

Delft University of Technology

Accelerating DNA Variant Calling Algorithms on High Performance Computing Systems

Ren, Shanshan

DOI
10.4233/uuid:1752b8ce-631b-4127-91c9-92538e34a13b
Publication date
2018
Document Version
Final published version
Citation (APA)
Ren, S. (2018). Accelerating DNA Variant Calling Algorithms on High Performance Computing Systems.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:1752b8ce-631b-4127-
91c9-92538e34a13b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:1752b8ce-631b-4127-91c9-92538e34a13b
https://doi.org/10.4233/uuid:1752b8ce-631b-4127-91c9-92538e34a13b
https://doi.org/10.4233/uuid:1752b8ce-631b-4127-91c9-92538e34a13b

ACCELERATING DNA VARIANT CALLING
ALGORITHMS ON HIGH PERFORMANCE

COMPUTING SYSTEMS

ACCELERATING DNA VARIANT CALLING
ALGORITHMS ON HIGH PERFORMANCE

COMPUTING SYSTEMS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Monday 17 December 2018 at 10:00 o’clock

by

Shanshan REN

Master of Science in Computer Science and Technology,
National University of Defense Technology, China

born in Sichuan, China

This dissertation has been approved by the promotors:
Dr. ir. Z. Al-Ars
Prof. dr. ir. K.L.M. Bertels

Composition of the doctoral committee:

Rector Magnificus, chairman
Dr. ir. Z. Al-Ars, Delft University of Technology, promotor
Prof. dr. ir. K.L.M. Bertels, Delft University of Technology, promotor

Independent members:
Prof. dr. F. Baas, Leiden University Medical Center
Prof. dr. Y. Dou, National University of Defense Technology, China
Dr. ir. J. de Ridder, University Medical Center Utrecht
Prof. dr. ir. C. Vuik, Delft University of Technology
Prof. dr. ir. M.J.T. Reinders, Delft University of Technology

The research described in this thesis was performed in the Quantum Computer Engi-
neering Department. This work was supported by the China Scholarship Council (CSC)
and Delft University of Technology (TUDelft).

ISBN 978-94-028-1318-0

Keywords: Pair-HMMs forward, sequence alignment with traceback, de Brujin
graph construction, GPU acceleration, FPGA acceleration

Copyright © 2018 by S. Ren

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means without the prior written permission
of the copyright owner.

Printed in the Netherlands

Dedicated to my parents and husband

ACKNOWLEDGEMENTS

I would like to thank all the nice people I encountered in the past five years. As we
all know, it is not easy to be a PhD student, especially at an overseas university. I still
remember how nervous and shy I was on the first day I arrived in the Netherlands. Thank
you all for your company, making my life in the Netherlands full of happiness. Without
your support and help, I would not have been able to finish this thesis.

First, I would like to thank my promotor Prof. Koen Bertels. Dear Koen, thank you so
much for providing me an opportunity to start my PhD in the Netherlands. On my first
day in the Netherlands, you invited me to attend your inaugural speech, which made
me feel so warm and less nervous of my new life. At the beginning of my PhD, I was
still unsure if what I wanted to do. Big data was such a new and broad field for me. You
helped me to quickly get started and find an interesting topic to focus on. Thank you
very much for your encouragement and guidance in my research. As the head of our
group, you held many interesting activities almost every month, such as the Christmas
party, carting, barbecues, bowling, pasta dinners, girls events and so on, making me feel
relaxed and close to other members in our group. The amazing thing was that you are
good at these activities and always got the first prize in the games. You not only guided
me on how to do research, but also taught me how to enjoy life. Whenever I saw you, I
felt happy and positive. Thank you very much for the support and help you gave during
the five years.

I would also like to give my thanks to my promotor Dr. Zaid Al-Ars. Dear Zaid, words
cannot express my gratitude for your supervision in the five years. When I started my
research in bioinformatics, I was totally a newbie since I had no background in genomics.
You used an example to let me practise and gave me the opportunity to take courses
in Leiden University. Thank you for your patience on my poor oral English. My oral
English needed much improvement in the first year, but you could understand my words
in our daily discussions. You were always passionate about research, which influenced
me so much. When I got stuck, you always encouraged me and helped me find solutions.
During our daily discussions, you always gave me good suggestions, taught me how to
do research and how to write papers. After discussions with you, I always felt confident
again and had the power to continue fighting. Thank you for having faith in me all the
time. Thank you for spending so much time revising my papers. Every time I sent my
papers to you, you always finished the revision asap. I learned a lot of writing skills from
your revision. In addition, you always encouraged me to speak my mind and try new
things. I really learned a lot from you.

I want to give my thanks to my office mates Imran Ashraf, Nauman Ahmed, Hamid
Mushtaq and Hani Al-Ers. Imran, thank you for introducing me to every member on my
first day in the group. You are very friendly and obliging. Nauman and Hamid, thank you
for all the discussions we had and all the suggestions you gave me in my research. Hani,
thank you for helping me practicing my presentation skills.

vii

viii ACKNOWLEDGEMENTS

I would also like to thank Johan Peltenburg, Vlad-Mihai Sima, Lidwina Tromp, Joyce
van Velzen and Erik de Vries. Vlad, thank you for helping me understanding the frame-
work of the Convey machine and the support you provided for my first paper. Johan,
thank you for helping me in my research and sharing spicy food with me. Lidwina and
Joyce, thank you for giving me help whenever I turned to you. Erik, thank you for keeping
my computer without problems. Finally, I would like to thank my fellow PhD students
and friends, especially Jintao, Anh, Lei, Mottaqiallah, Mihai, George, Joost, Mahroo, Xi-
ang, Lingling, Yande, Lizhou, Baozhou, He.

I would like to express my sincere thanks to my friends. Special thanks are given to
Xiaoqin Ou. I enjoyed so much the time we spent together. Ling Xia, I really miss the
month when we lived in the same apartment. You taught me how to enjoy life while
working hard. I really admire your courage to face life’s trials. Jing Liu, thank you for
keeping in touch with me and helped me handle annoying things in China in the five
years. Xu Huang, Xu Xie and Yu Xin, thank you for all your support and help. I also want
to express my thanks to Yue Zhao, Guanliang Chen, Hou Zhe, Mingjuan Zhao, Tao Lv,
Yang Qu, Jie Shen, Jianbing Fang, Yong Guo, Yazhou Yang and many others. You made
my life in the Netherlands full of fun.

I am extremely grateful for my parents. You trusted in me and gave support to every
plan I had in the last thirty years. Your optimistic attitude to life inflected me, making
me bravely face challenges in life. Thank you very much for your endless love.

Last but not least, I would like to say thank you to my husband. Without your love
and support, I would not have been able to complete my PhD. Everyday we had a call
around thirty minutes in the five years. It is really hard to imagine. I guess this is the only
habit I kept in the five years. You raise me up to more than I can be. Thank you a lot.

Shanshan Ren
Changsha, August 2018

SUMMARY

Next generation sequencing (NGS) technologies have transformed the landscape of
genomic research. With the significant advances in NGS technologies, DNA sequencing
is more affordable and accessible than ever before. Meanwhile, many DNA sequence
analysis tools have been developed to derive useful information from the raw sequenc-
ing data produced by NGS platforms. However, the massive amount of generated se-
quencing data poses a great computational challenge, thereby shifting the bottleneck to-
wards the efficiency of the DNA sequence analysis tools. Due to the high computational
needs, high performance systems are playing an important role for DNA sequence analy-
sis. Moreover, dedicated hardware, including graphics processing units (GPUs) and field
programmable gate arrays (FPGAs), have become important computational resources in
many high performance systems.

In this thesis, we use GPUs and FPGAs to accelerate a number of important bioin-
formatics algorithms. These represent the most computationally intensive algorithms of
the GATK HaplotypeCaller (HC), which we use to improve its performance. GATK HC is a
widely used DNA sequence analysis tool. By investigating GATK HC, three computation-
ally intensive algorithms are selected, including the de Buijn graph (DBG) construction
algorithm for micro-assembly, the pair-HMMs forward algorithm and the semi-global
pairwise alignment algorithm. We first propose a novel GPU-based implementation
of the DBG construction algorithm for micro-assembly. Compared with the software-
only implementation, it achieves a speedup of up to 3x using synthetic datasets and a
speedup of up to 2.66x using human genome datasets. We then propose a systolic array
design to accelerate the pair-HMMs forward algorithm on FPGAs. Experimental results
show that the FPGA-based implementation is up to 67x faster than the software-only im-
plementation. In order to fully utilize the computing resources on FPGAs, we present a
model to describe the performance characteristics of the systolic array design. Based on
the analysis, we propose a novel architecture to better utilize the computing resources on
FPGAs. The implementation achieves up to 90% of the theoretical throughput for a real
dataset. Next, we propose several GPU-based implementations of the pair-HMMs for-
ward algorithm. Experimental results show that the GPU-based implementations of the
pair-HMMs forward algorithm achieve a speedup of up to 5.47x over existing GPU-based
implementations. Finally, we propose to accelerate the semi-global pairwise sequence
alignment algorithm with traceback to obtain the optimal alignment on GPUs. Experi-
mental results show that the GPU-based implementation is up to 14.14x faster than the
software-only implementation.

After accelerating these algorithms on GPUs and FPGAs, we integrate two GPU-based
implementations into GATK HC. We first integrate the GPU-based implementation of
the pair-HMMs forward algorithm into GATK HC. In single-threaded mode, the GPU-
based GATK HC implementation is 1.71x faster than the baseline GATK HC implementa-
tion. For multi-process mode, a load-balanced multi-process optimization is proposed

ix

x SUMMARY

to ensure a more equal distribution of computation load between different processes.
The GPU-based GATK HC implementation achieves up to 2.04x in load-balanced multi-
process mode over the baseline GATK HC implementation in non-load-balanced multi-
process mode. Next, we additionally integrated the GPU-based implementation of the
semi-global alignment algorithm into the GATK HC. Experimental results shown that
this implementation is 2.3x faster than the baseline GATK HC implementation in single-
thread mode.

SAMENVATTING

Nieuwe generatie sequencing (NGS) technologieën hebben het landschap van geno-
misch onderzoek getransformeerd. De aanzienlijke vooruitgang in NGS-technologieën
heeft DNA-sequencing goedkoper en toegankelijker gemaakt. Tegelijkertijd zijn veel
programma’s voor DNA-sequentieanalyse ontwikkeld om bruikbare informatie af te lei-
den uit de sequentiegegevens die zijn geproduceerd door NGS-systemen. De enorme
hoeveelheid gegenereerde sequentiegegevens vormt echter een grote rekenkracht uit-
daging, waardoor het knelpunt wordt verschoven naar de efficiëntie van de DNA-
sequentieanalyse programma’s. Vanwege de hoge reken behoeften spelen computersys-
temen met hoge rekenkracht een belangrijke rol bij DNA-sequentieanalyse. Bovendien
worden speciale hardware systemen, waaronder grafische kaarten (GPU’s) en veldpro-
grammeerbare poortmatrixen (FPGA’s), vaak toegepast om de berekeningen te versnel-
len.

In dit proefschrift gebruiken we GPU’s en FPGA’s om een aantal belangrijke
bioinformatica-algoritmen te versnellen. Dit zijn de meest rekenintensieve algoritmen
van de GATK HaplotypeCaller (HC), een veel gebruikt analyse-programma voor DNA-
sequenties. We hebben drie rekenintensieve algoritmen van GATK HC geselecteerd,
waaronder de Buijn-diagram (DBG) constructie-algoritme voor micro-assembly, pair-
HMMs voorwaarts-algoritme en semi-globale paarsgewijze alignment algoritme. We
stellen eerst een nieuwe GPU-gebaseerde implementatie voor van het DBG constructie-
algoritme voor micro-assembly. Vergeleken met de originele implementatie, bereikt
onze GPU-implementatie een snelheid van maximaal 3x voor synthetische datasets
en een snelheid van maximaal 2,66x voor DNA-gegevens van menselijk genoom. Ver-
volgens stellen we een systolisch array ontwerp voor om het pair-HMMs voorwaarts-
algoritme op FPGA’s te versnellen. Experimentele resultaten laten zien dat de FPGA-
implementatie tot 67x sneller is dan de originele implementatie. Om de FPGA’s volle-
dig te benutten, presenteren we een model om de prestatiekenmerken van het systo-
lische array ontwerp te beschrijven. Op basis hiervan stellen we een nieuwe architec-
tuur voor om de FPGA’s beter te benutten. Deze implementatie behaalt tot 90% van de
theoretische prestatie voor een echte dataset. Vervolgens stellen we verschillende GPU-
gebaseerde implementaties voor van het pair-HMMs voorwaarts-algoritme. Experimen-
tele resultaten tonen aan dat de GPU implementaties van het pair-HMMs voorwaarts-
algoritme een versnelling van 5.47x behalen ten opzichte van bestaande GPU imple-
mentaties. Ten slotte stellen we voor om het semi-globale paarsgewijze alignment al-
goritme te versnellen om de optimale alignment op GPU’s te verkrijgen. Experimentele
resultaten laten zien dat de GPU implementatie tot 14.14x sneller is dan de originele im-
plementatie.

Na het versnellen van deze algoritmen op GPU’s en FPGA’s, integreren we twee GPU-
gebaseerde implementaties in GATK HC. We integreren eerst de GPU implementatie van
het pair-HMMs voorwaarts-algoritme in GATK HC. Deze GPU GATK HC implementa-

xi

xii SAMENVATTING

tie is 1,71x sneller dan de originele GATK HC. Daarna wordt deze implementatie verder
geoptimaliseerd met een gebalanceerde multi-procesmethode om een gelijke verdeling
van de rekenkracht tussen de verschillende processen te waarborgen. Deze GPU GATK
HC implementatie haalt maximaal 2,04x ten opzichte van de originele GATK HC. Vervol-
gens hebben we de GPU implementatie van het semi-globale paarsgewijze alignment
algoritme in GATK HC geïntegreerd. Experimentele resultaten laten zien dat deze im-
plementatie 2,3x sneller is dan de originele GATK HC.

CONTENTS

Summary ix

Samenvatting xi

1 Introduction 1
1.1 Background and related work . 1

1.1.1 Next generation sequencing . 1
1.1.2 High performance computing systems and applications. 3
1.1.3 GATK HaplotypeCaller . 5

1.2 Motivation and challenges . 7
1.3 Our contribution . 8
1.4 Thesis organization . 9
References . 11

2 GPU-based DBG Construction for Micro-Assembly 15

3 FPGA Accerleration of the Pair-HMMs Forward Algorithm 23

4 GPU Acceleration of the Pair-HMMs Forward Algorithm 35

5 GPU Accelerated Sequence Alignment with Traceback 55

6 Conclusions 77
6.1 Main contributions . 77
6.2 Limitations and future work . 79

List of Publications 81

Curriculum Vitæ 83

xiii

1
INTRODUCTION

Next generation sequencing technologies (NGS) provide a high-throughput and
cost-effective sequencing method, bringing about a revolution in genomics research and
creating vast opportunities for profound understanding of genetics of many species, es-
pecially the human genome.

The data generated by NGS platforms, which consists of billions of short DNA frag-
ments, cannot be directly used by biologists. Complex statistical models and sophisti-
cated genomic analysis tools are proposed to turn raw sequencing data into biologically
meaningful information. However, the massive amount of sequencing data poses in-
creasing pressure on the computationally intensive algorithms used in genomic analysis
tools. In this thesis, we provide solutions to optimize these computationally intensive
algorithms on high performance computing systems.

In this chapter, Section 1.1 discusses the background and related work. Section 1.2
introduces the challenges and limitations of accelerating these algorithms. Section 1.3
defines our contributions. Finally, Section 1.4 describes the thesis organization.

1.1. BACKGROUND AND RELATED WORK

1.1.1. NEXT GENERATION SEQUENCING
DNA sequencing is the process of determining the order of nucleotides in a DNA

molecule. There are in total four kinds of nucleotides in a DNA molecule, which can be
distinguished using the type of base contained in each nucleotide. Thus, the objective of
DNA sequencing is to determine the order of these four nucleotides base types: adenine
(A), cytosine (C), guanine (G) and thymine (T) in a DNA molecule.

In the mid-1970s, first generation sequencing technologies referring to two distinct
DNA sequencing approaches were discovered by Maxma and Gilbert [1] and Sanger and
colleagues [2]. Due to its accuracy, robustness and ease of use, the approach proposed
by Sanger and colleagues (the Sanger sequencing approach) became more commonly
used to sequence DNA than the approach developed by Maxma and Gilbert (the Maxma-
Gilbert approach) [3]. In the next 30 years, the Sanger sequencing approach has been

1

2 1. INTRODUCTION

454

Ill
um

in
a

SOLiD

Io
n

Torre
nt

10−1

100

101

102

103

104

0.7

1800

320

50

M
ax

.t
h

ro
u

gh
p

u
tp

er
ru

n
(G

b
)

(a) Maximum throughput of NGS platforms .

454

Ill
um

in
a

SOLiD

Io
n

Torre
nt

100

101

102

103

104

1000

300

75

400

M
ax

.r
ea

d
le

n
gt

h
(b

p
)

(b) Maximum read length of NGS platforms

Figure 1.1: Maximum throughput and read length of NGS platforms

improved by multiple techniques [4–7].
Since 2005, NGS platforms have been released by several manufactures and replaced

the Sanger sequencing platforms in many sequencing projects. 454 Life Sciences (now
Roche), Solexa/Illumina and Applied Biosystems (now Thermo Fisher Scientific) re-
leased their first NGS platform in 2005 [8], 2006 and 2007 [9], respectively. In the follow-
ing three years, several new NGS platforms were developed by the three manufactures.
Moreover, Ion Torrent (now Thermo Fisher Scientific) introduced its first NSG platform
(Personal Genome Machine, PGM) in 2010 and launched the Ion Proton in 2012.

Different NSG platforms exploited different sequencing technologies, which include
Roche 454 sequencing, SOLiD sequencing, Illumina sequencing, and Ion torrent Pro-
ton/PGM sequencing. However, compared with the traditional Sanger sequencing tech-
nology, these NGS technologies share three major characteristics.

1. All NGS platforms perform sequencing of billions of short DNA fragments (referred
to as reads) in parallel, leading to a dramatic increase of throughput of each instru-
ment run. Fig. 1.1a shows the maximum throughput of different NGS platforms,
which are significantly bigger than that of the Sanger sequencing platforms. In ad-
dition, due to the process of parallel sequencing data, NGS is also referred to as
massively parallel sequencing.

2. The length of reads produced by NGS platforms is short. Fig. 1.1b shows the max-
imum length of reads produced by different NGS platforms, which is shorter than
that of the Sanger sequencing platforms (1000∼1200 bp).

3. The sequencing cost of NGS technologies is much lower than that of the Sanger
technology. As shown in Fig. 1.2, the cost of sequencing a human genome de-
creased greatly in 2008 due to the replacement of the Sanger technology with NGS
technologies in sequencing centers.

1.1. BACKGROUND AND RELATED WORK 3

Figure 1.2: Changes in cost per genome from 2001 to 2017 [10]. The green line presents the nature of the
reductions in DNA sequencing costs, while the white line presents hypothetical data reflecting Moore’s Law

In contrast to traditional Sanger technology, NGS technologies are capable of gener-
ating massive DNA sequencing data in a short time and at a low cost, making DNA se-
quencing more affordable and accessible than ever before. The total amount of sequenc-
ing data has doubled approximately every seven months over the past decade reaching
a worldwide sequencing capacity of 35 petabases per year in 2015. This capacity is es-
timated to reach one zettabase per year by 2025 if the growth continues at its current
rate [11].

NGS technologies open a new era for genomic research. In particular, NGS tech-
nologies provide great opportunities to understand human genetics and investigate the
influence of genotypes on diseases, which leads to new discoveries in disease diagnosis
and realizes the promise of personalized therapies. In order to derive useful information
from the raw sequencing data produced by NGS platforms, many applications for DNA
sequence analysis have been developing at an unprecedented rate in the last decade,
such as sequence alignment, variant discovery, de novo assembly of new genomes, DNA
methylation analysis and so on.

1.1.2. HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS

The analysis of the huge amounts of DNA sequencing data is a computational chal-
lenge. For example, the sequencing data generated per run by a NGS platform, which
is up to 6 billion reads, requires more than 4 days to be processed by an alignment tool
on a single 16-core machine [12]. Typical laptop or desktop computers do not satisfy
the performance requirements of DNA sequence analysis. In order to address this com-
putational challenge, high performance computing systems are used to perform DNA
sequence analysis [13].

High performance computing systems, including server-class machines, supercom-

4 1. INTRODUCTION

puters, clusters and cloud computing environments, are known for their high processing
capacity. Traditionally, genomics applications mainly depended on CPUs as the main
computing resource responsible to process data. With the development of hardware
technologies and parallel programming languages, dedicated hardware, such as graph-
ics processing units (GPUs) and field programmable gate arrays (FPGAs), have also been
adopted as important computing resources in many high performance computing sys-
tems.

GPUs are originally designed to process graphics and images in computers. Due to
their highly parallel structure containing thousands of small cores on a single chip, mod-
ern GPUs are more efficient in processing highly-parallel computationally intensive al-
gorithms than the conventional CPUs. With the development of parallel programming
languages, such as CUDA, modern GPUs are widely used as accelerators to perform gen-
eral purposed computing instead of only processing computer graphics, leading to dra-
matic performance improvement. In 2011, the Tianhe-1A became the fastest supercom-
puter in the world as a result of including up to 7168 NVIDIA Tesla M2050 GPUs [14].
Since then, many supercomputers use GPUs to improve their performance. In 2018,
five of the world’s seven fastest systems were powered by GPU [15]. Besides, clusters
and cloud computing environments (in which the computing nodes are equipped with
GPUs) have attracted increasing attentions from scientific computing in multiple do-
mains [16, 17].

FPGAs are semiconductor devices designed to be configured after manufacturing.
They contain a matrix of millions of configurable logic blocks (CLBs) connected via con-
figurable interconnects. Since all the logic blocks can be programmed to run in parallel,
modern FPGAs can offer massive parallelism to perform computationally intensive algo-
rithms, resulting in the deployment of FPGAs in multiple high performance computing
systems. Convey HC-1 [18], a hybrid core server that couples a standard multi-core Intel
Xeon processor with a FPGA-based reconfigurable co-processor, was proposed in 2010.
In 2015, SRC Computers announced the Saturn 1 Server, a dynamically reconfigurable
server relying extensively on FPGAs [19]. Moreover, both IBM and CRAY released systems
accelerated both by GPUs and FPGAs [20, 21]. Furthermore, clusters and cloud comput-
ing environments powered by FPGAs are a new trend for scientific computing [22, 23].

Due to high performance computing system architectures including CPUs, GPUs and
FPGAs, there are two ways to improve the performance of DNA sequence analysis. One
way is to distribute workloads across many compute nodes with big data technologies
including Spark [24], Hadoop Map-Reduce [25], MPI [26], OpenMP [27] and so on. [28]
presents a number of bioinformatics applications running on clusters and in cloud com-
puting environments, such as SparkSeq [29] and CloudBurst [30]. The second way to im-
prove the performance of DAN analysis is to accelerate the time-consuming algorithms
of sequence analysis tools on GPUs and FPGAs to achieve a large speedup. [31] gives an
overview of about twenty GPU-based sequence alignment tools, such as SW# [32] and
SOAP3 [33]. [34] shows multiple tools accelerated by FPGAs. Further examples include
FHAST [35] and Tera-Blast [36].

In this thesis, we use GPUs and FPGAs to accelerate the computationally intensive
algorithms of GATK HaplotypeCaller (HC).

1.1. BACKGROUND AND RELATED WORK 5

1.1.3. GATK HAPLOTYPECALLER

Genome Analysis Toolkit (GATK) is developed at the Broad Institute, which supplies
a wide variety of tools with a primary focus on variant discovery and genotyping [37].
GATK HC is one of these tools, which is widely used in many large-scale sequencing
projects.

Variant discovery is a significant application of DNA sequence analysis, which is used
to identify the variants from a given sample genome. The most commonly used ap-
proach to identify variants is the alignment-based variant discovery approach. It first
aligns the sequencing dataset of a sample genome produced by a NGS platform to a ref-
erence genome using alignment tools, such as BWA [38]. It then compares the aligned
dataset to the reference genome and extracts the genome positions where the sample
genome differs from the reference genome using variant callers, such as GATK HC. The
variants found through this approach include single nucleotide variations (snvs), small
insertions/deletions (indels) and structural variations (svs). The accuracy of detecting
such variants largely depends on the accuracy of the alignment step. However, the align-
ment step is biased by sequencing error and genome characteristics such as repetitive
regions [39]. Moreover, reads with indels are easily misaligned during the alignment
step [40], leading to low accuracy of indel detection.

In order to improve variant detection accuracy, especially the accuracy of indel de-
tection, GATK HC employs micro-assembly to correct the misalignment errors. Micro-
assembly is to assemble reads aligned to a certain region of the reference genome into a
long DNA sequence covering this region, which is referred to as haplotype. Haplotypes
are then used in GATK HC to identify variants.

The workflow of GATK HC is quite different from many variant callers, which is di-
vided into the following four main steps [41]:

1. Define active regions—Active regions are determined based on the presence of
significant evidence for variation. The following steps only operate on the active
regions and ignore the inactive regions.

2. Determine haplotypes—For each active region, a de Bruijn-like graph is built to
reassemble the active region and a list of haplotypes is determined based on the
graph. This process is referred as to micro-assembly or local assembly. Then each
haplotype is realigned against the reference sequence using the semi-global pair-
wise sequence alignment algorithm in order to identify potential variant sites.

3. Determine likelihoods of the haplotypes—For each active region, a pairwise
alignment of each read against each haplotype is performed using the pair-HMMs
forward algorithm, which produces a matrix of likelihoods of haplotypes given the
reads. Each read is then realigned to the haplotype which has the maximum like-
lihood using the semi-global pairwise sequence alignment algorithm.

4. Assign genotypes—For each potential variant site, Bayes’ rule is applied to calcu-
late the likelihoods of each genotype using the likelihoods of haplotypes given the
reads. The genotype with the largest likelihoods is selected.

6 1. INTRODUCTION

1. Define active regions

2. Determine haplotypes

3. Determine likelihoods
of the haplotypes

4. Assign genotypes

DBG construction algorithm

Pair-HMMs forward algorithm

Semi-global alignment algorithm

Figure 1.3: Computationally intensive algorithms used in step 2 and step 3 of the workflow of GATK HC

In the workflow of GATK HC, there are three computationally intensive algorithms,
which are de Bruijn graph (DBG) construction algorithm for micro-assembly, pair-
HMMs forward algorithm and semi-global pairwise sequence alignment algorithm.
They are used in step 2 and step 3 of the workflow of GATK HC, as shown in Fig.1.3.

The DBG construction algorithm for micro-assembly uses reads aligned to an active
region to construct a de Bruijn graph, which includes two steps: (a) Each read is first
decomposed into subsequences of k consecutive bases, referred to as k-mers; (b) The
k-mers and overlap relationships between k-mers are then used to construct a de Bruijn
graph. One of the challenges of genome assembly is repeats, which would cause cycles
in the graph. Unlike other DBG construction algorithms, the DBG construction algo-
rithm in GATK HC handles repeats in a different way. In GATK HC, k-mers are classified
into two groups: unique k-mers and repeat k-mers. If a k-mer occurs twice or more than
twice in a read, it is a repeat k-mer; otherwise, it is a unique k-mer. During graph con-
struction, unique k-mers are collapsed into single nodes, while repeat k-mers are not
collapsed into single nodes. In this way, some cycles in the graph caused by repeats are
avoided.

The pair-HMMs (pair hidden Markov models) forward algorithm is used to calculate
the overall alignment probability of two sequences by summing overall the alignment
probability of all possible alignments of the two sequences. Pair-HMMs are evolved
from the basic HMMs. In GATK HC, the pair-HMMs forward algorithm is to calculate
the overall alignment probability of a pair of read and haplotype, which is executed mil-
lions of times for a typical dataset. The algorithm is a dynamic programming algorithm
with a computational complexity of O(nm) (n and m are the lengths of read and haplo-
type, respectively), which is very large for long sequences. This drawback influences the
performance of GATK HC.

The semi-global pairwise sequence alignment algorithm in GATK HC is used to get
the optimal semi-global alignments of two sequences. It is implemented in two steps:
(a) a dynamic programming kernel is performed to calculate the score matrix and the
backtracking matrix; (2) a traceback (or backtracking) kernel is performed to find the
optimal alignment by using the backtracking matrix. The computational complexity of
the dynamic programming kernel in the first step is O(nm) (n and m are the lengths of
two sequences, respectively). Although there has been much research done to reduce

1.2. MOTIVATION AND CHALLENGES 7

the execution time of pairwise alignment algorithms, most of them mainly focus on the
first step and do not pay attention to the second step.

1.2. MOTIVATION AND CHALLENGES
With the use of micro-assembly, GATK HC has a higher accuracy of detecting vari-

ants than many other variant callers. However, this comes at the cost of longer execution
time, which would limit the feasibility of GATK HC in many situations. For example, [42]
compares the runtime of five variant callers, including GATK HC, GATK UnifiedGeno-
typer, SAMtools, Platypus and Fuwa, using a whole-genome sequencing data as input.
Results show that GATK HC is the slowest among the five variant caller, which ran for two
days and a half.

In order to reduce the execution time of GATK HC, Intel processors and IBM POWER
processors both exploited vector instructions to speed up the pair-HMMs forward al-
gorithm [43, 44] in 2014. In July of 2017, GATK 3.8 was released, which includes the
FPGA-based implementation of the pair-HMMs forward algorithm [45]. However, the
FPGA-based implementation in GATK 3.8 is fairly experimental. Moreover, multiple pa-
pers propose to exploit Spark to optimize its performance, such as [46] and [47]. Fur-
thermore, in early 2018, the Broad Institute released GATK 4.0 [48], which exploits Spark
to improve its performance. GATK 4.0 contains both Spark and non-Spark implementa-
tions of many tools. In GATK 4.0, GATK HC can either run on a local machine or run in a
massively parallel way on a cluster or in the cloud computing environment.

In this thesis, in order to improve the performance of GATK HC, we use GPUs and
FPGAs to accelerate the three computationally intensive algorithms of GATK HC: the
DBG construction algorithm for micro-assembly, the pair-HMMs forward algorithm and
the semi-global pairwise sequence alignment algorithm. In this thesis, we focus on GATK
3.x, including GATK 3.2-3.7, which are released from July of 2014 to December of 2016.
The implementation of GATK HC in GATK 3.x does not change much. While our aim is
to improve the performance of GATK HC, the techniques and methods presented in this
thesis can be extended to other DNA analysis tools.

During this work, we need to address many challenges, which can be divided into
two groups: (a) Common challenges shared by the three algorithms; (b) Challenges spe-
cific to each one of the algorithms. We first discuss the common challenges, which are
presented below:

• The first challenge is related to the effort needed to understand the source code
of GATK HC. Understanding the source code of GATK HC is necessary since it is
the basis starting point for acceleration in this thesis. Due to the many tools in-
cluded in GATK, the amount of the source code is large, increasing the difficulty
to read and understand the code. We first used several Java profiling tools, includ-
ing YourKit [49], perf [50] and Flame Graphs [51], to have a global understanding of
the execution paths of GATK HC and find the time-consuming kernels. We then in-
spected the source code carefully with the help of the online documents supplied
by GATK.

• Another challenge is related to the need to modify the code in order to produce
the input datasets of the three algorithms, which are used to compare the perfor-

8 1. INTRODUCTION

mance of the proposed implementations of the three algorithms with the original
implementations. Moreover, it is necessary to investigate the characteristics of
these input datasets. By using these characteristics, we can optimize the imple-
mentations of the three algorithms in the way most suitable for GATK HC.

• It is hard to integrate the GPU-based and FPGA-based implementations of the
three algorithms into GATK HC. There are two limitations. One is that GATK is
programmed using the Java language, but the Java program cannot directly launch
the programming code of FPGAs and GPUs. In order to address this limitation, we
need to include solutions provided by packages and interfaces, such as JNI (Java
Native Interface) and JCuda [52]. The other limitation is that the size of interme-
diate input of the algorithms should be large enough to fully utilize the computing
sources on GPUs and FPGAs. In order to address this limitation, we need to adapt
the source code of GATK HC.

For the acceleration of each algorithm, we face specific challenges, which are dis-
cussed below:

• DBG construction algorithm for micro-assembly—Unlike other DBG construc-
tion algorithms, which collapse repeat k-mers into single nodes, the DBG con-
struction algorithm for micro-assembly in GATK HC maps repeat k-mers to mul-
tiple nodes. Thus, previous research published on accelerating DBG construction
algorithms is not suitable for the DBG construction algorithm for micro-assembly
in GATK HC.

• Pair-HMMs forward algorithm—At the time we started to accelerate the pair-
HMMs forward algorithm, there was no research on the acceleration of this al-
gorithm on FPGAs or GPUs. Although similar HMM-based algorithms used in the
field of computational biology have been accelerated on FPGAs and GPUs, this al-
gorithm is different from previously published ones. Moreover, we have to focus
on the characteristics of the input datasets when designing the implementation.

• Semi-global pairwise sequence alignment algorithm—Existing GPU/FPGA ac-
celerated implementations mainly focus on calculating the optimal alignment
score and omit identifying the optimal alignment itself. Moreover, when we design
the implementation of semi-global alignment algorithm for GATK HC, the charac-
teristics of the input datasets should be taken into consideration.

1.3. OUR CONTRIBUTION
We can sum up our contributions in this thesis as follows.

1. We propose a GPU-based DBG construction algorithm for micro-assembly in
GATK HC. Compared with the software-only implementation, it achieves a
speedup of up to 3x using synthetic datasets and a speedup of up to 2.66x using
human genome datasets.

1.4. THESIS ORGANIZATION 9

2. We propose a systolic array design to accelerate the pair-HMMs forward algorithm
on FPGAs. Experimental results show that the FPGA-based implementation is up
to 67x faster than the software-only implementation.

3. We model the performance characteristics of the systolic array design of the pair-
HMMs forward algorithm on FPGAs, and propose a novel architecture that allows
the computational units to continuously perform useful work on the input data.
The implementation achieves up to 90% of the theoretical throughput for a real
dataset.

4. We propose several GPU-based implementations of the pair-HMMs forward al-
gorithm. Experimental results show that the GPU-based implementations of the
pair-HMMs forward algorithm achieve a speedup of up to 5.47x over existing GPU-
based implementations.

5. One of GPU-based implementations of the pair-HMMs forward algorithm is inte-
grated into GATK HC. In single-threaded mode, the GPU-based GATK HC is 1.71x
faster than the baseline implementation.

6. For multi-process mode, a load-balanced multi-process optimization to ensure a
more equal distribution of computation load between different processes is pro-
posed. The GPU-based GATK HC implementation achieves up to 2.04x in load-
balanced multi-process mode over the baseline GATK HC implementation in non-
load-balanced multi-process mode.

7. We propose to accelerate the semi-global pairwise sequence alignment algorithm
with traceback to obtain the optimal alignment on GPUs. Experimental results
show that the GPU-based implementation is up to 14.14x faster than the software-
only implementation.

8. The GATK HC integrated with the GPU-based implementations of the semi-global
alignment algorithm with traceback and the pair-HMMs forward algorithm is 2.3x
faster than the baseline GATK HC implementation.

1.4. THESIS ORGANIZATION
This thesis consists of six chapters. After introducing the background in Chapter 1,

each of the remaining chapters resolves one research question, which is self-contained
and can be read independently of others. Their relationships are presented in Fig. 1.4.
The thesis is organized as follows.

In Chapter 2, we present the GPU-based implementation of the DBG construction
algorithm for micro-assembly in GATK HC.

In Chapter 3, we show the FPGA-based implementations of the pair-HMMs forward
algorithm.

In Chapter 4, we present the GPU-based implementations of the pair-HMMs for-
ward algorithm and the load-balanced multi-process optimization for the GPU-based

10 1. INTRODUCTION

Introduction
and background

(Chapter 1)

GPU-based DBG
construction algorithm

(Chapter 2)

Pair-HMMs forward
algorithm on FPGAs

(Chapter 3)

Pair-HMMs forward
algorithm on GPUs

(Chapter 4)

Semi-global alignment
with traceback on GPUs

(Chapter 5)

Figure 1.4: Overview of the structure of the main work presented in this thesis

GATK HC.

In Chapter 5, we introduce the GPU-based implementation of the semi-global
pairwise sequence alignment algorithm.

In Chapter 6, we conclude this thesis by summarizing the main contributions and
discuss the limitations and possible directions for future research.

REFERENCES 11

REFERENCES
[1] A. M. Maxam and W. Gilbert, A new method for sequencing dna,

Proceedings of the National Academy of Sciences 74, 560 (1977),
http://www.pnas.org/content/74/2/560.full.pdf .

[2] F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating
inhibitors, Proc. Natl. Acad. Sci. U.S.A. 74, 5463 (1977).

[3] J. M. Heather and B. Chain, The sequence of sequencers: The history of sequencing
dna, Genomics 107, 1 (2016).

[4] W. Ansorge, B. S. Sproat, J. Stegemann, and C. Schwager, A non-radioactive auto-
mated method for dna sequence determination, Journal of Biochemical and Biophys-
ical Methods 13, 315 (1986).

[5] J. Prober, G. Trainor, R. Dam, F. Hobbs, C. Robertson, R. Zagursky, A. Cocuzza,
M. Jensen, and K. Baumeister, A system for rapid dna sequencing with fluorescent
chain-terminating dideoxynucleotides, Science 238, 336 (1987), cited By 615.

[6] J. A. Luckey, H. Drossman, A. J. Kostichka, D. A. Mead, J. D’Cunha,
T. B. Norris, and L. M. Smith, High speed dna sequencing by
capillary electrophoresis, Nucleic Acids Research 18, 4417 (1990),
/oup/backfile/contentp ubli c/ j our nal /nar /18/15/10.1093/nar /18.15.4417/3/18−
15−4417.pd f .

[7] H. Swerdlow and R. Gesteland, Capillary gel electrophoresis for rapid,
high resolution dna sequencing, Nucleic Acids Research 18, 1415 (1990),
/oup/backfile/contentp ubli c/ j our nal /nar /18/6/10.1093/nar /18.6.1415/2/18 −
6−1415.pd f .

[8] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, et al., Genome sequencing in mi-
crofabricated high-density picolitre reactors, Nature 437, 376 EP (2005), article.

[9] A. Valouev, J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H. Peckham, K. Zeng, J. A.
Malek, G. Costa, K. McKernan, A. Sidow, A. Fire, and S. M. Johnson, A high-resolution,
nucleosome position map of C. elegans reveals a lack of universal sequence-dictated
positioning, Genome Res. 18, 1051 (2008).

[10] K. Wetterstrand, Dna sequencing costs: Data from the nhgri genome sequencing pro-
gram (gsp), www.genome.gov/sequencingcostsdata, accessed February 15, 2018.

[11] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. Iyer, M. C.
Schatz, S. Sinha, and G. E. Robinson, Big data: Astronomical or genomical? Plos
Biology 13, e1002195 (2015).

[12] J. M. Abuín, J. C. Pichel, T. F. Pena, and J. Amigo, Bigbwa: Approaching the burrows-
wheeler aligner to big data technologies. Bioinformatics 31, 4003 (2015).

[13] B. Schmidt and A. Hildebrandt, Next-generation sequencing: big data meets high
performance computing. Drug Discovery Today 22 (2017).

http://www.pnas.org/content/74/2/560
http://arxiv.org/abs/http://www.pnas.org/content/74/2/560.full.pdf
http://dx.doi.org/ https://doi.org/10.1016/j.ygeno.2015.11.003
http://dx.doi.org/ https://doi.org/10.1016/0165-022X(86)90038-2
http://dx.doi.org/ https://doi.org/10.1016/0165-022X(86)90038-2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023440258&partnerID=40&md5=6a64345c958e3f3dce5d3cb3843dbdeb
http://dx.doi.org/10.1093/nar/18.15.4417
http://arxiv.org/abs//oup/backfile/content_public/journal/nar/18/15/10.1093/nar/18.15.4417/3/18-15-4417.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/nar/18/15/10.1093/nar/18.15.4417/3/18-15-4417.pdf
http://dx.doi.org/10.1093/nar/18.6.1415
http://arxiv.org/abs//oup/backfile/content_public/journal/nar/18/6/10.1093/nar/18.6.1415/2/18-6-1415.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/nar/18/6/10.1093/nar/18.6.1415/2/18-6-1415.pdf
http://dx.doi.org/10.1038/nature03959
www.genome.gov/sequencingcostsdata

12 REFERENCES

[14] November 2010, www.top500.org/lists/2010/11 (), accessed August 14, 2018.

[15] June 2018, www.top500.org/lists/2018/06 (), accessed August 14, 2018.

[16] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone,
J. C. Phillips, and W. Hwu, Gpu clusters for high-performance computing, in IEEE
International Conference on CLUSTER Computing and Workshops (2009) pp. 1–8.

[17] R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo, General-purpose
computation on gpus for high performance cloud computing, Concurrency Compu-
tation Practice Experience 25, 1628 (2013).

[18] W. Augustin, V. Heuveline, and J. P. Weiss, Convey hc-1 hybrid core computer – the
potential of fpgas in numerical simulation, Preprint (2010).

[19] AWS, Src computers launches saturn 1 server, the first reconfigurable hyper-
scale server, https://www.marketwatch.com/press-release/src-computers-
launches-saturn-1-server-the-first-reconfigurable-hyperscale-
server-2015-05-28, accessed August 14, 2018.

[20] J. Cruickshank, Power 8, gpus and fpgas for workload acceleration,
http://conferences.gse.org.uk/attachments/presentations/OwhdwZ_
1446474154.pdf, accessed August 14, 2018.

[21] Cray cs500 cluster supercomputer, https://www.cray.com/products/
computing/cs-series/cs500, accessed August 14, 2018.

[22] Paderborn university will offer intel cpu-fpga cluster for researchers, https:
//www.top500.org/news/paderborn-university-will-offer-intel-cpu-
fpga-cluster-for-researchers/, accessed August 14, 2018.

[23] Amazon EC2 F1 instances—run customizable fpgas in the aws cloud, https://
aws.amazon.com/ec2/instance-types/f1/, accessed August 15, 2018.

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: cluster
computing with working sets, in Usenix Conference on Hot Topics in Cloud Comput-
ing (2010) pp. 10–10.

[25] T. White, Hadoop: The Definitive Guide (O’Reilly Media, Inc., 2009).

[26] M. P. Forum, MPI: A Message-Passing Interface Standard (University of Tennessee,
1994) p. 179.

[27] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. Mcdonald, and R. Menon, Parallel
programming in OpenMP (Morgan Kaufmann Publishers„ 2001).

[28] J. Luo, W. Min, D. Gopukumar, and Y. Zhao, Big data application in biomedical
research and health care: A literature review, Biomedical Informatics Insights 8, 1
(2016).

www.top500.org/lists/2010/11
www.top500.org/lists/2018/06
https://www.marketwatch.com/press-release/src-computers-launches-saturn-1-server-the-first-reconfigurable-hyperscale-server-2015-05-28
https://www.marketwatch.com/press-release/src-computers-launches-saturn-1-server-the-first-reconfigurable-hyperscale-server-2015-05-28
https://www.marketwatch.com/press-release/src-computers-launches-saturn-1-server-the-first-reconfigurable-hyperscale-server-2015-05-28
http://conferences.gse.org.uk/attachments/presentations/OwhdwZ_1446474154.pdf
http://conferences.gse.org.uk/attachments/presentations/OwhdwZ_1446474154.pdf
https://www.cray.com/products/computing/cs-series/cs500
https://www.cray.com/products/computing/cs-series/cs500
https://www.top500.org/news/paderborn-university-will-offer-intel-cpu-fpga-cluster-for-researchers/
https://www.top500.org/news/paderborn-university-will-offer-intel-cpu-fpga-cluster-for-researchers/
https://www.top500.org/news/paderborn-university-will-offer-intel-cpu-fpga-cluster-for-researchers/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

REFERENCES 13

[29] M. S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and M. J.
Okoniewski, Sparkseq: fast, scalable and cloud-ready tool for the interactive genomic
data analysis with nucleotide precision, Bioinformatics 30, 2652 (2014).

[30] M. C. Schatz, Cloudburst: highly sensitive read mapping with mapreduce. Bioinfor-
matics 25, 1363 (2009).

[31] M. S. Nobile, P. Cazzaniga, A. Tangherloni, and D. Besozzi, Graphics processing units
in bioinformatics, computational biology and systems biology, Briefings in Bioinfor-
matics 18, 870 (2016).

[32] M. Korpar and M. Šikić, Sw–gpu-enabled exact alignments on genome scale, Bioin-
formatics 29, 2494 (2013).

[33] J. S. Torres, I. B. Espert, A. T. Dominguez, V. Hernendez, I. Medina, J. Terraga, and
J. Dopazo, Using gpus for the exact alignment of short-read genetic sequences by
means of the burrows-wheeler transform, IEEE/ACM Transactions on Computational
Biology Bioinformatics 9, 1245 (2012).

[34] G. Lightbody, V. Haberland, F. Browne, L. Taggart, H. Zheng, E. Parkes, and
J. K. Blayney, Review of applications of high-throughput sequencing in personalized
medicine: barriers and facilitators of future progress in research and clinical applica-
tion, Briefings in Bioinformatics , bby051 (2018).

[35] E. B. Fernandez, J. Villarreal, S. Lonardi, and W. A. Najjar, Fhast: Fpga-based ac-
celeration of bowtie in hardware, IEEE/ACM Transactions on Computational Biology
Bioinformatics 12, 973 (2015).

[36] TimeLogic, Accelerated blast performance with tera-blast: a comparison of fpga ver-
sus gpu and cpu blast implementations, 2013.

[37] Gatk, https://software.broadinstitute.org/gatk/ (), accessed August 19,
2018.

[38] H. Li and R. Durbin, Fast and accurate long-read alignment with burrows–wheeler
transform, Bioinformatics 26, 589 (2010).

[39] B. Langmead and S. L. Salzberg, Fast gapped-read alignment with bowtie 2. Nature
Methods 9, 357 (2012).

[40] Q. Liu, Y. Guo, J. Li, J. Long, B. Zhang, and Y. Shyr, Steps to ensure accuracy in geno-
type and snp calling from illumina sequencing data, BMC Genomics 13, S8 (2012).

[41] HaplotypeCaller Call germline SNPs and indels via local re-assembly of haplotypes
(), https://software.broadinstitute.org/gatk/documentation/tooldocs/
current/org_broadinstitute_gatk_tools_walkers_haplotypecaller_
HaplotypeCaller.php/.

[42] Z. Li, Y. Wang, and F. Wang, A study on fast calling variants from next-generation
sequencing data using decision tree, BMC Bioinformatics 19, 145 (2018).

http://dx.doi.org/ 10.1093/bib/bby051
https://software.broadinstitute.org/gatk/
http://dx.doi.org/ 10.1093/bioinformatics/btp698
http://dx.doi.org/10.1186/1471-2164-13-S8-S8
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php/
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php/
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php/
http://dx.doi.org/ 10.1186/s12859-018-2147-9

14 REFERENCES

[43] A. Proffitt, Broad, Intel Announce Speed Improvements to GATK Pow-
ered by Intel Optimizations, http://www.bio-itworld.com/2014/3/20/
broad-intel-announce-speed-improvements-gatk-powered-by-intel-
optimizations.html.

[44] G. VdAuwera, Speed up HaplotypeCaller on IBM POWER8 systems, https://
software.broadinstitute.org/gatk/blog?id=4833.

[45] Version highlights for gatk version 3.8, https://software.broadinstitute.org/
gatk/blog?id=10063, accessed August 21, 2018.

[46] X. Li, G. Tan, C. Zhang, X. Li, Z. Zhang, and N. Sun, Accelerating large-scale ge-
nomic analysis with spark, in IEEE International Conference on Bioinformatics and
Biomedicine (2017) pp. 747–751.

[47] H. Mushtaq and Z. Al-Ars, Cluster-based apache spark implementation of the
gatk dna analysis pipeline, in IEEE International Conference on Bioinformatics and
Biomedicine (2015) pp. 1471–1477.

[48] Introducing gatk 4.0, https://www.yourkit.com/java/profiler/ (), accessed
August 19, 2018.

[49] Java profiler, https://software.broadinstitute.org/gatk/gatk4, accessed
August 19, 2018.

[50] perf(linux), https://en.wikipedia.org/wiki/Perf_(Linux)#cite_note-2,
accessed August 21, 2018.

[51] Flame graphs, http://www.brendangregg.com/flamegraphs.html, accessed Au-
gust 19, 2018.

[52] Y. Yan, M. Grossman, and V. Sarkar, Jcuda: A programmer-friendly interface for ac-
celerating java programs with cuda, in Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, Euro-Par ’09 (Springer-Verlag, Berlin, Heidelberg,
2009) pp. 887–899

http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html
https://software.broadinstitute.org/gatk/blog?id=4833
https://software.broadinstitute.org/gatk/blog?id=4833
https://software.broadinstitute.org/gatk/blog?id=10063
https://software.broadinstitute.org/gatk/blog?id=10063
https://www.yourkit.com/java/profiler/
https://software.broadinstitute.org/gatk/gatk4
https://en.wikipedia.org/wiki/Perf_(Linux)#cite_note-2
http://www.brendangregg.com/flamegraphs.html
http://dx.doi.org/ 10.1007/978-3-642-03869-3_82
http://dx.doi.org/ 10.1007/978-3-642-03869-3_82

2
GPU-BASED DBG CONSTRUCTION

FOR MICRO-ASSEMBLY

SUMMARY
Micro-assembly is used in multiple variant callers to improve the accuracy of de-

tecting variants. In this chapter, we propose a novel GPU-based algorithm of de Bruijn
graph construction for micro-assembly in the GATK HaplotypeCaller. The proposed
algorithm assumes that there are no repeat k-mers in the dataset and first calculates the
occurrences of (k+1)-mers in parallel on the GPU, thereby achieving high speedup. Then
the dataset is inspected for repeat k-mers, and only these repeats are re-evaluated on
the CPU. Experimental results show that the speedup of our implementation compared
with the CPU benchmark implementation for synthetic datasets is up to 3x, while the
speedup achieved for real human genome datasets can reach 2.66x.

This chapter is based on the following paper.
S. Ren, N. Ahmed, K.L.M. Bertels, Z. Al-Ars, An Efficient GPU-based de Bruijn Graph

Construction Algorithm for Micro-Assembly, 18th annual IEEE International Conference
on BioInformatics and BioEngineering (BIBE 2018), October 29-31, 2018 [Conference]

15

An Efficient GPU-based de Bruijn Graph
Construction Algorithm for Micro-Assembly

Shanshan Ren Nauman Ahmed Koen Bertels Zaid Al-Ars
Quantum & Computer Engineering Dept.

Delft University of Technology, 2628 CD Delft, The Netherlands
{s.ren, n.ahmed, k.l.m.bertels, z.al-ars}@tudelft.nl

Abstract—In order to improve the accuracy of indel detection,
micro-assembly is used in multiple variant callers, such as the
GATK HaplotypeCaller to reassemble reads in a specific region of
the genome. Assembly is a computationally intensive process that
causes runtime bottlenecks. In this paper, we propose a GPU-
based de Bruijn graph construction algorithm for micro-assembly
in the GATK HaplotypeCaller to improve its performance.
Various synthetic datasets are used to compare the performance
of the GPU-based de Bruijn graph construction implementation
with the software-only baseline, which achieves a speedup of up
to 3x. An experiment using two human genome datasets is used
to evaluate the performance shows a speedup of up to 2.66x.

Index Terms—GPU acceleration; de Bruijn graph construc-
tion; micro-assembly; repeat k-mers

I. INTRODUCTION

Alignment-based variant discovery is a widely used ap-
proach to identify variants in genomic data. This approach
first aligns the sequencing dataset of a sample genome to
a reference genome using alignment tools. It then compares
the aligned dataset to the reference genome and extracts the
genome positions where the sample genome differs from the
reference genome using variant callers. The variants found
through this approach include single nucleotide variations
(snv’s), small insertions/deletions (indels) and structural vari-
ations (svs). However, reads with indels are easily misaligned
during the alignment step, leading to low accuracy of indel
detection.

In order to improve the accuracy of variant detection of in-
dels in particular, various local assembly based variant callers
are proposed to correct the misalignment errors of alignment-
based variant discovery approach, such as Scalpel [1], Platy-
pus [2] and GATK HaplotypeCaller (HC) [3], [4]. In local
assembly based variant callers, reads aligned to a certain
region of the reference genome are assembled into a long
DNA sequence covering this region. This process is referred to
as micro-assembly or local assembly. Assembly based variant
callers not only improve the accuracy of indel detection, but
also enhance the accuracy of snv detection by making use of
linkage disequilibrium between nearby variants.

One of the challenges of genome assembly is repeats in
the genome. In most of local assembly based variant callers,
a popular method to handle repeats is to avoid cycles in the
graph [5], used in Scalpel, GATK HC, and ABRA. If cycles are
detected in the graph, the region is reassembled using higher
k-mer sizes until there are no cycles in the graph. GATK HC,
which is widely used in many large-scale sequencing project,
takes more measures to handle repeats. In GATK HC, k-mers

are classified into two groups: unique k-mers and repeat k-
mers. If a k-mer occurs twice or more than twice in a read, it is
a repeat k-mer; otherwise, it is a unique k-mer. During graph
construction, unique k-mers are collapsed into single nodes,
while repeat k-mers are not collapsed into single nodes. In this
way, some cycles in the graph caused by repeats are avoided,
which reduces the probability of reassembly with larger k-mer
sizes.

Existing assembly algorithms used by many genome as-
semblers use de Bruijn graphs (DBGs) construction methods.
However, since previous efforts to accelerate DBG construc-
tion on GPU (such as [6], [7] and [8]) collapse repeat k-mers
into single nodes, these methods are not suitable for DBG
construction of micro-assembly in GATK HC. In this paper, we
propose a novel GPU-based algorithm for DBG construction
for micro-assembly in GATK HC.

The rest of this paper is organized as follows. Section II
describes the algorithm of DBG construction in GATK HC.
Section III presents the proposed algorithm of DBG con-
struction. Section IV presents and discusses the experimental
results. Finally, Section V concludes this paper.

II. DBG CONSTRUCITON IN GATK HC

The DBG construction for micro-assembly in GATK HC is
divided into two main steps.

In step 1, each read aligned to a region is decomposed into
multiple k-mers and each k-mer is checked to find repeat k-
mers. A region is identified based on significant evidence of
variation, which is referred to as active region.

In step 2, each read is then considered as a candidate to
create new nodes, create new edges and increase edge weights.
For a read, the first unique k-mer is identified ignoring the
repeat k-mers before it. From this unique k-mer, the k-mers
in this read and the overlap relationships between k-mers are
used to construct the de Bruijn graph. This construction is
performed as follows: (a) If the node mapped by this unique
k-mer has not been created, a new node mapped by this unique
k-mer is created. Otherwise, the node mapped by this unique
k-mer is identified. Let the node obtained be Node A. (b) The
program then checks whether Node A has an edge, which
connects Node A and the node mapped by the next k-mer.
If this edge is found, the weight of the edge is increased.
Otherwise, the program checks whether the next k-mer is a
unique k-mer or a repeat k-mer. If it is a unique k-mer, the
program finds or creates a node mapped by the next k-mer.
If it is a repeat k-mer, a node mapped by the next k-mer is

16 2. GPU-BASED DBG CONSTRUCTION FOR MICRO-ASSEMBLY

Read 1: ACGTCGTCA

Read 2: AGTCGTC

k-mers: ACG, CGT, GTC, TCG, CGT, GTC, TCA

k-mers: AGT, GTC, TCG, CGT, GTC

(a) Classification of k-mers

ACG CGT GTC TCG CGT GTC TCA
1 1 1 1 1 1

(b) DBG of Read 1

ACG CGT GTC TCG CGT GTC TCA

AGT GTC

1 1 1 2 2 1

1

1

(c) DBG of Read 1 and Read 2

Fig. 1. Illustration of a simple DBG construction in GATK HC

created. An edge connecting this node and the node mapped
by the next k-mer is then created and the weight is set to 1.
In this step, the node mapped by the next k-mer is obtained.
(c) Let the node obtained in step (b) be Node A and repeat
step (b) until there are no k-mers in the read.

Fig. 1 shows a simple example of DBG construction in
GATK HC for two reads using a k-mer size of 3. The two reads
are first decomposed into multiple k-mers, which are then
classified into unique k-mers and repeat k-mers. The repeat
k-mers are marked in red. The two reads are then taken in turn
to construct the graph. In the graph, black nodes and red nodes
represent nodes mapped by unique k-mers and repeat k-mers,
respectively. Edges represent overlap relationships between k-
mers and the numbers above these edges represent occurrences
of the overlap relationships, referred to as edge weights. As
shown by Fig. 1, the unique k-mers with the same value are
mapped to single nodes in the graph, such as “ACG” and
“AGT”. However, the repeat k-mers with the same value are
mapped to multiple nodes in the graph, such as “CGT” and
“GTC”. Moreover, the repeat k-mers with the same value from
different reads may be collapsed into single node. For example,
the second “CGT” in Read 1 and “CGT” in read 2 are mapped
to one node. This is because the node mapped by the second
“CGT” in Read 1 is created in Fig. 1 (b) and when Read 2 are
taken to construct a graph, there is already an edge connecting
the node mapped by “TCG” and the node mapped by “CGT”
in the graph. As explained in the workflow, the node mapped
by a repeat k-mer is created when there is no edge connecting
Node A and the node mapped by the repeat k-mer in the
graph. Thus, the repeat k-mer “CGT” in Read 2 do not create
new nodes and the weight of the edge is increased twice. This
example indicates that the creation of the node mapped by a
repeat k-mer depends on the early computation results.

III. GPU-BASED DBG CONSTRUCTION

A. Algorithm idea

There are two kinds of nodes in the graph: unique nodes,
which are nodes mapped by unique k-mers, and repeat nodes,
which are nodes mapped by repeat k-mers. Hence, there are
four kinds of edges in the graph: U-U, U-R, R-R and R-U.

U-U edge stands for an edge that starts from a unique node
and ends with a unique node, etc.

DBG construction can be divided into two parts. One part
is to create repeat nodes and U-R, R-R and R-U edges, while
the other part is to create unique nodes and U-U edges. The
former can be calculated by handling the special subsequences
of reads using the method in GATK HC. The special subse-
quences are defined as two kinds of subsequences: (a) the
subsequence having at least three k-mers, among which the
first and last k-mers are unique k-mers and the other k-mers
are repeat k-mers, and (b) the subsequence having at least two
k-mers, among which the first k-mer is a unique k-mer and
the other k-mers are repeat k-mers and the last repeat k-mer is
the last k-mer of the read where the subsequence comes from.
The later is similar to the common way of DBG construction,
where the same k-mers are collapsed into single nodes. One
of the most popular acceleration methods of the common way
of DBG construction is to calculate the occurrences of (k+1)-
mers in parallel.

Thus, in this paper we propose the following GPU algorithm
for DBG construction. First, we assume there are no repeat k-
mers and calculate the occurrences of (k+1)-mers in parallel
on the GPU. We then check whether there are repeat k-
mers. If there are no repeat k-mers, (k+1)-mers and their
occurrences are used to construct the graph. Otherwise, (k+1)-
mers having one or two repeat k-mers are deleted and the
special subsequences are identified. The remaining (k+1)-mers
and their occurrences and the special subsequences are then
used to construct the graph.

B. Workflow of GPU algorithm

Fig. 2 shows the workflow of the GPU-based DBG construc-
tion algorithm. The input data are the reads aligned to multiple
active regions. The output data are the de Bruijn graphs stored
using ReadThreadingGraph in GATK HC.

The DBG construction algorithm is implemented through a
C program, a CUDA program and a Java program together.
There are in total twelve steps. Since GATK HC is a Java-
based program, the input data are transferred to the C program
through JNI (Java Native Interface) and then transferred to
GPU. On the GPU, the 64-bit values of k-mers and (k+1)-mers
are generated. The 64-bit values of (k+1)-mers are processed
to obtain their occurrences, while the 64-bit values of k-mers
are handled to calculate the number of k-mers in each active
region after reducing the repeat k-mers in each sequence,
which is used to check whether there are repeat k-mers in each
active region. The computation results on the GPU are then
transferred back to the host. For each active region, if there
are repeat k-mers in the active region, the repeat k-mers are
found and the special subsequences are identified. Moreover,
the 64-bit values of (k+1)-mers having repeat k-mers and their
occurrence are deleted. The remaining 64-bit values of (k+1)-
mers are transferred to GPU, then transformed into (k+1)-mers
and transferred back to the host. The computation results of
the C program are transferred to the Java program and used
to construct the graphs.

17

Data
Java

C
GPU

Input data

Transfer data to C program

Transfer data to GPU

Generate 64-bit values of k-mers and (k+1)-mers

Compute the occurrences of (k+1)-mers

Handle k-mers

Transfer data to the host

Identify special subsequences and handle (k+1)-mers

Transfer 64-bit values of (k+1)-mer to GPU

Transform 64-bit values of (k+1)-mer to (k+1)-mer

Transfer (k+1)-mer to the host

Transfer data to Java program

Construct and store graphs

Output data

Fig. 2. Workflow of GPU-based DBG construction algorithm

C. Generate 64-bit values of k-mers and (k+1)-mers
This step is implemented on the GPU. Each thread block

takes charge of one read to generate 64-bit values of its k-
mers and (k+1)-mers, which is shown in Algorithm 1. Every
4 characters of the read are loaded by one thread and stored
in the shared memory (read s[]). Every character of the
read is transformed into one byte, which is 0, 1, 2, or 3,
and then stored in the shared memory (Rbyte[]) by one
thread. Finally, each thread performs bitwise operations to
generate the 64-bit values of one k-mer and one (k+1)-mer
and stores the 64-bit values in the global memory (kmer 64[]
and kmer add 64[]). Since reads are from multiple active
regions, two arrays (kmer active[] and kmer add active[])
are used to store the active region id of each k-mer and (k+1)-
mer, respectively. Moreover, one more array (kmer seq id[])
is used to store the sequence id of each k-mer.
D. Compute the occurrences of (k+1)-mers

This step is implemented on the GPU. Functions from the
Thrust library [9] are employed to compute the occurrences
of (k+1)-mers. Since (k+1)-mers are from multiple active
regions, the 64-bit value array of (k+1)-mers and the active
region id array of (k+1)-mers are handled together. This step
is implemented by three operations, which is shown with an
example in Fig. 3.
(1) The elements in the 64-bit value array of (k+1)-mers are

sorted in ascending order. In the meanwhile, the elements
in the active region id array change their placements in
correspondence to the sorting operations in the 64-bit

Algorithm 1 Generating k-mers and (k+1)-mers
1: function GENERATE(read[], length,k size active id, seq id,

kmer 64[], kmer active[], kmer seq id[], kmer add 64[],
kmer add active[])

2: h← (length+ 4− 1)/4
3: t← (h+ blockDim.x− 1)/blockDim.x
4: for i← 0, t− 1 do ⊲ Load and store a read
5: j ← threadIdx.x+ i ∗ blockDim.x
6: if j < h then
7: a← read[j] ⊲ type of a is char4
8: read s[j × 4]← a.x
9: read s[j × 4 + 1]← a.y

10: read s[j × 4 + 2]← a.z
11: read s[j × 4 + 3]← a.w

12: end for
13: syncthreads()
14: t← (length+ blockDim.x− 1)/blockDim.x
15: for i← 0, t− 1 do ⊲ Transform into bytes
16: j ← threadIdx.x+ i ∗ blockDim.x
17: if j < length then
18: b← read s[j]
19: c ← (b == 'A')?0 : ((b == 'C ')?1 : ((b ==

'G')?2 : 3))
20: Rbyte[j] = c

21: end for
22: syncthreads()
23: kmer number ← length− k size+ 1
24: t← (kmer number + blockDim.x− 1)/blockDim.x
25: for i← 0, t− 1 do ⊲ Generate 64-bit values
26: j ← threadIdx.x+ i ∗ blockDim.x
27: val← 0 ⊲ type of val is uint64 t
28: if j < kmer number then
29: for f ← 0, k size− 1 do
30: val← (val << 2)|(Rbyte[j + f]&3)
31: end for
32: kmer 64[j]← val
33: kmer active[j]← active id
34: kmer seq id[j]← seq id
35: if j! = kmer number − 1 then
36: val← (val << 2)|(Rbyte[j + k size]&3
37: kmer add 64[j]← val
38: kmer add active[j]← active id

39: end for
40: end function

value array of (k+1)-mers. This operation is implemented
by the sort by key() function.

(2) The elements in the active region id array are sorted
in ascending order, leading to corresponding changes
of element placements in the 64-bit value array of
(k+1)-mers. This operation is implemented by the
stable sort by key() function.

(3) A constant array is used to store the current occurrence
of each (k+1)-mer and the value of each element in this
array is 1. The Reduce by key() function is employed to
calculate the number of the consecutive equal elements in
the 64-bit value array of (k+1)-mers. The reduced results
of the 64-bit value array of (k+1)-mers are stored in a
new array and the occurrences of (k+1)-mers are stored
in another new array.

The new 64-bit value array of (k+1)-mers and the occur-

18 2. GPU-BASED DBG CONSTRUCTION FOR MICRO-ASSEMBLY

5

4

5

3

5

3

1

1

1

2

2

2

3

3

4

5

5

5

2

2

1

1

1

2

4

5

5

3

3

5

1

1

1

2

2

2

4

5

5

3

3

5

1

1

1

1

1

1

4

5

3

5

1

2

2

1

(1) (2)

(3)

Fig. 3. An example of calculating the occurrences of (k+1)-mers. Purple array
stores the 64-bit values of (k+1)-mers. Pink array stores the active region id
of each (k+1)-mer. Grey array stores the occurrences of (k+1)-mers. Yellow
array is a constant array.

rence array of (k+1)-mers are the computation results of this
step and will be used in the following steps.

E. Handle k-mers
This step is implemented on the GPU and also employs

functions from the Thrust library. The 64-bit value array of k-
mers, the sequence id array of k-mers and the active region id
array of k-mers are handled together. This step is implemented
by four operations, which is shown with an example in Fig. 4.
The first two operations (1) and (2) are similar to the first two
operations in Section III-D except the active region id array
of (k+1)-mers is replaced by the sequence id array of k-mers.
After the first two operations, the 64-bit values of the equal
k-mers from the same sequence are consecutive in the 64-bit
value array of k-mers.

The third operation (3) is to reduce the consecutive equal
elements in the 64-bit value array of k-mers and the sequence
id array is used to make sure only the consecutive equal
elements from the same sequence are reduced, which is
implemented by the Reduce by key() function. The result
of this operation is a new array, which stores the active region
ids of the remaining k-mers.

The fourth operation (4) is to calculate the number of k-
mers in each active region after reducing repeat k-mers in each
sequence, which is implemented by the Reduce by key()
function. The result is stored in a new array, the length of
which is equal to the number of active regions.

The array storing the number of k-mers in each active
region after reducing repeat k-mers in each sequence is the
computation result of this step and will be used in the
following steps.

F. Identify special subsequences and handling (k+1)-mers
This step is implemented by a C program, which is shown in

Algorithm 2. For each active region, if the number of k-mers
is equal to the number of k-mers calculated in Section III-E,
there are no repeat k-mers in the region. Otherwise, there
are repeat k-mers in the region. Each read is then checked

3

5

3

5

2

3

1

1

1

2

3

3

2

3

3

3

5

5

3

1

1

3

1

2

3

3

5

5

2

5

1

1

1

2

3

3

3

3

5

5

2

3

1

1

1

2

3

3

1

1

1

1

1

2

1

1

1

1

2

4

1

(1) (2)

(3) (4)

Fig. 4. An example of handling k-mers. Purple array stores the 64-bit values
of k-mers. Yellow and pink array stores the sequence id and the active region
id of each k-mer, respectively. Grey array stores the number of k-mers in each
active region after reducing repeat k-mer in each sequence.

to find repeat k-mers. After all the repeat k-mers in the region
are found, each read is checked again to identify the special
subsequences.

Since operation (3) in Section III-D does not make sure
that only the consecutive equal 64-bit values of (k+1)-mers
from the same active region are reduced, extra operations are
taken to remedy this, which are from line 11 to line 26 in
Algorithm 2. For each active region, if the sum of the weights
of existing (k+1)-mers of the region is smaller than the number
of (k+1)-mers in the region, a (k+1)-mer has a chance to be
added to the region and the weight of the (k+1)-mer added
to the region is calculated from line 14 to line 19. If the 64-
bit value of the (k+1)-mer has repeat k-mers, the (k+1)-mer
will not be added to the region and neither will the calculated
weight of the (k+1)-mer.

G. Transform 64-bit values of (k+1)-mer into (k+1)-mer
This step is implemented on the GPU, where each thread

takes charge of one (k+1)-mer. Each thread first loads the 64-
bit value of a (k+1)-mer into its registers and then transform
every 2 bits to a character, which is then stored in the shared
memory. After transformation, characters calculated by each
thread in one thread block are stored in the consecutive
addresses. Finally, each four characters composing a char4
value are stored in the global memory by one thread. In this
way, the global memory accesses of the threads in a warp
(32 consecutive threads) to store characters are coalesced. The
computation result of this step is an array storing the characters
of all (k+1)-mers.

H. Construct and store graphs
This step is implemented by a Java program. For each active

region, (k+1)-mers are used to create unique nodes and U-U
edges and occurrences of (k+1)-mers are the weights of U-
U edges. If the active region has repeat k-mers, the special
subsequences are handled using the method in GATK HC to
create repeat nodes and U-R, R-R and R-U edges and increase
the weights of these edges. All the nodes, edges and weights
of these edges are stored using ReadThreadingGraph.

19

Algorithm 2 Identifying special subsequences and handling
(k+1)-mers

1: function IDENTIFY(region number, k region[],
k add region[], k region GPU [], kmer add 64[],
k add number[], new 64, new number[])

2: t← 0, p← 0
3: for i← 1, region number do
4: if k region[i] == k region GPU [i] then
5: for reads in the region do
6: find repeat kmer()
7: end for
8: for reads in the region do
9: find subsequence()

10: end for
11: cur ← 0
12: while cur < k add region[i] do
13: cur+ = k add number[t]
14: if cur > k add region[i] then
15: sub← cur − k add region[i]
16: n← k add number[t]− sub
17: k add number[t]← sub
18: else
19: n← k add number[t]

20: if Not have repeat(kmer add 64[t]) then
21: new 64[p]← k add 64[t]
22: new number[p]← n
23: p++

24: if cur <= k add region[i] then
25: t← t+ 1
26: end while
27: end for
28: end function

IV. RESULTS AND DISCUSSION

A. Experimental setup

We compare the GPU-based DBG construction implemen-
tation and DBG construction implementation in GATK HC
(CPU benchmark) with both synthetic and real datasets. The
CPU implementation is achieved by modifying GATK HC 3.7
to read input datasets, construct DBGs and output graphs.

The input datasets are reads of multiple active regions.
In order to get the synthetic input datasets, we first use
Wgsim [10] to generate reads from a reference sequence,
which is chromosome 19 of the human genome (UCSC hg19),
then follow the GATK best practices pipeline to get the input
datasets for GATK HC and use GATK HC to produce reads of
multiple active regions. As to the real datasets, the processing
steps are the same as for the synthetic datasets except that we
use reads produced by an NGS platform instead of the reads
simulated by Wgsim.

The output datasets are DBGs of multiple active regions.
A simple program is designed to sort the nodes and edges
in each graph in order to compare the output and assure the
correctness of the results.

A server-class machine is used to perform all the experi-
ments. This machine has two Intel Xeon processors, each of
which has 14 two-way hyper-threaded cores running at 2.4
GHz, 192 GB of RAM, and an NVIDIA Tesla K40 card, which
consists of 2880 cores running at 745 MHz.

B. Impact of coverage on performance
We generated 8 synthetic datasets using Wgsim with dif-

ferent levels of read coverage, ranging from 10x to 80x. For
all these synthetic reads, we used the Wgsim parameters of
100bp for the read length, 0.01 for the mutation rate, and 0.15
for the indel fraction. The k-mer size is 10.

10 20 30 40 50 60 70 80
0

50

100

150

200

Coverage

E
xe

cu
tio

n
tim

e
(s

)

CPU GPU

0

1

2

3

4

Sp
ee

du
pSpeedup

Fig. 5. Execution time and speedup vs coverage of the GPU and CPU
implementations with the synthetic datasets

Fig. 5 shows that the execution time and speedup of the
GPU and CPU implementations with respect to coverage of the
synthetic datasets. The figure indicates that the execution time
of both implementations increases with increasing coverage.
However, the execution time of the CPU implementation
increases faster than the GPU-based implementation. Thus, the
speedup of the GPU-based DBG construction implementation
increases with increasing coverage. When the coverage of the
synthetic dataset is 80x, the speedup is the highest at 3x.

The execution time of the GPU-based implementation is
divided into four parts: computation time on the GPU (in-
cluding data transfer to/from GPU), computation time of the
C program, computation time of the Java program and data
transfer time using JNI. Fig. 6 shows the percentage of the four
parts of the execution time of the GPU-based implementation
with the synthetic datasets for different coverage levels. The
computation time on the GPU occupies a large part of the total
execution time, which increases when the coverage increases.
This is because when the coverage increases, the number of
reads aligned to each active region increase as well, which
increases the number of k-mers and (k+1)-mers and in turn
increases the computation time on the GPU.

10 20 30 40 50 60 70 80
0

20

40

60

80

100
1.5 2 2.4 2.7 3 3.3 3.6 3.9

36 42.6 47.3 51 54.2 56.3 58.3 59.81.5
2.3

2.9 3.4 3.8 4.2 4.4 4.761 53.1 47.4 42.9 39 36.2 33.7 31.6

Coverage

Pe
rc

en
ta

ge
(%

)

JNI
GPU

C
Java

Fig. 6. Percentage of the four parts of the execution time of the GPU-based
implementation with the synthetic datasets for different coverage levels

For the GPU-based implementation, the weights of edges
are calculated in parallel on the GPU by calculating the
occurrences of (k+1)-mers; while for the CPU implementation,
the weights of edges are serially increased. Thus, the different
methods of handling weights of edges make the execution time
growth rates of the two implementations different when the
coverage increases.

20 2. GPU-BASED DBG CONSTRUCTION FOR MICRO-ASSEMBLY

C. Impact of mutation rate on performance

We used a total of 16 synthetic datasets divided into 4
groups according to their coverage (20x, 40x, 60x and 80x).
Each group consists of 4 synthetic datasets with a different
mutation rate: 0.05%, 0.1%, 0.5% and 1%. The other parame-
ters of Wgsim for each dataset are kept the same: read length
is 100bp, indel fraction is 0.15. The k-mer size is 10.

0.05% 0.1% 0.5% 1%
0

50

100

150

200

Mutation rate

E
xe

cu
tio

n
tim

e
(s

)

20x GPU 20x CPU 40x GPU 40x CPU
60x GPU 60x CPU 80x GPU 80x CPU

0

1

2

3

Sp
ee

du
p

20x GPU 40x GPU 60x GPU 80x GPU
20x CPU 40x CPU 60x CPU 80x CPU

20x speedup 40x speedup 60x speedup 80x speedup

Fig. 7. Execution time and speedup of the two implementations with the
synthetic datasets of different mutation rate

Fig. 7 shows the execution time and speedup of the two
implementations with all 16 synthetic datasets. The execution
time of the two implementations of different coverage in-
creases when the mutation rate increases. This is because when
the mutation rate increases, the number of regions which are
chosen based on the significant evidence of variation increases
and in turn the input data handled by the two implementations
increases. In addition, Fig. 7 shows that the speedup of the
GPU-based implementation does not change much when the
mutation rate increases. To explain this behavior, we take
the synthetic datasets with coverage 80x as an example. For
this coverage level, Fig. 8 shows that the percentage of the
computation time on the GPU changes a little when the mu-
tation rate increases, resulting in little change of the speedup
brought by GPU acceleration. In addition, the percentage of
the computation time of the C program slightly increases when
the mutation rate increases. This is because the number of
different k-mers and different (k+1)-mers increase as well
when the mutation rate increases.

0.05% 0.1% 0.5% 1%
0

20

40

60

80

100

4.96 4.94 4.92 4.83

58.3 59.2 60.2 59.4

2.54 2.73 3.38 4.07

34.2 33.1 31.5 31.7

Mutation rate

Pe
rc

en
ta

ge
(%

)

JNI
GPU

C
Java

Fig. 8. Percentage of the four parts of the execution time of the GPU-based
implementation with different mutation rates for coverage 80x

D. Performance with real datasets

We use 2 real datasets to compare the performance of
the GPU and CPU implementations for a k-mer size of 10.
The first dataset is chromosome 20 of NA12878 downloaded
from the GATK resource bundle, coverage of which is ∼64x.

The second dataset is chromosome 17 of G15512.HCC1954.1,
coverage of which is ∼58x.

Table I shows the speedup of the two implementations with
respect to the real datasets. The speedup of the first dataset is
2.66x and the speedup of the second dataset is 2.47x.

TABLE I
PERFORMANCE COMPARISON FOR REAL DATASETS

Dataset CPU time (s) GPU time (s) Speedup

1 72.9 27.4 2.66x
2 53.8 21.7 2.47x

V. CONCLUSIONS

Micro-assembly is a widely used technique to increase
the accuracy of variant callers, such as the popular GATK
HC. This paper proposes a GPU-based DBG construction
algorithm for micro-assembly in GATK HC. The proposed
algorithm assumes that there are no repeat k-mers in the
dataset and calculate the occurrences of (k+1)-mers in parallel
on the GPU, thereby achieving high speedup. Then the dataset
is inspected for repeat k-mers, and only these repeats are
re-evaluated on the CPU. Experimental results show that
the speedup of our implementation compared with the CPU
benchmark implementation for synthetic datasets is up to 3x,
while the speedup achieved for real human genome datasets
can reach 2.66x.

REFERENCES

[1] H. Fang, E. A. Bergmann, K. Arora, V. Vacic, M. C. Zody, I. Iossifov,
J. A. O’Rawe, Y. Wu, L. T. Jimenez Barron, J. Rosenbaum, M. Ronemus,
Y. H. Lee, Z. Wang, E. Dikoglu, V. Jobanputra, G. J. Lyon, M. Wigler,
M. C. Schatz, and G. Narzisi. Indel variant analysis of short-read
sequencing data with Scalpel. Nat Protoc, 11(12):2529–2548, Dec 2016.

[2] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S.R.F. Twigg, WGS500
Consortium, A.O.M. Wilkie, G. McVean, and G. Lunter. Integrating
mapping-, assembly- and haplotype-based approaches for calling vari-
ants in clinical sequencing applications. Nat Genet, 46(8):912–918, 08
2014.

[3] G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del An-
gel, A. Levy-Moonshine, et al. From FastQ data to high confidence
variant calls: the Genome Analysis Toolkit best practices pipeline. Curr
Protoc Bioinformatics, 43:1–33, 2013.

[4] S. Ren, K.L.M. Bertels, and Z. Al-Ars. Efficient acceleration of the pair-
hmms forward algorithm for gatk haplotypecaller on gpus. Evolutionary
Bioinformatics, 14, March 2018.

[5] G. Narzisi and M. C. Schatz. The challenge of small-scale repeats for
indel discovery. Front Bioeng Biotechnol, 3:8, 2015.

[6] Mian Lu, Qiong Luo, Bingqiang Wang, Junkai Wu, and Jiuxin Zhao.
GPU-Accelerated Bidirected De Bruijn Graph Construction for Genome
Assembly, pages 51–62. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[7] S. Qiu and Q. Luo. Parallelizing big de bruijn graph construction on
heterogeneous processors. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pages 1431–1441, June
2017.

[8] D. Li, C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam. MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. Bioinformatics, 31(10):1674–
1676, May 2015.

[9] Thrust: A productivity-oriented library for cuda. In GPU Computing
Gems, Jade Edition, pages 359 – 371. Morgan Kaufmann, Boston, 2012.

[10] Wgsim. https://github.com/lh3/wgsim. Accessed January 28, 2018.

21

3
FPGA ACCERLERATION OF THE

PAIR-HMMS FORWARD

ALGORITHM

SUMMARY
In this chapter, we use FPGAs to accelerate the pair-HMMs forward algorithm. We

first propose a novel systolic array design to accelerate the pair-HMMs forward algo-
rithm on FPGAs. We present an implementation of the design on the Convey super-
computing platform. Experimental results show that the FPGA implementation of the
pair-HMMs forward algorithm is up to 67x faster, compared to software-only execution.

We then model the performance characteristics of the systolic array design. Based
on this analysis, we propose a novel architecture to optimize the utilization of the
systolic array. The implementation achieves up to 90% of the theoretical throughput for
a real dataset and is 2.5x faster than the state-of-the-art implementation on a similar
contemporary platform.

This chapter is based on the following papers.

1. S. Ren, V.M. Sima, Z. Al-Ars, FPGA Acceleration of the Pair-HMMs Forward Algo-
rithm for DNA Sequence Analysis, International Workshop on High Performance
Computing on Bioinformatics (HPCB 2015), November 9-12, 2015 [Conference]

2. J.W. Peltenburg, S. Ren, Z. Al-Ars, Maximizing Systolic Array Efficiency to Accelerate
the PairHMM Forward Algorithm, IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM 2016), December 15-18, 2016 [Conference]

23

2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

FPGA Acceleration of the Pair-HMMs Forward
Algorithm for DNA Sequence Analysis

Shanshan Renl Vlad-Mihai Simal,2 Zaid AI-Arsl,2
2Bluebee

Molengraaffsingel 12-14
2629 JD Delft, The Netherlands
v lad.sima@bluebee.com

lComputer Engineering Lab
Delft University of Technology

2628 CD Delft, The Netherlands
Email: {s.ren.z.al-ars}@tudelft.nl

Abstract-Many DNA sequence analysis tools have been

developed to turn the massive raw DNA sequencing data

generated by NGS (Next Generation Sequencing) platforms into

biologically meaningful information. The pair-HMMs forward

algorithm is widely used to calculate the overall alignment

probability needed by a number of DNA analysis tools. In this

paper, we propose a novel systolic array design to accelerate the

pair-HMMs forward algorithm on FPGAs. A number of

architectural features have been implemented to improve the

performance of the design, such as early exit points to increase

the utilization of the array for small sequence sizes, as well as

on-chip buffering to enable the processing of long sequences

effectively. We present an implementation of the design on the

Convey supercomputing platform. Experimental results show

that the FPGA implementation of the pair-HMMs forward

algorithm is up to 67x faster, compared to software-only

execution.

Keywords-NGS, FPGA, pair-HMMs, hardware acceleration.

1. INTRODUCTION

NGS technology [1] provides a high-throughput and
cost-effective sequencing method of DNA, creating vast
opportunities for profound understanding of human disease.
The analysis and interpretation of large-scale sequencing data
produced by NGS is a ma jor challenge, requiring complex
statistical models and sophisticated bioinformatics tools to
turning raw sequencing data into biologically meaningful
information. There are a number of such tools currently
available and being used widely, such as BWA, SAMtools,
SOAP, VarScan and GATK.

Pair-HMMs (pair hidden Markov models) [2] are very
popular for finding pairwise alignment of DNA sequences.
There are two ways to use pair-HMMs in biological sequence
alignment: 1) identifying optimal sequence alignment, and 2)
providing the overall alignment probability. Using pair-HMMs
to find the optimal sequence alignment is very popular in many
different biological sequence analysis tools, such as ProbCons
[3], PicXAA [4] and GLProbs [5]. Pair-HMMs identify the
alignment with the largest probability as the optimal sequence
alignment. The algorithm to find the optimal sequence
alignment of pair-HMMs is called the Viterbi algorithm.

If the similarity of the two sequences is not strong, it is hard
to find the correct alignment that gives biological meaning.
Instead, pair-HMMs can then be used to calculate the
probability that two sequences are related, which is referred to
as the overall alignment probability [2]. The overall alignment
probability is widely used in many biological sequence analysis

978-1-4673-6799-8/15/$3l.00 m015 IEEE 1465

tools. For example, [6] exploits the overall alignment
probability to find the evolutionary distance between two
sequences. The GATK HaplotypeCaller [7] calculates the
overall alignment probability of the sequences and the
candidate mutations to identify their occurrence reliability.

Pair-HMMs forward algorithm computes the overall
alignment probability by summing over all possible alignments
of a given pair of DNA sequences. The forward algorithm is a
dynamic programming algorithm with a computational
complexity of O(nm) (n and m are the length of two sequences),
which is very large for long sequences. This drawback would
influence the performance and limit the feasibility of
pair-HMMs. In this paper, we investigate and propose an
FPGA-based acceleration of the pair-HMMs forward algorithm
with the purpose of improving its performance.

In this paper, we present the following contributions: (1)
propose a novel systolic array design of the pair-HMMs
forward algorithm; (2) analyze a number of optimization
techniques to improve performance; and (3) present an
implementation of the design on the Convey supercomputing
platform. The results shows that the FPGA-based
implementation is around 67x faster, compared to the
software-only execution.

The rest of this paper is organized as follows. Section 2
presents a brief overview of related work. Section 3 discusses
the details of the pair-HMMs forward algorithm. Section 4
discusses the design specification and optimizations of the
accelerated version of the algorithm. The implementation
results are discussed in Section 5. We conclude the paper and
discuss future work in Section 6.

II. RELATED WORK

FPGAs are widely used to accelerate biological algorithms
to achieve large speedup as many bioinformatics workloads
lend themselves well to parallel execution. Examples range
from commercially available implementations such as the
Tera-BLAST [8], to more research oriented algorithm
acceleration, such as the acceleration of SAMtools [9].
Tera-BLAST is an FGPA implementation of the BLAST
aligner that achieves a 27x speedup over a 32-core CPU
implementation. [9] accelerates SAMtools on FPGAs, which
achieve a speedup of 2.93x over the original version of
SAMtools.

As the Viterbi algorithm has been used in many topics,
such as pairwise alignments, multiple sequence alignment and
gene prediction, there is much research focusing on the

24 3. FPGA ACCERLERATION OF THE PAIR-HMMS FORWARD ALGORITHM

acceleration of the Viterbi algorithm [10][11][12]. The
acceleration of the Viterbi algorithm commonly utilizes a
log-transformation of the original equations, which transform
floating-point multiplication operations into floating-point
addition operations. The forward algorithm, on the other hand,
requires an addition operation in the probability domain, which
prevents using the log-transformation to the forward algorithm.
Therefore the acceleration approach used for the Viterbi
algorithm cannot be applied to accelerate the forward
algorithm.

TIT. PATR-HMMs FORWARDALGORTTHM

Pair-HMMs have evolved from the basic HMMs. In a
pair-HMM, the HMM model generates an aligned pair of
sequences instead of only a single sequence. Figure 1 shows a
typical pair-HMM, which is widely used in biological sequence
analysis. We assume the two sequences generated by the
pair-HMM are sequence X and Y. Figure l(a) shows the state
transition of the pair-HMM, which has three hidden states lx,
ly and M. Ix and ly are used to emit a single unaligned symbol
only in sequence X and Y, respectively. M is used to emit an
aligned pair of two symbols, where one symbol is added to
sequence X and the other symbol is added to sequence Y. By
traversing between the states lx, ly and M, the pair-HMM
generates two sequences. Figure l(b) shows an example of an
aligned pair of sequences X=ACGTC and Y=ACGAA, which
are generated according to the hidden state sequence
MMMlxlxlyly The first three symbols in sequence X and
sequence Y are emitted by state M. The last two symbols in
sequence X are emitted by state Ix and the last two symbols in
sequence Y are emitted by state ly. The probability of the
generated alignment is the product of the state transition
probabilities.

X: A C GTe
Y: A eG A A

states: M M M L L h h

(a) (b)

Figure 1. Example of a pair-HMM (a) The state transition diagram of a
pair-HMM (b) An example of a sequence pair (X, Y) generated by the
pair-HMM

From the simple example shown by Figure 1, we could see
that a hidden state sequence generates an aligned pair of
sequences with a specific alignment probability. If we want to
find the overall alignment probability, we need to add the
alignment probability of all hidden state sequences. Obviously,
it is not practical to enumerate all hidden state sequences. Thus,
the forward algorithm is proposed to solve this problem.

The pair-HMMs forward algorithm is implemented as a
dynamic programming algorithm, as shown by Equations (1) to
(3), where n and m are the length of sequence X and Y,
respectively. a, fl 0 y, (50 E 0 � and lJ are the transmission
probabilities, while ,1, eo and v are the emission probabilities.
The transmission probabilities and the emission probabilities

1466

are supplied by the two sequences. In these equations,

Mi,j stands for the overall alignment probability of two
sub-sequence X[I] ... X[i] and Y[I] ... Y[j]. li,j stands for the
overall alignment probability of X[I] ... X[i] and Y[I] ... Y[j]
with X[i] aligned to gap. Di,j stands for the overall alignment
probability of X[I] ... X[i] and Y[I] ... Y[j] with Y[j] aligned to
gap.

Initialization:

Recurrence:

{ Mo,o = 1,10,0 = Do,o = °
Mi,o = li,O = 0,0 < I :::; n

Mo,j = Do,j = 0,0 < j :::; m

{Mi'1 : ,1x(aMi-I,j-1 + flh-I,j-I + yDi-I,j-I)

It,J - eX((5Mt-I,J + E/t-I,J)
Di,j = VX(�Mi,j_1 + lJDi,j-I)

(1 :::; i :::; n,l :::; j :::; m)

Termination:

Result = Mn,m + In,m + Dn,m

(1)

(2)

(3)

As shown by these equations, three matrices are filled and
the process to fill these matrices contains much inherent
parallelism. Each matrix element of Mi,j, li,j and Di,j only
depends on the up-left, up and left neighbor elements of each
matrix, This implies all elements on the same anti-diagonal in
each matrix can be computed in parallel,

Algorithm 1 shows a pseudo code of the pair-HMMs
forward algorithm, As shown by Algorithm 1, the computation
complexity of the pair-HMMs forward algorithm is O(nm).
When the lengths of the two sequences increase, the execution
time of the dynamic programming algorithm increases
quadratically, which causes the high computational complexity
of pair-HMMs.

Numerical underflow is a significant problem when
implementing the pair-HMMs forward algorithm, as the
probability of some alignments would be smaller than the
smallest representable floating-point value. There are two
methods to solve this problem: implementing a "log-sum"
operation and rescaling [13][14]. The first method transforms
the floating-point multiplications into floating-point addition in
the log probability domain, but it needs to build a large look-up
table containing the values used in the computation process,
The second method is rescaling, which rectifies the
intermediate results, however leading to many extra
computations.

Some DNA sequence analysis tools, such as GATK
HapltoypeCaller, implement the pair-HMMs forward algorithm
directly in the probability domain without using either of these
two complex methods. The reason is that, on the one hand, the
numerical underflow problem does not frequently occur in
DNA sequence analysis, as the length of DNA sequences is
70�250bps and numbers in the double floating-point format
have an approximate range of 10.308 to 10308. On the other hand,
if a number underflows, the impact on the final result is
negligible, Thus, we would implement the pair-HMMs forward
algorithm in the probability domain as well,

25

I

Intel-based -------
host processor

HCMI

i i
+ +

Host memory
I

FPGAs-based

I FPGA II FPGA IIFPGA I FP?A

mpmre"oc

I

�
o 1 2 .,

i i \
... ...

I I
Coprocessor

memory

Hybrid-Core Globally Shared Memory(HCGSM)

/'

�
Start

\

X shift, Y shift, Y last M out

X_shift, PE lout Result -Y shift Data data Ar ray D out Block result --)
Control FIFOs

Block XJength, ,---. r--
Y Jength

�
Mid-data Y shift � FIFOs

Figure 2. Block diagram of the overall architecture design

Algorithm 1. The pseudo code of the pair-HMMs forward
algorithm

M[0] [0]=1;
D [0] [0] =1 [0] [0] =0;
for(i=l;i<=n;i++)
begin

M[i] [0]=1[i] [0]=0;
end
for(i=l;i<=m;i++)
begin

M[0] [i]=D[0] [i]=0;
end
for(i=l;i<=n;i++)
begin

for(j=l;j<=m;j++)
begin
M [i] [j] = AX

(axM[i-l] [j-l]+pxI[i-l] [j-l]+yxD[i-l] [j-l])
1[i] [j]=ex(8xM[i-l] [j]+Ex1[i-l] [j])

D[i] [j]=vx«(xM[i] [j-l]+T]xD[i] [j-l])
end

end

resul t=M [n] [m] +1 [n] [m] +D [n] [m] ;

IV. DESIGN SPECIFICATION

In this section, we first present an overview of the system
architecture of the FPGA implementation and then introduce
the details of the hardware design.

A. Architecture overview
Convey proposed innovative hybrid-core platforms (HC-l,

HC-1ex, HC-2 and HC-2ex) [15], which combine classic Intel
x86 microprocessors with a coprocessor comprised of FPGAs.
The platforms are useful for acceleration of computationally
intensive applications, by offloading complex kernels onto the
FPGA at runtime, while running the other part of the
application on the host processor. We exploited HC-2ex to
implement the acceleration of the pair-HMMs forward
algorithm. Figure 2 shows the overall architecture of the
design.

1467

As shown in Figure 2, the host processor and coprocessor
have their own physical memory. The two physical memories
are mapped in the same virtual memory address space, which
makes it very easy for the application developers. Efficient data
transfer mechanisms are provided for transferring between the
two memories. The hybrid-core memory interconnect (HCMI)
is responsible for signals between the host processor and the
coprocessor, such as the start signal sent by the host processor
and the finish signal sent by the coprocessor.

The pair-HMMs forward algorithm is implemented on the
coprocessor. The function of each block is described below:

Control Block: This block is used to control the progress
of the pair-HMMs algorithm. It gets the start signal from the
host processor, which indicates that the FPGAs can start their
computational cycle; it gets the length of two sequences from
Data FIFOs.

Data FIFOs: These FIFOs are used to store data from the
memory and output data to the PE array and Control Block
according to the control signals from the Control Block.

PE Array: This is used to compute the elements in the
three matrixes M(i, j), I(i, j) and D(i, j). It is described in Section
IV.B.2.

Mid-data FIFOs: This block is used to store the
intermediate data generated by the PE array.

Result Block: This block consists of three floating-point
adders and one register to calculate the result.

B. Systolic array mapping
1) Systolic arrays
The potential parallelism of the pair-HMMs forward

algorithm allows us to exploit systolic arrays to accelerate the
performance on FPGAs. Systolic arrays were proposed by H. T.
Kung and C. E. Leiserson [16] and have since been widely
used in computing matrix multiplication, LU-decomposition
and dynamic programming algorithms. A systolic array is an
array of identical Processing Elements (PEs), each of which
gets its inputs from the previous PE and passes its outputs to
the next PE. All these PEs operate in parallel. This
characteristic can be used to compute the elements on the same
anti-diagonal in each matrix, which can be computed in
parallel.

26 3. FPGA ACCERLERATION OF THE PAIR-HMMS FORWARD ALGORITHM

1'1-<: arTay
Sequence Y) � Y:l Y� Y1 YO T '9 � '9 , ,,,, (.!,,,1

�() l'

YO cp cP
Yl cp ¢
Y2 cp 0)
Y3 0) 0

1� l'

cP 0
0 0

0 0

G) (2)

0-

f
ini tial
va lues

matrix

Figure 3. Mapping the pair-HMMs forward algorithm to a systolic array

We map the pair-HMMs forward algorithm to a systolic
array, as shown by Figure 3. Sequence X is shifted through the
array and each PE stores one of the elements of X. Then the
bases of Sequence Y shift through the PEs. In each cycle, a PE
calculates one element of each matrix and passes the resulting
values to the next element. As the PEs run in parallel, the PE
array calculates the elements in the same anti-diagonal in each
cycle. For example, in the fourth clock cycle, the PE array is
mapped to calculate the elements marked with 4.

UUlplll

(a) Standard systolic array

(b) Vanable length systolic array

output

(c) Variable length systolic array with FIFOs
Figure 4. Systolic arrays

Figure 4(a) shows one implementation of the PE array in
case the number of PEs is equal to the read length. In this case,
the total computation time is shown by Equation (4).

T = 2 X Length(X) + Length(Y) - 1 (4)

If the FPGA is able to host more PEs than the needed
length of Sequence X, the total computation time would be

T = 2 X PEnumber + Length(Y) - 1 (5)

In this case, the computation time is not limited by the actual
length of the sequence, but by the time needed for the systolic
array to complete processing all its PEs. This is caused by the
fact that Sequence X and Y need to travel through the entire PE
array in order to produce the final result to the output, thereby
causing unnecessary latency, in addition to a reduced
utilization efficiency of the systolic array. To overcome this
limitation, we insert exit points after each PE in the PE array,
as shown in Figure 4(b) [17]. U sing this method, the bases of
Sequence X are copied into the needed PEs and Sequence Y

1468

only needs to travel through the PEs where the bases are stored.
Thus, the total computation time is reduced according to
Equation (4).

Y last in
Y_lasL_in

B
- - Y_Iast out �--=-----------------�.D Q'�-----------------'

Y_out

X in

£ in

6 in

£

f3 ou L

y _oUl

(l out

Figure 5. PE schematic for the pair-HMMs forward algorithm

If the number of PEs is smaller than the length of Sequence
X, we divide the read into sub-sequences. In each iteration, one
of the sub-sequences is shifted into the systolic array and the
results are stored in the FIFOs. In subsequent iterations, the
results in the Mid-data FIFOs and the next sub-sequence are
shifted into the systolic array. This PE array is shown in Figure
4(c). The number of iterations is specified according to the
length of Sequence X and the number of PEs in the systolic
array. The actual systolic array implemented on the Convey
FPGA is the one shown in Figure 4(c).

2) PE schematic
Figure 5 shows the PE schematic for the pair-HMMs

forward algorithm. X_in and Y_in represent the base of the
Sequence X and Y respectively. a_in, �_in, y_in, o_in, t_in,

Cin and lLin, represent a, (3, y, 0, t, <; and TJ respectively.

27

M _in, D _in and Un respectively represent M(i, j), D(i, j) and
I(i, j), which are calculated by the previous PE. Y _lasUn
indicates the last base of the Sequence Y is shifting into the PE

As shown by Figure 5, there are 10 floating-point
multipliers and 4 floating-point adders. In order to avoid the
high area costs of floating point arithmetic units, we use the
DSP DSP48E I components on the FPGAs to implement these
arithmetic computations.

C. Transfer overhead
When the host processor has a pair of sequences to compute

its overall alignment probability, the first step is that the host
processor sends a start signal to the coprocessor and the
coprocessor start to execute. Then the Control Block sends
request to the memory to transfer data and store data in FIFOs
on FPGAs. When the data transfer finishes, the Control Block
sends signal to the PE array and FIFOs to start to compute.
When the computation finishes, the Control Block writes
results back to memory.

I Host process I I Memory I I Coprocessor I
start signal

memory request

data

compute

memory request D data
memory request

store result
data D memory request

store result

compute

finish signal store result [) compute

Figure 6. The flow chart of the execution for the pair-HMMs forward
algorithm.

If we have several pairs of sequences to deal with, the steps
described above are not an efficient solution as the data transfer
is very time consuming and it makes the execution time very
large. We propose a flow chart of the execution of the forward
algorithm, as shown by Figure 6. For the first pair of sequences,
the coprocessor waits for the data transfer from memory. As
the coprocessor is computing the result of the first pair of
sequences, it continues to load data from memory to be stored
in the Data FIFOs. The size of Data FIFOs decides the size of
the preload data. Based on profile of the FPGA implementation
we determined that the most efficient is that the Data FIFOs
holds 4 pairs. When the coprocessor finishes the computation
of the first pair, it does not need to wait for data transfer of the
following pairs of sequences and starts to compute immediately.
In this way, data transfer and computation work in parallel,
reducing the total execution time by hiding the data transfer
overhead.

1469

V. EXPERIMENTAL RESULTS

A. Experimental setup
All tests were run on the Convey HC-2EX platform. The

platform has two Intel Xeon E5-263 processors (four cores
each, HyperThreading disabled) running at 3.3 GHz with 64
GB of DDR3 memory and four Xilinx Virtex-6 LX760 FPGA
co-processors each with 64 GB of SG-DIMM of memory.

Each FPGA is programmed with a pair-HMMs forward
algorithm module. All modules on each FPGA run in parallel.
Each FPGA contains the same number of PEs, which is limited
by the available resources on the FPGA chip. The PE array
working frequency is 75MHz.

The pair-HMMs forward algorithm module is implemented
using single-precision floating-point variables as it is the case
in software packages use pair-HMMs. In general, this is
adequate for most sequence analysis tools. If numerical
underflow occurs using single precision floats, this will be
signaled and recalculated by the pair-HMMs forward algorithm
in double precision in the software.

We use the datasets downloaded from [18] to evaluate the
performance. The dataset represents pair-HMMs inputs
generated by HaplotypeCaller from GA TK version 2.7, while
calling the 1000 Genomes Pro ject sample NA12878 which is
publicly available in the 1000G FTP.

B. Speedup
First, we run the software-only implementation

programmed in C++ with default parameters (according to the
pseudo code shown by Algorithm 1) to measure the baseline
performance. We also run 5 different FPGA implementations
of the algorithm with various number of exit points: 1, 2, 3, 4
and all possible exit points. The actual locations of the exit
points in each of these designs are listed in Table l. Note that
the increase in the number of exit points uses a larger portion
of the FPGA, which results in a corresponding drop in the
number of synthesizable PEs. With only one exit point, 96 PEs
can be synthesized, while using all exit points reduces this
number to 91 PEs.

Table 1. Location of exit points in the different FPGA designs

exit points Location of exit points # synthesizable PEs

96 96 PEs

2 46,93 93 PEs

3 31,62,93 93 PEs

4 25,50,75,93 93 PEs

91 All 91 PEs

Figure 7 shows the maximum speedup attainable from the 5
different implementations with different number of exit points
as compared with the software-only implementation. The
implementation with 91 PEs and 91 exit points achieves the
highest amount of speedup of 67x. The implementation with
only one exit point results in the least amount of performance
achieving a speedup of 62x. It is interesting to note that, the
speedup correlates better with the number of exit points rather
than the number of PEs, thereby increasing the performance

28 3. FPGA ACCERLERATION OF THE PAIR-HMMS FORWARD ALGORITHM

with the increasing number of exit points. This can be
explained by the fact that PEs are relatively large in size and
therefore limited in number, which means that reducing the
number of PEs by a limited amount can free enough resources
to connect all PEs to an exit point.

This also indicates that the performance depends on the
length of the sequences in the input dataset, which causes the
performance to change with a changing data set.

80

70

60

50

40

30

20

10

1 exit point 2 exit points 3 exit points 4 exit points 91 exit points
96PEs 93PEs 93PEs 93PEs 91 PEs

Figure 7. Speedup of the different number of exit points implementation

Table 2 lists the hardware resource utilization of the various
designs used in the analysis. The table shows that the
implementations are mainly limited by the number of used
DSPs (used for single-precision floating-point calculations) and
the occupied slices. The table also shows that registers are
under utilized in all designs.

Table 2. Hardware resource utilization of different designs

exit # PEs %LliTs %Registers %DSPs %Occupied
points slices

96 92% 24% 100% 98%

2 to 4 93 90% 23% 97% 98%

91 91 89% 23% 95% 98%

VI. CONCLl!SIONS AND Fl!Tl!RE WORK

In this paper, we propose a novel systolic array design to
accelerate the pair-HMMs forward algorithm on FPGAs. A
number of architectural features have been implemented to
improve the performance of the design, such as early exit
points to increase the utilization of the array for small sequence
sizes, as well as on-chip buffering to enable the processing of
long sequences effectively. We implemented the design on the
Convey supercomputing platform. Experimental results show
that the improved pair-HMMs algorithm achieves a speedup of
67x, compared to software-only execution. The main limitation
in the FPGA implementation is related to the complex floating
point calculations needed by the pair-HMMs forward algorithm.
This limits the design frequency to 75MHz.

1470

Tn the future, we plan to accelerate the pair-HMMs forward
algorithm on a GPU platform to investigate its capabilities to
efficiently process floating-point operations in parallel.

REFERENCES

[I] Jay Shendure and Hanlee Ji, Next-generation DNA sequencing. Nature.
Biotechnology 26, 2008, 1135-1145

[2] Richard Durbin, et aI., 1998. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, page90-1 09

[3] Chuong B. Do, Mahathi S.P. Mahabhashyam, Michael Brudno, and
Serafim Batzoglou. ProbCons: Probabilistic consistency-based multiple
sequence alignment. Genome Res 2005. 15(2):330-340.

[4] Sayed Mohammad Ebrahim Sahraeian and Byung-Jun Yoon. PicXAA:
greedy probabilistic construction of maximum expected accuracy
alignment of multiple sequences. Nucleic Acids Res 2010, 38(15):
41-4928.

[5] Yongtao Ye, et al.. GLProbs: Aligning Multiple Sequences Adaptively.
IEEEIACM transactions on computational biology and bioinformatics,
vol. 12, No.1, 2015,1: 67-78.

[6] Bjarne Knudsen, Michael M. Miyamoto, Sequence Alignments and Pair
Hidden Markov Models l!sing Evolutionary History. J. Mol. BioI., 2003,
333,453-460.

[7] DePristo M, et aI., A framework for variation discovery and genotyping
using next-generation DNA sequencing data. 2011 NATl!RE
GENETICS 43:491-498

[8] Accelerated BLAST Performance with Tera-BLASTTM: a comparison
of FPGA versus GPl! and CPl! BLAST implementations," May 2013,
TimeLogic Division, Active Motif Inc. [Online].
http://www.timelogic.com/documents/TimeLogic _ Tera-BLAS T _ whitep
aper_vl.O.pdf

[9] Brett Dutro, Hardware acceleration of the SAMtools variant caller, 2015.
https:! Iwww.ideals.illinois.edulbitstreamlhandle/2142172860/Brett _ Dutr
o.pdf?sequence=1

[10] Oliver TF, Schmidt B, Jakop Y, Maskell DL. High speed biological
sequence analysis with hidden Markov models on reconfigurable
platforms. IEEE Transactions on Infromation Technology III
Biomedicine, vol. 13, no.5, ppo 740-746, 2009.

[11] Yangteng Sun, et aI., HMMer acceleration using systolic array based
reconfigurable architecture, in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA '09), New York, NY, l!SA, May 2009

[12] Steven Derrien and Patrice Quinton, Parallelizing HMMER for hardware
acceleration on FPGAs, in Proceedings of the International Conference
on Application-specific Systems, Architectures and Processors
(ASAP '07), pp. 10-17, Montreal, Canada, July 2007

[13] Sean S. Eddy, Accelerated Profile HMM Searches. PLoS Comput.
Bio!.7, Oct. 2011. pcbi:I002195

[14] W. Kurdthongmee, A Modified HMM Forward Algorithm for an
Embedded Motion Type Classification. International Journal 0 fSignal
processing System, Vol.2, No.2, Dec., 2014, pp.84-90

[15] The Convey HC-2 ™ Computer Architectural Overview

http://www.conveycomputer.com/files/4113/539417097 IConvey _ HC-2_
Architectual_ Overview. pdf

[16] Hsiang Tsung Kung and Charles Eric Leiserson, 1978. Systolic Arrays
for VLSI, Interim report, Department of Computer Science, Carnegie
Mellon l!niversity

[17] Ernst Houtgast, et aI., An FPGA-based systolic array to accelerate the
BWA-MEM Genomic Mapping Algorithm (September 2015).
International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XV 2015, July 2015,
Greece.

[18] https:/ Igithu b.com/MauricioCarneiro/PairHMM/tree/master/test_ data

29

2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-5090-1610-5/16/$31.00 ©2016 IEEE 758

1

Maximizing Systolic Array Efficiency to Accelerate
the PairHMM Forward Algorithm

Johan Peltenburg, Shanshan Ren, Zaid Al-Ars, Computer Engineering Laboratory, TU Delft
E-mail: {j.w.peltenburg, s.ren, z.al-ars}@tudelft.nl

Abstract—In the analysis of next-generation DNA sequencing
data, Hidden Markov Models (HMMs) are used to perform
variant calling between DNA sequences and a reference genome.
The PairHMM model is solved by the Forward Algorithm, for
which the performance and power efficiency can be increased
tremendously using systolic arrays (SAs) in FPGAs. We model
the performance characteristics of such SAs, and propose a novel
architecture that allows the computational units to continuously
perform useful work on the input data. The implementation
achieves up to 90% of the theoretical throughput for a real
dataset. The implementation of the proposed architecture achieves
more than 2.5x throughput over the state-of-the-art on a similar
contemporary platform.

Keywords—High-Throughput Sequencing, GATK, Haplotype-
Caller, PairHMM, Systolic Array, FPGA

I. INTRODUCTION

Next-generation DNA sequencing methods allow cost-
effective sampling of DNA [1]. This data is used e.g. to
understand and treat human diseases. The analysis of the huge
amounts of data resulting from such samples is still a com-
putational challenge today. Hidden Markov Models (HMM)
are used during analysis to find pairwise alignments of DNA
sequences. More specifically PairHMMs [2] can be used to
calculate the probability that two sequences are related, which
is called the overall alignment probability. In this work, we
consider the alignment probability of a read to a haplotype.

Because of the computational complexity and the data
volume, PairHMM calculations in genome analysis pipelines
(such as Genome Analysis ToolKit or GATK [3]) take a
long time to complete on conventional machines. However,
the PairHMM Forward Algorithm, which is also used in the
software implementation of the GATK HaplotypeCaller, is
an algorithm exhibiting a long datapath. Such algorithms are
often good candidates for FPGA implementation. An FPGA
accelerator is often able to achieve a high throughput and
high power-efficiency. In other research, it has been shown that
FPGAs can be suitable candidates to implement the algorithm
using Systolic Arrays (SAs). However, a drawback of some
architectures is that the computational resources are sometimes
under-utilized due to control issues or data padding.

In this work, we attempt to optimize SA utilization, allow-
ing for near continuous processing on all the computational
elements of the SA. Our future aim is to implement many
small but efficient SAs instead of implementing one large but
inefficient SA. Our contributions are as follows:

• We provide a model to calculate the utilization of an SA.
• We analyze architectural alternatives allowing continuous

processing of the PairHMM Forward Algorithm.

• We implement one such architecture that is more than
2.5x faster than the state-of-the-art FPGA implementation
and 10x faster than a state-of-the-art CPU.

II. BACKGROUND

A. PairHMM Forward Algorithm

Algorithm 1 PairHMM Forward Algorithm used in the GATK
HaplotypeCaller
M ← I ← D ← 0X+1,Y +1

D0,0...Y ← Cinit

for i← 1, X do
for j ← 1, Y do

Mi,j ← αi,j · (βi ·Mi−1,j−1 + γi · Ii−1,j−1 +
γi ·Di−1,j−1)

Ii,j ← δi ·Mi−1,j + εi · Ii−1,j

Di,j ← ηi ·Mi,j−1 + ζi ·Di,j−1

return
∑Y

j=0MX,j + IX,j

The PairHMM Forward Algorithm as implemented in the
HaplotypeCaller is seen in Algorithm 1. M , I and D are the
matrices for match, insertion and deletion probabilities. αi,j

is the emission probability: for each position in the read i
it can have two different values, depending on the bases of
the read and haplotype at position i and j. β, γ, δ, ε, η and
ζ are transmission probabilities that only depend on the read
position i. In the software implementation, all probabilities are
floating-point values. We define X and Y as the length of the
read and haplotype, respectively.

When updating some cell (i, j) of the matrices M , I and D,
a dependency exists on the values of cells (i− 1, j − 1), (i−
1, j) and (i, j− 1). Thus, only matrix cells laying on the anti-
diagonals of the matrix can be updated in parallel. Therefore,
Algorithm 1 is commonly implemented in hardware using a
one-dimensional systolic array (SA) consisting of a number
of processing elements (PEs). Each PE implements the inner
loop in the algorithm, updating one cell in each of the matrices
M , I , and D. During every update cycle, the SA updates the
cells on the anti-diagonal of the matrices (sometimes called
a ‘wavefront’). A simplified diagram of such an SA can be
seen in Fig. 1a. As the anti-diagonal grows, the amount of
exploitable parallelism grows as well.

When the length of the haplotype (or read) is larger than
the number of elements in the SA, the SA can compute the
matrices by making multiple vertical (or horizontal) passes
through the matrix, processing only a subset of columns (or
rows) and wrapping back to the top (or side) of the matrix
after completion of a pass. This can be seen in Fig. 1b. The
values in the last column (or row) in the pass are often stored

30 3. FPGA ACCERLERATION OF THE PAIR-HMMS FORWARD ALGORITHM

759

2

(a) One pass detail (b) Multiple passes and
potential overhead

Fig. 1: An example of how an SA can solve a PairHMM using
the Forward Algorithm (Algorithm 1).

in a FIFO buffer. Whenever a pass is shorter than the amount
of PEs in the SA, padded data is inserted (Fig. 1b case A).

B. Related work
Earlier research discussed using SAs to solve similar HMM-

based algorithms in the field of computational biology [4] [5].
These proposed SA designs introduce overhead when model
parameters must be reconfigured between subsequent passes or
workloads. Subsequent research such as [6] and [7] show more
advanced SA designs, deploying double buffering of model
parameters of alternating passes and workloads, allowing for
near continuous processing.

More recent work implements the same PairHMM Forward
Algorithm as this work in FPGA on the Convey Computer
platform, showing higher throughput than single threads of
the host processor [8]. However, the architecture introduces
overhead when switching between passes, as parameters are
shifted into the PEs. In [9], which we consider as the current
state-of-the-art FPGA implementation, PEs are partially inter-
nally pipelined, achieving a high throughput. This design uses
the CAPI interface of the IBM POWER8 platform, which we
will also use in this work.

In this paper, we introduce a new architecture that is able
to continuously perform useful calculations in the PEs of
the SA. Once the first input data pair is loaded, our design
wastes virtually no cycles due to memory latency or parameter
reconfiguration. Thus, the design is able to achieve extremely
close to the maximum theoretical performance of a fixed-size
SA.

III. PERFORMANCE MODEL

We define the length of the read and the haplotype as X
and Y . The total amount of cell updates required to process the
Forward Algorithm is X×Y . A useful measure of performance
for the Forward Algorithm is the throughput in number of cell
updates per second (CUP/s). In this paper, we will only count
effective cell updates, which are cell updates that contribute to
the final result (i.e. not on padded data).

The throughput of an SA design is affected by the average
utilization of the PEs. We observe that while processing the
Forward Algorithm with an SA, under-utilization of the PEs
may be introduced in several cases (also shown in Fig. 1b):
(A) When data is padded if a pass is not as wide as the SA.
(B) If the PEs in the SA may only work on one pass at a

time, under-utilization of the PEs occurs at the start of a
pass.

(C) Same as B, but at the bottom of a pass.
(D) When switching between passes, to update the model (α,

β, etc.) in the PEs.
(E) When the height of the matrix is shorter than the number

of PEs, and more than one pass is required, the read must
be padded. Otherwise, the feedback FIFO will not contain
any data yet for the first PE to work on in the next pass.
(Not shown in Fig. 1b).

We consider an SA of fixed size, thus the overhead introduced
in case A and E is inevitable. However, we aim to eliminate
the other causes of overhead.

A. Fixed-size systolic array performance
Consider the processing of the Forward Algorithm in an SA

where; W is the width of the matrix, H is the height of the
matrix and E is the number of PEs in the SA. Also, assume
one cell update per clock cycle. In the ideal case, if we would
process a large amount of pairs (thereby ignoring initial and
final latency), that are of similar size, and if the input data
is available at any time at the inputs of the PEs, the average
utilization of the whole SA for one pair is given by:

Avg. utilization =
WH

EdWE e ·max(E,H)
(1)

Eq. 1 takes the number of cells in the original matrices and
divides this by the number of cells in the padded matrices.
This gives the ratio of effective cell updates verses all cell
updates (including padding). In the case of such a workload,
we may obtain the average number of effective cell updates
Uavg per clock cycle by multiplying the average utilization by
the number of PEs in the SA:

Uavg(W,H,E) =
WH

dWE e ·max(E,H)
(2)

Thus, cells padded to the bottom of the matrix (in each pass,
only when H < E) and cells padded to the right of the matrix
in the final pass are also taken into account.

If the height of the matrix is equal or larger than the number
of PEs (i.e. H ≥ E) and the width of the matrix is an integer
multiple of the number of PEs (i.e., W = nE, n ∈ Z>0), all
PEs perform useful work in every pass. In this case, maximum
throughput is achieved (U = E). This also shows an SA of
length E = 1 is always maximally efficient (i.e. an SA of this
size needs no padding, since passes are of width 1).

Modern FPGAs contain enough computational fabric to
implement a large number of PEs. However, the number of SAs
cannot be as high, since it quickly becomes bounded by the
available memory and interconnect. For example, the FPGA
used for this work offers enough resources to implement 112

31

760

3

(a) Architecture HS: haplotype data is streamed in
horizontally, read data is streamed in vertically.

(b) Architecture RS: read data is streamed in horizon-
tally, haplotype data is streamed in vertically

Fig. 2: Two SA architectures.

PEs, but the FPGA lacks resources to implement 112 SAs
in parallel, requiring 112 controllers, input buffers, feedback
FIFOs and other items in the data and control paths. A more
feasible combination would be to have, e.g. 7 SAs of 16 PEs
each. This work focuses on implementing an architecture for a
single SA, that achieves as close to the maximum performance
of Eq. 2 as possible.

IV. ALTERNATIVE ARCHITECTURES

A. Alternative architectures

To achieve the maximum performance, the matrix can be
mapped onto the SA in two ways. In one, (HS in Fig. 2a), the
data that depends on the haplotype position (haplotype bases)
is streamed-in at the head of the SA. The data that depends on
the read position (probabilities and read bases) is fed vertically
into the PEs. In this approach, the matrix is mapped to have the
read on the horizontal axis, and the haplotype on the vertical
axis of the matrices. The other approach (RS, Fig. 2b) has
horizontal and vertical data streams swapped.

All data that is fed horizontally can be streamed from input
FIFOs into the head of the SA. When reuse of this data is
required in a new pass, the feedback FIFO will provide this
data and intermediate values that were streamed out of the SA
after processing the last column of the previous pass. All data
that is fed vertically can be distributed to the respective PEs
using a bus connected to registers (or RAM).

Although architectures similar to HS are often used (with
the exception of [6]), we argue the use of RS. The reason to
select RS is related to the sizes of the read and haplotype, X
and Y . The haplotype is at least as long as the read, but often
much longer. Consider again Eq. 2. When the ratio between
fully utilized passes and underutilized passes is high (i.e. when
Y is large) the efficiency is also high, since a relatively larger
number of passes will have full SA utilization.

Internally, the PEs are pipelined, such that the critical path in
the circuit is reduced, allowing higher clock frequencies for the

Fig. 3: Example of processing a pair for which the read length
X = 6, the haplotype length Y = 6 and the number of PEs
E = 4.

whole SA. The throughput of the SA is directly proportional
to its clock frequency.

B. Maximizing utilization
To achieve maximum utilization, overhead from the cases

B, D and C described in Section III must be prevented. This
can be done by observing that, during one cell update cycle,
the vertical data of at most one PE needs to be updated, i.e.
at most one PE in the SA will enter a new pass in each cell
update cycle. Therefore, a bus connected to the vertical data
registers needs to transfer the vertical data of only one PE per
cycle.

In this way, any data that is still in the SA from a previous
pass or pair does not have to be completely streamed out,
allowing cell updates between passes and pairs to take place
within the SA (solving case B and C). Furthermore, when the
vertical data bus is able to transfer all required data in one
cycle, overhead caused by updating model parameters in the
PEs can be avoided (solving case D)

An example of continuous processing on the RS architecture
is given for the following case: The number of PEs, E = 4, the
length of the read X = 6, the length of the haplotype: Y = 6,
the read is ’GTACAT’ and the haplotype is ’ACTGTC’.

As shown in Fig. 3, on each anti-diagonal, the state of the
complete SA is depicted during one cell update cycle, and
superimposed over the matrix cells of a pass. For each cell
update cycle, the vertical data of at most one PE must be
updated. Similarly, the output of at most one PE holds data
contributing to the final result. Therefore, the M and I output
of each PE are logically OR-ed with each other and sent to
an accumulator. This implements the last line of the procedure
in Algorithm 1. By setting the haplotype and read base to a
value called “Padding” (denoted by ‘P’ in the figure), the PEs
output will be invalidated.

32 3. FPGA ACCERLERATION OF THE PAIR-HMMS FORWARD ALGORITHM

761

4

Fig. 4: Effect of sorting on the efficiency of the SA, with E=16.

C. Control mechanism

Since PEs are internally pipelined (Section IV-A), to allow
multiple PairHMMs to run in each of the pipeline slots, one
could use BRAM and allocate a specific region for each of
the N pairs that is active in an N stage pipeline. However,
such a control mechanism is complex, since it must track all
SA control signals, as well as RAM addresses, for each of
the N pipeline slots independently. At the side of the memory
interface, it must keep track of N pointers, data counters, and
other control information.

The control mechanism can be extremely simplified by
allowing the smallest unit of processing to be batches of N
pairs. By implementing FIFOs for the input data, the host can
prepare a batch of N pairs to be processed, ordering the batch
in memory in such a way that the accelerator itself does not
have to deal with ordering at all. The accelerator keeps track
of control signals of only one batch instead of keeping track
of all control signals for each of the N pairs.

Although simplifying control complexity, batches have a
minor drawback in terms of performance; if the pairs contained
in the batch are of completely different sizes, smaller pairs
require a lot of padding, in turn decreasing SA efficiency.

Consider the processing of N pairs in a batch, where the
n-th pair has read length Xn and haplotype length Yn. The
total amount of work required in cell updates Ureq to process
the batch is given by:

Ureq =

N−1∑
n=0

XnYn (3)

When the amount of work done on a batch Ubatch is deter-
mined by the largest read and haplotype, it can be calculated
(containing overhead due to padding) using Eq. 2 as follows:

Ubatch = N · Uavg(max
n

Yn,max
n

Xn, E) (4)

Dividing Eq. 3 by Eq. 4 gives the efficiency per batch.
When the read and haplotype lengths are different, the SA

has low efficiency due to abundant padding. A large portion of
this drawback can be mitigated by sorting the pairs by number
of passes required, then sorting each list of pairs with the
same number of passes by read size. After sorting, the batches
are created by the host and sent to the accelerator. When the
workload is very large, sorting makes it likely that haplotypes
and reads inside a batch share a similar number of passes and
read size.

Fig. 5: Synthetic benchmark. PEs: E = 16. Workload size: 214.
Step size: 4. Read size: X . Theoretical maximum throughput:
2667 MCUP/s. Max. measured: 2661 MCUP/s.

To reduce the sorting time, we sort only small subsets of
the workload. For the whole genome sequencing dataset we
used for this work (see Section VI), we split the workload
into 1832 subsets of 214 pairs and sort them. In Fig. 4, we
compare it to the SA utilization when using unsorted subsets
and the ideal utilization given by Eq. 2, in the case where we
would not use batches, but are able to start working on pairs in
independent pipeline slots. We find that using sorted batches
almost achieves ideal performance.

V. IMPLEMENTATION

We implemented architecture RS using an AlphaData ADM-
PCIE-7V3 FPGA accelerator card, for which a POWER8 CPU
on an IBM Power System S824L (8247-42L) serves as a host.
This system offers the Coherent Accelerator Processor Inter-
face (CAPI) to the accelerator through IBMs Power Service
Layer (PSL) interface. The memory interface at the host side
is therefore similar to [9]. To abstract away the PSL interface,
we use the CAPI Streaming Framework from [10].

The SA consists of E Pipelined Processing Elements
(PPEs). Each PPE implements the inner loop of Algorithm 1 as
a 16-stage pipeline. The maximum number of PPEs we could
fit (using Vivado 2016.2) was 112. This bound is determined
by the number of DSP blocks. The DSP blocks are used by the
floating-point units in the PPEs. The FPGA allows 3600 DSP
blocks to be used, but the PSL is distributed as a pre-routed
design and prevents the use of a quarter of the DSP blocks. In
this work, we implement the SA using E = 16 and E = 32.

VI. EXPERIMENTAL RESULTS

To measure the performance for different sizes, we generate
workloads of increasing read (X) and haplotype (Y) size,
where Y ≥ X , in steps of 4. Each workload contains 214

pairs. The performance for each workload is shown in Fig. 5.
Our SA runs at 166.7 MHz, thus the maximum theoretical
throughput is E · f in cell updates per second (CUP/s).

Padding in the horizontal direction (when X < E), dete-
riorates the throughput, as the utilization of the SA is very
low. When there is no padding in the horizontal direction, the
throughput quickly grows towards the maximum theoretical
throughput. Also, the effect of having haplotype sizes of
integer multiples of the number of PEs is clearly visible.

33

762

5

TABLE I: FPGA post-routing power estimate and area

Part LUTs Registers RAM36 DSP Power(W)
Available: 7VX690 433200 866400 1470 3600
16 PEs + interfaces 119937 140397 473 378 11.212
16 PEs, this work only 47346 60525 181 354 2.721
32 PEs + interfaces 163450 189085 473 730 13.213
32 PEs, this work only 90862 109213 181 706 4.585

Fig. 6: SA throughput using a real dataset with E = 16 and
E = 32. Subsets size 214

In this case, the performance nears the maximum theoretical
throughput. The highest throughput measured was 99.76% of
the maximum. The last bit of overhead is introduced by the
memory latency at initialization and termination.

For a realistic benchmark, we use the same dataset as
the work presented in [9] (whole human genome dataset G
15512.HCCI954.1 mapped to chromosome 10). The dataset
contains over 30 million pairs. We split and sort the dataset in
subsets of 214 pairs. The results for sizes E = 16 and E = 32,
the maximum theoretical throughput for each SA, the reported
throughput of [9] and [8] and the reported maximum for the
POWER8 host CPU are shown in Fig. 6. For E = 32, we
achieve a throughput of 84% of the maximum performance;
for E = 16, this is 93%. The lower throughput for E = 32 is
caused by the large number of reads in the dataset of which the
size is smaller than E, resulting in much variation. However,
for the SA with E = 16, we observe that the utilization is
higher, since padding occurs less. Although for E = 32, the
SA is twice as long as for E = 16, the run-time is only
1.8x lower. Furthermore, with the same amount of processing
elements, our architecture shows an average improvement
of throughput of 2.5x over the state-of-the-art. With half
the processing elements, our implementation achieves a 1.4x
higher throughput.

In Table I the area statistics of the SA design with 16 and
32 PEs are shown after placing and routing. We show the
logic available in the device, the logic utilization of our system
(including interfaces) and for our design only. Moreover, the
power estimation of Xilinx Vivado is included. From Table I
and Fig. 6, we estimate the power efficiency to be 339 · 106
CUP/J.

VII. CONCLUSION

We analyzed the efficiency of systolic arrays that imple-
ment the PairHMM Forward Algorithm to find the overall
alignment probability of a read to a haplotype. This paper
shows architectures which can implement fixed-size SAs in
such a way that the overhead is minimal. We implemented
one of the architectures, where the data corresponding to
the read position is streamed through the systolic array. This
implementation achieves 99.76% of the theoretical maximum
performance for a synthetic dataset, and around 90% for a
real dataset, depending on the size of the systolic array and
the read-haplotype pairs. A systolic array with 32 processing
elements is able to calculate the overall alignment probabilities
of a whole genome dataset mapped to chromosome 10 in under
60 seconds, while only using approximately one third of the
FPGAs DSP resources.

In future work, we aim to implement several small SAs in
parallel, such that each SA may achieve a high utilization,
increasing the overall throughput.

Acknowledgment- This work was supported by the European
Commission in the context of the ARTEMIS project ALMARVI
(project #621439).

REFERENCES

[1] J. Shendure and H. Ji, “Next-generation dna sequencing,” Nature
biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008.

[2] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge
university press, 1998.

[3] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,
C. Hartl, A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna,
et al., “A framework for variation discovery and genotyping using
next-generation dna sequencing data,” Nature genetics, vol. 43, no. 5,
pp. 491–498, 2011.

[4] A. C. Jacob, J. M. Lancaster, J. D. Buhler, and R. D. Chamberlain,
“Preliminary results in accelerating profile HMM search on FPGAs,”
in 2007 IEEE International Parallel and Distributed Processing Sym-
posium, pp. 1–8, IEEE, 2007.

[5] K. Benkrid, P. Velentzas, and S. Kasap, “A high performance recon-
figurable core for motif searching using profile HMM,” in Adaptive
Hardware and Systems, 2008. AHS’08. NASA/ESA Conference on,
pp. 285–292, IEEE, 2008.

[6] Y. Sun, P. Li, G. Gu, Y. Wen, Y. Liu, and D. Liu, “Accelerating
HMMer on FPGAs using systolic array based architecture,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pp. 1–8, IEEE, 2009.

[7] M. N. M. Isa, K. Benkrid, and T. Clayton, “A novel efficient FPGA ar-
chitecture for HMMER acceleration,” in 2012 International Conference
on Reconfigurable Computing and FPGAs, pp. 1–6, IEEE, 2012.

[8] S. Ren, V.-M. Sima, and Z. Al-Ars, “FPGA acceleration of the
pair-HMMs forward algorithm for DNA sequence analysis,” in IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
pp. 1465–1470, IEEE, 2015.

[9] M. Ito and M. Ohara, “A power-efficient FPGA accelerator: Systolic
array with cache-coherent interface for pair-HMM algorithm,” in 2016
IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS
XIX), pp. 1–3, IEEE, 2016.

[10] M. Brobbel, “CAPI Streaming Framework.” https://github.com/
mbrobbel/capi-streaming-framework, 2016.

34 3. FPGA ACCERLERATION OF THE PAIR-HMMS FORWARD ALGORITHM

4
GPU ACCELERATION OF THE

PAIR-HMMS FORWARD

ALGORITHM

SUMMARY
In this chapter, we first propose to accelerate the pair-HMMs forward algorithm on

GPUs. We present several GPU-based implementations of the pair-HMMs forward algo-
rithm and analyze the performance bottlenecks of these implementations on an NVIDIA
Tesla K40 card with various datasets. Based on these results and the characteristics of
the GATK HaplotypeCaller (HC), we are able to identify the GPU-based implementa-
tions with the highest performance for the various analyzed datasets. Experimental re-
sults show that the GPU-based implementations of the pair-HMMs forward algorithm
achieve a speedup of up to 5.47x over existing GPU-based implementations.

Next, we focus on integrating the GPU-based implementation of the pair-HMMs for-
ward algorithm into GATK HC to improve its overall performance. In single-threaded
mode, the GPU-based GATK HC is 1.71x faster than the baseline implementation and
1.21x faster than the vectorized GATK HC implementation. For multi-process mode,
We propose a load-balanced multi-process optimization that divides the genome into
regions of different sizes to ensure a more equal distribution of computation load be-
tween different processes. The GPU-based implementation achieves up to 2.04x and
1.40x speedup in load-balanced multi-process mode over the baseline implementation
and vectorized GATK HC implementation in non-load-balanced multi-process mode,
respectively.

35

36 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

This chapter is based on the following papers.

1. S. Ren, K.L.M. Bertels, Z. Al-Ars, Efficient Acceleration of the Pair-HMMs Forward
Algorithm for GATK HaplotypeCaller on Graphics Processing Units, Evolutionary
Bioinformatics, 14:1176934318760543, 2018 [Journal]

2. S. Ren, K.L.M. Bertels, Z. Al-Ars, GPU-Accelerated GATK HaplotypeCaller with
Load-Balanced Multi-Process Optimization, 17th annual IEEE International Con-
ference on BioInformatics and BioEngineering (BIBE 2017), October 23-25, 2017
[Conference]

https://doi.org/10.1177/1176934318760543

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–12
© The Author(s) 2018
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934318760543

Introduction
Next-generation sequencing (NGS) platforms are able to
generate large amounts of DNA sequencing data at low cost,
which provides great opportunities to deeply understand
human genetics and identify genetic diseases.1 However, han-
dling the large amount of DNA sequencing data produced by
NGS platforms consumes much computation time. This is
caused by the computationally intensive genomics analysis
tools developed to help researchers study and investigate such
DNA data. One such tool is GATK HaplotypeCaller (HC),2,3
which is a widely used variant caller tool in practice.

Variant callers are used to identify DNA variants by com-
paring a patient DNA sequencing data with a reference
genome. Compared with many other variant callers, GATK
HC is highly accurate in detecting variants. However, it comes
at the expense of long execution time. Therefore, optimizing
GATK HC to make it more efficient is important.

In GATK HC, the pair-HMMs forward algorithm (or
PFA) accounts for a large percentage of the total execution
time. It is applied to study the overall alignment probability of
2 sequences. Pair-HMMs forward algorithm is a computation-
ally intensive algorithm in GATK HC, which is executed
repeatedly millions of times for a typical data set.

To address this computational challenge, graphics process-
ing units (GPUs) and field programmable gate arrays (FPGAs)
are commonly used in many bioinformatics tools to accelerate
the computationally intensive algorithms and improve their
performance.4,5 Thus, this article accelerates PFA on GPUs to
improve the performance of GATK HC.

The contributions of this article can be summarized as fol-
lows: (1) evaluate 2 approaches to implement PFA on GPUs,

(2) present several GPU-based implementations of PFA based
on these 2 approaches and compare their performance with
different data sets, and (3) choose one implementation to inte-
grate into GATK HC.

Background
GATK HaplotypeCaller

The GATK HC program consists of 4 main steps.6 (1) Active
regions of the genome which have significant evidence of vari-
ation are determined. (2) For each active region, haplotypes are
determined based on a de Bruijn–like graph and then haplo-
types are realigned against the reference sequence using the
Smith-Waterman algorithm. (3) For each active region, PFA is
applied to perform a pairwise alignment of each read against
each haplotype. (4) Bayes’ rule is applied to find the most likely
genotypes.

Because the number of reads and the number of haplotypes
for each active region are not the same, the number of read-
haplotype pairs processed by PFA in the third step is different
for each active region.

Pair-HMMs forward algorithm

Pair-HMMs forward algorithm in GATK HC is performed as
shown in equations (1) to (3).7 m and n are the length of the
read R and the haplotype H , respectively. Mi, j is the overall
alignment probability of 2 subsequences R Ri1 and H H j1
when Ri is aligned to H j . Ii j, is the overall alignment prob-
ability of R Ri1 and H H j1 when Ri is aligned to a gap.

Efficient Acceleration of the Pair-HMMs Forward
Algorithm for GATK HaplotypeCaller on Graphics
Processing Units

Shanshan Ren, Koen Bertels and Zaid Al-Ars
Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands.

ABSTRACT: GATK HaplotypeCaller (HC) is a popular variant caller, which is widely used to identify variants in complex genomes. However, due
to its high variants detection accuracy, it suffers from long execution time. In GATK HC, the pair-HMMs forward algorithm accounts for a large
percentage of the total execution time. This article proposes to accelerate the pair-HMMs forward algorithm on graphics processing units (GPUs)
to improve the performance of GATK HC. This article presents several GPU-based implementations of the pair-HMMs forward algorithm. It also
analyzes the performance bottlenecks of the implementations on an NVIDIA Tesla K40 card with various data sets. Based on these results and
the characteristics of GATK HC, we are able to identify the GPU-based implementations with the highest performance for the various analyzed
data sets. Experimental results show that the GPU-based implementations of the pair-HMMs forward algorithm achieve a speedup of up to 5.47×
over existing GPU-based implementations.

Keywords: Pair-HMMs forward algorithm, GPU acceleration, memory access, GATK HaplotypeCaller

RECEIVED: May 19, 2017. ACCEPTED: November 17, 2017.

Type: Review: Special Collection: Computational Bioinformatics Tools for Evolutionary
Genomics

Funding: The author(s) received no financial support for the research, authorship, and/or
publication of this article.

Declaration of Conflicting Interests: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CORRESPONDING AUTHOR: Shanshan Ren, Computer Engineering Lab, Delft
University of Technology, 2628CD Delft, The Netherlands. Email: s.ren@tudelft.nl

760543 EVB0010.1177/1176934318760543Evolutionary BioinformaticsRen et al
research-article2018

37

2	 Evolutionary Bioinformatics ﻿

Di j, is the overall alignment probability of R Ri1 and
H H j1 when H j is aligned to a gap.

Initialization:

	
M I D i m

M I j n
D n j n

i,0 i,0 i,0

0, j 0, j

= = = 0 (0)
= = 0 (0)

1 (0)0, j

≤ ≤
≤ ≤

= ≤ ≤




/






	 (1)

Recurrence:

	
M M I D

I M
i j i j i i j i i j i i j

i j i i j

, , , , ,

, ,

()= + +
= +

− − − − − −

−

λ α β β
δ ε

1 1 1 1 1 1

1 ii i j

i j i i j i i j

I

D M D
−

− −= +









1

1 1

,

, , ,ζ ε
	 (2)

Termination:

	 Result = +
=
∑(), ,M Im j m j
j

n

1
	 (3)

αi, βi, δi , ε i, ζ i, and ηi are transmission probabilities that
depend on the read position i. In GATK HC, βi and ε i are set
to be constant. λi j, is the emission probability. Equation (4)
shows how to calculate λi j, , where Qi is the base quality score of
the read at position i, Ri and H j are the value of the read base
at position i and the haplotype base at position j, respectively:

	 λi j
i i j

i i j

Q if R H

Q if R H,

/ ()

()
=

≠
− =







3

1
	 (4)

The pseudocode of PFA is illustreated in Algorithm 1. The
input data include 6 arrays and 2 integers. Among them, R[]
and H[] are used to store read bases and haplotype bases; Q[]
is used to store the base quality of the read; α[], δ [], and ζ []
are used to store transmission probabilities; m and n are the
length of read and haplotype, respectively. The output is the
overall alignment probability.

Algorithm 1 employs a 2-layer loop to calculate the ele-
ments of 3 matrices. Hence, the computational complexity of
PFA is O mn(). As shown in Algorithm 1, Mi j, , Ii j, , and Di j,
are only decided by the left, top-left, and top neighbor ele-
ments of the 3 matrices. This implies that the elements on the
same antidiagonal do not have data dependency, which results
in the inherent parallelism of PFA. Thus, elements on an anti-
diagonal are able to be calculated in parallel.

GPU architecture

Modern GPUs are widely applied to accelerate computation-
ally intensive algorithms. For NVIDIA GPUs, there are many
cores which are able to execute in parallel, and all of the cores
are organized into several groups, which are called streaming
multiprocessors.

NVIDIA proposes CUDA to help users to efficiently per-
form general computing. When a GPU kernel is launched by

the host processor, there are many threads produced on the
GPU. These threads on GPUs are managed by CUDA using a
2-level thread hierarchy: block and grid. Threads produced by
a GPU kernel are grouped into many blocks and these blocks
are grouped in a grid. Threads produced by different GPU ker-
nels are in different grids. A GPU card can execute one or more
grids and a streaming multiprocessors can execute one or more
blocks.

Moreover, threads with consecutive thread indexes in the
same block are bundled into groups, which are called warps.
For many NVIDIA GPUs, the size of warp is 32. In addition,
due to the Single Instruction Multiple Thread (SIMT) execu-
tion model, threads in a warp execute each instruction in lock
step.

CUDA also introduces a memory hierarchy, which includes
global memory, texture memory/cache, constant memory/
cache, local memory, shared memory, and registers. Due to the
characteristics of input data of PFA and implementation
designed in this article, only the global memory, constant
memory/cache, shared memory, and registers are used.

Figure 1 shows a simplified representation of the CUDA
memory hierarchy. Constant memory is to store data which
would not change during execution to reduce memory band-
width. Global memory is accessed by all the threads on a GPU.
As it resides on the device DRAM, the latency of the global
memory access is high. Coalescing global memory accesses is
useful to decrease the latency of total global memory accesses.
For the GPU used in this article, the width of one global mem-
ory access is 128 bytes. If each thread in the same warp loads
data (4 bytes, for example) stored at unordered different
addresses from global memory, there would be 32 sequential
global memory accesses in the worst-case situation. However, if
all the accesses are coalesced, which means the data are stored at
neighboring addresses, there will be only one global memory
access.

However, registers and shared memory are owned by each
streaming multiprocessor. Each block running on a streaming
multiprocessor has a private space of the shared memory, which
is only accessible to the threads in that block, whereas each
thread running on the streaming multiprocessor has private
registers, which are not accessible to other threads. Because
shared memory and registers are scarce resources for each
streaming multiprocessor, they limit the number of threads and
blocks running on a streaming multiprocessor.

Related work

Most research published regarding the optimization of GATK
HC focused on increasing the performance of PFA. Intel and
IBM researchers adopt vector instructions on their respective
processors8,9 to decrease the execution time by exploiting the
inherent parallelism of PFA. There are also a couple of reports
and publications on FPGA-based and GPU-based hardware
acceleration of PFA.

38 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

Ren et al	 3

Research on acceleration of PFA on FPGAs can be found in
previous works.10–14 Ren et al10 used a systolic array to imple-
ment PFA on FPGAs, which exploits the inherent parallelism
of PFA. Ito and Ohara11 proposed pipelined processing ele-
ments within a systolic array. Peltenburg et al12 reduced the
overhead in the systolic array to improve the performance of
the FPGA-based implementation of PFA. Altera13 mapped
the algorithm to a 2-dimensional systolic array, whereas Huang
et al14 mapped the algorithm to a ring-based systolic array.

Carneiro15 and Ren et al16 exploited GPU to accelerate
PFA. Carneiro15 implemented PFA on several NVIDIA GPUs
and reported the runtime of their implementations, without
describing the implementation details. Ren et al16 proposed
various GPU-based implementations of PFA by investigating
2 different acceleration approaches: intertask and intratask par-
allelization. In intertask parallelization, PFA is mapped to a
single thread, such that each thread implements PFA indepen-
dently. In intratask parallelization, PFA is mapped on multiple
threads in a single block, instead of a single thread. It exploits
the inherent parallelism of PFA, reducing the computational
complexity of the algorithm to O m n()+ . However, it decreases
the number of instances of PFA running in parallel on GPUs.

In this article, we analyze these 2 acceleration approaches in
detail and compare the performance of several implementa-
tions of each approach using various data sets. Compared with
the GPU-based implementation on NVIDIA Tesla K40
reported by Huang et al,14 our implementations are up to 5.47×
faster. Moreover, one GPU-based implementation of PFA is
selected to integrate into GATK HC.

Methods
First, we present the general design of the GPU-based GATK
HC implementation. We then focus on the 2 GPU accelera-
tion approaches and describe their implementations in detail.

General design

Figure 2 shows a block diagram of the GPU-based GATK
HC. On the host PC, data sets of read-haplotype pairs are pro-
duced during the execution of GATK HC. The size of the data
sets is variable, ranging from a couple to 100 000s of pairs

depending on the input DNA data. When a data set is pro-
duced, the host preprocesses the data set, copies the data set to
GPU, launches the GPU kernel to execute PFA, and then cop-
ies the results back.

On the GPU, threads load the data set from the global
memory, execute PFA independently or cooperatively, and
write the results to the global memory.

In addition, as CUDA is not able to communicate with
JAVA directly, JCUDA is used to connect the JAVA and CUDA
code.

Intertask implementations

In the intertask approach, each thread implements PFA inde-
pendently. The execution trace of each thread is similar to that
described in Algorithm 1. However, extra operations are added
to take advantage of the CUDA memory hierarchy.

We first present the naive implementation of the intertask
approach, the pseudocode of which is illustrated in Algorithm 2.
As shown in Algorithm 2, each thread exploits a 2-level loop to
calculate the elements of the matrices.

Due to the limitations of the shared memory and registers
size on the GPU, each thread cannot load the input data into
the shared memory and registers in advance. All of the input
data are loaded into the shared memory and registers when
they are being processed. To decrease the number of global
memory accesses required by the input data, the outer loop of
the 2-level loop iterates through the read bases and the inner
loop iterates through the haplotype bases. In this way, the base
quality score ()Qi and the transmission probabilities (αi, δi ,
and ζ i) of the read are loaded only once. Otherwise, these data
are loaded many times.

Because each element is decided by the left, top-left, and top
neighbor elements of the matrices, the intermediate results of
PFA do not need to be stored for the entire duration of the execu-
tion time. As such, each thread uses 3 registers (MN , IN, and
DN) to store the left neighbor elements, a register (MID) to
store the result of a series of calculations of the top-left neighbor
elements, and 3 vectors (MM n0... , II n0... , and DD n0...) in the global

Figure 1.  Simplified CUDA memory hierarchy. Figure 2.  Block diagram of the GPU-based GATK HC implementation.

GATK HC indicates GATK HaplotypeCaller; GPU, graphics processing

unit.

39

4	 Evolutionary Bioinformatics ﻿

memory to store the top neighbor elements. Using MID avoids
loading the top neighbor elements from the global memory twice.

As shown in Algorithm 2, each iteration of the inner loop
loads and stores 3 values from/into the 3 vectors, which requires
6× ×m n global memory accesses. Because the latency of global
memory access is very high, it is necessary to decrease the global
memory accesses required by the intermediate results. Hence,
the tiling technique17 is employed. The size of a tile is the num-
ber of the successive elements in one column covered by the tile.

The differences between the naive implementation and the
tile-based implementation are as follows (the tile size is k): (1)
the iteration times of the outer loop of the tile-based imple-
mentation is m/k and (2) each iteration of the inner loop of the
tile-based implementation calculates a tile, which stands for k
successive elements in a column, instead of one element.
Figures 3 and 4 show the execution trace of the naive imple-
mentation and the tile-based implementation (the tile size is
2), which explain these 2 differences. In Figure 4, the iteration
time of the outer loop is 6 2 3/ = and each iteration of the
inner loop calculates 2 elements.

In the inner loop of the tile-based implementation, 3 values
from the 3 vectors are loaded to calculate the first element of a

Algorithm 1. Pseudocode of PFA in the GATK
HaplotypeCaller.

1: function PFA H[], R[], Q[], α [], δ [], ζ [], m, n

2:   M ← 0 I ← 0 D ← 0

3: 
D nn0,0 1/... ←

4: 
β0 0.9...m ←

5: 
0 0.1...m ←

6:  for i m←1, do

7:   for j n←1, do

8:    if R [i]==H[j] then

9:     λi j iQ, / 3←

10:   else

11:     λi j iQ, 1← −

12:   end if

13:     M M I Di j i j i i j i i j i i j, , 1, 1 1, 1 1, 1()← + +− − − − − −λ α β β

14:    
I M Ii j i i j i i j, 1, 1,← +− −δ 

15:    
D M Di j i i j i i j, , 1 , 1← +− −ζ 

16:    end for

17:   end for

18:  return j

n

m j m jM I
=1

, ,()∑ +

19: end function

Algorithm 2. Pseudocode of the naive implementation
of the intertask approach.

procedure PFA(H[], R[], Q[], α [], δ [], ζ [], m, n) 

  for i m←1, do

   r Ri←

   q Qi←

   α α← i

   δ δ← i

   ζ ζ← i

   for j n←1, do

    h Hi←

    if i > 1 then

     MU MMj←

     IU IIj←

     DU DDj←

    else

     MU IU← ← 0

    
DU

n
←

1

     MID DU← ⋅0.9
    end if

    if H R= then

     λ ← q / 3

    else

     λ ← −1 q

    end if

    DN MN DN← ⋅ + ⋅ζ 0.1

    MN MID← ⋅λ

    IN MU IU← ⋅ + ⋅δ 0.1

    MID MU IU DU← ⋅ + ⋅ + ⋅α 0.9 0.9

   
MM MNj ←

   
II INj ←

   
DD DNj ←

    if i m= then

    
result MM IIj j= +

    end if
   end for
   end for

   return result

  end procedure

40 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

Ren et al	 5

tile and 3 values of the last element of a tile are stored in the 3
vectors. Thus, the number of global memory accesses required by
the intermediate results is () /6× ×m n k using tiling technique.

However, the cost of reducing the global memory accesses
required by the intermediate results is that each thread uses
more shared memory and registers to store left neighbor ele-
ments of each tile.

Data set preparation.  To better use the GPU computation
capabilities, the data sets need to be converted before transfer-
ring them to the GPU.

Although for the intertask approach all threads implement
PFA independently, if the iteration numbers of the outer loop
and the inner loop of each PFA are not the same, threads in a
warp need to wait for each other because of the SIMT execu-
tion model. Thus, the data sets are sorted first according to the
length of reads and then according to the length of haplotypes.

After sorting, 32 read-haplotype pairs are processed by 32
threads in the same warp. To coalesce global memory accesses
of the input data, each group of 32 read-haplotype pairs is
stored in an interlaced fashion.

Figure 5 shows how the read bases and haplotype bases are
stored. Take haplotypes for example. We write the first 4 char-
acters of the first haplotype, after which write the first 4 char-
acters of the second haplotype, and so on. This way, the first 4
characters of 32 haplotypes make up 128 bytes, which could be
loaded by one coalesced global memory access. For haplotypes
shorter than the longest haplotype in the group, they are pad-
ded with dummy characters.

The transmission probabilities and base quality score of 32
reads in each group are also written in an interlaced fashion. As
they are single-precision floating point numbers, for each 128 bytes,
we only write 1 number instead of 4 numbers. For reads shorter
than the longest read in the group, the transmission probabilities
and base quality score are padded with dummy numbers.

Intermediate results.  For each thread, each iteration includes 6
global memory accesses required by the intermediate results. If

these global memory accesses of 32 threads in a warp are non-
coalesced, there will be 6 32× global memory accesses in the
worst-case situation.

As mentioned before, the intermediate results of each thread
are stored in 3 vectors. To reduce global memory accesses, we use
3 big vectors to store the intermediate results of 32 threads in a
warp, which are stored in an interlaced fashion. This way, each
thread loads/writes the intermediate results from neighboring
addresses. Because the intermediate results are single floating
point numbers, 1 global memory access is able to satisfy the load/
write requirements of 32 threads. Thus, there are 6 global mem-
ory accesses for 32 threads in a warp instead of 6 32× of each
iteration.

Intratask implementations

In the intratask approach, threads in a block implement PFA
cooperatively. The execute trace of each thread is different from
that described in Algorithm 1.

We first present the naive implementation of the intratask
approach. Depending on the number of threads in a block and
the length of the read, there are 3 cases to analyze. We start
with the simplest case, in which the number of threads in a
block is equal to the length of the read. The execution trace of
this case is shown in Figure 6A, in which the number of
threads in a block and the length of the read is 4. As shown in
Figure 6A, each thread calculates the elements in one column.
For example, thread 0 (T0) calculates the elements in the first
column. At each step, threads calculate the elements on an
antidiagonal. For example, at step 3, T0 calculates M3 1, , D3 1, ,
and I3 1, ; T1 calculates M 2 2, , D2 2, , and I 2 2, ; and T2 calculates
M1 3, , D1 3, , and I1 3, . Because there are ()m n+ −1 antidiagonals
in the matrices, the computational complexity of the naive
implementation is O m n()+ .

The second case is that the number of threads in a block is
bigger than the length of the read. The execution trace of the
second case is similar to Figure 6A. However, there are some
threads that remain idle during the whole execution period as

Figure 3.  Execution trace of the naive implementation of the intertask

approach.

Figure 4.  Execution trace of the tile-based implementation of the

intertask approach (the tile size is 2).

41

6	 Evolutionary Bioinformatics ﻿

the number of threads is bigger than the number of columns to
be calculated.

The third case is that the number of threads in a block is
smaller than the length of the read. The calculation is divided
into several passes, which is shown in Figure 6B. The number
of threads in a block is 2 and the length of the read is 4. Hence,
there are in total 2 passes. In each pass, the execution trace is
similar to Figure 6A.

For the intertask approach, because each block calculates
one PFA, the input data of one PFA are able to be stored in the
shared memory and registers in advance. Each read base and its
corresponding base quality score and transmission probabilities
are stored in the registers of each thread, whereas the haplotype
bases are stored in the shared memory. The intermediate results
produced by each thread are stored in 3 vectors in the shared
memory. In addition, for the third case, 3 vectors in the global
memory are used to store the intermediate results produced by
the last thread of each pass, which will be used in the next pass.

For the intratask approach, the synchronization function is
called to ensure that all the threads in the same block are syn-
chronized and finish reading/writing the intermediate results

in the shared memory. In each step, the synchronization func-
tion is called twice. Thus, the synchronization call will be called
O m n(())2 + times in total. However, the cost of synchroniza-
tion call is high because it makes threads in a block stall to wait
for each other. There are 2 solutions to decrease the number of
the synchronization function calls.

One solution is to exploit the tiling technique. In the tile-
based implementation (the tile size is k), each thread calculates
k elements in a column before a synchronization function is
called. Figure 7 shows the execution trace of the tile-based
implementation (the tile size is 2). As shown in Figure 7, each
thread calculates 2 elements in each column every 2 steps and
thus the synchronization function is called every 2 steps. In this
way, there are only O m n k((/))2 +   synchronization function
calls in the tile-based implementation (the tile size is k).
However, more shared memory and registers are used to store
the intermediate results. Moreover, the number of execution
steps of the tile-based implementation is more than that of the
naive implementation. As shown in Figure 7, the execution
steps of the tile-based implementation are 12, whereas the exe-
cution steps of the naive implementation would be only 9.

The other solution is the warp-based implementation, in
which the number of threads in a block is equal to the number
of threads in a warp (32). In this way, threads in a warp imple-
ment PFA cooperatively. Because the threads in the same warp
work in the SIMT execution model, there is no need to call
synchronization function in the warp-based implementation.
Moreover, because threads within a warp can use shuffle
instructions to exchange data, the intermediate results pro-
duced by each thread are not stored in the shared memory. The
only intermediate results stored in the shared memory are the
intermediate results between passes for the third case.

However, the warp-based implementation cannot effec-
tively use the resources on GPUs because the number of threads
in a block is small. One method to solve this problem is to
increase the number of warps in a block and make each warp
implement PFA independently. For example, if the number of
threads in a block is 256, there are 8 warps in the block and
each warp implements PFA independently. In the improved
warp-based implementation, the intermediate results between
passes for the third case produced by each warp are stored in
the global memory.

Data set preparation.  In the intratask approach, the read bases,
base score quality, and the transmission probabilities, which are
loaded into the registers of each thread, are written into 6 vec-
tors separately, whereas the haplotype bases, which are loaded
into the shared memory, are written into char4 to reduce the
global memory accesses.

Intermediate results.  The intermediate results inside one pass
are stored in the shared memory using 3 vectors, except for the
(improved) warp-based implementations (which use shuffle

Figure 6.  Execution trace of the naive implementation of the intratask

approach (A) without passes (B) with passes.

Figure 5.  Writing bases of reads and haplotypes in an interlaced fashion.

42 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

Ren et al	 7

instructions to exchange data), whereas the intermediate results
between passes are stored in the global memory using 3 vectors,
except for the warp-based implementation (which stores inter-
mediate data in the shared memory).

Results and Discussion
Experimental setup

IBM Power System S823L (82478-42L) is used to perform
all the experiments. This system has 2 IBM Power8 proces-
sors, each of which has 10 cores running at 3.6 GHz,
256 GB of DDR3 memory, and an NVIDIA Tesla K40
card. The NVIDIA Tesla K40 card has 2880 cores that run
at up to 745 MHz and has a CUDA compute capability of
3.5.

We first compare the performance of these GPU-based
PFA implementations with the synthetic and real data
sets and then integrate the GPU-based PFA implementa-
tions into GATK HC 3.7 and compare the overall
performance.

To evaluate these GPU-based PFA implementations,
throughput is a key performance metric, which is measured by
giga cell updates per second (GCUPS). For a data set of read-
haplotype pairs, equation (5) defines how to calculate the value
of GCUPS:

	
m n

t
i ii

s
×

×
=∑ 1

910
	 (5)

where t is the runtime in seconds, s is the number of the
read-haplotype pairs in the data set, mi and ni are the length
of ith read and ith haplotype, respectively. The runtime t is
the computation time of PFA on GPUs.

Implementations of intertask approach

For the tile-based implementations of the intertask approach,
the length of reads would slightly affect the performance if it is
not a multiple of the tile size. To be fair and find the maximum
achievable speedup of every implementations, 6 types of syn-
thetic data sets are used and the length of read and haplotype
in each data set are different, as shown in Table 1. In addition,
the number of the read-haplotype pairs of each data set is
5 105× .

Figure 8 shows the throughput of 5 implementations of the
intertask approach: naive, tile = 2, tile = 4, tile = 6, and tile = 8. As
shown in Figure 8, the throughput of the naive implementation
is the lowest over all the implementations. In addition, the
throughput of the implementation with tile = 6 is the highest
over all the implementations.

We use NVIDIA profiling tools (NVVP) to find the perfor-
mance bottleneck of these implementations. We run the imple-
mentations with data set 6. The profiling results are shown in
Table 2. Table 2 shows that the global memory bandwidth
reduces when the tile size increases. However, the registers per
thread and shared memory per block increase when the tile size
increases, which reduces the theoretical occupancy. In addition,
the naive, tile = 2, and tile = 4 implementations are bounded by
the global memory bandwidth; whereas the other 2 are bounded
by the instruction and memory latency, which is caused by the
low occupancy.

Table 2 shows that the implementation with tile = 6 strikes a
trade-off between the decreasing global memory bandwidth

Figure 7.  Execution trace of the tile-based implementation of the

intratask approach (the tile size is 2).

Table 1.  Synthetic data sets of the intertask implementations.

1 2 3 4 5 6

Read length 24 48 72 96 120 144

Haplotype length 24 48 72 96 120 144

Figure 8.  Performance comparison of the intertask implementation on

the synthetic data sets.

43

8	 Evolutionary Bioinformatics ﻿

requirements as tile size increases, on the one hand, and
between the increasing requirements of the instruction and
memory latency, on the other hand. This explains the reason
why the throughput of the implementation with tile = 6 is the
highest on the synthetic data sets.

Implementations of intratask approach

This section compares the performance of the naive, tile = 2,
warp-based, and improved warp-based implementations of the
intratask approach. Here, the block size of the naive and tile = 2
implementations is 128. Table 3 shows 26 types of synthetic
data sets and the length of read and haplotype in each data set
are different. Data sets 1 to 21 make no thread idle during each
pass for the (improved) warp-based implementations, whereas
data sets 22 to 26 make no thread idle during each pass for all
the implementations.

Figure 9 shows the throughput of 3 implementations of the
intratask approach when the number of the read-haplotype
pairs of each data set is 5 105× . For the warp-based and
improved warp-based implementations, if the length of read is
the same, the throughput increases with the increase in the
haplotype length. In contrast, if the haplotype length is the
same, the throughput decreases with the increase in the read
length, which is caused by the increased number of costly
global memory accesses. In addition, the improved warp-based
implementation achieves higher throughput than the warp-
based implementation.

As shown in Figure 9, the throughput of the naive and
tile = 2 implementations increases with the increase in the read/
haplotype length, which is not the case for the (improved)
warp-based implementations. Compared with tile = 2 imple-
mentation, the naive implementation achieves higher
throughput.

Table 4 shows the NVVP profiling results of the 4 imple-
mentations running with data set 26. As shown in Table 4, the
shared memory bandwidth of the naive implementation is

higher than that of the tile = 2 implementation, which is
because that the tiling technique reduces shared memory
accesses. However, because the tile = 2 implementation has
more shared memory and registers to store the intermediate
results, its theoretical occupancy is smaller than that of the
naive implementation. As shown in Figure 9, the throughput of
the tile = 2 implementation is smaller than that of the naive
implementation, which indicates that the decrease in the occu-
pancy outweighs the reduction in the number of synchroniza-
tion calls. If the tile size continues to increase, the theoretical/
achieved occupancy will continue to reduce, which results in
the decreasing throughput.

As shown in Table 4, the theoretical/achieved occupancy of
the improved warp-based implementation is much bigger than
that of the warp-based implementation, which is caused by the
low GPU resources utilization of the warp-based implementa-
tion. Hence, the throughput of the improved warp-based
implementation is higher than that of the warp-based imple-
mentation, as shown in Figure 9.

In Figure 8, the throughput of the intertask implementa-
tions is comparable when the length of the haplotype or read
increases, whereas in Figure 9, the throughput of the intratask
implementations increases when the length of the haplotype or
read increases.

Figure 10 shows the throughput of the intratask implemen-
tations when the number of the read-haplotype pairs of each
data set is reduced to only 200 (instead of 5 105× pairs used
for Figure 9). In this figure, the naive implementation achieves
the highest throughput for most of the data sets. This is because
when the size of data set is small, the improved warp-based
implementation does not have enough computation to fully use
the GPU resources.

Comparison with other implementations

We compared our GPU-based implementation with other
implementations proposed in the previous works.13-15 The data

Table 2.  Profiling results of the intertask implementations on synthetic data set 8.

Performance
limitation

Global memory
bandwidth, GB/s

Registers
per thread

Shared memory
per block,
bytes

Theoretical
occupancy, %

Achieved
occupancy, %

Naive Memory
bandwidth

207 48 0 62.5 62.1

Tile = 2 Memory
bandwidth

201 72 4096 43.8 43.3

Tile = 4 Memory
bandwidth

193 73 8192 37.5 37.1

Tile = 6 Instruction and
memory latency

154 104 12 288 25 24.9

Tile = 8 Instruction and
memory latency

101 142 16 384 18.8 18.2

44 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

Ren et al	 9

set used is the “10s” data set.18 Despite its small size, this data
set has published runtime baseline comparisons for different
implementations and platforms.

Table 5 shows the performance of various implementa-
tions, including CPU, GPUs, multicores, and FPGAs. The
runtime includes the data set preparation time, the compu-
tation time on GPU, and the data transfer time between

Table 3.  Synthetic data sets of the intratask implementations (R and
H stand for length of read and haplotype, respectively).

1 2 3 4 5 6 7 8 9

R 32 32 32   32   32   32   32   32 64

H 32 64 96 128 160 192 224 256 64

10 11 12 13 14 15 16 17 18

R 64   64   64   64   64   64 96   96   96

H 96 128 160 192 224 256 96 128 160

19 20 21 22 23 24 25 26

R   96   96   96 128 128 128 128 128

H 192 224 256 128 160 192 224 256

Table 4.  Profiling results of the intratask implementations with synthetic data set 26 (warp* stands for the improved warp based).

Performance
limitation

Shared memory
bandwidth, GB/s

Registers
per thread

Shared
memory per
block, bytes

Theoretical
occupancy, %

Achieved
occupancy, %

Naive Memory
bandwidth

2213 32 2124 100 99.8

Tile = 2 Memory
bandwidth

2005 39 3660 75 74.9

Warp Instruction and
memory latency

362 32 6540 10.9 10.9

Warp* Compute 262 44 2000 62.5 62.5

Figure 9.  Performance comparison of the intratask implementations on the synthetic data sets (size: 5 105×). GCUPS indicates giga cell updates per

second.

host and GPU. As shown in Table 5, all the GPU-based
implementations proposed in this article are faster than the
Intel Xeon single core AVX implementation. Moreover,
except for the naive intertask implementation, all the imple-
mentations proposed in this article are faster than the
NVIDIA K40 GPU implementation proposed in the work
by Huang et al.14

Our best case performance is the improved warp-based
implementation. It is 5.47× faster than the K40 GPU imple-
mentation, 1.17× faster than the Intel Xeon 24 cores AVX
implementation, and 843× faster than the original JAVA imple-
mentation. The table also shows that the FPGA-based imple-
mentations have the potential to achieve higher performance,
albeit at the expense of long development time and the corre-
sponding high design complexity and cost.

Real data set

In this section, 5 intertask implementations (naive, tile = 2,
tile = 4, tile = 6, and tile = 8) and 4 intratask implementations
(naive, tile = 2, warp-based, and improved warp-based) are
compared using a real data set. To produce the real data set,
we modified the source code of GATK HC 3.7 to output the

45

10	 Evolutionary Bioinformatics ﻿

read-haplotype pairs of each active region in the third step of
the program “Determine likelihoods of the haplotypes”. For
the modified GATK HC 3.7, chromosome 10 of the whole
human data set G15512.HCC1954.1 is used to produce the
real data set, which is divided into small chunks with each
chunk containing the read-haplotype pairs of one active
region. The size of each chunk ranges from 4 to 38 912.

In addition, 2 software-based implementations of PFA are
provided for performance comparison: Power8 single core
implementation and Power8 20 cores implementation. Both of
them are written in the C++ programming language, optimized
with the vector instructions and compiled with gcc O3

optimization. Moreover, the Power8 20 cores implementation
exploits OpenMP to run on 20 cores.

In Table 6, for the GPU-based implementation, T1 includes
the computation time on GPU and the data transfer time
between CPU and GPU, T2 is the data set preparation time,
and T3 is the total time, which is the sum of T1 and T2. For the
software implementations, T3 is the total time and there is no
data set preparation. In this section, T3 is the runtime t in
equation (5) to calculate GCUPS.

Table 6 shows the performance of 11 implementations on
the real data set. The naive intratask implementation is the
fastest over all the GPU-based implementations. In addition,
the 4 intratask implementations are faster than the 5 intertask
implementations. It is mainly because when the number of the
read-haplotype pairs in each chunk is small, the intertask
implementations cannot use the GPU resources efficiently.

As shown in Table 6, the naive intratask implementation is
faster than the improved warp-based implementation. This is
because 82% of chunks in the real data include less than 200
read-haplotype pairs. Moreover, Figure 10 shows that when the
size of the data set is reduced to 200 pairs, the naive implemen-
tation of the intratask approach is faster than the improved
warp-based implementation for most of the synthetic data sets.

For the total time (T3), all the GPU-based implementa-
tions are faster than the Power8 single core implementation.
Specifically, the naive intratask implementation is 11.73× faster
than the Power8 single core implementation. However, the
Power8 20 cores implementation is faster than all the GPU-
based implementations. Regardless of the data set preparation
time, the naive intratask implementation (46 s) is much faster
than the Power8 20 cores implementation (95 s).

Integration into GATK HC

The GPU-based implementation of PFA with the highest per-
formance for the real data set (which is the naive implementation
of the intratask approach) is integrated into GATK 3.7. There are
other 2 GATK HC implementations to be compared with: (1)
GATK HC with the PFA implemented with JAVA (referred to

Table 5.  Performance comparison of various implementations on a
“10s” data set.

Implementations Runtime, ms Speedup

Java on CPU14 10 800 1×

C++ Baseline14 1267 9×

Inter Xeon AVX 1 Core14 138 78×

Intel Xeon 24 Cores14 15 720×

Alter OpenCL (Arria 10)13 2.8 3857×

PE Ring (Arria 10)14 2.6 4154×

NVIDIA Tesla K40 GPU14 70 154×

Naive intratask 14.2 761×

Tile = 2 intratask 15.5 696×

Warp based 20.6 524×

Improved warp based 12.8 843×

Naive intertask 76.6 141×

Tile = 2 intertask 45.1 239×

Tile = 4 intertask 29.6 365×

Tile = 6 intertask 26.4 409×

Tile = 8 intertask 24.9 433.7×

Figure 10.  Performance comparison of the intratask implementations on the synthetic data sets (size: 200).

46 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

Ren et al	 11

as baseline), which is download from the GATK Web site and (2)
GATK HC with the PFA running on the CPU optimized using
vector instructions (referred to as Vector), the library of which is
implemented by IBM.9 The data set is chromosome 10 of the
whole human genome data set G15512.HCC1954.1.

Although GATK HC is able to run in single-thread and
multithread mode, it usually runs in single-thread mode while
executing several instances of GATK HC at the same time due
to the inefficiency of the multithread mode of the program.
Thus, we will only compare the performance of GATK HC
running in single-thread mode.

As shown in Table 7, the baseline is slower than the other 2
implementations. Compared with the baseline, the vectorized
GATK HC achieves 1.42× speedup and the GPU-based
GATK HC achieves 1.71× speedup. In addition, the GPU-
based GATK HC is 1.2× faster than the vectorized GATK HC.

Conclusions
In GATK HC, PFA accounts for a large percentage of the total
execution time. This article proposes to accelerate PFA on
GPUs to improve the performance of GATK HC. Due to the
characteristics of PFA, there are 2 approaches to implement it
on GPUs: intertask and intratask. This article first presented
several GPU-based implementations of PFA for each approach.

We executed all the implementations on an NVIDIA Tesla
K40 card and compared their performance using different syn-
thetic and real data sets. Experimental results show that our
solution achieves a speedup up to 5.47× over other GPU-based
implementations. In addition, the naive implementation of the
intratask approach is integrated into GATK HC, resulting in
an overall speedup of 1.71× over the baseline implementation
and 1.2× over the vectorized GATK HC on a single core.

Acknowledgements
The authors wish to thank the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin and IBM for
the giving access to the IBM Power8 machines used in this paper.

Author Contributions
SR designed and performed the experiments, analyzed the
data, and wrote the manuscript. All the authors jointly devel-
oped the structure and arguments for the paper, made critical
revisions and approved final version.

References
	 1.	 Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotech.

2008;26:1135–1145.
	 2.	 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapRe-

duce framework for analyzing next-generation DNA sequencing data. Genome
Res. 2010;20:1297–1303.

	 3.	 DePristo M, Banks E, Poplin R, et al. A framework for variation discovery and
genotyping using next-generation DNA sequencing data. Nature Genet.
2011;43:491–498.

	 4.	 Lu M, Zhao J, Luo Q , et al. GSNP: a DNA single-nucleotide polymorphism
detection system with GPU acceleration. Paper presented at: 2011 Interna-
tional Conference on Parallel Processing; September 13–16, 2011; Taipei,
Taiwan.

	 5.	 Liu CM, Wong T, Wu E, et al. Soap3: ultra-fast GPU-based parallel alignment
tool for short reads. Bioinformatics. 2012;28:878.

	 6.	 HaplotypeCaller call germline SNPs and Indels via local re-assembly of haplo-
types. https://software.broadinstitute.org/gatk/documentation/tooldocs/current/

Table 6.  Performance comparison of implementations on a real data set.

Implementations T1, s T2, s T3, s Throughput (GCUPS)

Naive intratask 46 53 99 2.60

Tile = 2 intratask 47 53 100 2.52

Warp based 81 51 132 1.91

Improved warp based 48 57 105 2.40

Naive intertask 701 73 774 0.33

Tile = 2 intertask 382 73 455 0.56

Tile = 4 intertask 238 75 312 0.81

Tile = 6 intertask 213 75 288 0.88

Tile = 8 intertask 217 73 290 0.87

Power8 single core — — 1161 0.22

Power8 20 cores — — 95 2.65

Abbreviation: GCUPS, giga cell updates per second.

Table 7.  Results of the GATK HC implementations.

GATK HC Total time, s Speedup

Baseline 8034.05 —

Vector 5655.96 1.42×

GPU 4687.08 1.71×

Abbreviations: GATK HC, GATK HaplotypeCaller; GPU, graphics processing unit.

47

12	 Evolutionary Bioinformatics ﻿

org_broadinstitute_hellbender_tools_walkers_haplotypecaller_Haplotype-
Caller.php. Accessed February 22, 2018.

	 7.	 Carneiro M, Poplin R, Biagioli E, et al. Enabling high throughput haplotype
analysis through hardware acceleration. https://github.com/MauricioCarneiro/
PairHMM/tree/master/doc. Accessed May 15, 2017.

	 8.	 Proffitt A. Broad, Intel announce speed improvements to GATK powered by Intel
optimizations. http://www.bio-itworld.com/2014/3/20/broad-intel-announce-
speed-improvements-gatk-powered-by-intel-optimizations.html. Accessed Feb-
ruary 22, 2018.

	 9.	 VdAuwera G. Speed up HaplotypeCaller on IBM Power8 systems. https://soft-
ware.broadinstitute.org/gatk/blog?id=4833. Accessed March 15, 2017.

	10.	 Ren S, Sima VM, Al-Ars Z. FPGA acceleration of the pair-HMMs forward
algorithm for DNA sequence analysis. Paper presented at: 2015 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM); November 9–12,
2015; Washington, DC, pp. 1465-1470. New York, NY: IEEE.

	11.	 Ito M, Ohara M. A power-efficient FPGA accelerator: systolic array with cache-
coherent interface for pair-HMM algorithm. Paper presented at: 2016 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS XIX); July
7, 2016; Yokohama, Japan, pp. 1–3. New York, NY: IEEE.

	12.	 Peltenburg J, Ren S, Al-Ars Z. Maximizing systolic array efficiency to accelerate
the PairHMM forward algorithm. Paper presented at: 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM); December 15-18,
2016; Shenzhen, China, pp. 758–762. New York, NY: IEEE.

	13.	 Altera. Accelerating genomics research with OpenCL and FPGAs. https://
www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/
wp-01262-accelerating-genomics-research-with-opencl-and-fpgas.pdf.
Accessed February 22, 2018.

	14.	 Huang S, Manikandan GJ, Ramachandran A, et al. Hardware acceleration of
the pair-HMM algorithm for DNA variant calling. Paper presented at: Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-Programma-
ble Gate Arrays, FPGA ’17; February 22-24, 2017; Monterey, CA, pp. 275–284.
New York, NY: ACM.

	15.	 Carneiro M. Accelerating variant calling. https://hpc.mssm.edu/files/Carneiro_
workshop.pdf. Accessed March 15, 2017.

	16.	 Ren S, Bertel K, Al-Ars Z. Exploration of alternative GPU implementations
of the pair-HMMs forward algorithm. Paper presented at: 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM);
December 15-18, 2016; Shenzhen, China, pp. 902–909. New York, NY:
IEEE.

	17.	 Hains D, Cashero Z, Ottenberg M, Bohm W, Rajopadhye S. Improving
CUDASW++, a parallelization of Smith-Waterman for CUDA enabled devices.
Paper presented at: 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum; September 1, 2011; Shanghai,
China, pp. 490–501. New York, NY: IEEE.

	18.	 Pair-HMMs forward algorithm test data. https://github.com/MauricioCar-
neiro/PairHMM/tree/master/test_data. Accessed May 15, 2017.

48 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

GPU-Accelerated GATK HaplotypeCaller with
Load-Balanced Multi-Process Optimization

Shanshan Ren, Koen Bertels, Zaid Al-Ars
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

{s.ren, k.l.m.bertels, z.al-ars}@tudelft.nl

Abstract—Due to its high-throughput and low cost, Next Gen-
eration Sequencing (NGS) technology is becoming increasingly
popular in many genomics research labs. However, handling
the massive raw data generated by the NGS platforms poses
a significant computational challenge to genomics analysis tools.
This paper presents a GPU acceleration of the GATK Haplo-
typeCaller (GATK HC), a widely used DNA variant caller in
the clinic. Moreover, this paper proposes a load-balanced multi-
process optimization of GATK HaplotypeCaller to address its
implementation limitation which forces the sequential execution
of the program and prevents effective utilization of hardware ac-
celeration. In single-threaded mode, the GPU-based GATK HC is
1.71x and 1.21x faster than the baseline HC implementation and
the vectorized GATK HC implementation, respectively. Moreover,
the GPU-based implementation achieves up to 2.04x and 1.40x
speedup in load-balanced multi-process mode over the baseline
implementation and the vectorized GATK HC implementation in
non-load-balanced multi-process mode, respectively.

Index Terms—GPU acceleration; GATK HaplotypeCaller;
multi-process; pair-HMMs forward algorithm;

I. INTRODUCTION

Next Generation Sequencing (NGS) [1] technology makes
DNA sequencing more affordable and accessible than ever
before. DNA sequencing is essential for a deep understanding
of human genetics and is considered as an enabler on personal-
ized medicine. Many applications for DNA sequence analysis
have been developing at a fast rate in the last decade, such
as sequence alignment, genome de-novo assembly, variant
calling, haplotype phasing and so on.

Variant calling is a crucial step for DNA sequence analysis,
which is used to find the positions where a given patient DNA
sequence is different from a reference genome in order to
detect DNA variants. These variants include SNVs (single
nucleotide variations), small insertions/deletions (INDELs)
and structural variations (SVs). Many tools (called variant
callers) have been proposed to detect variants in order to be
used in practice to diagnose genetic disease, for example.

Early variant callers, such as the GATK UnifiedGeno-
typer [2], SAMtools [3] and VarScan2 [4], detect variants at
different positions in isolation. These tools are very effective in
detecting SNVs, but are lacking when it comes to the accuracy
of identifying INDELs and SVs.

More recent haplotype-based callers, such as the GATK
HaplotypeCaller [5], Platypus [6] and freebayes [7], have im-
proved the accuracy of detecting INDELs. INDELs are easily

misaligned when mapping the patient DNA to a reference
genome, which is ahead of variant calling. In order to correctly
identify INDELs, haplotype-based variant callers add extra
steps, such as local de-novo assembly of haplotypes [5][6] or
direct detection of haplotypes [7]. Moreover, haplotype-based
callers enhance the accuracy of identifying SNVs by making
use of linkage disequilibrium between nearby variants. The
GATK UnifiedGenotyper, for example, is less effective than
the GATK HaplotypeCaller in detecting INDELs. However,
this comes at the cost of higher execution time.

The GATK HaplotypeCaller (or GATK HC) is widely used
in many large-scale sequencing projects. However, GATK
HC suffers from long execution time, which would limit its
feasibility in many situation. In this paper, we investigate
and propose the first GPU-accelerated version GATK HC to
improve its performance. Regarding to the optimization of
GATK HC, Intel processors and IBM POWER processors both
exploit vector instructions to speed up the pairwise alignment
kernel [8][9], which is the most time consuming part of
GATK HC. There are also a couple of publications on FPGA-
based and GPU-based hardware acceleration of the pairwise
alignment kernel of GATK HC, but they do not discuss the
acceleration of the overall application [10][11].

In this paper, we present an efficient GPU-accelerated
implementation of GATK HC and evaluate its effective-
ness. An important component of the work is integrating
the GPU acceleration into the Java-based GATK HC code
and minimizing the incurred overhead. Compared with the
baseline implementation, it achieved 1.71x speedup in single-
threaded mode. Moreover, we found an important limitation
in the GATK HaplotypeCaller implementation which forces
the sequential execution of the program and prevents effective
utilization of the accelerated part. A load-balanced multi-
process optimization is proposed to overcome this limitation,
which makes the GPU-based implementation up to 2.04x
and 1.40x faster than the baseline implementation and the
vectorized implementation, respectively.

The rest of this paper is organized as follows. Section II
presents a brief overview of GATK HC. Section III presents
the details of the GPU-accelerated implementation of GATK
HC and the load-balanced multi-process optimization. Sec-
tion IV presents the experimental results along with analyses.
Section V concludes this paper.

49

II. BACKGROUND

A. GATK HaplotypeCaller

GATK HC is a Java-based DNA variant caller that is widely
used in practice. It is divided into the following four main
steps [12].

(i) Define active regions—Active regions are determined
based on the presence of significant evidence for vari-
ation. The following steps only operate on the active
regions and ignore the inactive regions.

(ii) Determine haplotypes—For each active region, a de
Bruijn-like graph is built to reassemble the active region
and a list of haplotypes is determined based on the
graph. Here, haplotype is a sequence covering the entire
length of an active region. Then each haplotype is re-
aligned against the reference sequence using the Smith-
Waterman algorithm in order to identify potentially
variant sites.

(iii) Determine likelihoods of the haplotypes—For each
active region, a pairwise alignment of each read against
each haplotype is performed using the pair-HMMs for-
ward algorithm, which produces a matrix of likelihoods
of haplotypes given the reads.

(iv) Assign genotypes—For each potential variant site,
Bayes’ rule is applied to calculate the likelihoods of
each genotype using the likelihoods of haplotypes given
the reads. The genotype with the largest likelihoods is
selected.

GATK HC can run in single-threaded and multi-threaded
mode, as shown in Figure 1. When GATK HC runs in single-
threaded mode (Figure 1(a)), it first defines active regions
(Step(i) in the list above). If there is an active region, it
executes Step(ii), Step(iii) and Step(iv) in succession and
jumps back to Step(i). If there are no more active regions
in Step(i), GATK HC ends execution.

When GATK HC runs in multi-threaded mode (Figure 1(b)),
each thread executes in the same way as in single-threaded
mode. However, since the size of the active region is not
known in advance, Step(i) has to first complete calculating
the current active region before the next active region can be
calculated. This leads to only one thread executing Step(i) at
any time.

In order to investigate which of these steps is most time-
consuming and which one is most suitable for GPU-based
acceleration, we analyzed and profiled GATK HC (GATK
version 3.7) with a typical workload (chromosome 10 of the
whole human genome dataset G15512.HCC1954.1).

Firstly, GATK HC was executed in single-threaded mode in
order to find which step is most time-consuming. The profiling
results in single-threaded mode are shown in Table I. The
relative execution time and type of processing are specified
in the table as well. As shown in Table I, Step(iii) is most
time-consuming, which consumes 48.5% of the total execution
time. The main operation of Step(iii) is pairwise alignments
implemented by the pair-HMMs forward algorithm, which is

Fig. 1. GATK HC workflow in (a) single-threaded mode and (b) multi-
threaded mode

executed millions of times. Therefore, acceleration of the pair-
HMMs forward algorithm is very important to improve the
performance of GATK HC in single-threaded mode.

GATK HC then was executed in multi-threaded mode.
The total execution time with different number of cores was
recorded, which is shown in Figure 2. Moreover, in order to
find the influence of the data dependency of Step(i) across
multiple threads, we modified GATK HC by disabling the
execution of the other steps and made it only executed Step(i).

50 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

TABLE I
PROFILING RESULTS OF GATK HAPLOTYPECALLER

Steps Time Processing
Define active regions 15.5% Sequential
Determine haplotypes 34.0% Sequential
Determine likelihoods 48.5% Parallel
Assign genotypes 1.3% Parallel
Other 0.7%

The total execution time of the modified GATK HC running
on 20 cores is 1164 seconds, while the total execution time
of original GATK HC running on 20 cores is 1249 seconds.
This indicates that when the number of cores is big enough,
GATK HC execution time becomes bottlenecked by Step(i) in
multi-threaded mode.

In practice, GATK HC is usually executed in multi-process
mode instead of in multi-threaded mode to overcome the data
dependencies in Step(i). In multi-process mode, the input file
is split into chunks based on genome regions and each chunk
is processed by GATK HC independently. Although there may
be some accuracy loss at the boundaries between consecutive
chunks within the same chromosome, the accuracy loss can
be negligible in many cases.

The simplest way to divide the input file is to split
the genome regions into multiple intervals of equal length.
[13][14] proposes to split the genome regions based on the
number of reads mapped to each regions, taking the read
coverage into consideration. However, both methods do not
results in a balanced division of the input file in the case of
GATK HC. In this paper, we present a load-balanced multi-
process optimization to minimize the total execution time.

0 2 4 6 8 10 12 14 16 18 20

Number of cores

0

1000

2000

3000

4000

5000

6000

7000

8000

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

(s
)

multi cores

1164s

Fig. 2. Multi-threaded execution time of GATK HC

B. Pair-HMMs forward algorithm

In GATK HC, the pair-HMMs forward algorithm takes a
read and a haplotype as the input and calculates the overall
alignment probability. Previous research on increasing the
speed of the pair-HMMs forward algorithm can be found
in [8][9][10][11], most of which exploit the inherent paral-
lelism of the algorithm. Intel and IBM researchers employ
vector instructions on their respective processors [8][9] to
reduce the execution time. These vectorization approaches
have been implemented and can be integrated into GATK

Fig. 3. Data flow of the multi-process GATK HC

HC easily. The authors claim a dramatic improvement of the
performance of single-threaded GATK HC.

On the other hand, [10][11][15] propose FPGA-based im-
plementations of the pair-HMMs forward algorithm. [10]
utilizes a systolic array to map the algorithm on FPGAs, while
[11] proposes pipelined processing elements within a systolic
array and [15] reduces the overhead in the systolic array.
However, these implementations have not been integrated into
GATK HC.

In addition, [16] proposes several GPU-based implemen-
tations of the pair-HMMs forward algorithm and compares
these implementations using datasets with different number
of read-haplotype pairs. It investigates two different acceler-
ation approaches: the inter-task and intra-task parallelization.
According to the paper, when the number of read-haplotype
pairs is small, the intra-task GPU-based implementation out-
performs all other investigated implementations.

III. METHODS

Our efforts to improve the performance of GATK HC can
be divided into two aspects: (1) a load-balanced multi-process
parallelization approach to reduce the sequential execution of
Step(i) and (2) integration of GPU acceleration of the pair-
HMMs forward algorithm into the multi-process GATK HC.

A. Load-balanced multi-process optimization

Figure 3 shows the data flow of the multi-process GATK
HC. The GATK HC argument −L is used to confine process-
ing to a specific genome interval instead of actually dividing
the input file into small parts. Each interval is processed
individually by a GATK HC instance. The output of these
GATK HC instances, represented by VCF files, are combined
by VCFtools [17] into one VCF file.

As mentioned in Section II-A, Step(ii), Step(iii) and Step(iv)
operate only on active regions. If each genome interval has
the same number of active regions, this will most probably
result in a load-balanced multi-process implementation. Since
the active regions are determined by the presence of significant
evidence of variation in Step(i), the number of variants in each
genome interval is the key parameter to ensure load-balancing.

51

Fig. 4. Two methods of calling CUDA programming modules from Java code

When running GATK HC, the argument −D and a dbsnp
file is usually used in order to annotate variants found by
GATK HC with the corresponding reference ID. Since the
dbsnp file includes all known variants and the positions of
these variants on the genome, we can use this file to divide the
genome into regions based on the number of known variants.
Although GATK HC might find novel variants not present in
the dbsnp file, the number of these variants is relatively small
and would have a negligible influence on the genome region
division.

In order to divide the genome region using the dbsnp file, we
modified BCFtools, which uses the HTSlib library to realize
fast accesses of the dbsnp file. The modification of BCFtools
is to add a function in the vcffilter.c file. The new function
first calculates the total number of variants and then outputs
the start and end positions of each genome interval, which has
the same number of variants.

Besides the number of variants, the number of reads on each
genome interval may also influence the load-balancing. One
solution is to take these two factors together into consideration.
However, it turns out that calculating the total number of reads
in the input file is very time consuming. Moreover, for each
new input file, the calculation of the total number of reads has
to be done again. Thus, the genome region is divided only
based on the variant numbers in the dbsnp file.

B. Application level GPU acceleration

In GATK HC, the number of read-haplotype pairs processed
by the pair-HMMs forward algorithm depends on the number
of the reads and haplotypes found in each active region. For
example, the number of read-haplotype pairs ranges from 4
to 38912 for each active region in chromosome 10 of the
whole human genome dataset G15512.HCCI954.1. According
to [16], for this type of dataset, the intra-task GPU-based
implementation of the pair-HMMs forward algorithm is the
most effective GPU-based implementation that gives the high-
est performance.

The GPU acceleration of the pair-HMMs forward algorithm
is implemented using CUDA. Although CUDA is able to
support various programming languages, it does not support
Java, which is the programming language of GATK HC. One
method to call CUDA code from Java is using JNI (Java Native
Interface), which enables Java code to call modules written in
programming languages such as C and C++. As shown by
Figure 4(a), this is done by first using JNI to call C++ code
from Java, which in turn calls CUDA code.

Fig. 5. GATK HC new workflow in single-threaded mode

Another method is to apply JCuda[18], which supplies direct
accesses of the CUDA code from Java code. In essence, the
design of JCuda also uses JNI to call C++ code and lets
C++ code call CUDA programming modules. However, JCuda
hides these details from the user. Thus, we can directly call
CUDA programming modules from Java codes, as shown by
Figure 4(b). For GATK HC, JCuda is employed to call CUDA
code from Java.

As shown by Figure 1(a) and (b), the last three steps of the
workflow (Determine haplotypes, Determine likelihoods and
Assign genotypes) are executed sequentially for each active
region. This prevents hiding the execution time of the GPU
accelerated part. If the Java implementation of the pair-HMMs
forward algorithm is replaced by the GPU implementation, the
CPU would be idle and wait for the GPU results. In order
to allow hiding GPU execution time, we need to modify the
workflow in order to make GPU and CPU run in parallel.

Figure 5 is the new workflow of GATK HC in single-
threaded mode. GATK HC first produces and collects multiple
active regions and passes these active regions to subsequent
steps. Then, Determine haplotypes is executed for the first

52 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

active region and the results are transferred to the GPU. Next,
Determine likelihoods for the first active region is executed
on GPU while Determine haplotypes for the second active
region is executed on CPU simultaneously. The rest of the
active regions are processed in the same manner. In this way,
Determine likelihoods on GPU and Determine haplotypes on
CPU are executed simultaneously.

With regard to multi-threaded mode, GATK HC first pro-
duces multiple active region, which is still sequentially exe-
cuted. The other steps of multi-threaded mode are modified in
the same way as the steps of single-threaded mode in Figure 5.
For each thread, Determine haplotypes on CPU and Determine
likelihoods on GPU are executed simultaneously.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

In this paper, we use an IBM Power System S824L (82478-
42L) to perform experiments and measure performance results.
This system includes two IBM Power8 processors (10 cores
each) running at 3.42 GHz, 256 GB of DDR3 memory, and
an NVIDIA Tesla K40 card. The NVIDIA Tesla K40 card has
2880 cores running at up to 745 MHz, with CUDA compute
capability 3.5.

This paper uses GATK version 3.7 for the analysis, which
is the latest version of GATK at the time of writing. The paper
compare the performance of three GATK HC implementations:
(1) the baseline GATK HC with the pair-HMMs forward
algorithm implemented in Java, which is downloaded from the
GATK website; (2) GATK HC with the pair-HMMs forward
algorithm optimized using vector instructions, the library of
which is implemented by IBM research [9]; (3) GATK HC
with the pair-HMMs forward algorithm accelerated on GPU.
The dataset used for the measurement is chromosome 10 of
the whole human genome dataset G15512.HCC1954.1.

B. Single-threaded

Table II shows the results of the GATK HC implementations
in single-threaded mode. As shown by Table II, the baseline
implementation took the longest time (8034.05 seconds). The
vectorized GATK HC is 1.42x faster than the baseline im-
plementation. The GPU-based GATK HC is 1.71x and 1.21x
faster than the baseline implementation and the vectorized
GATK HC implementation, respectively.

TABLE II
RESULTS OF GATK HC IMPLEMENTATIONS IN SINGLE-THREADED MODE.

GATK HC Total time [s] Time pair-HMMs [s] Speedup
Baseline 8034.05 3676.12 —
Vectorized 5655.96 1289.62 1.42x
GPU-based 4687.08 hidden 1.71x

C. Multi-threaded

Figure 6 shows results of the three GATK HC implemen-
tations in multi-threaded mode with thread number ranging
from 2 to 20.

2 4 6 8 10 12 14 16 18 20

Number of threads

1000

1500

2000

2500

3000

3500

4000

4500

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
(s

)

Baseline

Vectorized

GPU-based

Fig. 6. Total execution time of GATK HC in multi-threaded mode

The execution time of all three implementations decreases
while the thread number increases. This is the benefit of us-
ing multi-thread, which makes Step(ii) Determine haplotypes,
Step(iii) Determine likelihoods and Step(iv) Assign genotypes
be executed in parallel.

When the thread number is small, the execution time of
the GPU-based implementation is the lowest. However, the
execution time of the three implementations becomes very
similar when the number of threads becomes bigger than 10.
This means that the acceleration of the pair-HMMs forward
algorithm does not have big effects on the total execution time
when the number of threads is big enough.

D. Multi-process

The three implementations were executed with differ-
ent number of processes from 2 to 20 both in the load-
balanced and non-load-balanced multi-process mode. In the
load-balanced multi-process mode, the input file is divided
according to the method proposed in Section III-A; in the
non-load-balanced multi-process mode, the input file is divided
simply using equal number of bases in each segment of the
genome.

In order to verify the accuracy of GATK HC in multi-
process mode, VCFtools is used to merge the output files
produced by the GATK HC instances into one file and compare
this file with the output file produced by the baseline imple-
mentation in single-threaded mode. The comparison results
show that there is no accuracy loss for all the multi-process
GATK HC experiments with process number from 2 to 20.
For other input file, there might be some accuracy loss.

Generally, the execution time of each GATK HC instance
in multi-process mode is not the same. Therefore, the max-
imal execution time is measured and used as a metric for
comparison. Actually, the maximal execution time presents
the total time used to handle the input file in multi-process
mode. Figure 7 shows the maximal execution time of the three
implementations running with different number of processes.

As shown in Figure 7, the maximal execution time of
the three implementations in the load-balanced multi-process
mode is smaller than these in the non-load-balanced multi-
process mode.

53

2 4 6 8 10 12 14 16 18 20

Number of threads

300

500

1000

1500

2000

2500

3000

3500

4000
4500
5000

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
(s

)

load-balanced, baseline

load-balanced, vectorized

load-balanced, GPU-based

non-load-balanced, baseline

non-load-balanced, vectorized

non-load-balanced, GPU-based

Fig. 7. Maximal execution time of GATK HC implementations in multi-
process mode

Moreover, the GPU-based GATK HC implementation in the
load-balanced multi-process mode is the fastest. Compared
with the baseline implementation and the vectorized GATK
HC implementation in the non-load-balanced multi-process
mode, the GPU-based GATK HC implementation in the load-
balanced multi-process mode achieves up to 2.04x and 1.40x
speedup, respectively.

V. CONCLUSIONS

This paper presents a novel implementation of a GPU accel-
erated GATK HC to improve the overall performance of this
computationally intensive application. The paper also proposes
a load-balanced multi-process optimization that divides the
genome into regions of different sizes to ensure a more equal
distribution of computation load between different processes.
In addition, the paper compares the GPU-based, vectorized
and baseline GATK HC implementations in single-threaded,
multi-threaded and multi-process modes.

In single-threaded mode, the GPU-based GATK HC is 1.71x
faster than the baseline implementation and 1.21x faster than
the vectorized GATK HC implementation. In multi-threaded
mode, the GATK HC workflow limits the performance im-
provement achievable by accelerating the pair-HMMs kernel.
In multi-process mode, the GPU-based GATK HC implemen-
tation is the fastest. In addition, the GPU-based implementa-
tion achieves up to 2.04x and 1.40x speedup in load-balanced
multi-process mode over the baseline implementation and
vectorized GATK HC implementation in non-load-balanced
multi-process mode, respectively.

REFERENCES

[1] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nat
Biotech, 26(10):1135–1145, 10 2008.

[2] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko,
Kristian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Alt-
shuler, Stacey Gabriel, Mark Daly, and Mark A DePristo. The genome
analysis toolkit: A mapreduce framework for analyzing next-generation
dna sequencing data. Genome Research, 20(9):1297–1303, 09 2010.

[3] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, and 1000
Genome Project Data Processing Subgroup. The sequence align-
ment/map format and samtools. Bioinformatics, 25(16):2078–2079, 08
2009.

[4] Daniel C. Koboldt, Qunyuan Zhang, David E. Larson, Dong Shen,
Michael D. McLellan, Ling Lin, Christopher A. Miller, Elaine R. Mardis,
Li Ding, and Richard K. Wilson. Varscan 2: Somatic mutation and copy
number alteration discovery in cancer by exome sequencing. Genome
Research, 22(3):568–576, 03 2012.

[5] Geraldine A. Van der Auwera, Mauricio O. Carneiro, Chris Hartl, Ryan
Poplin, Guillermo del Angel, Ami Levy-Moonshine, Tadeusz Jordan,
Khalid Shakir, David Roazen, Joel Thibault, Eric Banks, Kiran V.
Garimella, David Altshuler, Stacey Gabriel, and Mark A. DePristo. From
fastq data to high confidence variant calls: the genome analysis toolkit
best practices pipeline. CURRENT PROTOCOLS IN BIOINFORMAT-
ICS, 11(1110):11.10.1–11.10.33, 10 2013.

[6] Andy Rimmer, Hang Phan, Iain Mathieson, Zamin Iqbal, Stephen R.F.
Twigg, WGS500 Consortium, Andrew O.M. Wilkie, Gil McVean, and
Gerton Lunter. Integrating mapping-, assembly- and haplotype-based
approaches for calling variants in clinical sequencing applications. Nat
Genet, 46(8):912–918, 08 2014.

[7] Erik Garrison and Gabor Marth. Haplotype-based variant detection from
short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN],
2012.

[8] Allison Proffitt. Broad, Intel Announce Speed Improvements to GATK
Powered by Intel Optimizations. http://www.bio-itworld.com/2014/3/
20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-
optimizations.html.

[9] Geraldine VdAuwera. Speed up HaplotypeCaller on IBM POWER8
systems. https://software.broadinstitute.org/gatk/blog?id=4833.

[10] Shanshan Ren, Vlad M. Sima, and Zaid Al-Ars. Fpga acceleration of
the pair-hmms forward algorithm for dna sequence analysis. 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
pages 1465–1470, 2015.

[11] Megumi Ito and Moriyoshi Ohara. A power-efficient FPGA accelerator:
Systolic array with cache-coherent interface for pair-HMM algorithm.
In 2016 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS XIX), pages 1–3. IEEE, 2016.

[12] HaplotypeCaller Call germline SNPs and indels via local re-
assembly of haplotypes. https://software.broadinstitute.org/gatk/
documentation/tooldocs/current/org broadinstitute gatk tools walkers
haplotypecaller HaplotypeCaller.php/.

[13] Hamid Mushtaq and Zaid Al-Ars. Cluster-based apache spark imple-
mentation of the gatk dna analysis pipeline. In 2015 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 1471–
1477, Nov 2015.

[14] Hamid Mushtaq, Frank Liu, Carlos Costa, Gang Liu, Peter Hofstee,
and Zaid Al-Ars. Sparkga: A spark framework for cost effective, fast
and accurate dna analysis at scale. In Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology,and
Health Informatics, ACM-BCB ’17, pages 148–157, New York, NY,
USA, 2017. ACM.

[15] Johan Peltenburg, Shanshan Ren, and Zaid Al-Ars. Maximizing systolic
array efficiency to accelerate the pairhmm forward algorithm. In
2016 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 758–762, Dec 2016.

[16] Shanshan Ren, Koen Bertels, and Zaid Al-Ars. Exploration of alternative
gpu implementations of the pair-hmms forward algorithm. In 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
pages 902–909, Dec 2016.

[17] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric
Banks, Mark A. DePristo, Robert E. Handsaker, Gerton Lunter, Gabor T.
Marth, Stephen T. Sherry, Gilean McVean, Richard Durbin, and . The
variant call format and vcftools. Bioinformatics, 27(15):2156, 2011.

[18] Yonghong Yan, Max Grossman, and Vivek Sarkar. Jcuda: A
programmer-friendly interface for accelerating java programs with cuda.
In Proceedings of the 15th International Euro-Par Conference on
Parallel Processing, Euro-Par ’09, pages 887–899, Berlin, Heidelberg,
2009. Springer-Verlag.

54 4. GPU ACCELERATION OF THE PAIR-HMMS FORWARD ALGORITHM

5
GPU ACCELERATED SEQUENCE

ALIGNMENT WITH TRACEBACK

SUMMARY
This chapter proposes to accelerate the semi-global pairwise sequence alignment

with traceback on GPUs to improve the performance of GATK HaplotypeCaller (HC).
Based on the characteristics of the semi-global alignment with traceback in GATK HC,
the intra-task parallelization model is chosen. Moreover, our GPU implementation
also records the length of consecutive matches/mismatches in addition to lengths of
consecutive insertions and deletions as in the CPU implementation. Experimental
results show that our alignment kernel with traceback is up to 14.14x faster than its CPU
counterpart. When integrated into GATK HC (alongside a GPU accelerated pair-HMMs
forward kernel), the GPU-based GATK HC implementation is 2.3x faster than the
baseline GATK HC implementation, and 1.34x faster than the GATK HC implementation
only with the integrated GPU-based pair-HMMs forward algorithm.

This chapter is based on the following paper.
S. Ren, N. Ahmed, K.L.M. Bertels, Z. Al-Ars, GPU Accelerated Sequence Alignment

with Trace-back for GATK HaplotypeCaller. Accepted for publication in BMC Genomics,
2019 [Journal]

55

Ren et al.

RESEARCH

GPU Accelerated Sequence Alignment with
Traceback for GATK HaplotypeCaller
Shanshan Ren, Nauman Ahmed, Koen Bertels and Zaid Al-Ars*

*Correspondence:

z.al-ars@tudelft.nl

Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The

Netherlands

Abstract

Background: Pairwise sequence alignment is widely used in many biological
tools and applications. Existing GPU accelerated implementations mainly focus
on calculating optimal alignment score and omit identifying the optimal
alignment itself. In GATK HaplotypeCaller (HC), the semi-global pairwise
sequence alignment with traceback has so far been difficult to accelerate
effectively on GPUs.

Results: We first analyze the characteristics of the semi-global alignment with
traceback in GATK HC and then propose a new algorithm that allows for
retrieving the optimal alignment efficiently on GPUs. For the first stage, we
choose intra-task parallelization model to calculate the position of the optimal
alignment score and the backtracking matrix. Moreover, in the first stage, our
GPU implementation also records the length of consecutive matches/mismatches
in addition to lengths of consecutive insertions and deletions as in the CPU-based
implementation. This helps efficiently retrieve the backtracking matrix to obtain
the optimal alignment in the second stage.

Conclusions: Experimental results show that our alignment kernel with traceback
is up to 80x and 14.14x faster than its CPU counterpart with synthetic datasets
and real datasets, respectively. When integrated into GATK HC (alongside a GPU
accelerated pair-HMMs forward kernel), the overall acceleration is 2.3x faster
than the baseline GATK HC implementation, and 1.34x faster than the GATK HC
implementation with the integrated GPU-based pair-HMMs forward algorithm.
Although the methods proposed in this paper is to improve the performance of
GATK HC, they can also be used in other pairwise alignments and applications.

Keywords: Semi-global alignment with traceback; optimal alignment; GATK
HaplotypeCaller (HC); GPUs

Background
NGS (Next Generation Sequencing) platforms offer the capacity to generate large

amounts of DNA sequencing data in a short time and at a low cost. However, the

analysis of the dramatic amounts of DNA sequencing data is still a computational

challenge. Researchers have proposed many methods to improve the performance of

the DNA sequencing data analysis tools and applications. One method is to execute

these tools and applications on high performance computing architectures, such as

supercomputers, clusters and even cloud environments. Another method is to use

accelerators, such as GPUs and FPGAs, to accelerate the time-consuming kernels

of these tools and applications to improve their performance.

GATK HaplotypeCaller (HC) is a popular variant caller, which is used to find

the differences (or variants) between the sample DNA sequence compared with

56 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 2 of 20

the reference sequence. Although GATK HC has higher accuracy of identifying

variants compared with many other variant callers, its feasibility is limited by the

long execution time needed for the analysis, which has proven to be difficult to

optimize. This has driven researchers to improve its performance. Intel and IBM

researchers both employ vector instructions to optimize the pair-HMMs forward

algorithm [1, 2], which is the most time-consuming part of GATK HC, to reduce

the total execution time. [3, 4] uses GPUs to accelerate the pair-HMMs forward

algorithm in GATK HC, which achieved 1.71x speedup in single thread mode. After

accelerating the pair-HMMs forward algorithm on GPUs, profiling of GATK HC

shows that the semi-global pairwise sequence alignment accounts for around 34.5%

of the overall execution time, making it the most time-consuming kernel in the

application. This provides an opportunity to further improve the performance of

GATK HC using GPU acceleration.

Pairwise sequence alignment, which includes global alignment, semi-global align-

ment and local alignment, is one of the commonly used techniques in many bio-

logical tools and applications. The global alignment and the semi-global alignment

are calculated by the Needleman-Wunsch algorithm and the modified Needleman-

Wunsch algorithm, respectively, while the local alignment is calculated by the

Smith-Waterman algorithm. Although there are some differences existing in the

three algorithms, the main framework of these algorithms is similar, which includes

two stages: (1) a dynamic programming kernel to calculate the score matrices and

find the optimal alignment score; (2) a traceback (or backtracking) kernel to find

the optimal alignment.

Since three kinds of pairwise sequence alignment (global, semi-global and local)

have the same framework and differ only in details, techniques of speeding up one

can be applied to the other two with tiny modifications. Different kinds of high-

performance platforms, especially accelerators, such as FPGAs [5, 6] and GPUs [7–

16], are used to reduce their execution time.

There has been much research done to reduce the execution time of the three

kinds of pairwise alignment on GPUs. There are two approaches to implement the

first stage of the pairwise sequence alignment on GPUs (which is to calculate the

optimal alignment score): inter-task parallelization model and intra-task paralleliza-

tion model. The former is that each thread performs one alignment independently,

such as [7] and [8]. The latter is that threads in a block cooperate to perform an

alignment, such as [9]. If the pairwise sequence alignment is applied for sequence

database scanning, aligning a query sequence with all database sequences for se-

quence similarity, a query profile and related data storage and access techniques are

employed to reduce memory accesses on GPUs, such as [10] and [11]. In [11], align-

ments are performed in interleaved mode in order to amortize the cost of initiating

each execution pass.

However, very few researchers implement the second stage on GPUs. The existing

implementations can be classified into two groups. The implementations of the first

group are based on backtracking matrices. [11] proposed to store the score matrices

and backtrack the score matrices to obtain the optimal alignment. However, the

method is not described clearly. gpu-pairAlign [12] proposed to store the alignment

moves in four Boolean backtracking matrices during the first stage and retrieve the

57

Ren et al. Page 3 of 20

four Boolean backtracking matrices instead of the score matrices. This group of

implementations obtain the optimal alignment in linear time, but the disadvantage

is that their space complexity is quadratic. The implementations of the second group

are based on the Myers-Miller algorithm. MSA-CUDA [13] developed a stack-based

iterative implementation of the Myers-Miller algorithm [17] to retrieve the optimal

alignment in linear space. SW# [14] proposed a modified Myers-Miller algorithm.

CUDAlign 2.0 [15] combined the Myers-Miller and Smith-Waterman algorithm.

Moreover, with several versions of incremental optimizations, CUDAlign 4.0 [16] is

able to achieve the optimal alignment of chromosome-wide sequences using multiple

GPUs. However, their approaches have quadratic time complexity, making them

only suitable for the pairwise alignment of very long DNA and protein sequences.

In this paper, we provide an accelerated solution tailored to GATK HC which

implements the semi-global pairwise sequence alignment with traceback on GPUs

to further improve the performance. The contributions of this paper are as follows:

• We first analyze the characteristics of the semi-global alignment in GATK HC

and then propose a GPU-based implementation of the semi-global alignment

with traceback based on the analysis.

• During the first stage, we propose to record the length of consecutive

match(es)/mismatch(es) and store the alignment moves in a special back-

tracking matrix.

• We also propose a new algorithm that allows for retrieving the optimal align-

ment efficiently on GPUs.

• We benchmark the results and show an overall speedup of GATK HC of about

2.3x over the non-accelerated version.

Although this paper proposes to improve the performance of GATK HC, the GPU-

based implementation of the semi-global alignment with traceback can be used in

other applications and tools. Moreover, since there are only small differences among

the global alignment, semi-global alignment and local alignment, the methods pro-

posed in this paper can also be applied to the global alignment and local alignment.

Methods
A brief overview of semi-global alignment

R1: AGTCTAG - - CG -
R2: - GAC - - GAACGT

Alignment: MMMDDM I IMM

Figure 1 An example of an semi-global alignment of two sequences in GATK HC. R1 and R2
represent two sequences. Gaps (‘-’) at the start and end of two sequences are neglected. In the
alignment, there are three kinds of operations indicating how R2 aligns with R1. ‘M’ indicates
that a base in R2 aligns with a base in R1 (matches or mismatches); ‘I’ indicates that a base in
R2 is not in R1; ‘D’ indicates that a base in R1 is not in R2.

Semi-global alignment finds the overlap between two sequences. Insertion and

deletions introduce gaps in the alignment. Gaps at the start or end of the sequences

may be neglected. Hence, different types of semi-global alignments are possible

between two sequences. Figure 1 shows an example of the type of the semi-global

alignment performed in GATK HC.

58 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 4 of 20

The pairwise sequence alignment is to find the optimal alignment between two

sequences, which has the optimal alignment score. The modified Needleman-Wunsch

algorithm with affine gap penalties to calculate the optimal alignment score of the

semi-global alignment in GATK HC is defined as

Initialization:

Mi,0 = 0 (0 ≤ i ≤ m)

M0,j = 0 (0 ≤ j ≤ n)
(1)

Recurrence:

Mi,j = max





Mi−1,j−1 + sbt(R1[i], R2[j])

Di,j

Ii,j

Di,j = max




Di−1,j − β

Mi−1,j − α

Ii,j = max




Ii,j−1 − β

Mi,j−1 − α

(2)

Termination:

Result = max





max{1≤i≤m}Mi,n

max{1≤j≤n}Mm,j

(3)

where m and n are the length of R1 and R2, respectively. In these equations,

Mi,j represents the optimal alignment score of two subsequences R1[1]...R1[i] and

R2[1]...R2[j], while Ii,j and Di,j represent the optimal alignment score of two subse-

quences R1[1]...R1[i] and R2[1]...R2[j] with R2[j] aligned to a gap and R1[i] aligned

to a gap, respectively. Here, the semi-global alignment uses an affine gap penalty

model to calculate gap penalties, in which α and β are the gap open penalty and

the gap extension penalty, respectively. sbt is the score of a match or mismatch. As

shown by Equation 1, the penalties of gaps at the start and end of two sequences are

neglected. As shown by Equation 3, the optimal alignment score of the semi-global

alignment in GATK HC is the greatest value of the elements in the last row and

the last column of the matrix M.

These equations indicate that the computation complexity of the modified

Needleman-Wunsch algorithm is O(mn), which makes the execution time increase

quadratically with the sequence length. Usually, the algorithm is implemented using

dynamic programming which solves three two dimensional matrices. According to

the equations, Mi,j , Ii,j and Di,j only depend on the up-left, up and left neigh-

bor elements, which implies that the elements on the same anti-diagonal can be

computed in parallel. Thus, a method employed by many researchers to reduce the

execution time is to exploit this inherent parallelism in the algorithm.

If the alignment only needs to find the optimal alignment score of two sequences,

the dynamic programming kernel can be calculated in linear space. Otherwise, the

59

Ren et al. Page 5 of 20

alignment with affine gap penalties generally uses three backtracking matrices to

store the scores or alignment moves calculated by the dynamic programming ker-

nel. The optimal alignment traceback starts from the position of the element with

the optimal alignment score until reaching any element in the first row or the first

column of the backtracking matrices, which is calculated in linear time. Figure 2

presents an example of backtracking an optimal alignment based on the score ma-

trices.

I11 I12 I13 I14 I15 I16

I21 I22 I23 I24 I25 I26

I31 I32 I33 I34 I35 I36

I41 I42 I43 I44 I45 I46

I51 I52 I53 I54 I55 I56

I61 I62 I63 I64 I65 I66

M11M12M13M14M15M16

M21M22M23M24M25M26

M31M32M33M34M35M36

M41M42M43M44M45M46

M51M52M53M54M55M56

M61M62M63M64M65M66

D11D12D13D14D15D16

D21D22D23D24D25D26

D31D32D33D34D35D36

D41D42D43D44D45D46

D51D52D53D54D55D56

D61D62D63D64D65D66

Figure 2 An example of backtracking an optimal alignment. The backtracking of an optimal
alignment starts from M6,5 (central matrix in the figure), passes through M5,4, jumps to D5,4

(right matrix in the figure), passes through D4,4, jumps to M4,4, passes through M3,3, jumps to
I3,3 (left matrix in the figure), passes through I3,2, jumps to M3,2 and ends at M2,1. The
optimal alignment retrieved is “MDMIM”.

Cigar format

In GATK HC, the goal is to get the optimal semi-global alignments, which are

represented in the CIGAR format [18], and POS. CIGAR is a string including one

or more number-character pair(s). The character, including ‘M’, ‘I’, ‘D’, ‘N’, ‘S’,

‘H’, ‘P’, ‘=’ and ‘X’, defines an operation explaining how the base in R2 aligns

to the base in R1. Table 1 shows the CIGAR operations used in GATK HC. The

number defines the length of the consecutive operations. POS is 0-based left most

position of the first matching base of R1, which indicates the position of R1 where

the alignment starts.

Table 1 CIGAR operations used in GATK HC

Operation Description

M Match/mismatch
I Insertion (gap in R1)
D Deletion (gap in R2)
S Soft clipping (base at the beginning

or the end of R2 but not in R1)

Take the alignment in Figure 1 for example. The CIGAR representation of the

alignment is “3M2D1M2I2M1S” and POS of the alignment is 1.

GPU architecture

Modern GPUs are widely used to accelerate computationally intensive algorithms. A

GPU consists of thousands of small cores capable of executing one thread at a time.

On NVIDIA GPUs, threads are grouped into blocks and these blocks are grouped

into grids. Furthermore, consecutive threads in the same block are grouped into

60 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 6 of 20

warps. The size of a warp is usually 32. The memory hierarchy includes registers,

shared memory, global memory, cache and so on. Each thread is assigned a set

of registers. The shared memory is accessed by all threads in a block. Using the

shared memory, the threads in a block can exchange data at a very fast rate. The

global memory is accessed by all the threads on the GPU. The latency of the global

memory access is high since it resides on the device DRAM. If the data accessed

by each thread in the same warp are stored at consecutive addresses, the global

memory accesses of these threads can be coalesced. Usually, the width of one global

memory access is 128 bytes. If the global memory accesses of threads in a warp

are coalesced, there will be only one global memory access when the data accessed

by each thread is not more than 4 bytes. Otherwise, there would be 32 sequential

global memory accesses in the worst-case situation.

Semi-global alignment in GATK HC

Implementation of alignment in GATK HC

In GATK HC, the semi-global pairwise alignment is performed in two stages.

The implementation of the first stage is realized with a two-layer loop, which

results in the O(mn) computational complexity. The results of the first stage are

two matrices: the score matrix sw, which stores matrix M , and the backtracking

matrix btrack. In btrack, the value of each element can be classified into three kinds,

which is defined as follows:

• > 0 - indicates a deletion and the length of the consecutive deletion(s) is the

value of the element

• = 0 - indicates a match or mismatch and the length of the consecutive

match(es)/mismatch(es) is increased by 1

• < 0 - indicates an insertion and the length of the consecutive insertion(s) is

the absolute value of the element

The absolute values of the elements in the backtracking matrix are calculated by

recording the length of the consecutive deletion(s) and consecutive insertion(s) when

calculating the score matrix.

The implementation of the second stage is to calculate the optimal alignment in

CIGAR format and POS. The score matrix sw is first used to find the optimal

alignment score and the backtracking matrix btrack is then used to obtain the op-

timal alignment and POS. The optimal alignment is calculated in linear time. The

backtracking matrix in GATK HC is helpful during backtracking. It is much easier

to identify the next move compared with other methods since it does not need to

jump among several backtracking matrices (shown in Figure 1) or calculate the next

move based on the current move [12]. Moreover, the lengths of the consecutive dele-

tion(s) and consecutive insertion(s) are given by the element of the btrack matrix.

However, the length of the consecutive match(es)/mismatch(es) is not given, which

is increased by one instead.

Data analysis

In GATK HC, the semi-global alignment is performed in three situations:

1 Align the reference path with the dangling path to recover dangling branches

for the local assembly.

61

Ren et al. Page 7 of 20

2 Align the read with the assembled haplotype.

3 Align the assembled haplotype with the reference to decide whether the as-

sembled haplotype satisfied the defined requirements.

We profiled GPU-based GATK HC [3] with a typical workload (Chromosome 10

of the whole human genome dataset G15512.HCC1954.1 [19]) to investigate which

situation is most time-consuming. The profiling results in single-threaded mode are

shown in Table 2, which specifies the relative execution time and the number of

the semi-global alignments in each situation. As shown in the table, the execution

time of all the semi-global alignment accounts for 34.5% of the total execution time.

Moreover, situation 2 and 3 consumes around 100% of the semi-global alignment

execution time and the execution time in situation 1 is negligible. However, although

the number of semi-global alignments in situation 2 is much larger than that in

situation 3, the execution time in situation 2 is smaller than that in situation 3.

Table 2 Execution time of the semi-global alignment in three situations of GATK HC

Situation Number of alignments Execution time

1 3529 0.03%
2 850376 14.58%
3 54802 19.89%

Total 908707 34.5%

Figure 3 Lengths of sequence pairs in situation 2 and 3. The lengths of the sequence pairs in
situation 2 (40∼350) are shorter than those in situation 3 (300∼520).

We then analyzed the lengths of the sequence pairs in situation 2 and 3. In situa-

tion 2, let R1 be the assembled haplotype and R2 be the read. In situation 3, let R1

be the assembled haplotype and R2 be the reference. Figure 3 shows a scatter plot

of the lengths of the sequence pairs in these two situations. As shown in Figure 3,

the lengths of the sequence pairs in situation 2 (40∼350) are shorter than those in

situation 3 (300∼520). Since the computation complexity is O(mn), the execution

time of each semi-global alignment in situation 3 is bigger than that in situation

2. This explains why the total execution time of situation 3 is bigger than that of

situation 2, which is shown in Table 2. Moreover, in situation 2, the length of R2

(the read) is shorter than the length of R1 (the assembled haplotype).

62 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 8 of 20

In addition, we investigated the optimal alignments achieved in situation 2 and 3

and added up the number of M/I/D/S operations in each optimal alignment. Figure

4 shows that the number of M operations is the largest. Especially in situation 2,

the number of M operations accounts for 99.65% of the total operations. Moreover,

we found that most of M operations are consecutive in each optimal alignment.

However, the length of the consecutive match(es)/mismatch(es) is increased by one

during the optimal alignment retrieval.

M M I I D D S S S

101

102

103

104

105

106
99.7%

0.05%

0.3%

≈0%

84.4%

7.52% 8.13%

N
u
m
b
er

Situation 2
Situation 3

Figure 4 Numbers of M/I/D/S in situation 2 and 3. The number of M operations is the largest.
Especially in situation 2, the number of M operations accounts for 99.65% of the total operations.

0 50 100 150 200 250 300
100

101

102

103

104

Number of sequence pairs

N
u
m
b
er

of
b
at
ch
es

Situation 2
Situation 3

Figure 5 Numbers of batches including different number of sequence pairs in situation 2 and 3.
The biggest number of sequence pairs in all the batches in situation 2 and 3 are 293 and 192,
respectively. Furthermore, the majority of batches in situation 2 include 25 ∼ 125 of sequence
pairs while the majority of batches in situation 3 include 1 ∼ 8 of sequence pairs.

63

Ren et al. Page 9 of 20

Hence, although the computation complexity of the optimal alignment is lin-

ear, most of its execution time is used to calculate the length of the consecutive

match(es)/mismatch(es).

We last studied the source code of GATK HC version 3.7 and found that the

semi-global alignments in situation 2 and 3 can be grouped into many batches

without big modifications of the source code. Each batch consists of many semi-

global alignments of sequence pairs. The numbers of batches in situation 2 and 3 are

13142 and 13977, respectively. Figure 5 shows the number of sequence pairs of each

batch in situation 2 and 3. The biggest number of sequence pairs in all the batches

in situation 2 and 3 are 293 and 192, respectively. Furthermore, the majority of

batches in situation 2 include 25 ∼ 125 of sequence pairs while the majority of

batches in situation 3 include 1 ∼ 8 of sequence pairs.

Implementation on GPUs

The implementation of the semi-global pairwise alignment for GATK HC on GPUs

is performed in two stages. In the first stage, it performs the modified Needleman-

Wunsch algorithm in order to obtain the backtracking matrix and the position of the

optimal alignment score. In the second stage, it retrieves the backtracking matrix

in order to obtain the optimal alignment in CIGAR format and POS.

First stage implementation

Intra-task parallelization As mentioned in Subsection “Data analysis”, the num-

ber of sequence pairs in each batch is less than 300. In order to effectively use the

resources on GPUs, the intra-task parallelization model is employed to implement

the modified Needleman-Wunsch algorithm on GPUs. For the implementation on

GPUs, the elements on the same anti-diagonal of the score matrix M, I and D and

backtracking matrix are calculated in parallel, reducing the computational com-

plexity to O(m+ n). Figure 6 shows the calculation of matrix M as an example to

explain the implementation. Let R1 and R2 be the two sequences. There are in total

6 threads in the block and the size of matrix M is 6× 6. At each step, the elements

on an anti-diagonal are calculated in parallel and every element is calculated by one

thread. For example, at step 5 (S5), M5,1, M4,2, M3,3, M2,4 and M1,5, which are

on the same anti-diagonal, are calculated by thread 0 (T0), thread 1 (T1), thread 2

(T2), thread 3 (T3) and thread 4 (T4), respectively. These elements are then used

in the next step to calculate the elements on the next anti-diagonal. Moreover, each

thread is responsible to calculate the elements in one column of matrix M . For

example, the elements in the second column are calculated by thread 1 (T1). The

goal of the first stage is to obtain the backtracking matrix and the position of the

optimal alignment score. Therefore, elements of the score matrix M , I and D are

not stored. Instead, two vectors in the shared memory and three registers of each

thread are used to store the intermediate results of the three score matrices. During

the calculation of elements of the last column and the last row of matrix M, the

optimal alignment score and its position are obtained. However, the drawback of

the implementation is that some threads remain idle at the beginning or at the end

of the calculation procedure, resulting in low thread utilization. If the length of R2

is smaller than the number of threads in a block, the execution is similar to Figure

64 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 10 of 20

6 while some threads would remain idle during the whole calculation procedure. If

the length of R2 is bigger than the number of threads in a block, there are two

solutions to deal with it. One is to increase the size of a block until the number

of threads in a block is equal to or bigger than the length of R2. The other is to

divide the calculation into several passes. In each pass, the execution is similar to

Figure 6. Three vectors in the global memory are used to store the intermediate

results produced by the last thread of each pass, which would be used in the next

pass. The advantage of the second solution is that it increases efficiency by reducing

idle percentage of threads during the calculation procedure while its disadvantage

is that it increases global memory accesses.

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

T0 T1 T2 T3 T4 T5

R2[0] R2[1] R2[2] R2[3] R2[4] R2[5]

R1[0]

R1[1]

R1[2]

R1[3]

R1[4]

R1[5]

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

Figure 6 Calculation of matrix M on GPUs.

Recording the length of consecutive match(es)/mismatch(es) Besides recording the

length of the consecutive deletion(es)/insertion(es), we also record the length of the

consecutive match(es)/mismatch(es) in the first stage. The backtracking matrix on

GPUs is stored in a short2 matrix. Each element of the matrix has two values,

which are x and y. The value of x and y are defined as follows:

• x > 0 - indicates a deletion and the length of the consecutive deletion(s) is

the value of the element

• x = 0 - indicates a match or mismatch and the length of the consecutive

match(es)/mismatch(es) is y.

• x < 0 - indicates an insertion and the length of the consecutive insertion(s) is

the absolute value of the element

The data type of x and y is short, of which the minimum value and maximum value

are −32768 and 32767, respectively. The absolute values of the minimum value and

maximum value are bigger than the theoretical maximum length of the consecutive

operations, which is the length of R1 or R2. In order to calculate the backtracking

matrix, a short2 vector in the shared memory and two registers of each thread are

used.

Moreover, Since the backtracking matrix will be used in the next stage and the

shared memory is not big enough to store it, the backtracking matrix is stored

65

Ren et al. Page 11 of 20

in the global memory. Similar to calculation of the matrix M shown in Figure 6,

elements of the backtracking matrix are calculated in anti-diagonal order. Thus,

the backtracking matrices are stored in the diagonal-major data format (Figure 7

(b)), which is proposed in [20], instead of the row-major data format (Figure 7 (a))

to avoid non-coalesced global memory accesses of 32 threads in a warp and reduce

global memory accesses.

B6,1 B6,2 B6,3 B6,4 B6,5 B6,6

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6

B2,1 B2,2 B2,3 B2,4 B2,5 B2,6

B3,1 B3,2 B3,3 B3,4 B3,5 B3,6

B4,1 B4,2 B4,3 B4,4 B4,5 B4,6

B5,1 B5,2 B5,3 B5,4 B5,5 B5,6

B6,1 B6,2 B6,3 B6,4 B6,5 B6,6

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6

B2,1 B2,2 B2,3 B2,4 B2,5 B2,6

B3,1 B3,2 B3,3 B3,4 B3,5 B3,6

B4,1 B4,2 B4,3 B4,4 B4,5 B4,6

B5,1 B5,2 B5,3 B5,4 B5,5 B5,6

B6,1 B6,2 B6,3 B6,4 B6,5 B6,6

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6

(a)

B1,1 B6,2 B5,3 B4,4 B3,5 B2,6

B2,1 B1,2 B6,3 B5,4 B4,5 B3,6

B3,1 B2,2 B1,3 B6,4 B5,5 B4,6

B4,1 B3,2 B2,3 B1,4 B6,5 B5,6

B5,1 B4,2 B3,3 B2,4 B1,5 B6,6

B6,1 B5,2 B4,3 B3,4 B2,5 B1,6

B1,1 B6,2 B5,3 B4,4 B3,5 B2,6

B2,1 B1,2 B6,3 B5,4 B4,5 B3,6

B3,1 B2,2 B1,3 B6,4 B5,5 B4,6

B4,1 B3,2 B2,3 B1,4 B6,5 B5,6

B5,1 B4,2 B3,3 B2,4 B1,5 B6,6

B6,1 B5,2 B4,3 B3,4 B2,5 B1,6

B1,1 B6,2 B5,3 B4,4 B3,5 B2,6

B2,1 B1,2 B6,3 B5,4 B4,5 B3,6

B3,1 B2,2 B1,3 B6,4 B5,5 B4,6

B4,1 B3,2 B2,3 B1,4 B6,5 B5,6

B5,1 B4,2 B3,3 B2,4 B1,5 B6,6

(b)

Figure 7 Layout of the backtracking matrix in the global memory. Elements of different
backtracking matrices are marked with different colors.

Second stage implementation

In the second stage, we use the backtracking matrix btrack to obtain the optimal

alignment and POS. Algorithm 1 presents the pseudo code of the optimal alignment

retrieval on GPUs. P1 and P2 describe the position of the optimal alignment score.

Algorithm 1 first checks whether there are soft clippings at the end of R2, and then

computes the optimal alignment in a while loop. At the end, it checks whether there

are soft clippings at the beginning of R2. The backtracking starts from (P1, P2)

and finishes when i 6 0 or j 6 0, which is calculated in linear time. POS is the value

of (i− 1) at the end of the while loop. In addition, the position of each element in

the backtracking matrix is calculated by i, j and max col, as shown in the 9th line

in Algorithm 1. max col is the column size of the maximum backtracking matrix

of all sequence pairs.

The length of the deletion, insertion and match/mismatch is given by the value

of an element of the backtracking matrix, as shown in the 13th, 18th and 23rd line,

respectively. This reduces the global memory accesses used to calculate the length

of the operations.

66 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 12 of 20

Algorithm 1 Pseudo code of optimal alignment retrieval
1: function CalculateCigar(btrack[][], Cigar[], m, n, POS, P1, P2, max col)
2: state←′ N ′ . Initialization of state
3: length← 0
4: if P2 > 0&&n− P2 > 0 then . Check soft clippings at the end of R2
5: Cigar[index].num = n− P2
6: Cigar[index++].c =′ S′

7: end if
8: i = P1, j = P2
9: while i > 0&&j > 0 do . Compute optimal alignment

10: tp = B[(i− 1 + j − 1) ∗max col + j − 1]
11: if tp.x > 0 then
12: new state =′ D′

13: i = i− tp.x
14: step length = tp.x
15: else
16: if tp.x < 0 then
17: new state =′ I′

18: j = j − abs(tp.x)
19: step length = abs(tp.x)
20: else
21: new state =′ M ′

22: i = i− tp.y
23: j = j − tp.y
24: step length = tp.y
25: end if
26: end if
27: if state ==′ N ′ then
28: state = new state
29: end if
30: if new state == state then
31: length+ = step length
32: else
33: Cigar[index].num = length
34: Cigar[index++].c = state
35: length = step length
36: state = new state
37: end if
38: end while
39: Cigar[index].num = length
40: Cigar[index++].c = state
41: POS = i− 1
42: if j > 0 then . Check soft clippings at the beginning of R2
43: Cigar[index].num = j
44: Cigar[index++].c =′ S′

45: end if
46: end function

Results
All the experiments are performed on IBM Power System S823L (82478-42L), which

has 2 IBM Power8 processors (10 cores each) running at 3.6 GHz, 256 GB of DDR3

memory, and an NVIDIA Tesla K40 card. The NVIDIA Tesla K40 card has 2880

cores that run at up to 745 MHz and has a CUDA compute capability of 3.5.

We first compare the performance of the GPU-based semi-global alignment im-

plementation with different techniques using the synthetic datasets. The synthetic

datasets are created based on the output of Wgsim [21] with default parameters. We

then compare the performance of GPU-based semi-global alignment implementation

with gpu-pairAlign implementation using synthetic datasets. Next, we compare the

performance of GPU-based semi-global alignment implementation with CPU-based

implementation using synthetic and real datasets. We last integrate the GPU-based

semi-global alignment implementation into GATK HC 3.7 and compare the overall

performance.

67

Ren et al. Page 13 of 20

Throughput is used as a performance metric of the first stage of the GPU-based

implementation, which is measured by giga cell updates per second (GCUPS). Note

that it is not fair to compare the throughput of the first stage of the semi-global

alignment with traceback with that of the score-only alignments since the former

needs to store backtracking matrices in the global memory.

Performance comparison of multi-pass

There are two solutions to implement the first stage of the semi-global alignment

on GPUs if the length of R2 is bigger than the number of threads in a block. We

realized these two solutions and used different synthetic datasets to compare the

performance of the two solutions.

Figure 8 shows the performance of the two solutions with different synthetic

datasets. There are 9 datasets each with a different length of R1/R2, namely: 64,

128, 192, 256, 320, 384, 448, 512 and 576. In each dataset, the lengths of R1 and R2

are the same. The number of sequence pairs in the 9 datasets is 25, 100 and 1000.

For the first solution, which is to increase the block size, there are in total 9

implementations for 9 datasets. The differences of these implementations are the

block size and the sizes of vectors in the shared memory which store the intermediate

results. For the second solution, which employs multi-pass, there is 1 implementation

with block size of 128.

64 128 192 256 320 384 448 512 576
0

2

4

6

8

10

12

Length of R1 and R2

G
C
U
P
S

25 25-pass

100 100-pass

1000 1000-pass

Figure 8 Performance comparison of implementations for two solutions on synthetic datasets.

As shown by Figure 8, the throughput of the first solution is higher than that of

the second solution when the number of sequence pairs of the datasets is 25 and 100.

However, when the number of sequence pairs of the datasets is 1000, the throughput

of the second solution is higher in most cases. This is because the efficiency of the

implementations for the first solution is smaller than that of the implementation

for the second solution and the advantage of the second solution overweighs its

disadvantage when the number of sequence pairs of the dataset is big. Thus, we can

choose the implementation of these two solutions based on the number of sequence

pairs of the dataset.

68 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 14 of 20

Performance comparison of recording match/mismatch lengths

In this section, we analyze the impact of recording the length of consecutive

matches/mismatches on the performance of the second stage of the alignment on

GPUs. We realized two implementations. The first implementation is our approach

shown in Algorithm 1 in which the length of consecutive matches/mismatches is

recorded in the backtrack matrix. The second implementation is similar to Algo-

rithm 1 except that the length of M is increased by one and the coordinates (i, j)

of M are decreased by 1. The backtracking matrices are produced by 9 implemen-

tations for the first solution using 9 synthetic datasets. Here, the synthetic datasets

are not based on the output of Wgsim since we consider the best case, in which only

many M operations exist in the optimal alignment. The lengths of R1/R2 in the 9

synthetic datasets are 64, 128, 192, 256, 320, 384, 448, 512 and 576. The number of

sequence pairs in the 9 datasets is 100.

Figure 9 shows the execution time of the two implementations. The implementa-

tion which records match/mismatch lengths is faster. Moreover, its execution time

remains nearly constant with increasing length of R1 and R2 as it only requires a

single global memory access per R1 and R2 pair. The execution time of the imple-

mentation without recording match/mismatch lengths increases linearly with the

length of R1 and R2. This is because the number of global memory accesses in-

creases linearly with the number of M operations in the optimal alignment, which

in turn increases linearly with the length of R1 and R2.

64 128 192 256 320 384 448 512 576
0

1

2

3

4

5

6

Length of R1 and R2

T
im

e
(1
0
−
4
s)

100 100-record-M-len

Figure 9 Execution time of GPU-based optimal alignment backtracking implementations (not)
recording match/mismatch lengths on synthetic datasets.

Performance comparison with gpu-pairAlign

As mentioned in Section “Background”, there are two methods to implement the

second stage on GPUs: the method based on the Myers-Miller algorithm and the

method based on backtracking matrices. The method based on the Myers-Miller

algorithm is only suitable for the pairwise alignment of very long DNA and pro-

tein sequences. Thus, we compared our implementation with gpu-pairAlign [12],

69

Ren et al. Page 15 of 20

which uses backtracking matrices to obtain the optimal alignments. gpu-pairAlign

is designed to perform alignment of every given sequence pair on GPUs, especially

for protein sequence pairs. It includes algorithms for global alignment, semi-global

alignment and local alignment. We compare with its semi-global alignment algo-

rithm. The semi-global alignment algorithm of gpu-pairAlign is also performed in

two stages: the optimal alignment score and the backtracking matrices are computed

in the first stage; the backtracking is performed in the second stage.

There are two main differences between the gpu-pairAlign implementation and

our implementation: (1) In the first stage, our implementation employs the intra-

task parallelization model, while the gpu-pairAlign implementation employs the

inter-task parallelization model; (2) The backtracking matrix of our implementation

is a short2 matrix, elements of which are the length of consecutive deletion(es),

insertion(es) and match(es)/mismatch(es), while the backtracking matrices of the

gpu-pairAlign implementation are four Boolean matrices, elements of which indicate

the proper direction of backtracking moves.

We modified the gpu-pairAlign implementation to make it to deal with the data

produced by GATK HC: (1) Since the input data of our implementation is a set

of sequence pairs instead of a set of sequences, the way in which the gpu-pairAlign

implementation handles input data is modified; (2) Integer arrays are used to store

the intermediate results instead of short arrays since the intermediate results are

bigger than the maximum value of the short data type; (3) The alignments are

modified to be represented using the CIGAR format and POS.

64 128 192 256 320 384 448 512 576
0

2

4

6

8

10

Length of R1 and R2

G
C
U
P
S

25 25 (gpu-pairAlign)

100 100 (gpu-pairAlign)

1000 1000 (gpu-pairAlign)

Figure 10 Performance comparison of the first stage of two implementations on synthetic
datasets.

We first used the synthetic datasets described in Subsection “Performance com-

parison of multi-pass” to compare the performance of the first stage of the two

implementations, which is shown in Figure 10. The performance of gpu-pairAlign

implementation is much smaller than our implementation. The main reason is that

when the size of the synthetic datasets is small, the resource on the GPU cannot be

70 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 16 of 20

fully utilized for the inter-task parallelization model. The second reason is that the

intermediate results are stored in integer arrays, which increases the size of shared

memory of each block and the number of global memory accesses.

We then compared the performance of the second stage of the two implementa-

tions using the synthetic datasets described in Subsection “Performance comparison

of recording match/mismatch lengths”, which is shown in Figure 11. The execu-

tion time of the second stage of our implementation remains nearly constant when

the length of R1 and R2 increases, while the execution time of the second stage

of the gpu-pairAlign implementation increases linearly with the length of R1 and

R2. Although the gpu-pairAlign implementation reduces the global memory space

by using four Boolean matrices, it still needs to calculate each move one by one,

which is avoided in our implementation through storing the length of consecutive

deletion(es), insertion(es) and match(es)/mismatch(es).

64 128 192 256 320 384 448 512 576
0

1

2

3

4

5

6

7

Length of R1 and R2

T
im

e
(1
0
−
4
s)

100 (gpu-pairAlign) 100

Figure 11 Execution time of the second stage of two implementations on synthetic datasets.

Performance comparison with CPU-based implementation

In this section, we compare the performance of our GPU-based semi-global align-

ment with traceback implementation with the CPU-based implementation using

synthetic and real datasets. We used the first solution which increases the block

size when the length of R2 is bigger than the block size and records the length

of consecutive matches/mismatches. The CPU-based implementation is written in

the C++ programming language and compiled with gcc O3 optimization, running

on one Power8 core. The real datasets are produced by using a typical workload

(Chromosome 10 of the whole human genome dataset G15512.HCC1954.1).

Figure 12 shows the speedup of the GPU-based implementations compared with

the CPU-based implementation using the synthetic datasets described in Subsec-

tion “Performance comparison of multi-pass”. There are in total 9 GPU-based im-

plementations for 9 datasets, block size of which are 64, 128, 192, 256, 320, 384, 448,

71

Ren et al. Page 17 of 20

64 128 192 256 320 384 448 512 576
0

20

40

60

80

100

Length of R1 and R2

S
p
ee
d
u
p

25 100 1000

Figure 12 Speedup of the GPU-based implementations compared with CPU-based
implementation on synthetic datasets.

512 and 576. The GPU-based implementations is up to 80x faster than the CPU-

based implementation. Moreover, the speedup of the datasets with 1000 sequence

pairs is bigger than the speedup of the datasets with 25 and 100 sequence pairs.

Table 3 shows the execution time of GPU-based implementations with the real

datasets. As shown by Figure 3, the length of R2 in situation 2 is 40∼120 and

the length of R2 in situation 3 is 300∼520. Thus, we used two GPU-based imple-

mentations with block size of 128 and 576 to execute the real datasets produced

in situation 2 and 3, respectively. The GPU-based implementation of situation 2

is 14.14x faster than the CPU-based implementation, while the GPU-based imple-

mentation of situation 3 is 4.89x faster than the CPU-based implementation. The

throughput of the first stage of the GPU-based implementation for situation 2 is

1.86 GCUPS, while that for situation 3 is 0.64 GCUPS. The throughput of situation

3 is much smaller than the throughput for the synthetic datasets with size 25. This

is because the number of sequence pairs of batches in situation 3 is extremely small

(1 ∼ 8 in most cases).

Table 3 Performance of GPU-based implementations on real datasets. S2 and S3 stand for situation
2 and 3, respectively.

Throughput GPU CPU Speedup
(GCUPS) (sec) (sec)

Stage 1 of S2 1.86 2.32 43.93 18.94x
Stage 2 of S2 - 0.14 0.62 4.43x
Overall of S2 - 3.15 44.55 14.14x

Stage 1 of S3 0.64 10.20 53.29 5.22x
Stage 2 of S3 - 0.09 0.17 1.89x
Overall of S3 - 10.93 53.46 4.89x

72 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 18 of 20

Integration into GATK HC

The two GPU-based implementations with block size of 128 and 576 are integrated

into GATK 3.7 to accelerate the semi-global alignment with traceback of situation

2 and situation 3, respectively. The GATK HC implementation with both GPU-

based pair-HMMs forward algorithm and GPU-based semi-global alignment with

traceback is compared with other two GATK HC implementations: GATK HC (re-

ferred to as baseline), which is downloaded from the GATK website, and GATK HC

with only GPU-based pair-HMMs forward algorithm. The dataset is Chromosome

10 of the whole human genome dataset (G15512.HCC1954.1). All the GATK HC

implementations are performed in single thread mode.

Table 4 shows the overall execution time of these three implementations. The im-

plementation with both GPU-based pair-HMMs forward algorithm and GPU-based

semi-global alignment with traceback is 2.30x faster than the baseline implemen-

tation. Moreover, it is 1.34x faster than the implementation with only GPU-based

pair-HMMs forward algorithm.

Table 4 Execution time of GATK HC implementations

Total time (s) Speedup

Baseline 8034.05 -
GPU (only pair-HMMs) 4687.08 1.71x
GPU (pair-HMMs + semi-global 3490.70 2.30x

alignment with traceback)

Note that the number of sequence pairs of each batch produced by GATK HC

is small, leading to under utilization of the GPU resources. It is better to launch

multiple GATK HC processes at the same time to fully utilize the GPU resources.

Conclusion
This paper presents an implementation of the semi-global alignment with traceback

on GPUs to improve the performance of GATK HC. Semi-global alignment with

traceback has two stages: in the first stage, a backtracking matrix is computed; in

the second stage, the optimal alignment is calculated using the backtracking matrix.

Based on the characteristics of the semi-global alignment with traceback in GATK

HC, the intra-task parallelization model is chosen. The first stage of our GPU im-

plementation is up to 18.94x faster than CPU. Moreover, our GPU implementation

also records the length of consecutive matches/mismatches in addition to lengths of

consecutive insertions and deletions as in the CPU implementation. This helps to

reduce global memory accesses and provides a speedup of up to 4.43x in the second

stage. Experimental results show that our alignment kernel with traceback is up to

80x and 14.14x faster than its CPU counterpart with synthetic datasets and real

datasets, respectively. The GATK HC implementation with both GPU-based pair-

HMMs forward algorithm and GPU-based semi-global alignment with traceback is

2.30x faster than the baseline GATK HC. It is 1.34x faster than the GATK HC

implementation with only GPU-based pair-HMMs forward algorithm.

73

Ren et al. Page 19 of 20

Abbreviations

HC: HaplotypeCaller

NGS: Next Generation Sequencing

Declarations

Acknowledgements

The authors wish to thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin and

IBM for the giving access to the IBM Power8 machines used in this paper.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

SR designed and performed the experiments, analyzed the data, and wrote the manuscript. All the authors jointly

developed the structure and arguments for the paper, made critical revisions and approved final version.

Funding

This work was supported by CSC (Chinese Scholarship Council) grant and Delft University of Technology.

Publication of this article was sponsored by Delft University of Technology.

Availability of data and materials

The algorithm generated in this manuscript as well as all input datasets are publicly available on a publicly available

repository: https://github.com/ShanshanRen/semi-global-alignment-with-traceback

Consent for publication

Not Applicable.

References
1. VdAuwera, G.: Speed up HaplotypeCaller on IBM POWER8 systems.

https://software.broadinstitute.org/gatk/blog?id=4833

2. Proffitt, A.: Broad, Intel Announce Speed Improvements to GATK Powered by Intel Optimizations.

http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-

by-intel-optimizations.html

3. Ren, S., Bertels, K., Al-Ars, Z.: Gpu-accelerated gatk haplotypecaller with load-balanced multi-process

optimization. In: IEEE International Conference on Bioinformatics and Bioengineering, pp. 497–502 (2017)

4. Ren, S., Bertels, K., Al-Ars, Z.: Efficient Acceleration of the Pair-HMMs Forward Algorithm for GATK

HaplotypeCaller on Graphics Processing Units. Evol. Bioinform. Online 14, 1176934318760543 (2018)

5. Li, I.T., Shum, W., Truong, A.K.: 160-fold acceleration of the smith-waterman algorithm using a field

programmable gate array (fpga). Bmc Bioinformatics 8(1), 1–7 (2007)

6. Benkrid, K., Liu, Y., Benkrid, A.S.: A highly parameterized and efficient fpga-based skeleton for pairwise

biological sequence alignment. IEEE Transactions on Very Large Scale Integration Systems 17(4), 561–570

(2009)

7. Hasan, L., Kentie, M., Al-Ars, Z.: Dopa: Gpu-based protein alignment using database and memory access

optimizations. Bmc Res Notes 4(1), 261 (2011)

8. Ahmed, N., Mushtaq, H., Bertels, K., Al-Ars, Z.: Gpu accelerated api for alignment of genomics sequencing

data. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 510–515 (2017)

9. Maskell, D.L., Liu, Y., Bertil, S.: Cudasw++: optimizing smith-waterman sequence database searches for

cuda-enabled graphics processing units. Bmc Research Notes 2(1), 73 (2009)

10. Liu, Y., Schmidt, B., Maskell, D.L.: Cudasw++2.0: enhanced smith-waterman protein database search on

cuda-enabled gpus based on simt and virtualized simd abstractions. Bmc Research Notes 3(1), 93 (2010)

11. Liu, Y., Huang, W., Johnson, J., Vaidya, S.: Gpu accelerated smith-waterman. In: International Conference on

Computational Science, pp. 188–195 (2006)

12. Blazewicz, J., Frohmberg, W., Kierzynka, M., Pesch, E., Wojciechowski, P.: Protein alignment algorithms with

an efficient backtracking routine on multiple gpus. Bmc Bioinformatics 12(1), 181 (2011)

13. Liu, Y., Schmidt, B., Maskell, D.L.: Msa-cuda: Multiple sequence alignment on graphics processing units with

cuda. In: IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp.

121–128 (2009)

14. Korpar, M., Sikic, M.: Sw#-gpu-enabled exact alignments on genome scale. Bioinformatics 29(19), 2494–5

(2013)

15. de O. Sandes, E.F., de Melo, A.C.M.A.: Smith-waterman alignment of huge sequences with gpu in linear space.

In: 2011 IEEE International Parallel Distributed Processing Symposium, pp. 1199–1211 (2011).

doi:10.1109/IPDPS.2011.114

16. Sandes, E.F.O., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G., Melo, A.C.M.A.: Cudalign 4.0:

Incremental speculative traceback for exact chromosome-wide alignment in gpu clusters. IEEE Transactions on

Parallel & Distributed Systems 27(10), 2838–2850 (2016)

74 5. GPU ACCELERATED SEQUENCE ALIGNMENT WITH TRACEBACK

Ren et al. Page 20 of 20

17. Myers, E.W., Miller, W.: Optimal alignments in linear space. Computer Applications in the Biosciences Cabios

4(1), 11–7 (1988)

18. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,

Subgroup, .G.P.D.P.: The sequence alignment/map format and samtools. Bioinformatics 25(16), 2078–2079

(2009). doi:10.1093/bioinformatics/btp352

19. TCGA Mutation Calling Benchmark 4 Files.

https://gdc.cancer.gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files

20. Xiao, S., Aji, A.M., Feng, W.: On the robust mapping of dynamic programming onto a graphics processing

unit. In: International Conference on Parallel and Distributed Systems, pp. 26–33 (2009)

21. Wgsim. https://github.com/lh3/wgsim

75

6
CONCLUSIONS

This chapter outlines the main contributions of this thesis and discusses the limita-
tions and interesting directions for future research.

6.1. MAIN CONTRIBUTIONS
This thesis aims to accelerate three computational intensive algorithms of the GATK

HaplotypeCaller (HC), including de Bruijn Graph (DBG) construction algorithm, the
pair-HMMs forward algorithm and the semi-global pairwise sequence alignment algo-
rithm, on GPUs and FPGAs to improve the performance of GATK HC. In Chapters 2 to
5, we showed the proposed implementations of the three algorithms and presented the
speedup achieved by comparing with the benchmark implementation using synthetic
datasets and real datasets. In addition, in Chapters 4 and 5, we also presented the imple-
mentations of GATK HC integrated with GPU-based algorithms and compare the perfor-
mance with the baseline GATK HC implementation. Below, we discuss the conclusions
that we drew from Chapters 2 to 5.

CHAPTER 2
In this chapter, we presented a novel GPU-based algorithm of DBG construction for

micro-assembly in GATK HC. We compared the performance of the GPU-based imple-
mentation with the baseline implementation. The following conclusions can be drawn
from this chapter.

1. We introduced the DBG construction algorithm implemented in GATK HC and
used a simple example to explain the main difference between the DBG construc-
tion in GATK HC and the general DBG construction used in genome assembly.

2. The idea of the proposed algorithm is: (1) it assumes that there are no repeat k-
mers in the dataset and first calculate the occurrences of (k+1)-mers in parallel on
the GPU, thereby achieving high speedup; (2) the dataset is inspected for repeat
k-mers, and only these repeats are re-evaluated on the CPU.

77

78 6. CONCLUSIONS

3. Experimental results showed that a speedup of up to 3x for the proposed imple-
mentation compared with the software-only implementation with various syn-
thetic datasets, while the speedup for real human genome datasets is up to 2.66x.

CHAPTER 3
In this chapter, we first showed an FPGA-based design of the pair-HMMs forward al-

gorithm and compared the performance with the benchmark implementation. We then
analyzed the performance characteristics of this design and presented a design utiliz-
ing the computing resources on FPGAs, which was compared with the state-of-the-art
implementation. The following conclusions can be drawn from this chapter.

1. We introduced the pair-HMMs forward algorithm and investigated its inherent
parallelism.

2. We proposed a novel systolic array design to accelerate the pair-HMMs forward al-
gorithm on FPGAs, which was implemented on the Convey supercomputing plat-
form including four FPGA co-processors. Experimental results showed that this
FPGA-based implementation is up to 67x faster, compared to the software-only
implementation.

3. We presented a model to calculate the utilization of a systolic array on FPGAs. We
analyzed architectural alternatives and implemented one such architecture. Ex-
perimental results showed the implementation achieves up to 90% of the theoret-
ical throughput for a real dataset and is 2.5x faster than the state-of-the-art imple-
mentation on a similar contemporary platform.

CHAPTER 4
In this chapter, we presented several GPU-based implementations of the pair-HMMs

forward algorithm and compared their performance with various datasets. We showed
a solution to integrate the GPU-based implementation of the pair-HMMs forward algo-
rithm into GATK HC. At last, we proposed a load-balanced multi-process optimization
for the GPU-based GATK HC implementation. The following conclusions can be drawn
from this chapter.

1. Based on the characteristics of GPU architecture and the inherent parallelism of
the pair-HMMs forward algorithm, we presented several GPU-based implementa-
tions of this algorithm.

2. We showed the performance comparison of these implementations with various
datasets and real datasets. Experimental results showed that the proposed imple-
mentations achieve a speedup of up to 5.47x over existing GPU-based implemen-
tations.

3. We integrated the GPU-based implementation of the pair-HMMs forward algo-
rithm into GATK HC. In single-threaded mode, the GPU-based GATK HC is 1.71x
faster than the baseline GATK HC implementation.

6.2. LIMITATIONS AND FUTURE WORK 79

4. We proposed a load-balanced multi-process optimization that divides the genome
into regions of different sizes to ensure a more equal distribution of computa-
tion load between different processes. The GPU-based implementation in load-
balanced multi-process mode achieves up to 2.04x over the baseline GATK HC im-
plementation in non-load-balanced multi-process mode.

CHAPTER 5
In this chapter, we presented a GPU-based implementation of the semi-global pair-

wise sequence alignment with traceback. Moreover, we integrated this GPU-based im-
plementation into GATK HC. The following conclusions can be drawn from this chapter.

1. We introduced the semi-global alignment algorithm in GATK HC and discussed
the characteristics of the input datasets and output datasets of this algorithm.

2. We presented a GPU-based implementation of semi-global alignment with trace-
back. Based on the characteristics of the semi-global alignment algorithm in GATK
HC, the intra-task parallelization model was chosen. Further, the GPU-based im-
plementation records the length of consecutive matches/mismatches in addition
to lengths of consecutive insertions and deletions as in the CPU implementation.
Experimental results showed that the GPU-based implementation is up to 14.14x
faster than the software-only implementation.

3. We integrated the GPU-based implementation of the semi-global alignment with
traceback into GATK HC alongside the GPU-based implementation of the pair-
HMMs forward algorithm. This GPU-based implementation is 2.3x faster than
the baseline GATK HC implementation. Moreover, it is 1.34x faster than the GATK
HC implementation only with the integrated GPU-based pair-HMMs forward al-
gorithm.

6.2. LIMITATIONS AND FUTURE WORK
We conclude this thesis by discussing the limitations and the possible directions for

future work.
First, we have not integrated the FPGA-based implementation of the pair-HMMs for-

ward algorithm into GATK HC. As mentioned in Section 1.2, the Java program cannot
directly launch the programming code of FPGAs and GPUs. In order to solve this limi-
tation, we need to search solutions provided by packages and interfaces. For the GPU-
based implementations, we used JCuda and JNI (Java Native Interface) to solve this lim-
itation. For FPGA-based implementations, we have tried to employ IPC (Inter-Process
Communication) techniques of shared memory to allow the FPGA-based implementa-
tion of the pair-HMMs algorithm and GATK HC to communicate with each other on
the Convey supercomputing platform. However, the performance was not as good as
expected. In 2014, IBM released systems accelerated both by FPGAs and GPUs. More-
over, IBM proposed CAPI (Coherent Accelerator Processor Interface) technology, which
makes accelerating workloads on FPGAs faster and easier than earlier approaches. Thus,
it would be possible to use the CAPI technology and other techniques together to inte-
grate the FPGA-based implementation into GATK HC on a CAPI-enabled IBM machine.

80 6. CONCLUSIONS

Second, we have not integrated the GPU-based DBG construction algorithm for
micro-assembly into GATK HC. As mentioned in Section 1.2, the size of input datasets
of the algorithms should be large enough to fully utilize the computing sources on GPUs
and FPGAs. For the GPU-based implementations of pair-HMMs forward algorithm and
semi-global alignment algorithm, it is not difficult to solve this limitation by modifying
the source code of GATK HC. However, for the GPU-based implementation of DBG con-
struction algorithm for micro-assembly, it requires a major modification of the source
code of GATK HC. In early 2018, GATK 4.0 was released, which modified the engine
framework of the non-Spark implementations of many tools, including GATK HC, mak-
ing it easier to modify the source code. It is possible to integrate the GPU-based DBG
construction algorithm for micro-assembly into GATK 4.0.

Third, the implementation of GATK HC with integrated GPU-based implementations
of the pair-HMMs forward algorithm and the semi-global alignment algorithm only ran
on one compute node. It would be interesting to run the GPU-based implementation of
GATK HC on all the compute nodes in a cluster or on a cloud computing environment.

Fourth, although the acceleration of the three algorithms is intended to improve the
performance of GATK HC, the techniques and methods presented in this thesis can be
extended to other DNA analysis tools. It would be interesting to use another DNA analy-
sis tool to test these techniques and methods.

Finally, it took great effort to read the source code of GATK HC and undertake modi-
fication of the source code to integrate the accelerated implementations into GATK HC.
Therefore, we recommend starting an effort to develop new DNA analysis tools and
take ease of integration into consideration. The framework of the tools should be made
friendly enough for other researchers to accelerate the computational intensive kernels
on FPGAs and GPUs.

LIST OF PUBLICATIONS

INTERNATIONAL JOURNALS
1. S. Ren, N. Ahmed, K.L.M. Bertels, Z. Al-Ars, GPU Accelerated Sequence Alignment

with Trace-back for GATK HaplotypeCaller. Accepted for publication in BMC Ge-
nomics, 2019

2. S. Ren, K.L.M. Bertels, Z. Al-Ars, Efficient Acceleration of the Pair-HMMs Forward
Algorithm for GATK HaplotypeCaller on Graphics Processing Units, Evolutionary
Bioinformatics, 14:1176934318760543, 2018

INTERNATIONAL CONFERENCES
1. S. Ren, N. Ahmed, K.L.M. Bertels, Z. Al-Ars, An Efficient GPU-based de Bruijn

Graph Construction Algorithm for Micro-Assembly, 18th annual IEEE International
Conference on BioInformatics and BioEngineering (BIBE 2018), October 29-31,
2018

2. S. Ren, K.L.M. Bertels, Z. Al-Ars, GPU-Accelerated GATK HaplotypeCaller with
Load-Balanced Multi-Process Optimization, 17th annual IEEE International Con-
ference on BioInformatics and BioEngineering (BIBE 2017), October 23-25, 2017

3. S. Ren, K.L.M. Bertels, Z. Al-Ars, Exploration of Alternative GPU Implementations
of the Pair-HMMs Forward Algorithm, 3rd International Workshop on High Perfor-
mance Computing on Bioinformatics (HPCB 2016), December 15-18, 2016

4. J.W. Peltenburg, S. Ren, Z. Al-Ars, Maximizing Systolic Array Efficiency to Accelerate
the PairHMM Forward Algorithm, IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM 2016), December 15-18, 2016

5. S. Ren, V.M. Sima, Z. Al-Ars, FPGA Acceleration of the Pair-HMMs Forward Algo-
rithm for DNA Sequence Analysis, International Workshop on High Performance
Computing on Bioinformatics (HPCB 2015), November 9-12, 2015

81

CURRICULUM VITÆ

Shanshan REN

Shanshan Ren was born in SiChuan, China in 1988. She received her Bachelor’s degree
in Network Engineering and Master’s degree in Computer Science and Technology from
National University of Defense Technology, Changsha, China. In September 2013, she
started her PhD at the Quantum and Computer Engineering Department of the Delft
University of Technology, where she was working under the supervision of Prof. Koen
Bertels and Dr. Zaid Al-Ars. Her research interests include high performance computing
and optimization.

83

	Summary
	Samenvatting
	Introduction
	Background and related work
	Next generation sequencing
	High performance computing systems and applications
	GATK HaplotypeCaller

	Motivation and challenges
	Our contribution
	Thesis organization
	titleReferences

	GPU-based DBG Construction for Micro-Assembly
	FPGA Accerleration of the Pair-HMMs Forward Algorithm
	GPU Acceleration of the Pair-HMMs Forward Algorithm
	GPU Accelerated Sequence Alignment with Traceback
	Conclusions
	Main contributions
	Limitations and future work

	List of Publications
	Curriculum Vitæ

