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RESILIENCE, by H.A.P. Blom and S. Bouarfa, Chapter 5 in: Complexity science in air 
traffic management, Eds: A. Cook and D. Rivas, Routeledge, 2016. 

 

Chapter authors: Delft University of Technology 

 

5.1. Introduction 

Thanks to the influential work by Hollnagel and other researchers (2006), the value of 
resilience in air transportation has been well recognised in behaviour sciences. The objective 
of this chapter is to show that air transportation can benefit significantly by studying 
resilience from the complementary complexity science perspective. This allows to combine 
the knowledge from behavioural sciences with the systematic modelling and analysis 
approach of complexity science. 

Civil air transportation is an example of a large complex socio-technical system. It comprises 
interactions between different types of entities, including technical systems, operational 
stakeholders, regulators, and consumers (DeLaurentis and Ayyalasomayajula, 2009). 
Technology plays a central role as does the social context within which the various parties 
operate. This complex socio-technical air transportation system copes with many internal and 
external disruptions of different nature that implicitly test its resilience on a regular basis. 
These events may interact with each other, potentially creating a cascade of other events that 
may span over different spatial as well as time scales, ranging from affecting only one aircraft 
or crew, up to a group of aircraft. In current air transportation, disruptions are managed by 
operators at airlines, airports, and ATC centres, and may impact the overall performance of 
the socio-technical system, e.g. some flights are rerouted, some aircraft or crew are 
exchanged, and some passengers are rebooked. Managing disruptions involves trade-offs 
which are created by the complexities inherent to the processes managed and the finite 
resources of operational systems (Hollnagel, 2009). For instance, in the case of congested 
airspace, air traffic controllers might ask airlines to reroute their flights. In such a situation, 
improving the key performance area (KPA) ‘safety’ comes at the cost of the KPA ‘economy’. 
Potentially, there are conflicting goals leading to dilemmas and bottlenecks that must be dealt 
with. Nevertheless most problems are adequately solved, and most of these events pass 
without substantial inconvenience for passengers.  

In some cases, however, the resilience of the air transportation system falls short resulting in 
significant flight delays. A typical example is bad weather, which may jeopardise the normal 
operation of an airport or a sector and induces ‘ripple’ effects (propagation) throughout the air 
transportation network. Another example is that of a malfunctioning aircraft being stuck with 
its passengers at a distant airport, as a result of which all passengers are delayed many hours.  

In addition to regular cases with limited consequences, also rare cases happen with very 
severe consequences. These severe consequences are of two categories: catastrophic accidents 
involving one or more aircraft; and network-wide consequences that may push the dynamics 
of the air transportation system far away from its point of operation, and therefore 
dramatically affect the performance of the system. The latter happens in case of external 
events for which the air transport network is vulnerable (see Section 3.6), such as outbreak of 
a viral disease causing passengers and airlines to change their travel behaviour (e.g. SARS in 
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2003 and Ebola in 2014) or volcanic ash impacting air travel in a large area (e.g. the Icelandic 
volcano in 2010). Cases of the former are fatal runway incursions (e.g. the Linate runway 
collision in 2001), fatal mid-air collisions (e.g. the Überlingen mid-air event in 2002), and 
loss of control of an aircraft flying through a hazardous weather system (e.g. the Air France 
crash in the Atlantic Ocean in 2009). Some external events belong to both categories, e.g. the 
9/11 terrorist action in 2001 led to fatal accidents and caused closing down of air travel in a 
large area. 

The examples above show a wide variety of significant events with major consequences. 
However, thanks to the resilience of the air transportation system, there also are many 
significant events having negligible consequences. In order to increase the resilience of the air 
transportation system, there is a need to identify, understand, and model system 
interdependencies of the complex socio-technical air transportation system and analyse its 
response to the large variety of possible disruptions. This chapter aims to show that a 
complexity science perspective can be a valuable asset in meeting this need. In particular, the 
chapter aims at answering the following questions: What is resilience and how is it measured? 
Why use complexity science to model and analyse resilience? Which complexity science 
approaches can be used? The chapter also demonstrates the benefits of applying complexity 
science and behavioural science to an airline problem. The specific application concerns 
airline operations control, which core functionality is one of providing resilience to a large 
variety of disruptions that happen on the day of operation. 

This chapter is organized as follows. Section 5.2 addresses resilience capacities. Section 5.3 
examines various resilience metrics from the literature. Section 5.4 introduces complexity 
science approaches for studying resilience. Section 5.5 provides a convincing resilience 
application of using complexity science in air transportation. Section 5.6 provides 
conclusions. 

5.2. Resilience Capacities 

Resilience comes from the Latin word resilio, meaning ‘to jump back’, and is increasingly 
used in various disciplines to denote the ability to absorb strain and bounce back from 
unfavorable events. The term was initially used in the field of mechanics as “the ability of a 
metal to absorb energy when elastically deformed and then to release it upon unloading”, e.g. 
Hoffman (1948). Holling (1973) extended the resilience concept to ecological systems as the 
“persistence of systems and of their ability to absorb change and disturbance and still 
maintain the same relationships between populations or state variables”. Since then, various 
other extensions of resilience have been introduced in other domains, such as economics, 
organisational science and safety science.  

Recently, Francis and Bekera (2014) conducted a systematic review of the complementary 
resilience developments across multiple domains, and identified the following three resilience 
capacities: (i) absorptive capacity, (ii) adaptive capacity, and (iii) restorative capacity. 
Absorptive capacity is the degree to which a system can absorb the impacts of system 
disruptions and minimise consequences with little effort (Vugrin et al., 2010). The practice of 
incorporating adequate buffer capacity in anticipation of increased stress on the system is for 
example an absorptive endowment. It is considered to be a proactive measure to absorb 
potential shocks. Adaptive capacity is the ability of a system to adjust to undesirable 
situations by undergoing some internal changes. Adaptive capacity is distinguished from 
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absorptive capacity in that an adaptive system can change its response. A system’s adaptive 
capacity includes the ability to forecast adverse events, recognise threats, and reorganise after 
the occurrence of an adverse event. Finally, restorative capacity is the ability to recover or 
bounce back from disruptive events and return to normal or improved operations. 

Table 5.1 shows what the three resilience capacities mean for resilience related concepts like 
robustness and dependability. Robustness is defined as the ability of elements, systems, and 
other units of analysis to withstand a given level of stress or demand without suffering 
degradation or loss of function (MCEER, 2006). This definition is consistent with the 
absorptive capacity described by Francis and Bekera (2014). Hence, a socio-technical system 
that has absorptive capacity only is robust. System dependability is the collective term used in 
system engineering to describe a system’s availability performance and its influencing factors: 
reliability1 performance, maintainability performance and maintenance support performance 
(IEC, 1990). Thus, a dependable system has both absorptive and restorative capacities. In 
comparison to dependability, resilience is an endowed or enriched property of a system that is 
capable of effectively combating (absorbing, adapting to, and rapidly recovering from) 
potentially disruptive events.  

Table 5.1: Resilience capacities in relation to robustness and dependability 

Related System 
properties 

Resilience Capacities 
Absorptive Restorative Adaptive 

Robustness + - - 
Dependability + + - 
Resilience + + + 

 

Robustness and dependability are system properties that are well addressed through system 
engineering. For air transportation this means that the key resilience challenges are not only to 
address a complex socio-technical system rather than a complex technical system, though also 
to learn improving the adaptive capacities. These adaptive capacities of the socio-technical air 
transportation system concern both the phase of disruption absorption and the phase of 
recovering from a system performance degradation due to disruptions.  
 
Placing emphasis on improving the adaptive capacity in absorbing disruptions concurs with 
the resilience engineering definition of Hollnagel et al. (2009) for use in air traffic 
management research: “a system is called to be resilient if it has the intrinsic ability to adjust 
its functioning prior to, during, or following changes and disturbances, and thereby sustain 
required operations under both expected and unexpected conditions”. In the safety domain, 
Hollnagel (2014) explains that this resilience engineering view reveals a need to study “what 
may go right”, rather than the traditional approach of studying “what may go wrong” only. 
The traditional and novel approaches are referred to as Safety-I and Safety-II respectively. 
5.3. Resilience Metrics 

                                                             
1 In system engineering, reliability is the ability of a system or component to perform its required functions under 
stated conditions for a specified period of time. One should note that this system engineering definition of 
reliability is more restricted than what is meant when we refer to a ‘reliable’ airline. Such an airline is indeed 
reliable in the sense of the system engineering definition. However, an airline also needs to be adaptive in 
response to unexpected adverse conditions, in order to perform in a competitive market. This entails getting 
passengers (and their bags) to their destinations (reasonably on time) and, indeed, having a reputation for doing 
so. Successful airlines thus have an adaptive capacity, rendering them resilient. 
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This section examines resilience metrics from the literature, covering different domains 
including ecosystems, critical infrastructure systems, networks, organizations, information 
systems, psychology, and transportation systems.  
 
5.3.1. Ecosystems 
 
For ecosystems, Gunderson et al. (2002) distinguished between two resilience measures: 
ecological resilience and engineering resilience. The latter considers resilience as the ability 
to return to the steady state following a perturbation (Pimm, 1984; Varian, 1992; Tilman, 
1996; Scheffer, 2009), i.e. it implies only one stable state and global equilibrium. The former 
concept, considers resilience as the amount of disturbance that a system can absorb before it 
changes state (Holling, 1996; Gunderson et al., 2002; Scheffer, 2009), i.e. it emphasises 
conditions far from any stable steady-state, where instabilities can ‘flip’ a system into another 
regime of behaviour (Gunderson et al., 2002). So, ecological resilience is measured by the 
magnitude of disturbance that can be absorbed before the system redefines its structure by 
changing the variables and processes that control behaviour (Gunderson et al., 2002). For 
engineering resilience, the only possible measures for resilience are near-equilibrium ones, 
such as a characteristic return time to a global equilibrium following a disruptions, or the time 
difference between the moments of disruption and of full recovery. 
 
5.3.2. Critical Infrastructure Systems 

The earthquake engineering community (Tierney and Bruneau, 2007) suggested measuring 
resilience by the functionality of an infrastructure system after a disaster has occurred, and 
also by the time it takes for a system to return to pre-disaster level. Their suggestion was 
based on the observation that resilient systems reduce the probabilities of failure, the 
consequences of failure, and the time for recovery. This concept is illustrated by the 
‘resilience triangle’ in Figure 5.1, which represents the performance degradation due to 
damage caused by earthquake disruption(s), as well as the pattern of restoration and recovery 
over time.  
 

 
Figure 5.1: Resilience Triangle adapted from Tierney and Bruneau (2007), with disruption 

moment dt , moment of full performance impact ft  and moment of full recovery rt .  
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The higher the resilience of a system, the smaller the size (depth and duration) of the triangle. 
Bruneau et al. (2003) expressed resilience as follows:  100r

d

t

e t
R Q t dt    , where ( )Q t  is the 

performance level percentage at moment t, dt  is the moment of disruption, and rt  is the 
moment of recovery.  
 
In a later earthquake engineering community work (Renschler et al. 2010), a framework was 
proposed  to measure resilience at the community scale, integrating several dimensions such 
as population, environment, physical infrastructure, and economic development into one 
resilience index. 
 
Li and Lence (2007) defined resilience ( , )e f rR t t  as the conditional probability that given full 
performance impact at time ft , the system is fully recovered  at time rt , i.e.  

     0 0,  = ( ) ( )e f r r fR t t P F t F F t F     

where  fF t  and  rF t are the performance levels at ft  and rt  respectively, and 0F  is the 
original stable system performance level (100% level in Figure 5.1). Attoh-Okine et al. (2009) 
extended the conditional probability approach of Li & Lence (2007) with a ‘belief’ function to 
capture incomplete data in urban infrastructure systems. 
 
Francis and Bekera (2014) have proposed quantifying resilience eR as follows: 

0 0

( )( ) fr
e P

F tF tR S
F F

  

where 0F  is the original stable system performance level (100% level in Figure 5.1); ( )fF t  is 
the post-disruption performance level (at point B in Figure 5.1); ( )rF t  is the performance at a 
new stable level after recovery efforts have been exhausted (at point D in Figure 5.1); and PS  
is the speed recovery factor (slope of BD).  
 
Ayyub (2014) proposed to express the resilience eR  metric as follows: 

   d f d r f
e

r

t t t t t
R

t
    

  

where    and   are the ratios of mean performance levels during periods  ,d ft t  and  ,f rt t     
respectively versus the pre-disruption performance level. 
 
Musman and Agbolosu-Amison (2014) proposed to capture resilience in terms of mission 
risk. According to their definition, resilience can be computed as being either: (1) a utility-
based performance metric that indicates how well the system responds in the face of one or 
more incidents (where incidents are assumed to have occurred); (2) a probability that some 
events might occur to bring the system to some specified unacceptable level of performance; 
or (3) a risk estimate that combines the probability of incidents with the system utility-based 
measure of performance changes that result when the incidents occur. 
 
 
5.3.3. Networks  
 
In the area of networks, Najjar and Gaudiot (1990) proposed network resilience  NR p   and 
relative network resilience  NRR p , where  NR p  is defined as the number of node failures a 
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network can sustain while remaining connected with a probability  1 p , and  NRR p is 
defined as the ratio of network resilience  NR p  to the number N  of nodes in the network. 

 
Garbin and Shortle (2007) generalised this to a network resilience metric in the form of actual 
network performance (or percentage of the normal network performance) as a function of the 
network damage (see Figure 5.2). Examples of parameters that characterise networks are 
demand, topology, capacity, and routing. Garbin and Shortle (2007) also proposed to use the 
area under the curve in Figure 5.2 as a resilience index metric for a network. 
 

 
 

Figure 5.2: Examples of network resilience curves, showing network performance percentage 
as a function of network damage percentage; adapted from Garbin and Shortle (2007).  

 
Rosenkrantz et al. (2009) proposed metrics to quantify the resilience of service-oriented 
networks under node and edge failures. The metrics are based on the topological structure of 
the network and the manner in which services are distributed over the network. They made a 
distinction between network edge resilience and network node resilience. A network is said to 
be k-edge failure resilient if no matter which subset of k or fewer edges fails, each resulting 
sub-network is self-sufficient. A network is said to be k-node failure resilient if no matter 
which subset of k or fewer nodes fails, each resulting sub-network is self-sufficient. In the 
same work, Rosenkrantz et al. (2009) presented algorithms to determine the maximum 
number of node and edge failures that can be tolerated by a given service-oriented network, 
and to optimally allocate services over a given network so that the resulting service-oriented 
network can tolerate single node or edge failures. 
 
Henry and Ramirez-Marquez (2012) expressed resilience as the ratio of recovery to loss 
suffered by the system. This means that if the recovery is equal to the loss, then the system is 
fully resilient, and if there is no recovery, then no resilience is exhibited. They acknowledged 
that quantifying resilience requires identification of a quantifiable and time-dependent 
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system-level delivery function, also called a ‘figure-of-merit’ (such as delay, connectivity, 
flow, etc.). In systems where multiple figures-of-merit are considered, an event could be 
disruptive with respect to one figure-of-merit but not disruptive with respect to another figure-
of-merit. Therefore for a holistic analysis of system resilience, the system must be analysed 
with respect to all figures-of-merit that are relevant and important (Henry and Ramirez-
Marquez, 2012). 
 
 
5.3.4. Organisations and Information systems  
 
Dalziell and McManus (2004) suggested measuring resilience through assessing the total 
impact on Key Performance Indicators (KPIs) between the time of disruption and the recovery 
time, where the KPIs are real-valued measures at a certain moment in time for the 
corresponding KPAs. The variation of  a specific KPI is measured and plotted against time 
from the start of the disruption dt  until full recovery rt . The resilience then represents a 
weighted sum of the areas under the KPI curves. 
 
Zobel and Khansa (2012) introduced a general approach for characterizing cyber 
infrastructure resilience in the face of multiple malicious cyber-attacks. Their proposed 
technique accounts for the amount of loss incurred by an information system in the face of 
multiple cyber-attacks, and it captures the strength and timing of these attacks. 
 
5.3.5. Psychology 

In psychology, various psychometric scales have been developed to assess the resilience of 
individuals, i.e. Likert scales. For instance, Wagnild and Young (1993) developed a resilience 
scale, the purpose of which was to identify the degree of individual resilience, considering a 
positive personality characteristic that enhances individual adaptation. The scale consists of 
25 items each rated with a 7-point agreement scale. Smith et al. (2008) proposed a ‘brief 
resilience scale’ to assess the ability to bounce back or recover from stress.  
 
Other Likert scales include the Baruth protective factors inventory, the Connor-Davidson 
scale, and the resilience scale for adults (see Ahern et al. (2006) for a detailed review).  
 
5.3.6. Transportation Systems 
 
Chen and Miller-Hooks (2012) defined a resilience indicator that considers the ability of the 
freight transportation network to cope with the negative consequences of disruptions. The 
indicator explicitly accounts for the network topology, operational attributes, and the impact 
of potential recovery activities. Such activities might be taken in the immediate aftermath of 
the disruption to meet target operational service levels while adhering to a fixed budget.  
 
Omer et al. (2013) identified three resilience metrics to measure the impact of disruptions on 
the performance of a road-based transportation system. The three identified metrics were the 
travel time resilience, environmental resilience, and cost resilience. The resilience values were 
measured by introducing hypothetical disruptions to a network model of a regional 
transportation network.  
 
Gluchshenko and Foerster (2013) proposed a qualitative measure for resilience in air 
transportation based on recovery time. They introduced three degrees of resilience, namely: 
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(i) high resilience, when the time of deviation is considerably longer than recovery time; (ii) 
medium resilience, when the time of deviation and recovery time are approximately equal; 
and (iii) low resilience, when the time of deviation is considerably shorter than the recovery 
time.  
 
Hughes and Healy (2014) proposed a qualitative framework to measure the resilience of road 
and rail transport system, through dedicated measurement categories for technical and 
organisational dimensions. The framework involves an initial determination of the context of 
the resilience assessment, followed by a detailed assessment of resilience measures, which 
combine to generate a resilience score ranging from 4 (very high resilience) to 1 (low 
resilience).  
 
Janic (2015) provides an alternative resilience indicator for air transport network analogous to 
the indicator proposed by Chen and Miller-Hooks (2012) for intermodal freight transport. 
Such indicator considers the network’s inherent properties and the set of actions for mitigating 
costs and maintaining the required safety level. Because mitigating actions include delaying, 
rerouting and/or cancelling flights, Janic (2015) defines this indicator as the ratio of the 
actually realized on-time and delayed flights to the total number of scheduled flights during 
specific time period. Janic (2015) also proposed to measure the resilience of an air transport 
network consisting of N airports by estimating the sum of the weighted resilience of each 
individual airport. 
 
Following the proposal of Musman and Agbolosu-Amison (2014) resilience can be expressed 
in terms of mission risk. In air transportation, a well-studied mission risk metric is the reach 
probability for an aircraft trajectory (Prandini and Hu, 2006, 2008; Blom et al., 2007b, 2009). 
Let  ,

Re ( , )i j
achP h d  be the probability that the difference in 3-dimensional position ( )i j

t ts s  of 
aircraft pair (i,j) hits or enters a disk ( , )D h d  of height h and diameter d, on a finite time 
interval [0, ]T ,  i.e. 

,
Re ( , ) Pr { [0, ] such that ( ) ( , )}i j i j

ach t tP h d ob t T s s D h d      
Then the reach probability Re ( , )i

achP h d  for aircraft i is obtained by a summation over these
,

Re ( , )i j
achP h d ’s for all j i , i.e.  

,
Re Re( , ) ( , )i i j

ach ach
j i

P h d P h d


  

In Section 6.4 this reach probability is evaluated for an air traffic application with h = 0 and d 
ranging from 0.1 NM till 6 Nm. Hence Re ( , )i

achP h d  is here a metric for the probability that the 
mission fails in realizing a horizontal miss distance of d or higher between aircraft i and all 
other aircraft. Similarly, the complement Re1 ( , )i

achP h d is the probability that the mission 
succeeds in realizing a horizontal miss distance of d or higher between aircraft i and all other 
aircraft. 
 
 
5.3.7.  Usability in air transportation 
 
From the literature review of resilience metrics one may conclude that there are multiple 
approaches to measuring resilience. Hence, the key question is which of these resilience 
metrics from various domains are most appropriate for air transportation? In order to make 
some progress we address this for the possible types of consequences identified in the 
introduction: 
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i) Negligible consequences. 
ii) Catastrophic accidents involving one or more aircraft;  
iii) Significant local performance consequences 
iv) Network wide performance consequences. 

 
For the latter types (iii) and (iv) consequences, it is tempting to use the triangle in Figure 5.1 
as a measure of the lack of resilience of the system considered in response to the disruption(s). 
Then engineering resilience is very effective in measuring the duration (A-D) of the 
resilience triangle in Figure 5.1. Typically, this duration is a measure for the extra time 
needed to implement and realise a (safe) recovery from the disturbance. However, the real 
difficulty is how to measure the depth (A-B) of the immediate post-disruption performance 
degradation in the resilience triangle. The resilience metrics developed in various domains 
form an illustration of the difficulty in measuring this depth. As suggested by Dalziell and 
McManus (2004), a possible approach would be to measure this depth in terms of a weighted 
sum of multi-dimensional KPIs that are commonly in use by the air transportation 
community.  
 
Types (i) and (ii) consequences are not well captured by the resilience triangle interpretation. 
Consequence (i) means that there is no triangle at all. Consequence (ii) simply implies that 
there may be loss of aircraft hull(s) and passenger lives, rather than recovery. The measure 
needed for type (i) consequences is of ecological resilience type, i.e. which characterises the 
(amount of) disruptions that can be handled in such a way that the consequences are 
negligible. This leads to a shortlist of two remaining metrics: the psychological metrics (e.g. 
Likert scales) and the mission risk metric (e.g. reach probability). Because resilience metrics 
for individual humans only are insufficient for the complex socio-technical air transportation 
system, the mission risk metric seems to be the best candidate. A complementary advantage 
of the mission risk metric is that its complement forms a metric for mission success.  
 
It should be noted that none of the metrics measures the individual contribution of the 
adaptive capacity separately from measuring the contributions of the absorptive and 
restorative capacities. This means that in order to capture the effect of adaptive capacities, one 
has to conduct two measurements: one for the full complex system, and another one for the 
complex system in which the adaptive capacities have been nullified.   
 
A complementary problem is the challenge of collecting real resilience data from the complex 
socio-technical air transportation system. To do so, one has to await particular disruptions to 
happen in reality. Even for the existing air transportation system this is a challenge, let alone 
for the design of a novel operational concept. This asks for the use of appropriate complexity 
science modelling and analysis approaches. 
 
5.4. Complexity science perspective 

5.4.1. Complex system interdependencies 
 
In order to improve the resilience of the complex socio-technical air transportation system, it 
is critical to identify, understand, and model system interdependencies (Ouyang, 2014). 
Today, the performance of air transport operations, particularly under disruptive events, is 
dependent upon a set of highly interdependent subsystems including airlines, airports, and 
ATC centres. These subsystems are often connected at multiple levels through a wide variety 
of mechanisms, such that an interdependency exists between the states of any given pair of 
subsystems or components. Rinaldi et al. (2001) defined an interdependency as a bidirectional 
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relationship between two infrastructures through which the state of each infrastructure 
influences or is correlated to the state of the other. As a simple example, airlines and airports 
are interdependent. An airport closure (e.g. due to weather, limited capacity, or ATC strike) 
might cause airlines to cancel or divert their flights. At the same time, decisions made at an 
airline operations control centre influence and depend on airport processes (e.g. gate change, 
passenger  luggage). In normal air transport operations, some interdependencies are invisible, 
but under disruptive scenarios they emerge and become obvious. An illustration of this is the 
2010 Eyjafjallajökull volcano eruption in Iceland which caused the closure of airspace of 
many European countries, and millions of passengers to be stranded at airports around the 
world. 
 
Rinaldi (2004) identified four primary classes of interdependencies in critical infrastructure 
systems; these are presented in Table 5.2. An infrastructure system is defined by the US 
President’s commission on critical infrastructure protection (1997) as a network of 
independent, mostly privately-owned, man-made systems and processes that function 
collaboratively and synergistically to produce and distribute a continuous flow of essential 
goods and services. Such a system is considered to be critical when its incapacity or 
destruction would have a debilitating impact on defence and economic security.  
 
Table 5.2:  Interdependency types in critical infrastructure systems 
Interdependency type Definition 
Physical 
interdependence 

When the state of two systems are each dependent on the material 
output(s) of the other.  

Cyber   
interdependency 

When the state of a system depends on information transmitted 
through the information infrastructure. 

Geographic 
interdependency 

When the state of a system can change due to a local environmental 
event. 

Logical 
interdependency 

When the state of two systems are each dependent on the state of 
the other via another mechanism than one of the three above. 

 
 
Modelling interdependencies in air transportation is a complex, multidimensional, 
multidisciplinary problem. Table 5.3 lists some of the dimensions associated with system 
interdependencies that complicate resilience analysis. To model such interdependencies, there 
is a need for the systematic application, validation, and integration of modelling approaches. 
This view aligns with a common view in the literature that for the analysis of the resilience of 
complex critical infrastructure systems, various modelling and simulation approaches need to 
be integrated into a unifying framework that accounts for various dimensions (Ouyang, 2014). 
Each approach is appropriate for a certain number of resilience applications, depending on the 
components being modelled. Overall, the unifying framework can be used to assess the 
effectiveness of various resilience improvement strategies, and therefore supporting both 
strategic and tactical decision-making. 

Table 5.3: Dimensions and their implications for resilience analysis of the air transportation 
system.  

Dimension Implications for Resilience Analysis 
Multiple 
stakeholders 

Stakeholders have different motivations and problems that drive the modelling 
requirements. 

Multiple Scopes of scenarios range from airports to the whole European airspace or to the 
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spatial scales global scale. Scale affects the resolution and quantity of interdependency data 
required for models. 

Multiple time 
scales 

Different events have varying time scales of relevance. The dynamics of the 
impacts vary from minutes (e.g. normal activities by the operators), to days (e.g. 
bad weather), up to years or even decades (e.g. catastrophic accidents).  

Multiple 
KPAs 

Multiple competing KPAs exist in air transportation; e.g. safety, capacity, 
economy, environment. Resilience analysis should be performed with respect to 
the full spectrum of these KPAs. 

Cascading and 
higher order 
effects 

Disruptions at one airport can propagate to other airports, creating second and 
higher order disruptions. 

Socio-
technical 
perspective 

The air transportation system is a socio-technical system. Behavioural responses 
can influence the efficiency and safety of operations (e.g. situation awareness of 
operators, or passenger response to an infectious disease). 

Disruption 
management 
plans 

Recovery procedures influence the state of a system during a disruption and may 
affect coordination among various stakeholders; e.g., disruption management by 
airline operations control (AOC). 

Regulations Regulations influence operational behaviours as well as the response to and 
recovery from disruptions (e.g. cancelling a flight due to curfew at a destination 
airport). 

Growing 
demand 

Constant growth in the number of flights, aircraft and airports. Rapid change of the 
market (from a small number of national airlines to the recent appearance of many 
companies with new business models). 

  

5.4.2. Complexity science approaches for studying resilience 

Ouyang (2014) provided a comprehensive review of various complexity science modelling 
approaches and grouped them into several broad types: agent-based approaches, network-
based approaches, empirical approaches, systems dynamics-based approaches, economic 
theory based approaches, and other approaches such as hierarchical holographic modelling,  
the high level architecture based method, Petri-nets, dynamic control system theory, and 
Bayesian networks. These approaches have subsequently been systematically assessed against 
several resilience improvement strategies for critical infrastructure systems, and the types of 
interdependencies they cover (Ouyang, 2014). Overall, agent-based methods and network 
flow-based methods appear to have the widest and proven applicability, since they cover most 
of resilience improvement strategies corresponding to the three resilience capacities when 
compared to other approaches. Complementary to this, viability theory and stochastic 
reachability analysis (Bujorianu, 2012; Martin et al., 2011) are particularly adept at allowing 
researchers to model and analyse the various forms of uncertainty (see Chapter 4) in air 
transportation, and can be applied in both agent-based and network-based models. These four 
complementary modelling and analysis approaches are discussed in subsequent sections. 

5.4.3. Agent-Based Modelling and Simulation 

Agent-based modelling and simulation (ABMS) is increasingly recognised as a powerful 
approach to model complex socio-technical systems and to capture their emergent behaviour 
(Chan et al., 2010; Holland, 1998). This is because it can represent important phenomena 
resulting from the characteristics and behaviours of individual agents and their interactions 
(Railsback and Grimm, 2011). Burmeister et al. (1997) discuss the benefits of using an ABMS 
approach in domains that are functionally or geographically composed of autonomous 
subsystems, where the subsystems exist in a dynamic environment, and the subsystems have 
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to interact flexibly. According to (Burmeister et al. 1997), ABMS can be used to structure and 
appropriately combine the information into a comprehensible form. For a complex socio-
technical system, ABMS provides the tools for analysing, modelling, and designing the whole 
system in terms of agents, each with its own set of local tasks, capability and interactions with 
the other agents. Agents can be described at a high level of abstraction, yet the resulting 
composition is very efficient. Burmeister et al. (1997) conclude that ABMS reduces the 
complexity in systems design by making available abstraction levels that lend themselves to a 
more natural way of modelling in the problem domain. In the same vein, Jennings (2000) 
outlines that ABMS and complex system development requirements are highly compatible. 
He shows that ABMS techniques are particularly well suited to complex systems because: (a) 
they provide an effective way of partitioning the problem space of a complex system; (b) they 
provide a natural means to modelling complex systems through abstraction; and (c) they 
capture the interactions and dependencies. In Chapter 6, ABMS is further explained regarding 
its capabilities in identifying emergent behaviour in complex socio-technical designs. 

5.4.4. Network-based Methods  

As we saw in Chapter 2, network theory is used to investigate the structure and topology of 
networks, and it has applications in many disciplines including computer science, economics, 
sociology and operations research. Network-based methods are particularly useful for 
analysing the complex structure of large-scale systems. For instance, centrality measures can 
quantify the relative importance of network nodes and links (Newman, 2004). Dependency 
analysis between the nodes can calculate higher-order and cascading effects. Ouyang (2014) 
has classified network-based methods into two main categories namely topology-based 
methods, and flow-based methods. The former category models a network based on its 
topology, and the latter takes into account the service or flow made and delivered by the 
system. According to Ouyang (2014), network flow-based methods cover all three resilience 
capacities, in contrast to topology-based methods which cover the absorptive capacity only. 
As explained in Sections 3.5-3.6, in air transportation, both types of methods are of relevance. 
Complementary examples of topology-based methods are presented by the work of Guimerà 
et al. (2005) who analysed the worldwide air transportation network topology, Chi and Cai 
(2004) who analysed how topological properties of the US airport network are affected when 
few airports are no longer operational (e.g. due to failures or attacks), and Li and Cai (2004) 
who studied the airport network of China. A complementary example of results obtainable by 
network-flow based approaches is the analysis of delay in the US airspace system (Meyn et 
al., 2004) using the airspace concept evaluation system (ACES) simulator.  

5.4.5. Stochastic Reachability Analysis  

The primary aim of stochastic reachability analysis is to evaluate the probability that a system 
can reach a target set starting from a given initial state. This is especially of interest in air 
transportation where the system should be kept outside an unsafe region of the state space, 
and the control input can be chosen so as to avoid this unsafe region. Modern applications of 
stochastic reachability analysis have become increasingly complex. This complexity is due to 
the rich interactions, complicated dynamics, randomness of environment, uncertainty of 
measurements and tolerance to faults (Bujorianu, 2012). Examples of illustrative applications 
in air transportation include the work of Prandini and Hu (2006, 2008), who use stochastic 
reachability analysis to study aircraft conflict detection, and of Blom et al. (2007b, 2009), 
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who use stochastic reachability analysis to study collision risk in air traffic management (see 
Sections 6.3-6.4).  

5.4.6. Viability Theory  

Viability theory (Aubin, 1991) was originally developed to study dynamical systems which 
collapse or badly deteriorate if they leave a given subset of the state space. Therefore the 
objective is to keep the system in the part of the state space where it can survive, i.e. where it 
is viable. In follow-up research by Aubin et al. (2002), viability theory has been extended to 
hybrid dynamical systems. Recently, Martin et al. (2011) have explained that viability theory 
provides a natural mathematical framework for the modelling and analysis of resilience in 
complex systems. In general, viability theory can be applied to a wide range of applications 
ranging from cognitive sciences and finance, to economics and the sociological sciences. An 
example application in air transportation is obstacle avoidance, which also appears in 
numerous application fields. Other examples include using viability algorithms to compute 
wind optimal routes to reach an airport in minimal time, or computing safety envelopes of an 
aircraft in different phases of flight (Aubin et al., 2011). 

5.4.7. Use in air transportation 

The use of these methods in resilience modelling and analysis in air transportation may 
depend on the specific kind of application in mind. Below and in Table 5.4 we make this more 
precise for the four types of consequences addressed earlier, i.e. (i) Negligible consequences; 
(ii) Catastrophic accidents involving one or more aircraft; (iii) Significant local performance 
consequences; and (iv) Network wide performance consequences. 
 

Table 5.4: Ability in modelling and analysis of types of consequences due to disruptions. 

Modelling and analysis approach Types of consequences due to disruptions 

(i)  (ii) (iii) (iv) 

Agent-based modelling and simulation + + + - 
Network flow-based methods + - + + 
Stochastic reachability analysis + + + - 
Viability theory + - + - 

 

For types (i), (ii) and (iii) consequences, pilots and controllers may play a key role in reacting 
in a proper way to various events. In such cases agent-based modelling and simulation seems 
the most appropriate approach. For type (ii) consequences, it is explained in Section 6.3 that 
agent-based modelling and analysis has to be combined with mathematical methods from the 
stochastic reachability domain; without these mathematical methods the MC simulation of an 
agent-based model might take too long. In contrast with traditional safety risk analysis, an 
ABMS approach can cover both Hollnagel’s (2014) Safety-I (i.e. “what can go wrong”) and 
Safety-II (i.e. “what can go right”). This dual capability of ABMS is clearly illustrated in 
Section 6.5 for an advanced airborne self separation concept of operations. 
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For types (i), (iii) and (iv) consequences, the network-flow-based methods seem to be the 
most logical fit as long as human involvement does not play a key role. Otherwise here also 
agent-based modelling and simulation might be the better choice. In this respect, it is of help 
to note that the earlier mentioned airspace concept evaluation system, used by Meyn et al. 
(2004), is a network flow-based method that uses an agent-based architecture, which reflects 
that, in practice, the network and agent-based methods tend to be integrated. If an agent-based 
or a network flow-based model has been developed in a proper mathematical setting, then this 
model can also be used to mobilise viability and reachability analyses for the specific 
application considered. 

 

5.5. Airline disruption case 

The aim of this section is to illustrate the use of agent-based modelling and simulation for 
measuring the effect of four coordination strategies on the response of an airline to a 
disruptions that influences many human and technical agents. In order to illustrate that 
resilience metrics from other domains may be of use in air transportation, the specific 
resilience metric used is engineering resilience from the ecosystem domain (Section 5.3.1).  
 

 
5.5.1. Airline disruption management 

Each day of operation, an airline’s flight schedule is subject to a multitude of disruptions 
ranging from deteriorating weather, through passenger delays, up to aircraft or crew related 
problems. Each such disruption may be detrimental to the realisation of the daily fleet 
schedule of an airline and to the smooth and timely transportation of passengers from their 
origins to their destinations.  Operators at the Airline Operations Control (AOC) centre take 
corrective actions in real-time in order to recover from disruptions. Obviously this can only be 
done through interaction with non-AOC teams, e.g. at Air Traffic Control (ATC) centres and 
airports. Within AOC centres, many operators with different roles interact and coordinate 
towards achieving a common goal, namely disruption management such that their airline 
operations adhere to the strategic plan (schedule) as closely as possible. 

Bruce (2011a, 2011b) has systematically studied decision-making processes in six AOC 
centres. In these works (ibid.) the author has sought advice from an expert panel of AOC 
management staff in order to ensure broader views on airline AOC centres and AOC 
operators (e.g. in terms of gender, age, years of experience in the airline industry, years of 
experience in the AOC domain, and previous occupation). Figure 5.3 gives a high-level 
overview of a typical AOC organisation, showing the human agents, the technical systems, 
and the interactions between the agents involved.  
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Figure 5.3: Overview of the organisation of Airline Operational Control (AOC) including the 
communication with Air Traffic Control (ATC); adapted from Bouarfa et al. (2014). 

 

 

5.5.2. Four disruption management policies 

In order to understand the impact of various policies on the performance of airline disruption 
management, four different policy types have been defined. Three of them (P1-P3) are based 
on established practices, the fourth one (P4) is based on recent coordination theory. 

Policies P1-P3 are based on (Bruce, 2011a, 2011b). As shown in Table 5.5, these three 
policies capture three different decision-making styles and coordination strategies by airline 
controllers. Under P1, airline controllers identify straight forward considerations such as 
aircraft patterns and availability, crew commitments and maintenance limitations. Under P2, 
airline controllers have a greater comprehension of the problem. They take into account more 
complex consequences of the problem. Under P3, airline controllers demonstrate thinking 
beyond the immediacy of the problem. They examine creative ways to manage the disruption. 
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Table 5.5: Classification of Activities by Airline Controllers (Bruce, 2011b)  

Aspect Policy 1 
Elementary 

Policy 2 
Core 

Policy 3 
Advanced 

Maintenance 
Information 

Accept information source 
and content and act on 
information given about a 
maintenance situation. 

Challenge/ query 
information about a 
maintenance situation. 

Seek alternative 
information and recheck 
source and reliability. 
 

Crewing Await crew from inbound 
aircraft. 

Challenge crew limits/ 
Seek extensions to crew 
duty time. 

Seek alternative crew 
(e.g. from nearby base or 
other aircraft). 

Curfews Curfews are not taken into 
account. 

Identify curfews and 
work within them. 

Seek curfew dispension. 
 

Aircraft Seek first available aircraft. Request high speed 
cruise. 

Combine flights to free up 
aircraft. 

 

 

The fourth policy (P4) is based on the theory of Klein et al. (2005) regarding coordination of 
joint activity by multiple actors. This theory identifies three process types that are required for 
effective coordination, namely: (A) criteria for joint activity processes; (B) satisfying 
requirements for joint activity, and (C) choreography of joint activity. The criteria for joint 
activity (A) are that participants in the joint activity agree to support the coordination process 
and prevent its breakdown. If these criteria are satisfied, the parties have to fulfil certain 
requirements (B) such as making their actions predictable, sustaining common ground, and 
being directable. The choreography (C) for achieving these requirements is a series of phases 
that are guided by various signals and coordination devices, in support of an effective 
coordination. In order to apply this novel policy to AOC, Bouarfa et al. (2014, 2015) have 
studied and defined (informal) coordination rules that AOC agents should adhere to in order 
to follow this P4 policy.  

Table 5.6 shows which of the three resilience capacities apply to each of the four AOC 
policies. Only policies P3 and P4 have adaptive capacities. Under P3, individual controllers 
examine creative ways in managing or avoiding disruptions thereby adjusting their strategies. 
Under P4, controllers develop adaptive capacity at the team level through coordinating with 
each other (Klein et al., 2005). Policy P1 is not only lacking adaptive capacity but also 
restorative capacity. The explanation is that under P1, controllers act on information given 
about a certain situation without challenging it. For instance, if information is coming about 
an instrument indication problem from the pilot, the controller would turn the aircraft back to 
the airport with its passengers. However, such decision is not always needed, as it could be a 
loose wire when the instrument was changed and could be fixed at the next airport. Therefore, 
the rapidity of return to normal operations and ability to adjust are lacking in P1. Finally, P2 is 
different from P1 in that it does have restorative capacity, as controllers take into account 
more complex consequences of the problem, challenge and request additional information, 
therefore expediting the recovery process. 
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Table 5.6: The four AOC policies and their relation to the resilience capacities 

AOC 
policy 

Resilience Capacities 
Absorptive Restorative Adaptive 

P1 + - - 
P2 + + - 
P3 + + + 
P4 + + + 

 

 

5.5.3. Airline disruption scenario 

In order to assess the impact of the four policies (P1-P4) we consider a challenging AOC 
scenario that is well evaluated in the literature (Bruce, 2011a). The scenario concerns a 
mechanical problem with an aircraft on the ground Charles de Gaulle (CDG) airport, aiming 
for a long-haul flight to a fictitious airport in the Pacific, which is indicated by the fictitious 
code PC. The flight was progressively delayed at CDG for three hours due to mechanical 
unserviceability, to the extent that the operating crew were eventually unable to complete the 
flight within their legal duty time.  

This scenario was also considered by a panel of AOC management experts. They developed 
several alternatives, and subsequently identified the best solution which was to re-route the 
flight from CDG to PC and to include a stop-over in Mumbai (BOM). In parallel a 
replacement flight crew was flown in as passengers of a scheduled flight from PC to BOM, in 
order to replace the delayed crew on the flight part from CDG to PC. The question thus, is 
how the outcomes of agent-based modelling and simulation of an AOC centre compares to 
this expert panel found best solution? 

 

5.5.4. Agent-based simulation results  

For each of the four disruption management policies P1-P4, an agent-based model has been 
developed (Bouarfa et al., 2015). The variations in these policies lead to differences in terms 
of the sequence of agent involvement, information being exchanged, and sequence of 
activities.  

Table 5.7 presents some of the agent-based simulation results obtained for the four AOC 
policies. See Bouarfa et al. (2015) for more complete agent-based simulation results, such as 
various costs. P3 concurs with the best solution identified by the expert panel. However the 
outcomes of P1 and P2 are significantly worse, and the outcome of P4 even outperforms the 
expert panel result. In order to understand the background of these differences, the agent-
based simulation results have carefully been analysed.  
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Table 5.7: Simulation results for policies P1-P4 in the agent-based AOC model. P3 outcome 
is equal to the expert panel outcome. P4 outcome is significantly better than P3, whereas P1 
and P2 are less good. 

AOC 
policy 

Flight Aircraft 
mechanical 
problem 

Crew 
problem 

Passengers problem (all at a 
cost to the airline) 

Minimum 
disruption 
management time 

P1 Cancelled Fixed Not 
resolved 

Pax. accommodated in hotel 28 min 
 

P2 Cancelled Fixed Not 
resolved 

Pax. accommodated in hotel 28 min 

P3 Delayed Fixed Resolved Pax. delayed due to fixing aircraft 
and due to flying via BOM  

28 min 

P4 Delayed Fixed Resolved Pax. delayed due to fixing aircraft 19 min 
 

Under policies P1 and P2, AOC operators make decisions at the core or elementary level and 
with limited coordination, as a result of which the disruption considered is not efficiently 
managed. The aircraft mechanical problem was eventually fixed, however the flight was 
cancelled. As a result, the 420 passengers were accommodated in hotels (i.e. greatly 
inconvenienced). This unfavorable outcome can be explained by the possible actions at level 
1 and 2 by the crew controller i.e. “await crew from inbound aircraft” and “see extensions to 
crew duty time.” Crew controllers at this level mainly consider crew sign-on time and duty 
time limitations and try to work within these constraints. In this scenario, none of the actions 
solves the crew problem.  

Under policy P3, AOC controllers consider complex crewing alternatives such as 
deadheading crew from another airport. Therefore, under P3 the decision was made to divert 
the flight to BOM and position another crew from PC into BOM. Here, both delayed crew and 
replacement crew were able to operate in one tour of crew duty time. In comparison to 
policies P1 and P2, policy P3 has a much better outcome from both the airline and passenger 
perspective. Regarding the time required for managing the disruption, policy P3 is equal to P1 
and P2. 

Under policy P4, AOC agents make decisions at the elementary level, like P1-P2, though 
under a healthy coordination regime. Therefore the aircraft, crew, and passenger problems 
were resolved with minimum disruption. The main difference between P4 and the other 
policies P1-P3 is that AOC agents now act according to coordination rules (Bouarfa et al., 
2015) that account for all joint activity phases (criteria, requirements, and choreography). 
Thus, for instance, when the crew controller can’t find a crew, he signals his understanding 
about the situation and the difficulties he is facing. Likewise, the airline operations supervisor 
signals his understanding back to the crew controller just to be sure of the crew situation or to 
give the crew controller a chance to challenge his assumptions. Such a process of 
communicating, testing, updating, tailoring, and repairing mutual understandings is aimed at 
building common ground prior to starting the choreography phase (Klein et al. 2005). By 
updating the crew controller on changes outside his view, and coordinating by agreement, 
precedent and salience, he managed together with the crew controller to solve the crew 
problem before moving to the next coordination phase. In the scenario considered, P4 was 
therefore able to identify a possibility that had not been identified by any of the other three 
policies, and neither by the expert panel: the flight crew that had landed the aircraft at CDG 
had received sufficient rest to fly the delayed aircraft directly to PC instead of enjoying their 
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scheduled day-off in Paris. Passengers had a minimum delay compared to the previous 
policies (P1-P3), as they only had to wait for the aircraft to be fixed. Another relevant 
difference between P4 and the other policies P1-P3 is the shorter time needed to manage the 
disruption.  
 

5.6. Conclusions 

Thanks to scholars from behavioural sciences, it has become clear that for the future 
development of air transportation, resilience regarding various types of possible disruptions 
should be studied. The possible consequences of such disruptions may range from (i) 
negligible consequences, to significant consequences such as (ii) catastrophic accidents, (iii) 
significant local consequences, and (iv) very severe network-wide consequences. This chapter 
has conducted a systematic study of what complexity science has to offer to resilience in 
future air transportation for the various types of consequences. 
 
A socio-technical system is said to be resilient when it has adaptive capacities in addition to  
absorptive and restorative capacities. A socio-technical system that has absorptive capacity 
only is called robust. A socio-technical system that has absorptive and restorative capacities is 
called dependable. Because system engineering is well developed regarding robustness and 
dependability, the main resilience research challenge is to significantly improve the adaptive 
capacities of the complex socio-technical air transportation system.  
 
Robustness and dependability are system properties that are well addressed through system 
engineering. For air transportation this means that the key resilience challenges are not only to 
address a complex socio-technical system rather than a complex technical system, though also 
to learn improving the adaptive capacities. These adaptive capacities of the socio-technical air 
transportation system concern both the phase of disruption absorption and the phase of 
recovering from a system performance degradation due to disruptions.  
 
Placing emphasis on improving the adaptive capacity in absorbing disruptions concurs with 
the resilience engineering definition of Hollnagel et al. (2009) for use in air traffic 
management research: “a system is called to be resilient if it has the intrinsic ability to adjust 
its functioning prior to, during, or following changes and disturbances, and thereby sustain 
required operations under both expected and unexpected conditions”. In the safety domain, 
Hollnagel (2014) explains that this resilience engineering view reveals a need to study “what 
may go right”, rather than the traditional approach of studying “what may go wrong” only. 
The traditional and novel approaches are referred to as Safety-I and Safety-II respectively. 
 
In the literature several resilience metrics have been developed in various domains, both of 
qualitative and quantitative nature. The qualitative measures are of two types: Ecological 
resilience and Engineering resilience. Ecological resilience is a measure for the amount of 
disruptions that the socio-technical air transport system can absorb before it leads to 
significant changes in its KPAs. Engineering resilience is a measure for the duration of the 
period between the moment of significant reduction in its KPIs and the moment of recovery.  
 
Most resilience metrics are of engineering resilience type, i.e. they address  recovery rather 
than avoidance of significant consequences. Exceptions are the psychological metrics (e.g. 
Likert scales) for individual human performance (Ahern et al., 2006), and mission risk, such 
as reach probability for conflict and collision risk in air traffic management (Prandini and Hu, 
2008; Blom et al., 2009).  
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None of the resilience metrics from literature is able to capture the effect of adaptive 
capacities of a socio-technical system in a separate way from capturing the effects of 
absorptive and restorative capacities. As has been shown in Section 6.5, an effective way to 
address this problem is developing a proper model of the socio-technical system considered, 
and subsequently perform two measurements: one for the full model, and the other for a 
version of the model in which the adaptive capacities are nullified.  
 
Complexity science provides powerful modelling and analysis means, the most important of 
which are agent-based modelling and simulation, network flow-based methods, stochastic 
reachability, and viability theory. When human operators play a key role in the specific 
resilience aspect to be studied, then agent-based modelling is the logical choice. When the 
resilience issue to be studied is concerned with propagation of disruption effects through a 
network, then a network flow-based method is the preferred choice. When both aspects play a 
role, then a network-flow based approach that uses agent-based architecture might be used. 
Once a proper agent-based or network-flow based model has been developed this may be used 
as a basis to mobilise stochastic reachability analysis or viability theory. These complexity 
science approaches allow making a model of the socio-technical air transportation system 
considered, and then use this model to assess the effects upon KPIs by increasing the size of 
disruptions and by varying disruption management strategies in each of the three capacities. 
The practical working of this approach is demonstrated in Section 5.5 by quantifying the 
impact of adopting changes in coordination policies by airline operations control (AOC), e.g. 
by making them more or less adaptive. 
 
In conclusion, this chapter has shown that the complexity science approach towards resilience 
in future air transportation has significant potential in both strengthening and broadening the 
resilience engineering approach of Hollnagel et al. (2006, 2009, 2014). It has also been 
demonstrated that the thinking along a complexity science based approach to resilience yields 
practical results for the complex socio-technical air transportation system. This great potential 
of complexity science for the development of air transportation brings with it several valuable 
directions for follow up research, such as: 

- To further develop and apply mission risk metrics that capture the effect of absorptive 
and adaptive capacities of the socio-technical air transportation system to both 
separation related and non-separation related disruptions. 

- To further develop metrics that are directed to the recovery and adaptation of the 
socio-technical air transportation system from performance degradation due to 
disruptions. 

- To further the development and application of ABMS for the evaluation of both 
positive as well as negative impacts of potential resilience improvements in the future 
designs in Air Traffic Management and Air Transport Operations. 

- To further the development of network flow-based modelling and its integration with 
ABMS  for the evaluation of recovery from network wide performance degradation in 
the air transportation system. 

- To further develop the application of reachability and viability theories to the socio-
technical air transportation system, by taking advantage of the above mentioned 
network-flow and agent-based model developments.  
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