. This leads to locating hubs 
closer to the origins and destinations, which provides higher utility gains, especially when demand 
is spread across the city. In the case where demand is concentrated between an origin and a 
destination, then smaller hubs might not be the preferred option. In addition, the increasing 
marginal returns related to the travel time saving can be associated with such investments and 
be generalized due to the fact that fixed costs limit the benefits and vehicles available if a low 
budget is invested. The hubs considered in this thesis are limited to 33 vehicles, with no significant 
construction needed. If cities want to look into larger hubs, then the limits set for the capacities 
can be modified, but the distribution is not guaranteed to be the same.  

Furthermore, it is possible to generalize the result that trips combining shared modes and 
public transport are limited when the public transport network is extensive since this combination 
is not that attractive. However, if the public transport network does not cover the whole 
population, then the shared modes might help complement this network. Finally, it is possible to 
generalize that most shared trips substitute public transport and active modes in cities having 
similar public transport coverage and car policies to Amsterdam. 
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6. Conclusion 

To conclude, an algorithm was developed in this thesis to optimize the location and capacity 
of multimodal mobility hubs to maximize social welfare while considering multimodal paths. The 
model developed fills the gap that was present in the literature by combining the following three 
main features:  

- It considers multimodal trips that combine walking, shared modes, and public transport 
and computes the demand based on a logit ratio while considering overlaps. Most of the 
models developed in the literature consider the demand as a fixed input rather than a 
variable input based on the activated hubs.  

- It considers three shared modes present at each mobility hub. Most papers consider 
unimodal shared stations rather than multimodal hubs.  

- It relates mobility and service level indicators to the budget allocated to construct the hubs.    

In the following chapter, the answers to the research questions are presented in section 6.1. 
Finally, recommendations for the municipality of Amsterdam and future works are presented in 
sections 6.2 and 6.3, respectively. 

6.1. Answers to the Research Questions 

In the following section, the different research questions are presented and answered.  

Question 1: What is the most suitable model structure to find the optimal location and capacity 
of mobility hubs?       

The developed model optimizes the location of mobility hubs and distributes the vehicles 
among them to maximize social welfare. A genetic algorithm activates the different mobility hubs 
from a set of candidate hubs at each iteration. The Path and Usage module computes the utilities 
experienced by all the users after introducing the activated hubs. These utilities vary depending 
on the mode combination considered. The multimodal paths can be constituted of walking, shared 
modes, and public transport legs. The utilities previously computed in the Demand Estimation 
module are used to find the demand (number of trips) for each shared mode at each mobility hub. 
Finally, the Capacity module optimizes the capacity of the activated hubs, the rebalancing of the 
vehicles to obtain the ratio of demand satisfied by maximizing the total travel utility experienced 
by the users. The total utility experienced corresponds to the fitness function of the genetic 
algorithm. The algorithm mimics the natural selection process to obtain, after several generations, 
the distribution of mobility hubs that maximizes social welfare. The model’s structure is presented 
in Figure 3.1.  

Question 2: What are the optimal distributions of shared multimodal mobility hubs to maximize 
social welfare depending on the amount of investment allocated to build the hubs? 

The algorithm was run for different allocated budgets to build the mobility hubs (0.5, 1, and 1.5 
M€). Different distributions of hubs are obtained for each scenario as presented in Figure 4.13 to 
Figure 4.15. The algorithm prioritizes locating many smaller hubs first rather than a few larger 
ones. With smaller allocated budgets, the hubs are evenly distributed in the Amsterdam area, with 
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a higher concentration in the central part of Amsterdam, specifically in areas with higher 
population densities. The algorithm also activates hubs in the outskirts where significant utility 
gains can be achieved. The biggest hubs in terms of capacity are not located in main transport 
stations but mostly in areas where they can provide utility gains for the population served.   

Question 3: What are the impacts of additional investment to build mobility hubs on the service 
level and mobility indicators? 

The mobility indicators and service level of the mobility hubs differ depending on the budget 
allocated to build them. The algorithm activates as many hubs as the budget allows when lower 
budgets are allocated. Most of the hubs have a capacity equal to the minimum capacity set. Since 
activating hubs leads to high fixed costs, fewer vehicles are available when lower budgets are 
invested, hence, lower benefits in terms of travel time saving. Increasing marginal returns are 
associated with the modal split and travel time benefits: higher benefits are obtained after crossing 
the bar of the 1 M€ invested, with higher modal splits and travel time saved. Hence every euro 
invested after initializing a relatively complete network of hubs leads to more advantages in terms 
of travel time savings compared to the same euro invested in the range of 0 to 1 M€. For a budget 
of 0.5 M€, 1 M€, 1.5 M€, and 6.2 M€, the total modal splits for the shared modes are 0.2%, 
0.35%, 1.15%, and 5%, respectively. When looking at the level of service, coverage increases 
significantly with lower investment budgets but does not increase at the same rate when 
investments above 1 M€ are allocated in Amsterdam. To conclude, investments to construct 
mobility hubs are associated with increasing marginal returns in terms of benefits and travel time 
savings but diminishing returns in terms of spatial coverage.  

6.2. Recommendations for the Municipality of Amsterdam  

The results obtained in this thesis allow presenting the following recommendations to the 
municipality of Amsterdam. Some of these recommendations can be generalized to other cities 
having similar mobility patterns.  

If the municipality has lower budgets allocated for installing mobility hubs, it must not only focus 
on using this budget to build large mobility hubs. This thesis has proven that installing smaller 
ones distributed in the city provides more benefits to maximize social welfare. Suppose the 
municipality decides to invest a small budget in installing smaller hubs. In that case, it should keep 
in mind that the benefits might be limited, which might not be convincing to invest such amounts 
if the current societal cost-benefit analysis is used to make the decisions. However, benefits can 
be substantial if larger investments are made since increasing marginal returns are associated 
with the investments made. The thesis confirmed the common idea of locating the hubs in dense 
areas. However, it is essential to keep in mind that mobility hubs located in the city's outskirts and 
less accessible areas can provide significant utility gains to the population. These hubs are usually 
omitted in typical allocation decisions. Hubs in less accessible areas are even more essential than 
those located next to major public transport stations. Another point that should not be forgotten 
is considering qualitative parameters in the mobility hub’s location choice. Quantitative 
assessment can then be performed using the model developed to assess the best distributions 
among a set of options.  
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If the money available from the municipality is limited, another solution could be to create virtual 
mobility hubs. Mobility hubs do not always have to be physical stations; municipalities can choose 
to have virtual ones. The shared modes providers would impose on their customers to park the 
vehicles in specific spaces, which can be monitored through the GPS signal emitted by the 
vehicles. The municipality can choose the location of these virtual stations using a model similar 
to the one developed in this thesis. Therefore, this would bring together several modes at 
distinctive points in the city with no significant investments needed from the municipality in terms 
of racks or facilities other than providing the space for this purpose. Adopting such strategies 
allows for better organization of the public space. It avoids the chaos that some cities have faced 
with free-floating micro-mobility vehicles without investing significant amounts of money.  

Installing shared modes in the city looks very beneficial on paper and stimulates a behavior 
change. However, this is not sufficient. Many policies should accompany such an introduction to 
induce positive change correctly. Many experts talk about stick and carrot measures, especially 
when looking at the shift from personal to shared usage of vehicles. These measures are a 
combination of “punishments” and “rewards” to induce the desired behavior. The stick measures 
can discourage private car ownership by reducing the parking spaces available, reducing the 
speed limits, and flipping the urban planning priorities by focusing on the users of active modes 
and public transport rather than private cars. It is more essential to induce a shift from private 
cars to shared modes rather than active modes or public transport to shared modes, especially 
in terms of spatial occupancy and sustainability. This is not an easy task and can not be 
implemented immediately. Instead, it is a long-term plan also outlined in Amsterdam’s 2030 
mobility plan. Looking at the carrot measures, these can be incentives for the users to use shared 
modes. These incentives can be financial ones by providing a bonus for citizens to shift from 
personal cars to shared modes. However, such incentives might be limited to a particular group 
of people. To widen the range of people covered by carrot measures, better integration between 
shared modes and public transport can be imposed on the operators. For example, by reducing 
the fares for the individuals using shared modes as access or egress modes to public transport; 
or using the OV-card (or any other future system) to unlock the shared vehicles. This might 
encourage people from lower-income and less-educated backgrounds to use shared modes due 
to the ease of access. Hence, when looking at the city's mobility transition, it is essential to take 
a holistic approach, combining mobility and spatial policies to induce the desired shift and make 
the city more livable.  

6.3. Recommendations for Future Research 

Several assumptions were made in this model mainly related to the behavior of the individuals 
and the parameters considered when making choices associated with the use of mobility hubs 
and shared modes. These assumptions can be relaxed in future studies to have more accurate 
results. One of the points to work on is to accurately model the choices made by users of shared 
modes and the factors influencing which mobility hub to choose, especially in areas where biking 
and public transport are predominant such as Amsterdam. If more specific behavior can be 
modeled, optimal pricing schemes can be found to encourage combining shared modes with 
public transport. In addition, there is still a gap in the literature related to the route choice for the 
access/egress legs to the mobility hubs and the main shared modes legs. On another note, in the 
developed model, it is considered that travelers are homogeneous; therefore, future studies can 
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consider the heterogeneity of the population, which might present interesting results, especially if 
the demographics are linked with the demand patterns. Finally, it is also interesting to model the 
behavior of the individuals in the longer term to assess the impact of introducing shared modes 
on car ownership and eventually on the use of public space.   
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Appendix A. Urban Strategy Description 

 The Urban Strategy Digital Transport Twin, developed by TNO, can model different measures 
(or so-called interventions) to accurately understand their effects. In this appendix, an overview 
of Urban Strategy is provided.  

Urban Strategy includes several modules that interact together to quantify the impact of 
different interventions. The modules included in this digital transport twin are the following: the 
demand module that is related to the generation of trips, the new mobility modeler that is used to 
re-estimate mode choice, the traffic module that performs traffic assignment for both cars and 
bikes, the public transport module that performs public transport assignment, and finally the air 
and noise modules that determine air and noise quality. Using Urban Strategy, different elements 
can be modified to simulate scenarios and assess their impact on the transport network and travel 
behavior. The different interventions can be subdivided into several domains:  

- Mobility domain: Different mobility interventions can be modeled of which a change in road 
capacity, speed limits, or the presence of accidents. The effects are quantified by 
assessing the traffic flows, travel times, and other traffic indicators.  

- Demand domain: The effects of increasing housing, jobs, and services can be quantified 
in terms of change in zonal attractions and variation in traffic indicators. 

- Public transport domain: The effect of changing line frequencies on passenger intensities 
can be assessed.  

- Modal costs: The effects of varying travel parameters such as travel costs on the mode 
choice, traffic intensities, and other parameters can be computed.  

- Environment: Other interventions such as the closure of roads, the effect of physical 
barriers on the environment, and noise can also be assessed.  

All interventions, even if done in one specific domain, can impact other modules of Urban 
Strategy. For example, when the user costs for personal cars are increased, the mode choice is 
recalculated using the new mobility modeler. The resulting traffic flows are assigned to the 
network using the Traffic and Public Transport Modules. 

The Traffic and Public Transport modules are discussed to understand the model's 
considerations. First, the trips are aggregated into centroids (or centers of gravity) of traffic zones. 
Then, the Traffic module allocates trips to the network. It uses the OD matrix as an input for 
different modes of which car, freight, and bikes. This OD matrix includes the number of trips 
allocated to the modes between the OD-pairs for the relevant time period. In addition to that, the 
road network and its characteristics are needed. The characteristics are specific to each link in 
the network and include the capacity and the maximum speed per mode. Junction delays per 
direction are also used. Finally, the Traffic module computes the shortest path from one origin to 
a destination iteratively to reach equilibrium. The results are the traffic intensities, travel times, 
and distances per link and mode. 

The Public Transport module allocates trips to the public transport network. It uses as an input 
the OD-matrix for public transport. This OD-matrix includes the number of trips allocated to public 
transport between each origin and destination for each relevant time period. In addition to that, 
the public transport network connected to the traffic network is needed. This network includes 
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details about each transit line, such as the maximum speed of the mode serving this line, the 
frequency, and the transit stops served.    

The travel times, distances, and demand between OD-pairs are used in this thesis as an initial 
input to the model developed, as discussed in chapter 3. These elements are output from the 
modules previously discussed, starting from the demand module to estimate the number of trips 
performed, to the new mobility modeler to obtain the modal split, then finally obtaining the travel 
times and distances using the Traffic and Public Transport Modules.  
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Appendix B. Mapping of Results  

The mobility hubs activated for each budget scenario are presented in the maps below. Figure 
B.1 to Figure B.3 present the service areas of the activated mobility. They show which zones can 
access mobility hubs by walking 0 to 250 m, 250 to 500 m, or 500 to 750 m. Figure B.4 to Figure 
B.6 allow comparing the location of the activated mobility hubs with the average neighborhood’s 
average income. Figure B.7 to Figure B.9 allow comparing the location of the activated mobility 
hubs with the population density map. Figure B.10 to Figure B.12 allow assessing whether the 
activated mobility hubs are located in the vicinity of the train stations. Finally, the capacity of the 
chosen mobility hubs is presented in Figure B.13 to Figure B.15. 

 
Figure B.1. Service areas of activated mobility hubs for a budget of 1 M€ 

Back to Results 



83 

 
Figure B.2. Service areas of activated mobility hubs for a budget of 0.5 M€ 

 
Figure B.3. Service areas of activated mobility hubs for a budget of 1.5 M€ 

 

Back to Results 

Back to Results 
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Figure B.4. Distribution of activated mobility hubs for a budget of 1 M€ with the average yearly income distribution 

 
Figure B.5. Distribution of activated mobility hubs for a budget of 0.5 M€ with the average yearly income distribution 

Back to Results 

Back to Results 
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Figure B.6. Distribution of activated mobility hubs for a budget of 1.5 M€ with the average yearly income distribution 

 
Figure B.7. Distribution of activated mobility hubs for a budget of 1 M€ with the population density map 

Back to Results 

Back to Results 
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Figure B.8. Distribution of activated mobility hubs for a budget of 0.5 M€ with the population density map 

 
Figure B.9. Distribution of activated mobility hubs for a budget of 1.5 M€ with the population density map 

Back to Results 

Back to Results 
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Figure B.10. Distribution of activated mobility hubs for a budget of 1 M€ with the train stations 

 
Figure B.11. Distribution of activated mobility hubs for a budget of 0.5 M€ with the train stations 

 

Back to Results 

Back to Results 
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Figure B.12. Distribution of activated mobility hubs for a budget of 1.5 M€ with the train stations 

 
Figure B.13. Capacity of activated hubs for a budget of 1 M€ 

Back to Results 

Back to Results 
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Figure B.14. Capacity of activated hubs for a budget of 0.5 M€ 

 

 
Figure B.15. Capacity of activated hubs for a budget of 1.5 M€ 

Back to Results 

Back to Results 
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Figure B.16. Distribution of demand and average utility gains per mobility hub 
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Appendix C. Graphical Results 

The percentage of trips displaced from traditional modes of transport towards shared modes 
is presented in Figure C.1. 

 
Figure C.1. Percentage of trips displaced from traditional modes of transport towards shared modes 

The kilometers traveled per mode are presented in Figure C.2 to Figure C.8. The distance 
traveled per mode varies depending on the budget allocated to install the mobility hubs.  

 
Figure C.2. Total kilometers walked depending on the 

budget allocated 

 
Figure C.3. Total kilometers biked depending on the 

budget allocated 
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Figure C.4. Total kilometers traveled using a car 

depending on the budget allocated 

 
Figure C.5. Total kilometers traveled using public 

transport depending on the budget allocated 

 
Figure C.6. Total kilometers traveled using shared car 

depending on the budget allocated 

 
Figure C.7. Total kilometers traveled using  shared 

mopeds depending on the budget allocated 
 

 
Figure C.8. Total kilometers traveled using shared e-

bikes depending on the budget allocated 
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To assess which type of trips the shared modes serve, the percentages of trips traveled using 
a shared mode for each initial travel time interval are presented in Figure C.9 to Figure C.16.  

 

 
Figure C.9. Percentage of trips traveled using shared 

modes per travel time interval for an allocated budget of 
0.5 M€ 

 
Figure C.10. Percentage of trips traveled using the 

mode combinations “shared mode – public transport” 
per travel time interval for an allocated budget of 0.5 

M€ 

 

 
Figure C.11. Percentage of trips traveled using shared 

modes per travel time interval for an allocated budget of 
1 M€ 

 
Figure C.12. Percentage of trips traveled using the 

mode combinations “shared mode – public transport” 
per travel time interval for an allocated budget of 1M€ 
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Figure C.13. Percentage of trips traveled using shared 

modes per travel time interval for an allocated budget of 
1.5 M€ 

 
Figure C.14. Percentage of trips traveled using the 

mode combinations “shared mode – public transport” 
per travel time interval for an allocated budget of 1.5 

M€ 

 

 
Figure C.15. Percentage of trips traveled using shared 

modes per travel time interval for an allocated budget of 
6.2 M€ 

 
Figure C.16. Percentage of trips traveled using the 

mode combinations “shared mode – public transport” 
per travel time interval for an allocated budget of 6.2 
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Appendix D. Amsterdam – Noord Focus Scenario  

In the following appendix, another scenario is performed. This scenario aims to better 
understand the effects of a policy that aims to install mobility hubs only in Amsterdam North 
(Amsterdam – Noord). This region is chosen since public transport has the lowest share of trips 
(Gemeente Amsterdam, 2021). A budget of 1 M€ is used to perform this scenario. The budget of 
1 M€ allows activating all the candidate mobility hubs in the district, as seen in Figure D.1, with 
the maximum capacity of 3 shared cars, 15 shared mopeds, and 15 shared e-bikes each.  

 
Figure D.1. Mobility hubs activated in Amsterdam-Noord 
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When considering the trips that have an origin or a destination in Amsterdam Noord, the modal 
split for the shared modes is considerable, around 1.2%, 2.5%, and 0.4% for the shared cars, 
shared mopeds, and shared e-bikes, respectively, as seen in Figure D.2. The 4.15% split for 
shared modes is accompanied by an approximate decrease of 1%, 0.4%, and 2.7% for personal 
cars, bicycles, and public transport, respectively, as seen when comparing Figure D.2 and Figure 
D.3. 

 
Figure D.2. Modal split of the trips performed in Amsterdam-Noord after installing the mobility hubs 

 
Figure D.3. Modal split of the trips performed in Amsterdam-Noord before the installation of the mobility hubs 
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The modal splits of the trips performed in Amsterdam are compared between the scenarios of 
installing hubs in one area and installing hubs in all of Amsterdam using the same budget of 1M€. 
Installing hubs in all of Amsterdam using the budget of 1 M€ leads to a higher modal split for the 
shared modes (Figure D.4) and hence higher benefits compared to only focusing on one area 
(Figure D.5).  

 
Figure D.4. Modal split of the trips performed in all of Amsterdam when 1 M€ are invested in constructing hubs in all 

of Amsterdam 

 
Figure D.5. Modal split of the trips performed in all of Amsterdam for a mobility hub’s investment of 1 M€ focused on 

Amsterdam-Noord 
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In the case of distributing the hubs in all of Amsterdam, the 1 M€ is used to install 116 mobility 
hubs. While in the case where the main focus of the intervention is Amsterdam-Noord, then the 1 
M€ is used to install 47 hubs. As a result, more vehicles are available at each hub in the second 
case, and a higher percentage of the demand is satisfied, as seen in Table D.1.  

Table D.1. Comparison of the percentage of demand satisfied between the two scenarios 

 
 

All of Amsterdam Only Amsterdam 
Noord 

Shared 
Car 

Average 4.8 76.0 
Standard Deviation 16.7 36.5 
Minimum 0.0 0.0 
Maximum 100.0 100.0 

Shared 
Moped 

Average 7.4 98.8 
Standard Deviation 10.7 9.0 
Minimum 0.0 0.0 
Maximum 95.5 100.0 

Shared 
E-bike 

Average 82.7 99.3 
Standard Deviation 36.8 7.2 
Minimum 0.0 0.0 
Maximum 100.0 100.0 

 
Although it is more beneficial to use the budget of 1 M€ in all of Amsterdam, other parameters 

need to be considered when making such a decision from a policy point of view. For example, the 
municipality may want to focus on ameliorating the mobility options of one area, although this 
measure does not lead to the best quantitative outcome. So this focus scenario proves that 
focusing on one area might provide significant shifts and benefits for one zone but using this 
money for a larger area leads to a better global optimum with higher benefits achieved.   
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