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ABSTRACT: 
 
Representation of scenes on the Earth surface by using voxels is gaining attention because of its suitability for integrating heterogeneous 
data sources in simulations and quantitative models. Computation of shadows in such models is needed, for example, to obtain crop 
suitability of agricultural fields in the presence of trees and buildings, or to analyze urban heat island causes and effects. We present 
an efficient algorithm to compute which of the voxels in a dataset receive direct sunlight, given the solar azimuth and elevation angles. 
The algorithm can work with multiple (sparse and dense) voxel storage strategies. 
 
 

1. INTRODUCTION 

The interaction of sunlight with the Earth surface is the driver of 
many fundamental Earth processes. When looking at a level of 
detail where individual three-dimensional objects, such as 
buildings and trees, play a role, the interaction is heavily 
influenced by the question whether the surface at a particular 
position, and at a given moment in time, is either ‘in the sun’ or 
‘in the shadow’, i.e. whether it receives direct sunlight (coming 
in a straight line from the sun) or only indirect light (coming for 
elsewhere in the blue sky, or from reflecting surfaces in the 
surrounding). Clearly, the answer depends on the presence of 
other objects on the path between the sun at that moment in time 
and the position of the surface under consideration. In the 
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absence of cloud cover, such objects blocking the sunlight, would 
be buildings, hills, trees etc., which are part of the scene. 
 
Modelling these effects is of interest when studying, for example, 
urban microclimate, field-based crop suitability and yield 
prediction, or solar panel placement. It assumes that a sufficiently 
detailed 3D model of the area under consideration is available. 
Because the sun is at any given possible position only once (or 
twice) per year, the model needs to be run many times to get 
reliable estimates of sun and shadow durations over a long 
period, like a growing season. Therefore, computational 
efficiency is quite important. 
 

 
Fig. 1 Voxel model with shadows of the Roundhouse at UNSW Kensington campus, Sydney. 
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1.1 Voxels 

The study in this paper was conducted within a larger effort to 
determine the usefulness of representing 3-dimensional geo-
spatial information in large 3D grids, in which the raster elements 
are called voxels. The expectation is that this, in comparison to 
vector models, will lead to a more unifying approach on 
integrating many kinds of geo-information into computational 
simulation models, allowing to better exploit the spatial and 
temporal relationships between different objects, processes, 
themes, layers, etc, stored in a 3D GIS. 
 
Here, we are considering a 3D model of an outdoor scene in 
sunny weather. Sunlight enters the scene as parallel rays from a 
direction that is defined by a pair of angles denoting sun azimuth 
and elevation. The goal of the paper is to compute which parts in 
the scene receive direct sunlight - the other parts being in the 
shadow. Fig. 1 shows an example. 
 
The model describes a scene on the Earth surface, such as a part 
of a city. It is filled with different materials, forming objects, such 
as the terrain, buildings, bridges, trees etc. Air is present in the 
scene as well, and it is the only 'material' that is transparent to 
sunlight. Sunlight is blocked (i.e. either absorbed or reflected) by 
all other materials. Therefore, the objects cast shadows, which 
will prevent certain parts of surfaces of other objects from 
receiving direct sunlight - the effect on object surfaces of indirect 
light coming from the sky or being reflected by other objects is 
not the subject of this paper. 
 
The scene has the extent of a rectangular block, subdivided into 
little cubes called voxels. The cubes are indexed by three-
dimensional integer coordinates (x,y,z) ranging from (0,0,0) to 
(Nx-1,Ny-1,Nz-1) and therefore the extent of the scene, measured 
in voxels, equals Nx × Ny × Nz. We will assume the axes are 
parallel to a relevant (perhaps local) terrestrial (X,Y,Z) coordinate 
system. The increment in X, Y or Z corresponding to an integer 
step in x, y or z is the resolution of the model - we could think of 
non-cubic voxels (with shapes likes bricks or pizza boxes), but it 
would not add much to the argument. The same holds for having 
a rotation between the two coordinate systems - except that it 
would require the azimuth (and/or elevation) angle to be rotated 
as well. Furthermore, we consider only shadows that are cast by 
objects inside the block. There is no shadow from objects 
surrounding the block. Finally, we will assume that the terrain 
surface is inside the block, and that all objects are lower than the 
top of the block. Therefore, the top layer(s) of the block consist/s 
of air, and the lowest ones of terrain. 
 
Voxels are considered homogeneous. Their content is denoted as 
a scalar value, representing a single material or material class. 
We will assume the voxel size (the resolution) to be such that an 
urban scene is represented at a scale that reflects building details 
like balconies, chimneys etc., but perhaps not smaller details like 
ornaments or door handles - a typical voxel size would be in the 
range between 0.1 and 1.0 m. If the indoor environment is to be 
considered for shadow determination as well, we must allow the 
sunlight to enter through windows. These will have to be 
modelled as holes in the walls of the building. Furthermore, if the 
sunlight is supposed to be only partially blocked by tree crowns, 
these will have to be represented as mixtures of 'air' and 'leaf' 
voxels. 
 
Also, the question about objects being in the sun or shadow will 
be answered per entire voxel. This will mainly concern voxels 
being illuminated from above – or not. Depending on the 
incidence angle, however, two more faces except the top face of 

a voxel are candidates for being sunlit. This will be addressed 
below.  
 
The result of shadow modelling in computational models 
addresses, for example, the amount of sunlight that is captured by 
objects of interest over time. This will boil down to counting 
sunlit voxels per object (and per epoch). This in contrast to many 
existing methods, including those in game engines, which mainly 
aim at producing fancier visualisations, and have been known for 
a long time [Crow, 1977]. Such models can also be used to 
radiometrically correct satellite imagery prior to automatic 
change detection [van der Sande et. al. 2008], in order to prevent 
shadow differences being recorded as detected changes. 
 
The straightforward method to obtain the result described above 
would be to have a ray of light entering a voxel at the top of the 
block at the desired angle, and trace it down through the ‘air’ 
voxels layer by layer until it hits an other-material (object) voxel. 
This is then marked as ‘sunlit’ and the ray stops. By repeating 
this process, starting from every voxel in the top layer of the 
block, one will end up with a collection of sunlit-marked voxels; 
the remaining ones are ‘shadow’. To make it possible that each 
bottom voxel in the block could eventually be reached by a ray 
originating from the top, it will be necessary to extend the block 
sideways with ‘air’ voxels, depending on the azimuth and 
elevation angles, before starting to trace rays. 
 
This method is computationally expensive, because it has to 
traverse almost the entire voxel space sequentially, all the time 
performing computations to get from one voxel to the next, while 
intersecting the oblique ray with (perhaps several) voxels at each 
layer. We present a simple method to get the same result very 
little computational effort. 
 
  

2. VOXEL SHADOW ALGORITHM 

We regard the block of voxels describing a scene as a stack of Nz 
horizontal layers, numbered from 0 to Nz - 1, each having a size 
of Nx × Ny voxels. 
 

 
 

Fig. 2. Input model for voxel shadowing 
 
 
2.1 The Basic Idea 

The idea behind the algorithm is to shift each layer of the voxel 
model (Fig. 1) horizontally in the opposite direction of the sun 
azimuth angle, by an amount that depends on the sun elevation 
angle and the height of the layer. As a result (Fig. 3), points that 
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are geometrically located on the same sunbeam (if this beam were 
not blocked by the first non-air point it hits), will be exactly above 
one-another after the shifting took place. 
 
 

 
 
Fig. 3. Voxel model with shifted layers, according to sun angles. 
 
In the next step of the process, the shifted voxel block is 
examined from top to bottom, one vertical column at a time, and 
the highest non-air voxel in each column is marked as ‘sunlit’. 
All voxels that are located lower in the column remain unmarked, 
meaning ‘shadow’ (fig. 4). 
 

 
 

Fig. 4. Upper voxels in shifted model of Fig. 3 
 
  
Finally, the sunlit voxels are shifted back to their original 
positions, layer by layer, by the amount that belongs to that layer 
(Fig. 5). They become the sunlit voxels in the original voxel 
space; the remaining voxels are in the shadow (Fig. 6). 
 
 
2.2   Implementations in different voxel storage structures 

We distinguish two storage structures for matrices, which we will 
name dense and sparse - both can be applied to represent voxel 
spaces in RAM or on disk. Very generally speaking, dense 
matrices are quicker during processing, but sparse ones require 
less memory. However, the ‘sparser’ a dataset really is, the faster 
its processing will tend to be, and, depending on the operation, 
there may exist a break-even point where ‘sparse’ gets quicker 
than ‘dense’. 

Generally, computer memory is linear; data are stored in words 
(of e.g. 64 bits) at addressable locations, where the range of 
addresses is a consecutive linear list.  
 
 

 
 

Fig. 5. Top voxels from Fig. 4 shifted back to their original 
positions. 

 
 

 
 

Fig. 6. The voxels of Fig. 5 are ‘sun’, the remaining voxels of 
the input model (Fig. 2) are ‘shadow’ 

 
 
 
A dense matrix occupies a consecutive piece of memory, in 
which only the values of the elements (the voxels) of the matrix 
are stored. The size of the block, which equals Nx × Ny × Nz., 
together with the data type of the voxel values (byte, floating 
point, etc.) determines the required amount of memory. In our 
method it matters in which order the voxels are stored. A block 
can be thought of as either a  vertical stack of (horizontal) layers, 
or as a horizontal ‘field’ of (vertical) columns. In the first case, 
each layer occupies a consecutive piece of memory. In the second 
case, the vertical columns are stored as consecutive pieces. The 
choice is made during the declaration (or the creation) of the 
matrix in your programming language of choice – in a vast 
majority of languages, a formulation like M[Nx][Ny][Nz.] will 
yield a set of columns, whereas M[Nz,][Nx,][Ny.] gives a layer-by-
layer representation. Generalized (or multi-dimensional) 
transpose is the name of the operation that changes between the 
two. In any case, the address of each voxel (w.r.t. the beginning 
of the block) can be easily computed based on its index. 
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The advantage of the proposed layer shift algorithm, as compared 
to the ‘straightforward’ approach, is firstly that the amount of 
shift is constant within each layer, and needs to be computed only 
once. But more importantly, performing those shifts means to 
move relatively large chunks of data around in memory, and this 
can be done quite quickly, as far as these are stored compactly, 
i.e. as layers. If this is not the case, it may be advantageous to 
perform a generalized transpose first. In the shifted dataset, a 
search for the highest non-air voxel is performed, which is again 
a very simple operation (which may benefit from a pillar-wise 
storage, however). 
 
The sparse matrix representation, on the other hand, attempts to 
take advantage of the fact that usually a majority of the voxels in 
a scene will share a single value or belong to a single class. In 
outdoor, above-ground, scenes this value or class will be the one 
denoting ‘air’. In a sparse matrix, those voxels are not stored and 
do not occupy any space. At the downside, the positions of 
(other) voxels in the data structure cannot be easily computed on 
the basis of their position in the 3D space. Instead, the indices of 
the (non-air) voxels are stored explicitly. Therefore, the indices 
require space as well, which comes in addition to the space for 
the (non-air) values. Retrieving a voxel implies performing a 
search for the wanted index. Moreover, finding out that a voxel 
at a certain position is ‘air’ means to discover that it is not present 
in the data, which in a first approximation might involve 
checking the entire dataset. Fortunately, techniques exist, such as 
hashing and spatial indexing, to greatly speed up those searches, 
but on the other hand hash tables and indices require memory 
space as well. 
 
The ‘straightforward’ shadow algorithm is expensive with sparse 
matrices, since tracing rays diagonally through the space requires 
continuous searching for the next (perhaps non-existing) voxel. 
Layer shifting, on the other hand, is extremely efficient. It has to 
be done for the non-air voxels only, coordinate by coordinate, 
where (x,y) have to be changed by an amount only depending on 
z – this amount can be taken from a lookup table. Next, the shifted 
non-air voxels have to be re-grouped based on their new (x,y) 
indices, and the one with the highest z has to be identified in each 
group. Now the efficiency depends heavily on the applied 
hashing (or indexing) technique, but again there are only non-air 
voxels involved. The top ones obtain a modified value (‘sun’) and 
are shifted back to their original positions, replacing the original 
values. 
 
 
 
 
 

3. REFINEMENTS 

 
3.1 Thin structures with low sun positions 

 
The results of the above-described algorithm are correct, 
provided the sun elevation angle is larger than 45 degrees. At a 
smaller angle, it occurs that a layer a height z needs to be shifted 
more than one voxel further than the layer a height z-1. Structures 
of only one voxel thickness, in such a case, may start to show 
‘air’ between subsequent layers – hopefully Fig. 7 illustrates the 
effect sufficiently clearly. 
 

 
 

Fig. 7. Thin wall and low sun give a broken shadow. 
 
The cause is shown in Fig. 8: Differences in shifts between 
subsequent layers are more than the wall thickness. 
 
 

 
 

Fig. 8. Broken thin wall after shift 
 
The solution is to perform the shifting bottom up, keep track of 
the shifts between layers, and fill the holes as the (might) occur 
(Fig. 9). 
 

 
 

Fig. 9. Corrected shifted thin wall 
 
After that, the entire space under the shifted wall will be ‘filled’ 
with uninterrupted shadow, and remain so after shifting back 
(Fig. 10). 
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Fig 10. Corrected shadow (compared to Fig. 7) of thin wall at 

low sun position 
 
 
3.2 Side views of sunlit walls 

The proposed algorithm is only concerned with how sun is 
shining on objects from above. It gives correct results, for 
example, at the terrain and at the roofs of buildings. In addition, 
all other voxels in the shadow, which are part of a wall, for 
example, will never show up as ‘sunlit’. Walls that are sunlit, 
however, may get strangely striped (Fig 11). 
 

  
Fig. 11. Striped sunlit walls 

 
 

 
Fig. 12. Shifted block showing the cause of striped walls 

 

The cause of this gets immediately clear when inspecting the 
shifted block (Fig 12). Indeed there are sunlit (top) voxels along 
the walls. As a solution, one might choose to allow only voxels 
that have ‘air’ above them n the original models as candidates for 
being ‘sunlit’. They can be selected with the same algorithms as 
the sunlit voxels in the shifted model. The selection can be made 
before or after shifting, and the result is shown in Fig. 12. The 
result visually more appealing, but not necessarily more useful 
from a modelling point of view, where one might quantize the 
interaction between sunlight and objects by counting sunlit 
voxels – then the result in Fig. 11 is actually not bad. 
 

 
Fig. 13. Shadow model where only top voxels are sunlit 

 
 
 

4. EVALUATION AND CONCLUSION 

We have shown the feasibility of computing shadowed vs. sunlit 
voxels using a little algorithm that directly runs in the voxel 
domain. Its main attraction is simplicity. Apart from delivering a 
useful result, for which several applications have been identified, 
it shows the potential of voxel-based modelling of Earth 
processes. 
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