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[1] High-resolution morphological modeling of fluvial processes with complex, rapidly
varying flows has been limited so far by model accuracy or computational efficiency. One
of the most widely used numerical algorithms is based on the total variation diminishing
method, solved by either upwind or centered approaches. An upwind scheme preserves high
accuracy but is complex and computationally demanding, whereas the simplicity and
efficiency of a centered approach compromise the accuracy. The present paper extends a
recent upwind-biased centered scheme originally developed for clear water and scalar
transport over a rigid bed, to sediment-laden flows over an erodible bed. It does so by
developing a fully coupled 2-D mathematical model using a finite volume method for
structured grids. The complete set of noncapacity-based governing equations, involving the
effects of bed deformation and sediment density variation, as well as the influences of
turbulence and sediment diffusion, and the temporal and spatial scales needed for sediment
adaptation, is solved at one time to obtain synchronous solutions for the entire
computational domain. For stability, a two-stage splitting approach together with a second-
order Runge-Kutta method is employed for the source terms. The model is verified in a
number of tests covering a wide range of complex (sediment-laden) flows. The model is
demonstrated to accurately simulate shock waves and reflection waves, but also rapid bed
deformations at high sediment transport rates. The combination of high numerical accuracy
and computational efficiency makes the model an important tool to forecast flood events in
morphologically complex areas.
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diminishing upwind-biased centered scheme, Water Resour. Res., 49, doi:10.1002/wrcr.20138.

1. Introduction

[2] Turbulent flows (including wind, open-channel flow,
pipe flow, and subaqueous flow) over an erodible bed gen-
erate sediment transport and morphological changes, which
in turn influence the flow. In addition to laboratory experi-
ments and field surveys, mathematical modeling approach
has become increasingly popular for studying morphologi-
cal change due to sediment transport. In this paper we will
show the development and validation of a morphological
model for open-channel flow, taking into account of the lat-
est progresses on both the physical process of sediment
transport by water flow and the numerical approach used in
solving the equations.

[3] According to the different way the physical process
of sediment transport is dealt with, morphological models

can be coupled or decoupled, with a capacity or noncapacity
transport formulation [e.g., Cao et al., 2012]. In a capacity
model, sediment transport is assumed to be always in equi-
librium with the local flow conditions, whereas a noncapac-
ity model is more physically advanced as it includes the
spatial and temporal lag effects. By the term ‘‘coupled’’ and
‘‘decoupled,’’ we follow the philosophy of Cao et al. [2012].
In a decoupled model [e.g., Cunge et al., 1980; Cui et al.,
1996; Sieben, 1999; Di Cristo et al., 2006], the effects of
sediment density and bed deformation on the flow are
neglected, whereas a fully coupled model incorporates those
effects into the flow mass and momentum conservation. A
partially coupled model [Phillips and Sutherland, 1989;
Capart and Young, 1998; Fraccarollo and Capart, 2002;
Lesser et al., 2004; Rosatti and Fraccarollo, 2006; Canes-
trelli et al., 2010; Garegnani et al., 2011] falls in between
the decoupled and fully coupled models. A decoupled or par-
tially coupled model is applicable only in the cases for which
the timescale of morphological change is much longer than
that of the flow adaptation to a changing bed topography
[Cao et al., 2007; Hu and Cao, 2009]. Otherwise, a fully
coupled model is warranted. In the present paper, we employ
the approach of fully coupled noncapacity model to incorpo-
rate as much physics as possible. This is important because
for highly concentrated floods with rapid morphological
change, the sediment-induced density effects and bed
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deformation influence are so important that the decoupled or
partially coupled models cannot adequately take account of
all important physical processes. This is exemplified by a
number of recently developed fully coupled noncapacity
models [Egashira et al., 2001; Cao et al., 2004; Simpson
and Castelltort, 2006; Wu and Wang, 2008; Hu and Cao,
2009; Xia et al., 2010; Li and Duffy, 2011; Hu et al., 2012].

[4] Another key issue on resolving the complex processes
of morphological change is related to the numerical scheme
used for solving the governing equations, which lacks suffi-
cient improvement from the perspective of the state-of-the-
art progress in numerical schemes. Generally, the complexity
of the fluvial processes requires robust and accurate numeri-
cal schemes. This includes tracking of the wet/dry front, cap-
turing shock waves between supercritical and subcritical flow
regimes and contact discontinuities (i.e., steep sediment con-
centration gradients), and accurately conserving water and
sediment mass. Total variation diminishing (TVD) versions
of the finite volume method (FVM) have been widely used in
mathematical modeling of shallow water flows in the last two
decades [Alcrudo and Garcia-Navarro, 1993; Toro, 2001;
Bradford and Sanders, 2002; Cao et al., 2004; Hu and Cao,
2009; Xia et al., 2010; Wu et al., 2012]. They are attractive
because of (1) their ability to automatically capture shock
waves and (2) the incorporation of a simple wetting/drying
procedure enabling to track wet/dry fronts. Most TVD algo-
rithms, however, take either an upwind approach represented
by Godunov [1959] type methods, such as the widely used
Roe approximate solver, HLL (Harten-Lax-van Leer), HLLC
(Harten-Lax-van Leer-Contact) method [Roe, 1981; Toro,
2001], or a centered approach based on the Lax-Friedrichs
method [Lax, 1954], such as FLIC (Flux Limiter Centered)
or SLIC (Slope Limiter Centered) [Toro, 2001; Hu et al.,
2012]. Upwind methods produce highly accurate numerical
results as they use local flow information, but they are com-
plex and computationally expensive. Centered methods, on
the other hand, can enhance the computational efficiency
considerably and are much simpler to apply to complicated
set of equations, but they may significantly compromise ac-
curacy, especially in case of small Courant numbers and con-
tact discontinuities. Fortunately, the high accuracy of an
upwind scheme and the computational efficiency of a cen-
tered scheme were recently combined in an ‘‘upwind-biased
FORCE (First Order Centered) method (UFORCE)’’ based
on the FVM for structured meshes [Stecca et al., 2010]. This
fantastic method, however, has been not yet applied to mo-
bile-bed processes.

[5] The aim of this paper is to extend the second-order
version of the UFORCE to sediment-laden flows over a mo-
bile bed under the framework of the fully coupled noncapac-
ity modeling approach. The model’s capabilities to
accurately capture shock waves and dry-wet fronts and pre-
dict sediment transport and rapid morphological change are
demonstrated by five test cases. The present work is an im-
portant step forward in attaining high accuracy and efficient
modeling of complex morphodynamics. First, in natural riv-
ers the computational domain is usually large and hence
requires a highly efficient computational procedure. Second,
the effects of high sediment concentrations and rapid bed
deformations (such as in mobile-bed dam-break flows and
during highly sediment-laden floods in the Yellow River,
China) require a numerical accuracy that is often insufficient

in existing morphological models. Third, the spatial and tem-
poral lag effects of sediment transport can be important to
morphological change and thus need a noncapacity modeling
framework to incorporate as much physics as possible.

2. Mathematical Model

2.1. Governing Equations

[6] Based on the concept of noncapacity sediment trans-
port, the nonlinear system of governing equations for the
2-D coupled mathematical model consists of the mass and
momentum conservation equations for sediment-laden
flow, the mass conservation equation for the sediment, and
a bed update equation:

@ �hð Þ
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@y
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@ hcð Þ
@t
þ @ hucð Þ

@x
þ @ hvcð Þ

@y
¼ E � Dð Þ þ �s (4)

1� pð Þ @z

@t
¼ D� E; (5)

where t is the time; x and y are the horizontal coordinates;
h is the water depth; u and v are the depth-averaged flow
velocities in x and y directions, respectively; c is the depth-
averaged volumetric sediment concentration; z is the bed
elevation; E and D are the sediment entrainment and depo-
sition fluxes, respectively; �xx, �yy, �xy, and �yx are the
depth-averaged Reynolds stresses, expressed as � xx ¼
2�t@u=@x; � yy ¼ 2�t@v=@y; � xy ¼ � yx ¼ �t @u=@yþ @v=@xð Þ ;
�t is the turbulent eddy viscosity; �s ¼ @ h"s@c=@xð Þ=@xþ
@ h"s@c=@yð Þ=@y is the sediment diffusion terms; "s is the
turbulent diffusion coefficient of sediment; S0x and S0y are
the bed slopes in x and y directions, expressed as S0x ¼
�@z=@x; S0y ¼ �@z=@y and respectively; Sfx; Sfy are the
friction slopes in x and y directions, respectively; �s is the
sediment density; �w is the water density; � ¼ �w 1� cð Þ þ
�sc is the density of sediment-laden flow; �0 ¼ �wpþ
�s 1� pð Þ is the density of saturated bed; p is the bed poros-
ity; and g is the acceleration of gravity.

[7] Physically, sediment diffusion exists due to turbulent
mixing processes [Julien, 2010]. Together with the advec-
tion process, it may contribute to the sediment mass varia-
tion, and therefore to the mass variation of the sediment-
laden flow. In some multiphase models, the sediment diffu-
sion effect has been considered in the mass conservation of
sediment load, though neglected in that of the sediment-
laden flow [Lesser et al., 2004; Xia et al., 2010]. Its
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complete absence in most other models (in the mass con-
servation of both the moving sediment and the water-sedi-
ment mixture) is due to its negligible influence in most
conditions for which advection always dominates. Yet dif-
fusion would be important in conditions such as overbank
flows. To incorporate more well-understood physical proc-
esses in the mathematical formulations, the sediment diffu-
sion effect is fully considered in the present model in the
mass conservation of not only the moving sediment, but
also the water-sediment mixture.

2.2. Empirical Relationships

[8] Empirical relationships are deployed to close the
above governing equations. In the test cases treated herein,
the friction slope is estimated by Manning roughness coef-
ficient n, as

Sfx ¼
n2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3
; (6a)

Sfy ¼
n2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3
: (6b)

[9] For the noncapacity sediment transport, an empirical
coefficient � is used to estimate the sediment exchange flux
with the bed (see equations (7a) and (7b)) following Cao
et al.’s [2004] method. This is equivalent to the method of
the adaptation length for sediment lag effects in previous
studies [Phillips and Sutherland, 1989; Wu et al., 2000].
Physically, the coefficient � denotes the ratio of the near-
bed to depth-averaged concentrations and should be usually
larger than unity. To date, there has been no consensus on
its value. In the present work, constant values of the coeffi-
cient � are specified in the simulation, but they differ case
by case. The sediment entrainment and deposition are esti-
mated as

E ¼ �!ce; (7a)

D ¼ �!c; (7b)

where ce is the depth-averaged sediment transport capacity,
and ! is the sediment settling velocity (m/s). In the test
cases, the sediment is relatively coarse (viz., natural sand
or artificial pearls), and the hindered settling effect is negli-
gible. Thus, the formulation of sediment settling velocity in
the clear water condition is used [Zhang and Xie, 1993].
The (depth-averaged) sediment transport capacity is calcu-
lated by the Meyer-Peter and M€uller [1948] formula with a
modified parameter ’, as indicated in the following
equation:

qb ¼ ’8
ffiffiffiffiffiffiffiffiffi
sgd3

p
�� �cð Þ1:5; (8a)

ce ¼
qb

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p� � ; (8b)

where qb is the bed load transport rate under capacity state
(m2/s), ’ is the modified parameter, s is the submerged spe-
cific gravity of sediment (�s/�w�1), � ¼ u2

�=sgd is the
Shields parameter, u� is the friction velocity, �c is the

threshold Shields parameter, and d is the sediment diameter
(m). Other parameters are the same as specified earlier.

3. Numerical Method

[10] Using a FVM, the full set of the governing equations
is rewritten in a conservative form and solved explicitly by
a synchronous solution for structured grids. The key prob-
lem for computing advection of strong spatial gradients in
sediment-laden flows is tackled with the successful exten-
sion of the second-order UFORCE scheme [Stecca et al.,
2010] from an idealized frictionless-fixed bed to a movable
bed. For stability, the two-step splitting approach [Toro,
2001] is employed combined with a second-order Runge-
Kutta method for source terms [Toro, 2009]. The model is
second-order accurate in space and time. The time step is
restricted by the Courant-Friendrichs-Lewy (CFL) condi-
tion and additional conditions relevant to the sediment
transport and bed change computations. Wetting and drying
fronts are treated using two tolerance depths for the cell
type judgment [Zhao et al., 1994]. For open boundaries, a
modified characteristic method is adopted, which uses the
above Runge-Kutta method and considers morphological
update in each iteration cycle. This permits a synchronous
solution for the entire computational domain. A free-slip
and nonpermeable condition is used for closed walls.

3.1. Conservative Form of the Governing Equations

[11] Following Cao et al. [2004], the governing equa-
tions for the sediment-laden flow are manipulated in a con-
servative form with the influences of flow density variation
and the bed deformation contribution to the flow appearing
in the source terms. It results in a simple format of the
advection term that permits an easy extension of any high-
resolution FVM previously developed for shallow flows
over a fixed bed to a mobile bed. To achieve a synchronous
solution for the full equation set, further mathematical
treatment [Zhang and Xie, 1993; Li and Duffy, 2011] is
used in deriving the conservative form. The bed update
equation is replaced by a newly constructed equation (i.e.,
the fifth equation of the vector form equations (9), (10a),
(10b), (10c), (11a), and (11b) of the governing equations).
This equation is acquired by summing equations (4) and
(5). Physically, it indicates that the variation of sediment
mass (including the sediment in motion and the static sedi-
ment in bed) in time depends on the effects of advection
and diffusion. Furthermore, this treatment ensures a uni-
form way in the numerical solution of the sediment-laden
flow and bed deformation, which avoids the possible mass
balance error when applying different numerical schemes
for those processes. Thus, the vector form of the govern-
ing equations reads

@U

@t
þ @F

@x
þ @G

@y
¼ Hþ I; (9)

U ¼

h
hu
hv
hc
�

2
66664

3
77775; (10a)
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F ¼

hu
hu2 þ 0:5gh2

huv
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huc

2
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3
77775; (10b)

G ¼
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hvu
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hvc
hvc

2
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3
77775; (10c)
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where U is the vector of conservative variables, F and G are
the vectors of flux variables, H is the vector of source terms,
I is the vector of diffusive terms, and � ¼ 1� pð Þzþ hc is
the newly constructed conservative variable.

3.2. Discretization of the Governing Equations

[12] For solving the governing equations, the computa-
tional domain is divided into a structured set of quadrilat-
eral cells. A cell-centered FVM is adopted in the model,
with the average values of conserved variables being
defined at the center and interfaces at the edges. Integrating
equation (9) within a control volume (i, j) and applying the
divergence theorem, we can get the discretized equation in
the Cartesian x and y coordinates:

@Ui;j

@t
þ 1

�x
Fiþ1=2;j Uð Þ � Fi�1=2;j Uð Þ
� �

þ 1

�y
Gi;jþ1=2 Uð Þ �Gi;j�1=2 Uð Þ
� �

¼ R Ui;j

� �
;

(12)

where �x and �y are the spatial steps in x and y directions;
i and j are the cell indices in x and y directions; Ui,j is the
vector of cell-averaged conservative variable at the center;
R¼Hþ I is the vector of total source terms; and
Fiþ1=2;j Uð Þ, Fi�1=2;j Uð Þ, Gi;jþ1=2 Uð Þ, and Gi;j�1=2 Uð Þ are the
vectors of normal flux at interfaces iþ 1=2; jð Þ, i� 1=2; jð Þ,
i; jþ 1=2ð Þ, and i; j� 1=2ð Þ, respectively. The fluxes are

computed using the second-order UFORCE scheme in the
x and y directions, respectively (see section 3.4). The spatial

gradients of bed level and sediment concentration in the
source terms are discretized in an upwind manner for
stability.

3.3. Method of Time Integration

[13] A standard splitting approach [Toro, 2001] is
deployed to solve the inhomogeneous system of equation
(12). In this approach, the homogeneous equation (13) is
solved first, of which the intermediate result is used for the
ordinary equation related to source term. For stability, a
second-order Runge-Kutta method [Toro, 2009] is used in
computing the ordinary equation (14). The overall accuracy
in time is supposed to reach second order by approximating
the source term and advection flux with second-order
schemes. The solution procedure for the splitting approach
is illustrated by the following equations:

U�i;j ¼ Un
i;j
� �t

�x
Fiþ1=2;j Unð Þ � Fi�1=2;j Unð Þ
� �

� �t

�y
Gi;jþ1=2 Unð Þ �Gi;j�1=2 Unð Þ
� �

;

(13)

Unþ1
i;j ¼ U�i;j þ 0:5 K1 þK2ð Þ; (14)

with

K1 ¼ �tR U�i;j

� �
; K2 ¼ �tR U�i;j þK1

� �
; (15)

where U�i;j is the vector of predictor variables at the inter-
mediate stage; Un

i;j and Unþ1
i;j are the vectors of conservative

variables at the time steps n and n þ 1, respectively; and
�t is the computational time step.

[14] Because the solution procedure is explicit, the com-
putational time step should be restricted by stability condi-
tions. For flow computation, the time restriction mainly
results from the advection term (i.e., in flow field) and the
diffusion term (i.e., in geometrical domain). The former
can be described by the CFL condition (16) and the latter
by the stability condition (17) related to the Peclet number
Pe (i.e., 0<Pe ¼ 2�t�t=�x2 � 1). For advection-domi-
nated problems, the CFL condition plays a major role in
controlling the flow computation. While in diffusion-domi-
nated problems with very fine computational grids, the Pec-
let number may strongly restrict the time step.

�tf �
Cr

max juj þ
ffiffiffiffiffi
gh
p

ð Þ=�x; jvj þ
ffiffiffiffiffi
gh
p

ð Þ=�y½ � ; (16)

where �tf is the time step related to CFL condition, and Cr
is the Courant number (0 < Cr � 1).

�tg �
1

max 2�t=�x2; 2�t=�y2ð Þ ; (17)

where �tg is the time step related to Peclet number
condition.

[15] For sediment transport and bed change, additional
condition (18) is used, ensuring the amount of deposited
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sediment within a time step less than that in the flow (i.e.,
�tsD � hc), which is similar to that by Heng et al. [2009],

�ts �
h

�!
; (18)

where �ts is the time step related to the mobile-bed
condition.

[16] Exact expressions of stability conditions for the
whole complex system are difficult to derive. We choose the
most restrictive option from the above conditions (see equa-
tion (19)). The applicability of this method is demonstrated
by the satisfactory results in the model testing below.

�t ¼ min �tf ;�tg;�ts
� �

: (19)

3.4. UFORCE Scheme for Computing Fluxes

[17] The UFORCE scheme [Stecca et al., 2010] is an upwind-
biased version of the FORCE scheme [Toro, 2009], which
requires a primary (Cartesian) mesh to compute cell-averaged var-
iables and four staggered (non-Cartesian) meshes for computing
interface fluxes in 2-D conditions. An upwind bias parameter is
introduced by modifying the shape of the staggered mesh from
the original Cartesian shape of the FORCE scheme in the x and y
directions, respectively. The UFORCE scheme has been dem-
onstrated to be capable of accurately capturing shock waves
and contact discontinuities for shallow water flow and scalar
transport over a rigid bed without source terms. Here the sec-
ond-order version of this scheme, which is constructed
through the MUSCL (Monotonic Upstream-Centered
Scheme for Conservation Laws)-Hancock approach [Van
Leer, 1979], is extended for the computation of sediment-
laden flows over a mobile bed. Three steps are involved: (1)
spatially second-order accuracy by data reconstruction; (2)
temporally second-order accuracy by state evolution; and
(3) computation of UFORCE flux (viz., solve the Riemann
problem). In the following, the extension procedure is intro-
duced for the computation of advection flux in x direction,
for instance. In y direction, analogous method is employed.
3.4.1. MUSCL Reconstruction

[18] To reach second-order accuracy in space, the cell
interface values are extrapolated from the cell center values
by a limited slope,

UL
iþ1=2;j ¼ Un

i;j þ 0:5�i ; UR
iþ1=2;j ¼ Un

iþ1;j � 0:5�iþ1 ; (20)

where UL
iþ1=2;j, UR

iþ1=2;j are the vectors of extrapolated vari-
ables at the left and right sides of the interface between
cells (i,j) and (iþ 1; j) ; and �i and �iþ1 are the vectors of

limited slope. Many methods have been introduced to con-
struct the limited slope and slope limiters for TVD
schemes. Here it is computed by the ENO (Essentially Non
Oscillatory) approach [Harten et al., 1987] to avoid spuri-
ous oscillations near large gradients [Stecca et al., 2010],

�i ¼
Un

iþ1;j � Un
i;j if jUn

iþ1;j � Un
i;jj � Un

i;j � Un
i�1;jj

Un
i;j � Un

i�1;j otherwise :

�
(21)

3.4.2. State Evolution by Dt/2
[19] The cell interface variables are further evolved over

a half time step to reach second-order accuracy in time, as

UL�
iþ1=2;j ¼ UL

iþ1=2;j þ
�t

2�x
F UR

i�1=2;j

� �
� F UL

iþ1=2;j

� �h i
þ �t

2�y
G UR

i;j�1=2

� �
�G UL

i;jþ1=2

� �h i (22a)

UR�
iþ1=2;j ¼ UR

iþ1=2;j þ
�t

2�x
F UR

iþ1=2;j

� �
� F UL

iþ3=2;j

� �h i
þ �t

2�y
G UR

iþ1;j�1=2

� �
�G UL

iþ1;jþ1=2

� �h i
:

(22b)

3.4.3. UFORCE Flux Computation
(i.e., Riemann Problem)

[20] At the interface (iþ 1=2; j), a pair of constant states

UL�
iþ1=2;j;U

R�
iþ1=2;j

� �
has been obtained from the above steps.

The advection flux can now be computed by the UFORCE
scheme, which is essentially an average of the upwind-
biased versions of the Lax-Friedrichs flux and the two-step
Lax-Wendroff flux, as

FUFORCE�D

iþ1=2;j ¼ 0:5 FuLW�D

iþ1=2;j þ FuLF�D

iþ1=2;j

� �
; (23)

where �D is the number of dimensions, i.e., ¼1 for 1-D
case, ¼2 for 2-D case; FuLW�D

iþ1=2;j is the upwind-biased ver-

sion of the two-step Lax-Wendroff flux; FuLF�D

iþ1=2;j is the

upwind-biased version of the Lax-Friedrichs flux;
FUFORCE�D

iþ1=2;j is the UFORCE flux.

[21] The upwind-biased Lax-Wendroff flux is estimated
by introducing an upwind bias parameter � in the original
Lax-Wendroff flux [Toro, 2009], like

FuLW�D

iþ1=2;j ¼ F UuLW�D

iþ1=2;j

� �
(24a)

UuLW�D

iþ1=2;j ¼
1þ 2 �xð Þi;j
� �

UL�
iþ1=2;j þ 1� 2 �xð Þiþ1;j

� �
UR�

iþ1=2;j � �D�t
�x F UR�

iþ1=2;j

� �
� F UL�

iþ1=2;j

� �� �
2 1� �xð Þiþ1;j þ �xð Þi;j
� � ; (24b)

where UuLW�D

iþ1=2;j is the vector of newly constructed conserva-
tive variable in the two-step Lax-Wendroff flux; �D is the
number of dimensions, i.e., ¼1 for 1-D case, ¼2 for 2-D

case; and �x is the upwind bias parameter in x direction.
The upwind-biased Lax-Friedrichs flux is estimated by
[Stecca et al., 2010]
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FuLF�D

iþ1=2;j ¼
1

2 1� �xð Þiþ1;j þ �xð Þi;j
� �

1þ 2 �xð Þi;j
� �

F UR�
iþ1=2;j

� �
þ 1� 2 �xð Þiþ1;j

� �
F UL�

iþ1=2;j

� �h
� �x

�D�t
1þ 2 �xð Þi;j
� �

1� 2 �xð Þiþ1;j

� �
UR�

iþ1=2;j � UL�
iþ1=2;j

� ��
:

(25)

[22] The critical issue in the extension to the mobile-bed
case therefore relates to the estimation of the upwind bias
parameter. In shallow water flows, this parameter is com-
puted separately in x and y directions but use the same
method [Stecca et al., 2010]. For the parameter in the x
direction, we use

�xð Þi;j ¼ SIG i;j 0:5� 	sx
�t

�x

	 

i;j

(26)

with function

SIG i;j¼
sign ui;j

� �
if ui;j 6¼0
� �

sign
�
	3ð Þi�1;jþ 	1ð Þiþ1;j

�
if ðui;j¼0Þand 	3ð Þi�1;jþð	1Þiþ1;j 6¼0

0 if ðui;j¼0Þand 	3ð Þi�1;jþð	1Þiþ1;j¼0

8>><
>>:

(27)

sign ui;j

� �
¼ 1 if ui;j > 0
�1 if ui;j < 0

;

�
(28)

where 	sx is the absolute value of the maximum local char-
acteristic speed in shallow water flows; and 	1,3 is the
characteristic speed related to the flow part. For the fixed
bed case, the values of the characteristic speed are [Stecca
et al., 2010]

	sx ¼ juj þ
ffiffiffiffiffi
gh

p� �
i;j
; (29a)

	1 ¼ u�
ffiffiffiffiffi
gh

p
; (29b)

	3 ¼ uþ
ffiffiffiffiffi
gh

p
: (29c)

[23] In the extension to the mobile bed, the values of the
characteristic speed can be estimated by rewriting the equa-
tion system in a nonconservative form. In 1-D problem, the
nonconservative vector form of the governing equations for
our model reads (i.e., in x direction)

@W

@t
þ A

@W

@x
¼ R

0
(30)

W ¼

h
u
c
1� pð Þzþ c

2
664

3
775; (31a)

A ¼

u h 0 0
g u a23 a24

0 0 u 0
0 0 u 0

2
664

3
775; (31b)

R
0 ¼

R
0

1

R
0

2

R
0

3

R
0

4

2
6664

3
7775 ¼

E � D

1� p
þ �sx

�gSfx �
�0u E � Dð Þ
�h 1� pð Þ �

�su

�h
�sx þ

1

h

@ h�xxð Þ
@x

1� p� cð Þ E � Dð Þ
h 1� pð Þ þ 1� c

h
�sx

1� p� c� h 1� pð Þ½ � E � Dð Þ
h 1� pð Þ þ 1� c

h
�sx

2
66666666664

3
77777777775
;

(32)

where a23 ¼ �s� �wð Þgh=2�� g= 1� pð Þ, a24 ¼ g= 1� pð Þ,
�sx ¼ @ h"s@c=@xð Þ=@x, � xx ¼ 2�t@u=@x. Other variables
are the same as specified earlier. By solution of the eigen-
values of the Jacobian matrix A through jA� 	Ij ¼ 0, we
obtain the characteristic speed for mobile-bed case,

	1;3 ¼ u7
ffiffiffiffiffi
gh

p
; (33a)

	2 ¼ u; (33b)

	4 ¼ 0; (33c)

where 	2,4 is the sediment- and bed-related characteristic
speed. Thus, for the present model of noncapacity sediment
transport (equation (30)), the flow-related eigenvalues 	1,3

and the maximum local characteristic speed 	sx in the mo-
bile-bed condition are the same as those for the fixed bed
case. This is also demonstrated by Cao et al. [2007] using a
similar equation system. While the eigenvalues will be also
affected by sediment concentration when a capacity sedi-
ment transport model is used [De Vries, 1969; Morris and
Williams, 1996], this should not be confused with the pres-
ent work employing the physically more appealing nonca-
pacity modeling approach.

3.5. Estimation of Turbulent Eddy Viscosity

[24] Unlike unbounded 2-D flows, the flow pattern in
shallow water is strongly influenced by the depth and bed
friction [Chen and Jirka, 1995, 1997; Lloyd et al., 2001].
Thus, for 2-D shallow flows, the turbulence model should
consider both turbulence generated at the bed and turbu-
lence associated with 2-D horizontal eddies [Uijttewaal
and Tukker, 1998]. The depth-averaged mixing length
model is intended for such conditions [Jia and Wang,
1999; Cea et al., 2007]. Following this concept, the turbu-
lent eddy viscosity accounting for both the horizontal and
vertical production of turbulence is calculated from

�t ¼ l2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij þ


u�h

6l2
S

 !2
vuut (34)

with

Sij ¼
@ui=@xj þ @uj=@xi

� �
2

; lS ¼ Cs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�y

p
; (35)
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where Sij is the horizontal mean strain-rate tensor; ui and uj

are the depth-averaged velocities ; xi and xj are the horizon-
tal coordinates; ls is the characteristic horizontal turbulent
length scale; Cs is the Smagorinsky constant �0.16 for iso-
tropic turbulent flow [Lilly, 1967]; and 
¼ 0.41 is the von
Karman constant. The diffusion coefficient for suspended
load is simply assumed to be the same as the turbulent eddy
viscosity, whereas it is set equal to zero for bedload
transport.

3.6. Treatment of Wetting and Drying Fronts

[25] When solving the constituting equations with a
FVM, it is critical to predict the evolution of wetting and
drying fronts in cases such as flood inundation and dam
break over a dry bed. Following Zhao et al. [1994], we
introduce two tolerance depths htol1 and htol2 (htol1> htol2)
for the cell type judgment: dry, partially dry, and wet cells.
For a wet cell with the water depth being larger than htol1,
the governing equations ((9), (10a), (10b), (10c), (11a), and
(11b)) are used. For a partially dry cell, the water depth is
between the two specified tolerance depths with the veloc-
ity, sediment concentration, and bed level change being set
to zero. For a dry cell, the water depth is even smaller than
htol2 and set to zero together with the velocity, sediment
concentration, and bed level change. For a new time inter-
val, a cell changes from dry to wet if water can flow inside
from surrounding cells, and from wet to dry if the com-
puted depth is smaller than htol2. The equations for the
above treatment of a partially dry cell (see equation (36))
and a dry cell (see equation (37)) are

u ¼ v ¼ c ¼ �z ¼ 0; (36)

where �z is the bed change over a time increment.

h ¼ u ¼ v ¼ c ¼ �z ¼ 0: (37)

3.7. Boundary Conditions

[26] The present 2-D model includes two types of bound-
ary conditions, for closed and open boundaries, respec-
tively. At a closed boundary, a free-slip and nonpermeable
condition is used. For Cartesian coordinates of x and y, this
condition reads

hb ¼ hL; (38a)

cb ¼ cL; (38b)

�zb=�t ¼ �zL=�t; (38c)

where the subscripts b and L denote the positions of the
closed boundary and the adjacent inner cell, respectively. If
the closed boundary is along the x direction, we set
ub ¼ uL, vb ¼ 0. Otherwise, vb ¼ vL, ub ¼ 0.

[27] At an open boundary, the fully coupled system for
the sediment-laden flow and the riverbed is solved. In sub-
critical flow condition, the flow and sediment variables are
obtained by a modified characteristic method including the
second-order Runge-Kutta scheme (see equations (14) and
(15)), and the bed level is computed using the bed update
equation (5). Unlike the traditional characteristic method

for clear water flow, in which the bed level update is
decoupled with the flow computation, the modified version
updates the bed level while computing the flow and sedi-
ment. For a general form of the compatibility equation
along the characteristics,

dw

dt
¼ f wð Þ; (39)

where w is the nonconservative variable (i.e., u or c) along
the characteristics, and f is the source term in the compati-
bility equation. An example for the exact formulation of f
in the sediment-laden flow is given by Cao et al. [2007].
The modified characteristic method within an iterative step
reads

wnþ1 ¼ wn þ 0:5 k1 þ k2ð Þ (40)

with

k1 ¼ �tf wnð Þ; k2 ¼ �tf wn þ k1ð Þ; (41)

where wnþ1 is the estimate of the variable at the boundary
for the new time step, and wn is the estimate of the variable
along the characteristics (inside the computational domain)
for the previous time step. During one iterative step, the
bed level is updated by equation (5) using the newly
obtained flow and sediment variables after the computation
of equation (40). The iteration continues until the differ-
ence between two consecutive iterative steps is negligible.
We therefore use the computed variables from the last iter-
ative step to approximate the boundary condition for the
new time step. This coupling treatment at the open bounda-
ries facilitates a completely synchronous solution of the
sediment-laden flow and riverbed in the whole computa-
tional domain. Furthermore, it enhances the numerical
stability at open boundaries in the case of rapid bed defor-
mation, such as hyperconcentrated floods and mobile-bed
dam break.

4. Model Test

[28] The present model has been verified by a series of
selected test cases, in which the computed results are com-
pared with analytical solutions, experimental data, and
other numerical models published in the literature. Five test
cases are considered in this paper, viz., (1) 2-D idealized
dam break over fixed dry bed, (2) a 2-D dyke-breach
experiment on wet fixed bed, (3) idealized dam-break flows
over mobile beds, (4) erosional dam-break flow in an
abruptly widening channel, and (5) a 2-D partial dam break
in a straight mobile-bed channel.

4.1. Case 1: 2-D Idealized Dam Break Over Fixed Dry
Bed

[29] Many laboratory experiments have been performed
for dam-break flows over fixed beds [Fraccarollo and
Toro, 1995; Stelling and Duinmeijer, 2003; Ferrari et al.,
2010]. To verify the model’s ability for flooding over a
fixed dry bed, the experiment conducted by Fraccarollo
and Toro [1995] is simulated. The experimental flume con-
sisted of an upstream reservoir of 1 m � 2 m and a

LI ET AL.: EFFICIENT AND ACCURATE COUPLED MORPHOLOGICAL MODELING

7



downstream floodplain of 2 m � 2 m (see Figure 1). A 0.4
m wide breach was located in the middle of the down-
stream boundary of the reservoir. For the present test the
flume was horizontal, and the bottom friction was negligi-
ble. The dam break was initiated with upstream 0.6 m deep
water flowing over a downstream dry bed. Measuring
gauges were installed at distinct locations (see Figure 1): O
(0, 0), �5A (�0.82, 0), 8A (0.722, 0), C (�0.52, �0.6), 5B
(0.454, 0.25), and �4B (�0.845, �0.5).

[30] The computation lasts for 10 s with grid cells of
0.02 m � 0.02 m and the CFL condition of Cr¼ 0.45,
based on a convergence study. Closed boundary conditions
are imposed at all solid edges of the reservoir and free out-
flow at the three open boundaries of the downstream flood-
plain. The two tolerance depth for judging the dry and
partially dry cells are set to 0.0001 and 0.0002 m.

[31] Figure 2 shows good agreement between the com-
puted and measured water levels above the fixed bed at

Figure 1. Sketch of the idealized dam-break experiment (m).

Figure 2. Comparison of computed (solid lines) and measured (circles) water level history at distinct
gauges.
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distinct gauges. At the breach (i.e., gauge O), the model
captures the phenomenon of falling and rising stages at the
beginning of the dam break. Inside the reservoir, the lower-
ing of water level due to a depression wave is also well
reproduced by the present model (see gauges �5A, �4B,
C). In the downstream region, the model satisfactorily pre-
dicts the wavefront at gauge 8A, while it computes much
lower water level in the early 2 s at gauge 5B. This could be
caused by the measuring method that the water level was
obtained from pressure meters at gauge 5B while directly
measured by wave height meters at other gauges [Fraccarollo
and Toro, 1995]. In general, the model is capable of capturing
the key features of 2-D dam-break flow over a dry bed.

4.2. Case 2: 2-D Dyke Breach Over Horizontal Fixed
Bed

[32] Case 2 is the wet bed dyke-breach experiment under-
taken in the Fluid Mechanics Laboratory at Delft University
of Technology [Stelling and Duinmeijer, 2003]. In this test
case, the influences of the gate opening and the effects of
breach contraction are not negligible, which causes more
complexity and difficulty in numerical modeling.

[33] The test flume contained a flat fixed bed with an area
of 31.4 m � 8 m. The dam was a solid wall at x¼ 2.5 m and
had a 0.4 m wide gate opening in the middle (see Figure 3).
The initial water depth inside the upstream reservoir was
0.6 m, and 0.05 m in the downstream region. Measuring
gauges were installed along the flume centerline and num-
bered in sequence (G0–G5) by specific distances from the
gate opening, �1, 1, 6, 9, 13, and 17 m. At the start of the
experiment, the gate was opened by lifting the door at a
speed of 0.16 m/s.

[34] The relatively slow movement of the gate door
requires a special treatment until the gate is fully opened.
Following Liang et al. [2004], the discharge at the gate is
calculated using the formula for submerged culvert flow:

q ¼ Cwhw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g H � Cwhwð Þ

p
; (42)

where q is the flow discharge (m2/s), H is the headpond
water depth (taken equal to the water depth of the grid cell
immediately upstream of the gate), hw is the gate opening
height, and Cw is the contraction coefficient (¼0.9). When
the gate is completely opened, the local head loss due to
the sudden contraction is taken into account by incorporat-
ing an extra resistance stress [Zhou et al., 2002] immedi-
ately upstream of the opening:

��x ¼ ��ug

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

g þ v2
g

q
; (43a)

��y ¼ ��vg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

g þ v2
g

q
; (43b)

where ��x(y) is the resistance stress in x (y) directions,
�¼ 0.8, and ug, vg are the velocities in the x and y directions
at the breach, respectively.

[35] The computation lasts for 25 s with grid cells of 0.1 m
� 0.1 m and the CFL condition of Cr¼ 0.45, based on a
convergence study. Closed boundary conditions are imposed
at all solid edges. The Manning roughness coefficient is set
at 0.012 for the wet bed [Stelling and Duinmeijer, 2003].

[36] The numerical results of the present 2-D coupled
model agree closely with those published by others [Stelling
and Duinmeijer, 2003; Liang et al., 2004, 2006; Cui et al.,
2010]. Figure 4 shows good agreement between the com-
puted and measured wavefront positions at t¼ 1, 2, 3, and
4 s. The wavefront is predicted slightly faster near the
downstream side wall of the dyke and along the flume cen-
terline. This is probably because the wall friction and the
influence of a piece of plastic along the centerline are not
considered in the current modeling.

[37] Figure 5 shows the 3-D view and the contour plots
of the computed water surface at distinct instants. In the
early stage of the dyke breach (e.g., t¼ 4 s, see Figure 5a),
a shock wave is observed propagating downstream with a
semicircular wavefront heading a water mass of almost
constant depth. This water mass is then followed by a hy-
draulic jump, which is pushed downstream by the strength
of high-speed flow from the gate opening. Reflective waves
are observed when the wavefront hits the lateral walls. As
time proceeds, the wavefront becomes nearly straight with
curved bore-reflection waves behind as shown in Figure 5b,
due to the complex interactions between the reflective
waves and the initial waves. The hydraulic jump still exists
in the later stage but migrates downstream at a much lower
speed than the wavefront.

[38] As shown in Figure 6, the computed water depth
agrees generally well with the experiment data at different
gauges along the centerline. Particularly, the magnitude
and arrival time of the first flood wave are well simulated
at all gauges downstream of the breach. Yet less accurate

Figure 3. Sketch of the dyke-breach experiment (m).

Figure 4. Comparison of computed (dots) and measured
(solid lines) wavefront positions over the wet bed at t ¼ 1,
2, 3, 4 s.
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results are predicted for the second flood wave. In the im-
mediate downstream of the breach (i.e., gauge 1), the water
level is overpredicted after the first flood wave. This prob-
ably causes the underprediction of the magnitude and speed
of the second flood wave in the downstream. Moreover, the
treatment of the gate opening and contraction effects is
quite empirical in the model, uncertainties are inevitable.
With increasing distance, the accumulative effect of bed
friction further slows down the second wave propagation.
But in general, the model result is satisfactory and in simi-
lar trend of accuracy with other published models [Stelling
and Duinmeijer, 2003; Liang et al., 2004, 2006].

4.3. Case 3: Idealized Dam-Break Flows Over Mobile
Beds

[39] To verify the model’s hydromorphological model-
ing performance, two sets of idealized tests on dam-break
flow over a mobile bed are numerically investigated. These
tests comprise the experiments carried out in Taipei (Uni-
versity of Taiwan) and Louvain-la-Neuve (Universit�e Cath-
olique de Louvain (UCL)), reported by Capart and Young
[1998] and Fraccarollo and Capart [2002], respectively.
The two experiments were both performed in horizontal
prismatic flumes of rectangular cross sections but differ pri-
marily in the sediment material used. In the Taipei experi-
ment, the flume was 1.2 m long, 0.2 m wide, and 0.7 m

high. It was initially covered by a 5 to 6 cm thick layer of
light artificial pearls (not natural sand), of a diameter of 6.1
mm, specific gravity of 1.048, and settling velocity of
0.076 m/s. In the Louvain experiment, the flume was 2.5 m
long, 0.1 m wide, and 0.35 m high. Cylindrical polyvinyl
chloride pellets (not natural sand) having a diameter of 3.2
mm, height of 2.8 mm (hence, an equivalent spherical di-
ameter of 3.5 mm), specific gravity of 1.54, and settling ve-
locity of 0.18 m/s constituted an initial sediment layer of 5
to 6 cm thick over the fixed bottom. In both experiments,
an idealized dam was located in the middle of the flume
separating an upstream static flow region of 10 cm deep
from a dry downstream part. At t¼ 0 s, the dam was lifted
rapidly to create the dam-break flow.

[40] For the numerical simulation of both tests, the do-
main is divided into grid cells of 0.0025 m � 0.0025 m,
and the Courant number in the CFL condition is 0.3 based
on a convergence study. The simulation time is 0.6 s and
1.2 s for the Taipei and Louvain tests, respectively. Follow-
ing Wu and Wang [2007], the bed porosity is set at 0.28
and 0.3 in the Taipei and Louvain tests, respectively, while
the Manning roughness coefficient of 0.025 is used for
both. For the sediment entrainment/deposition, the thresh-
old Shields parameter �c is set at 0.15 and 0.05 in the Taipei
and Louvain tests, respectively [Li and Duffy, 2011]. The
submerged specific gravity of sediment s is calculated as

Figure 5. Free surface and contours for wet bed case at (a) t¼ 4 s and (b) t¼ 18 s.
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0.048 and 0.54 for the Taipei and Louvain tests, respec-
tively. Trial runs give values of other parameters: �¼ 3,
’¼ 6 in the Taipei test, and �¼ 3, ’¼ 3 in the Louvain test.

[41] Based on a number of assumptions (i.e., capacity
sediment transport, a constant concentration in sediment
moving layers, zero momentum loss due to bed friction,
etc.), pseudoanalytical solutions of free surface and bed
evolution were derived by Fraccarollo and Capart [2002]
for both tests. In Figures 7 and 8 the computed results at
varying times are compared with those analytical solutions
in nondimensional self-similar coordinates where experi-
mental data are also shown. For both tests, good agreement
is generally observed between the simulation and measure-
ment while to some parts the analytical solution exhibits
qualitative discrepancies from them.

[42] For the Taipei test (see Figure 7), the agreement
among the simulation, analytical solution, and measure-
ment is fairly good for the wavefront location, the erosion
magnitude, and the downstream (adverse) slope of the
scour hole. Yet considerable differences appear in the
upstream (downward) slope of the scour hole and the water
surface. Along the upstream slope of the scour hole, erosion
is somewhat underestimated by the numerical simulation
while excessively overestimated by the analytical solution,
as compared to the experiment. The hydraulic jump occur-
ring near the dam-break location can be qualitatively cap-
tured by the simulation, though with less accurate
prediction of its location. In contrast, the analytical solution
shows a constant water level and fails to predict this phe-
nomenon. For the front water surface, the computed and an-

alytical results are very close and agree well with the
measured data. The backwater surface can be satisfactorily
predicted by the simulation but less well by the analytical
solution.

[43] For the Louvain test (see Figure 8), better agreement
is observed among the computed, analytical, and measured
results. The measured water surface and bed level are satis-
factorily predicted in the numerical simulation. The loca-
tion of the hydraulic jump is well reproduced by the
numerical model for this test, where both computed and
measured results show the hydraulic jump propagates
upstream. The location of wavefront and erosion magnitude
are also modeled well in the simulation. Though the analyt-
ical solution shows great resemblance to the simulation and
measurement in the erosion magnitude as well as in the
front- and backwater surface, it again cannot predict the hy-
draulic jump and obviously overestimates the wavefront
propagation.

[44] To understand the causes of those differences, some
critical issues should be addressed. First, comparing with
the simulation based on the noncapacity sediment transport,
the failure to reproduce the hydraulic jump with the analyti-
cal solution may be mainly caused by the assumption of the
capacity sediment transport. This echoes the previous sug-
gestions by Capart and Young [1998] and Fraccarollo and
Capart [2002] that the central wave region is the most sen-
sitive to nonequilibrium behavior. Moreover, the nonhydro-
static pressure, which is not considered in both numerical
simulation and analytical analysis, may also have some
influence [Fraccarollo and Capart, 2002]. Second, the

Figure 6. Comparison of computed (thick line) and measured (thin line) water depth histories over wet
bed at distinct gauges.
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Figure 8. Comparison of computed water surface and bed level with pseudoanalytical solution [Frac-
carollo and Capart, 2002] and data from the Louvain experiment.

Figure 7. Comparison of computed water surface and bed level with pseudoanalytical solution [Frac-
carollo and Capart, 2002] and data from the Taipei experiment.
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faster propagation of the wavefront in the analytical solu-
tion for late times (see the Louvain test in Figure 8) is prob-
ably due to the assumption of zero momentum loss from
bed friction. Practically, the dissipative effect due to bed
friction becomes important and slows down the bore move-
ment when time evolves [Fraccarollo and Capart, 2002].
Third, the less satisfactory analytical solution in the Taipei
test is attributed to the use of light particle material, which
makes the theory of capacity sediment transport less appro-
priate for this case [Fraccarollo and Capart, 2002]. Fourth,
the assumption of a constant concentration in the sediment
moving layer is another flaw in the analytical derivation
[Cao et al., 2004; Wu and Wang, 2007], which could result
in less accurate predictions. But in general, the pseudoana-
lytical solution agrees qualitatively well with the measure-
ment for the idealized tests and can serve as an alternative
reference for the model test.

[45] To shed light on the model’s capacity of modeling
high sediment concentrations, the computed longitudinal
concentrations in the Taipei test are drawn for distinct time
instants (see Figure 9). The model is stable at very high
sediment concentrations (e.g., cmax � 0.64 at 5t0) under rel-
atively strong erosive conditions. Steep concentration gra-
dient can be well captured by the model. The computed
profile and magnitude at 4t0 are very close to those simu-
lated by Wu and Wang [2007].

4.4. Case 4: Erosional Dam-Break Flow in an
Abruptly Widening Channel

[46] Laboratory-scale experiments of dam break over an
erodible bed were conducted at the Civil Engineering Lab-
oratory of the UCL, Belgium [Spinewine and Zech, 2007;
Palumbo et al., 2008; Zech et al., 2008; Goutiere et al.,

2011]. The experiment considered here was conducted in a
6 m long flume, with a sudden asymmetric enlargement
from 0.25 to 0.5 m in the downstream reach (see Figure
10). A 0.1 m high layer of saturated sand with diameter of
d¼ 1.82 mm and density of �s¼ 2680 kg/m3 constituted
the initial flat bed with bed porosity of p¼ 0.47. At the
downstream end of the flume, a weir was installed to allow
a free outflow. The dam break was initiated instantaneously
by rapidly moving down a thin gate at the middle of the
flume, allowing the water contained in the upstream reser-
voir (h0¼ 0.25 m) pouring into the downstream dry bed.
Measurements of water level history and final bed topogra-
phy were carried out at specific gauges and cross sections
[Palumbo et al., 2008]. Gauges 1–4 were located along the
line y¼ 0.125 m, with x¼ 3.75, 4.2, 4.45, and 4.95 m,
respectively. Gauges 5 and 6 were in line of y¼ 0.375 with
x¼ 4.2 and 4.95 m. The two cross sections are along
x¼ 4.1 m (CS1) and x¼ 4.4 m (CS2).

[47] Based on a convergence study, the computational
domain is discretized into grid cells of �x¼ 0.025 m and
�y¼ 0.005 m, and the Courant number in the CFL condi-
tion is 0.45. The total computational time is 12 s with the
time step controlled by the stability condition (19). Free out-
flow condition is imposed at the downstream boundary,
while the closed boundary condition is used for all side
walls. For sediment entrainment and deposition computa-
tion, equations (7a), (7b), (8a), and (8b) are used with speci-
fied parameters: �c¼ 0.04, �¼ 10, ’¼ 0.5, and s¼ 1.68.
The Manning roughness coefficient is 0.024 m�1/3/s, and
this value refers to those used by others [Zech et al., 2008;
Xia et al., 2010; Wu et al., 2012]. The two tolerance depths
in dry/wet front treatment are set to 0.0001 and 0.0002 m,
respectively.

Figure 10. Sketch of the UCL dam-break experiment in a widening channel (m).

Figure 9. Computed volumetric sediment concentration for the Taipei experiment.
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[48] The present 2-D coupled model yields results of
similar accuracy as those predicted by triangular/rectangu-
lar meshes and upwind methods such as Roe-MUSCL,
HLLC, or HLL schemes [Palumbo et al., 2008; Xia et al.,
2010; Soares-Fraz~ao and Zech, 2011; Wu et al., 2012].
Figure 11 shows the comparison between the computed
and measured water level histories at distinct gauges. The
computed results agree well with those measured at gauges
1, 3, 4, 5, and 6, but they are less close in the narrow part
(gauge 2) immediately downstream of the enlargement.
Specifically, relatively low water level was predicted at
gauge 2 immediately after the flood peak (around 4–8 s)
along with a possible overestimation of local bed erosion.

This should be attributed to the sudden change of domain
related the enlargement, where the flow and bed change
computation are very sensitive and rather difficult to track.

[49] Figure 12 shows the computed final bed changes in
the immediate downstream of the sudden enlargement. At
the cross section CS1, the model can reproduce the bed ero-
sion at the center of the flume near the corner of the enlarge-
ment but underestimates the deposition at the enlarged zone
(Figure 12a). At CS2, the measured bed profile of moderate
erosion in the narrow part and strong deposition in the
enlarged zone (Figure 12b) is reproduced, but the erosion
magnitude is slightly overpredicted in the narrow part. The
local erosion near the sidewall of the enlarged zone (at the

Figure 11. Comparison between computed (thick line) and measured (dots) water level at distinct gauges.

Figure 12. Comparison of computed (thick line) and measured (dots) bed profiles at (a) CS1 and (b) CS2.
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far right sides of Figures 12a and 12b) is most probably
caused by vertical recirculation (observed by Palumbo et al.
[2008]), which however cannot be adequately represented
by a depth-averaged model.

4.5. Case 5: Partial Dam Break in a Straight Erodible
Channel

[50] Case 5 is a mobile-bed dam-break experiment that
was also conducted in UCL-Belgium [Wu et al., 2012;
Soares-Fraz~ao et al., 2012]. The flume was 3.6 m wide and
about 36 m long (Figure 13). A 1 m wide gate between two
impervious blocks represented the dam-break location,
with the gate center denoting the coordinate (0,0). The mo-
bile bed had a 0.085 m high layer of saturated sand with di-
ameter of d¼ 1.61 mm and density of �s ¼ 2630 kg/m3,
which extended from 1 m upstream of the gate to 9 m
downstream with bed porosity of p ¼ 0.42. The down-
stream end of the flume consisted of a weir and sediment
entrapment system. The initial water level is 0.47 m (above
the fixed flat bed) upstream of the gate and 0 m in the
downstream region (dry bed case). The partial dam break
was modeled by rapidly lifting the gate and lasted for 20 s.
Measurements of water surface and bed level were con-
ducted in two repeated experiment runs for the above ex-
perimental setup. Water surface measurements were
undertaken at eight gauges during both experiment runs.
Gauges 1–4 were located along x ¼ 0.64 m, with y ¼ �0.5,
�0.165, 0.165, and 0.5 m, respectively. Gauges 5–8 were
along x ¼ 1.94 m, with y ¼ �0.99, �0.33, 0.33, and 0.99
m, respectively. Bed measurements were carried out at the
end of the two experiments (t ¼ 20 s), with data available
for three longitudinal lines (y ¼ 0.2, 0.7, and 1.45 m).

[51] Based on a convergence study, the computational
domain is discretized into grid cells of �x ¼ �y ¼ 0.025
m, and the Courant number in the CFL condition is 0.45.
The total computational time is 20 s with the time step con-
trolled by the stability condition (19). Transmissive condi-
tions are imposed at the downstream boundary due to the

relatively short experiment period, and closed boundaries
at walls are free-slip and nonpermeable. The sediment
entrainment and deposition are computed by equations (7a),
(7b), (8a), and (8b), with specified parameters: �c¼ 0.04,
�¼ 5, ’¼ 1, and s¼ 1.63. The bed roughness is 0.0165 for
sand layer and 0.01 for fixed bed portion [Wu et al., 2012].
The tolerance depths in dry/wet front treatment are 0.001
and 0.0005 m, respectively.

[52] Figure 14 shows the comparison of the computed
and measured water level histories (above the fixed flat
bed) at eight gauges. The difference between the two meas-
urements for the same experimental setup indicates the dif-
ficulty of repeating such experiments. At the symmetric
gauges (viz., 1(4), 2(3), 5(8), 6(7)), the computed water
level changes are exactly the same indicating the model’s
accuracy in the symmetric property of y direction. At
gauges 5(8) and 6(7), the computed results agree well with
the experiment data. In the near-downstream region of the
dam, less accurate results are predicted. At gauges 1 and 4,
the water level is underpredicted in the early stage of the
dam break, while it is overpredicted at gauges 2 and 3 near
the centerline.

[53] Figure 15 shows the predicted bed profiles against
the experiment data along three longitudinal lines (y¼ 0.2,
0.7, and 1.45 m) at the end of the experiment (t¼ 20 s).
Considerable discrepancies between the two groups of
measured bed profile (with the same experimental setup)
are observed especially in the near downstream of the
breach. It indicates the bed change near the dam region is
very sensitive and unstable even to trivial disturbances in
doing the experiments. In this region, the predicted bed ero-
sion along y¼ 0.2 and 0.7 m is between the two measure-
ments, while the deposition along y¼ 1.45 m is
underpredicted. In the far downstream region where close
agreement is observed between the two measurements, the
accuracy of the predicted bed level is also much improved.

[54] The less accurate prediction for both water level and
bed profile in the near downstream of the breach may relate

Figure 13. Sketch of the UCL partial dam-break experiment (m).
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Figure 14. Comparison between computed and measured water levels at distinct gauges.

Figure 15. Comparison between computed and measured bed profiles along different longitudinal lines.

LI ET AL.: EFFICIENT AND ACCURATE COUPLED MORPHOLOGICAL MODELING

16



to the strong 3-D flow features around the corners of the
expansion which cannot be fully considered in a depth-
averaged model. At the early stage, less flow is computed
to expand laterally (see gauges 1 and 4), while more flow
concentrates along the centerline (see gauges 2 and 3). The
uncertainty in bed change prediction for this sensitive area
may affect the water level computation as well. Yet consid-
ering the complexity of the problem, the model results are
generally well and should be considered acceptable.

5. Conclusions

[55] An accurate and efficient 2-D depth-averaged model
has been developed under the framework of the fully
coupled noncapacity modeling approach. This has been
achieved by the successful extension of the second-order
UFORCE method (developed by Stecca et al. [2010]) from
the idealized frictionless-fixed bed case to the mobile-bed
case. The combination of the upwind and centered methods
in the UFORCE scheme leads to high accuracy and compu-
tational efficiency in the present model, which is absent in
previous fully coupled and noncapacity models.

[56] In solving the equation set, synchronous procedure
is deployed with flow, sediment, and bed computed simul-
taneously. An explicit two-stage splitting approach [Toro,
2001] together with a second-order Runge-Kutta method is
used for the inhomogeneous system. The model is second-
order accurate in space and time. At the open boundary, a
modified characteristic method is adopted, which incorpo-
rates the above Runge-Kutta method and the morphological
update in each iterative cycle of flow (sediment) computa-
tion. This treatment enhances the model stability and per-
mits a complete synchronous and fully coupled solution in
the entire computational domain.

[57] The model has been verified against five test cases,
which cover a wide range of complex flow and sediment
transport conditions, including two fixed bed dam-break tests
and three mobile-bed tests. The model is demonstrated to be
capable of simulating not only shock waves and reflection
waves but also rapid bed deformations under highly active
sediment transport conditions. The extension of the UFORCE
scheme to the sediment-laden flow over a mobile bed is less
computationally demanding than most upwind methods,
while offering attractive efficiency and satisfactory accuracy.

[58] In practical applications, such as flood forecasting,
flood risk and river basin management, and river channel
restoration, efficient and accurate solutions are favored in
order to cope with the large spatial scales involved. The
combination of high numerical accuracy and computational
efficiency by the present work makes the present model a
promising tool for such applications. Yet it should be
pointed out that for highly irregular bed topographies and
complex boundaries, the modeling accuracy and efficiency
depend on both the numerical method and the computa-
tional grid. For such conditions, the absence of C-property
(in still water conditions) and the use of rectangular grid in
the present model may reduce the modeling accuracy and
efficiency. Further development to incorporate a well-bal-
anced scheme and a more flexible mesh-cell like triangular
cell or adaptive quadtree grid is part of future work.

[59] While uncertainty related to empirical and numeri-
cal parameters of the model is inevitable, reasonable agree-

ment between numerical solutions and experimental data
can be obtained if those parameters are sensibly specified.
Also, the values of the parameters used in the present nu-
merical cases may be only applicable to the experimental
configurations of the specific case. For further applications
of morphological models, it is important to collect as much
information as possible for the targeted configuration so
that sensible values of parameters can be given.

Notation

The following symbols are used in this manuscript :
A Jacobian matrix.

F, G vectors of flux variables.
H vector of source terms.
I vector of diffusive terms.

K1, K2 vectors defined in equation (15).
R, R0 vector of total source terms.

U vector of conservative variables.
W vector of nonconservative variables.

c, ce depth-averaged volumetric sediment con-
centration and capacity, respectively.

cmax maximum sediment concentration.
Cs Smagorinsky constant.
Cw contraction coefficient.
Cr Courant number.

d sediment diameter.
E, D sediment entrainment and deposition

fluxes.
f function in characteristic method.
g acceleration of gravity.
H headpond water depth.

h, h0 water depth.
hw gate opening height.
i, j cell indices in the coordinate of x and y

directions.
k1, k2 variables defined in equation (41) in char-

acteristic method.
ls characteristic horizontal turbulent length

scale.
n Manning roughness coefficient.
p bed porosity.

Pe Peclet number.
q flow discharge defined in equation (42).

qb bed load transport rate under capacity
state.

s submerged specific gravity of sediment.
S0x, S0y bed slopes in x and y directions.
Sfx, Sfy friction slopes in x and y directions.

Sij horizontal mean strain-rate tensor.
SIG function defined in equation (27).

t time.
u� friction velocity.

u,v depth-averaged flow velocities in x and y
directions.

ug,vg velocities in equation (43a).
w variable in characteristic method.

x, y horizontal coordinates.
z bed elevation.

�xx,�yy,�xy,�yx depth-averaged Reynolds stresses.
��x(y) resistance stress in x (y) directions.

� parameter in equation (43b).
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vt turbulent eddy viscosity.
As sediment diffusion term.
"s turbulent diffusion coefficient of sediment.

�s, �w densities of sediment and water,
respectively.

� density of sediment-laden flow.
�0 density of saturated bed.
’ modified parameter in equation (8a).

�, �c Shields parameter.
� empirical coefficient.
! sediment settling velocity.
� newly constructed conservative variable in

equation (10a).
�x, �y spatial steps in x and y directions.

�t time step.
�z bed level change.
�i vector of limited slope.
�x upwind bias parameter in UFORCE

scheme.

 von Karman constant.
	 characteristic speed.
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