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Backgroun & m

¢ Lane detection is crucial for Automated Vehicles and ADAS
¢ Available vision based methods usually use one image to do lane detection
¢ Traditional methods usually adopted cumbersome hand-crafted features

** Deep learning based methods in literature still can not make full use of

spatial-temporal information and correlation

*»* Available methods can not handle challenging driving scenes well

The main aim of this study is:

-“

» To make full use of valuable features and aggregate contextual information

» To develop robust detection model handling challenging driving scenes

Figure 1. Examples of challenging driving scenes.
» To develop pre-training method for sequential vision based lane detection

The framework of the proposed pipeline
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Evaluation Metrics
Figure 2. The framework of the proposed pipeline

» Accuracy » Precision > Parameter Size
» F1-Meassure > Recall » MACs (Multiply-accumulate operations)
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Masked images

Reconstructnmages__h‘ Figure 4. Visualization of lane-detection results on Figure 5. Visualization of lane-detection results on

Figure 3. Visualization of the reconstructing results in normal cases. /7 challenging driving scenes.
the pre-training phase.
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