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Air traffic control has relied on voice-based communications for a long time. How can it be that
everything on a modern airplane, except communication with the ground, is automated? It was on the
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fundamentally solving the problem of miscommunication in air traffic control.
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conversations. Second, I would like to thank Dr. Junzi Sun for the ability to perform this research and
for being my daily mentor. You taught me a lot and really helped me shape this research. Third, I would
like to thank Patrick Jonk and Vincent de Vries from NLR for helping me look at the subject from a
different perspective.
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Abstract — The application of automatic
speech recognition in the air traffic control
domain has been researched extensively.
However, its primary application remains in the
training and simulation of air traffic controllers.
This is due to the insufficient performance
of automatic speech recognition in specific
environments, such as air traffic control, where
strong performance and safety requirements are
paramount. This study demonstrates how a
large-scale, weakly supervised automatic speech
recognition model, Whisper, could meet these
performance requirements and establish a new
approach to air traffic control communication.
Fine-tuning Whisper in the air traffic control
domain resulted in a word error rate of 13.5%
on the ATCO2 dataset and 1.17% on the
ATCOSIM dataset. Furthermore, the study
reveals that fine-tuning with region-specific data
can enhance performance by up to 60% in
real-world scenarios.

1 Introduction
Automatic Speech Recognition (ASR) has been studied
extensively, with some research even dating back to the
1950s [1]. The introduction of machine learning has
spurred significant progress in the development of ASR
models. In machine learning, there are two common
approaches for the development of a learning algorithm.
On the one hand, there are supervised learning models
with long-time-ruling examples such as DeepSpeech [2],
[3] and SpeechStew [4]. On the other hand, there
are unsupervised learning models with examples such as
Wav2Vec [5], [6] and BigSSL [7]. The difference between
those methods is in the labeling of the data. Supervised
learning models exclusively rely on labeled data, leading
to a limited amount of training data because of the
labor-intensive process of creating the labels. In contrast,
unsupervised learning models operate with unlabeled
data, leading to significantly larger volumes of training
data [8].

Supervised ASR models reached around 5,000 hours
of labeled training data [4]. In contrast, unsupervised
models reached up to 1,000,000 hours of unlabeled
training data [7]. However, neither of the two
approaches can be depicted as being the best. A gap

existed between small-scale supervised and large-scale
unsupervised ASR models. A newly introduced
automatic speech recognition model, from September
2022, tried to efficiently fill this gap. Whisper, created by
OpenAI, closed the gap with the introduction of 680,000
hours of weakly supervised learning [9].

The goal of Whisper was to have a robust automatic
speech recognition model characterized by high reliability
and usability. This is achieved by using a vast amount
of diverse training data which resulted in a very good
and broad generalization. This generalization ensures
that Whisper can transcribe out-of-domain audio without
a significant drop in performance compared to training
data, which is ideal for niche domains with distinct
phraseology such as air traffic control (ATC). Therefore,
studying the application of Whisper in the ATC domain
is an appealing choice.

ASR technology is at the cusp of being technically
feasible for application in ATC. Although numerous
studies have already been conducted on applying ASR
to ATC, the performance of ASR models is not yet
satisfactory for broad application in air traffic control
[10], [11]. The only ATC-related field of application where
ASR is actively used is in training and simulation sessions
[12], [13].

This is the only field where ASR is implemented
due to the softer performance requirements compared to
real-life scenarios in light of strong performance and safety
requirements. Moreover, human performance in speech
recognition is very high. According to Adriaan E. van
der Groef (personal communication, October 19, 2023),
a word error rate (WER) of almost zero can be expected
[14]. The current performance of ASR in ATC does not
match human performance. Whisper has the potential
to change this. Whisper does not necessarily need to
match human performance but it can be used to reduce
the workload of air traffic controllers (ATCos). Possible
applications may for example include incident analysis,
clearance control, or safety analysis. These applications
and more examples, together with a qualitative analysis
of their required performance, will be discussed later in
this paper.

The goal of this research was to find out
how large-scale weakly supervised automatic speech
recognition could be applied to air traffic control.
During this study, Whisper was used to discover the
potential speech recognition performance of a robust and
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reliable model in an ATC context. The methodology
involved assessing the out-of-the-box performance of
Whisper in the ATC domain and determining the possible
performance increase that could be reached by fine-tuning
Whisper on global and local ATC data. To stimulate
future research and reproducibility, the complete code,
all public ASR models, and other needed resources are
published in a GitHub repository1.

2 Methodology
This section describes how the research has been
performed. An overview can be found in Figure 1.

ATCO2 ATCOSIM Whisper Baseline

Whisper Fine-Tuning WhisperATC

ANSP

ANSP

Whisper Baseline

ATCO2 ATCOSIM

Whisper Fine-Tuning WhisperANSP

Fine-Tuning

Baseline

Validation

+

+

Figure 1: An overview of the methodology used in this
research. First, the baseline performance of Whisper
on the ATCO2 and ATCOSIM datasets was determined.
Second, Whisper was fine-tuned on the ATCO2 and
ATCOSIM datasets to create the WhisperATC models.
Lastly, air navigation service provider (ANSP) data was
used to validate the effect of fine-tuning Whisper in
real-world operations.

2.1 Data Pre-Processing
The datasets used in the research and the preparation
thereof will be described in this subsection.

2.1.1 Datasets
At the moment of writing, three public and free
ATC-related datasets are available, namely the ATCO2
dataset [15], the ATCOSIM dataset [16] and the
UWB-ATCC dataset [17]. However, the latter contains
transcriptions that are nested in a way that it was hard
to extract the literal text for training purposes despite
serious effort. Moreover, the ATCO2 and ATCOSIM
datasets do form a benchmark in the development of ASR
in ATC [18]. Therefore only the ATCO2 and ATCOSIM
datasets were used. An overview of the datasets with their
corresponding characteristics can be found in Table 1.

The ATCO2 dataset, as part of the ATCO2 project2

started in 2020, is a collection of speech from multiple
airports, mainly around Europe. The free and publicly
accessible portion accounts for a total of one hour of
speech. It consists of speech collected from pilots and
ATCos. Moreover, it is a community-driven project where

the audio is captured with simple very high frequency
(VHF) antennas. Therefore it contains relatively noisy
data. Further, it includes radar data (e.g., nearby
waypoints and call signs) that was augmented using the
OpenSky network. The audio was captured at a sampling
frequency (fs) of 16 kHz, which is common for audio
capturing [15].

The ATCOSIM dataset consists of ten hours of speech
collected during a simulated session in the Eurocontrol
experimental center in France. It only includes the speech
of the ATCo role, more specifically from ten ATCos
at the en-route position. Moreover, since it concerns
a simulated session, the clarity of the data is much
higher. Therefore some artificial noise was added for a
more realistic representation. Additionally, the audio was
captured at a higher sampling frequency of 32 kHz which,
together with the low noise footprint, resulted in better
audio quality [16].

Table 1: An overview of the used datasets.

ATCO2 ATCOSIM
Size (hrs) 1.1 10

Origin Europe France
Speaker Pilot & Controller Controller

Language English English
Misc. Radar Data -
fs (Hz) 16,000 32,000

2.1.2 Pre-Processing
The first step was to process the transcripts. Since both
datasets, as mentioned previously, were not created in
an equal way, the transcripts needed to be put into
a single format. The actual text was extracted from
extensible markup language files and purified by removing
text in between brackets, e.g., [...], (...), and < ... >.
Furthermore, for the ATCO2 dataset, the radar data were
converted into a simple machine-readable format. Lastly,
all audio and transcript pairs of which the transcript was
empty (i.e., empty audio files) were filtered out.

After the transcripts had been processed, the audio
was processed by re-sampling the files at 16,000 Hz, the
required frequency for Whisper to work.

After processing the audio and corresponding labels,
the dataset was divided into two parts called splits. A
part of the data was used as training data, i.e., for
the fine-tuning of Whisper. The remaining portion was
used for the validation process during the fine-tuning
of Whisper. Commonly, the dataset is divided into
80% training and 20% validation data [19]. These
numbers were used in a random process to generate the
training respective validation portions of the dataset.
When the datasets were created they were uploaded
to the HuggingFace Hub, a development platform and
repository system for machine learning models. Apart

1https://www.github.com/jlvdoorn/WhisperATC
2https://www.atco2.org
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from the baseline performance assessment, only the
validation split is used for evaluation.

The final datasets, as listed in Table 2, were
structured as follows. The ATCO2 dataset contained 446
training samples and 113 validation samples. Each of
the samples consisted of an audio file, a transcript, and
an extra file containing radar data of the corresponding
audio. The ATCOSIM dataset contained 7,646 training
samples and 1,913 validation samples. Each sample
consisted of an audio file paired with a transcript, but,
without any radar data files. In addition, the datasets
were also combined into the ATCO2-ATCOSIM dataset
which ultimately contained 8,092 training samples and
2,026 validation samples. Each sample consisted of an
audio file, a transcript, and a radar data file when
available. This dataset was only used for fine-tuning the
models.

Table 2: An overview of the pre-processed datasets.

ATCO2 ATCOSIM
Total Size (hrs) 1.1 10.46
Train Size (hrs) 0.86 8.37

Validation Size (hrs) 0.23 2.09
Total Samples 559 9,559
Train Samples 446 7,646

Validation Samples 113 1,913

2.2 Baseline Performance
This subsection describes the process of assessing the
performance of the out-of-the-box Whisper model, i.e.,
determining the baseline for the rest of this research.

2.2.1 Evaluation Metrics
The most common evaluation metric in automatic speech
recognition is the word error rate [10]. It compares the
transcript with the reference (ground truth) as supplied
by the dataset on a per-word basis. The WER can be
calculated by the following formula:

WER(%) = S + I +D
N

× 100%. (1)

Here, S represents the number of replaced words, I
represents the number of wrongly inserted words, and D
represents the number of missing words in the transcript
when compared with the reference. N , on the other hand,
represents the total number of words in the reference. The
WER score is often expressed as a percentage.

Most ATC speech consists of two segments, the
call sign and the command [20]. The call sign is
used to address the aircraft to whom or from whom
the communication is going. The command is the
actual instruction given. So it is also possible to assess
the model’s performance by looking at the call sign
and command extraction rate. Although conceptual
understanding is more important for some applications,
the first step is to focus on correctly transcribing audio.
After that, the attention can be redirected toward call

sign and command recognition as will be explained later
in Subsection 4.6.

The WER score was determined by comparing all
the generated transcriptions with all the references at
once. By calculating the WER over the whole set
of transcriptions instead of per utterance, a weighted
average method was applied. This ensured that
utterances with fewer words do not hold the same
significance as those with a larger word count when
computing the overall measure. Instead, each word
held the same importance. This method resulted in an
unbiased view of the actual performance.

2.2.2 Prompting
Whisper’s diverse and vast amount of training data
resulted in zero-shot capabilities. That means it can
recognize specific scenarios without being trained on
data that is paired explicitly with that scenario. In
contrast, within specialized contexts such as air traffic
control, the broad generalization may potentially result
in a counterproductive deficiency of contextual awareness.
This was solved with a so-called prompting scheme.

A prompt is a free text input that can enhance
Whisper’s textual awareness when transcribing audio. It
gives importance to the words given in the prompt and
tries to look for words that are closely related to those
in the given prompt. Ideally, a prompt will contain
all the hard-to-transcribe items such as local waypoints
(e.g., ARTIP, WOODY), entities (e.g., Bordeaux Radar,
Kines-Saint Prex), or possible airlines and call signs (e.g.,
KLM Six Eight One, Lufthansa, Speedbird Five Alpha).

The construction of the ideal prompting scheme is
illustrated at the end of the next paragraph.

2.2.3 Normalization
Another property of Whisper is that it has been trained
to output “intelligent” transcripts. Instead of outputting
plain text, as is the standard in natural language
processing, Whisper generates complete texts including
items such as punctuation and accents. Yet, the datasets
often contain labels in plain text format. Therefore, some
processing was needed to be able to accurately compare
the generated transcript with the ground truth and thus,
correctly calculate the word error rate.

This process is called normalization. Whisper
contains a built-in normalizer that was used as a
foundation for the normalization process and was adapted
to certain ATC-specific terminology and phraseology.
The difference between prompting and normalization can
be seen in Figure 2.

An iterative process was followed to construct the
ideal prompting and normalization scheme. In each
iteration, ten audio files were transcribed with a certain
prompt and were then passed through a normalizer. After
each iteration, a manual comparison of the generated
transcript and the reference resulted in adaptations on
the given prompt and the used normalizer. This way,
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the most ideal prompt and normalizer were constructed
empirically.

NormalizerWhisper

Prompt

Audio

Text! text

Figure 2: The difference between prompting and
normalization.

2.2.4 Inference
During inference, the actual performance of the
out-of-the-box Whisper model was assessed. This was
done by loading the datasets from the HuggingFace
Hub and loading the large-v2 model from the Whisper
Python package. Then, each audio file was processed
systematically. First, the so-called log-mel spectrogram
of the audio file was calculated. The log-mel spectrogram
is a regular logarithmic audio spectrogram with the y-axis
being adapted to the human hearing frequency levels
expressed as mels. Second, the prompt was set up.
The prompt contained the words Air Traffic Control
Communications to indicate the context. Further, it
was extended with some terminology (e.g., ILS, knots,
heading) and the NATO alphabet. If available in the
dataset, the radar information was also added to the
prompt. Moreover, automatic language detection was
turned off and the language was manually set to English
to maximize the performance. Afterward, each audio file
was transcribed twice: with and without the prompt. The
results were then saved in a data frame for later use.

After each file had been transcribed twice, the word
error rate was calculated. This was also done twice, the
first time with normalizing both the reference and the
transcript and the second time without normalization.
Then, the WER scores were also calculated twice, once for
the whole dataset (training + validation split) and once
for the validation split only. The latter was done to have
a fair comparison between the blank and any fine-tuned
models later on.

In total, the inference of one model gave eight results
per dataset, so sixteen results for both the ATCO2 and
ATCOSIM datasets.

2.3 Model Fine-Tuning
For fine-tuning Whisper, the large-v2 variant was
used since it would most-likely result in the best
achievable performance. To facilitate the fine-tuning,
the HuggingFace transformers Python package was used
[21]. This created an easily usable solution for fine-tuning
any available model on the HuggingFace Hub with any
dataset. The Whisper Large v2 model was fine-tuned
on the three created datasets: ATCO2, ATCOSIM,

and ATCO2-ATCOSIM to determine the best available
model. A list of all created models can be found in
Appendix B.

First, the data were prepared. All audio was
resampled at 16 kHz to make sure that it was processed
correctly. Second, the Whisper tokenizer transformed the
labels into input tokens. These tokens represented the
words in the lexicon of the language model of Whisper.
Third, Whisper’s feature extractor was used to calculate
the log-mel spectrogram expressed as an array of input
features (e.g., an array containing the power of the signal
for each frequency at a given time point). Fourth, a
data collator was constructed to ensure the input tokens
and the spectrograms were of the same length, time-wise.
That means, in case of a silence in the audio, it was
expressed as a certain input token in the token array to
ensure that there was no information mismatch between
the input IDs and the label. Fifth, a metric calculation
function was created to calculate the WER score during
training. Finally, the training and validation splits of the
dataset were designated for the training process (train
and evaluation set).

Then, the fine-tuning process started. The samples
in the training split were, in pre-defined batch sizes, sent
over to the model to predict an output. Based on the
difference between the predicted output and the correct
output (the data labels) the model parameters were
adjusted. The fine-tuning process cycled over the training
dataset a fixed number of times (epochs). After the
fine-tuning, the models were uploaded to the HuggingFace
Hub3.

2.3.1 Hyperparameters
Each of the three datasets had its own fine-tuning
process. Each process needed dedicated hyperparameters
due to the difference in dataset size. Table 3 lists the
hyperparameters used for each process. It was decided
to train each model for around 100 epochs, and from
there, the rest of the hyperparameters were calculated.
During the fine-tuning process, the learning process was
monitored to verify whether the model “learned” as
required.

Table 3: The hyperparameters used in each fine-tuning
process.

Parameter ATCO2 ATCOSIM A2-ASIM
Max. Steps 2,800 12,500 12,644

Train Samples 446 7,646 8,092
Batch Size 16 64 64

Epochs 100 104.2 99.56
Eval Steps 100 1,000 250
Save Steps 100 2,000 1,000

2.3.2 Hardware Resources
Fine-tuning a machine learning model requires high-level
hardware. It was decided to use the Delft High

3https://huggingface.co/jlvdoorn
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Performance Computing cluster (DHPC) as part of the
facilities of the Delft University of Technology [22].

Each fine-tuning process had its own hardware
requirements. Whisper was fine-tuned on the ATCO2
dataset using one NVIDIA Tesla V100S graphics card
with 32 GB of video memory. Further, one AMD
EPYC 7402 24C CPU was used together with 128 GB
of working memory. All resulted in a fine-tuning time of
approximately 21.5 hours.

Due to the large size, the ATCOSIM and
ATCO2-ATCOSIM fine-tuning processes needed more
hardware. There, four NVIDIA Tesla V100S graphics
cards were used, each with 32 GB of video memory.
Moreover, the number of CPUs was increased to four
AMD EPYC 7402 24Cs. The same working memory of
128 GB was used. The time needed for fine-tuning was
32.5 and 38 hours respectively for the ATCOSIM and
ATCO2-ATCOSIM datasets.

2.4 Validation
To validate whether the methodology worked as intended,
real-world data were used. These data were supplied by
a real-world air navigation service provider. The blank
Whisper model was first used to set a baseline on the
ANSP dataset. Later, the ANSP data were used to
fine-tune Whisper.

2.4.1 ANSP Dataset
To validate the illustrated methodology, ANSP data were
used. The supplied data consisted of a week of audio (3rd
Oct. 2022 - 9th Oct. 2022) originating from the tower
controller ATCo-position. The audio contained files of
unequal length and consisted of both controller and pilot
speech. Furthermore, it did not include any metadata
such as speaker IDs. Since the recording was done
on the controller’s site, the audio contained relatively
large quantities of noise, especially for the pilot speech.
This noise reduced the quality of the data enormously.
Moreover, it was collected at a sampling frequency of only
8 kHz which is low compared to standards. This further
reduced the quality of the recordings. Lastly, only the
audio was provided, thus the labels, i.e., transcripts, still
needed to be created.

The first step in creating the dataset was selecting
the data that would be used. Since the total amount of
ANSP data (139 hours across 50,000 files) was far more
than needed compared to the amount of data used for
fine-tuning, only a small slice, of approximately three
hours was used. During the labeling process, the actual
selection of the data was based on the noise level, amount
of non-English speech, and lack of utterances.

After setting the dataset requirements as illustrated
in the previous paragraph, the data were processed. This
was done first by re-sampling the audio from 8 kHz
to 16 kHz and removing empty audio files, i.e., audio
without any utterances. Then, the audio was listed in
random order to remove any time-based (and thus also
speaker-based) biases.

The third step in the dataset creation process was
the labeling of the ANSP data. Since this would
be a labor-intensive task, it was chosen to run the
best-performing fine-tuned model, as created according
to the previous subsection, on the ANSP data to create
pseudo-labels. These pseudo-labels, together with their
corresponding audio files, were used in a program called
Prodigy. This software presented an audio file together
with its pseudo-label. The label could then be edited
manually while listening to the audio file. That way, the
correct labels of the ANSP dataset were created.

During the labeling process, some audio files were
rejected due to their noise level, amount of non-English
speech, or lack of utterances. These metrics are standard
to take into account during the creation of a dataset.
The audio was labeled up until the point that the
total duration of three hours was reached. The final
dataset consisted of a duration of three hours across 1001
files. Again, this dataset was randomly divided into a
training and a validation partition using the 80% to 20%
ratio. This resulted in a training partition containing 799
samples with a duration of 2 hours and 23 minutes and
a validation partition of 202 samples and a duration of
37 minutes respectively. A complete overview of all used
datasets in this research can be found in Appendix A.

2.4.2 Inference
The performance assessment on the ANSP audio was
executed in the same manner as the baseline performance
assessment on the ATCO2 and ATCOSIM datasets
(Subsection 2.2). First, the blank model was tested on
the ANSP dataset, and afterward, all three fine-tuned
models were tested on the ANSP dataset. The
results showed what performance could be achieved in
a real-world scenario. The WER was calculated in the
four configurations of prompting and normalization. It
gave sixteen WER scores in total, four per model.

2.4.3 Fine-Tuning
It could be expected that the ANSP dataset would
contain a lot of location-specific terminology and
vocabulary. Thus, a general ATC-ASR model would
presumably only be able to reach a certain WER
on domain-shifted data such as the ANSP dataset.
Therefore, it could be beneficial to adapt to those
location-specific irregularities. This was solved by
fine-tuning Whisper on a piece of the ANSP data. The
performance of this fine-tuned model evaluated on the
ANSP data gave insight into the effect of in-domain
training (e.g., fine-tuning and evaluating on the same
dataset).

Now, due to security reasons, the ANSP data could
only be processed on specialized NLR (Royal Netherlands
Aerospace Centre) hardware. Therefore, the fine-tuning
process could not be performed anymore on the DHPC
hardware. It was decided to use the NLR equivalent for
the fine-tuning process. This machine consisted of 188

2023-11-22 7
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GB of RAM, 48 Intel Xeon Gold 6136 CPUs, and one
NVIDIA Tesla V100 32 GB GPU.

The fine-tuning was performed for 125 epochs, using
a total batch size of 64. With a total of 799 training
samples, this resulted in 1500 training steps. The
evaluation was carried out every 125 steps and the model
was saved at four checkpoints (every 375 steps) to create
the best working model. Time-wise, 12.5 hours were
needed per training session. In total, this gave 50 hours
of total training for the four models.

3 Results
In this section, the results and outcomes of the research
are discussed.

3.1 Prompting and Normalization
Figure 3 shows the effect of prompting and normalization
on the word error rate. It is seen that both had
approximately the same effect. Yet, a combination of
the two yielded the best result. The word error rate on
the ATCO2 dataset was reduced from 42.27% to 9.73%, a
33% absolute reduction. On the ATCOSIM dataset, the
WER was reduced by an absolute 76%, from 78.72% to
3.12%.

ATCO2 ATCOSIM
Dataset
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W
ER
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)

WER Effect of Prompting and Normalization

Configuration
No Prompt/No Normalizer
No Prompt/Normalizer

Prompt/No Normalizer
Prompt/Normalizer

Figure 3: The effect of prompting and normalization on
the word error rate. Each group of bars represents a slice
of a dataset.

During the construction of the prompting scheme, the
first step was to state the context (i.e., “air traffic control
communications”). Afterward, it was extended with a
list of airlines (e.g., KLM, Lufthansa, and Speedbird).
Later, all location-specific items such as full call signs,
waypoints, and entities were added (e.g., KLM Six Eight
One, WOODY, Amsterdam Radar). Ultimately the

NATO alphabet and some terminology such as ILS, VFR,
etc. were added to the prompt.

Table 4: The effect of prompting and normalization on
the word error rate. The best WER for each dataset slice
is printed in italic.

Prmpt. Norm. ATCO2 ATCOSIM
no no 42.27 78.72
no yes 23.89 23.44
yes no 23.71 27.66
yes yes 9.73 3.12

On the other hand, for normalization, the built-in
Whisper normalizer was used as a foundation. It was
extended with several functions and filters. It first made
sure that only text was passed through (i.e., removing any
non-alphanumerical characters). Later it ensured that all
numbers were written in numerical form and it split all
numbers into digits (e.g., 501 becomes 5 0 1). Further,
it also standardized certain wordings (e.g., “goodbye”
became “good bye”) to have a consistent format. Lastly,
it also ensured that everything was processed as lowercase
text.

3.2 Baseline Performance
The performance of the blank Whisper Large v2 model
on the ATCO2 and ATCOSIM datasets can be seen in
Table 5 (and in Figure 4 as part of the comparison with
the fine-tuned models).

The blank Whisper model reached as low as 24.03%
word error rate on the ATCO2 dataset and 16.74% on the
ATCOSIM dataset. These results were the best available
performance, with both normalization and prompting
enabled.

Table 5: The performance of out-of-the-box Whisper
on the training (T) and validation (V) splits of the
ATCO2 and ATCOSIM datasets for each configuration
of prompting and normalization. The best score for each
dataset and split is printed in italic.

Prmpt. Norm. ATCO2 ATCOSIM
T+V V T+V V

no no 71.60 71.62 79.70 79.11
no yes 31.45 29.05 18.14 17.98
yes no 63.91 61.08 64.10 63.62
yes yes 27.14 24.03 17.10 16.74

3.3 Fine-Tuned Performance
The performance of the fine-tuned and blank models
of Whisper is displayed in Figure 4. In the rest of
this section, only the validation part of the data is
presented in the results as this was not used for training.
For the y-axis (WER), the best-performing configuration
(prompting/normalization) was taken for each score. The
complete set of results can be found in Appendix C.
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Figure 4: The performance of the blank and fine-tuned
models on the ATCO2 and ATCOSIM datasets.

The fine-tuned performance results show that, apart
from a single outlier, training Whisper on air traffic
control speech significantly reduced the word error rate.
This is especially true for the model that had been
fine-tuned on both ATCO2 and ATCOSIM. It was the
best-performing model across all datasets.

Looking at the results, fine-tuning Whisper on
ATCO2 resulted in a WER score of 14.66% on the ATCO2
dataset. Further training of the model, on ATCOSIM,
resulted in a small performance increase with a WER of
13.46%.

On the other hand, fine-tuning Whisper resulted in
an even bigger WER drop on the ATCOSIM dataset.
Blank Whisper reached 16.74% WER on the ATCOSIM
dataset. By fine-tuning Whisper on the 8.37 hours of
training data in the ATCOSIM dataset, a WER of just
1.19% is reached. Extending the training data with an
additional 0.86 hours from ATCO2, the WER is decreased
just a bit more, to 1.17%.

Table 6: The performance of the blank and fine-tuned
models on the ATCO2 and ATCOSIM datasets. The
table’s index lists the fine-tuned model version and the
columns list the datasets. The best score for each column
is printed in italic.

Mdl ATCO2 ATCOSIM
- 24.03 16.74

A2 14.66 15.84
AS 34.34 1.19

A2-AS 13.46 1.17

The effect of fine-tuning becomes tangible when

looking at some examples. For example, the blank model
predicted the following: ”Telegraph, Skyfinal 25 for touch
and go” whereas fine-tuned Whisper predicted: ”Hotel
Echo X-ray final two five for touch and go”. It is seen
that the fine-tuned model produces meaningful sentences
instead of falsely predicting some words. The blank model
already understood some terminology, but by fine-tuning,
it learned to understand phraseology, a big difference.

3.4 Model Validation
After the creation of the models, the methodology of
this research, fine-tuning Whisper on the ATC domain
to increase ASR performance, was validated. This was
done using ANSP data.

3.4.1 ANSP Baseline Performance
Blank Whisper was evaluated on the created ANSP
dataset. The word error rate was compared with the
performance on the ATCO2 and ATCOSIM datasets.
The results are listed in Table 7.

Whisper achieved a 32.02% word error rate on the
ANSP dataset. This was more compared to the 24.03%
and 16.74% on the ATCO2 and ATCOSIM datasets
respectively. This difference was explained by the fact
that the ANSP dataset contained the highest level of noise
and the lowest sampling frequency. Thus, the overall
quality of the audio in the ANSP dataset was the worst
among all three used datasets.

Further, the ANSP dataset was much more
location-centric than the broad ATCO2 and ATCOSIM
datasets. It only contained audio from a single location.
Moreover, it also contained a lot of region-specific items
(e.g., waypoints, SIDs, STARs) since it concerns a tower
controller.

On the other hand, still more than two-thirds of the
audio in the ANSP dataset was transcribed correctly and
it could only be expected that this amount would increase
after fine-tuning Whisper.

Table 7: The performance of the blank Whisper model
on the ATCO2, ATCOSIM, and the ANSP dataset. The
first two columns indicate the configuration of prompting
and normalization that was used. The best score for each
dataset is printed in italic.

P N ATCO2 ATCOSIM ANSP
no no 71.62 79.11 78.49
no yes 29.05 17.98 32.02
yes no 61.08 63.62 68.73
yes yes 24.03 16.74 35.09

3.4.2 ANSP Fine-Tuned Performance
It can be argued that to achieve perfection, training on a
local dataset is the best approach. A good generalization
for transcribing ATC-related speech can be reached using
broad and diverse training data, such as the combination

4International Civil Aviation Organization
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of ATCO2 and ATCOSIM (Table 11). Nonetheless, each
ATC station has its standards and procedures that might
deviate from the ICAO4 guidelines. This is reflected
in the ATC communication of the station. To reach a
perfect transcription, it is inevitable to fine-tune on local,
region-specific, data. Therefore, a test was carried out
to see the effect of fine-tuning and evaluating within the
same dataset. The main focus here was on the ANSP
dataset. The results are presented in Figure 5.

The figure shows how fine-tuning a model to a
certain environment increased the performance in that
environment. The blank Whisper model set a baseline
WER of 32.02% on the ANSP dataset. Fine-tuning on
the 2 hours and 23 minutes of the training set resulted
in a WER of 13.28% which was an absolute reduction of
18.74% translating into a relative reduction of 59%. In
this context, a relative reduction was far more important
since it concerned the fine-tuning effect.
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Figure 5: The effect of fine-tuning and evaluating on the
same dataset (training respective validation partition).

The fine-tuning effect can be seen in the following
example. In one sample the blank model predicted: ”total
green warfare elevator level four vhf final eight right”,
whereas fine-tuning on the ANSP dataset delivered:
”tower good morning KLM eight zero four we is final
eighteen right”. Even though the fine-tuned model was
not perfect, i.e., ”we is” should have been ”we are at”, it
produced far better results than the blank model. The
latter transcript contained a meaning whilst the blank
model produced useless text.

This reduction is even more extreme with the
ATCOSIM dataset. The blank Whisper model reached a
WER of 16.74%, transcribing one in six words incorrectly,
which was already quite low. With fine-tuning on the
ATCOSIM dataset it reached a word error rate of a mere
1%. Only one in 85 words were transcribed wrongly, a
relative reduction of 93%.

Table 8: The effect of fine-tuning on the evaluation on
in-domain data.

Model ATCO2 ATCOSIM ANSP
Blank 24.04 16.74 32.02

Fine-Tuned 14.66 1.19 13.28

The out-of-the-box Whisper model reached a WER of
24.04% on the ATCO2 dataset. By fine-tuning the model
on the training set of the ATCO2 dataset, the WER was
reduced to 14.66%. Without training less than one in
four words was transcribed incorrectly. After training
this was reduced to almost one in seven words, a 40%
relative reduction.

4 Discussion
This section discusses the results, shows limitations of the
work, and illustrates future work suggestions.

4.1 Results
First of all, the effect of prompting and normalization
shows that both may have a substantial effect on the word
error rate. However, it must also be said that prompting
relies on a priori knowledge and thus may not always be
expected during transcribing. On the other hand, it is
possible to implement using a data augmentation system
(e.g., using radar data). In contrast, normalization is
based on a posteriori knowledge, and therefore it seems
reasonable to expect normalization to be applied after
transcribing.

The baseline performance assessment shows that
the performance on the validation split of the datasets
approximates the performance on the whole dataset
(the training and validation split). From there, it
can be argued that both partitions of the dataset are
created in an equal manner. Thus, both partitions
(training and validation respectively) consisted of a
similar level of difficulty. This can be said for the
ATCO2 and the ATCOSIM datasets. Since the combined
dataset (ATCO2-ATCOSIM) was a summation of the two
individual datasets, the combined dataset logically also
contained partitions with equal difficulty.

Moreover, it is visible that the model performed much
better on the ATCOSIM dataset compared to the ATCO2
dataset. The main reason for this is the difference in
noise level in the audio of the datasets. ATCO2 is
a community-driven project that collects audio with a
collection of simple VHF antennas. They pick the audio
from the air and send it over the internet to a database
[15]. This way of collecting includes a lot of transmission
noise in the audio. In contrast, the ATCOSIM dataset
had been produced in a simulated environment where the
audio is captured at the source, resulting in less noise and
thus better audio quality. That way, it is understandable
that the model performs better on ATCOSIM compared
to ATCO2.
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The fine-tuned models reached a WER of 13.46%
on the ATCO2 and a WER of 1.17% on the ATCOSIM
datasets respectively. The previous state-of-the-art was
set at 15.4% on ATCO2 and 5.0% on ATCOSIM [15], [18].
Thus, Whisper sets a new benchmark for ASR on ATCO2
and ATCOSIM.

When looking at the amount of training data needed,
Whisper is even more conspicuous. The previous
ATCO2 benchmark was set with 3600 hours of training
(originating from the full ATCO2 dataset)[15]. For
Whisper, training on only the 0.86 hours of the training
partition of ATCO2 already resulted in a WER of 14.66%
on the ATCO2 validation set. Extending the training
to include ATCO2 and ATCOSIM (totaling 9.23 hours),
the before-mentioned WER of 13.46% was reached. This
indicates that fine-tuned Whisper outperformed the best
available model on the ATCO2 dataset.

This is also true for the ATCOSIM dataset, where
the best-performing model still required 176.4 hours of
training data [18]. That is drastically more than the 8.37
hours needed for the ATCOSIM model. Again, the test
set-up was similar, 80% of the ATCOSIM dataset was
included in the 176.4 hours of training and the validation
was carried out on the remaining 20% of the ATCOSIM
dataset.

On the other hand, the split in the used ATCOSIM
dataset was created randomly. However, since the
ATCOSIM dataset consists of only ten speakers and does
have speaker labels, it could be of interest to divide the
dataset based on speaker IDs. It is chosen, to use sm2
and zf2 for the validation set and the rest for the training
set. Then, fine-tuning the model on that training set
gives a score of 3.88% on the new validation set. This is
higher than the 1.17% mentioned before, yet it still sets a
new benchmark compared to the current state-of-the-art
of 5.0%.

The ATCO2 project claimed that previous work
showed that the use of standard speech corpora (e.g.,
LibriSpeech[23], CommonVoice[24]) for training an ASR
model is not effective in increasing speech recognition
performance in the ATC context [15], [25]. However,
Whisper has been trained on 680,000 hours of audio from
diverse sources to create a good generalization. That
causes that, as has just been shown, only a small amount
of ATC-related training is needed to create a model that
outperforms literature in transcribing ATC conversations.
The good generalization of the blank Whisper model is
the main power that enables the small amount of training
data to suffice for low WER scores in the ATC domain.

Overall, the fine-tuned results show that a low word
error rate is possible, even with the small amount of
useful, publicly accessible, and free datasets. It can
be said that Whisper has learned to understand the
phraseology and terminology of ATC conversations by
fine-tuning it on the ATCO2 and ATCOSIM datasets.
The created models set a new benchmark for the
application of automatic speech recognition in the air
traffic control domain.

Lastly, it can be argued that the ATCOSIM and
ANSP datasets are similar in the way that they were
constructed in a single physical location or region.
Contrary, ATCO2 was created by collecting data from
a much broader area. On the other hand, the ANSP
dataset best represents the real world among the three
datasets. First, since the ANSP dataset is a slice of the
real-world ATC speech, but further, because ATCOSIM
was collected in a simulated environment. When looking
at the results with all this in mind, it can be argued
that fine-tuning on a region-specific dataset delivers the
best and more importantly the most realistic performance
increase.

4.2 Possible Applications
As presented in Section 3, the ATCO2 and ATCOSIM
fine-tuned ASR model reached up to 13.46% WER on
the ATCO2 and 1.17% WER on the ATCOSIM dataset
respectively. Further fine-tuning on local data (ANSP
dataset) resulted in a WER of 13.28%.

Multiple works showed that the application of ASR
in the ATC domain is feasible [26], [27]. However, a
severe problem that has not yet been tackled is the
required performance. Currently, the only field where
ASR is applied in air traffic control is the field of
training and simulation [12], [13]. In this field, the
required performance is not as high as in real-world
applications since it only concerns training in a simulated
environment. Nonetheless, the current reachable
performance is sufficient for a lot more applications. This
subsection will mention those, together with possible
future applications, in an ascending order of required
performance. It briefly describes each application, gives
a qualitative analysis of the required performance levels,
and compares the required performance with the current
achievable performance.

The applications with the lowest required
performance would, instead of real-time processing, need
to focus on the post-processing of audio. Examples such
as incident analysis, where an ASR model can be used
to transcribe parts of audio for a text-based incident
investigation, could be included. It does not rely on
call sign or command recognition per se, but just on a
correct transcription with a relatively low word error rate.
The performance of the current model suffices for these
purposes. Further, this application would be the easiest
to implement since the model can be used as-is, without
any real-time adaptations.

Following up would be an application like a clearance
control monitoring system. An ASR model could be used
to monitor clearances and prevent potentially dangerous
situations by catching the speech of the responsible
ATCo and comparing it with radar data. This would
require a small shift of focus toward the understanding
of the ATC speech to recognize the word “cleared”
and the corresponding call sign and command. The
performance of the current model is high enough for
such an application, but it would require some (real-time)
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calculation framework to include radar data and focus on
the clearance keywords.

As discussed, the field of training and simulation
is the only field where applications are implemented in
real-world usage. An ASR model is used to assist or even
replace a pseudo-pilot. In the former, the focus would be
on the WER with a slight shift toward understanding, to
pre-fill some given instructions in the pilot’s interface.
The latter would require a good understanding of the
speech for a correct extraction of call signs and commands
for the ASR model (pilot) to be able to adhere to the
given instructions by the ATCo. The current model will
have a sufficient performance to assist the pseudo-pilot
but it is not accurate enough yet to completely replace
a pseudo-pilot. Also, some adaptions are needed for
the model to be implemented in a real-time working
application.

A more demanding application would be a safety
monitoring system. The automatic speech recognition
model could be applied in real-time to analyze the
speech of the ATCo. By analysis of the speech,
the safety monitoring system could catch potentially
dangerous situations. Like the clearance controller
example mentioned earlier, but now in a general form
for approach-, area- or upper-area controllers. The
model could catch potentially dangerous instructed route,
altitude, or speed commands and warn the controller. In
that case, a very good understanding of the speech and
context is needed, which is not yet achievable with the
current model. However, it could have a major impact in
the long term.

Miscommunication is a large problem in air traffic
control. Even though standard phraseology exists for
ATC communication, a large portion can be traced back
to wrong understandings of speech [28]. The leading
cause of this is a difference in language proficiency [29],
especially in non-western countries where the level of
English is below par. An ASR model like Whisper
could help solve this problem. For example, by creating
a kind of subtitle that could be sent over a data-link
channel to reduce the amount of misunderstanding.
Although it can have an effect already by only focusing
on the transcription itself. For it to succeed and have
more impact, almost perfect transcriptions and a deep
understanding of the matter are needed. Moreover, it
would need to work no matter the accent or geographical
region, thus requiring a robust and multi-lingual model.
Again, the high requirements make this a project for the
long term since the current model does not have the
needed capabilities.

It can be seen that Whisper could make an
appearance in some applications already. However,
most of them still have a more robust performance
requirement, leaving a gap. As this gap becomes
narrower, Whisper could form the foundation of many
more ASR applications in ATC in the future. Some
suggestions to close this gap will be discussed in
Subsection 4.6.

4.3 Data Availability
It is difficult to get hold of data that is suitable for
training an ASR model for the ATC domain. The ATCO2
and ATCOSIM datasets are the only two free publicly
available datasets that suffice the needs. However,
these datasets are not very large (1 hour and 10 hours
respectively). In many works, the lack of data is stated
as being an issue [10], [15]. To further improve the
performance of ATC-related ASR models and stimulate
open research, it is important to have more free, public
data available.

Further, the diversification of the data is of great
importance. Ideally, the model would be trained on
data from all over the world (i.e., different accents,
phraseology differences, and ATCo positions). However,
the ATCO2 and ATCOSIM datasets are both limited
in that sense. Both are mainly from Europe and only
contain a small amount of diversity in terms of accents
and ATCo positions. That causes the models fine-tuned
on ATCO2 and ATCOSIM to perform worse on left-out
datasets compared to datasets used for training. This
lack of generalization is a general problem in machine
learning and will be tackled by training on more diverse
data. Ultimately this will remove the need for fine-tuning
on a local dataset as was performed in this research
(Subsection 2.4).

4.4 Environmental Impact
This research involved creating machine learning models.
The rise in popularity of artificial intelligence and
machine learning does not come without consequences.
A common problem of training models is the large
amounts of electricity needed, therefore it is more and
more important to take into account the environmental
impact that is made during research that involves
machine learning. As mentioned before, the Delft
High Performance Computing cluster is used for training
Whisper on the ATCO2 and ATCOSIM datasets. This
computing cluster has an intelligent scheduler that
minimizes the computing load by making optimal use
of the available resources. By use of this scheduler, the
environmental impact of the fine-tuning was taken down
to a minimum. Future research should also allocate time
to consider the environmental impact of their study.

4.5 Limitations
First of all, the main focus of this research was on the
literal transcription (i.e., from speech to text). The
concepts of call sign and command recognition, i.e., the
understanding of speech, are briefly mentioned but are
not researched in this work. The first step in ASR is
creating a good transcription, later this can be extended
by looking at the semantic level. As can be seen above,
simpler applications will primarily rely on the word error
rate, but more complex applications will rely on a good
understanding of the speech.

Second, this work focused on the creation and
development of automatic speech recognition models.

12 2023-11-22



Thesis Control and Operations AE5310 Delft University of Technology

However, the application or implementation was out
of the scope of this research. Though, it is at least
as important. To have a working application, effort
needs to be put into the actual implementation of the
model. Not only into the literal real-time working of the
model in an application but also into the long lists of
regulations, hardware, and possibly weight requirements
for applications. The model needs to fulfill all sorts of
requirements to be implemented into an ATC system or
aircraft.

Third, the accuracy and reliability of machine
learning models are greatly involved by the
hyperparameters. The hyperparameters will influence the
learning process during the fine-tuning of a model. Wrong
hyperparameters could result in under- or overfitting of
a model. Hyperparameter-tuning is needed to overcome
this problem. In this study, there has been a lack of focus
on the tuning of hyperparameters.

Moreover, the model stability has not been
assessed. There has been no focus on techniques like
cross-validation to determine the generalization of the
model. Despite this, the evaluation of the model trained
on both ATCO2 and ATCOSIM does reveal some degree
of generalization.

4.6 Future Work
Future work should move the focus from speech
recognition to actual speech understanding. This
means that the model should not only be able to
recognize the speech but also understand the message
it conveys. Good call sign and command recognition
are, for some applications, far more important than
having a low word error rate. This is especially true for
more complex applications with harder performance and
safety requirements. The development of ATC speech
understanding is a big step toward high-demanding
applications of ASR in the ATC domain.

A big challenge is the actual implementation of
the model. As this research aimed to find the best
available performance, the best available variant was used
(Whisper Large V2). This logically contained the largest
number of parameters, 1.5 billion. This large number of
parameters required some very powerful hardware to run
on. This can be a problem for real-time implementation.
Then it is important to have a fast response time. Thus,
a compromise needs to be made between powerful but
complex hardware, and a quick response time. A possible
solution could be to use a smaller model, such as Whisper
Medium, which has 770 million parameters and a relative
speed of two compared to Whisper Large V2 [9].

It should be investigated whether fine-tuning this
model on the ATCO2 and ATCOSIM datasets would
result in a WER that is close to the WER of the Whisper
Large V2 model. In addition, the English-centered
version of the Whisper Medium model could be taken to
reduce the size of the model even more. This is trained
only on English speech, but since ATC mainly concerns
English speech, this could be a good solution. Another

possible solution could be to use a refined version of
Whisper called Distil-Whisper [30]. The main goal of
Distil-Whisper was faster processing. It reduced overall
processing times by up to 5.8 times while minimizing the
performance decrease by at most 1% WER.

An assumption that has been made during the
inference is that the only possible language is English,
the model has been forced to use English since the ATC
datasets mostly contain English speech. However, it
could be of high interest to look at full multilingual speech
recognition. In air traffic control, greetings, for example,
are often spoken in a local language. Further, in countries
where the development of English is below par, the
amount of non-English speech is often higher. Therefore,
it could be of great interest to look at multilingual
speech recognition. For example, the recently launched
Massively Multilingual Speech model could be used [31].
Enabling the recognition of speech in other languages
than English or more accents could result in better
recognition of non-English or accented speech.

5 Conclusion
This research focused on applying automatic speech
recognition to air traffic control. Whisper was
used, a large-scale weakly supervised automatic speech
recognition model. The question to answer was: How can
Whisper be used for application in air traffic control?

From the results presented in Subsection 3.2 it can
be concluded that blank Whisper performs relatively
well on the out-of-domain ATCO2 and ATCOSIM
datasets. A word error rate of 24% and 17% respectively
show that Whisper understands large parts of the
ATC speech. Further, fine-tuning on those datasets
significantly enhances the performance. Whisper sets
the new state-of-the-art word error rates of 14% on
ATCO2 and 1.2% on ATCOSIM. The model learned
to comprehend ATC-specific vocabulary and, more
importantly, phraseology. Lastly, from the validation
results presented in Subsection 3.4, it can be concluded
that applying Whisper in a real-world ATC environment
is possible with promising results.

As seen in Subsection 4.2, there is a lot of potential
for ASR to be applied in ATC. Some of the applications
require a more robust performance than currently can
be delivered, a long-term focus is of more importance
there. On the other hand, the current performance of the
created models already suffices for simple applications.
Especially incident analysis, where post-processing is
required instead of real-time processing, is an auspicious
example.

All in all, it can be said that Whisper has already
formed a solid foundation. However, fine-tuning Whisper
on ATC can provide even better speech recognition
performance in the ATC domain. It provides the drive
needed to bring ASR technology to a mature and robust
model for application in air traffic control. It has the
needed performance to start reducing the workload of
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air traffic controllers in the short term, using simple yet
powerful applications. In the long term, it could have
enough potential to make a significant difference in the
way of working for air traffic controllers.
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Appendix A Datasets

Table 9: An overview of all the used datasets in the research.

ATCO2 ATCOSIM ATCO2-ATCOSIM ANSP
Total Size (h) 1.1 10.46 11.56 3.00
Train Size (h) 0.86 8.37 9.23 2.38

Validation Size (h) 0.23 2.09 2.32 0.62
Total Samples 559 9,559 10,118 1,001
Train Samples 446 7,646 8,092 799

Validation Samples 113 1,913 2,026 202

Appendix B Models

Table 10: An overview of all the used or created models in the research. Note: “WLV2” stands for Whisper Large
v2, all the created models are based on it. Due to security reasons, the models that have been fine-tuned on ANSP
data are not released to the public. Yet, the other models can be found on the HuggingFace Hub.

Name Created from Fine-Tuned on
WLV2 - -
WLV2-ATCO2 WLV2 ATCO2
WLV2-ATCOSIM WLV2 ATCOSIM
WLV2-ATCO2-ATCOSIM WLV2 ATCO2 & ATCOSIM
WLV2-ANSP WLV2 ANSP
WLV2-ATCO2-ANSP WLV2-ATCO2 ANSP
WLV2-ATCOSIM-ANSP WLV2-ATCOSIM ANSP
WLV2-ATCO2-ATCOSIM-ANSP WLV2-ATCO2-ATCOSIM ANSP

Appendix C Results

Table 11: All WER scores on the ATCO2, ATCOSIM, and ANSP datasets (validation split).

Model Dataset Prompting Normalization WER (%)

Whisper Large v2 - Blank

ATCO2

no no 71,6192
no yes 29,0538
yes no 61,0765
yes yes 24,0338

ATCOSIM

no no 79,1119
no yes 17,9776
yes no 63,6183
yes yes 16,7376

ANSP

no no 78.4873
no yes 32.0160
yes no 68.7349
yes yes 35.0947

Continued on the next page
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Continued from the last page

Whisper Large v2 - ATCO2

ATCO2

no no 19,7064
no yes 17,8587
yes no 18,1495
yes yes 14,6602

ATCOSIM

no no 48,4812
no yes 15,8392
yes no 44,6147
yes yes 15,9515

ANSP

no no 40.1268
no yes 26.8650
yes no 38.5568
yes yes 26.4506

Whisper Large v2 - ATCOSIM

ATCO2

no no 53,5142
no yes 34,3403
yes no 54,4039
yes yes 35,3621

ATCOSIM

no no 1,2502
no yes 1,2634
yes no 1,1854
yes yes 1,1932

ANSP

no no 63.7077
no yes 51.7318
yes no 66.1232
yes yes 56.1575

Whisper Large v2 - ATCO2-ATCOSIM

ATCO2

no no 17,2598
no yes 14,5713
yes no 19,395
yes yes 13,4607

ATCOSIM

no no 1,1669
no yes 1,1792
yes no 1,2271
yes yes 1,2447

ANSP

no no 36.9263
no yes 23.9195
yes no 28.6685
yes yes 22.9278

Whisper Large v2 - ANSP

ANSP

no no 26.3436
no yes 15.2457
yes no 24.4112
yes yes 13.2771

Whisper Large v2 - ATCO2-ANSP

no no 23.3545
no yes 12.5814
yes no 23.3394
yes yes 12.3742

Whisper Large v2 - ATCOSIM-ANSP

no no 24.0942
no yes 13.2475
yes no 25.2868
yes yes 13.9284

Whisper Large v2 - ATCO2-ATCOSIM-ANSP

no no 26.1322
no yes 16.4594
yes no 23.3998
yes yes 12.5518
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Abstract
The development of automatic speech recognition (ASR) models has been boosted over the last
decades by the introduction of machine learning (ML). However, a persistent problem is the gap be-
tween small-scale supervised and large-scale unsupervised models. Recently OpenAI filled this gap
with the introduction of Whisper: the ChatGPT among speech recognition models. The unique charac-
ter of Whisper makes it highly interesting to research the potential of applying it in the air traffic control
(ATC) domain. Historically, a lot of research has already been done on speech recognition techniques
in the ATC environment. However, Whisper might form a basis for fundamental changes in the future
way of working of air traffic control.

This research first assesses the performance of the out-of-the-box Whisper model. It finds that
Whisper achieves a word error rate (WER) of 24% and 17% respectively on the commonly-known
ATCO2 and ATCOSIM datasets. Based on these results, it proposes the fine-tuning of Whisper on the
datasets in order to increase the performance of speech recognition in air traffic control communication.
Further, it includes an outlook on the application of a fine-tuned Whisper model in the ATC domain.
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1
Introduction

This report describes the ongoing research on applying a large-scale weakly supervised automatic
speech recognitionmodel in air traffic control. It particularly focuses on the progress so far and proposes
plans to complete the research. That starts with the introduction of state-of-the-art automatic speech
recognition (ASR) and the application of automatic speech recognition in air traffic control. This chapter
closes with the research gap and describes the research goal.

1.1. Automatic Speech Recognition
Automatic speech recognition has been studied for a very long time already, with some research even
dating back to themid-20th century [1]. Back in that time, ASR research was based on usingmechanical
devices that pick up audio signals and performed filtering to recognize the 10 digits in the decimal
system [2]. Soon after that, the first voice-activated typewriter was built, also using signal-filtering
[3]. It was the point where dynamic programming was introduced when the interest in the technology
began to grow. Using this approach, it was getting easier and easier to create models with a large
vocabulary. With these growing languagemodels (LMs), a newmethod was needed to recognize words
fast enough. The solution for that was the introduction of statistical models. Specifically, the Hidden
MarkovModel (HMM)made its appearance in automatic speech recognitionmodels [1]. Using the HMM
approach, now a probability could be given for the occurrence of a certain word in an utterance instead
of looking for sound patterns in the audio. Sometime later, Gaussian Mixture Models (GMM) were used
to model the perceived states of the HMM model [2]. The combination of HMM-GMM models became
the golden standard in ASR models and is still forming a big part of those models today. However,
the introduction of deep learning can be seen as the next big thing in automatic speech recognition.
Recent work done by several big companies such as Google [4], Meta [5], and Microsoft [6] makes it
clear that the introduction of deep learning significantly improves the automatic recognition of speech.

One technique to construct automatic speech recognition models is by using supervised learn-
ing. This method results in end-to-end models that do not need any fine-tuning as will be explained
later in chapter 4. Many successful ASR models exist that rely on the supervised learning approach.
More noteworthy examples include DeepSpeech [7] which set a new benchmark for automatic speech
recognition. They successfully built a model that could not only recognize speech in a clear and con-
versational manner but also in noisy environments. Reaching a word error rate of around 12% they
even outperformed the larger publicly available speech recognition systems such as Apple Dictation,
Bing Speech, and the Google speech API [7].

Further, SpeechStew is a more recent noteworthy example [8]. A common problem with supervised
learning ASR models was the lack of data, SpeechStew tried to solve this by combining seven different
datasets from several sources into one dataset. By training on this new, larger, dataset they reached
near-state-of-the-art performance (in 2021). They saw that multi-domain training and transfer learning
could result in WERs that directly competed with the latest work available [8].

Another approach to take is the approach of unsupervised learning resulting in the training on much
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larger datasets as no labeled data is needed. Wav2Vec took this approach by training on around 1120
hours of unlabeled data [9]. Soon, a new iteration was created where Wav2Vec2.0 [10] increased
the amount of unlabeled data to 53.2 thousand hours by using a pre-processing technique found in
[11]. Still, this is nothing compared to unsupervised learning on one million hours of audio performed
in BigSSL [12]. Since the scaling of data is extremely easy and the available computing power grew
significantly over the past years, the performance of unsupervised learning ASR models experienced
some great improvements.

DeepSpeech trained their model on around 5000 hours of data and even though SpeechStewmixed
several datasets, this still resulted in ’only’ 5140 hours of supervised data. On the other hand, large-
scale unsupervised models like BigSSL still need fine-tuning (as said, this will be explained later chap-
ter 4). Supervised models are often far more robust than unsupervised models as they are trained on
actual labels. Due to the fine-tuning of unsupervised models, they often tend to perform much worse
when tested on held-out datasets [13]. It can be concluded that neither supervised nor unsupervised
models deliver really promising results due to their lack in size and robustness respectively.

Whisper suggests that an automatic speech recognition model should work reliably out-of-the-box,
even in a multi-domain setup without the need for additional processing [14]. Therefore, it focuses on
closing the gap between small-scale supervised learning and large-scale unsupervised learning ASR
models. It does so by building a large-scale weakly supervised robust speech recognition model. The
model not only focuses on extending the training data to 680.000 hours, but it also emphasizes that
multitask and multilingual learning only increases the performance compared to previously existing
models [14], leading to some distinct capabilities.

Supervised
Learning

Unsupervised
Learning

1.000.000 Hrs

~1000 Hrs

680.000 Hrs

Figure 1.1: Whisper fills the gap between large-scale unsupervised learning and small-scale supervised learning.

The first property of the model is that the data used for training comes from a vast number of sources
on the internet, therefore the model spans a very diverse set of audio. That makes that using the model
on out-of-domain data should not lead to a significant drop in performance compared to the baseline
scores of the model. Without having seen a certain dataset, ’zero-shot’, it can still correctly transcribe
speech in that dataset. This property makes it very appealing to use the model in air traffic control since
ATC typically is an area where transcribed audio is scarce.

Another feature of the model is that it is trained on a lot of languages and dialects, it includes
training on a total of 96 languages and dialects. The primary focus is English, but the multilingual
capabilities could be useful as will be discussed in chapter 5. A model that performs far better in terms
of multilingual capacity is the Massively Multilingual Speech (MMS) model by Meta-AI [15]. It focuses
entirely on extending speech recognition, synthesis, and identification to a large number of languages.
Reaching a total of 4000 languages. However, due to this attention on a massive amount of languages,
MMS performs much worse on English than Whisper.

Third, speaker diarization is also trained during the creation of the model. This could too be useful in
the air traffic control domain in order to determine whether speech is coming from an air traffic controller
(ATCo) or a pilot and apply speaker-dependent processing.

1.2. Air Traffic Control Applications
The air traffic control domain has encountered multiple studies on the topic of automatic speech recog-
nition. Especially in the last two decades, since the rapid development of automatic speech recognition.
Works like [16], [17], and [18] have looked into applying ASR in the ATC domain. Numerous applica-
tions have been mentioned as having potential for ASR models.
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1.2.1. Training and Simulation
One of them is the training and simulation application [19]. Here soon-to-be ATCos are trained in
a simulated session where a pseudo-pilot receives commands from the ATCos and gives a response
while ’controlling’ the aircraft. An ASRmodel could be implemented together with a speech synthesizer
to assist or even replace the pseudo-pilot. This could help in the development and training of more
ATCos as there are ongoing operational challenges with the availability of these pseudo-pilots [20].
They often do the support in the training sessions next to their main job (as real-world pilots) which
brings in lots of constraints.

1.2.2. Safety Monitoring Framework
Another approach that can be taken is the implementation of automatic speech recognition into air
traffic control through a safety monitoring network. For example, the work done in [18] suggests using
an ASR model which transcribes the ATCo’s speech. The controller’s intent is then extracted from this
transcription and sent to a safety system. The safety system then checks whether the commands will
lead to potentially dangerous situations by comparing them with radar data.

1.2.3. Operational Analysis
Other applications include the determination of the workload of an air traffic controller [21]. Since
ATCos are the bottleneck in the operational capacity of the airspace, they are under immense pressure.
Therefore, it can be of high value to correctly measure the workload of a controller by analyzing the
speech. Further, analyzing the speech can also open the opportunity to study the compliance of the
controller with certain standardized procedures performed in air traffic control as suggested in [17].

1.2.4. Data Link Integration
Further research that was conducted, focused on applying automatic speech recognition in a next-
generation controller-pilot data link communication (CPDLC) system. The study concludes that apply-
ing automatic speech recognition and synthesis in combination with CPDLC in aircraft could have a lot
of potential [22].

1.2.5. Implementation
Even though a lot of research has already been done on applying automatic speech recognition in air
traffic control, almost none of the applications have been implemented in real-life. The only examples
of an implemented application are in the training and simulation sectors. Here two works [23], [19] have
been used actively in real-world training of air traffic controllers.

The lack of implementation could be explained by the high accuracy requirements and the unique
challenges in the ATC context [24]. Although the performance of ASR systems has increasedmassively
over the past years, the niche domain of air traffic control communications still is too hard of a challenge.

1.2.6. Datasets
To apply Whisper in a certain application, some transcribed ATC audio data is needed to assess the
performance of the Whisper model. This performance assessment is crucial for selecting a suitable
application. A problem that arises in a lot of studies is the lack of sufficient high-quality data. Some
works attempted to build ATC speech corpora [25], [26]. However, only three of those are publicly
available for use. The ATCO2 corpus [27], ATCOSIM corpus [28], and a corpus as part of the CLARIAH
LINDAT-CZ project [29].

Several ASR models have been built and tested on ATC data already examples are the works
[30] and [21]. The company of Airbus even held a competition to see the state-of-the-art of speech
recognition in the ATC domain [31]. Using a dedicated dataset created in [25], the best scoring model
achieved a word error rate of 7.6 % [31]. Since there are not many public datasets, these datasets can
be seen as a benchmark measure for ASR models in the ATC domain.

1.3. Research Gap
Every speech recognition model is a unique model, however, it can be concluded that Whisper is
the latest and greatest in ASR. By filling the gap between small-scale supervised learning and large-
scale unsupervised learning with large-scale weakly supervised learning on a broad range of data, it
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successfully seemed to fulfill its goal: creating a reliable out-of-the-box model that works well on out-
of-domain data without the need for additional dataset specific fine-tuning. By setting a new standard,
Whisper paves the way for endless new opportunities in the context of automatic speech recognition.

The distinct properties of Whisper make it an appealing choice for usage in the air traffic control
domain. Although there are lots of interesting applications, to the writer’s best knowledge only one of
them has been implemented in a real working environment. One more thing that all these applications
have in common is that they all focus on one side of the communication spectrum. On one hand, there
is the ATCo side and on the other hand, there is the pilot side. It seems that almost all applications
focus on the former. That brings unique opportunities to take the opposite perspective. Or, for the same
reason, why not think outside the box and look at the communication spectrum as a whole?

ATCo Pilot

Figure 1.2: The communication spectrum in air traffic control.

For example, one of the many challenges faced by pilots and controllers is the lack of language
proficiency. These inequalities in the level of English (or a local language) can lead to some serious
miscommunications. Sending along a transcription of the speech over a data link and presenting it as
some kind of subtitle could help in solving this problem.

It is also possible to go one step further. Air traffic control has relied on voice-based communication
ever since its introduction. Yet, CPDLCmade its entrance a few decades ago to declutter radio channels
in congested airspace. However, CPDLC is used for some clearances and reporting only. This is to
reduce ’heads-down’ time in the cockpit. The next step in ATC communication might be a switch from
voice-based to text-based communication. Then, one side of the line could speak (even in their local
language) after which a transcript is made. This transcript is then sent over a data link channel, as they
are much more reliable and less noise-susceptible than VHF (Very High Frequency) channels. At the
receiving end, this transcript is then synthesized and presented to the receiving party (which could also
be in a local language).

1.4. Research Goal
All in all, it is seen that Whisper is the next big thing with a combination of abilities that is never seen
before. Whisper demonstrates that applying automatic speech recognition in (commercial) applications
in the ATC domain is at the cusp of being technologically feasible. In terms of applications, a lot of
research is still left open. This is especially true for the pilot side of the communication spectrum. Here,
Whisper could pave the way for a fundamental change in the way of working in air traffic control.

Therefore, the goal of this research is to explore the possibilities of applying large-scale weakly
supervised automatic speech recognition to air traffic control.

1.5. Report Structure
The rest of this report is structured as follows, the foundations of automatic speech recognition will be
illustrated in chapter 2. Afterward, chapter 3 discusses the language processing of the transcriptions
coming from the audio. An introduction to machine learning will be given in chapter 4. Possible ap-
plications will be discussed in chapter 5. Further, chapter 6 contains the experimental setup of the
research. Logically, chapter 7 discusses the results and outcomes of the experiments, and chapter 8
contains the conclusion that can be drawn from the work done so far and makes an outlook to future
challenges that may arise.



2
Automatic Speech Recognition

Automatic Speech Recognition, simply called ASR, is the recognition of words and sentences from
spoken language. It is a technology that has been studied for a long time and has recently made
some serious advancements. This chapter starts by illustrating the historical development of ASR.
Furthermore, it describes the general working principle and shows the recent advancements in ASR
technology.

2.1. Historical Development
The first automatic speech recognition machine dates back to the 1950s [1]. It then consisted of a
mechanical device that only could recognize 10 digits (in English) by the use of filters. The recogni-
tion using filter-based mechanisms developed rapidly and in the 1960s, specialized hardware for the
recognition of speech was built. Due to the application of dynamic programming, the vocabulary of
speech recognition grew. It grew until a point where the current technology was not efficient anymore.
In the 1980s, the first statistics-based technology made its appearance in the field of automatic speech
recognition. Using a Hidden Markov Model, speech recognition made significant progress. Soon after
the introduction of HMM, GMMs were combined with HMM-based speech recognition. After extensive
research of the HMM-GMM framework in the following two decades, the framework’s performance was
approaching its maximum in the late 2000s. Luckily, at that time the phenomenon of deep learning,
a machine learning principle, was brought to life. Using a combination of context-based Deep Neu-
ral Networks (DNN) and a Hidden Markov Model, Large Vocabulary Continuous Speech Recognition
(LVCSR) models could be made that outperformed the traditional HMM-GMM-based models [2].

2.2. Working Principle
The overall working principle of an ASR system is that it processes spoken language in such a way that
it predicts the spoken words in the audio fragment. In the end, it all comes down to the probability of
certain words being in the audio fragment. The probability of these words determines the performance
of the model. If the model is accurate enough, the probability of the predicted words will be high and
vice versa. To predict the words that are said in an audio fragment, four parts of processing are needed.
The first part is the extraction of certain ’features’ from the audio fragment, these are contained in a
set of feature vectors. The second part maps the ’phonemes’ (or even sub-phonemes) of the audio
fragment to a sequence of feature vectors, this happens in the so-called acoustic model (AM). The
third part is the pronunciation model or lexicon, it maps the pronunciation (i.e. the phonemes and sub-
phonemes) to a sequence of words. The last part is the language model, which simply contains the
vocabulary of a certain language and determines the most likely sequence of words given the audio
input and context [32]. An overview of the working principle of automatic speech recognition can be
found in Figure 2.1.
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Acoustic
Model

Pronunciation
Model

Language
Model

Feature
Vectors

Audio
Processing

haʊ əʊld ɑː juː “How old are you”

X = x1 x2 … xt

Figure 2.1: The working principle of automatic speech recognition. The transcription is created by matching the feature vectors
of the audio with those determined by the probabilistic model.

2.2.1. Feature Extraction
Each audio fragment has a set of features that is unique to the audio fragment, this can be described
by a feature vector. The first step in extracting this feature vector is transforming the audio signal from
the time domain to the ’frequency domain’ using a Fast Fourier Transform (FFT). Since an audio signal
is built up from several sinusoids, each having its own frequency and amplitude, the frequency domain
will give us much more information about the audio signal than the time domain. This can be shown
mathematically by:

𝑓(𝑡) = 𝐴0 +
∞

∑
𝑛=1

(𝐴𝑛 cos(
2𝜋𝑛𝑡
𝑃 ) + 𝐵𝑛 sin(

2𝜋𝑛𝑡
𝑃 )) (2.1)

It can be seen that every signal, can be reconstructed by adding up an arbitrary number of sinusoids
and a constant. Each sinusoid has its own frequency and amplitude. A visual representation of the
Fourier transform is illustrated in Figure 2.2.

Time Domain
x(t)

Frequency Domain
X(ω)

Fourier
Transform

Figure 2.2: The Fourier transform maps a signal from the time domain (𝑡) to the frequency domain (𝜔). Every signal can be
described by an infinite sum of sinusoids, each with its own frequency and amplitude.

The points of interest in the frequency domain are the frequencies at which the peaks occur (in
the frequency domain) and the amplitude of these peaks. By analyzing the amplitude of the peaks, the
strength of the signal can be calculated. By graphing the amplitudes of a signal against the frequencies,
the so-called spectrum of a signal is created. In Figure 2.2 the spectrum is represented by the orange
graph.

Now, the only problem is that each spectrum is only valid for a certain point in time of the audio
signal. As the audio signal is continuous, so is the spectrum. That means that the spectrum will
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change over time. If the audio fragment is divided into smaller segments, each a few milliseconds
long, and a spectrum is made from each segment, then one can represent the complete audio signal
through a spectrogram. A spectrogram is nothing more than a whole set of FFTs put together. The
only difference is the representation of the values, the frequency is now represented by the y-axis. The
amplitude is represented by the z-axis (color scale). Lastly, the added dimension, time, is represented
by the x-axis.

As the spectrogram contains all the necessary information of an (audio) signal, the feature vector
is simply represented by the peak amplitudes, the frequencies at which they occur, and the points in
time at which they occur. Below, in Figure 2.3, a spectrogram is visualized. It can be seen that speech
recognition now comes close to image recognition as each phone has a unique representation in a
spectrogram. The transcript corresponding to the spectrogram below is alitalia two three four bonjour
squawk five seven seven five.
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Figure 2.3: A spectrogram, in essence, is a visualization of audio. The corresponding transcript to this spectrogram is alitalia
two three four bonjour squawk five seven seven five. The numbers in the squawk code are represented by the bars in the figure
between 1.7 and 2.8 seconds.

2.2.2. Acoustic Model
As said, the task of the acoustic model is to map a sequence of phonemes and sub-phonemes to a
sequence of feature vectors. In ASR, the acoustic model will try to find the highest probability of feature
vectors (X) given an input of phonemes (W), in mathematical terms, this can be described by finding:

𝑎𝑟𝑔𝑊𝑚𝑎𝑥 𝑃(X|W) (2.2)

An acoustic model is typically represented by a Hidden Markov Model. HMMs are symbolized by a
set of nodes, each having a probability of staying at that node or transitioning to another node. Such
a node is called a state, a state can be (and most likely is) hidden. That is where the name ’hidden’
Markov model comes from. Each (hidden) state can be observed by an observation. In this case, the
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states are the ’phonemes’ and the observations are the feature vectors belonging to these phonemes.
The connections between the nodes represent the probabilities of staying at a certain node or moving
to the next node, the so-called transition probability. Furthermore, the probability that a specific node
will emit a certain observable is the so-called emission probability. In the case of ASR, a sequence of
nodes is represented by a sequence of phonemes (and in the observable domain by a sequence of
feature vectors). Now what the AM does is that it finds to most likely way that a sequence of phonemes
flows through the chain and thereby determines the sequence of feature vectors that belongs to the
sequence of phonemes [32]. An overview of the Hidden Markov Model can be found in Figure 2.4.

How

Phow (     1)
Phow (     2)

…

old are you

Pold (     1)
Pold (     2)

…

Pare (     1)
Pare (     2)

…

Pyou (     1)
Pyou (     2)

…

p12 p23 p34

p21 p32 p43

p11 p22 p33 p44

p1 p2 p3 p4

Figure 2.4: An overview of the Hidden Markov Model from the perspective of speech recognition. Here the transmission proba-
bilities are represented by the lowercase letter p. The emission probabilities are represented by the capital letter P.

2.2.3. Pronunciation Model
The pronunciation model is the model that pairs a word with a set of phonemes and sub-phonemes that
form the pronunciation of the words. This model is also called the lexicon as it contains the collection
of words (lexis) with the speech of these words.

2.2.4. Language Model
The languagemodel is the model that contains the actual vocabulary of the ASR. It is simply a collection
of pieces of text from a certain (or multiple) language(s). What a language model does is that it tries
to predict the next word in a sequence of words based on the previous N words. A language model
is often described as an ’N-gram’ language model, here the N refers to the number of words that are
used to determine the probability of the next word in the sequence. The goal of the language model
can be described mathematically by:

𝑝(W) = 𝑝(𝑊𝑡|𝑊𝑡−1𝑊𝑡−2…𝑊𝑡−𝑁) (2.3)

Here, W is the sequence of words, 𝑡 is the point in time, 𝑊𝑡 is the next word in the sequence, and
𝑊𝑡−1 until𝑊𝑡−𝑁 is the set of the N previous words. When the dataset that is used is large enough, the
chance of having a certain word can easily be calculated by counting the number of instances that a
certain word occurs after a given sequence of N words. For example, the probability of having ’you’
after ’How old are...’ is then calculated as:

𝑝(𝑦𝑜𝑢|𝐻𝑜𝑤 𝑜𝑙𝑑 𝑎𝑟𝑒) = 𝑐𝑜𝑢𝑛𝑡(𝐻𝑜𝑤 𝑜𝑙𝑑 𝑎𝑟𝑒 𝑦𝑜𝑢)
𝑐𝑜𝑢𝑛𝑡(𝐻𝑜𝑤 𝑜𝑙𝑑 𝑎𝑟𝑒) (2.4)

If the dataset that is used to build the language model is large enough, so will the reliability of the
languagemodel. By using the web, a large enough dataset can be built. Also, one could say that having
a higher N number will result in a much more precise language model. That is not necessarily the case,
if the next word will be predicted on the previous 10 words (e.g. 10-gram LM) then the dataset will need
to be much much larger than for example having a 5-gram LM in order to have a reliable prediction of
what the next word will be [33].
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2.3. State-of-the-Art
Automatic speech recognition technologies have come a long way since their first development. The
current models involve machine learning and try to provide an end-to-end solution for transcribing the
audio. The newest of such models is called Whisper, an automatic speech recognition model built by
OpenAI [14].

Whisper is the next big thing among automatic speech recognition models. It efficiently fills the gap
between small size supervised and large scale unsupervised learning models by creating a large scale
weakly supervised model. They made a model using 680.000 hours of labeled audio. The distinct
properties of Whisper make it an appealing choice for ASR applications. The goal of Whisper is to be
a model that does not need any environment-specific fine-tuning afterward, e.g. to work in a zero-shot
environment [14].

Further, Whisper works in a different way than people may be used to. Instead of voice assistants
such as Amazon’s Alexa, Apple’s Siri, and Google’s Assistant, Whisper works offline. The model will
be downloaded to the device where the speech recognition will be performed. The voice data that is
processed by Whisper all happens on the device itself instead of being sent to the cloud. This also has
a big advantage in terms of privacy.

Whisper is created using the Python programming language. Specifically, the model is created
using the PyTorch framework. With the correct requirements installed (primarily PyTorch, NumPy, and
FFmpeg), the model can be inferred using a Python script.





3
Language Processing

After the transcripts have been generated, some processing is needed. How can it be determined
whether the transcript is correct? Further, is it the transcript that is of importance or is it the aspects in
the transcript that are important? Those are all questions that will be discussed in this chapter. This
chapter contains the processing of the ’language’ in the transcript, e.g. the processing of the outcome
from the automatic speech recognition.

3.1. Assessment Criteria
Now that the transcripts are generated, it is time to determine how well the Whisper model works by
assessing the transcripts. This is done by looking at the assessment criteria. Three aspects are of
importance when it comes to these transcripts in the air traffic control domain. The first aspect is the
word error rate, the second is the call sign recognition rate and the third is the command recognition
rate (CRR). The importance of each of those criteria depends on the application in the ATC domain,
for example, for speech analysis, the word error rate is more important but for assistant-based speech
recognition (ABSR) systems the call sign and command recognition rates are far more important than
the word error rate. More on that in chapter 5. In this section, all three assessment criteria will be
illustrated together with their shortcomings.

3.1.1. Word Error Rate
Themost simple way to assess whether an automatically generated transcript is correct is by comparing
it with a manually made transcript (e.g. the ’label’ of the data, sometimes also called the ’ground truth’).
This can be done on a per-word basis but is generally done on a per-sentence basis, where every
word in two sentences is compared instead of every character in two words. The most common metric
for assessing the correctness of the transcript is called the word error rate, it says how many of the
words in the automatic transcript (’the transcript’) are also in the manually given reference text (’the
reference’). The WER can be calculated with the following equation:

𝑊𝐸𝑅 (%) = 𝑆 + 𝐼 + 𝐷
𝑁 (3.1)

In this equation, 𝑆 is the number of substitutions, 𝐼 is the number of insertions and 𝐷 is the number
of deletions in the transcript. Furthermore, 𝑁 is the total number of words in the reference. So for
example, the word error rate of the transcript ’Can I get to-dos?’ with reference ’Can I get two shoes?’
will be 40% since the transcript contains one substitution, zero insertions, and one deletion whilst the
total number of words in the reference is five.

A common problem that arises is that reference transcripts often have everything written out in
words and have no punctuation at all. The Whisper model has a certain level of intelligence through
which, for example, it writes numbers in number format instead of in text format and adds all needed
punctuation, accents, etc... to the transcript whereas the manually created reference almost always
lacks this kind of intelligence. Therefore it can be very hard to systematically determine theWER scores
of the transcripts. This problem will is visualized in Figure 3.1 and will be addressed in section 3.2.
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KLM three four five descend flight level three zero zero

KLM345 descend FL300

Figure 3.1: Strictly taken, the word error rate would not be 0%. However, the two sentences have the exact same meaning.

A third problem that occurs is that the transcription model does not have any contextual awareness.
Since the air traffic control audio contains very location-specific naming of for example waypoints (i.e.
ARTIP, VALKO, TULIP), IAFs (Initial Approach Fixes), and local entities (i.e. Praha Radar) which are
not part of any standard language model, it is very hard to correctly transcribe these items. Luckily
some input can be given to Whisper when transcribing audio, more on that in section 3.3.

3.1.2. Call Sign Recognition Rate
Since all the audio data is directly related to air traffic communication, almost all of them contain a call
sign by which the air traffic controller addresses the pilot or by which the pilot identifies itself to the
ATCo. The call sign is one of the most valuable items in the audio as it can be used to identify the
aircraft to or from which the communication is. Also, it can be used to find out who is speaking at a
certain point in time. An ATCo begins its phrase with the call sign while a pilot ends its communication
with the call sign. That makes it key to correctly extract the call sign from the automatically generated
transcript. The score which indicates how many of the aircraft call signs are correctly extracted from
the transcript is called the ’F1-score’.

A problem that arises when extracting the aircraft call sign from the transcript is that there are
many ways of expressing the same aircraft call sign. ’Lufthansa three delta echo’, ’DLH three delta
echo’, ’hansa three echo’, ’three delta echo’, and ’delta lima hotel three delta echo’ are all examples
of expressing the same call sign (e.g. DLH3DE). Even-though air traffic control communication is
standardized as specified in the International Civil Aviation Organization (ICAO) guidelines [34], there
are hundreds of ways of expressing a certain phrase whilst keeping the same meaning. This problem
will partially be addressed later on in section 3.2 and section 3.3.

3.1.3. Command Recognition Rate
An utterance in air traffic communication mainly consists of two parts, the first is the call sign which was
discussed in the previous section, and the second is the command or instruction (see Figure 3.2). The
command is the action that the pilot has to perform or the validation that the pilot gives to the ATCo
when complying with the instruction. An example of such a command may be: descend flight level one
zero zero or contact Vienna center on one three four decimal three five. When a pilot has been given
a command by an ATCo, he will do the readback of the command. This is used to confirm that the pilot
will comply with the given instruction: KLM681 climb to flight level three seven zero. Flight level three
seven zero, KLM681. Here, the same holds as does for the call sign, the command can be expressed
in multiple ways. Even though there are fewer ways of expressing a command, it is still more than
one. Furthermore, sometimes there is no command at all. For example, a simple willco or negative but
also some non-scripted conversations about special circumstances or greetings do occur often. The
command recognition can be graded by the so-called Command Recognition Rate, which states from
how many percent of the transcripts the command (if there is any) has correctly been recognized.

Since there is some kind of logic in an utterance in terms of call signs and commands, it should be
possible to have some sort of systematic and mathematical approach to the extraction of these items
from a generated transcript. That will be discussed later in chapter 6.

3.2. Normalizing
As described in the previous section, it can be very hard to compare the transcript with the ground truth
as there will be a difference in ’writing style’. In order to correctly calculate the word error rate, some
sort of normalization is needed to bring both pieces of text, transcript or hypothesis and reference, to
the same format. This normalizer will contain multiple steps that need to be performed on both pieces
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CommandCall Sign

KLM345 Descend FL300

Figure 3.2: A utterance predominantly consists of a call sign and a command.

of text.
The first step is to remove any non-alpha-numerical characters as exclamation marks and question

marks, in order to have some ’flat text’. Further steps include rewriting numbers as digits instead
of text; separating numbers and text; separating numbers into digits; remove any spoken separators
(’decimal’, ’comma’, ’point’). It is also important to take into account the NATO (North Atlantic Treaty
Organization) alphabet, for example, Whisper will sometimes recognize ’Alpha’ as ’A’ so the transcript
must also have this intelligence. Also, some terminology like flight level is often transcribed as ’FL’
instead of ’flight level’.

3.3. Prompting
In order to give Whisper more contextual awareness, a feature called ’prompting’ can be used. This is
an extra input that can be given to the model when transcribing a certain audio file. It is worth taking
note that prompting can only be used when inferring the model, it can not be used when training or
fine-tuning the model. The format of the prompt is a free text field. When a prompt is given, during
inference, it will be used as some sort of priority vocabulary. The model will first try to see if the audio
matches any of the words in the prompt before continuing with the ’normal’ vocabulary. Also, it will try
to find words that are closely related to (e.g. in the same domain as) those in the prompt. Therefore it
would make sense to input a list of hard-to-transcribe items combined with the context of the audio.

The first item to include in the prompt is the context, e.g. ’Air Traffic Control Communication’. After
it can be extended with the airlines and or call signs of the aircraft that are in the controlled area. This
can then be appended by the list of waypoints and entities (e.g. Praha Radar) in the controlled area.
Further, a list of terminology like ’ILS’, ’flight level’, ’wilco’, and ’affirm’ can be added to further improve
the recognition of these words. At last, the nato alphabet can be added in order to put focus on the
recognition of those words.





4
Machine Learning

Machine learning significantly improved the development and performance of automatic speech recog-
nition. One could say that it really formed the basis of ASR in general. Since a large part of this research
is based on machine learning models, it makes sense to have some theory on the topic. This chapter
will first give some background on Machine Learning and illustrate the main working principle, after-
ward, it focuses on the fine-tuning technique of existing ML models. Last, it also explains the purpose
of and ideas behind hyperparameters and how they influence the fine-tuning process.

4.1. Background
Machine learning is a term used for having a computer, themachine, learn a specific task. This happens
by creating a model, often some kind of network, with one input and one output. Then a dataset is fed
to the model where it will have to predict the output based on the input. The model will learn to correctly
predict the output by iterating multiple times over this dataset. Each time a piece of the dataset is sent
to the model as input, the model will adapt its internal parameters in order to match its predicted output
with the given output in the dataset. At the first iteration, the parameters will be changed much more
than at the last iteration, as the predicted output of the model gets closer and closer to the ’ground truth’
as provided by the dataset. That happens up until a point where the difference between the predicted
output and the ground truth is almost zero, then the model has been trained sufficiently and accurately
represents the desired connection between input and output.

The creation of a model by machine learning mainly involves two flavors, supervised learning, and
unsupervised learning. Both these flavors, their differences, and their similarities will be illustrated in
the next two subsections.

Input

‘Good Day’

Model
Output

‘Could they’

Figure 4.1: A graphical representation of machine learning. Input is given to the model from which it will try to predict the output.
In each iteration, the internal parameters of the model are updated based on the difference between the predicted output and
the correct output.

47



48 4. Machine Learning

4.1.1. Supervised Learning
Supervised learning is based on the point that for every sample (input) in the training dataset, a label
exists with the corresponding output. During training a sample is given to the model, together with the
ground truth of the corresponding sample (e.g. the label). The model then has to predict the label of the
input for each and every sample, which creates the estimated outputs. Based on the difference between
the estimated outputs and the ground truth, the model will adapt its internal parameters. Eventually,
convergence will be reached.

This approach to machine learning involves a lot of manual interaction to be able to train the model.
The dataset needs to be labeled for each and every sample, therefore these datasets are often smaller
in size. The advantage of supervised learning is that the model produces a usable output. For every
single input the model will be able to produce a label. Thus, it needs no processing after the training,
e.g. the model can be used as-is.

4.1.2. Unsupervised Learning
Unsupervised learning is the exact opposite of supervised learning as here there are no labels at all
in the dataset. The model will simply try to group together several inputs that look similar. It tries to
discover patterns in the data without the need for human interaction [35].

As the approach of unsupervised learning does not have a need for any labeled datasets, the
datasets are often much larger as it is easy to accumulate a lot of the data, for example from the
internet. Also, if the model is finished training and an input is given to the model it will only output to
which cluster or group of data the input probably belongs. That is why an unsupervisedmodel still needs
some processing after training. All the clusters or groups of data need to be labeled. The difference
between supervised and unsupervised machine learning is visualized in Figure 4.2.

Supervised Learning
Classification

Unsupervised Learning
Regression

Figure 4.2: A visualization of supervised learning and unsupervised learning. The difference is in the labeling of the data. A
supervised model will give a classification to an input whereas an unsupervised model will separate different inputs based on a
regression.

As an example, let us take a model that predicts whether a certain picture is from a dog or a cat.
A supervised model will need a collection of pictures of dogs and cats with for each picture the label
whether it is a dog or a cat. When trained, the model will output either the label ’dog’ or the label ’cat’.
When training a model without supervision, it will create two groups, one with pictures of dogs and
one with pictures of cats. When a picture is given to the final model, it will output whether it belongs
to ’group 1’ or ’group 2’. As that does not say something useful, an extra step is needed where the
mapping is done between the groups and the labels ’dog’ and ’cat’.

4.2. Fine-Tuning
If an existing machine learning model is trained on a very diverse set of data, it is then also assumed to
have a good performance on a very diverse dataset. However, the performance on out-of-domain data
may still not be sufficient. Then, the performance on this out-of-domain data could be increased by
training the existing model on this dataset. That is what is called fine-tuning. In essence, it is training
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an existing machine learning model on a new dataset. The model will then start to adapt its parameters
toward the newly learned dataset.

New Model

Old Model New Data

Figure 4.3: A schematic overview of the fine-tuning principle. In essence, it is training an existing model on a new dataset in
order to create a model that performs better in the domain of the newly trained dataset.

Since the main idea behind Whisper is to have an out-of-the-box reliably working automatic speech
recognition model, it is trained on a very diverse dataset. Thus, it could be of high interest to fine-tune
Whisper on ATC data to, further, improve the recognition of words in air traffic control communications.

4.3. Hyperparameters
One can imagine that training a machine learning model requires a lot of parameter tweaking. Each of
the parameters has its own effect on the training process. As they do not concern the internal model but
rather the broader picture they are called the hyperparameters. They each control the learning process
of the model [36]. The most important hyperparameters and their effects on the learning process are
listed in table 4.1.

Table 4.1: The most important hyperparameters and their effect on the learning process of machine learning models [36].

Hyperparameter Symbol Influence on the learning procecss
Train-Test Split Ratio 𝑓 The percentage of the data that is used for training and vali-

dation
Optimization Algorithm - The algorithm that is used in order to find the best gradient
Learning Rate 𝜂 Sets the (initial) pace at which the optimization algorithm

learns the parameter estimation
Training Batch Size 𝑏𝑠,𝑡 The number of samples that are sent to the model each step

during training
Gradient Accumulation
Steps (GAS)

𝑔𝑠 The number of steps before the model parameters are up-
dated

Max Training Steps 𝑠𝑡 The maximum number of parameter updates during training
Training Samples 𝑛𝑡 The number of samples in the training data
Evaluation Samples 𝑛𝑒 The number of samples in the evaluation data
Number of Epochs 𝐸 The number of iterations that the complete training data

passes the model
Evaluation Steps 𝑠𝑒 After how many steps the model is evaluated using the vali-

dation dataset
Evaluation Batch Size 𝑏𝑠,𝑒 The number of samples that are sent to the model each step

during evaluation
Number of Evaluation
Points

𝑝𝑒 The number of (check)points at which a model is evaluated
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Some of the parameters are related to each other. For example, the number of epochs is defined
as:

𝐸 = 𝑠𝑡
𝑏𝑠,𝑡𝑔𝑠
𝑛𝑡

(4.1)

Whereas the train-test split ratio is defined as the relation between the number of samples used for
training and for evaluation:

𝑓 = 𝑛𝑡
𝑛𝑡 + 𝑛𝑒

(4.2)

And the number of evaluation points can be described by:

𝑝𝑒 =
𝑠𝑡
𝑠𝑒

(4.3)



5
Air Traffic Control Applications

This chapter describes the possible applications in the air traffic control domain for ASR models. It
starts by illustrating the working environment of air traffic control and the areas of application. It then
presents applications that have already been implemented in real-life and possible future applications
that have not been implemented yet. At last, it finishes off with a description of the different available
air traffic control datasets.

5.1. Working Environment
Air traffic control is the control and guidance of air traffic in a certain geographical area. Often, each
country has its dedicated airspace for which it is responsible. The largest division of airspace is called
the Flight Information Region (FIR) and spans (a piece of) the whole country. As this airspace is too
large to control without any structure, it is divided into several areas, each having its type of controller.

First of all, the control zone (CTR) spans the area around an airport. It is therefore controlled by the
air traffic control tower (TWR) at the airport. When an aircraft departs or approaches an airport it flies
through the terminal control area (TMA) which is adjacent to the CTR. It is controlled by the so-called
’approach’ controller (APP). The actual airspace where flights follow the highways in the sky is the
control area (CTA), which is controlled by the area control center (ACC). If an aircraft climbs to higher
altitudes, it transitions from the control area into the upper control area (UTA) which is controlled by the
upper area control center (UAC) [37]. One UAC often controls the airspace above multiple CTAs. The
division of airspace is visualized in Figure 5.1.

UTA (UAC)

CTA (ACC)

TMA (APP)

CTR (TWR)

Figure 5.1: A graphical overview of all different divisions of airspace in a flight information region.

51



52 5. Air Traffic Control Applications

Even though all air traffic control communication has to adhere to the ICAO guidelines [34], each
airspace has its own style of communication. The higher airspace, UTA, is less cluttered than the
lower airspaces. This is due to the fact that the in this airspace the aircraft primarily follow fixed routes
according to their flight plan. Examples of communication in the UTA are KLM six eight two descend
flight level three five zero and Transavia five six four three contact Marseille on one two six decimal one
five zero.

The ACC is a more congested control center. The area controllers have their hands full on merging
several streams of incoming traffic to a set initial approach fixes. In addition, they guide outgoing traffic
along their standard instrument departure (SID) routes. At last, they also guide the overflying traffic that
passes the CTA on their route. Some examples of communication in the CTA are: Martinair three four
seven direct RIVER and Amsterdam Radar, Easyjet two niner niner two is inbound HELEN 2 alpha.

Further, the approach controllers are merging the incoming streams from the ACC into one or two
streams toward the runways that are in use for landing. Additionally, they guide the outgoing traffic
toward their designated standard arrival routes (STARs). They control aircraft just after being airborne
until they approach the borders of the TMA at around 8000 ft. In addition, they control aircraft that
are delivered at one of the IAFs until they are on final approach to the runway. So an example of a
command given by an approach controller is KLM five niner two cleared ILS one eight right.

At last, the tower controls everything at and around the airport. They primarily control clearances,
for example, Lufthansa three delta echo cleared for takeoff runway two seven or Swiss three seven
two seven, Amsterdam Ground, Runway three six left, taxi via alpha five, bravo, zulu, victor, and hold
short of three six left on victor four.

5.2. Current Applications
Applying automatic speech recognition in air traffic control requires some serious robustness due to the
high required performance and highly involved safety risks. One place where this is of less importance
is the field of simulation and training. In a simulated environment, it has less importance and impact if
a speech recognition model makes some mistakes. That is presumably also why the only place in air
traffic control where speech recognition is applied is in the field of simulation and training.

An example of implementation is made by the Ecole Nationale de l’Aviation Civile, the national civil
aviation school in France [23]. They reimagined the current human-machine interface (HMI) of the
pseudo-pilots acting in the simulation session. There, automatic speech recognition was implemented
as an assistant-based system in the HMI of an ACC controller. Normally if an ATCo gives a command
to a certain aircraft, the pseudo-pilot monitors the given command in the order stack for execution. The
role of the ASR model was to prefill the order stack based on the ATCo speech.

While the previous example only covers ASR as an assistant for the pseudo-pilot, it is also possible
to completely remove the pseudo-pilot as presented by the Center for Advanced Aviation System De-
velopment [19]. The enrouteTrainer uses automatic speech recognition and speech synthesis to form
an ’entity’ for the replacement of pseudo-pilots. Although this would suffice for simpler training sessions,
it still lacks the full ’human behavior’. Features like unruly pilot behavior or communication errors can
be implemented based on a mathematical model, but still would only be a very basic implementation.
The human is a much more complex system than a simple mathematical model.

5.3. Future Applications
As described in chapter 1 there are numerous fields of applications in air traffic control where ASR
can play a role. The most promising example is assistant-based speech recognition where automatic
speech recognition is used to assist the air traffic controller. Several works successfully implemented
ASR deeply into the ATCo HMI resulting in massive workload reduction [38], [39].

Applications like ABSR do not rely anymore on word error rates. Yet, call sign and command recog-
nition are of much greater importance. The rapid development in the use of machine learning brings
great improvement in the field of natural language understanding (NLU) in air traffic control. Several
methods exist that can successfully extract the call signs and commands from annotated speech [40],
[41]. These great prospects make it highly likely that ABSR will be used in numerous ATC centers in
the nearby future.

An additional example of an application is the presence of an ASR model in a safety framework. It
has been shown that implementing ASR in a safety framework could result in a lower ATCo workload,
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increased safety, and decreased misunderstanding [18]. However, the reliance on a computer model
for the sake of safety still has its risks. It must be 100% reliable to be put in the foundation of air
traffic control. At this moment in time, it still does not achieve this level of robustness [42]. Although
it could have a significant meaning in air traffic control in the future, safety monitoring systems will not
be forming the basis of ATC in the near future.

The goal of applying ASR in ATC can also take a different approach. As described in chapter 1
almost all of the applications in the literature focus on the air traffic controller side of the communication
spectrum. Looking at the pilot side of the spectrum or the whole spectrum, in general, could open
numerous new fields of application. Currently, a big problem in the communication between pilots and
ATCos is the difference in language proficiency. Especially in non-western countries, where the level
of English speech is below par, the understanding of speech is a big problem.

Possibly an ASR system could transcribe a certain utterance from the sender and send it along
a data link channel to the receiving party. Using this transcription, the level of misunderstanding and
wrong conceptional analysis of the speech will be much lower. An advantage of this possible application
is that the audio can be captured and recognized at the source, resulting in less noise and thus a better
transcription.

Another application could look at changing the long-lived method of voice-based communication.
It could transcribe a message and then send the transcription instead of the voice itself. Where at
the receiving end, a speech synthesis model would transform the text into a spoken message. This
could even happen over digital data link channels to reduce possible noise compared to old-school
VHF channels. Since Whisper has also been trained massively on translational data, this application
could have the potential to let people speak in their local language. The audio will then be transcribed
into English or synthesized from English into a local language.

5.4. Datasets
To test the ASR model and develop applications, ATC-related datasets are needed. The only problem
is that there are not many ATC speech datasets available publicly. Either they are private, or they are
behind a paywall. The only three public datasets that exist and are free to use are from the ATCO2
project [27], the ATCOSIM project [28], and the LINDAT project from the Charles University in Prague,
Czech Republic [29]. Table 5.1 shows the datasets’ specifications.

Table 5.1: The ATC audio datasets that are available, together with their specifications

Dataset Hours Languages Geographical Source
ATCO2 1.1 En Czech-Republic, Bratislava, Switzerland, Sydney

ATCOSIM 10 En Eurocontrol Experimental Centre France
ZCU-CZ-ATC 13.2 En Prague Region

The ATCO2 project aims a creating a platform to collect, organize and process air traffic communica-
tion data [27]. The latest release of the dataset (2022) contains pilot and controller voice communication
in the English language. The data is collected from several airports scattered mainly across Europe
and accounts for a total duration of around 1 hour of audio, making it relatively small. The full version
of the ATCO2 data totals at around 1500 hours of audio, however, it is not freely accessible.

ATCOSIM is an abbreviation for Air Traffic Control Simulation and is a speech corpus of ATCo-only
data. This dataset, made in 2008, contains roughly 10 hours of pure speech in 52 hours of audio
recordings of air traffic controllers. It is all obtained at the Eurocontrol Experimental Centre in France.
The dataset only contains English speech, but the speech is spoken by non-native speakers [28].

Finally, the ZCU-CZ-ATC dataset is a dataset created in 2011 by the research department of Lan-
guage Technologies, Arts and Humanities (LINDAT) at Charles University in Prague, Czech Republic.
It contains only English language and the total length of the audio is 13 hours. All the speech is tran-
scribed and labeled manually. The research department plans to release a bigger dataset in the future
[29].

All three datasets bring the total available speech data to almost 25 hours of transcribed audio. The
audio is only available in the English language with some local accents. The audio data is gathered
mostly from the European continent as can be seen in Figure 5.2 and involves ATCos and pilots.
It can be argued that testing the Whisper model on the current datasets does not accurately give a
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representation of the performance for general use worldwide. It would be preferred to have a very
diverse dataset that contains audio fragments from all over the world, however, this is still a utopia.

Figure 5.2: The audio data in the publicly available ATCO2 is primarily coming from the European continent.



6
Experiments

This section will cover the past and future experiments in the research. It starts with describing the
performance assessment of the out-of-the-box Whisper model. Then it continues with illustrating the
fine-tuning part where the blank model will be fine-tuned on ATC-specific datasets. Further, it discusses
the research into applying the final ASRmodel to the ATC environment. At last, it illustrated the required
hardware that is used.

6.1. Performance Assessment
The first step in the research is to determine whether Whisper performs as well as it says. By tran-
scribing the datasets using the blank Whisper model, a baseline will be set for the rest of the study. To
have this baseline, the audio files in the datasets mentioned in the previous chapter are transcribed,
and from these transcriptions, the word error rate is calculated.

6.1.1. Data Preparation
The first step in transcribing the audio files is to pre-process the data in a format that can easily be
used by the model. Each dataset is different, thus each dataset requires separate pre-processing. As
Whisper will handle the standardization of the audio (like re-sampling to the correct frequency), the
only work will be on extracting the actual ground truth from the datasets. For example, some of the
datasets use an XML (Extensible Markup Language) format for the reference text, from there the plain
text needed to be extracted.

Another step that is taken is the creation of a so-called split in the data. The data is divided randomly
into two parts. One part is labeled as ’training data’ and contains 80% of the audio files, the other part
is called ’validation’ and contains the remaining 20% of the files. This split is originally created with the
purpose of fine-tuning the model, however, it can also be very useful for comparison of the performance
of Whisper.

6.1.2. Transcribing
Then, the actual audio files can be transcribed. This is simply done by creating an inference code in
Python. Whisper has multiple versions, each version is of a different size and has a different amount
of internal parameters. Since the focus is on transcribing the audio as perfectly as possible, the largest
version (large-v2) is used. This is the most complete version of the model and contains around 1.5
billion parameters.

A systematic approach is taken to transcribe each file separately, this is done by writing a for loop
in Python. In addition, to maximize the WER scores, automatic language detection is disabled and the
language is forced to English. The input of the model is the audio file, possibly in addition to the prompt,
whereas the output of the model is the transcription of the audio file.

After all the files are transcribed, and normalized (dependent on the experiment), the word error rate
is calculated by comparing each transcript with its corresponding ground truth that is extracted from the
dataset. The experiment is repeated for every setup: with/without normalization and or prompt and on
the whole dataset or only on the validation split.
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6.1.3. Normalization
After transcribing the files, it is time to compare the hypothesis with the reference. As said in subsec-
tion 3.1.1 it can be very hard to directly compare Whisper’s generated hypothesis with the ground truth.
Therefore a process called normalization is used, here both pieces of text are flattened out into the
same format.

The Whisper package itself comes with a standard normalizer that removes items like interpunction
and non-alphanumerical characters. However, that will not suffice. As the speech contains air traffic
control communications, more aspects are of importance for a correct WER calculation. An example is
the mapping into the NATO alphabet where ’A’ is represented as ’alpha’, ’B’ as bravo, etc. Another step
to do is mapping the airline call sign designator to the actual airline itself. Sometimes Whisper is smart
enough to transcribe, for example, Eurowings one two alpha into EWG 12A. Therefore a mapping need
to be made from the call sign designator to the actual airline name.

To determine the steps that need to be done in the normalization, a batch of 10 audio files is tran-
scribed. From the difference between the hypothesis and the reference, it is determined what can be
added to the normalizer to correctly calculate the word error rate.

6.1.4. Prompting
Another problem that arises with transcribing the audio files is the lack of context awareness as de-
scribed in subsection 3.1.1. This is solved using a process called prompting. Whisper can give some
extra input arguments that need to be taken into account when transcribing audio.

Again, a batch of 10 audio files is transcribed multiple times. In each iteration, a new prompt is
given to find some sort of prompt that would minimize the word error rate. The first step was to just
mention the context of the audio, e.g. ’air traffic control communications’. This was then expanded in
each iteration.

6.1.5. Variables
The inputs for the process of transcribing are the audio file itself and, if used, the prompt that was
created. Now, for the ATCO2 dataset, each audio file contains a supplementary file that lists all possible
airlines, call signs, entities, etc... that were nearby at the moment of recording. Thus, for testing the
performance on the ATCO2 dataset, a prompt was created using these files. For ATCOSIM, on the
other hand, the prompt just includes the terminology, context, and NATO alphabet as mentioned in the
previous subsection. Even though the prompt shares a connection to the audio file, for the ATCO2
dataset, these variables are independent as they are created separately from each other.

Now, the output of Whisper is, of course, the transcription. Since it is created based on two in-
dependent variables, it makes sense that it is a dependent variable. Then, it is paired together with
the reference or ground truth of the audio file and the word error rate is calculated. Thus, the WER
is (heavily) dependent on the transcript and ground truth making it a dependent variable. It is yet to
discover whether the WERs of Whisper on the ATCO2 and the ATCOSIM datasets are dependent or
independent.

6.1.6. Hypothesis
Since Whisper has been trained on a large and diverse quantity of audio data, it is assumed that it will
have decent performance on both the ATCO2 and the ATCOSIM datasets. A long-time ruling model,
Wav2Vec2.0, has been tested on the ATCO2 data to see how Wav2Vec2.0 performs on out-of-domain
datasets. They achieved a word error rate of 24.7% [30]. It is hypothesized that Whisper will achieve a
comparable WER on the ATCO2 dataset. It is hypothesized that Whisper will have a lower WER on the
ATCOSIM dataset. This is supported by the fact that ATCOSIM contains less noisy data and clearer
speech since it is captured at the source.

Further, it is expected that the effect of normalization will be bigger compared to prompting. Whisper
is trained intelligently on a diverse set of data. Thus, it should be able to produce intelligent transcrip-
tions. The datasets, on the other hand, always have simple ’flat’ text transcriptions. Thus, it is highly
likely that a lot of normalization needs to be applied in order to have a comparable transcript. At last,
the diverse training data will probably reduce the effect of and need for the use of prompting.

At last, it is anticipated that the relative effect of normalization and prompting will be comparable
in both datasets. This could be enforced by the fact that both datasets cover the same domain. Take
note that it is about the relative effect since the result of these datasets is independent of one another.
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6.2. Fine-Tuning
Now that a baseline performance has been set, the model will be fine-tuned to create an ASR model
that focuses on transcribing ATC data. The blank Whisper large-v2 model will be used for the fine-
tuning as again this is the most complete model and thus will presumably deliver the best performance.
Fine-tuning is done on two datasets: ATCO2 and ATCOSIM. These are selected since they are the
easiest to work with and greatly represent a diverse set of ATC environments such as TWR, APP, and
ACC. Further, they also represent both the pilot and the ATCo. In addition, it contains the best audio
quality and the ATCO2 dataset also includes radar data from the moment of recording.

In order to fine-tune the model on a particular dataset, a division need to be made between training
and validation data. This so-called split is set to be 80% for training and 20% for validation. In the
dataset, a random list of all audio files is created. From this list, 80% of the items are put in the training
split and the other 20% of the items are put in the validation split.

The fine-tuning itself will result in two models, it is yet to be determined which model will be used.
Later, it can also be decided to fine-tune on a combination of the ATCO2 and ATCOSIM datasets.

Several iterations of fine-tuning will happen, each with different hyperparameters. From there it will
be determined which parameters are best suited for the fine-tuning of each model.

Fine-tuning the model will happen for around 100 epochs, where the training batch size will be 16
samples and the validation batch size will be 8 samples. Further, the number of gradient accumulation
steps will be set to 1. For optimization, the Adam Weighted (AdamW) optimizer will be used and the
initial learning rate is set to 1e-5.

6.3. Application
After the model has reached decent performance, it is time to implement it in some kind of application.
As the experiments here are heavily dependent on the specific application, it is impossible to already
determine what exact experiments will be performed.

However, what can be said is that the model needs to be run in real time without the need for heavy
hardware. Therefore, the size of the model can be optimized in the experimental phase. This can be
done by either fine-tuning smaller versions of Whisper or by the use of quantization, which recalculates
the model parameters in a data-saving format.

6.4. Hardware
As one can imagine, inference or fine-tuning of a machine learning model could require some serious
computing power. Since a simple laptop will almost certainly not have this required power, a high-power
computing cluster is used. The Delft High Performance Computing Centre as part of the university
facilities is used [43]. It contains multiple computing nodes with high-end CPU and GPU hardware that
enables the research but also massively reduces the computing time compared to ’simple’ computers.





7
Results

This section will describe the current and future results and outcomes of the research. It starts with
presenting the performance assessment of the out-of-the-box Whisper model. Then it will describe
the future results that will come from fine-tuning the model and researching the application of the final
model. It finishes by explaining how the model will be verified and validated.

7.1. Performance Assessment
The performance of Whisper on the ATCOSIM and ATCO2 datasets has been determined to set a
baseline for future experiments. These datasets have first been processed in such a way as to be
saved in the HuggingFace hub. Then the inference could easily be done in a systematic way using a
Python script. As said, the processes of normalization and prompting can have a great effect on the
WER scores. Therefore, some tests are done based on 10 files from which the most optimal normalizer
and prompt are constructed empirically.

7.1.1. Normalization
Normalizing the reference and generated hypothesis can have an immense effect on the word error
rate. By comparing the manual and the generated transcription for 10 files it is decided what can be
done in order to decrease the WER. The Whisper model itself also comes with a built-in normalizer that
can be used, this formed the baseline of the normalization experiment.

This normalizer, called EnglishTextNormalizer, already is quite extensive. For example, it replaces
contractions as haven’t with the full words have not. Further, it applies British-American word map-
ping to bring everything into one format. At last, it also converts any spelled-out numbers into Arabic
numbers.

Further additions to the standard normalizer include the mapping of loose characters into the NATO
alphabet (i.e. A C D becomes alpha charlie delta), this is extended with some NATO similarities (i.e.
alfa becomes alpha and gulf becomes golf). Another addition is the identification of airline call sign
designators and replacing them with the full airline name (i.e. EWG becomes eurowings).

7.1.2. Prompting
Another feature of the Whisper model is the use of prompting. This can be used to create contextual
awareness. Again, themost optimal prompt was created using an iterative process on the 10 audio files.
The experiment started by bringing context, the initial prompt stated ’air traffic control communications’.
Later, this was extended by general aviation terminology such as ’flight level’, ’ILS’, ’VFR’, and ’squawk’.
An addition was done by implementing the NATO alphabet to further emphasize that it is used in the
audio.

The prompt used when transcribing an audio file is utilized as some kind of extra vocabulary, there-
fore the hard-to-transcribe pieces are the most valuable to put in the prompt. Therefore, the prompt
was extended to include all the local airlines, waypoints, and entities that occurred in the 10 audio
files. This resulted in a massive reduction in WER. However, in order to do this, all the airlines, way-
points, and entities need to be known beforehand. Also, it requires manual labor to list all these items

59



60 7. Results

from the ground truth transcriptions. When applying automatic speech recognition in real-time, it could
only work if there exists some augmentation system that would include this data based on a preset list
of waypoints or radar data for example. The results of the experimenting with the normalization and
prompting can be found below in Figure 7.1 and Table 7.1.
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Figure 7.1: Normalization and prompting can massively reduce the word error rate. From left to right, the bars represent each
combination of normalization/prompting.

From the results, it can be seen that the influence on the word error rate caused by the normalization
and the prompting is approximately the same. Yet, applying the combination of normalization and
prompting is what really makes the difference. The WER on the ATCO2 data reached 9,73% whilst the
WER on the ATCOSIM data reached 3,12%. That makes an average word error rate of 6,43%.

Table 7.1: Normalization and prompting can massively reduce the word error rate.

Normalization Prompt ATCO2-ASR ATCOSIM Average
Basic No 42,27 % 78,72 % 60,50 %
Yes No 23,89 % 23,44 % 23,67 %
Basic Yes 23,71 % 27,66 % 25,69 %
Yes Yes 9,73 % 3,12 % 6,43 %
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7.1.3. Word Error Rate
After the experimentation with normalization and prompting, the baseline performance of the Whisper
model was set. This was all done using the large-v2 version as it is the most complete model version.
For each dataset and split, a separate test has been done. The test has been performed in multiple
iterations, to test the model on all possible combinations of normalization and prompting. As can be
seen in Table 7.2 and Figure 7.2 the word error rate without any normalization/prompting is significantly
higher than with normalization and or prompting.
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Figure 7.2: The baseline performance of the Whisper Large-v2 model. The test is performed on the whole dataset (T+V) and
the validation split only (V). For comparison, the pre-trained Wav2Vec2.0 model reached a WER of 24.7% on the ATCO2 T+V
set, which is comparable to Whisper’s performance [30].

The best available performance of Whisper large v2 on the complete ATCO2 dataset is just above
27%. On the other hand, the best available performance on the whole ATCOSIM dataset is around
17%. Even though the model performs slightly better on the validation split versus the whole dataset,
the difference in performance is insignificant. That confirms the point that the split in the data is created
using a random process.

Another notable result is that normalization has the largest effect on the word error rate. The in-
crease in contextual awareness leads to a smaller reduction of WER than the application of a normal-
izer. These results could confirm the claim that Whisper has ’intelligence’ in its transcriptions. Further
it also slightly confirms that Whisper has been trained on a very diverse dataset as the prompting has
no immensely big effect on the WER.

Furthermore, it can be seen that Whisper achieves approximately the same performance as the
earlier reported 24.7% WER of pre-trained Wav2Vec2.0 on the ATCO2 T+V dataset. That confirms
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Table 7.2: The baseline performance assessment of the Whisper model.

Model Dataset/Split Prompting Normalizing WER
Large v2 ATCO2-ASR/train+validation N N 71,60%
Large v2 ATCO2-ASR/train+validation N Y 31,45%
Large v2 ATCO2-ASR/train+validation Y N 63,91%
Large v2 ATCO2-ASR/train+validation Y Y 27,14%
Large v2 ATCO2-ASR/validation N N 71,62%
Large v2 ATCO2-ASR/validation N Y 29,05%
Large v2 ATCO2-ASR/validation Y N 61,08%
Large v2 ATCO2-ASR/validation Y Y 24,03%
Large v2 ATCOSIM/train+validation N N 79,70%
Large v2 ATCOSIM/train+validation N Y 18,14%
Large v2 ATCOSIM/train+validation Y N 64,10%
Large v2 ATCOSIM/train+validation Y Y 17,10%
Large v2 ATCOSIM/validation N N 79,11%
Large v2 ATCOSIM/validation N Y 17,98%
Large v2 ATCOSIM/validation Y N 63,62%
Large v2 ATCOSIM/validation Y Y 16,74%

our hypothesis as stated in subsection 6.1.6. Whisper only slightly has a higher WER, but this will
presumably be decreased during fine-tuning.

At last, the difference between the ATCO2 and ATCOSIM datasets is clearly visible. The audio
quality of ATCOSIM is much better, resulting in a significantly lower WER compared to the Whisper’s
performance on ATCO2. From there, it can be concluded that the performance of Whisper (e.g. the
WER) on both the ATCOSIM and ATCO2 datasets are independent of each other.

7.2. Future Results
As mentioned, the above results just form the baseline for this research and only give an indication of
how the bare model performs on the selected datasets. The next step is to build on top of this model by
fine-tuning it on the selected datasets. The results and outcomes of the fine-tuning and the application
of the model on the ATC domain are discussed in this section.

7.2.1. Fine-Tuning
The large-v2 model will be used for fine-tuning on the datasets of ATCO2 and ATCOSIM. This will
ultimately lead to two new models. The table below contains each of the fine-tuning processes together
with their hyperparameters that will expectedly be used. A future option would be to even fine-tune the
model on a combined dataset of ATCO2 and ATCOSIM in order to broaden the recognition of ATC
speech.

Table 7.3: The presumed fine-tuning processes with their respective hyperparameters.

Model Dataset 𝑠𝑡 𝑛𝑡 𝑏𝑠,𝑡 𝑔𝑠 𝐸
Large v2 ATCO2-ASR 50000 7646 16 1 104,63
Large v2 ATCOSIM 2800 446 16 1 100,45
Large v2 ATCO2-ASR/ATCOSIM TBD 8092 TBD TBD TBD

7.2.2. Application
The desired outcome of the application phase is a model that is ready to be implemented in a real-world
scenario. Ideally, this includes some sort of test setup where the model can be tested. One requirement
for the model is that it must be able to run on low-level hardware.
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7.3. Verification and Validation
Verifying the model and validating the results is of great importance if the model will be implemented
into a real-life scenario. During the fine-tuning process, several tests are performed on the way of
working before creating the final version of the fine-tuned model. In this process, it can be verified
whether the fine-tuned model and the fine-tuning itself will work as desired.

Further, during fine-tuning a piece of data is dedicated to the validation of the model (e.g. the
validation split). Of course, when training and validating on data from the same dataset, it will result in
some bias due to the similarity in the training and validation data. That is why ultimately, the fine-tuned
models will be validated on to-be-provided datasets from a real-world air navigation service provider
(ANSP).

During the application phase, it is yet to be determined how the verification and validation will be
performed. Presumably, the verification will happen by developing a scaled real-world example of the
proposed application.





8
Conclusion

This report described the ongoing research on applying a large-scale weakly supervised automatic
speech recognition model in air traffic control. It focused on the progress so far and proposed a path
toward reaching the research goal. It did so by first introducing the subject and illustrating the state-of-
the-art of automatic speech recognition and its application in air traffic control. Afterward, it discussed
all the necessary theories behind automatic speech recognition, language processing, machine learn-
ing, and air traffic control. It continued with the description of all past and future experiments that are
or will be done to reach the research goal. Further, it presents the results of the out-of-the-box perfor-
mance assessment, discusses the desired results from fine-tuning Whisper, and illustrates methods
for verifying and validating the model. At last, this chapter contains the conclusions that can be drawn
from the experiments and the research as a whole so far.

8.1. Performance Assessment
The performance test on the ATCO2 and ATCOSIM datasets forms the baseline for future experiments
in this research. A word error rate of 27,14% and 17,10%, in the most ideal case, sets the bar for the
fine-tuning phase.

From the results, it can be seen that the WER on the ATCOSIM dataset is significantly lower than
on the ATCO2 dataset. This is probably caused by the fact that the ATCOSIM dataset only contains
ATCo speech and was recorded close to the source, in a simulated environment. The ATCO2 dataset
however contains audio of much less quality. This could be explained by the way of data collection in
the ATCO2.

Another conclusion that can be drawn is that the Whisper model was indeed trained on a very
diverse dataset. This is visible in the performance assessment results. There, it can be seen that
applying normalization results in a larger reduction of word error rate than applying prompting. Thus,
the model should have had some contextual awareness already when it did the transcribing. For the
same reasoning, it can also be concluded that Whisper also has some intelligence in the transcription it
makes. Normalization is really necessary in order to reduce the word error rate to the lowest possible.

8.2. Fine-Tuning
As can be seen in the results, Whisper achieves a relatively low word error rate with some simple
tweaks in normalization and prompting. Especially on the ATCOSIM dataset, it is possible to receive a
WER of only a few percent. That makes it highly likely that fine-tuning Whisper will lead to successful
results. Another reason to back up this point is the fact that Whisper has been trained on very diverse
datasets, which leaves a lot of room for creating more depth. Especially for the specific phraseology in
the ATC domain.

As the effect of normalization and prompting on the ATCO2 dataset is smaller than on the ATCOSIM
dataset, it can be expected that the fine-tuning will work better on the latter dataset. However, since
the ATCO2 is harder to transcribe than the ATCOSIM dataset, it could also create a more robust model
for ATC-specific terminology.
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8.3. Air Traffic Control Applications
As was discussed in chapter 1 there are numerous applications that have been mentioned as having
the potential for applying automatic speech recognition. Nonetheless, most of those applications have
not been implemented yet. Thus, it would create opportunities to tackle this. Especially if the fine-tuned
speech recognition model gives significant results.

However, another notable point about the applications is that all of them focus on one side of the
communication spectrum, the air traffic controller. By focusing on the pilot side of the spectrum, or on
the method of communication in general, a completely new field of research could be created.

Based on the first results and positive prospects, it can be concluded that Whisper has the potential
to go the next step. Applying automatic speech recognition to air traffic control could cross the cusp of
being technically feasible. If the results are good enough, this research could even pave the way to a
fundamentally new way of working in air traffic control.
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