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Abstract

Diffusion Tensor Imaging (DTI) is a non-invasive magnetic resonance imaging technique that, combined with fiber tracking
algorithms, allows the characterization and visualization of white matter structures in the brain. The resulting fiber tracts
are used, for example, in tumor surgery to evaluate the potential brain functional damage due to tumor resection. The DTI
processing pipeline from image acquisition to the final visualization is rather complex generating undesirable uncertainties in
the final results. Most DTI visualization techniques do not provide any information regarding the presence of uncertainty. When
planning surgery, a fixed safety margin around the fiber tracts is often used; however, it cannot capture local variability and
distribution of the uncertainty, thereby limiting the informed decision-making process. Stochastic techniques are a possibility to
estimate uncertainty for the DTI pipeline. However, it has high computational and memory requirements that make it infeasible
in a clinical setting. The delay in the visualization of the results adds hindrance to the workflow. We propose a progressive
approach that relies on a combination of wild-bootstrapping and fiber tracking to be used within the progressive visual analytics
paradigm. We present a local bootstrapping strategy, which reduces the computational and memory costs, and provides fiber-
tracking results in a progressive manner. We have also implemented a progressive aggregation technique that computes the
distances in the fiber ensemble during progressive bootstrap computations. We present experiments with different scenarios to
highlight the benefits of using our progressive visual analytic pipeline in a clinical workflow along with a use case and analysis

obtained by discussions with our collaborators.
CCS Concepts

e Human-centered computing — Visual analytics; Scientific visualization;

1. Introduction

Diffusion Tensor Imaging (DTI) is a non-invasive technique that al-
lows the reconstruction of anatomical connections in the brain, i.e.,
white matter. This process, known as fiber tractography or fiber
tracking [BPP*00], has proven to be a useful technique for the
interpretation of brain anatomy [Laz10; MZ06; NGH*05]. Fiber
tracking has gained popularity in research on brain diseases such
as multiple sclerosis, stroke, autism, dementia, and schizophrenia
[APO8; Cat06; fC05; HSO*01] and is gaining traction in clini-
cal practice, for example, in planning for brain tumor resection
surgery [RDM*09]. Despite the potential of these methods, sev-
eral downsides limit their widespread use. One of the main rea-
sons is the uncertainty present in the results. The acquired data
has to go through a complex transformation and visualization
pipeline, shown in Figure 1, accumulating uncertainties present at
each step. The MRI-based acquisition suffers from artifacts such
as noise, image distortion, motion artifacts, and partial volume ef-
fects (PVE) [BWJ*03]. The modeling stage involves the estima-
tion of the second order tensor using fitting techniques or higher-
order regression models, adding further variation to the final re-
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Figure 1: DTI visualization pipeline with sources of uncertainties.

sults [KCA*06]. During fiber tracking, several user-defined param-
eters significantly affect the resulting fibers [BVPtH09] and differ-
ent integration schemes can produce different outcomes. Finally,
the visualization stage may also introduce uncertainty due to the
use of different illumination models or simplification of the fiber
geometry. Schultz et al. [SVBK14] review several sources of uncer-
tainty involved in the fiber tracking pipeline and discuss strategies
that provide reliable interpretation of the results. All of these un-
certainties add variations in the resulting visualization, influencing
the decision making process. In this work, we focus on the first two
stages of the pipeline, i.e., uncertainty that arises due to acquisition
noise and errors in diffusion modeling.
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Figure 2: (a) Sagittal MRI slice showing a segmented frontal brain
tumor (dark green) and deterministic streamline based fiber track-
ing of the nearby corticospinal tract. A fixed safety margin is drawn
as an outline in blue. (b) 150 Wild bootstrapping [Jon08] iterations
using the same parameters and region of interest as a), resulting in
additional frontal and cerebellar pathways.

In clinical applications, the visualization of uncertainty is often
ignored, thereby hampering the user to make effective decisions. In
the absence of uncertainty information, neurosurgeons may con-
sider safety margins around critical brain structures [WHK*08]
based on experience and prior knowledge (see Figure 2a). Such
safety margins assume that there is a homogeneous distribution of
the uncertainty, which is not the case (see Figure 2b). Uncertainty
information becomes even more critical when fiber tracking is used
in pathological anatomy, e.g., when fiber tracts are displaced or in-
filtrated by a tumor. In such cases, the experience and anatomical
knowledge of the surgeon to estimate the uncertainty becomes even
less effective. Figure 2 shows a fiber bundle affected by a tumor
present in its vicinity. As can be seen, deterministic fiber tracking
as used in the clinical workflow could not show the fibers going
towards the frontal area of the tumor (Figure 2b). Missing the pos-
sibility that fibers can be in the frontal area of the tumor can lead to
inadvertently damaging of the tracts during the surgery.

Wild bootstrapping is a stochastic method, used to approximate
uncertainty in DTI. It approximates regular bootstrapping where
multiple acquisitions are acquired [WTW*08] to model uncer-
tainty. Wild bootstrapping requires only a single scan and simu-
lates multiple acquisitions using probability distributions from the
residuals that remain after fitting the diffusion tensors to the data.
Computing a large number of such simulated scans allows to ap-
proximate a distribution, from which the output, together with its
uncertainty, can be derived. This procedure, however, incurs sub-
stantial computational costs and is difficult to be used in an inter-
active fiber tracking process, where parameters are defined through
exploratory trial-and-error which is the current clinical workflow
for the definition of fiber tracts in surgery planning.

We propose a progressive approach that allows interactive es-
timation and exploration of fiber tracts and their corresponding
uncertainty without pre-processing the data. Wild bootstrapping
provides an ensemble of fiber tracts (i.e., polylines) that cannot
be effectively visualized directly. Aggregation strategies are used
to effectively visualize this kind of data [BPtHV13; WMKI13].
However, these methods are not efficient when ensemble members
are progressively generated. We modified an existing solution by
Brecheisen et al. [BPtHV13], to allow progressive fiber generation

and synchronized visualization. The main contribution of this pa-
per is a progressive visual analytics framework for stochastic based
uncertainty visualization in DTI fiber tracking. The main aspects in
this contribution are listed below:

e We have developed a progressive visual analytics (PVA) pipeline
for local calculation of tensor bootstrap samples combined with
simultaneous fiber tracking.

e We have adapted the ensemble-based fiber tract aggregation and
visualization to work in a progressive framework.

The framework enables interactive generation, and visual anal-
ysis of fiber tracts with uncertainties. We analyse the computa-
tional benefits through experiments and illustrate the potential of
the framework by a set of use-cases.

2. Requirement Analysis

This work has been carried out in collaboration with clinical part-
ners who want to incorporate uncertainty into their current tractog-
raphy workflow for neurosurgery planning. We base our visualiza-
tion pipeline on the methods used in their current workflow, which
incorporates diffusion tensor imaging (DTI), combined with deter-
ministic streamline generation of fiber tracts. While more sophis-
ticated methods exist for modeling the diffusion, as well as fiber
tracking, our proposed solution must work with the diffusion tensor
model as well as deterministic fiber tract generation to maximize
compatibility with the current clinical workflow. After acquisition
and pre-processing of the data, radiologists define a region of inter-
est (ROI) and generate the corresponding fiber bundle. Further, the
proposed solution should minimize the time between acquisition
and analysis. Therefore, we propose a progressive visual analytics
(PVA) approach to generating the underlying bootstrap samples, as
well as deriving fiber tracts. The proposed PVA pipeline is designed
to allow the interactive estimation of uncertainty in the tractography
and enables clinicians to define the regions of interest and explore
the results interactively.

3. Related work

Several approaches are available in the literature that characterize,
represent, and visualize uncertainties due to noise and modeling er-
rors in fiber tracking, each with their own pros and cons. In this
section, we present related work according to uncertainty estima-
tion methods (Section 3.1) for fiber tracking and corresponding un-
certainty visualization techniques (Section 3.2).

3.1. Fiber Tracking Uncertainty Estimation

Various techniques have been proposed to quantify the uncer-
tainties in fiber tracking. These methods can roughly be divided
into two main categories: Analytical methods and Stochastic meth-
ods. Analytical methods rely on explicit mathematical model-
ing [KHR*06] and are mostly based on the Bayesian framework,
which was first introduced by Behrens et al. [BWJ*03] in the DTI
domain.

Alternatively, uncertainties can be estimated by bootstrapping,
meaning from multiple sample data sets of the same subject. For
DTI, the most straightforward approach is to scan the subject mul-
tiple times. Due to random noise, each scan will be slightly dif-
ferent. Enough scans will allow an estimation of the uncertainty
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in the data. However, this would require scanning time and costs
that are not affordable in a clinical setting. Several stochastic tech-
niques are proposed to mitigate these limitations [CLHO06]. One
of the most widely used stochastic techniques is wild bootstrap-
ping [WTW#*08]. This technique only requires a single scan, based
on which a large number of samples can be generated. A varia-
tion of this technique is the residual bootstrap, where the residu-
als are assigned randomly along the gradient directions [DH97].
Several authors have used these techniques to model uncertainties
in DTI [Jon03; LAOS5; PB03; VHN*16]. Even though these tech-
niques provide uncertainty information throughout the complete
DTI pipeline, they have high computational and memory costs, lim-
iting their use in clinical and exploratory settings.

Fiber tracking is used to reconstruct brain white matter connec-
tions based on diffusion weighted imaging information. There has
been extensive research in the development of fiber-tracking al-
gorithms. These techniques can be categorized into Deterministic
approaches [CLC*99; LWT*03; MCCV99] and Probabilistic ap-
proaches [BBJ*07; HTJ*03; KNHO02]. In our work, we adopt the
wild bootstrapping method combined with deterministic stream-
line fiber tracking [BPtHV13; WTW#*08] to estimate the fiber tract
uncertainty corresponding to data acquisition and modeling. No-
tice that the framework would allow to develop other approaches
with similar characteristics. As discussed, computational and mem-
ory costs involved in generating multiple wild-bootstrapping ten-
sor fields and the corresponding ensemble of fiber tract samples
are very high. We introduce the concept of local wild bootstrap-
ping driven by fiber tracking, which helps in reducing the affiliated
costs, and provide progressive updates.

3.2. Visualization

Effective uncertainty visualization is essential to provide informa-
tion about the reliability of data to the end user. There has been con-
siderable work on uncertainty visualization for scalar, vector, and
tensor fields. For a general overview of uncertainty visualization,
we refer to one of the various surveys in recent literature [GS06;
JS03; PWL*97; Riv07].

The most straightforward approach to visualize an ensemble of
fibers is to render the resulting fiber samples directly in a so-called
spaghetti plot [BBKWO02; CFJ*06; Jon08]. However, a spaghetti
plot has several shortcomings. Most importantly, it suffers from
clutter and occlusion, making it difficult to distinguish between ar-
eas with a single fiber sample compared to an number of densely
distributed ones. To reduce clutter, Enders et al. [ESM*05] pre-
sented a technique to wrap the fiber bundles within a surface hull.
Similar techniques have been used by Merhof et al. [MMB*09]
and Chen et al. [CZCEO08], who cluster the fibers according to
their proximity and generate hulls enclosing the resulting fibers.
These techniques resolve the cluttering issues through summariza-
tion, however, they cannot easily handle complex fiber shapes. II-
lustrative techniques have also been proposed to visualize complex
fiber ensembles [BPtHV13; OVV10].

To represent the error distribution within a fiber ensemble, statis-
tical information, such as mean or confidence interval, are of inter-
est. However, these measures are not as well defined for the curves
as they are for scalar values. Several approaches to compute these
statistical information for ensembles of curves exist. Whitaker et
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al. [WMKI13] and Mirzagar et al. [MWKI14] use the concept of
band-depth to compute the centrality within the set of curves and
estimate the variations. Ender et al. [ESM*05] compute the aver-
age of the curves in a bundle, resulting in the central fiber. Instead
of computing the mean of the fibers, Brecheisen et al. [BPtHV13]
compute the median and confidence interval of the curve by cal-
culating the distances among fiber pairs based on a chosen mea-
sure. This approach enables the visualization of the complex fiber
structure along with the uncertainty information. Here, we adopt a
similar technique to calculate the most representative fiber and the
percentile of variation and modify it such that it can be incorporated
in a progressive visualization framework.

In our work, we address computational cost and latency is-
sues that are part of the uncertainty visualization pipeline for DTI
fiber tracking. We base our approach on wild bootstrapping and
streamline fiber tracking that we adapt the the Progressive Visual
Analytics (PVA) paradigm introduced by Miihlbacher et al. and
Stolper et al. [MPG*14; SPG14] and later formalized by Fekete
and Primet [FP16]. PVA provides intermediate results that help
users to understand the evolution of a lengthy computation, such
as the wild bootstrapping simulation, allowing to start the explo-
ration of the data during the computation without a need to wait
until the end of the simulation. Further, PVA allows steering the
computations, similar to interactive program steering [GVS94] and
computational steering [JP94] approaches. Here, we introduce pro-
gressive generation and aggregation of the fiber samples combined
with immediate, interactive uncertainty visualization. To the best
of our knowledge, there is no related work that proposes using a
progressive strategy for the purpose of uncertainty visualization in
DTI fiber tracking.

4. Stochastic Modeling

Various approaches have been used to model the uncertainties due

to noise and modeling errors, as discussed in Section 3.1. In our
work we focus on stochastic methods that simulate sample varia-
tions and facilitate the propagation through the pipeline. We have
chosen wild bootstrapping for the presented framework to estimate
and propagate the uncertainty in the data acquisition and diffusion
modeling steps from a single DTI scan.

Wild bootstrapping generates multiple samples based on the
residual that arises due to the fitting errors. Jones [Jon08] showed
that the results obtained with wild bootstrapping are compara-
ble to those from regular bootstrapping and discussed its appli-
cability. Wild bootstrapping has been described by various au-
thors [Liu*88; WTW*08] but was first combined with fiber track-
ing by Jones [Jon08]. The general principle behind wild bootstrap-
ping is based on a fitting of the DWI signal s(g;) in the sev-
eral acquisition directions g;, into a tensor model [Jon08]. The
six unique elements of the diffusion tensor, D, can be estimated
by using the ordinary least square method. Once we have D, we
can compute the model predicted signal value s'(g;)’ that corre-
sponds to the fitted tensor. A residual value r(g;) is calculated
with r(g;) = s’ (g;) —s(g;). A new signal per orientation at each
voxel, s”(g;), is stochastically generated according to s’/ (g;) =
s(gi) +sign(r(gi)), where the sign()-function randomly multiplies
the residual by 1 or —1. A new tensor sample of the diffusion ten-
sor, D/, is estimated for each voxel independently multiple times by
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fitting a tensor to the generated s”(g;) signals. By perturbing resid-
vals randomly, each tensor fit will be different from the previous
one. This repetitive estimation of the tensor for each voxel is car-
ried out for all voxels of the tensor volume multiple times, result-
ing in an ensemble of tensor volumes. The concepts we present are
general to any local stochastic uncertainty model. We have chosen
wild bootstraping for our framework given its use and demonstrated
similarity to bootstraping in the DTI context [Jon08].

5. Towards a Progressive Visual Analytics Pipeline

As described in the previous section, wild bootstraping generates
ensembles of tensor volumes. The naive pipeline is based on pre-
computing the ensemble of tensor volumes followed by determin-
istic fiber-tracking, i.e., streamline generation (see Figure 3). For
each tensor volume sample and a seed point, a new fiber sample is
generated. Once all the fiber samples are tracked, we obtain a fiber
ensemble to be visualized. This process is able to show the vari-
ations in the obtained fiber tracts. However, the pre-computation
of the whole tensor volumes ensemble requires long computation
times and a large memory footprint.

Accessibility within the clinical workflow is a major limitation
for the use and evaluation of uncertainty information in practice.
The lack of availability of the tools and the complexity in achieving
the visualization of the uncertainty is one of the main bottlenecks
in their clinical use, despite its enormous potential. In neurosurgi-
cal applications, for example, in pre-surgical planning, generating
the fiber pathways is often a trial and error process. It needs vari-
ous iteration and requires constant tuning of fiber tracking regions
of interest and parameters to meet the expectations of the clini-
cian. The large pre-processing times of uncertainty modeling add
latency in the visualization which breaks the clinical workflow. We
introduce a progressive approach that reduces the latency between
acquisition and visualization and allow users to explore and inter-
act with fiber tracking parameters and their uncertainties directly
during the computations. We identify and the bottlenecks present
in the clinical workflow and provides a first step towards making
uncertainty visualization more accessible to the user. We do realise
that our proposed approach needs clinical validation and evalua-
tion, just as tractography does in general. However, we consider a
clinical evaluation as future work.

Tensor Volume Fiber
Ensemble Ensemble
) Data .
A Acquisition -
=
)-8
el
=
: Q
Diffusion : o
Modeling wild . Fiber
Bootstrapping Tracking J

Figure 3: Standard wild bootstrapping and deterministic fiber
tracking approach, pre-computing the tensor volume ensemble.

In uncertainty modeling through bootstrapping, it is not known
in advance how many bootstrap samples will lead to an accurate
enough result. Many factors, including the shape of the bundles
themselves, the area of the brain and the level of noise and artifacts
introduce variation in the number of required samples. Modeling
uncertainty for one bundle may require fewer bootstrap iterations
than another. Computing a predefined number of iterations ‘N’, ei-
ther misrepresents the uncertainty or wastes resources and time. To
circumvent this problem, a progressive visualization approach al-
lows the user to see intermediate results, observe the uncertainty
simulation’s evolution, and ultimately identify when the results are
stable enough on-the-fly, saving valuable time.

In the following, we start our discussion with a naive progres-
sive visual analytic pipeline, identify drawbacks, and proceed to
our proposed local bootstrapping and fiber tracking approach.

5.1. Naive Progressive Approach

The first step towards a progressive visual analytics pipeline is to
visualize the fiber samples during the wild bootstrapping calcula-
tions without a need to pre-compute all tensor volumes. For this
purpose, bootstrap sample calculation and fiber tracking stage are
combined. Figure 4 illustrates the pipeline of the naive progressive
bootstrapping and fiber tracking approach for a given seed point.
In the progressive approach, a tensor volume is generated at each
iteration by using the wild bootstrap technique. Based on the newly
created sample, fiber tracking from a given seed point is performed.
Each iteration results in a unique fiber sample, which can directly
be visualized. The variations in the fiber samples represent the ef-
fect of the noise and modeling errors. The bootstrap iterations re-
peat continuously which increases the reliability in the estimation
of the uncertainty. The user can start the evaluation of the data im-
mediately and define when to take a decision given a perceived
visual stability of the results.

The progressive approach reduces the memory footprint of the
wild-bootstrapping method, as no pre-computed tensor volumes
need to be stored. However, computing each complete diffusion
tensor volume takes in the order of several seconds, which is still
too long to be used in an interactive system, making this progres-
sive pipeline impractical.

Tensor Volume Fiber
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Figure 4: Processing pipeline of naive progressive approach, cre-
ating a complete volume per iteration.
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5.2. Local Bootstrapping and Fiber tracking

In most applications of fiber tracking, the users are mostly inter-
ested in a specific fiber bundle or a particular region of the brain.
In these cases, calculating the bootstrap sample for the whole vol-
ume is a large waste of computation resources, since just a small
portion will be used. However, the precise region of interest for
the tracing is not known in advance, and cannot be computed in
pre-processing time. Taking this into consideration, we propose a
novel approach for accelerating the computations of the progres-
sive bootstrap method presented in previous section. Here, we com-
bine wild bootstrapping with fiber tracking and the computations
are performed only for those cells that are necessary for the cur-
rently tracked fiber. The pipeline for the local bootstrapping and
fiber tracking is illustrated in Figure 5.

The streamline algorithm is initiated with specific seed points.
During the numerical integration of the corresponding streamlines,
we need to obtain the diffusion tensor that defines the vector field
at a specific position in the volume. We use tensor component-wise
trilinear interpolation [CFJ*05] for the estimation of the diffusion
tensor at any point in the volume. For trilinear interpolation, we
need the diffusion tensors at the eight voxels of the cell contain-
ing the current position. These voxel tensor values are determined
by performing wild bootstrapping calculations at the specific vox-
els as described in Section 4. While tracing the streamlines in a
single bootstrap sample, we keep track of the voxels that have
been already computed and store the corresponding tensor wild-
bootstraping sample. Every time a previously computed voxel is
required, it is fetched, without the need for re-computation. This
ensures coherence through the streamline integration steps. We also
reuse the stored voxel tensors within a wild-boodstrapping iteration
when fiber samples from different seed points are traced. This pre-
serves the coherence between fibers, and produces the same results
as the naive pipeline. The resulting fiber samples (shown by the red
lines in Figure 5) are then progressively visualized after being cal-
culated. The bootstrap iterations repeat, resulting in multiple fiber
samples for each seed point.

Tensor Volume Fiber
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Local Wild
Bootstrapping
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gé? Acquisition

L
i
.nﬁﬁ
v
L
v
Rendering

Local Fiber
steers Tracking

Figure 5: Processing pipeline of local bootstrapping and fiber
tracking.
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6. Uncertainty Visualization

So far, we have discussed a method to progressively generate boot-
strap fiber samples. This progressiveness has no use if we cannot
visualize the resulting fiber ensemble in an effective and progres-
sive manner. Directly rendering thousands of fiber samples in a
spaghetti plot adds cluttering and occlusion, making it difficult to
effectively obtain relevant information. We developed a progressive
aggregation method to indicate the relevant uncertainty informa-
tion, and an interactive visualization approach for effective explo-
ration of the uncertainties.

6.1. Progressive Fiber Aggregation

Many techniques for effective visualization of uncertainty in curve-
like ensemble data sets have been reported in literature [BPtHV13;
CZCEO08; ESM*05; MMB*(09]. Most of these techniques, rely on
the availability of the complete data to create uncertainty aggre-
gations similar to a boxplot (e.g., median fiber, outliers, bounds
definition) [BPtHV13; MWK14; WMK13]. The progressive fiber
generation and simultaneous visualization in our work pose extra
challenges to the application of such methods. In our approach,
each bootstrap iteration generates a new fiber sample that is added
to the existing ensemble. Consequently, the uncertainty aggrega-
tion needs to be updated after every bootstrap iteration. An effi-
cient method for aggregation that can be iteratively updated, rather
than requiring a full re-computation from scratch with every added
sample is desired. The existing algorithms for aggregation rely on
sorting and ordering based on distance calculations between fibers.
Making such calculations progressive is not straight forward. In the
following, we adapt the work by Brecheisen et al. [BPtHV13] to the
progressive context.

Brecheisen et al. proposed to determine a representative fiber us-
ing pairwise distances between all fiber samples. The representative
fiber is the fiber with the minimum accumulated distance to all the
other fibers in the ensemble and as such can be seen as the most
central fiber. In addition, all other fibers are ordered according to
their accumulated distances such that intervals of uncertainty can
be defined.

To calulate the pairwise distances, Brecheisen et al. [BPtHV13]
used the mean of the closest point distance [MVV05]. We modify
this approach presented by Brecheisen et al. to be used within the
scope of a progressive approach as follows.

We assign a distance score S; to each fiber sample F; which is the
accumulated distance of F; to all other available fiber samples as

N
Si=Y d(F,F)), €)

J#i
where d defines a distance measure between fibers, in our case the
closest point distance. With each bootstrap iteration, a new fiber
sample Fj is generated and added. As the distance score S; is a sim-
ple sum it can be updated easily. We only have to compute d(F;, F;)
for each already computed fiber sample F; and add it to the corre-
sponding existing distance score S;. Additionally, S; is computed
by summation of all newly computed d(F;, Fy) using Equation 1.
We keep the scores in an sorted table such that the lowest score,
corresponding to the sample that has a minimum distance to all the
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Figure 6: Updates in a confidence score table with an inclusion of
a new fiber sample at each iteration.

others, is selected as the representative fiber. Higher scores indicate
that the samples are further away from the rest and can be inter-
preted as having higher uncertainty. Despite being of linear order,
the computation of d(F;, Fy) is computationally costly. Therefore,
we progressively update the existing distance scores, as well as the
new distance score S, in order of the distance score of the fiber
samples. Furthermore, to avoid unnecessary distance computations,
if the distance d(F;, Fy) is smaller than a pre-defined threshold,
we assume that the fiber samples F; and Fj, are similar enough to
not need a higher precision in the distance calculation. By keeping
track of all computed distances, we can avoid the costly distance
calculations d(F}, Fy) for the remaining samples F;, by simply us-
ing the existing distance d(Fj, F;).

We illustrate the progressive updates of the distance score table
in Figure 6. After the third iteration (N = 3, Figure 6a), three fiber
samples are present with the second sample as the center line. Dur-
ing the fourth iteration (N = 4, Figure 6b), a new sample is added
to the existing ones. The distance scores are re-computed and the
representative fiber is updated accordingly. At N =5 (Figure 6¢),
another sample is added with a distance less than a predetermined
threshold to the existing fiber sample 3. In this case, the distance
score table is updated according to the distances of the similar fiber
and the new fiber is added to the same table entry as sample 3. No-
tice that the more fiber samples we calculate the higher the costs
of keeping the score table but also the higher the chance of finding
a similar fiber sample. An evaluation on the performance gain and
the accuracy is presented in section 7.

6.2. Progressive Rendering

Once the representative fiber and the aggregations have been deter-
mined, an effective visualization is needed. We draw the represen-
tative fibers as red tubes and the remaining fiber samples, represent-
ing the ensemble variation, as illuminated polylines in orange. We
use multi-layered rendering to avoid occlusion of the representative
fibers by the other fiber samples. We first render the fiber samples,
followed by a second pass to render the representative fibers on top,
as shown in Figure 7. In this way, the representative fibers are al-
ways visible, regardless of occlusion by other fiber samples As a
result, the depth perception of those samples in relation to the rep-
resentative fibers is less clear. However, we deem the visibility of

the representative fibers more important, while the fiber samples
provide context.

As the simulation progresses, changes of the representative fiber
and fiber samples can be observed by the user in the progressively
updating visualization. For further exploration of the fiber aggrega-
tion, intervals can be specified similar to the work by Brecheisen
et al. [BPtHV13] to show variation from the representative fiber.
An interval can be expressed as a percentage range of the distance
score table, e.g., 0 — 50% closest fiber samples. The selected fiber
samples are rendered in blue. We have chosen the color scheme for
the representative fiber, fiber samples and selection, using the red to
blue diverging color map from ColorBrewer [HB03]. By using col-
ors from one end of the color map for the representative fiber and
fiber samples we indicate their connection, while using the other
end for the selection provides a clear highlight.

To draw the selection in the multi-layered approach, described
above, we use a third layer, between the complete set of fiber sam-
ples and the representative fibers. As a result, selected fibers are
shown on top of the complete set but may be occluded by the rep-
resentative fibers, as shown in Figure 7.

6.3. Linked Distance Score Histogram

Selecting fibers based on the interval ranges, as described in Sec-
tion 6.2 allows the user to gain an impression of the variance of
the samples from the representative fiber, for example, to identify
outliers. To provide further insight into the distribution of the gen-
erated fiber samples, we compute the distance of each sample from
its corresponding representative fiber and show these in a histogram

Representative fiber

Figure 7: Visualization with multi-layered rendering. Representa-
tive fibers are rendered on the top layer, followed by the selected
interval and fiber samples at the bottom. Histogram widget shows
the selected interval. The line plot shows the Earth Mover’s Dis-
tance (EMD) between the last two consecutive histograms plotted
along the number of iterations.

(© 2021 The Author(s)
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Figure 8: Progressive simulation and visualization of a single fiber, originating from Arcuate Fasciculus showing the histogram and conver-
gence behaviour of the simulation. a) to f) show the results of the simulation after N iterations. T represents the total elapsed time of the

simulation in seconds. g) shows the histogram stability plot.

(inset, Figure 7). The fiber distribution in the histogram is repre-
sented so that the left part of the histogram depicts the fiber sam-
ples closer to the representative fibers, while the extreme right part
denotes the fibers further away.

We further allow the user to select intervals visually, by brush-
ing in the histogram view, providing an intuitive way to understand
the uncertainty distribution. We use the same color scheme used
for the 3D representation (Section 6.2) to indicate fiber samples
and selections in the histogram. Together with with the stability of
the actual fiber visualization, the continuously updating histogram
is an indicator of the stability of the estimated uncertainty. Over
time, it is expected that the histogram will have fewer fluctuations,
indicating that the addition of samples has less influence on the
final uncertainty estimation. To aid the evaluation of the stability
of the uncertainty estimation beyond animation, we calculate the
earth mover’s distance (EMD) [RTG98] between the histograms
of consecutive bootstrap iterations. The EMD quantifies the differ-
ences in the distribution for the two consecutive histograms. Hence
after several iterations, the histogram becomes more stable, conse-
quently the distance between the histograms reduces depicting the
stability of the simulation. We show these values in an optional,
on-demand line plot, shown in the bottom right corner of Figure 7.

7. Results

In this section, we evaluate the developed framework and discuss
the interactivity of the progressive simulation, uncertainty estima-
tion, and rendering. We used two DW-MRI data sets, one from a
healthy subject, one of a patient with a brain tumor, provided by our
collaborators. During separate sessions with two clinical collabo-
rators, we extracted several fiber tract bundles (i.e., Inferior Front
Occipital Fasciculus (IFOF), Corticospinal Tract (CST), Arcuate
Fasciculu (AF), Optic Radiation (OR)) from these datasets, using
our tool. The original volume datasets comprise of 112 x 112 x 70
voxels, with a resolution of 2 x 2 x 2mm3, a b-value of 1,000, and
56 gradient directions. All computations were performed using an
Intel (R) Core i7-4820K CPU at 2.6 GHz. Our framework is im-
plemented in C++, as a plug-in for the open-source medical image
processing and visualization framework 3D Slicer [FBK*12].

7.1. Progressive Simulation

In clinical applications, generating the specific fiber tract requires
constant tuning of the parameters, especially the regions of interest
(ROIs). Our framework allowed our clinical partners to generate
and manipulate the fiber tracking regions of interest during the pro-
gressive generation of fiber samples. The interactions provided in
our framework were found to be useful to create the fiber tracts.

(© 2021 The Author(s)
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Figure 8 illustrates the progressive computation and visualiza-
tion of a representative fiber and the corresponding variation for a
single seed point. The fiber is part of the Arcuate Fasciculus (AF)
bundle as was defined by our collaborators. At each bootstrap iter-
ation, a new fiber sample is generated from the seed point, which
in turn updates the distance score table, and subsequently the rep-
resentative fiber. The variation in the representative fiber and in-
clusion of the new fiber samples can be seen in Figures 8b-f, il-
lustrating the result after 5, 10, 100, 350, and 500 iterations, re-
spectively. In Figures 8a-d, it can be seen that the 3D representa-
tion and the histogram changes significantly between the different
snapshots. As the number of similar fiber samples increases within
an ensemble, the representative fiber updates accordingly. After an
adequate number of bootstrap iterations, the overall structure of the
fiber tract, along with its variations, becomes stable, as indicated
in Figures 8e and f. As can be seen, there are no major changes in
the fiber structure and histograms, and the simulation can be con-
sidered as converged. The stability of the histogram can also be
analyzed with the histogram stability plot as discussed in Section
6.3. With increasing number of iterations, the histogram becomes
stable and consequently the distance among the consecutive his-
tograms diminishes, as shown in the line plot in Figure 8g. How-
ever, it should be noted that the stability plot alone is not an indi-
cator of the convergence of the simulation, rather it only depicts

Figure 9: Progressive simulation and visualization of the Arcuate
Fasciculus. a) to c) show the results of the simulation after N iter-
ations. d) shows the histogram stability plot.
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Figure 10: Progressive simulation and visualization of the part of
corticospinal tract with tumor in the vicinity. Figures a) to e) show
the results of the simulation after N iterations. f) shows the his-
togram stability plot

how stable histogram is. Convergence of the simulation is always
observed in combination with analyzing the 3D shape of the fiber
structure and the stability of the histogram.

Figure 9 shows the convergence behavior when using a seed re-
gion instead of a single seed point in the AF tract. As the simu-
lation proceeds, the inclusion of more fiber samples stabilizes the
distribution. Since the bundle is rather compact and is not strongly
affected by noise, there are consistent updates in the fiber structure
from the beginning of the simulation. The distance distribution and
the fiber samples shows no major changes even as early as 50 itera-
tions. The structure of the fiber tract samples seems stable from the
early stage of the simulation, and hence, one can estimate that only
few bootstrap iterations are required for estimating the uncertainty
in this case. Figure 9d shows the histogram stability plot which fur-
ther clarifies the consistency of the histogram, as evident from the
plot, the histogram distributions remains homogeneous from the
early stage of the simulation.

Figure 10 shows a second example, using region-based seeding
to generate the CST tract as defined by our collaborators. Here, a
tumor causes displacement of the CST tract. Initially, the distance
distribution and the representative fibers update more rapidly be-
cause insufficient fiber samples are present. This can be seen from
the samples and histogram in Figures 10a-c. The histogram stability
plot, shown in Figure 10e further shows the large distance among
the histogram distribution in the early stage of the simulation. As
the simulation proceeds, the inclusion of more fiber samples stabi-
lizes the distribution.

The examples shown indicate that convergence, as indicated by
our partners, is reached after a different number of iterations. With
our progressive framework, the users do not need to define the total
number of iterations in advance and wait for the results. They can
directly analyze the progressive results according to their stability
estimated from the 3D visualization and the histogram.

7.1.1. Expert Feedback

‘We have conducted multiple feedback sessions with our collabora-
tors, including two radiology operators and a surgeon in training.
Our collaborators generated the core fiber bundles presented in this
paper using our tool and provided feedback, both informally, as
well as through a questionnaire. They noted that using our frame-
work improved their understanding of the uncertainty present in the
data and the extracted bundles. The stability of the simulations was
identified by analyzing histogram stability and the 3D shape of the
bundle. Our collaborators were enticed by the interactive defini-
tion of bundles. However, they also remarked that they would need
more experience with such methods and uncertainty in general, to
be able to provide reliable evidence of the benefits. We also got
feedback from a collaborating neurosurgeon, on the visualization
of the uncertainty, discussed in more detail in section 7.2.

7.2. Interactive Uncertainty Exploration

Similar to strategies presented by [BPtHV13], we provide the pos-
sibility to specify confidence intervals of fiber samples to be vi-
sualized. The interval can be selected based on a percentage of
fiber samples closest to their corresponding representatives, simi-
lar to quantiles in scalar value distributions. Figure 11c shows the
0 —50% interval of the fiber samples closest to their representative
for the AF tract.The selection is highlighted in blue. Figure 11d il-
lustrates the 90 — 100% interval, showing the 10% fibers that are
farthest away from their representative fiber. The interval selection
through the percentage of closest fibers has a direct interpretation
on the chance to track a fiber within the region.

As explained in Section 6.3, our framework also allows to select
interval based on the histogram distribution of the distances to the
representative fiber. Figure 11a and 11b illustrate the selection us-

Figure 11: Visualization of fiber confidence intervals: a-b) selec-
tion of intervals based on the modes present in the distance score
histogram c) 0 — 50% and d 90 — 100% closest fibers interval se-
lection.

(© 2021 The Author(s)
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Figure 12: Visualization of the fibers with the interval selected from
histogram for corticospinal tract (CST) with the tumor in the vicin-

iy,

ing the distance score histogram. By observing the histogram, one
can identify the branch present in the fiber ensemble. The selection
in Figure 11a corresponds to the fiber samples that are closer to the
representative while the selection in Figure 11b corresponds to the
branch which is further away. As illustrated it is possible to identify
deviations from a uni-modal distributions. Our representative-fiber
calculation assumes that the distribution of fibers originating from
a seed point is uni-modal. However this does not always hold and
one calculated representative fiber is not adequate. The histogram
is likely to show multiple peaks when this is the case (see Figure 7).
In discussion with our collaborators, this interaction with the his-
togram helps in understanding the variations present in the bundle
and identifying the outliers.

Figure 2a was generated together with our collaborators and
would be the result of tracing the CST bundle with deterministic
fiber tracking used in their common workflow. As illustrated in Fig-
ure 2, deterministic fiber tracking can miss relevant fiber tracts, and
thereby has false-negatives. A fixed safety margin around deter-
ministic fiber tracking results, which is indicated by the blue line
in Figure 2a, is a common clinical practice used to determine the
area of risk. The margin is equally distributed along the fibers how-
ever, it is not reliable as can be seen in Figure 2b. Our collaborators
neurosurgeons indicated that false negative as the ones missed in
Figure 2a are specially dangerous, as neurosurgeons may inadvert-
edly damage tracts and induce neurological deficits.

‘We further utilize histogram for interval selection to analyze un-
certainties. Figure 12 illustrates the interval selection in the case
where the CST bundle is affected by a tumor. Figure 12a illustrates
the selection of the 40% fibers that are closest to representatives
and Figure 12b represents the interval of 70%. As can be seen in
the Figure 40% fibers are in the back area, however, on increas-
ing the interval to 70%, the branch towards frontal area can be ob-
served. As indicated from our collaborators The interval selection
helps define the risk area for planning tumor resection surgery.

(© 2021 The Author(s)
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Table 1: Comparison of the number of voxels used in the boot-
strap computations per iteration for the , Corticospinal tract
(CST),Arcuate Fasciculuss (AF) and Optic Radiation (OR).

Naive Progressive
CST AF OR
1 voxels 1,540,096 324 288 209
G voxels - 39 31 30
4 time [ms] 4,650 4.5 4.1 39
G time [ms] - 0.6 0.55 0.52

7.3. Computational Analysis

To analyze the computational cost and acceleration, achieved with
our progressive approach, we have generated three fiber ensembles,
corresponding to different anatomical regions defined with our col-
laborators. First, we compare the number of voxels necessary to
compute each fiber tract sample. As the computation per voxel is
identical between methods, we decided to use the number of voxels,
instead of the computation time for comparison. It should be noted
that the naive approach can easily be parallelized even for a single
fiber and member. However, this advantage can be offset by com-
puting multiple fibers in parallel with our approach. As discussed
earlier, the naive bootstrap method computes the ensemble of the
complete diffusion tensor field, hence, the number of voxels cor-
responds to all voxels comprising the volume (approximately 1.5
million). Our local bootstrap strategy only computes bootstrap sam-
ples for voxels along the fiber of interest. We provide an overview
of the required mean (u) number of voxels and the standard de-
viation () per iteration of the same tract in Table 1. The mean
and standard deviation are computed over 100 bootstrap iterations.
In summary, our local bootstrap strategy significantly reduces the
number of bootstrap computations required for each iteration. Con-
sequently, the computation time for the required voxels as well as
the required memory is significantly lower compared to the naive
approach.

In typical applications, users are interested in fiber bundles con-
sisting of multiple fiber tracts. Typically, those fiber tracts share a
significant amount of voxels, meaning that as we increase the num-
ber of fiber tracts computed for the same seed regions, these shared
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Figure 13: Number of voxels required to compute fiber tracts with
increasing seeding density.
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Figure 14: Computation time and Error.

voxels can be re-used. Figure 13 shows the number of voxels that
need to be computed for the Corticospinal tract (CST, ) and Arcuate
Fasciculus (AF), with increasing seeding density. As can be seen in
Figures 9 and 10, the fibers are much less spread in the AF com-
pared to the CST. Consequently, the amount of voxels, needed for
computing the bundle flattens out much quicker for the AF than for
the CST (Figure 13). Nonetheless, in both cases, we can observe a
flattening of the curves indicating that performance gains are even
bigger for bundles, than for individual fibers.

Our framework consist of two major stages progressive boot-
strap and fiber tracking, where fibers are generated, and progres-
sive fiber aggregation where the derived data, such as the repre-
sentative fiber are computed. The computation time for the boot-
strap and fiber-tracking stage only varies, depending on variations
in the data, i.e., tracts taking longer or shorter paths in the current
iteration. The computation time for the progressive fiber aggrega-
tion stage, however, increases with each iteration, i.e., at iteration n,
n— 1 pairwise distances need to be computed. While this sums up to
the same N /2 distances that need to be computed without the pro-
gressive approach, distributing the computations over the iterations
reduces the wait time for the visualization significantly. Further, in-
troducing the similarity threshold can drastically cut computation
times. We illustrate the correlation between the cut off threshold
and computation time in Figure 14. We performed the progressive
aggregation for 1,000 bootstrap iterations with increasing threshold
values. As can be seen, the computation time (green) drastically de-
creases, even for small threshold values. At the same time, the error
(red line, Figure 14) compared to the exact computation without a
threshold is increasing with larger threshold values. The error is cal-
culated as the mean of the closest point distance between the exact
representative fiber, and the representative fiber computed with the
given threshold value. Since the fiber ensemble is computed using
a stochastic process, we repeated the calculations 100 times, repre-
sented by the error bars in Figure 14. Given the curves in Figure 14,
we estimate that a small cut off can provide significant speed up,
with no noticeable reduction of accuracy .

8. Conclusion and Future Work

In this work, we have presented a progressive visual analytics strat-
egy for uncertainty visualization in DTI fiber tracking, based on
stochastic modeling. We have modified the wild-bootstrapping and
fiber-tracking pipeline to enable a progressive approach. In partic-
ular, we have designed a local wild-bootstrapping approach, inte-

grated into and driven by interactive fiber tracking. The presented
pipeline can be implemented with other stochastic strategies and
fiber tracking approaches that rely only on local information, such
as tensor deflection (TEND) [Laz10]. Fiber tracking methods that
require global properties of the volume to reconstruct the fiber tract,
such as geodesic-based fiber tracking [HWF11], would, however,
not directly benefit from the presented approach. Although we de-
veloped our progressive pipeline for DTI, the concept is extensible
to HARDI and other models, as long as a local simulation method
for uncertainty estimation is present such as [CDW11].

Furthermore, we have described a progressive approach to aggre-
gate the fiber ensemble during computation, for immediate progres-
sive visualization. We have adapted previous work by Brecheisen
et al. [BPtHV13] such that it can work progressively. As shown
in Section 7.3, our proposed progressive update of the representa-
tive fiber effectively reduces the computational cost. While we use
the mean of the closest point distances between fiber pairs, as pro-
posed in the original work, our progressive aggregation would also
work with other distance measures [JPS*10; MVVO05]. The main
idea behind our aggregated visualization is to provide a less clut-
tered uncertainty representation by showing the variations around
an identified representative fiber. Our definition of representative
fiber assumes a unimodal distribution of fibers originating from
a seed point. However, this may not always be the case. If the
distribution is multimodal, e.g., bimodal, then the representative
fiber loses its meaning, for example appearing in between the two
modes. Other summarization and aggregation methods would need
to be explored to be able to address this issue. We are using deter-
ministic fiber tracking in combination with the bootstrap method,
hence, the limitations of deterministic fiber tracking still persist in
our pipeline and other approaches could be explored as future work.

Our clinical collaborators stress the relevance of adding uncer-
tainty to their existing current workflow. However the lack of ac-
cess to tools that show uncertainty makes it difficult to show its real
benefit in practice. Our proposed progressive approach is a first step
towards reducing the clinical bottleneck making uncertainty visual-
ization more accessible to clinicians. As future direction we want to
integrate the progressive uncertainty visualization in their workflow
and evaluate whether and how uncertainty influences the decision
making process. A progressive pipeline provides the possibility of
immediate analysis at the danger of evaluating premature results.
In this paper, we rely on the stability shown by the animation of
the visualized results to indicate reliability of the results. However,
more research is needed to evaluate the implications of the progres-
sive pipeline. Despite positive anecdotal feedback from our clinical
partners, the acceptance of our progressive framework by clinical
users cannot be assumed, as the users are unaccustomed with un-
certainty visualization and it requires some experience to adopt it
in a routine workflow.

The focus of this work was on the progressive computation rather
than the visual representation. More sophisticated visual represen-
tations, integrated with the progressive aggregation method are an
interesting avenue for future work. Furthermore, we have explored
a limited amount of sources of uncertainty. The progressive frame-
work can be extend to accommodate other sources of uncertainty
coming from other stages of the pipeline.
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