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We theoretically investigate a driven oscillator with the superconducting inductance subject to quantum

phase slips (QPS). We find uncommon nonlinearities in the proposed device: they oscillate as a function of

the number of photons N with a local period of the order of
ffiffiffiffi
N

p
. We prove that such nonlinearities result in

multiple metastable states encompassing few photons and study oscillatory dependence of various

responses of the oscillator. Such nonlinearities enable new possibilities for quantum manipulation of

photon states and very sensitive measurements to confirm the coherence of phase slips.
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A phase slip process in a superconducting wire is a
topological fluctuation of the superconducting order pa-
rameter whereby it reaches zero at a certain time moment
and at a certain point of the wire [1]. Such a process results
in a �2� change of the superconducting phase difference
between the ends of the wire; this produces a voltage pulse.
Incoherent thermally activated phase slips were shown to
be responsible for residual resistance of the wire slightly
below critical temperature [2,3]. At lower temperatures
and in thinner wires phase slips are quantum fluctuations.
Although resistance measurements indicate the quantum
nature of the phase slips [4,5], they cannot prove a possible
quantum coherence of phase slips. Coherent phase slips are
not manifested as countable incoherent events detected
in the course of resistance measurements. A set of other
nanodevices [6,7] have been proposed to verify the coher-
ence experimentally. To facilitate this verification was the
initial motivation of our research.

Nonlinear effects on driven oscillations are important in
many fields of physics, ranging from applied mechanics to
optics. They are instrumental for quantum applications
[8,9] and in superconducting resonators [10,11], where
the nonlinearities enabled measurement of several quanta
in the resonant cavity. However, a limitation is that the
nonlinearities in almost all physical systems are featureless
(polynomial) functions of the average number of photons
N in the oscillator, typically N2 [12–15]. In this Letter we
show that the QPSs induce very special nonlinearities in
the oscillator. They have a particular oscillatory depen-
dence on the number of photons [16] with a local period

/ ffiffiffiffi
N

p
and are manifesting already at several photons. We

show that this brings up new possibilities for quantum
manipulation of photons states in the resonantly driven
oscillator. An important functionality of the proposed
device, the phase slip oscillator, is an unambiguous verifi-
cation of existence of coherent QPS by two signatures:
(i) periodic gate-voltage dependence of oscillator response
at small QPS amplitudes, (ii) multiple stable points at
bigger QPS amplitudes as opposite to two stable points

commonly found in nonlinear driven oscillators. As com-
pared with previous proposals to verify the coherence
experimentally [6,7], the device is sensitive to five order
of magnitude smaller amplitudes.
The inductance L of the wire brings about the inductive

energy scale EL ¼ �2
0=2L, where �0 ¼ �@=e is the flux

quantum with @ the Planck constant and e the electron
charge. It is usually assumed that experimental observation
of coherent QPS requires the phase slip amplitude ES to be
comparable with EL [7]. The QPS amplitude ES depends
exponentially on the wire parameters, so its value can hardly
be predicted and it may be small. This is why it is important
to be able to detect arbitrary small values of ES. Our idea is
to use a driven oscillator. We prove that in this case the
detectable values of ES are only limited by damping of the
oscillator ES � @� � @!0. There is an outburst of activity
in applying superconducting oscillators for quantum ma-
nipulation purposes [17–19]. The inductance of such an
oscillator may be either a thin superconducting wire
[11,20] or a chain of Josephson junctions [21,22]. The
multijunction chains also exhibit QPS and for our purposes
are very similar to a wire. Typical experimental values for
the main frequency and dissipation rate are !0 ’ 1010 Hz
and � ’ 105.
This brings us to the system under consideration: the

phase slip oscillator [see Fig. 1(a) and the equivalent circuit
in Fig. 1(b)]. For simplicity, we neglect the effects of the
capacitance distribution along the wire attributing all the
capacitance C to the ‘‘island.’’ Without QPS, the system is
a linear LC one-mode oscillator. The ac component of the
gate electrode excites the oscillator while the dc compo-
nent induces constant charge q ¼ CVg to the island. The

oscillator is subject to small damping characterized by the

energy loss rate � � !0, !0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. Without QPS,

the dynamics of the oscillator can be described by �—
the superconducting phase difference dropping along the
wire; � can take any value not being restricted to the
interval (� �, �). The dynamics are entirely linear with
the inductive energy given by ELð�=2�Þ2. Consequently,
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in the absence of QPS, the charge q on the island does not
affect the dynamics. The QPS shifting the phase by �2�
can be described by a Hamiltonian acting on the wave
function of the system �ð�Þ [7]:

Ĥ S�ð�Þ ¼ ES

2

X
�
e�i�q=e�ð�� 2�Þ: (1)

The effect of weak QPS (ES � @!0) on the resonantly
driven oscillator originates from the shifts En ¼ hnjHSjni
to the otherwise equidistant levels of the oscillator, labeled
by the integer n (photon number). We immediately see
from Eq. (1) that En / cosð�q=eÞ, so the charge induced
affects the quantum interference of QPS with opposite
shifts. Any effect of QPS is thus periodic in gate voltage
with a period 2e=C. The experimental observation of such
dependence unambiguously identifies the quantum coher-
ence of phase slips. As mentioned, we are more interested
in the oscillatory dependence on the number of photons n.
One envisages the origin of such a dependence from the
fact that the energy shifts En are proportional to overlaps of
the oscillator wave functions shifted by �2� with respect
to each other [see Fig. 1(c)]. The wave functions oscillate
in the space of variable � with a typical local period of

�� / 1=
ffiffiffi
n

p
. These oscillations are converted into oscilla-

tory dependence of the overlaps
R
d���ð�Þ�ð�� 2�Þ

on the photon number [see Fig. 1(c)].

The important parameter � ¼ ð2GQZ=�Þ�1=2 (where

GQ � e2=�@ is the conductance quantum) measures the

effective impedance of the oscillator Z ¼ ffiffiffiffiffiffiffiffiffiffi
L=C

p
, and

defines the quantum fluctuations of phase / ð4�2�2Þ�1.
Commonly, electrical resonators have � � 1. However,
superconductingwires provide significant kinetic inductance
which may make � � 1 [21,22]. In this letter, we concen-
trate on experimentally accessible range 0:3<�< 3.
We expect that QPS have a measurable effect when

the oscillator is resonantly driven. Therefore we include
the driving force 2VacðtÞ ¼ ~V expðið!0 �!ÞtÞþ H:c:,
with the detuning j!j � !0. It is convenient to normalize
the driving force such that it enters the Hamiltonian

in a combination @Fðb̂þ b̂yÞ=2, where b̂ and b̂y are the
boson annihilation and creation operators, defined as:
b ¼ �

2��þ i �� Q, and by is obtained by conjugation.

The force is then F ¼ ðe�=�@Þ ~V and the Hamiltonian of
the driven oscillator reads

Ĥ ¼ @!0b
ybþ Ref@Feið!0�!Þtg b

y þ b

2
þ ĤS;

where the QPS term HS is given by Eq. (1).
We implement the rotating-wave approximation to

arrive to the equation for density matrix �̂ (valid at HR,
@� � @!0):

@�̂

@t
¼ � i

@
½ĤR; �̂� þ �

�
b�̂by � 1

2
ðbyb�̂þ �̂bybÞ

�
; (2)

where the terms including the dissipation � in Eq. (2) are of
conventional form [23] (assuming kBT � @!0) and

Ĥ R ¼ EðbybÞ þ @Fby þ @F�b
2

þ @!byb:

The energy shifts induced by the QPS, EðnÞ ¼ hnjĤSjni,
are expressed as the first order correction with respect to ES

through the hypergeometric function 1F1:

En ¼ 2ES cosð�q=eÞ expð��2=2Þ1F1½�n; 1; �2�:
We have found that if the parameter � lies within the
interval [0.3, 3], the shifts at any n � 0 can be sufficiently
well approximated by the large-n asymptotic:

En ¼ 2ES cosð�q=eÞ
cosð2� ffiffiffi

n
p � �

4Þffiffiffiffiffiffiffi
��

p
n1=4

: (3)

This simple formula emphasizes the central point of this
Letter: it shows that the phase slips add very unusual
nonlinearities to the resonantly driven oscillator. The local
period of oscillations reads �n ¼ 2�

ffiffiffi
n

p
=�. At � ’ 1 it is

of the order of the ‘‘width’’ hn2i ¼ ffiffiffi
n

p
of a coherent state

of the oscillator corresponding to the average number of
bosons n. For larger �, the QPS shift En will make more
oscillations at the scale of the coherent state width. This
suppresses the effect of QPS at large �.
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FIG. 1 (color online). (a) Phase-slip oscillator. A thin super-
conducting wire connects a lead and an island. The nearby gate
electrode induces charge to the island. The wire is subject to
QPS. (b) The inductance L of the wire and the capacitance C of
the island form an oscillator that can be excited with the gate
voltage. The crossed diamond represents QPS of amplitude ES.
(c) Energy potential and wave functions for n ¼ 0; 5; 8 for two
harmonic oscillators shifted by 2� with respect with each other.
The QPS induced correction EðnÞ is proportional to the overlap
integral of the wave functions shifted. Wave function oscillations
in � give rise to the oscillations of the overlap in n. (d) The QPS
corrections to the levels of the oscillator for � ¼ 0:92. Exact
values (dots) are fitted with Eq. (3) (curve). The photon distri-
bution in several coherent states is plotted to compare its width
and the local period of oscillations (dashed).
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In the absence of QPS, a driving force F brings the
oscillator into a coherent state with the amplitude given
by [23]

� � hbi ¼ �i
F

�
2 þ i!

: (4)

A straightforward but involved perturbation theory (see
supplemental material [24]) gives the first order correction
(/ ES) to this amplitude, valid for any � and kBT,

�� ¼ �hbi ¼ �2ES cosð�q=eÞEð�Þ ��
2

j�jF J1ð2�j�jÞ; (5)

with Eð�Þ ¼ expð� �2

2 cotanh
!0

2TÞ. The last factor (J1 being
the first order Bessel function) incorporates oscillations
corresponding to the oscillatory behavior of the energy
shifts. The exponential factor Eð�Þ is best understood as
the effect of averaging of these oscillations over the width
of the coherent state. The first order correction is exponen-
tially suppressed at high temperature and � � 1. While
not all the corrections vanish at � � 1, we prefer to work
at � ’ 1, where the exponent is ’ 1. We will also assume
kBT � @!0.

In the linear regime, F ! 0, the correction amounts to
the frequency shift @! ! @!� 2ES�

2 cosð�q=eÞEð�Þ.
The correction becomes noticeable if it is of the order of
the line width, ES ’ @� [25], and can be revealed owing to
the oscillatory dependence on gate voltage.

However, the applicability of the linear regime is limited
to almost no photons excited, � � 1. At larger driving, the
correction slowly decays with increasing N � j�j2. At

N � 1, the correction becomes significant if ES *

@maxð!;�ÞN3=4. It is interesting to note that the oscilla-
tory correction enhances the dependence on the detuning
!. This is why the correction becomes significant at much

smaller ES, ES 	 @maxð!;�ÞN1=4, if one concentrates on
the derivative of the amplitude with respect to detuning,
@�=@!. We illustrate the scale of the correction and its
oscillatory dependence on � in Fig. 2 and refer to supple-
mental material for details of these estimations [24].

Let us go beyond perturbation theory, to the regime
where the QPS correction becomes large, leading to quali-
tatively different physics. We present a comprehensive
semiclassical analysis that captures the essence of the
full quantum solution.

In the semiclassical approximation we replace n by a
continuous variable N � hni. The nonlinearities modify
the detuning ! in Eq. (4), ! ! !þ dEðNÞ=@dN, where
EðNÞ is defined by Eq. (3) at � � 1. Squaring Eq. (4) yields
a self-consistency equation for N at given F and ! [23]:

N ¼ F2

ð�2Þ2 þ ð1
@

dE
dN þ!Þ2 : (6)

That suffices to make implicit plots NðF;!Þ. For common
nonlinearities dE=dN is / N. This gives either a single
solution for Nð!Þ or three solutions corresponding to two
metastable states. The oscillatory dependence onN changes

this drastically. To elucidate, we plotNð!Þ in Fig. 3 at fixed
F ¼ 15�. At negligible ES, Nð!Þ is a Lorentzian. QPS
corrections shift the curve horizontally, the magnitude of

the shift oscillating with a local period ’ ffiffiffiffi
N

p
. At suffi-

ciently large ES this results in an impressive characteristic
‘‘corkscrew’’ shape. At any given ! within the oscillator
line width one finds a multitude of states that differ in N.
About half of these states are stable. We stress the tunability
of this QPS oscillator: small changes of the driving force,
detuning, or charge induced change the number of stable
states, thereby enabling easy manipulation of N.
Generally, one expects fluctuation-induced switching be-

tween the available stable states. The semiclassical analysis
does not account for that. Nor does it prove if a given
metastable solution corresponds to a pure quantum state.
It is also not clear if the semiclassical prediction for the
metastable solutions works for the states with few photons.
To understand this, we have performed numerical simula-
tions using the full quantum equation Eq. (2) for density
matrix. For illustration, we set! ¼ 0 and ES to a moderate
value of 6@�. We initialize the density matrix to vacuum,
j0ih0j, and compute its time-dependence while making a
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FIG. 2 (color online). QPS induced correction �� of a driven
oscillation versus detuning at F ¼ 15�. Real and imaginary parts
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FIG. 3 (color online). Multiple stability in QPS oscillator. We
plot the number of photons N versus detuning ! at F ¼ 15� as
predicted by semiclassical Eq. (6). The lower panels represent
insets of the shaded areas in the upper panel. For ES ¼ 0 (no
QPS), Nð!Þ is a Lorentzian, plotted in all panes with a thinner
line. For three values of QPS amplitude, there are increasing
deviations from the Lorentzian. There are multiple intervals
of ! with two (ES ¼ 20@�) and multiple (ES ¼ 200@�) stable
configurations.
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linear sweep of F from 0 to 5:5� and back [Fig. 4(a)].
Plotting hni versus F for different sweep durations T gives a
series of curves with evident hysteresis [see Fig. 4(a)].
Generally, one expects the relaxation time of the density
matrix to be of the order of 1=�. Remarkably, a noticeable
hysteresis persists even at time intervals 4
 104��1. This
clearly indicates an exponentially long lifetime of the meta-
stable states even for a few photons. From semiclassics we
expect up to 3 metastable states in this force interval. We
hypothesize that the oscillator spends most of the time in
one of such states while rare switching between these states
result in equilibration of the probabilities to be in these
states. Such equilibration occurs at the time scale corre-
sponding to the slowest switching rate. To prove this illus-
tratively, we have computed the equilibrium density matrix
at F ¼ 4:85� and expanded it into a sum of contributing
pure states [see Fig. 4(b)]. We have found that the density
matrix is mainly contributed by three pure states: one
‘‘dark’’ state � j0i and two coherentlike state centered
around 5.5 and 16.3 photons, respectively, with probabil-
ities 0.46, 0.25, and 0.15. The remaining probability corre-
sponds to ‘‘excited’’ states that have nodes at positions of
the coherentlike states centered at 5.6, 16.3. The relaxation
time that characterizes the slow switching is 300��1 at this
value ofF. About 4000 photons are absorbed and emitted in
the oscillator during this time interval; this proves the
extraordinary robustness of the states involved.

To conclude, we have investigated the effect of nonline-
arities produced in a superconducting resonator by coher-
ent phase slips. These nonlinearities are very distinct from
those previously known owing to the oscillatory depen-
dence on number of photons with a local period ’ ffiffiffi

n
p

. We
have demonstrated that at semiclassical level the nonline-
arities result in a multitude of metastable states; this is
specific for the oscillatory nonlinearity presented. The
position and number of these metastable states can easily

be tuned by changing the driving force. At quantum level,
we have demonstrated that there is a single quantum state
corresponding to the semiclassical metastable states. These
states are robust, their switching time is exponentially long,
although they encompass only a few photons. These fea-
tures of the phase slip oscillator make it useful for a wide
range of applications, such as ultrasensitive measurements,
quantum manipulation and naturally, an unambiguous ex-
perimental verification of coherent phase slips.
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