

Re-De-Form

An interactive tool for the design and fabrication of grid shells structures.

Student

Isidoros Spanolios (4846982)

Mentors

Serdar Asut | Design Informatics

Olga Ioannou | Building Product Innovation

"De-Form"

Able to change shape

"Re-Form"

Able to do it multiple times

Research Question

How to develop a "design to fabrication" workflow that corresponds to the design process and materialization of a timber grid-shell structure, while also establishing an automation process to provide the Re-De-Form with more accuracy/precision in producing free-form surfaces?

Sub-Questions

- 1. How to study freeform surfaces through Re-De-Form?
- 2. How can Re-De-Form be upgraded towards a more fast and accurate mechanism for freeform exploration?
- 3. How to design a timber grishell and fabricate its panelization?
- 4. How can the Re-De-Form be utilized for gridshell design and panel fabrication?

Objectives

- 1. Perform an analysis of freeform surfaces and the challenges they pose towards their design.
- 2. Study the requirements of a timber grid-shell towards its form-finding, materiality, structural analysis, panelization.
- 3. Relate Re-De-Form to the designing and fabrication process of a grid shell structure.
- 4. Test the automated workflow using a prototype of Re-De-Form.

Methodology Steps

- 1. Literature review on freeform surfaces, flexible formworks and timber gridshells
- 2. Create the digital and physical environment of Re-De-Form and link it to the case study of a timber gridshell structure
- 3. Perform the Form Finding, Structural Analysis, Panelization and Physical Modelling
- 4. Prototype and Automate Re-De-Form to perform panel fabrication and physical modelling

Freeform Surfaces

- 1. Freeform Surface Geometry
- 2. Panelization
- 3. Freeform Examples
- 4. Freeform Design and Context

Freeform Surface Geometry

Traditional Surface Classes

Rotational Surface

Translational Surface

Extrusional Surface

Ruled Surface

Pipe Surface

Offset Surface

Hyperbolic Paraboloid

Freeform Curves

- 1. Bezier
- 2. B-Spline
- 3. NURBS

Freeform Surfaces

- 1. Bezier Surfaces
- 2. B-Spline
- 3. NURBS Surfaces

column polygon b_{11} row polygons b_{01} b_{01} b_{02} b_{02} b_{02}

Translational Bezier Surface

General Bezier Surface

NURBS Surfaces 11

Meshes

Panelization

- 1. Non-Rationalization
- 2. Pre-Rationalization
- 3. Post-Rationilization

Non-Rationalization

Pre-Rationalization

Post-Rationalization

Freeform Surface Examples

Antonio Gaudi

Frank Ghehry

Freeform Design

is identified as a new and cross-disciplinary domain and is characterized as representative of the larger scale of impact of digital technologies on building design and production.

Challenges in:

- 1. Architectural Design
- 2. Engineering
- 3. Fabrication

Freeform Design Challenges | Re-De-Form

State of the Art on Flexible Molds

Renzo Piano

Spuybroek

Vollers and Rietbergen

The former FlexiMold

1st Upgrade

Automation of the manually adjusted formwork

2nd Upgrade

Integrate Human Computer Interaction (HCI)

1st Upgrade

Automation of the manually adjusted formwork

2nd Upgrade

Integrate Human Computer Interaction (HCI)

The automation as it was originally envisioned

Timber Gridshell Structures

Shells Gridshells

Timber GridShells

Timber GridShell examples

The Mannheim Multihalle

Timber GridShell examples

The Mannheim Multihalle

The Weald and Downland

Timber GridShell examples

The Mannheim Multihalle

The Weald and Downland

Pavilion ZA

Form Finding Processes for shells

- 1. Stiffness Matrix Methods
- 2. Geometric Stiffness Method
- 3. Dynamic Equilibrium Methods

Form Finding Processes for shells

- 1. Stiffness Matrix Methods
- 2. Geometric Stiffness Method
- 3. Dynamic Equilibrium Methods

Particle Spring Method

Timber Grid Details and Node Connections

Single-Double Layering

Double Layer System

Plate-Bolt node

Diagonal Bracing

Re-De-Form

Designing the workflow

- 1. Form finding
- 2. Designing the Gridshell
- 3. Structural Analysis
- 4. Panelization and panel correction
- 5. The digital Re-De-Form
- 6. The Re-De-Form prototype

Form finding of a flat surface

The Flowchart

3 scenarios

U and V Polylines for structural analysis

U and V Curves For gridshell design and panelization

Designing the gridshell

Cross-section design and application

The cross-section design utilizes double-layer lath system

The cross-section was aligned to the local planes of the surface and lofted

The flat grid pushed inwards

The panelization is placed on top of the structure

Final Model with freeform cladding surface

Structural Analysis

Calculation of Displacement and Axial Forces

Wood Material from Karamba Library

Assemble Model component

```
"""Provides a scripting component.
                                               ······x: The x script variable
                                               ·····y: The y script variable
                                              ·····a: The a output variable"""
                                              __author__ = "ispan"
                                              __version__ = "2021.03.23"
                                              import rhinoscriptsyntax as rs
                                              lowestPoints = []
                                              if z<0.1:
                                              ----lowestPoints.append(A)
                                                                                              Support Points
          X component
Point A Y component
                                                      Closest Point
                                                                  points unique points
                                               Point
                                                   CP Index
                         Cloud
                                                      Distance
```

The Supports are defined by a GH Python script

The Elements, Supports and Loads

Deformation

Axial Forces

Panelization | Rotational correction

Panelization

Flowchart

Panelization

Flowchart

Panelization lines and dimensions

Panelization

Flowchart

Panel network | Lath network

Panelization lines and dimensions

Actual and Hidden Panels

Labelled Panels

Some Panels require rotational correction

The algorithm corrects the panels in 2 phases:

- 1. Bounding Box (red line) is square
- 2. Bounding Box perimeter is smaller than a number

Correctly rotated panels

The digital Re-De-Form

panel A.8 panel E.13 panel G.12

The digital Re-De-Form (5x5pins)

3x3 pin digital Re-De-Form

Scale the panels

Home the Pins through Grasshopper

Angles of rotation

String to Serial Monitor

Physical Modelling

1:10 1:15 1:20

The Re-De-Form prototype

Re-De-Form surface | Freeform surface

Jacon Jacon

Re-De-Form grid. Top View

Re-De-Form in Section

Draft Ball connection

Final Ball connection

The actuator system

The formwork without rubber bands

The formwork with rubber bands

The automation

Digital to Physical data transfer

The circuit

The steps to use the prototype

The wooden piece used for Homing

The pins are Homed

	Picture	Number	Cost (Euros)
Arduino Mega 2560		1	15
Male-Female Cable		40-80	4-8
Breadboard		1	5
Stepper Motor	(6	9	54
Motor Driver		9	36
12V Power Adaptor		1	8
DC to terminal block adaptor		1	2
MDF sheets, steel cables, wooden pins, CnC cut		2	25
Total Cost			155

The Building Weeks

Capabilities

- 1. Physical modelling mechanism
- 2. Design in various scales
- 3. Automation
- 4. Component Uniqueness
- 5. Accuracy
- 6. Calculation Intensity
- 7. Data communication

Architectural Design Engineering

Fabrication

Limitation and Future upgrades

- 1. Magnet application on prototype
- 2. Surface cutting pattern study
- 3. Application of more pins
- 4. The algorithm warns about the consecutive pin's critical height difference
- 5. Directly connect the positional values to the prototype without the use of Ctrl+C and Ctrl+V

Thank You!